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Abstract 

The membrane structure has been applied throughout different fields such as civil 

engineering, biology, and aeronautics, among others. In many applications, large deflections 

negate linearizing assumptions, and linear modes begin to interact due to the nonlinearity. 

This paper considers the coupling effect between vibration modes and develops the 

theoretical analysis of the free vibration problem for orthotropic rectangular membrane 

structures. Von Kármán theory is applied to model the nonlinear dynamics of these 

membrane structures with sufficiently large deformation. The transverse displacement fields 

are expanded with both symmetric and asymmetric modes, and the stress function form is 

built with these coupled modes. Then, a reduced model with a set of coupled equations may 

be obtained by the Galerkin technique, which is then solved numerically by the fourth-order 

Runge-Kutta method. The model is validated by means of an experimental study. The 

proposed model can be used to quantitatively predict the softening behavior of amplitude-

frequency, confirm the asymmetric characters of mode space distribution, and reveal the 

influence of various geometric and material parameters on the nonlinear dynamics.  
 

1  Introduction 

 Applications utilizing membrane structures are prevalent, ranging from traditional 

areas in mechanical engineering, civil engineering, space and aeronautics, etc. [1,2] to more 

modern areas such as robotics, biological devices, and musical instruments [3,4]. This is 

mainly because this type of structure is both relatively lightweight and highly flexible, which 

are often requirements for this diverse range of applications. However, these desirable 

properties often come at the expense of reduced stiffness. Consequently, they are prone to 

vibration, often with large deformations (several times the order of the thickness) that linear 

models cannot predict. This vibration may lead to reduced performance or even failure of the 

membrane structure. 

 Consequently, the vibration of membrane structures has attracted the attention of 
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researchers, and several relevant studies may be found. Kang and Lee [5] proposed an 

analytical expansion basis with sinusoidal functions to obtain the natural frequencies and 

mode shapes of rectangular membranes. Houmat [6] applied the h-p version of the finite 

element method to obtain the numerical results for natural frequencies for triangular and L-

shaped membranes; shifted Legendre orthogonal polynomials were used during calculation 

procedure. Wu et al. [7] combined the differential quadrature (DQ) method with radial basis 

functions (RBFs) to analyze the free vibration of arbitrarily shaped membranes. The 

derivative at the reference point in a region was approximated as a linear weighted sum of 

functions before discretizing the Helmholtz equation for vibration. This idea was also applied 

by Amore [8], and a set of localized functions called “little sinc functions” were used to 

discretize the membrane regions. Noga [9] presented the complete derivation of governing 

equations for free transverse vibration of a compound double-membrane system. To solve the 

governing equation, the Bernoulli-Fourier method using the sinc function was used. Soares 

and Goncalves [10] considered both the linear and nonlinear vibration analysis pre-tensioned 

rectangular membranes. The mode shapes obtained from linear vibration analysis were used 

to approximate the nonlinear deformation field via a Galerkin method. Zheng et al. [11] 

derived the undamped governing vibration equations of orthotropic membranes and solved 

them with only symmetric mode functions; the hardening feature of the frequency response 

was obtained and discussed in detail. Liu et al. [12] subsequently extended that study to 

include viscous damping. Using symmetric mode functions, they obtained the asymptotic 

analytical solutions for frequency and displacement. Liu et al. [13] further developed this 

analysis into a nondestructive tool to monitor pretension in the membrane. In that applied 

development, in order to obtain a simple and rapidly convergent solution, only a single-term 

shape function was used. To validate these theoretical results, Guo et al. [14] designed an 

experiment and tested the dynamic characteristics. Zheng et al. [15] considered uncertainty in 
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the load and studied the stochastic vibration response. Furthermore, this random model with 

viscous damping was validated by experiment. Li et al. [16] analyzed the free vibration 

problem of rectangular membrane structures by means of a Galerkin method using symmetric 

modes. Laura et al. [17] applied Rayleigh Ritz and differential quadrature method to study 

circular and annular membrane axisymmetric modes. 

