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ABSTRACT

The finite element method using a displacement model is employed
to analyze the behavior of elastic-plastic shells of revolution under

axisymmetric loading. Both perfectly plastic and work hardening materials

are treated. The solution is based on the use of a new curved element which

can take specified slopes and curvatures at its nodal circles.

Various methods of expressing the geometry of a curved element are
discussed, and the elements developed are well-conditioned for all ranges
of latitude angle. Representation of the displacement pattern in both
rectilinear local and curvilinear surface coordinates are compared. The
former is found to be superior in accommodating the rigid body translation
and the constant straining modes.

A general treatment of the elastic-plastic problem in connection
with the finite element method is given. The tangent stiffness method
and the initial strain method, which treats the plastic deformation as a
fictitious load, are compared. The former method was selected for use in
the analysis. Several numerical examples are given to illustrate the

convergence and the accuracy of the method.
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NOMENCLATURE

The following list contains the list of symbols used in this dissertation.
Some of the symbols which were introduced and were not referred to after-
wards were defined in the text and are not listed here. Unless otherwise
stated, the repeated indices imply summation over the range of the indices.
In Chapter 3 quantities with subscripts are covariant components and
gquantities with superscripts are contravariant components. The symbol |i

denotes covariant derivative.

Aijkﬁ - as defined in (4.43)

Cijkﬁ - elastic-plastic moduli tensor

éaBYé - elastic-plastic moduli for generalized plane stress, see (4.65)
C - edge of the shell

c - as defined in (4.29)

dA ~ surface element of the reference surface of shell
dcC - element of edge length of the shell

ds - surface element

ds - element of arc length

dv - volume element

E - Young's modulus

Et - tangent modulus

Ei‘jk’e - elastic moduli tensor

e, - deviatoric strain tensor, see (4.3)
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strain energy density

free energy function, see (3.32); also yield function in Chapter
4

yield function

component of body force per unit volume

plastic potential

elastic compliance tensor

as defined in (4.21)

as defined in (4.42), also shell thickness in Chapter 5
invariants of deviatoric stress tensor

yield stress in simple shear

cord length of an element

meridional and circumferential bending moments per unit
length, respectively

meridional and circumferential in plane forces per unit length,
respectively

direction cosines of outward normal to the boundary surface

meridional and normal surface load per unit area of reference
surface of shell, Fig. 10

transversal shearing force, Fig. 10

principal radii of curvature of shell

as shown in Fig. 10

part of boundary surface where stresses are specified
elastic-plastic compliance tensor, see (4.36)
deviatoric stress tensor, see (4.2)

arc length, also mean normal stress, see (4.2)
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as defined in (4.69) or (4.70)
component of stress vector
displacements as shown in Fig. 12
meridional displacement
displacement components

volume

plastic. work, see (4.20)
generalized coordinates

see (4.28)

an angle as shown in Fig. 12
1 for i=j

. Kronecker deltsa; 5. . =

+J 0 for i#j

if precede any symbol designate a finite and an infinitesimal
increments, respectively

as defined in (4.30)
a positive parameter, see (4.13)
strain tensor

meridional and circumferential strains, respectively

meridional and circumferential strains of the reference surface
of shell, respectively

equivalent plastic strain, see (4,22)

as defined in (4,55) for Chapter 4; also coordinate along the
thickness of shell in Chapter 5, see Fig. 13

initial strain tensor, see (3.26)

local coordinate for an element, see Fig. 12
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(A]
[B]
[c]
[D]
[E]
{7}

ix
circumferential angle, see Fig. 10
parameter of work-hardening, see (4.16)

meridional and circumferential change of curvatures of shell,
respectively

Lame constants

Poisson ratio

local coordinate for an element, see Fig. 12
potential energy

potential energy of an element
yield stress in tension

equivalent stress

stress tensor

latitude angle, see Fig. 10
meridional rotation

as shown in Fig. 12

as defined in (4.74)

vector; column matrix

matrix

displacement transformation matrix, see (3.15)
as defined in (3.8)

matrix of elastic-plastic moduli
rigidity matrix, see (5.24)
matrix of elastic moduli

as defined in (3.38)



[X]
[k]
(k]
(L]
[m]
{r}

{p}
{Q}
{e}
{a}
R}
{r}
[T]
{a}
{e}
{e}
{r}
(]
(91,0, ]

stiffness matrix of the entire system

element stiffness matrix

element stiffness matrix in generalized coordinates, see (3.11)
as defined in (3.24)

as defined in (5.23)

as defined in (3.37) in Chapter 3, also as defined in (5.29)
in Chapter 5

as defined in (5.28)

equivalent nodal point force

equivalent nodal point force in generalized coordinates
nodal point displacement

external nodal point load of the system
nodal point displacement of the system
as defined in (5.54)

generalized coordinates

strain tensor expressed in column matrix
as defined in (5.22)

stress tensor expressed in column matrix
as defined in (3.7)

interpolating functions for body forces and surface loads,
respectively, see (3.13) and (3.14)



1. INTRODUCTION

The stress analysis of shells of revolution and particularly those of
spherical, cylindrical, torcidal, and conical shells has received a great
deal of attention. The abundance of literature in this area is due mainly
to the great variety of applications: domes, fluid containers, nuclear
reactors, rocket casings, submarine hulls, and pressure vessels.

Early investigations have been limited to small deformations of shells
composed of linear, homogeneous isotropic elastic materials. The classical
work of H. Reissner [1]* on spherical shells and the extension by E.

Meissner [2] for shells of revolution of arbitrary shapes were the first
significant contributions to the theory of rotational shells. Asymptotic
integration was found to be very fruitful in the solution of the governing
equations of spherical shells for a wide range of geometrical and material
parameters. This method has also been employed for other types of rotational
shells [3,4].

