
UC Davis
UC Davis Previously Published Works

Title
Accurate Real-time CNC Curve Interpolators Based Upon Richardson Extrapolation

Permalink
https://escholarship.org/uc/item/40t858d5

Author
Farouki, Rida T

Publication Date
2021-06-01

DOI
10.1016/j.cad.2021.103005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40t858d5
https://escholarship.org
http://www.cdlib.org/

Accurate real-time CNC curve interpolators

based upon Richardson extrapolation

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

Real–time CNC interpolators achieving a constant or variable feedrate
V along a parametric curve r(ξ) are usually based on truncated Taylor
series expansions defining the time–dependence of the curve parameter
ξ. Since the feedrate should be specified as a function of a physically
meaningful variable (such as time t, path arc length s, or curvature κ)
rather than ξ, successive applications of the differentiation chain rule
are necessary to determine Taylor series coefficients beyond the linear
term. The closed–form expressions for the higher–order coefficients are
increasingly cumbersome to derive and implement, and consequently
error–prone. To address this issue, the use of Richardson extrapolation

as a simple means to compute rapidly convergent approximations to
the higher–order coefficients is investigated herein. The methodology
is demonstrated in the context of (1) an arc–length–dependent feedrate
for cornering motions; (2) direct real–time offset curve interpolation;
and (3) a curvature–dependent feedrate. All of these examples admit
simple implementations that circumvent the need for tedious symbolic
calculations of higher–order coefficients, and are compatible with real–
time controllers with millisecond sampling intervals.

Keywords: real–time CNC interpolator, parametric curves, variable feedrate,
Taylor series coefficients, Richardson extrapolation, feedrate accuracy.

e–mail address: farouki@ucdavis.edu

1 Introduction

Real–time feedback control of multi–axis computer numerical control (CNC)
machines requires accurate determination of the position error (the difference
between the commanded and measured machine positions), updated in each
sampling interval ∆t = 1/f , where f is the servo system sampling frequency
(with typical values f = 100–1000 Hz and ∆t = 0.01–0.001 sec.). The actual
machine position is measured by the encoders on each machine axis, and the
commanded position must be computed from the prescribed path geometry
and feedrate (path speed) by the real–time interpolator algorithm.

Although CNC machines have traditionally employed G code (piecewise–
linear/circular) approximations to variable–curvature paths, the advantages
of analytic path descriptions — specified by parametric curves — has recently
been recognized [2, 3, 14, 16, 18, 19, 24, 25]. Analytic paths, based upon the
standard Bézier/B–spline CAD system representations [4], can offer greater
geometrical accuracy, smoother high–speed motion, and the ability to achieve
continuously–variable feedrate to satisfy requirements such as suppression of
chip load variations and satisfaction of axis acceleration limits.

The real–time interpolator for a (non–trivial) parametric curve r(ξ) must
determine, from the specified (constant or variable) feedrate V , the parameter
value ξi corresponding to sampling time ti = i ∆t. However, feedrate is the
derivative V = ds/dt of arc length s along r(ξ), and in general there exists
no simple function1 s(ξ) specifying s in terms of ξ. The usual remedy to this
problem is to invoke a Taylor series expansion to determine ξi+1 from ξi.

Real–time interpolators based on Taylor series possess two inherent short-
comings: (i) they incur truncation errors because only a finite (small) number
of terms can be employed; and (ii) for variable feedrates, the coefficients of
higher–order terms, defined by successive chain–rule differentiation, acquire
increasingly cumbersome and computation–intensive expressions.

It should be noted that real–time interpolator inaccuracies incur only feed
error (lag or lead along the path) — not contour error (geometrical deviation
from the path) — and linear or quadratic Taylor expansions may suffice for
applications involving only constant low feedrates, modest path curvatures,
and sufficiently high controller sampling frequencies. However, in high–speed
machining [15, 21, 22] which incurs severe accelerations, or when pronounced

1The Pythagorean–hodograph (PH) curves [5], for which s(ξ) is simply a polynomial,
are the exception to this rule: they admit accurate real–time interpolators [6, 7, 10, 13, 23]
for various feedrate variations dependent on time, arc length, or curvature.

1

feedrate variations are employed to suppress chip load variations and avoid
tool damage, accurate feedrate performance may be paramount.

Motivated by these considerations, the focus of the present study is to
develop and analyze a simple, computationally–efficient scheme to determine
the higher–order coefficients for Taylor series variable–feedrate interpolators,
that bypasses the need to derive their cumbersome and error–prone [24, 25]
closed–form expressions. The approach is based on Richardson extrapolation,
an efficient iterative scheme for computing a sequence of increasingly accurate
approximations to higher–order derivatives of a function from sampled values
of a known simple expression for a lower–order derivative [1, 20].

The remainder of this paper is organized as follows. First, basic principles
governing the design of real–time CNC interpolators for parametric curves
based on Taylor series expansions are briefly reviewed in Section 2, and the
difficulty in improving their accuracy by incorporating higher–order terms is
emphasized. The Richardson extrapolation method for computing accurate
estimates of the higher–order coefficients, without deriving their closed–form
expressions, is then introduced in Section 3. Sections 4–6 present computed
examples illustrating the performance of the methodology for paths specified
by smooth analytic curves, in the context of arc–length–dependent feedrates,
real–time interpolation of offset curves, and curvature–dependent feedrates.
Finally, Section 7 summarizes the principal results of this study, and identifies
further possible lines of investigation.

