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Challenges in identifying cancer genes by analysis
of exome sequencing data
Matan Hofree1,2,3,w, Hannah Carter2,3,4, Jason F. Kreisberg1,3, Sourav Bandyopadhyay5, Paul S. Mischel6,

Stephen Friend7 & Trey Ideker1,2,3,4

Massively parallel sequencing has permitted an unprecedented examination of the cancer

exome, leading to predictions that all genes important to cancer will soon be identified

by genetic analysis of tumours. To examine this potential, here we evaluate the ability of

state-of-the-art sequence analysis methods to specifically recover known cancer genes.

While some cancer genes are identified by analysis of recurrence, spatial clustering or

predicted impact of somatic mutations, many remain undetected due to lack of power to

discriminate driver mutations from the background mutational load (13–60% recall of cancer

genes impacted by somatic single-nucleotide variants, depending on the method). Cancer

genes not detected by mutation recurrence also tend to be missed by all types of exome

analysis. Nonetheless, these genes are implicated by other experiments such as functional

genetic screens and expression profiling. These challenges are only partially addressed by

increasing sample size and will likely hold even as greater numbers of tumours are analysed.
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E
xtensive collaborative projects1–7 have released thousands
of tumour exomes into the public domain, charting the
complete sequences of the protein-coding regions8. Analysis

of these data has revealed that each adult tumour carries
B20–300 genes with somatic alterations to single nucleotides
(single-nucleotide variants, SNVs)9 or short (B2–10) base
insertions and deletions. In addition, tumours are perturbed by
gene copy number variants (CNVs) and translocations of
sequence, including aberrant fusion of two or more distinct
genes within the same open reading frame (gene fusions)10,11.
Given this landscape, an imminent challenge is to determine how
best to interpret cancer genomic data, including which of the
identified alterations promote the initiation or progression of
cancer10,12.

Towards this end, an increasing number of bioinformatic
approaches are being developed with the goal of distinguishing
true cancer ‘driver genes’ from genes randomly perturbed by
‘passenger’ mutations9,13–17. The main methodology has been to
look for recurrent mutations within a cohort, based on how often
a gene is altered relative to an expected background rate9,13,14.
Other prominent methods score the predicted impact of a
mutation on protein structure or function15,16 or recognize
spatial clustering of mutations within particular domains or
residues15,17. Indeed, many of the best characterized cancer genes,
such as TP53, PTEN and PIK3CA, are readily identified by any of
these approaches15. Such success at recovering known cancer
genes through exome analysis has led to recent estimates that we
will soon obtain a comprehensive catalogue of all cancer genes if
enough tumours are analysed, for example, 250,000 tumours
covering 50 cancer types18.

Accurate identification of all cancer genes is an ambitious task,
however, and one can conceive of reasons why recovering all
cancer genes might be difficult using the prevailing methods.
First, despite many decades of study there remains no real
consensus as to what exactly defines a ‘cancer gene’. Most
broadly, a cancer gene has been defined as any gene harbouring
alterations that ‘confer growth advantage on the cancer cell and
are positively selected in the microenvironment of the tissue in
which the cancer arises’19. Given this definition, it is unclear
whether all such genes could be identified from analysis of
somatic alterations in the exome, as alterations can also be
selected from intergenic sequences20, the germline21 or,
potentially, purely epigenetic causes22. To point, most known
cancer genes (B85%) were first identified through principles and
experimental techniques other than somatic exome sequencing

(Fig. 1a,b). Examples include screens for human or viral DNA
capable of transforming cells (for example, RAS)23, systematic
mutagenesis (for example, PLEG1)24, differential expression or
phosphorylation (for example, TP53)25 or linkage of inherited
germline variants to increased risk in familial cancers (for
example, BRCA1)26. On the other hand, it is quite possible that
cancer genes affected by one type of alteration also tend to be
affected by other types, allowing them to be identified by multiple
modes of analysis. For example, although TP53 was first
identified based on differential expression, it was soon
thereafter found to be recurrently mutated in the majority of
cancers25,27.