Analytical solutions of the governing differential equations for shells
of revolution are available only for special cases [5,6,7]. However,
numerical solutions, with the aid of digital computers, have been achieved
for arbitrary meridional shapes using: 1) the finite difference method [8,9],
2) numerical integration procedures [10], and 3) numerical integration
combined with the finite difference method [11]. These methods are applicable
if variation in the shell geometry and material properties can be expressed

analytically. In many practical problems, however, the variation of geometry

*The numbers in brackets refer to the references listed at the end.



and material properties are quite arbitrary and do not lend themselves to
simple analytical representations. The process of curve-fitting must then
be used to characterize these variations. This introduces inaccuracies
which will permeate through the remainder of the numerical analysis,
especially where the derivatives of the fitted curve are used.

Additional difficulties may also arise in the numerical integration of
the shell equations. Since such methods were originally devised to handle
initial value problems, their application to shell analysis, a boundary value
problem, requires trial and error procedures. If the values of the un-
specified variables at the initial boundary are not judiciously assigned,
unsatisfactory results may be produced. Truncation, cancellation, and round-
off errors may also accumulate over a large integration range and destroy
the desired accuracy in the results. The importance of the error due to
cancellations when the length of the shell is increased is pointed out in
[11]. It is found that for every set of geometric and material properties
of the shell there is a critical length beyond which the solution loses
all accuracy.

A different numerical scheme, which is known as the finite element
method, has also been employed for the analysis of arbitrary shells of
revolution. In this procedure, the continuous shell structure is divided
into a number of short frustums, to be referred to as the ''shell elements',
which are connected at their edges called the 'nodal circles'. The
assemblage is made through equilibrium and compatibility requirements at

nodal circles. Because each frustum may be considered as a separate unit,



different material properties, as well as thicknesses, can be ascribed to

different elements. The principal task in this procedure consists of
establishing a force-displacement relationship between the nodal circle
forces/moments and the corresponding displacements/rotations. The influence
coefficients relating these two sets of quantities may be expressed in
matrix form, which is well suited for routine computations in a digital
computer, as a stiffness or a flexibility matrix of the element. In the
literature there are two methods for obtaining the influence coefficients
of a shell element.

The first method utilizes the homogeneocus solution of the governing
differential equations. As a result, the element shape is restricted to
certain simple shell geometries such as a truncated cone, a circular
cylinder, and a spherical cap. The truncated cone element is the more
general shape for approximating an arbitrary shell geometry. This element
has been employed by Meyer and Harmon [12] for edge loading and by Popov,
Penzien, and Lu [13] for any general axisymmetric loading. Ref. [13] has
also used cylindrical elements and a spherical cap to supplement the
conical element. The use of a piece of circular toroid has also been
reported [14]. 1In addition to the restriction of the element shape, the
influence coefficients obtained by this method turn out to be very com-
plicated and require the evaluation of infinite series, which for some
geometrical and material parameters converge very slowly. For a conical

shell element, these series are Bessel functions of complex argument, known



ag Thompson functions. At the transitions of conical elements into
cylindrical and circular plate elements, the Thompson Functions becoms
ill-conditioned and require special treatment. This phenomenon is due to
the change of the form of the solution of the differential equations from
Bessel to exponential and logarithmic functions.

The second approach makes use of a special type of direct method of
variational problems, referred to as the extended Ritz method. This
approach is based on the original work of Turner et al [15] and Argyris et al
[16], which was further developed and extended by Melosh [17], de Venbeke
[18,19] and others. 1In this approach, the primary variables are approximated
by some relatively complete sets of functions in a subregion, here called
the element, to extremize the variational problem. Depending on which set
of variables, displacements or stresses is taken as the primary variable two
types of models known as the "displacement models" and the "equilibrium
models"” have been advanced. In displacement models the displacements are
taken as the primary variables, expressed in terms of linear combinations
of the interpolating functions. These displacements are then used to
minimize the potential energy of the system. This procedure provides
upper bounds for the stiffness influence coefficients. In the equilibrium
models, on the other hand, the stresses are taken as the primary variables
and their approximate forms, .which satisfy the equilibrium equations, are
used to minimize the complementary potential energy of the system. The
stiffness influence coefficients thus obtained constitute a lower bound to

the exact solution. By taking a finer mesh, provided certain conditiouns are



satisfied [19], the bounds can be made closer. However, this is insufficient
to guarantee convergence for the true solution. Finally, the use of a ''mixed
model’ has also been advocated [20].

In the analysis of shells only the '"displacement models’ have been
studied thus far. Until very recently the truncated cone has been the only
element which was reported in the literature to idealize shells of revolutiocn.
In contrast with the finite element of the first type, discussed above, the
use of an approximate and, in fact, simple displacement field removes the
ill-conditioning and enables a truncated cone to be degenerated directly into
the limiting case of a circular cylinder or of an annular plate. In
addition, the relative simplicity of the influence coefficients obtained from
tﬁe second approach decreases the number of numerical operations and
consequently reduces the numerical errors. It also enables the use of a
larger number of elements for the same computer core storage. Based on
many numerical examples, the accuracy of the second method was found to be
comparable, if not superior, to the first approach.