2 Real–time CNC interpolators

Given a prescribed tool path geometry and a (constant or variable) feedrate,
the real–time interpolator function in the controller of a computer numerical
control (CNC) machine with servo sampling frequency f computes a reference
point (commanded position) within each system sampling interval ∆t = 1/f .
The difference between the reference point and the actual machine position,
as measured by encoders on the machine axes, defines the instantaneous axis
position errors, required for accurate closed–loop control of position.

To generate reference points along a path specified by a parametric curve
r(ξ), the curve parameter value ξi corresponding to each sampling instant
ti = i ∆t must be computed in real time. Since the parametric speed σ(ξ) =
|r′(ξ)| specifies the derivative ds/dξ of arc length s along r(ξ) with respect
to the parameter ξ, and the feedrate V is the time derivative ds/dt of the

2

arc length, we have
d

dt
=

ds

dt

dξ

ds

d

dξ
=

V

σ

d

dξ
. (1)

In particular, the basic relation that governs the time variation of the curve
parameter is

dξ

dt
=

V

σ
, (2)

where the feedrate V may be constant, or defined as a function of a physically
meaningful variable — such as the elapsed time t, path arc length s, or path
curvature κ. However, the relation (2) does not (in general) admit integration
to obtain a closed–form expression ξ(t) — even in the case V = constant —
since σ(ξ) is the square–root of a polynomial/rational function when r(ξ) is a
polynomial/rational curve. The Pythagorean–hodograph (PH) curves [5] are
an exception, for which σ(ξ) is a polynomial and (2) admits a closed–form
integration for various feedrate functions of practical interest.

The usual approach is to expand the relation (2) as a power series in ∆t.
Namely, the reference–point parameter value ξi+1 at time ti+1 = (i + 1)∆t
is obtained from the preceding value as ξi+1 = ξi + ∆ξi, the increment ∆ξi

being computed from the Taylor series

∆ξi = ξ̇i∆t + 1

2
ξ̈i(∆t)2 + 1

6

...
ξ i(∆t)3 + · · · (3)

where ξ̇i, ξ̈i,
...
ξ i, etc., denote successive time derivatives2 of ξ(t), evaluated at

ti = i ∆t. Now by successive application of the differential operator (1) we
may express the derivatives in (3) as

ξ̇ =
V

σ
, ξ̈ =

σV ′ − σ′V

σ2
ξ̇ ,

...
ξ =

σV ′ − 3σ′V

σ2
ξ̈ +

σV ′′ − σ′′V

σ2
ξ̇2 , (4)

etc., the derivatives of the parametric speed σ(ξ) = |r′(ξ)| being given by

σ′ =
r′ · r′′

σ
, σ′′ =

r′ · r′′′ + |r′′|2 − σ′2

σ
, etc. (5)

When the feedrate V is specified as a function of time t, arc length s, or path
curvature κ, further applications of the differentation chain rule are required
to convert the derivatives with respect to these variables into the parametric

2Henceforth dots are used to denote derivatives with respect to time t, while primes
denote derivatives with respect to the curve parameter ξ.

3

derivatives V ′, V ′′, etc., appearing in (4). The derivation and implementation
of the above expressions is tedious (and potentially error–prone), resulting in
very cumbersome formulae [11] for the higher–order time derivatives3 of ξ.

To address this issue, we consider here the use of Richardson extrapolation
to compute the higher–order coefficients in (3), without the need to explicitly
derive their exact closed–form expressions. Richardson extrapolation offers a
simple means to obtain a convergent sequence of estimates for higher–order
derivatives of an analytic function at a given point, based on function values
at a successively augmented set of discrete points. The accuracy improves as
additional points are introduced, and with appropriate implementation the
computational cost increases only in proportion to their number.

The test results described in Sections 4–6 indicate that relative accuracies
of <∼ 10−10 in the second– and third–order terms of (3) can be achieved in
a small fraction of the typical sampling interval ∆t = 0.001 s. The primary
motivation in using Richardson extrapolation is not computational efficiency,
but circumventing the need to derive and implement the complicated closed–
form expressions for the higher–order coefficients in (3), or determining their
numerical values in cases where such derivations are not feasible.

In typical applications, only the first few terms in the expansion (3) may
prove sufficiently accurate. However, there are many circumstances in which
higher–order terms may be necessary — for example:

• a prescribed feedrate V that is very high, or exhibits a strong variation
along the path r(ξ);

• a feedrate V that is constant (or only mildly varying) along a path r(ξ)
with a strongly–varying parametric speed σ(ξ);

• feed deceleration/acceleration for accurate execution of sharp junctures
between smooth curvilinear path segments;

• the use of a curvature–dependent feedrate for a path r(ξ) along which
the curvature κ(ξ) exhibits strong variation;

• acceleration management in rapid machine starts or stops, by means of
a time–dependent feedrate along r(ξ);

3Note also that the derivation of these expressions has been susceptible to elementary
mistakes by prior authors, as observed in [11].

4

• the use of controllers with relatively low sampling frequencies (i.e., long
sampling intervals ∆t).