 Based on the literature summarized above, most of the recent studies neglect modal 

coupling, using only symmetric mode function expansions or a linearized theory. However, 

the effect of modal coupling between symmetric and asymmetric modes on nonlinear 

vibration behavior becomes more significant when strong nonlinear vibration is occurring; 

for example, after expanding the mode functions by symmetric and asymmetric modes, a 

softening nature of response can appear (e.g., see Refs. [18,19]), unlike the traditional 

hardening characteristics. Thus, this paper considers both symmetric and asymmetric mode 

functions to study the free vibration of membrane structures with this modal coupling effect 

and validate the analysis with experimental data.  

 This paper initially reviews the governing equations of the nonlinear free vibration of 

membrane structures, including von Kármán geometric nonlinearities. In order to model and 

analyze the coupling effect, the transverse deformation and stress are expressed in terms of 

finite sums of symmetric and asymmetric mode functions. Then, the infinite model may be 

transformed into a reduced-order modal model via the Galerkin technique. Finally, the 

nonlinear characteristics related to free vibrations may be found using Runge-Kutta 

numerical integration to solve the coupled modal equations. Furthermore, and very 

importantly, the reduced-order modal model is validated by experimental study. The effects 

of variables including pretension, material property, aspect ratio, and others on nonlinear 

characters are discussed in detail. 

 



5	
	

2  Nonlinear Mechanics Model and Numerical Solution 

2.1 Model Development. A rectangular membrane structure model with length a, width b， 

and thickness h is shown in Fig. 1. N0x and N0y are the initial tensions along axis x and y, 

respectively. It should be noted that the membrane material is orthotropic. Its two orthogonal 

directions are the two principal fiber directions along axis x and y, respectively.  

 

Fig. 1 Model of rectangular orthotropic membrane structure with pre-tension. 

 

Since large deformation may cause the median surface to stretch, von Kármán geometric 

nonlinearity is included. The von Kármán nonlinear strain-displacement relations, to second 

order, are 
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where xε and yε  denote the axial strain along x and y axes, respectively, xyγ  denotes the 

shear strain, and u , v  and w  denote the displacements along x, y, and z axes, respectively.   

Based on Eq. (1), a compatibility equation that eliminates  u and  v  may be derived as 

                                                     
22 22 2 2 2

2 2 2 2
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 .                        (2) 

In the case of orthotropic material, the stresses are related to the strains by 
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where xσ and yσ  denote the axial stress along x and y axes, respectively, xyτ  denotes the 

shear stress, E1 and E2 denote Young’s modulus along x and y axes, respectively, G  denotes 

the shear modulus, and 1υ  and 2υ  denote Poisson's ratio in x and y axes, respectively. The 

orthotropic material relation between Young’s modulus and Poisson’s ratio is 

                                                                     1 2

1 2E E
υ υ

= .                                                              (4) 

Substituting the material model equations Eqs. (3)-(4) into the compatibility equation Eq. (2) 

yields                                 

        
22 2 22 2 2 2 2

1 2
2 2 2 2 2 2

1 1 2 2

1 1 1y y xyx x N N NN N w w w
E h y E h x E h x E h y Gh x y x y x y

υ υ∂ ∂ ∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− + − − = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

,        (5) 
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where the membrane internal stretching forces xN , yN  and xyN  are calculated from 

                                                        x xN hσ= , y yN hσ= , xy xyN hτ= .                                   (6)      

An Euler-Lagrange analysis leads to the nonlinear ordinary differential equation describing 

the transverse motion expressed as [12,13] 

                  

2 2 2 2

0 0 02 2 2( ) ( ) 2( ) 0x x y y xy xy
w w w w wc N N N N N N
t t x y x y

ρ
∂ ∂ ∂ ∂ ∂

+ − + − + − + =
∂ ∂ ∂ ∂ ∂ ∂

,            (7) 

where ρ  denotes aerial density of membrane, c  denotes viscous damping coefficient, 0xN  

and 0 yN  denote initial tensions along axis x and y, respectively, 0xyN  denotes initial shear 

force. 