The use of a conical element for a displacement model, together with
the direct stiffness method of matrix analysis of structure, is reported by
Grafton and Strome [21] for axisymmetric deformation of shells of revolution
of cylindrically orthotropic materials. In the derivation Grafton and Strome
approximated the integral of the strain energy of the shell in a manner which
later was shown to reduce accuracy. The solution for asymmetric deformations,
utilizing Fourier expansion, was achieved by Percy et al [22]. These authors

also studied the effect of including higher order polynomials in the dis-



placement field, which is reported to improve the results for edge loading.
Extension of [22] has been made by Klein and Sylvester [23] for the dynamic
analysis of shells of revolution. The conical slement was also employed
for analysis of laminated shells of revolution by Dong (247,

The idealization of the shell geometry by a series of truncated cones
introduces the discontinuity of slopes along the meridian of the shell.
This may introduce an unrealistic stress concentration at the element
Jjunctures. This effect is very pronounced in membrane type shells. The
study of Jones and Strome [25] on the membrane type spherical cap clearly
indicates the undesirable phenomena of oscillating displacement and
development of large bending moments at the nodal circles. The peak
values of these bending moments, which do not exist in the true solution,
appear at the element junctures where the slopes are made discontinuous.
The manner in which one can improve the analysis is to develop a curved
element to provide a better geometric idealization of the system. Jones
and Strome [26] report the first attempt to construct such a curved element
for rotational shells. Their element provides the continuity of slopes
at nodal circles but for an arbitrary shell the meridional curvatures are
not continuous at these nodes. Moreover, due to an inadequate geometrical
representation, their element is only applicable to open shells and to cases
where the latitude angle, ¢, is not equal or close to zero.

Although the elastic analysis has been shown to predict satisfactorily
the load-deformation behavior of the structures for loading below the

proportional limit; it ceases to be useful once the stresses exceed the



elastic limit. In certain design problems, such as space vehicle structures,

a small amount of plastic deformation may be tolerated in order to utilize
the material more efficiently. In fact, a small amount of plastic de-
formation may have the beneficial effect of alleviating the stress con-
centration at the junctures and in the zones where the gradient of loading
is high. Moreover, the analysis of plastic deformation for cyclic loading
is essential in predicting low cycle fatigue failure [38,39]. The fact that
the problem of determining the displacements and stress distributions in
these types of problems is highly non-linear in the past made it almost
impossible to obtain solutions to any but the simplest problems. The
availability of the digital computer and the techniques of finite element
now makes these problems tractable,

Originally, the finite element method was devised to treat the linear
system by means of matyrix algebra. With the aid of incremental or
iterative techniques the utility of the finite element can be extended to
handle non-linear problems [27, 28,29]. In this dissertation attention is
confined to physical or material nonlinearity, in particular non-linearity
as the result of plastic deformation. This area of research is now in its
development stage and much future work is to be expected. 1In general, two
approaches can be adapted to extend the finite element method to treat
the elastic-plastic problems. One approach makes use of an analogy between
the plastic strain and the thermal, creep, or shrinkage strain [30,31,32].
This approach will be termed the '"'initial strain method’. The stiffness

influence coefficients used in this approcach are identical with the elastic



case, and the effect of plastic deformation appears as a modification to the
loading. The other approach utilizes the relations between stress and strain
increments to establish the tangent influence ccefficients for each load
increment [33,34]. Here the influence coefficients are changed during
incremental loading to account for physical nonlinearity and path-dependency
of plastic deformation. Because different stiffness influence coefficients
are used in the formulation of the problem, depending on the stress level
achieved, this method will be referred to as the ''tangent stiffness method'.
Some experience with the initial strain method has shown 3 slow convergence
of the results [35]. It can be surmized that for materials exhibiting a
small amount of work-hardening, the initial strain method should give
inferior results. In addition, since in the initial strain method the
plastic strain appears as a correction to the elastic part of strain, the
process may become ill-conditioned for cases where the plastic strain is
predominant. The initial strain method has the advantage of requiring the
stiffness matrix to be inverted only once. On the other hand, the stiffness
influence coefficients must be changed for each loading increment if the
material properties change due to variation of temperature or other
environmental conditions, or in the cases where geometrical nonlinearity
is to be included. In this case, the initial strain method loses its only
advantage.

A brief review of the previous work on plastic behavior of shells is
given in Chapter 2. To treat plastic deformations, a detailed study of the

initial strain and the tangent stiffness methods in connection with the



finite element technique will be made in Chapter 3.

This dissertation is concerned with the elastic-plastic deformation
of shells of revolution under axisymmetric loading. An extensive study was
made to develop a refined element for use in the finite element method of
analysis. Several curved elements were developed and their accuracies were
compared through numerical examples. The elements developed do not have
the shortcomings of the one given in Ref. [26]. The best element developed
here which satisfies the continuity of slopes and curvatures at nodal circles
was used in connection with the ''tangent stiffness method" to analyze the
plastic deformation of shells of revolution. It may be pointed ocut that
no applications of the finite element method to the analysis of plastic
deformation of shells appear to be available in the literature.

A computer program in FORTRAN IV language was written for IBM 7090-7094
DCS system, available at the Computer Center of the University of California
at Berkeley. Several illustrative examples were worked out and the accuracy

of the method was studied.
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2. REVIEW OF THE PLASTIC SHELL THEORIES

The plasticity of shells is a relatively new area of investigation.
Research in this field has been started in the late 1940's. The theory was
initially developed as an extension of the elastic shell theory by replacing
the Hooke's law with Hencky's relations of the deformation theory of
plasticity [112]. This development was accompanied by the generalization of
the limit analysis theorems for rigid frames [40,41], for the treatment of
shell problems [42,43]. Further developments were essentially along these
two lines and various special cases were studied. Except for the very simple
cases, the complexity of finding analytical solutions for shells using the
flow theory of plasticity has retarded the progress in this field. The
advent of the digital computers and the development of new methods of
structural analysis greatly changed this situation. These aids are now
indispensible for the numerical solution of practical problems.