3 Richardson extrapolation

Consider the determination of estimates for the second derivative ξ̈i from a
known expression for the first derivative. For brevity write h = ∆t, and let
F1(h) be a function such that F1(0) coincides with the desired derivative ξ̈i.
For any h > 0, the deviation of F1(h) from ξ̈i can be expressed as

F1(h) − ξ̈i := c1h + O(h2) . (6)

Substituting η h for h in (6), with 0 < η < 1, gives

F1(η h) − ξ̈i = c1η h + O(h2) . (7)

Multiplying (6) by η and subtracting from (7) then furnishes an estimate for
ξ̈i, accurate to second order in h, as

ξ̈i =
F1(η h) − η F1(h)

1 − η
+ O(h2) . (8)

The coefficient c1 in (6) can also be estimated, to second order in h, as

c1 =
F1(h) − F1(η h)

(1 − η)h
+ O(h2) .

Equation (8) specifies a Richardson extrapolation estimate for ξ̈i, of accuracy
O(h2), based on a prescribed function F1(h) of accuracy O(h).

The relation (8) can be written as

ξ̈i = F2(h) + O(h2) ,

where we define the function

F2(h) :=
F1(η h) − ηF1(h)

1 − η
.

This function can now be invoked as a new point of departure for equation
(6), re–formulated as

F2(h) − ξ̈i := c2h
2 + O(h3) , (9)

5

since F2(h) is of accuracy O(h2) as an estimate for ξ̈i. Again replacing h by
η h, we have

F2(η h) − ξ̈i = c2 η2h2 + O(h3) . (10)

Multiplying (9) by η2 and subtracting from (10) gives a new estimate for ξ̈i,
accurate to third order in h, as

ξ̈i = F3(h) + O(h3) , (11)

where

F3(h) :=
F2(η h) − η2F2(h)

1 − η2
.

The above scheme, repeated indefinitely, is called extrapolation to the limit.
It can be succinctly expressed in the form

ξ̈i = Fk(h) + O(hk) ,

where the functions Fk(h) are defined recursively by

Fk+1(h) =
Fk(η h) − ηkFk(h)

1 − ηk
, k = 1, 2, 3, . . . (12)

Experiments indicate that, in the present context, the accuracy achieved
is not very sensitive to the choice of η. We focus here on the particular case
η = 1

2
, for which we have

F2(h) := 2 F1(
1

2
h) − F1(h) , F3(h) :=

4 F2(
1

2
h) − F2(h)

3
,

F4(h) :=
8 F3(

1

2
h) − F3(h)

7
, F5(h) :=

16 F3(
1

2
h) − F4(h)

15
, etc.

For k ≥ 3, the functions Fk(h) can be expressed in terms of just F1(h) as

F3(h) =
8 F1(

1

4
h) − 6 F1(

1

2
h) + F1(h)

3
,

F4(h) =
64 F1(

1

8
h) − 56 F1(

1

4
h) + 14 F1(

1

2
h) − F1(h)

21
,

F5(h) =
1024 F1(

1

16
h) − 960 F1(

1

8
h) + 280 F1(

1

4
h) − 30 F1(

1

2
h) + F1(h)

315
,

6

etc. The function F1(h) must be defined in order to initiate the recursion.
We do this by invoking the known closed–form expression (2) for ξ̇(t) and
using the forward difference formula

F1(h) =
ξ̇(ti + h) − ξ̇(ti)

h
, (13)

which satisfies ξ̈i − F1(h) = c1h + O(h2).
Note that, if Pk(x) = a0 + a1x + · · ·+ akx

k is the polynomial of degree k
that has the values F1(h), F1(

1

2
h), . . . , F1(2

−kh) at x = h, 1

2
h, . . . , 2−kh, then

Fk+1(h) = Pk(0) — i.e., the quantities generated through the recursion (12)
are the initial values of a sequence of polynomials, with increasing degree k,
that interpolate the values of F1(x) at the geometric progression of sample
points x = h, 1

2
h, . . . , 2−kh with the limit point 0.

The preceding discussion was couched in terms of computing estimates
of the second derivative from a known expression for the first derivative, but
the same principles also apply to computing estimates of the third derivative
from a known second derivative expression. If no second derivative expression
is known, extrapolated values from the first derivative may be used, although
this may influence the efficiency and convergence rate.

To ensure an efficient implementation, it is useful to express the successive
estimates for ξ̈(ti) explicitly in terms of the sequence of sampled ξ̇(t) values.
Upon substituting (13) into the expressions for F2(h), F3(h), . . . in terms of
F1(h), and setting tk = ti +(1

2
)kh, we obtain the following sequence of second

derivative estimates

ξ̈1(ti) =
ξ̇(t1) − ξ̇(ti)

h
,

ξ̈2(ti) =
− ξ̇(t1) + 4 ξ̇(t2) − 3 ξ̇(ti)

h
,

ξ̈3(ti) =
ξ̇(t1) − 12 ξ̇(t2) + 32 ξ̇(t3) − 21 ξ̇(ti)

3 h
,

ξ̈4(ti) =
− ξ̇(t1) + 28 ξ̇(t2) − 224 ξ̇(t3) + 512 ξ̇(t4) − 315 ξ̇(ti)

21 h
,

ξ̈5(ti) =
ξ̇(t1) − 60 ξ̇(t2) + 1120 ξ̇(t3) − 7680 ξ̇(t4) + 16384 ξ̇(t5) − 9765 ξ̇(ti)

315 h
,

etc., in terms of ξ̇(t) evaluated at t1, t2, . . . and ti. From the above expressions
it is clear that, once ξ̈k(t) has been computed, evaluation of ξ̈k+1(t) requires

7

only the one additional derivative value ξ̇(tk+1), so the computational cost
grows only linearly with the order k of the approximation ξ̈k(ti).