 As the maximum transverse vibration displacement of the membrane is much smaller 

than the boundary size, the shearing actions among the membrane fibers are negligible [13]. 

In order to simplify the computation, the shearing effect will be ignored in this paper such 

that 

                                                                
0 0xy xyN N= = .                                                           (8) 

Thus, Eqs. (5) and (7) may be simplified, and we obtain the governing Euler-Lagrange partial 

differential equations describing free vibration problem of orthotropic membranes based on 

the Von Kármán’s large deflection assumption: 

        

2 2 2

0 02 2 2

22 22 2 2 2 2
1 2

2 2 2 2 2 2
1 1 2 2

( ) ( ) 0

1 1

x x y y

y yx x

w w w wc N N N N
t t x y

N NN N w w w
E h y E h x E h x E h y x y x y

ρ

υ υ

⎧ ∂ ∂ ∂ ∂
+ − + − + =⎪ ∂ ∂ ∂ ∂⎪

⎨
∂ ∂ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ − + − = −⎜ ⎟⎪ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎩

.        (9a,b) 

We introduce the Airy stress function ϕ  



8	
	

                                                                      

  

Nx = h∂
2ϕ
∂y2

N y = h∂
2ϕ
∂x2

⎧

⎨
⎪⎪

⎩
⎪
⎪

,                                                

(10a,b) 

and substitute Eqs. (4) and (10) into Eq. (9); then Eqs. (9a,b) can be simplified as 
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We make the following fundamental definitions to transform into non-dimensional space and 

time variables 
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leading to the dimensionless equations 
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In this investigation, the membrane boundary conditions are assumed to be the simply 

supported boundary conditions expressed as 
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2.2 Modal Expansion. In order to apply the Galerkin method, a set of expansion functions 

must be chosen. The previous studies [11-16] only assumed symmetric basis functions; 

however, at large amplitudes, the asymmetric modes may also participate at the same order, 

contributing to different energy pathways through coupling to the symmetric modes. Thus, 

the expanded displacement variable w  should include expansions of both basis function sets. 

The asymmetric part in the assumed vibration mode shape plays an important role, as it can 

have a counteracting softening effect on the frequency response [20]. 

    Solving the nonlinear equations of membrane structure by a perturbation procedure [21], 

we may obtain a general solution for the transverse displacement. First, the mode shape 

obtained from the corresponding linearized vibration problem may be chosen as the seed 

mode 

                                                ( ) 0, , ( )sin( )sin( )w x y t W t qx py= ,                                        (15) 

where 0 ( )W t  denotes time-dependent modal function for the first-order solution, /q m aπ= ,

/p n bπ= , m  and n  denote the number of half-waves along x  and y  axis, respectively. 

Subsequently, we can obtain the second-order solution from the first perturbation as 

                                                1 2( )sin(2 ) ( )cos(2 )sin(2 )W t qx W t py qx+ ,                            (16) 

where 1 2( ), ( )W t W t  denote time-dependent modal functions for the second-order solution. 

 Based on the first two modal order solutions, we may identify the third-order solution as  

3 4 5 6( )sin( )sin( ) ( )sin( )sin(3 ) ( )sin(3 )sin( ) ( ) sin(3 )sin(3 )W t qx py W t qx py W t qx py W t qx py+ + + . (17) 

where 3 6( ) ( )W t W t−  denote time-dependent modal functions for the third-order solution. 

From the procedure, the following general expression considering both symmetric and 

asymmetric modes can be summarized as  

   
( )

1,3,5... 1,3,5... 2,4,6... 0,2,4...
, , ( )sin( )sin( ) ( )sin( )cos( )ij kl

i j k l
w x y t W t iqx jpy W t kqx lpy

∞ ∞ ∞ ∞

= = = =

= +∑ ∑ ∑ ∑ ,   (18) 
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where ( ), ( )ij klW t W t  are time-dependent unknown functions. 