In this chapter the work reported in the literature on the plasticity
of rotational shells under axisymmetric loading will be reviewed. As the
development of solutions for general loading conditions is still frag-
mentary, this topic will not be discussed here.

Much of the research has been devoted to the limit analysis approach,
In the sequel the work related to limit analysis, rigid-work hardening
materials, and elastic-plastic analysis using both deformation and flow
theories of plasticity will be briefly reviewed. In addition, the results
of some experiments will be discussed. For further details the reader may

wish to examine the appropriate references listed at the end.
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2.1 Limit Analysis of Shells

In the limit analysis approach, the objective is to find the load
carrying capacity of the structure in question based on the assumptions that
the material is perfectly plastic (i.e., non-work-hardening) and the de-
formation prior to collapse is so small as to allow the use of small de-
flection theory. 1In some cases, the effect of the change in geometry and
work-hardening could make the calculation of the ultimate load meaningless.
The complete solution involves the determination of the stress and the
velocity fields at the point of collapse.

Except for a few cases such as the hyperbolic paraboloid and the
helicoidal shells [95], all of the literature on the limit analysis of shells
have been devoted to the case of rotational shells under axisymmetric loading.

The steps in the limit analysis of shells are as follows: (1) express
the yield condition in terms of the stress resultants (including the stress
couples), (2) apply the lower and upper bound theorems to establish the
bounds on the ultimate load, and (3) determine the stress and velocity fields,
if a unique collapse load has been attained in {(2).

As a general rule, the first step has been achieved by making a
kinematic assumption, namely the Kirchhoff-Love hypotheses. The yield
hypersurface in the stress resultant space (the 6-space) was first
constructed for Mises yield condition by Ilyushin in 1948 [112]. The same
surface was later reconstructed and specialized for rotational sheils by
Rozhdestvyensky [50] and Hodge [65,70]. Onat and Prager 1954 [45] con-
structed the yield hypersurface in the stress resultant space for Tresca

yield condition.
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Even for Tresca yield condition the hypersurface in the stress
resultant space 1is nonlinear and leads to a formidable mathematical problem,
Two approaches have been used to linearize this hypersurface. One
replaces a uniform shell with a sandwich shell having two thin face sheets
carrying only the in plane stresses and a central core transmitting the
shearing forces [46,51,65,68,70]. The other replaces the hypersurface by a
series of intersecting planes inscribed and circumscribed on it [85].

Other methods to simplify the hypersurface also have been suggested.
The method used by Drucker and Shield [62] ignores the circumferential
bending moment in comparison with the meridional moment, and the one proposed
by Hodge [70] neglects the interaction between the membrane forces and the
bending moments.

Among the various shapes of shells of revolution the cases of
cylindrical, spherical, and conical shells have received much attention.

The remainder of this section is devoted to the discussion of these problems.

Drucker [43] is believed to be the first to consider the limit analysis
of the cylindrical shells under internal pressure. Expressions for the
yield hypersurface for a cylindrical shell of a material obeying Tresca
yield condition were derived independently by Hodge [46] and Onat [48].

The effect of free ends on the load carrying capacity of cylindrical shells
has been discussed by Eason and Shield [49]. The case of a circular cylinder
under ring load was studied by Eason [63] and Prager [66]. The shells under
combined loading: - pressure, axial load, and/or torque - have been treated
by Sankaranarayanan [72], Panarelli et al [79], Ball et al [84], and Ho

et al [99]. The last reference derives the complete stress and velocity
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fields at the limit load for certain types of loads, end conditions, and
shell proportions. The problem of orthotropic cylindrical shells has been
reported by Niepostyn [53] and Mroz [69] where the modified linear yield
condition was used. The cases for anisotropic material has been discussed
in a series of papers by Mikeladze [51,87]. The use of Mises yield condition
for cylindrical sandwich shell is also reported by Rzhanitzyn [60].

The problem of spherical shells was first treated by Onat and
Prager [45]. The material was assumed to obey Tresca yield condition and
crude bounds on the ultimate uniform pressure were obtained. Closer bounds
were later reported for sandwich shells [61,64,70]. Mroz and Xu [82]
discussed the load carrying capacity of spherical shells by using a variety
of yield conditions and established a complete solution for certain simply
supported shells. Shallow spherical shells were treated by Hazalia [52] and
Feinberg [55]. Hodge et al [75] discussed the problem of a spherical cap
with a cut out. The case of a shell loaded through a rigid boss was
investigated by Leckie [100]. Finally, the complete solution of a clamped
spherical sandwich shell subjected to hydrostatic pressure is reported by
Lee and Onat [104].

The limit load for a uniform shallow conical shell was derived by
Onat [73] and Lance and Onat [80]. The load was applied through a finite
rigid boss, connected rigidly to the shell proper, and the material was
assumed to obey Tresca yield condition and its associated flow rule.

Simultaneous with [73], the same problem, but with the rigid boss connected
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through a hinge to the shell body, was considered by Hodge [71]. It was
shown that if the radius of the boss tends to zero the solution will be
reduced to the case of a conical shell subjected to a concentrated load at
its apex., The value of the ultimate load is found to be independent of
the support condition and is equal to P = 2T MO cosz ©®, where @ denotes
the latitude angle. Such a reduction was not possible in [73]. The work
in [73,80] was extended to sandwich shells by Hodge [95]. It was reported
that for a given shell, the collapse load increases with the increase of
boss size. The case of a closed conical shell under internal pressure is
presented by Resenblum [47] and Hodge et al [82] and an exact solution based
on the two moment interaction (see Ref. [70]) is reported by Kuech and

Lee [103].