The same procedure can be employed to compute a sequence of estimates

...
ξ1(ti),

...
ξ2(ti),

...
ξ3(ti), . . .

for the third derivative
...
ξ (ti) from a known second derivative expression ξ̈(t)

evaluated at t1, t2, t3, . . . and ti, and likewise for higher–order derivatives.
Once the derivatives ξ̇i, ξ̈i,

...
ξ i, . . . at time t = i ∆t have been determined

up to some desired order, the expression (3) can be evaluated to obtain the
curve parameter value ξi+1 = ξi + ∆ξi at time ti+1 = (i + 1)∆t. The new
reference point r(ξi+1) is then generated, and the derivatives are re–computed
at the new parameter value ξi+1 in order to execute the next time step.

For brevity, the examples provided in the following sections are based on
planar curves. However, the method is also applicable to spatial curves, and
may be even more advantageous for space curves, since the exact expressions
for higher–order Taylor coefficients will depend on the torsion and its arc–
length derivatives in addition to the curvature. The Richardson scheme can
also be readily generalized from single curve segments (as in the examples)
to more complicated paths defined by multi–segment spline curves.

4 Arc-length-dependent feedrate

We illustrate the Richardson extrapolation method in terms of an arc–length–
dependent feedrate, suitable for use in high–speed cornering motions. Sharp
corners in engineering parts are typically smoothed by fillet curves to ensure
safe handling, reduce stress concentration effects, and to circumvent the need
to reduce the cutting tool feedrate to zero for exact execution of a sharp tool-
path corner. For continuous acceleration along a toolpath, the fillet curves
must exhibit G2 continuity with the linear segments they connect.

A family of quintic Pythagorean–hodograph (PH) curves that define G2

fillets of the sharp corners between linear segments was proposed in [9, 17].
These fillets replace portions of length L on the incoming and outgoing line
segments at the corner — they agree in position and tangent direction, and
have zero curvature, at their junctures with the remaining line segments. For
a corner point at the origin, an incoming segment along the x–axis, and an
outgoing segment inclined at angle θ to the x–axis, these quintic PH corner

8

curves are specified [9] by the Bézier control points

p0 = (−L, 0) , p1 =

(−L

6 cos 1

2
θ + 1

, 0

)

= p2 ,

p3 =

(

L cos θ

6 cos 1

2
θ + 1

,
L sin θ

6 cos 1

2
θ + 1

)

= p4 , p5 = (L cos θ, L sin θ) .

The coincidences p1 = p2 and p3 = p4 ensure zero end–point curvatures.
Examples of the G2 corner curves, corresponding to the choices L = 0.1 in
and θ = 45◦, 90◦, 135◦, are shown with their curvature profiles in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

fractional arc length s/S

cu
rv

at
ur

e
(in

–1
)

Figure 1: The G2 PH quintic corner curves that correspond to turning angles
θ = 45◦, 90◦, 135◦ (left), together with their curvature distributions (right).

The G2 quintic PH corner curve specified by the parameters L and θ has
a mid–point maximum curvature κmax and a maximum deviation δ from the
sharp corner given [9] by

κmax =
32(6 cos 1

2
θ + 1) tan 1

2
θ

15L(cos 1

2
θ + 1)2

, δ =
(3 cos 1

2
θ + 8) | sin 1

2
θ |L

8(6 cos 1

2
θ + 1)

,

and the total arc length of the corner curve can be expressed as

S =
2L(6 + cos 1

2
θ) cos 1

2
θ

6 cos 1

2
θ + 1

.

Feedrate functions dependent on the curve parameter ξ, curvature κ, or
a combination of both, were proposed in [9] to decelerate into and accelerate

9

out of the quintic PH corner curves r(ξ). These allow determination of the
reference–point parameter value ξi at each sampling time ti = i∆t as the
unique real roots of monotone analytic functions. However, the derivations
are rather complicated, and involve transcendental terms. We consider here
instead an arc–length–dependent cornering feedrate function.

Since a PH curve r(ξ), ξ ∈ [0, 1] has [5] a polynomial parametric speed
σ(ξ) = |r′(ξ)|, the cumulative arc length

s(ξ) =

∫ ξ

0

σ(u) du

is a polynomial, and the total arc length S = s(1) can be exactly determined.
We consider a cornering feedrate function defined in terms of the fractional
arc length λ = s(ξ)/S as

V (λ) = V0 [1 − 16(1 − f)(1 − λ)2λ2] . (14)

This function embodies the following properties: (1) the entry/exit feedrate
has the nominal value V0 at λ = 0 and 1; (2) the mid–point feedrate V (1

2
) =

f V0 is the fraction f of V0; and (3) the entry/exit feed acceleration

A =
dV

dt
=

ds

dt

dV

ds
=

V

S

dV

dλ
,

is zero at λ = 0 and 1. For a corner curve connecting incoming and outgoing
linear segments with G2 continuity, that are traversed at constant speed V0,
the feedrate (14) ensures continuity of velocity and acceleration.