Second, the key task is not just to identify any genetic variant,
but to classify variants that are functional from random
passengers. Success at this classification task depends on the
ability to cleanly discriminate cancer from non-cancer genes
using some property, for example, mutation recurrence in a
cohort. Previously15,28, the focus has been to evaluate the
proportion of genes identified in tumour sequence analysis that
are likely to be cancer genes (precision) rather than the
proportion of all cancer genes that are identified by a given
method (recall). Achieving high recall may be difficult if some
cancer genes are rarely altered, in which case an absence of
statistically significant recurrence for a genetic alteration is not
evidence that it lacks a functional effect.

Here we evaluate current tumour sequence analysis methods
by their precision and recall for detecting known cancer genes.
We find that these methods tend towards high precision but low
recall, meaning that many true cancer genes are being missed by
all methods. Estimates of statistical power suggest that this
challenge is not likely to be addressed purely by increasing the
number of tumour exomes analysed.

Results
Tumour exome analysis methods. We considered five main
methods, all of which have been explicitly designed with the goal
of identifying cancer genes and were recently used in publications
of The Cancer Genome Atlas (see http://www.nature.com/tcga/):
MutSig Suite9, OncodriveFM29, OncodriveClust30, ActiveDriver17

and MuSIC13. Each of these approaches has been previously
applied to analyse tumour exome data for 12 or more separate
tissues and for a pooled ‘pancancer’ cohort, which combines
all tissues into a single analysis (MAIN-METHODS, Table 1).
The MutSig Suite tests each gene for enrichment of somatic
SNVs versus a gene-specific background model. Enrichment is
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measured in terms of three properties—SNV recurrence, impact
on protein structure or function and spatial clustering—yielding a
single P value of significance integrating the three measures.
OncodriveFM and OncodriveClust test for enrichment of SNVs
for functional impact and spatial clustering, respectively.
ActiveDriver examines clustering of SNVs in the active
domains of kinase proteins. MuSIC scores enrichment of SNVs
using the same three properties as the MutSig Suite but with a
different background model.

We also considered five analysis methods that, although not
specifically designed for cancer gene discovery, can be used for
this purpose (ALT-METHODS, Table 1): Gistic2.0, a method
for identifying focused genomic regions affected by recurrent
CNVs (we used all genes within so-called ‘narrow peaks’)14;
IntOGenCNV, which identifies genes within recurrent CNVs that
have corresponding changes in messenger RNA (mRNA)
expression level16; HotNet2, a method for mining public
databases of molecular interactions to identify subnetworks of
genes recurrently affected by SNVs and CNVs (we used all genes
in ‘core’ and ‘linker’ networks)31; Dendrix, a method for detecting
‘mutually exclusive’ gene sets, in which SNVs are found in no
more than one of these genes per patient32; and a method for
detecting recurrent gene fusion events which we have labelled
Fusion-genes33. All of the above methods pertain to somatic
alterations to genes and, in particular, the MAIN-METHODS are
based wholly on analysis of exome SNVs as the primary focus
of our study. Some of the ALT-METHODS are assisted by
additional measurements, for example, mRNA expression.

Cancer gene reference lists. To benchmark these methods,
we considered multiple cancer gene lists compiled by various
groups34–37 (Table 2). The Cancer Gene Census version 73
(CGC) is a set of 571 genes manually curated by the Sanger
Institute34. It includes genes affected by alterations of all types,
including somatic and germline SNVs, CNVs and translocations;
genes are annotated with the relevant cancer tissue types when
this information is available. We considered the entire CGC as