In addition to the above types of shells, some other cases have also
been reported in the literature. The case of torispherical shell was dis-
cussed by Drucker and Shield [62]. For intersecting shell structures, the
work of Hodge [88] for a closed cylindrical shell and Gill [89], Lind [90],
Cloud [91,96], Dinno and Gill [93,94], and Ellyin and Sherbourne [97,98]
concerning cylindrical nozzles in spherical shells may be mentioned.
Moreover, the general theory of axisymmetric shallow shells has been treated
by Feinberg [55] and Hodge et al [81].

For more information the books by Hodge [61,85] and Olszak et al [86]

are recommended.
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2.2 Shells of Rigid-Work Hardening Materials

In the elastic-plastic analyses some simplifications may be introduced
by neglecting the elastic part of the strain. This is generally referred to
as the rigid-plastic approsch. For work-hardening materials, the rigid-work
hardening approach together with the concept of piecewise linear yield
conditions have been employed. The utilization of the piece-wise linear
yield conditions and the associated flow rules for the solution of work-
hardening problems were suggested by Prager [107] and Hodge [108]. It allows
the total stress-strain relations to be used in the small and at the same
time retaining the characteristic features of incremental laws in the large.
As indicated by Hodge [109], the plastic flow rules can be explicitly
integrated under restrictive conditions, defined as a ''regular progression'.
That is a stress point, which has reached the yield surface, should not
move from one side of the surface to another, nor from one corner to a side,
or back into the elastic zone. These conditions impose a serious restriction
which may not hold in general.

The application of rigid-work hardening approach to the shell problems
is reported by Onat [110] and Thorn et al [111]. Utilizing Tresca yield
condition and kinematic hardening, Onat discusses the rotational shells and
the special case of a circular cylinder. Thorn [92] and Thorn and Lee [111]
report cases of simply supported cylindrical shells under the internal
pressure. Tresca yield condition in terms of the stress resultants is
approximated by means of a square yield curve. Linear isotropic hardening

is assumed. In this analysis solutions are obtained for several plastic
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regimes and are applied to shells of various relative lengths.

2.3 Elastic-Plastic Analysds of Shells Using the Deformation Theory

Attempts to formulate the elastic~plastic shell analysis problems
was initiated by using the deformation theory of plasticity. Ilyushin [112]
established the basic equations for the analysis of elastic-plastic shells
based on Hencky's relation. Ilyushin's work was continued by other in-
vestigators in the Soviet Union [113 to 120] for different cases such as
shallow shells [118] and for shells of anisotropic material [120]. Various
approximations were introduced in order to make the task of reaching an
analytical solution feasible. Iteration techniques together with the "initial
strain method"”, referred to in the Soviet literature as ''the method of elastic
solution', also have been suggested [30].

Employing this technique, Mendelson and Manson [121] formulated the
problem in a nonlinear integral equation form. Several examples, among them
the analyses of cylindrical shells with axial temperature gradient, were
worked out by using the method of successive approximations. This method
was later applied to general shells of revolution by Stern [122] and
Roberts [125]. Utilizing a finite difference method, Spera [124] extended

the approach for shells of revolution containing discontinuities.

2.4 Elastic-Plastic Analysis of Shells Using the Flow Theory

The concept of piecewise linear yield condition [107,108,109] together
with idealization of the shell as a sandwich structure have been utilized

in the solution of elastic-plastic shells using the flow theory of plasticity.



17

This enables one to integrate the flow law locally. Several special cases
have been studied. Hodge and Romano [126], Lee and Thorn [135], and Thorn
et al [138] discussed the problem of circular cylinder under uniform radial
pressure. Linear isotropic hardening and simplified piecewise linear yield
function in terms of stress resultants were adopted in these investigations.
Comparisons with the limiting cases such as for perfectly plastic and to
rigid-work hardening cases are reported. The same problem was also dis-
cussed by Hodge [127] and Shaffer et al [131] for sandwich shells with
clamped edges using Tresca yield condition; and by Hodge and Nardo [128]

and Paul and Hodge [129] by including the beam-column effect. In the latter
case the stress field is first determined for the rigid-plastic shell. Then,
assuming that the state of stress is represented by the same part of the
yield surface, the elastic-plastic problem is dealt with. Onat and
Yamanturk [130] included the effect of temperature both on strain and yield
strength. This approach has also been extended to conical shells by
Stephens [137] and Stephens and Friedericy [140] where the beam-column
effect is also included.

Attempts to establish a general procedures to deal with the elastic~
plastic shells using the flow theory also has been made by using the techniques
of numerical analysis. The finite difference method was used by Witmer et =zl
[132], Stern [134], and Stricklin et al [136]. Reference [132] deals with
a dynamic loading and treats the problem of impact-loaded hemispherical

shells. The method is limited to the shells of perfectly plastic material.
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Reference [136] deals with static problems and adopts Tresca yield
condition together with a special linear hardening rule (three slip planes).
These authors included the effect of large deflection. The method of
numerical integration was utilized for the analysis of rotational shells by
Marcal and Turner [133] and Marcal and Pilgrims [139]. Reference [133]

uses the Runge step-by-step integration for the solution of a corrugated
bellows consisting of toroidal elements. Reference [139] employs a
step-by-step predictor-corrector method to solve the problem of a bellows
under axial load and a torispherical pressure vessel head. It is reported
that the computer program developed in [139] is capable of solving shells
made up of segments of a flat plate, a cone, a cylinder, a sphere, and a
torus. For other shell geometry either the shell should be replaced with
the above segments or the program is to be modified. Moreover, the program

is limited to the case of shells under distributed loading.