To explicitly compute the higher–order derivatives in (3) we observe from
(14) that

dV

ds
= − 32 (1 − f) V0

S
λ (1 − 3 λ + 2 λ2) ,

d2V

ds2
= − 32 (1 − f) V0

S2
(1 − 6 λ + 6 λ2) ,

and these may be converted into derivatives with respect to ξ as

V ′ = σ
dV

ds
, V ′′ = σ′

dV

ds
+ σ2

d2V

ds2
. (15)

These expressions, together with the derivatives (5) of the parametric speed,
can then be used to evaluate the closed–form expressions (4) for the second
the third time derivatives of ξ required in (3).

10

Although the above derivations were formulated recursively to obtain a
reasonably compact formulation, they remain cumbersome and potentially
error prone in implementation. To avoid these issues, we consider the use of
Richardson extrapolation to compute the higher–order coefficients in (3).

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

fractional arc length s/S

fe
ed

ra
te

 (
in

/m
in

)

0.00 0.05 0.10 0.15

0.00

0.05

0.10

x

y

Figure 2: Feedrate variation (left) and subsampling of reference points (right)
along a quintic PH corner test curve with the turning angle θ = 60◦, to be
traversed using the feedrate function (14) with V0 = 100 in/min and f = 0.5.

As a test case, we employ the quintic PH corner curve with turning angle
θ = 60◦ and side length L = 0.1 in, to be traversed with a nominal feedrate
V0 = 100 in/min and feedrate reduction factor f = 0.5 (see Figure 2). The
corner curve has arc length S = 0.1919 in, maximum deviation δ = 0.0107 in,
and extremum curvature κmax = 21.9172 in−1.

Figure 3 shows that the Richardson extrapolation estimates for ξ̈k(ti) and...
ξk(ti) can achieve high relative accuracies for modest k values (<∼ 10−5 with

k = 3 and <∼ 10−10 with k = 5). To assess the computational cost, the corner
curve was executed 1000 times, with each execution involving 170 reference–
point computations for a sampling interval ∆t = 0.001 sec. The average times
required to compute the derivatives ξ̈(ti) and

...
ξ (ti) for each reference point,

based on both the closed–form expressions and the Richardson extrapolations
ξ̈3(ti) and

...
ξ5(ti), using a modest 1.1 GHz cpu, are listed in Table 1.

It is apparent from Table 1 that, since Richardson extrapolation involves
more function evaluations, it is somewhat slower than using the closed–form
derivative expressions. However, the primary motivation for the Richardson
method is to circumvent the extensive (and sometimes impractical) symbolic
computations required to derive exact closed–form derivatives. The data in
Table 1 appear consistent with a linear growth of computation time with the

11

0.00 0.05 0.10 0.15

10–15

10–10

10–5

100

arc length (in)

2n
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

0.00 0.05 0.10 0.15

10–15

10–10

10–5

100

arc length (in)

3r
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

Figure 3: Relative errors in the second derivative estimates ξ̈3, ξ̈5 (left) and
third derivative estimates

...
ξ3,

...
ξ5 (right) in the traversal of a quintic PH corner

curve with the parameters L = 0.1 in, θ = 60◦, V0 = 100 in/min, and f = 0.5.

closed form Richardson k = 3 Richardson k = 5

ξ̈(ti) 1.30 × 10−6 s 3.94 × 10−6 s 6.04 × 10−6 s
...
ξ (ti) 1.61 × 10−6 s 5.17 × 10−6 s 8.04 × 10−6 s

Table 1: Observed computation times for the derivatives ξ̈(ti) and
...
ξ (ti) at

each reference point along a 60◦ PH quintic corner curve traversed with the
feedrate function (14), employing the closed–form derivative expressions and
Richardson extrapolations of order k = 3 and 5 (based on a 1.1 GHz cpu).

12

extrapolation order k, as noted in Section 3, and the computation times for
k ≤ 8 are <∼ 1% of the adopted sampling interval ∆t = 0.001 s, and are thus
eminently compatible with real–time implementation.

5 Offset curve traversal

To machine a planar shape specified by a parametric curve r(ξ), ξ ∈ [0, 1]
with a cylindrical tool of radius d, the tool center must follow the offset path

rd(ξ) = r(ξ) + dn(ξ) , (16)

where n(ξ) is the unit normal to r(ξ). This offset path has [8] the derivative
r′d(ξ) = [1 + κ(ξ) d] r′(ξ), with the curvature of r(ξ) being defined by

κ(ξ) =
[r′(ξ) × r′′(ξ)] · z

σ3(ξ)
, (17)

where z is a unit vector orthogonal to the plane of r(ξ). The unit tangent
td(ξ) of the offset curve (16) is related to the unit tangent t(ξ) of r(ξ) by

td(ξ) =
1 + κ(ξ) d

| 1 + κ(ξ) d | t(ξ) , (18)

The expression (16) defines, for unrestricted ξ, the “untrimmed” offset
curve — which is locally (but not globally) at distance d from r(ξ). Equation
(18) indicates that points where 1 + κ(ξ) d changes sign will incur sudden
tangent reversals — or cusps — on the untrimmed offset curve. Such points
lie within segments of the untrimmed offset at distance < d from r(ξ), which
must be deleted to obtain the trimmed offset curve, that will ensure gouge–
free machining of the desired shape r(ξ). On each remaining trimmed offset
segment, the expression 1 + κ(ξ) d is of constant sign.

