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Bayesian IV: the normal case with multiple
endogenous variables�

Timothy Cogley and Richard Startz

September 2012

Abstract

We set out a Gibbs sampler for the linear instrumental-variable model with
normal errors and normal priors, and we show how to compute the marginal
likelihood.

1 Introduction

In this note we present a Gibbs sampler for a Bayesian instrumental-variable es-

timator with normal errors and priors, together with an algorithm for computing

the marginal likelihood. While the seemingly unrelated regression formulation of

instrumental variables is nonlinear in its parameters, Gibbs sampling is possible if

parameters are blocked in the right way. For models with a single endogenous regres-

sor, textbook expositions of Gibbs sampling include Lancaster (2004) and Rossi, et

al. (2005). Here we describe a Gibbs sampler for a model with multiple instruments

and endogenous right-hand variables.

The literature on substantive issues about Bayesian estimation of instrumental

variable models is large. Two good places to start are Geweke (1996) and Kleibergen

and Zivot (2003). Conley et. al. (2008) allow for a semi-parametric model for the

error terms in the single endogenous regressor model of Rossi et. al. (2005). Hoo-

erheide at. al. (2007) propose a natural conjugate prior for the IV problem. For an

�Tim Cogley: Department of Economics, New York University, 19 W. 4th St., 6FL, New York,
NY 10012, email: tim.cogley@nyu.edu. Dick Startz: Department of Economics, 2127 North Hall,
University of California, Santa Barbara, CA 93106, email: startz@econ.ucsb.edu. Matlab imple-
mentations of the Gibbs sampler and marginal likelihood calculator are available from the second
author. Our thanks to Peter Rossi for helpful comments.
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exposition of MCMC with nonnormal priors, see Gao and Lahiri (2000). Hooerheide

at. al. (2007b) discuss the properties of conditional distributions for IV estimators in

MCMC settings. Zellner et. al. (2011) discuss an alternative to MCMC procedures

with a �at prior and a single endogenous regressor.

2 Nonlinear SUR formulation and Gibbs sampling

Consider a model with a single structural equation

y = X� + "; (1)

where y is an N � 1 vector of observations on a dependent variable, X is an N � k
matrix of endogenous regressors, � is a k� 1 vector of parameters, and " is an N � 1
vector of residuals. The ��rst-stage�equations are

X = Z� + v; (2)

where Z is an N � q matrix of instruments, � is a q � k matrix of coe¢ cients, and v
is an N � k matrix of errors. Exogenous variables in the structural equation may be
included in both the X and Z matrices without loss of generality. So that the model

satis�es an order condition for identi�cation, we assume that q is at least as large as

k:

Substituting equations (2) into equation (1) gives a restricted reduced form,

y = Z�� + v0; (3)

where v0 = " + v�. Together, equations (2) and (3) yield a seemingly-unrelated

regression with nonlinear cross-equation parameter restrictions,2664
y
x1
:::
xk

3775 = (Ik+1 
 Z)
2664
��

1
:::

k

3775+
2664
v0
v1
:::
vk

3775 ; (4)

where xi is the ith column of X and 
j is the jth column of �:

Let un = [vn0; vn1; :::; vnk]
0 represent the vector of SUR errors for observation n:

We assume that un is i.i.d normal with mean zero and covariance �: Although un
is serially uncorrelated, its elements can be correlated contemporaneously. Hence �

need not be diagonal and typically won�t be.
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3 Gibbs sampling

Gibbs sampling is accomplished in three blocks: �j�; �; �j�;�; and �j�;�: We
assume that parameters are independent a priori across blocks,

p(�;�;�) = p(�)p(�)p(�); (5)

Marginal priors are speci�ed so that the conditional posterior for each block has a

convenient form. The data are denoted D = (y;X; Z).

3.1 Block 1: p(�j�; �;D)

Conditional on (�; �;D); the residuals u = (v00; v
0
1; :::v

0
k)
0 in equation (4) are observ-

able. We assume the prior p(�) is inverse Wishart with scale matrix S
¯
and degrees

of freedom df � k + 1. Since the conditional likelihood function is Gaussian, the

prior is also inverse Wishart with scale matrix �S =S
¯
+uu0 and degrees of freedom

DF = df +N . Hence � can be drawn by sampling from a IW ( �S;DF ) distribution.

3.2 Block 2: p(�j�;�; D)

Since � is known, the restricted reduced form (equation 4) can be written as2664
y

x1 � Z
1
:::

xk � Z
k

3775 =
2664
Z
1 ::: Z
k
0 ::: 0
::: ::: :::
0 ::: 0

3775 � +
2664
v0
v1
:::
vk

3775 ; (6)

or, letting x̂i = Z
i be the analog of the ��tted�values from the �rst-stage regression

given �; 2664
y

x1 � x̂1
:::

xk � x̂k

3775 =
2664
x̂1 ::: x̂k
0 ::: 0
::: ::: :::
0 ::: 0

3775 � +

2664
v0
v1
:::
vk

3775 : (7)

Since the regressors in rows 2 through k are zero, the residuals in those equations are

conditionally observable. Given joint normality of the errors, the conditional mean

and variance of v0 can be found by projecting v0 onto v = (v1; :::; vk): Partition � as