well as the subsets of genes known to be impacted by the
various alteration types (CGC-SNV, CGC-CNV, CGC-TRANS,
CGC-SOMATIC and CGC-GERMLINE). Second, we queried
UniprotKB, a manually curated database of protein functions35,
for the keyword-terms ‘proto-oncogene,’ ‘oncogene’ and ‘tumour-
suppressor gene,’ resulting in 413 human genes. Third, a query of
DISEASES36, a database of disease-gene associations based largely
on text-mining approaches, yielded a list of 691 genes associated
with cancer. Fourth, the Atlas of Genetics and Cytogenetics in
Oncology and Haematology (AGO) provides a set of 1,430 cancer
genes manually curated by a collaborative effort spanning
multiple centres37. We also assembled a list of negative control
genes, that is, genes in which alterations are less likely to drive
cancer. AGO provides such a negative set of 7,410 genes that have
no evidence for association with cancer. We further filtered this
list by excluding any gene in a cancer-related pathway from the
MSigDB database38, resulting in a conservative set of 2,217
negative control genes (AGO-NEG).

Assessments of performance. These benchmarks were used to
evaluate each tumour sequence analysis method as follows. First,
method performance was evaluated by considering the set of
genes identified, whether by analysis of separate tissues or by
pan-cancer analysis of all tissues together. We found that most
methods were conservative in their detection, favouring precision
over recall (Fig. 2a,b, Supplementary Fig. 1). Among the
five MAIN-METHODS, testing against the CGC-SNV cancer
reference and AGO-NEG negative control sets, recall ranged from
13% to a peak of 60% (Fig. 2c). In contrast, precision ranged from
59 to 90%. Performance results for other cancer genes sets were
comparable or lower (Fig. 2a,b). Thus, the genes identified by
tumour sequence analysis are likely to be known cancer genes
(higher precision) but correspond to a smaller fraction of all
known cancer genes (lower recall). As all methods had access to
the same sets of reference cancer genes used for our benchmarks,
and may have trained against these, these findings may represent
an upper bound on performance.

Table 1 | Prominent methods for cancer gene discovery by somatic exome analysis.

Method Data type
(method)*

Analysis principle No. tissue
cohorts (no.

patients)

Total
genes

identified

Genes non-
unique/unique

to method

CGC non-
unique/unique

to methodw

Ref.

MAIN-METHODS
MutSig Suite SNV (WES) Combined (frequency,

function, clustering)
21 (4,742) 260 191/69 98/7 9,18

OncodriverFM SNV (WES) Function 28 (6,792) 426 281/145 127/31 29

OncodriverCL SNV (WES) Clustering 28 (6,792) 79 72/7 52/2 30

ActiveDriver SNV (WES) Clustering (þ phos-associated
mutations)

12 (3,205) 106 74/32 30/5 15,17

MuSIC SNV (WES) Combined (frequency, function,
clustering, correlation with
clinical phenotype)

12 (3,205) 182 141/41 81/3 13,15

ALT-METHODS
Gistic2.0—amplifications CNV (SNP6) Frequency 34 (10,752) 1,569 432/1137 53/21 14

Gistic2.0—deletions CNV (SNP6) Frequency 34 (10,752) 6,897 671/6226 98/65 14

IntOGen—CNV CNV (SNP6) Frequencyþ RNA expression 16 (4,068) 29 28/1 25/0 16

Dendrix SNV (WES) Mutual exclusivity 12 (3,281) 17 28/2 23/1 32

HotNet2 SNVþCNV
(WESþ SNP6)

Network 12 (3,281) 147 96/51 43/0 31

Fusion/translocations FUS (RNA-seq) Recurrent fusions 13 (4,366) 492 236/256 41/18 33