For brevity we focus henceforth on a trimmed offset segment for which
1 + κ(ξ) d > 0. The parametric speed σd(ξ) of rd(ξ) and its first and second
derivatives can then be expressed as

σd = (1 + κ d) σ , σ′

d = (1 + κ d) σ′ + σ2d
dκ

ds
, (19)

σ′′

d = (1 + κ d) σ′′ + 3 σσ′d
dκ

ds
+ σ3d

d2κ

ds2
, (20)

13

where the arc–length derivatives of the curvature are given by

dκ

ds
=

(r′ × r′′′) · z − 3σ2σ′κ

σ4
, (21)

d2κ

ds2
=

(r′′ × r′′′ + r′ × r′′′′) · z − 3σ(2σ′2 + σσ′′)κ − 7σ3σ′(dκ/ds)

σ5
. (22)

To obtain the derivatives ξ̇, ξ̈,
...
ξ appropriate to traversal of the offset curve

at feedrate V , the above expressions for σd, σ
′

d, σ
′′

d must be substituted in lieu
of σ, σ′, σ′′ in (4). Moreover, if V is not constant, the appropriate expressions
for V ′, V ′′ must be obtained — equations (15), for example, in the case of an
arc–length–dependent feedrate V (s).

Figure 4 illustrates a sub–sampling of reference points along the offset at
distance d = 0.5 in to a quintic curve r(ξ). A primary challenge for the real–
time interpolator in executing the offset path rd(ξ) is the extreme variation
of its parametric speed σd(ξ) = [1 + κ(ξ) d] σ(ξ), as can be seen in Figure 4.
To emphasize this aspect, we consider a travseral at the constant feedrate
V0 = 400 in/min, with a sampling interval ∆t = 0.001 s.

0 2 4 6 8
0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

fractional arc length s/S

of
fs

et
 p

ar
am

et
ric

 s
pe

ed
 σ

d

Figure 4: Left: sub–sampled distribution of reference points along the offset
(16) to a quintic test curve with d = 0.5 in and feedrate V0 = 400 in/min.
Right: extreme variation of the parametric speed σd(ξ) along the offset curve.

Along the offset path, Figure 5 shows the relative errors in the Richardson
extrapolation estimates for ξ̈k(ti) and

...
ξk(ti) for the orders k = 3 and k = 5.

With k = 3, the difficulty of achieving high accuracy near the “sharp turn”
in the offset path is evident. With k = 5, however, this problem is largely
subdued and an accuracy of <∼ 10−10 is obtained along the entire offset curve.

14

0 2 4 6 8

10–15

10–10

10–5

100

arc length (in)

2n
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

0 2 4 6 8

10–15

10–10

10–5

100

arc length (in)

3r
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

Figure 5: Relative errors in the second derivative estimates ξ̈3, ξ̈5 (left) and
third derivative estimates

...
ξ3,

...
ξ5 (right) in the traversal of the offset to the

quintic curve shown in Figure 4 with d = 0.5 in and feedrate V0 = 400 in/min.

closed form Richardson k = 3 Richardson k = 5

ξ̈(ti) 2.22 × 10−6 s 6.21 × 10−6 s 9.36 × 10−6 s
...
ξ (ti) 2.57 × 10−6 s 8.52 × 10−6 s 13.05 × 10−6 s

Table 2: Observed computation times for the derivatives ξ̈(ti) and
...
ξ (ti) at

each reference point along the offset curve in Figure 4 traversed with constant
feedrate V = 400 in/min, employing the closed–form derivative expressions
and Richardson extrapolations of order k = 3 and 5 (with a 1.1 GHz cpu).

15

To estimate computational cost, the offset curve was executed 100 times,
with each execution requiring 1232 reference–point for a sampling interval
∆t = 0.001 s. The average times required to compute the derivatives ξ̈(ti) and...
ξ (ti) for each reference point, employing both the closed–form expressions
and the Richardson extrapolations ξ̈3(ti) and

...
ξ 5(ti), using a modest 1.1 GHz

cpu, are indicated in Table 2. The results are in close agreement with those
in Table 1 for the corner curve, and are consistent with a linear dependence
of the computation time on the extrapolation order k (they are <∼ 1% of the
adopted sampling interval ∆t = 0.001 s). Although Richardson extrapolation
is somewhat more expensive, it avoids the need for the extensive derivations
embodied in equations (4), (15), and (19)–(22).

6 Curvature-dependent feedrate

Consider the execution of a path specified by a parametric curve r(ξ) with a
feedrate V dependent on the path4 curvature (17). Specifically, we use the
curvature–dependent feedrate

V (κ) =
V0

1 + (κ/κ0)2
, (23)

for which V = V0 represents a nominal feedrate when κ = 0; V = 1

2
V0 when

κ = κ0; and V diminishes rapidly for |κ/κ0| ≫ 1. The feedrate (23) can
be employed to mitigate large axis accelerations incurred when paths with
high localized curvatures are to be executed at nominally rapid feedrates, to
ensure that the drive motors can supply the required torque [12].