2.5 Experiments

In comparison with the amount of literature on theoretical aspect of
shell plasticity, only a few experimental results have been published.
Experimental work reported in the literature may be classified into two
groups. One is concerned about the investigation of special design problems
such as reliagbility of welded or riveted connections, effect of openings,
and fatigue failure. Much of these experiments have been performed in

connection with pressure vessels. The other is related to the verification

of theoretical results. The latter will be reviewed here. Because the general
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theoretical solutions were lacking, the experiments were mostly confined
to the verification of ultimate load of the shells. Some contradictory
results have been reported. The effects of the change in geometry and a
work hardening may have a profound influence on the load carrying capacity.
It has been pointed out that "secondary" membrane effect, which comes into
action after deformation takes place, is not as severe in shell problem as it
is in the degenerate case of plate bending. This is based on the fact that
membrane stresses, which are generally the primary stresses in shells, are
included in the formulation for the undeformed geometry. However, the effect
of the change in geometry can not be ignored in general.

To verify the results obtained in [71] and [73], Gerstle et al [141]
tested several circular conical shells. The specimens were loaded through
a rigid boss and connections similar to those described in Refs. [71] and
[73] were provided. Besides the study of the limit load, the effects of the
change in geometry were also studied. Demir and Drucker [142] tested eight
steel and seven aluminum cylindrical shells under ring loading. The above
authors report a reasonable correlation between the theoretical prediction
of the limit load and the experimental results. Augusti and d'Agostino [143],
on the other hand, report the results of the tests on nine short cylindrical
shells with fixed ends made of mild steel Ssubjected to internal pressure,
where appreciable radial deflections have been observed at a pressure far
below the calculated limit pressure given by Hodge [46]. Their report cast
some doubt on the validity of limit analysis for the radius to thickness

ratios in the range of their tests. The error indicated by their comparison
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with the theory has been qualitatively discussed by Drucker [144].
Experiments on spherical shells were performed by Wasti [145] and
Kaufman et al [146]. The specimen in Ref. [146] consisted of a hemispherical
dome made of 6061 aluminum having a reinforced opening. Satisfactory agree-
ment between the experiments and the theoretical results based on Ref. [124]

is reported.

Tests on corrugated bellows consisting of toroidal element are reported
by Marcal et al [147]. The results were compared with predictions of Ref.
[133]. The experimental and calculated results are reported to be in
reasonable agreement,

Stoddart and Owen [148] performed an experiment on a torispherical
pressure vessel head. The limit load observed confirms the prediction made
by Drucker and Shield [62].

Finally, the results of tests on intersecting shells, consisting of
cylindrical nozzles in spherical pressures vessels, are given by Cloud [96],
Dinno et al [149], and Ellyin et al [150]. They all report reasonable
agreements between experimental evidence and the predictions made in

references [96], [89], and [98].
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3. GENERAL TECHNIQUES FOR THE APPLICATION OF THE
FINITE ELEMENT METHOD TO ELASTIC-PLASTIC PROBLEMS

The direct stiffness method of the displacement models is found tc be
the most powerful and in fact the most widely used procedure in the finite
element approach. 1Its general theory has been extensively discussed elsewhere,
see for example the paper by Clough [36]. Only a brief summary of its
concepts and procedures will be given here. The quantities will be expressed
in terms of their covariant and contravariant components to allow general-
ization of results for any curvilinear coordinates. In what follows, the
attention is confined to deformations of a body which cause small strain and

small rotation.

3.1 General Concept

The theorem of minimum potential energy is well known in the theory
ES
of elasticity. It may be stated thus
"Of all displacements satisfying the given boundary conditicns
those which satisfy the equilibrium equations make the potential
energy an absolute minimum.’

The potential energy, which is a functional, is defined as

- e av- J 1 . f e . (3.1
W(ul,uz,uS) J dv f uidv thou, ds J
\% \Y S
T

where
€ - strain energy density

V - volume

*See e.g., 1.S. Sokolnikoff, "Mathematical Theory of Elasticity,” McGraw-Hill,
1956, pp. 382-386.



ST - part of boundary where stresses are specified

ui - displacement components

:E1 - components of body force per unit volume

*i .

t~ - components of stress vector specified on the boundary

In linear elasticity the strain energy density is expressed as

E == T €, . . (3.2)

Note that the displacement, ui, must belong to a class of admissible
functions, that it must satisfy the displacement boundary conditions and
must have as many continuous derivatives as required in the solution of 2
problem,

Following the method of calculus of variations, it can be easily shown
that the Euler's equation of the above variational problem yields the

equilibrium equations

T .+ £ =0 (3.3)

TV n, = t (3.4

These results verify the theorem. That 1 is indeed a minimum can be
demonstrated from the positive definiteness of the strain energy density.
One of the advantages of stating the problem in the variational form
consists in being able to solve the problem with the aid of a direct method,
without recourse to the differential equations. Among the direct methods

of the calculus of variation the Raleigh-Ritz method has been widely wused.
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In the functional space terminology, the idea of the Ritz method is to
extremize the functional on a finite dimensional subspace of admissible
functions, For the approximate solution to converge to the true solution,
the subspace should contain a set of functions which are relatively complete
in the space. In the ordinary Ritz method this set of functions extends
over the entire space of the body. For an arbitrary geometry of a body,
selection of these functions so as to satisfy the geometric boundary conditions
is very difficult. 1In the finite element technique, however, these functions
are selected over a subregion of the body and vanish over the remaining part.
They are sometimes referred to as the "almost disjoint support functions."
The linear combination of these functions should satisfy certain requirements,
here compatibility conditions, at the boundary of a subregion.

The potential energy of the body is expressed as the summation of the
potential energies of the subregions.