By imposing the boundary conditions Eq. (14), the transverse displacement field from Eq. 

(18) can be expressed as 

( )

[ ] [ ]

1,3,5... 1,3,5... 2,4,6... 0,2,4...

15 6, , ( )sin( )sin( ) ( )sin( )
28 12

13 6cos (14 6 ) cos (16 6 )
28 12

ij
i j

w x y t W t iqx jpy W t qx

py py

αβ
α β

β
α

β

β
β β

β

∞ ∞ ∞ ∞

= = = =

⎧ +
= + ⎨

+⎩

⎫+
− + + + ⎬

+ ⎭

∑ ∑ ∑ ∑

.
(19) 

We selected and retained the first four terms that include symmetric and asymmetric coupling 

terms 

( ) ( ) ( ) ( ) ( )* * * * *
11 20 22 13

11 20 22

13

, , , , , , , , , ,

3 1( )sin( )sin( ) ( )sin(2 ) ( )sin(2 ) cos(2 ) cos(4 )
4 4

( )sin( )sin(3 )

w x y t w x y t w x y t w x y t w x y t

W t qx py W t qx W t qx py py

W t qx py

= + + +

⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

+
,(20) 

where * *
11 13w w−  are the first four mode functions varying with time and space, 11 13W W−  are 

the corresponding time-dependent modal amplitude functions. 

    The present analysis treats the vibration problem as a type of strong modal coupling, where 

every mode vibrates with comparable and independent amplitude [21]. These modes 

represent both symmetric and asymmetric components of the membrane deformation pattern. 

The first double series in Eq. (19) represents the flexural modes, revealing hardening features 

of vibration with odd multiples of the basic wave numbers i  and j . The second double series 

in Eq. (19) represents the coupling modes including flexural and axial modes, revealing 

softening features of vibration with even multiples of basic wave numbers α  and β  [22]. 

Using the selected modal functions Eq. (20), we can obtain a set of governing ordinary 

differential equations for the modal amplitudes 
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.      (21) 

Before the Galerkin technique is fully applied, the Airy stress function ϕ  should firstly be 

found. Based on the structure of assumed shape function *w  and Eq. (13b), we may build the 

stress function as shown in Table 1. 

Table 1 Assumed mode shape and corresponding stress functions 

Mode order   Expression 

1 w
 11( )sin( )sin( )W t qx py  
ϕ
 

1 2( ) cos(2 ) ( )cos(2 )t qx t pyξ ξ+  

2 w
 20 ( )sin(2 )W t qx  

ϕ
 

3 4( ) cos(3 )sin( ) ( )sin(3 )sin( )t qx py t qx pyξ ξ+  

3 w
 22

3 1( )sin(2 ) cos(2 ) cos(4 )
4 4

W t qx py py⎡ ⎤− +⎢ ⎥⎣ ⎦
 

ϕ
 

5 6 7 8

9 10 11 12

( )cos(3 )sin( ) ( )sin(3 )sin( ) ( )cos(4 ) ( )cos(4 )

( )sin(4 ) ( )sin(4 ) ( )sin(8 ) ( )sin(8 )

t qx py t qx py t qx t py
t py t qx t py t qx

ξ ξ ξ ξ

ξ ξ ξ ξ

+ + +

+ + + +
 

4 w
 13( )sin( )sin(3 )W t qx py  

ϕ
 

13 14 15 16( ) cos(2 ) ( )cos(2 ) ( )cos(4 )sin(2 ) ( )sin(4 )sin(2 )t qx t py t py qx t py qxξ ξ ξ ξ+ + +
 

     

    Unlike previous studies where only symmetric modes were assumed in the mode shape 

functions and corresponding stress functions [11-16], the asymmetric modes are considered 

and added into the expansions in this work, which led to the modal coupling terms in 
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displacement and stress functions. It is noted that the displacement is expanded by linear 

modal functions in displacement coordinates in this paper, unlike the nonlinear normal modes 

(NNM) method, where a pair of state variables (displacement and velocity) are chosen as 

master coordinates to solve the nonlinear problem [23, 24]. 