� =

�
�20 �v0v
�vv0 �vv

�
; (8)
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where �20 = var(v0); �vv = var(v); and �v0u = cov(v0; v): Then v0 is conditionally

normal with mean

E(v0jv1; :::; vk) =
�
v1 ::: vk

�
��1vv �vv0 ; (9)

and variance

var(v0jv1; :::; vk) = �20 � �v0v��1vv �vv0 : (10)

The residual from this projection, �0 � v0 � E(v0jv1; :::; vk); has conditional mean
zero and is conditionally independent of (v1; :::; vk): After subtracting E(v0jv1; :::; vk)
from both sides of the �rst equation in (7), we �nd2664

y � E(v0jv1; :::; vk)
x1 � x̂1
:::

xk � x̂k

3775 =
2664
x̂1 ::: x̂k
0 ::: 0
::: ::: :::
0 ::: 0

3775 � +

2664
�0
v1
:::
vk

3775 : (11)

Because the transformed residual �0 is independent of (v1; :::; vk); the k bottom rows

are irrelevant for estimating �:

Assume a normal prior p(�) = N(�0;V¯ �
): Let �V� = �2�0

�
�2�0V¯ �

+ X̂ 0X̂
��1

and

�� = �V�

h
V
¯
�1
� �0 + X̂

0 (y � E(v0jv1; :::; vk))
i
: Then the conditional posterior is

p(�j�;�; D) = N(��; �V�): (12)

3.3 Block 3: p(�j�;�; D)

Since � is known, the restricted reduced form (equation 4) can be written as a

seemingly unrelated regression that is linear in the unknown � parameters,12664
y
x1
:::
xk

3775 = � �0 
 ZIk 
 Z

�24 
1:::

k

35+
2664
v0
v1
:::
vk

3775 : (13)

Call the left-hand side variables ~yi and the right hand side variables ~Xi. Assuming a

normal prior p(vec(�)) = N(
0;V¯ 

); the conditional posterior p(�j�;�; D) is normal

with variance
�V
 =

�
V
¯
�1

 +

Pk+1
i=1

~X 0
i�

�1 ~Xi

�
; (14)

and mean

�
 = �V


�
V
¯
�1

 
0 ++

Pk+1
i=1

~X 0
i�

�1~yi

�
: (15)

1To verify the equivalence with (4), write �0 
 Z longhand and rearrange terms.
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4 Marginal Likelihood Calculation

The marginal likelihood of the model can be computed by applying Chib�s (1995)

method. Let � be the three blocks f�;�;�g. The �basic marginal likelihood identity�
is

p(y;XjZ) = p(y;Xj��; Z)p(��)
p(��jD) : (16)

While the identity in equation (16) holds for any value of ��, we want to be sure that

�� is positive de�nite and should also recognize that, since the frequentist estimate

of � does not have a �nite �rst moment in the just-identi�ed case, the MCMC mean

of � may not be a wise choice for ��. As a recommendation, let �� = median(�(s))

and �� = median(�(s)); where the superscript (s) indicates draws from the MCMC

distribution. Then, using the residuals ei(�
�; ��), let �� =

PN
i=1 eie

0
i=N:

The values of the likelihood and prior in equation (16) can be computed directly.

Note that the log likelihood is given by

log p(y;Xj��; Z) = �N(k + 1)
2

log(2�)� N
2
log det�� � 1

2

PN
i=1 e

0
i(�

�)�1ei:

The third term simpli�es as follows,PN
i=1 e

0
i(�

�)�1ei =
PN

i=1 tr
�
e0i(�

�)�1ei
�
; (17)

= tr
�
(��)�1

PN
i=1 eie

0
i

�
;

= tr (NIk+1) ;

= N(k + 1):

Hence

log p(y;Xj��; Z) = �N(k + 1)
2

(1 + log(2�))� N
2
log det��: (18)

Break up the posterior density for �� as follows.

p(��;��;��jD) = p(��jD)� p(��jD;��)� p(��jD; ��;��): (19)

The order of parameters in equation (19) re�ects computational e¢ ciency rather than

anything more fundamental. The evaluation of (19) proceeds in three steps. If the

draws from the MCMC are indexed (s) = 1; :::S, then

p(vec(��)jD) � S�1
PS

(s)=1 fN(vec(�
�); ��

(s)
; �V

(s)
� ): (20)
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where fN(�) is the density of a normal pdf and �
(s); �V (s)
 have already been calculated

in Block 3 above in the original MCMC.

Calculation of p(��jD;��) �the second term in (19) �requires a second run of

the MCMC procedure outlined above, except that Step 3 is omitted and �� replaces

draws of �. Index the draws of this auxiliary sampler by (s�) = 1; :::S�: Then

p(��jD;��) � S�1�
PS�

(s�)=1
fN(vec(�

�); �
(s�); �V
(s�)

 ); (21)

where �
(s); �V (s)
 are calculated as in Block 2 above.

The conditional posterior p(�jD; �;�) is simulated in Block 1 above. Hence the
�nal term in (19) can be evaluated as

p(��jD; ��;��) = fIW (��jDF; �S); (22)

where the scale matrix �S is evaluated at ��;��;as in Block 1 above.

Collecting the results of (20), (21), and (22) and multiplying them together deliv-

ers the denominator of (16). Dividing the posterior kernel p(y;Xj��; Z)p(��) by the
result delivers the marginal likelihood p(y;XjZ).
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