TOTALS: 42 8,871 906/7,967 175/153

*Data types: CNV, copy number variant; FUS, gene fusion; SNV, single nucleotide variant. Methods: RNA-seq, RNA sequencing; SNP6, affymetrix SNP array; WES, whole-exome sequencing.
wNumber of genes identified within the CGC-positive reference set.
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Next, we analysed the ability of the panel of methods to
identify reference cancer genes specifically annotated to particular
tissue types (Fig. 2d). For this purpose, we considered genes
identified by a method when analysing data from each tumour
tissue individually. Analysed in this way, recall was in the range of
0–75% with a median of 27%, depending on tissue and method
(CGC-SNV set, Fig. 2d and Supplementary Fig. 2). Overall, we
found that 59% of CGC-SNV reference genes annotated to a
particular tissue were not identified by any of the methods
applied to that tissue (Supplementary Fig. 2). On the other hand,
of those identified, the majority were detected in more than one
tissue type (Fig. 2e), which also held true when examining tumour

suppressor and oncogenes separately (Supplementary Fig. 3).
Thus, analysis of tumour genome data from single tissues results
in low recall characteristics that are qualitatively similar to those
observed earlier in the aggregate analysis.

Of the 239 CGC cancer genes identified by any sequence
analysis method, most were found by multiple methods
(53% were by 2 or more, 27% by 4 or more). This observation
led us to postulate that some cancer genes might be easier
(or harder) to detect through all forms of sequence analysis.
Further exploratory analysis revealed that genes identified by
two or more methods tended towards high mutation frequency
(one-sided Wilcoxon Po7.8� 10� 13, Supplementary Fig. 4).
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Figure 2 | Performance of methods. Heatmaps showing the (a) recall and (b) precision of each method (rows) tested against each positive cancer

reference set (columns). Dashed box highlights the performance of MAIN-METHODS on the CGC-SNV reference set. To compute precision, we assume

the proportion of cancer genes is 5% of all human genes; precision values for other proportions are shown in Supplementary Fig. 1 with qualitatively similar

results. (c) Precision/recall plot detailing results from a and b for CGC-SNV cancer genes. (d) Summary of CGC-SNV genes curated for particular cancer

tissues versus their cancer detection status based on genome analysis by four different methods and their union. (e) Count of CGC-SNV genes as a

function of the number of cancer tissue types in which each gene has been detected thus far.
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Moreover, a high mutation frequency was strongly associated
with the performance of all methods, particularly in terms of
recall, regardless of whether that method had been specifically
designed as a mutation frequency detector (Supplementary Figs 5
and 6). Conversely, all methods tended to miss infrequently
mutated genes. For example, methods such as MutSigCV identify
genes based on increased frequency of SNVs compared with the
genome-wide mutation rate, while methods such as oncodriveFM
detect SNVs likely to be highly damaging to protein function;
regardless, these methods show a very strong correspondence in
the sets of cancer genes they identify15,29. Thus, genes that are

commonly impacted by one type of event are likely to be
impacted by other types of events also; conversely, genes rarely
affected by an event type tend to be rarely affected by other types
of events also. Given this consistent bias, it might be difficult for
any method based solely on sequence analysis to recover some
(for example, rarely mutated) cancer genes.

Undetected reference genes have support in independent data.
A potential concern following these performance assessments was
the validity of the cancer gene reference lists, as these lists might
contain genes erroneously labelled as positive or negative cancer
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Figure 3 | Experimental support for reference cancer gene lists. (a–c) Support for CGC cancer genes detected by any of the MAIN-METHODS for

analysing tumour genomes (Cancer Detected) versus those cancer genes that were undetected by any of these (cancer undetected). Also shown is

support for the AGO-NEG negative control set of non-cancer genes (Likely non-cancer) and the remainder of genes in the genome-wide background