    Upon substituting the expressions for ϕ  and w  into Eq. (13b), the time-dependent 

unknown functions ( )i tξ  may be obtained. Then, we may apply the Galerkin method to 

transform the partial differential equations (PDEs) to a system of ordinary differential 

equations (ODEs) by discretization of the space variables. Consequently, the following 

system of nonlinear differential equations is obtained 

 

( )

( )

2
211 11

1 2 11 11 1 11 2 11 20 3 11 22 4 11 13 5 20 22 6 20 13 7 22 132

2
220 20

3 4 20 20 1 11 2 11 20 3 11 22 4 11 13 5 20 22 6 20 13 7 22 132

2
22 22

5 6 22

d d 0
d d
d d 0
d d
d d
d d

W Wd d W W rW rW W rW W rW W rW W rW W rW W
t t
W Wd d W W rW rW W rW W rW W rW W rW W rW W
t t
W Wd d W
t t

+ + + + + + + + + =

+ + + + + + + + + =

+ + ( )

( )

2
2 22 1 11 2 11 20 3 11 22 4 11 13 5 20 22 6 20 13 7 22 13

2
213 13

7 8 13 13 1 11 2 11 20 3 11 22 4 11 13 5 20 22 6 20 13 7 22 132

0

d d 0
d d

W rW rW W rW W rW W rW W rW W rW W

W Wd d W W rW rW W rW W rW W rW W rW W rW W
t t

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪ + + + + + + + =
⎪
⎪
⎪ + + + + + + + + + =
⎪⎩

, (22) 

where the coefficients id  modify the linear terms and the coefficients ir  modify the nonlinear 

terms. We can see the presence of cubic nonlinearities in the modal amplitudes, arising from 

the stretching of the median surface due to large deformation. The coupling appears in these 

cubic terms, which may reveal qualitative differences in nonlinear characteristics. The 

obtained ODEs Eq. (22) are integrated numerically by means of the fourth-order Runge-Kutta 

method. Consequently, some parametric relationships such as amplitude-frequency, 

displacement-period, mode shapes evolution, etc., may be found.  
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3 Experimental Validations 

    We conducted our experiments with a tension-ejection apparatus developed previously 

[14].  Fig. 2 reveals a picture of the experimental setup based on the steel bracket with two-

dimensional size of 2500 mm×2500 mm. Two brands (ZZF and XYD) of membrane material 

were selected and made into rectangular specimens with size of 1200 mm×1200 mm. 

Material data is shown in Table 2.  In the tension component of the apparatus, the pretension 

force is provided by the screw rod and translated by the clamp into the membrane surface. 

Then, the membrane structure can be formed and studied further with four different levels of 

pretension force, 1.0, 2.0, 3.0 and 4.0 kN in this study. For the ejection component, the 

ejection force is generated by an air pump and a pressurized plenum cylinder, both of which 

are computer-controlled.  
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Fig. 2 Mechanical experiment. (a) Photo of experiment. (b) Distribution of measured points 

on membrane surface. 

 

Initially, the membrane structure was pre-stressed with tension system providing the 

horizontal loads. Then, the ejection system provided the power to eject the steel pellet. 

Consequently, the pellet is fired at the center of the membrane 0 0( , ) (0.5,0.5)x y =  to provide 

an effective initial velocity through the impulse-momentum transfer from the pellet; the 

subsequent free vibration is then realized and studied in detail. Different effective initial 
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conditions may be obtained by adjusting cylinder pressure (and thus pellet velocity). Since 

the resulting membrane transverse vibration amplitudes typically greatly exceeded the 

membrane’s thickness, the vibration retains substantial nonlinearity. 