N
mT= I m (3.5)
A=1

where N is the number of subregions each one of which is called an "element'.
The fact that the shape and the dimension of the element may be chosen
arbitrarily can be used to advantage in approximating the shape of a body of
any geometry. The convergence can be studied by increasing the dimension

of the subspace of the admissible functions and also by increasing the

number of elements.
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The potential energy of an element may be expressed in matrix form as

. T T T
M=t [ el Mav- [ W) Ghev- [ W) () (3.6
v, v, Sy
where,
T
{u} - {U-1: u2? u3}
T
(r} - {11, 2, 38 28 81 12,
T
led = ey eppn 50 265, 265y, 20p]
T

(£} - (¢!, ¢

¢ - (¢, &, %}

and the superscript T stands for the matrix transpose and A designates the
subregion.

The elements are connected with each other at a selected number of
points, called nodes. Depending on the type of element, each one contains
certain number of nodal points. The product of the number of components
of displacements at each node times the number of nodal points of the
element is called the number of degrees of freedom of the element. The
displacement components defined at a nodal point may not always have a
physical interpretation.

Following the idea of the finite element method, the displacements in
a subregion (element) are expressed in terms of the generalized coordinates

o,
i
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fux Y = [oxD] {a} (3.7
3x1 3xn

where n should be equal or greater than the number of degrees of freedom
of the element. If n is equal to the number of degrees of freedom, it is
preferrable to express {u} in terms of interpolating functions. Making use

of (3.7), the strains can be expressed in terms of &'s as

i i .
{e(xD} = [B(x)] {o} (3.8)
Stresses are related to strains through the constitutive relations

i i }
{txH} = [E] {e(x7} (3.9)

where [E] is the matrix of the elastic moduli. The material may be
anisotropic and the body may be inhomogeneous. In the latter case the
matrix {E] will be a function of space coordinates xl.

Substituting (3.7), (3.8) and (3.9) into (3.6), one obtains

my = (o) k) fe) - (o} fo ) (3.10)
where
(k) = | BGHIT 8] BGD ] av (3.11)
Vi
{Q,} =J [ 1T {2} av + I oz 1" [t} as (3.12)
v S

A RN



the interpolating functions, namely

f2xh ) [¢f(xi)] {r} (3

{t(x) )

[0, (x)] {1} 3

respectively, at selected points, say the nodal points.
Assuming n to be equal to the number of degrees of freedom of the
element and making use of (3.7), we can express &'s in terms of the dis-

placements of the nodal points qi

{a} = [a] {o} (3.
nxl nxn nxl
or
{o} = (a17" {a} .
Substitute (3.16) into (3.10) and define
T
-1 -1
(k] = [A77] [k,) [A7] 3.
| 1.7
| Q}=1[a"] {o,} (3.
to get
T T
my = {a} [x] {a} - {a} f{o} (3.
Now, minimize the potential energy, ﬂA, with respect to g's
Eﬁé = 0 i=1, 2,..... n (3.
& ¥ H
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Note that the vectors {f} and {t} may also be expressed in terms of

.13)

.14

where {F} and {T} are the values of the body forces and the stress vectors,

15)

16)

173

18)

193

20)
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This yields the following force-displacement relations

(k] {a} = {Q} (3.21)

nxn nxl nxl

The displacements qi and forces Q; are then transformed to a global
i
coordinates system. The assemblage of elements may be easily achieved
through the direct stiffness method, and the force-displacement relations of

the entire structure can be established.

(k] {r} = {r} (3.22)

Having imposed the displacement boundary conditions, the equations

(3.22) can be solved for {r}. Then, the stress field may be determined from

{r} = [E] {e} = [L] {a} (3.23)

where

1] (3.24)

[L] = [E] [B] [A™

1t

and the solution is complete.

3.2 The Use of Finite Elements in the Analysis of Elastic-Plastic Problems

In the mathematical theory of plasticity two types of theories have
been advanced. The one which is called deformation (total) theory is based
on the premise that the final state of strain is uniquely determined by
the final state of stress. In the other, which is referred to as flow
(incremental) theory, it is stated that the plastic strain increments are
related to the final state of stress, plastic strain, and the stress increment.
In general, these relations are not integrable and the integral depends on

the loading path. For this reason the term "nonholonomic' theory also has
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been suggested to desighate this theory.

The inadequacy of the deformation theory to treat an arbitrary plastic
deformation has been the topic of discussion during the early 1950's. It is
now a fairly well established fact that the deformation theory is incapable
of tracing the totality of the load-deformation history, especially during
the reversal of loading.

From the analytical view point the deformation theory is more tractable
than the flow theory and its application to solve practical problems has not
yet been totally abandoned. However, using the incremental techniques of
the numerical analysis there appears to be no significant simplification in
using the deformation theory. Both the flow and the deformation theories can
be treated in a similar manner. However, the iteration techniques are more
convenient for the solution of the problems formulated according to the
deformation theory.

In the remainder of this chapter, the finite element method will be
adapted for the analysis of elastic-plastic problems. The discussion on the

constitutive laws of plasticity will be left for Chapter 4.