(all other genes). Whisker plots indicate mean and the 95% confidence interval of the mean. Support is evaluated using: (a) RNA-seq tumour-normal

differential expression in The Cancer Genome Atlas (TCGA). (b) Number of times a gene has been identified in independent cancer genetic screens in

mice. (c) Number of Project Achilles cell lines with a measured impact (top/bottom 10%) on growth as a result of shRNA knockdown. An asterisk (*)

indicates a significant difference in medians was found between the two sets. (d) The number of cancer publications by year comparing detected and

undetected CGC cancer genes.
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genes. If a positive reference set were to include many genes with
no functional role in cancer, or with low penetrance (that is,
mutations that do not always lead to cancer), this situation could
clearly explain the low recall of these methods. Accordingly,
we examined the support of the reference sets according to
experimental measures independent of somatic mutations,
including tumour mRNA expression and functional genetic
screening by gene knockout or knockdown. First, we observed
that, as a whole, genes in the positive reference sets were
significantly differentially expressed between tumour and normal
samples. This was true of the genes detected by a MAIN-
METHOD and also true of those undetected by any method
(one-sided Wilcoxon Po5.6� 10� 2 and Po4.0� 10� 5,
respectively, Fig. 3a and Supplementary Fig. 7). Second, we found
that genes in the positive reference sets had orthologs that were
significantly enriched in genetic screens for cancer drivers in
mice, as previously determined by transposon-mediated gene
knockout39. Once again, this result held true whether or not the

reference genes had been detected by sequence analysis methods
(one-sided Wilcoxon Po1.49� 10� 43 and Po3.06� 10� 18,
respectively; Fig. 3b and Supplementary Fig. 7). Third, both the
detected and undetected cancer genes were strongly enriched for
genes affecting cancer cell line growth, as previously deter-
mined by small hairpin RNA (shRNA) knockdown40 (one-sided
Wilcoxon Po4.5� 10� 22 and Po2.15� 10� 18, respectively,
Fig. 3c and Supplementary Fig. 7). By all three of these measures,
the negative control genes were found to be no different or
significantly lower than background (two-sided Wilcoxon
P¼ 0.51, P¼ 0.23 and Po0.02 for differential expression,
mouse genetic screens and cancer cell line genetic screens,
respectively, for AGO-NEG). Although it is impossible to rule out
any error in the reference sets, these findings suggest that they can
be validated by multiple experimental screens performed
independently of each other. Moreover, reference genes
undetected by sequence analysis methods have a similar level of
support as reference genes that are detected in terms of both
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differential expression and knockdown effect on cell line growth.
Despite this support, undetected cancer genes have similar
mutation frequencies as the negative reference genes or the
genome-wide background (two-sided Kolmogorov–Smirnov test
(KS-test) P¼ 0.76, Supplementary Fig. 8), suggesting a reason
why they have not yet been found by any sequence analysis
method.

We also found a large difference between cancer genes detected
versus undetected by sequence analysis in terms of literature
citations. Whereas both detected and undetected positive reference
genes show a significantly elevated number of publications
compared with background (one-sided Wilcoxon Po8.3� 10� 44

and Po2.5� 10� 16, respectively), far more publications
are devoted to those that are detected by sequence analysis
(one-sided Wilcoxon Po2.7� 10� 22). In fact, genes in either
category are cited with similar frequency in cancer publications
through the late 1990’s (Fig. 3d). Starting in 2001, however, the
citation rate for detected cancer genes increases significantly, with a
second rate increase starting in 2006 (F-test for both increases,
Po2.3� 10� 24). As these increases coincide with the emergence
of human genomics and next-generation sequencing, respectively,
one might speculate that DNA sequencing technology may have
encouraged a focus in cancer research towards a particular class of
‘sequence-detectable’ cancer genes.

Effects of increasing genome number and coverage. Given the
expected growth in DNA sequencing capacity over the next few
years, it seems feasible that such information will soon be
generated for a large proportion of cancer patients. Thus, a key
remaining question was whether the low recall of exome sequence
analysis methods might be addressed in the near future given
much greater numbers of samples. Using a previously described
power calculation18, we estimated the minimum gene mutation
frequency that can be distinguished accurately as a function of the
number of tumour exomes analysed. By sequencing up to every
new cancer patient in the United States, totalling B1.3 million
new cases annually41, we found that the minimum detectable
mutation frequency is indeed expected to decrease, from the
present B3.4 times the background mutation rate to B1.1
(melanoma) to 2.0 (AML) times the background (Fig. 4a).
Interestingly, nearly half of somatically mutated genes fall below
that range (shown for breast cancer in Fig. 4b,c). These findings
suggest that even if we analysed the exomes of all tumours in the
US for 10 years using current methods, known cancer genes
might remain undetected.