Table 2 Membrane material constants 

Type 
Density 

(g/m²) 

Thickness 

(mm) 

Poisson ratio 

(warp/weft) 

Elastic modulus 

(warp/weft) (Mpa) 

Tensile strength 

(warp/weft) (N/cm) 

ZZF 950 0.8 0.3/0.4 1590/1360 4300/4000/5 

XYD 950 0.8 0.3/0.4 1720/1490 4400/4200/5 

    During the experiment, the three key parameters of pretension, initial amplitude, and 

displacement must be measured. For pretension measurement, a HP-10K dynamometer (with 

calibration range 0.01-10 kN) between clamp and screw rod was used. A laser displacement 

system with a 100 mm range and 2 kHz sampling rate was used to obtain amplitude data 

(such as the six marked dots shown in Fig. 2). The laser sensor includes RS485 serial output, 

trigger input, AL logic control terminal, and 5 m telemetry cable; more details on the 

experimental procedure are provided in Liu et al. [13]. 

 

4 Results and Discussion 

    4.1 Frequency Response Curves. Fig. 3 presents the amplitude-frequency relationship. 

The frequency Ω  is normalized with respect to the first order frequency  ω11  obtained from 

linear analysis. The amplitude is normalized with respect to the thickness h  of membrane. 

Better convergent agreement is achieved when the expansion is improved with three or four 

modes. The model reveals the expected hardening nonlinear behavior when using only 

symmetric mode terms. Conversely, the asymmetric mode terms (mode order from 2 to 4) are 
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introduced and added in this work, which induces a softening nonlinear behavior. 

Furthermore, this softening behavior is validated by the available experimental data. These 

results are qualitatively similar to the earlier results [20,21]. It was found through trial and 

that error that the lowest-mode expansion able to predict the softening behavior with 

acceptable accuracy is 4 modes. Therefore, in the following the order-4 modal expansion will 

be used due to the balance of accuracy with reasonable computational effort. Clearly, the 

added asymmetric modes affect the nonlinear coupling, resulting in a different type of 

nonlinear behavior. 

 
Fig. 3 Dimensionless amplitude /w h  versus dimensionless first order frequency  Ω /ω11 . The 

circular points represent experimental results abstracted from displacement-time signals. The 

dashed lines are predictions based on assumed stress functions with different modal orders. 

 

    4.2 Displacement-Time/Space Response Curves. In order to validate the model, the 

comparisons with experiment are conducted at the load case of 1 kN. The associated 
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parameters include the displacement time histories, mode shapes, and the amplitude-

frequency relationship. Fig. 4 plots the experimental and theoretical curves of the 

displacement varying with time at Point O and B1. The small discrepancy relating to the 

amplitudes of oscillation occurs partly from uncertainties in the precise initial condition and 

noise in our experiments. Both results are decaying oscillations (as would be expected) with 

well-matched frequencies. It should be noted that the displacement-time curves show the 

asymmetric influences. From the specific dots marked as A(A’)-D(D’), the value at Point 

B(B’) is larger than that at Point A(A’) with the existence of damping, and the phenomenon 

appears between Point D(D’) and C(C’) as well, which suggests the dynamic response 

contains asymmetric characteristics.  The asymmetric response is different from the results in 

previous study [11,12], which may be contributed by the introduction of asymmetric assumed 

modes and consideration of coupled effects. 

Due to the symmetry in the structure and in location of the given initial amplitude, Fig. 5 

shows the vibration shape at 0t =  along the x  direction on a quarter of the membrane 

surface; theory and experiment match quite well again to within the same uncertainties and 

noise described above. The initial maximum amplitude affects the deflection pattern due to 

the nonlinearity. 
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Fig. 4 Dimensionless displacement /w h  versus dimensionless time t . (a) Point O. (b) Point 

B1. The membrane material is XYD brand, and initial displacement 0w  is 2.1. The solid lines 

represent measured data in experiment. The dashed lines are the corresponding theoretical 

prediction.  