The feedrate parametric derivatives V ′, V ′′, . . . in (4) must be determined
in terms of the function (23). This can be achieved by invoking the chain
rule to write

d

dξ
= σ

dκ

ds

d

dκ
.

By successive applications of this differential operator to V (κ) we obtain

V ′ = σ
dκ

ds

dV

dκ
, V ′′ = σ′

dκ

ds

dV

dκ
+ σ2

d2κ

ds2

dV

dκ
+ σ2

(

dκ

ds

)2
d2V

dκ2
, (24)

4For brevity, we focus on planar paths. However, the methodology also applies to spatial
paths, for which the curvature is defined as the non–negative quantity κ = | r′ × r

′′ |/σ3.

16

etc., where the arc–length derivatives of the curvature are given by (21)–(22),
and for the feedrate function (23) we have

dV

dκ
= − 2 V0 κ

κ2
0 [1 + (κ/κ0)2]2

,
d2V

dκ2
=

2 V0 [3(κ/κ0)
2 − 1]

κ2
0 [1 + (κ/κ0)2]3

. (25)

Note that dV /dκ is opposite in sign to κ, but d2V /dκ2 is positive or negative
according to whether |κ/κ0| is greater than or less than 1/

√
3.

In (3), the quantities (5) and (21)–(22) are evaluated at ξi, while (23) and
(25) are evaluated at κ(ξi). Note that these expressions have been formulated
recursively, to present them as compactly as possible.

Figure 6 shows a quintic test curve with strong curvature variation, used
to illustrate an implementation of the feedrate function (23) with parameters
V = 400 in/min and κ0 = 1 in−1. As can be seen in Figure 7, the Richardson
extrapolation estimates for ξ̈k(ti) and

...
ξk(ti) are again of excellent accuracy,

with relative errors <∼ 10−6 for k = 3 and <∼ 10−10 for k = 5.

0 2 4 6 8
0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
–2

–1

0

1

2

fractional arc length s/S

cu
rv

at
ur

e
κ

Figure 6: Left: subsampling of reference points along a test curve traversed
with the curvature–dependent feedrate function (23) with V0 = 400 in/min
and κ0 = 1 in−1. Right: variation of the curvature along the test curve.

Table 3 lists the computational cost for the curvature–dependent feedrate
(23), determined through 100 curve traversals with 2522 computed reference
points each, and a sampling interval ∆t = 0.001 sec. The results are in very
good agreement with those enumerated in Tables 1 and 2, indicating that
the computational cost of Richardson extrapolation is remarkably consistent
for a variety of different feedrate variations.

17

0 2 4 6 8 10 12

10–15

10–10

10–5

100

arc length (in)

2n
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

0 2 4 6 8 10 12

10–15

10–10

10–5

100

arc length (in)

3r
d

de
riv

at
iv

e
fra

ct
io

na
l e

rr
or

k = 3

k = 5

Figure 7: Relative errors in the second derivative estimates ξ̈3, ξ̈5 (left) and
third derivative estimates

...
ξ3,

...
ξ5 (right) in traversing the test curve shown in

Figure 6 using the feedrate (23) with V0 = 400 in/min and κ0 = 1 in−1.

closed form Richardson k = 3 Richardson k = 5

ξ̈(ti) 2.21 × 10−6 s 7.22 × 10−6 s 12.13 × 10−6 s
...
ξ (ti) 2.71 × 10−6 s 8.89 × 10−6 s 13.45 × 10−6 s

Table 3: Observed computation times for the derivatives ξ̈(ti) and
...
ξ (ti) at

each reference point along the curve in Figure 6 traversed with the curvature–
dependent feedrate (23) using both the closed–form derivative expressions,
and Richardson extrapolations of order k = 3 and 5 (with a 1.1 GHz cpu).

18

Another curvature–dependent feedrate function was introduced in [6] to
ensure a constant material removal rate for a fixed depth of cut δ, when the
tool radius d and path radius of curvature ρ = κ−1 are comparable, namely

V (κ) =
V0

1 + κ (d − 1

2
δ)

.

In this case, the derivatives of the feedrate function are

dV

dκ
= − V0 (d − 1

2
δ)

[1 + κ (d − 1

2
δ)]2

,
d2V

dκ2
=

2 V0 (d − 1

2
δ)2

[1 + κ (d − 1

2
δ)]3

,

and otherwise the implementation proceeds in the exactly same manner as for
the feedrate (23) — the results obtained using the Richardson extrapolation
method are closely analogous to those for (23).

7 Closure

The ability to accurately achieve constant or varying feedrates along curved
paths plays an important role in diverse applications, such as management of
accelerations or chip load variations in CNC machining, or exposure control
in laser cutting and laser–based 3D printing processes. However, real–time
interpolators based on truncated Taylor series expansions may incur substan-
tial inaccuracies when only the linear term is retained, and the determination
of exact closed–form expressions for the coefficients of higher–order terms is
an increasingly cumbersome and potentially error–prone process.

The Richardson extrapolation method circumvents the need to explicitly
obtain the complicated closed–form expressions for higher–order derivatives,
by allowing a rapidly–convergent sequence of estimates for their values to be
computed using elementary pre–determined formulae. Tests on a variety of
curved path geometries and feedrate variations have shown that it is capable
of achieving very high accuracy with a computational cost easily compatible
with modern cpu processor speeds and millisecond sampling intervals.