Another key question will be whether or not replacing exome
sequencing with whole-genome sequencing (WGS) will improve
the ability to identify certain cancer genes. For example, the
promoter of the TERT telomerase gene has been found to be
frequently mutated in cancer42,43, allowing this gene to be clearly

implicated by WGS. If many genes are like TERT, WGS might
indeed pave the way for identifying a comprehensive catalogue of
cancer genes. On the other hand, WGS greatly increases the
number of background/passenger mutations under consideration
and faces unique challenges such as associating mutations outside
of coding regions with specific effects. While there are still too
few cancer WGS studies to allow more than a cursory analysis,
a recent WGS study of ovarian tumours reported no additional
cancer genes beyond what had been found by earlier exome
sequencing of the same cancer type44.

An important distinction to be made is the difference between
a recurrent alteration within a patient population (for example,
BRAF V600E in melanoma), and a gene acting as a driver within
a particular tumour under a specific context (for example,
germline variants, tissue type and therapeutic regimen). While
‘cohort drivers’ are certainly interesting from a translational
perspective, there is ample evidence for rare yet clinically
important events45–48. Fundamentally, a complete compendium
of cancer genes should include both cohort-recurrent alterations
and individual, contextually-active drivers, including those that
show a measurable effect only when analysed in combination.

From a clinical perspective, an individual patient cares not
whether the cancer genes causing their tumour are frequently
mutated in other patients, but whether their mutations can be
targeted. Recurrent driver mutations are likely selected early
during tumorigenesis49, hence their critical role in many patients
and potential as compelling drug targets in different cancer types.
However, individual cancers may also be affected by rare
mutations affecting the same pathways as common oncogenic
drivers, and they too are selected in individual patients rendering
them compelling personal drug targets. The findings presented
here suggest that ignoring such mutations may miss important
therapeutic opportunities. Indeed, cancer gene panels currently in
use as clinical diagnostics45,50–52 are based primarily on the most
recurrently mutated genes in favour of more comprehensive
alternatives. Before expanding the clinical panels to sequence all
genes or all genomic DNA, we still need some method, or
collection of methods, to distinguish which sequences are
clinically important. Given the success of experimental
techniques independent of sequence analysis (Fig. 1a), a viable
strategy may be to complement ongoing genome sequencing
campaigns with renewed efforts in cell biology, biochemistry,
transcriptional profiling and other ‘omics analysis to identify the
key genes of cancer.

Methods
Tumour somatic mutation data. We use somatic mutation data provided in
the supplement of Lawrence et al.4, downloaded from http://tumorportal.org on
22 January 2014, and available in Synapse (http://www.synapse.org), accession
number syn1729383. These data contain tumour somatic variants and short
insertion, and deletions for a set of 4,742 patients from 21 cancer types18.

Table 2 | Overview of positive cancer reference sets.

Number of genes Curation process Alteration type Somatic/germline Ref.