 

Fig. 5 Dimensionless amplitude /w h  versus dimensionless coordinate position /x a  on a 

one-quarter membrane surface at 0t = . The scattered points represent measured data along 

the weft direction in experiment. The continuous lines are predictions from theory. 

 

(a) (b) 
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4.3 Mode Shapes and Their Evolutions. Fig. 6 compares an interesting feature of the mode 

shapes based on the analysis with modal coupling (solid lines) and without modal coupling 

(dashed lines). It may be found that the amplitude-dependent mode shapes after the 

consideration of modal coupling would reveal more non-symmetric, spatially-localized 

characteristics. These differences demonstrate clearly that the coupling of symmetric and 

asymmetric modes will quantitatively affect the final result, particularly if performing system 

identification for model updating or using the modes as features for identifying structural 

changes (i.e., due to damage). The mode shapes vary continuously with time as well. This 

time-varying nature of the mode shapes is illustrated in Fig. 7, where the first two modes are 

represented at three different instants of time, selected during the first quarter-period of 

motion. It is clear that the coupling affects when symmetric vs. asymmetric effects are 

dominant during a cycle compared to a symmetric-only analysis. 

  

Fig. 6 Mode shapes with different initial amplitude. (a) The first order mode shape. (b) The 

second order mode shape. The solid lines represent the mode shape based on the analysis 

(b) (a) 
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including modal coupling. The dashed lines represent the mode shape based on the analysis 

without modal coupling. 

 

Fig. 7 Evolution of the mode shapes throughout a quarter-period of transverse motion. (a) 

Evolution of the first order mode shape. (b) Evolution of the second order mode shape. 

 

    4.4 Parametric Analysis. In Table 3 the experimental and theoretical normalized results of 

first four natural frequencies with respect to the lowest experimental frequency are tabulated 

and compared. It should be noted that the theoretical value is calculated based on the 

assumption of four mode functions. It was found that theoretical natural frequencies are fairly 

well correlated to the experimental values, but consistently lower, with increasing deviation 

with modal order. This arises from both the specific properties of the modal functions as well 

as the truncation order (4). For each order case, the frequency enlarges almost linearly with 
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increasing pretension force, which corroborates previous theoretical results derived by Liu et 

al. [12]. 

Table 3 First four frequencies with pretension force 

F/F0 1 11/ω ω  2 11/ω ω  3 11/ω ω  4 11/ω ω  

 Exp. Theory Error 
(%) Exp. Theory Error 

(%) Exp. Theory Error 
(%) Exp. Theory Error 

(%) 

1 1.00 0.99 -1 2.69 2.66 -1.11 2.81 2.67 -1.78 3.81 3.75 -1.57 

2 1.28 1.24 -1.56 3.49 3.45 -1.15 3.61 3.47 -1.66 4.94 4.98 0.81 

3 1.52 1.48 -1.97 4.16 4.21 1.21 4.27 4.23 -1.41 5.84 5.75 -1.54 

4 1.74 1.75 0.57 4.70 4.67 -0.64 4.88 4.69 -2.25 6.63 6.57 -0.90 

 

    Fig. 8 shows the trend of the amplitude-frequency relationship. The predicted frequencies 

reduce as amplitude increases varying from 2 to 8 on average. This is again the result of the 

softening nonlinearity, which is dominated by asymmetric mode terms. In contrast to the 

softening behavior, the trend transitions to a hardening-type nonlinearity stage when the 

amplitude exceeds 8. Here, the symmetric modes begin to dominate the response. Fig. 8 

shows the effect of thickness of membrane material on the amplitude/frequency relationship; 

three cases of increasing thickness levels of 0.8 mm, 1.0 mm and 1.2 mm are considered. It is 

evident that thinner material demonstrates stronger nonlinearity in both softening and 

hardening stages. Moreover, thinner membrane structures transition into the hardening stage 

more slowly. This phenomenon is likely because the thinner membrane structure has a 

smaller stiffness, which will result in the stronger nonlinear vibration.  
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Fig. 8 Dimensionless amplitude /w h  versus dimensionless first order frequency 11/ wΩ , for 

different values of membrane material thickness (h =0.8mm, 1.0mm, 1.2mm). 