It is expected that the Richardson extrapolation method can prove useful
in contexts beyond the simple demonstrative cases described above. Suppose,
for example, that it is desired to minimize cutting force fluctuations incurred
by variations in workpiece specific cutting energy, depth or width of cut, etc.
If the cutting force at regularly–spaced path distances can be determined by

19

appropriate simulation software, these data can be fit using a suitable (e.g.,
spline) function, from which the feedrate modulation required to suppress the
cutting force fluctuations can be determined. The Richardson extrapolation
method then provides a simple means to implement a real–time interpolator
that accurately realizes this required feedrate variation.

References

[1] C. Brezinski and M. Redivo Zaglia (1991), Extrapolation Methods:
Theory and Practice, North Holland, Amsterdam.

[2] J.–J. Chou and D. C. H. Yang (1991), Command generation for
three–axis CNC machining, ASME Journal of Engineering for Industry
113 (August), 305–310.

[3] J.–J. Chou and D. C. H. Yang (1992), On the generation of
coordinated motion of five–axis CNC/CMM machines, ASME Journal
of Engineering for Industry 114 (February), 15–22.

[4] G. Farin (1997), Curves and Surfaces for Computer Aided Geometric
Design (4th Edition), Academic Press, San Diego.

[5] R. T. Farouki (2008), Pythagorean–Hodograph Curves: Algebra and
Geometry Inseperable, Springer, Berlin.

[6] R. T. Farouki, J. Manjunathaiah, D. Nicholas, G.–F. Yuan, and S. Jee
(1998), Variable feedrate CNC interpolators for constant material
removal rates along Pythagorean–hodograph curves, Computer Aided
Design 30, 631–640.

[7] R. T. Farouki, J. Manjunathaiah, and G.–F. Yuan (1999), G codes for
the specification of Pythagorean–hodograph tool paths and associated
feedrate functions on open–architecture CNC machines, International
Journal of Machine Tools and Manufacture 39, 123–142.

[8] R. T. Farouki and C. A. Neff (1990), Analytic properties of plane offset
curves, Computer Aided Geometric Design 7, 83–99.

[9] R. T. Farouki and K. M. Nittler (2016), Efficient high–speed cornering
motions based on continuously–variable feedrates I. Real–time

20

interpolator algorithms, International Journal of Advanced
Manufacturing Technology 87, 3557–3568.

[10] R. T. Farouki and S. Shah (1996), Real–time CNC interpolators for
Pythagorean–hodograph curves, Computer Aided Geometric Design
13, 583–600.

[11] R. T. Farouki and Y–F. Tsai (2001), Exact Taylor series coefficients
for variable–feedrate CNC curve interpolators, Computer Aided Design
33, 155–165.

[12] R. T. Farouki, Y–F. Tsai, and C. S. Wilson (2000), Physical
constraints on feedrates and feed accelerations along curved tool paths,
Computer Aided Geometric Design 17, 337–359.

[13] R. T. Farouki, Y–F. Tsai, and G–F. Yuan (1998), Contour machining
of free–form surfaces with real–time PH curve CNC interpolators,
Computer Aided Geometric Design 16, 61–76.

[14] J.–T. Huang and D. C. H. Yang (1992), A generalized interpolator
for command generation of parametric curves in computer–controlled
machines, Proceedings of the Japan/USA Symposium on Flexible
Automation, Vol. 1, ASME, 393–399.

[15] R. Komanduri, K. Subramanian, and B. F. von Turkovich (eds.)
(1984), High Speed Machining, PED–Vol. 12, ASME, New York.

[16] R–S. Lin and Y. Koren (1996), Real–time interpolators for multi–axis
CNC machine tools, Manufacturing Systems 25, 145–149.

[17] K. M. Nittler and R. T. Farouki (2017), Efficient high–speed cornering
motions based on continuously–variable feedrates II. Experimental
performance analysis, International Journal of Advanced
Manufacturing Technology 88, 159–174.

[18] A. Shima, T. Sasaki, T. Ohtsuki, and Y. Wakinotani (1996), 64–bit
RISC–based Series 15 NURBS interpolation, FANUC Technical Review
9 (1), 23–28.

[19] M. Shpitalni, Y. Koren, and C. C. Lo (1994), Realtime curve
interpolators, Computer Aided Design 26, 832–838.

21

[20] A. Sidi (2003), Practical Extrapolation Methods: Theory and
Applications, Cambridge University Press.

[21] S. Smith and J. Tlusty (1997), Current trends in high–speed
machining, ASME Journal of Manufacturing Science and Engineering
119, 664–666.

[22] J. Tlusty (1993), High–speed machining, CIRP Annals 42, 733–738.

[23] Y–F. Tsai, R. T. Farouki, and B. Feldman (2000), Performance
analysis of CNC interpolators for time–dependent feedrates along PH
curves, Computer Aided Geometric Design, submitted.

[24] D. C. H. Yang and T. Kong (1994), Parametric interpolator versus
linear interpolator for precision CNC machining, Computer Aided
Design 26, 225–234.

[25] S–S. Yeh and P–L. Hsu (1999), The speed–controlled interpolator for
machining parametric curves, Computer Aided Design 31, 349–357.

22