CGC-Somatic 532 Manual SNV, CNV, Trans/fusion Somatic 34

CGC-SNV 188 Manual SNV Somatic 34

CGC-TRANS* 327 Manual Trans/fusion (not SNV) Somatic 34

CGC-CNV* 15 Manual CNV (not SNV) Somatic 34

CGC-Germlinew 38 Manual SNV, CNV, Trans/fusion Germline (not somatic) 34

UniprotKB 412 Manual Unspecified Both 35

Text-mining 711 Automated Unspecified Both 36

AGO 1,430 Manual Unspecified Both 37

*Genes altered by translocations/fusions or CNVs, respectively, but not by SNVs.
wGenes altered in germline only; excludes genes also altered somatically.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12096 ARTICLE

NATURE COMMUNICATIONS | 7:12096 | DOI: 10.1038/ncomms12096 | www.nature.com/naturecommunications 7

http://tumorportal.org
http://www.synapse.org
http://www.nature.com/naturecommunications


Genes detected by each method. The analysis presented here is exclusively based
on results previously published for each of the respective methods, collected from
publications listed in Table 1. Given the wide range of parameters and processing
steps, we believe the best way to represent all methods is to use their own
previously presented results from each publication.

Analysis of literature support. To evaluate literature support for each cancer
gene (Fig. 1a), we use the NCBI gene2pubmed table (ftp://ftp.ncbi.nlm.nih.gov/
gene/DATA/gene2pubmed.gz, 11 February 2015), from which we can compile a list
of 1,015,815 publications (PubMed IDs) associated with human genes. The
corresponding PubMed XML record for each publication is analysed to extract the
associated MeSH subject terms, which are then indexed to the MeSH term tree
(2015 version) propagating each association to all ancestor terms. We select
publications that are MeSH-annotated as cancer related (Neoplasm;C04) with a
corresponding experimental technique (Investigative Techniques;E05). The
resulting mapping of PubMed publications to MeSH terms is used to compile all
distinct cancer-related publications with an experimental component for each
cancer gene. From this information we classify the first such publication of each
gene into seven broad experimental categories by manual curation. Techniques or
MeSH terms that cannot be assigned non-ambiguously are discarded (for example,
PCR amplifications). To compare the amount of publications for cancer genes
detected by any of MAIN-METHODS versus those left undetected, we examine all
PubMed publications with cancer MeSH annotation (Neoplasm;C04) as above.
To test for association between detected/undetected status and publication date,
the number of publications per year (pubYear) is fit using a generalized linear
model with three binary categorical variables: isDetected (detected or undected),
isGenomeEra (published after the year 2000, the approximate era of genome
sequencing) and isNextGenEra (published after 2006, the approximate era of
next-generation sequencing). The optimal model is selected using a standard
step-up procedure based on a Bayesian information criteria. This model: pubYear
B1 þ isDetected*isGenomeEra þ isDetected* isNextGenEra) includes a
significant interaction between isDetected and isGenomeEra, and between
isDetected and isNextGenEra (Z-test Po4.3� 10� 3 and Z-test Po1.3� 10� 5

respectively). A similar regression restricted to the period 1985–2000 fails to
produce a model with any non-constant significant terms.

Classification performance. We use three measures of classification performance
to compare the different methods for cancer gene detection. In each instance we
use a positive and negative cancer reference and compare it with the cancer genes
detected by a given method. The set of detected genes also found in the positive set
is referred to as the true-positive (TP) set; similarly the set of detected genes not in
the negative reference set is referred to as the false-positive (FP) set. The set of
genes undetected in the negative set is referred to as the true-negative (TN) set; the
set of undetected genes in the positive set is referred to as the false-negative (FN)
set. Genes not included in either the positive or negative reference sets are ignored.
To evaluate performance we use the following three measures: precision,
TP/(TPþ FP); recall, TP/(TPþ FN); and informedness, recallþ specificity� 1.

Differential expression analysis. The Cancer Genome Atlas tumour and normal
RNA-seq mRNA expression data are downloaded from Firehose (http://gdac.
broadinstitute.org/, 14 February 2015) after normalization of RNA-seq reads to
expected read counts using the RSEM algorithm and quantile normalization across
all cancer tissue cohorts. We examine differential expression between tumour and
normal samples in eight cohorts which each have 440 normal samples (breast,
head/neck, clear cell renal, liver, lung adeno, lung squamous, prostate and thyroid),
spanning a total of 540 normal and 4,816 tumour samples. We test for differential
expression using a Welch’s t-test for a difference in means of samples with unequal
variances, and use the sum of the negative log P values across the nine cohorts as a
single summary statistic per gene.