 

    Fig. 9 presents the first order frequency of membrane structure for various aspect ratios κ . 

There is a non-proportional trend in the frequency-pretension relationship with aspect ratio, 

particularly for larger pretension ratios from about 2 to 4; the slope changes much more 

significantly with higher aspect ratios, implying that the stiffness of membrane structure can 

be largely well-controlled with aspect ratio in conjunction with pretension. 
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Fig. 9 Dimensionless first order frequency 11/ wΩ  versus dimensionless pretension force

0/F F  with different values of membrane aspect ratio (κ =1, 2, 3). 

     

    As the majority of membrane materials applied in engineering fields possess orthotropic 

characteristics due to the manufacturing progress, the properties towards the perpendicular 

direction (warp and weft) will be different, which has been expressed in the previously-

mentioned theoretical derivation. Theoretically, the orthotropic material properties can affect 

the dynamic response of membrane structures. Fig. 10 shows that experiment and theory 

again agreed very reasonably. In order to compare the difference at characteristic points, the 

amplitude at Point A1 along weft direction was defined as the reference value; and the 

reduction rate was computed by comparing the results at other positions with the reference 

value under the same condition. After calculation and comparison, we can find that for the 

points A1 and B1 lined perpendicularly, the gap appears to be about 10% on average until 
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pretension force level of 2. From the range from 2-4, the gap becomes more and more limited 

below 5% on average. A similar trend exists at Point C, while the only difference between 

Point B1 and C is the greater amplitude reduction for Point C. This is dominated by the 

distance effect, since Point C to Point O is farther than Point B1 to Point O. 

 

Fig. 10 Amplitude reduction rate ( )0 /A A A− , versus dimensionless pretension force 0/F F . 

 

5 Summary and Conclusions 

In this paper, the nonlinear vibrations of orthotropic pre-tensioned membrane structures 

were analyzed, focusing on the coupling effect between symmetric and asymmetric modes. A 

combined Galerkin-numerical technique applied to von Kármán’s theory led to a theoretical 

model that was found to be in generally good agreement with experimental results. Primary 

conclusions drawn from the obtained results are as follows: 

(a) Unlike the purely hardening characteristics predicted in previous work, the amplitude-

frequency curves obtained based on coupled effects indicated that membrane structure 

contains softening characteristics. Moreover, as the vibration amplitude increased, the 
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transition of from softening to hardening behavior was observed. These results prove 

that the influences of the coupling between symmetric and asymmetric modes are quite 

significant to predict the correct trend in frequency-amplitude relationships, at least 

qualitatively.  This asymmetric-symmetric interaction was observed in other results, 

such as displacement time histories and mode shapes. 

(b) The effects of thickness and aspect ratio on the nonlinear response was analyzed in 

detail. The nonlinearity is more observable in thinner material, and the frequency 

dependence upon aspect ratio increases substantially with increasing aspect ratio. The 

displacement dependence upon orthotropic specificity is varied within the limit of 10%.  

(c) The normalized pretention force 0/F F  plays a crucial role in the nonlinear response. 

With larger pretention force, the frequency increases almost linearly but the 

displacement reduces.  

 

 The application of the present model, including modal coupling, could be extended to 

study other non-linear features, particularly concerning the behavior of the membrane 

dynamic stresses, at large amplitudes. It is desirable to predict the membrane structural 

failure based on the future development of membrane dynamic stress in combination with 

failure criterion. 
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