Response to shRNA knockdown. Project Achilles shRNA response data (v2.4.3,
14 November 2014) provide RNAi knockdown values for 56,904 hairpin shRNA by
216 cell lines. These values are normalized using a simplified version of the
ATARiS algorithm53 resulting in knockdown values for 14,082 genes. For every
gene we record the number of cell lines with knockdown values in the top or
bottom 10%.

Mutation frequency calculations. Mutation frequency versus background is
calculated using the MutSigCV method to detect enrichment in mutations9. Briefly,
for every gene g and patient p, the non-synonymous (ns) mutation frequency
Mns

p;g is the ratio of observed ns mutations nns to expected ns mutations Ens:

Mns
p;g¼

nns
p;g

Ens
p;g

ð1Þ

Ens is estimated separately for each gene using a local regression method as
reported18. MutSigCV computes the Mns

p;g statistic for different classifications of
mutations (transitions, transversions, nonsense, missense, etc.), then combines
these different statistics to compute an overall P value of significance that each gene

is frequently mutated in the patient cohort, assuming a beta-binomial null
distribution. We base our analysis on the implementation and covariates provided
as part of MutSigCV v1.4, downloaded on 22 June 2014. We have optimized this
code for efficiency and to exploit parallel processing, but otherwise it is
algorithmically identical to the original implementation.

Estimating power to detect genes by mutation frequency. Following a
previously described procedure18, we estimate the sample size needed to detect a
frequently mutated gene at a genome-wide level of significance (ao5� 10� 6)
with power at least 90% (bZ0.9). Effect size (j) is computed as the difference in
proportions between the mutation rate of the cancer gene (P1) and the background
mutation rate of similar genes in that tissue type (P0). Given a, b and j,
sample size is computed using a standard method54. P0 is defined as described18:

P0 ¼ 1� 1� mfg
� �3L

4 ð2Þ

m A variable representing the background mutation frequency of the tissue.
fg¼ 3.9 A gene-specific background mutation rate estimated by MutSigCV.

The selected value corresponds to the 90 percentile of genes.
L¼ 1,500 The length of a gene in coding bases, representing the 90 percentile of

genes.
3
4 Corresponds to the typical fraction of mutations that are non-

synonymous.
R A variable representing the mutation frequency above background.
P1 frequency is defined as a multiplicative product of the background:

P1 ¼ 1þ rð ÞP0 ð3Þ

Data availability. Data used in this study was gathered from publicly available
sources as indicated above. Literature support and year of first mention in cancer
publication for each cancer gene was downloaded from NCBI gene2pubmed
table (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA /gene2pubmed.gz, downloaded on
11 February 2015). Cancer genes detected by each method were downloaded from
the Supplementary Information and accompanying data provided along with
publications referenced in Table 1. Known cancer reference genes were
downloaded from the sources indicated in Table 2, in particular, Sanger Institute
Cancer Gene Censuses database (CGC, http://cancer.sanger.ac.uk/files/cosmic/
current_release/cancer_gene_census.csv, version 73, downloaded on 28 June 2015).
Tumour expression data were downloaded from the Firehose repository
(http://gdac.broadinstitute.org/, downloaded on 14 February 2015). Response to
shRNA knockdown measurements were downloaded from the Project Achilles data
portal (http://www.broadinstitute.org/achilles/datasets/5, version 2.4.3, download
on 14 November 2014). Mouse genetic screening data were downloaded from the
CCGD database (http://ccgd-starrlab.oit.umn.edu/, downloaded on 19 August
2015). Tumour somatic mutation data for individual patients is available on
Synapse (http://www.synapse.org), accession number syn1729383. All other data is
contained within the Article and Supplementary Information, or available from the
authors on request.
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