3.2.1 1Initial Strain Method

For small strains it is customary to express the strain tensor as the
sum of elastic, thermal, plastic, and shrinkage strains as

€. ., = eE,:, + e:’,r, + e?, + es‘ (3.25)
1] iJ 1J 1] ij

where the superscripts E, T, P, and S refer, respectively, to the elastic,

thermal, plastic, and shrinkage or swelling parts of the strain. Strains due

to other causes such as creep may also be included.
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The elastic strain is recoverable upon the removal of the loading.
If the environmental conditions remain unchanged and the body is free to
deform, the removal of loading does not affect the other parts of the strain

tensor. Therefore, it may be helpful to express these parts in the following

manner
T P S
Tg. = €., + €, .+ €,, (3.26)
J 1] 1] ij
The quantity TEJ will be referred to as "the initial strain”. Expression

(3.25) may now be written as

E
e, . =€, .+ T.. 3.:
ij ij THJ (3.27)
If the deformation theory of plasticity is adopted the plastic strain

may be expressed as

eI.3 = e].?. ('ru) (3.28)

Whereas, adopting the flow theory of plasticity

eI.J. = J éel.j. (3.29)
ij ij
path
where
P P k4 P k4L
6eij = 6eij (77, € 4 L (3.30)

The expression (3.29) is only integrable if the integration path is
known. The symbol "&6" is used to indicate that the plastic strain increment,
P
661., is not in general a total differential. 1In addition, the symbol &

. . - . . . P .
designates an infinitesimal increment. For numerical purposes 6€ij is replaced
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by a finite increment and the expression (3.29) may be rewritten as

k
P P
S50 T w1 G Sy (3.31)

where m denotes the number of increments.

In the theory of uncoupled thermoelasticity it is known* that the
theorem of the minimum potential energy, in the form stated in Equation (3.1),
is readily applicable if the strain energy density, €, is replaced by the free
energy function (Helmholtz's function), F, defined as follows

F=lad e -l (3.32)
2 ij ij

Expression (3.32) may be generalized by replacing the thermal strain

T
he initi . .
€ij by the initial strain TEJ, thus

&

g - ’
=g T Cey MY (3.33)

where & denotes the generalization of the strain energy density.
The stress tensor can be expressed in terms of the elastic strain
tensor

ij  _ijk4 E _ _ijkl _ :
TY = E €k£ = E (ekl T&l) (3.34)

Upon substitution of (3.84) into (3.33) and expressing the results in

matrix form we get

_ 1 T T ) 1 T . |
€ =2 (e} (8] {e} - {c} [EB] {M+3 (M [E] (N} (3.35)

*See, for example, B.A, Boley and J.H. Weiner, "Theory of Thermal Stresses”,
John Wiley, 1960, pp. 262-268.
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Substituting (3.35) into (3.1) and following the general scheme of the

finite element method, as described in Eqns. (3.5) through (3.21), we obtain

(k] {a} = {Q} + {P} (3.36)

where {q}, [k], and {Q} are the same as defined before in (3.15), (3.17), and

(3.18) respectively, and

._1 T
P} =141 {3} (3.37)
T
{7} = J [B(x")] [E] {N} av (3.38)
Va

Equation (3.36) clearly indicates that the initial strain plays the
role of an additional external load and may be treated as such. For a
system with single degree of freedom, Eqn. (3.36) is schematically shown in
Fig, 1. The analogy between the thermal effect and the body force has long
been known. The analogy between plastic strain and body force is believed
to have been first brought out by Ilyushin in 1943 [30]. It was also in-
dependently discussed by Lin [37].

In the solution of the problems by the initial strain method the nij
should be known. The thermal strain ef, and the shrinkage (or lack of fit)
strain e?j are generally given. But the plastic strain efj is not known
beforehand. If the deformation theory of plasticity is adopted, Equation
(3.36), after its assemblage for the entire body, may be solved by iteration

[30]. This is done by assuming {P} to be initially zero and going through
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an iteration cycle to determine the new value of {P}. Using the value of

{P} determined, the iteration can be repeated until the solution converges

to the desired accuracy. At times this approach may not be very fruitful,
because in general there is no guarantee of achieving convergence. Moreover,
it cannot be applied to flow theory. Alternatively, we may use an incremental

scheme by adding the load in small increments. Let

(m) m

1=z {a0] (3.39)
(m), %

P77} = 2 (8P) (3.40)

where the symbol A denotes a finite increment and the superscript m refers
to the number of the load increments, it is possible to establish the

following algorithm,
k] @™} = ™3 Y (3.41)

For each increment the vector {P(mﬂl)} is calculated from the previous step.

(m)}

Eqn. (3.41), after assemblage, can be solved for {q The value of
{P(m)} is then calculated for the next increment. For a single degree of
freedom system, this procedure is demonstrated in Fig. 2,

For the calculation of {P(m)} two schemes, which are called the
constant stress and the constant strain methods, have been proposed [31].
These two methods can be easily described for a one dimensional state of

(m)}

stress. Having solved for {q , the states of strain {e(m)} and

stress {T(m)} can be determined. In the constant stress method, the plastic
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strain is determined by reading from the given stress-strain curve the

(m)

value of € corresponding to the calculated T Fig. 3. 1In the constant

P
(m)

(
strain method, the strain calculated in step m, that is e‘m), is used to

read the plastic strain €P

from stress-strain curve Fig. 4. In Figs. 3 and
(m)
o ~(m) ~(m) . .
4 the quantities -& and T denote the adjusted values of strain and

stress, respectively. As may be expected, the constant stress method is
reported [35] to have an inherent defect of sudden and catastrophic
divergence. This makes it unsuitable for numerical work. The constant strain
method is also reported to have a slower convergence [35].

An alternative approach for the solution of problems by the initial
strain method. has also been suggested [32]. For this purpose Equation (3.36)

may be written for an increment of loading as

(k] {&a} = [} + {opr} (3.42)

In evaluating (3.42), reference [32] suggests two procedures. The first,
which is called "the direct incremental approach’, advocates the use of the

following algorithm

[k] {Amq} = {AmQ} + {Am_lp} (3.43)

If the pattern of loading changes from one loading increment to another the

above algorithm is not very meaningful. According to the theory of the

L1 . . n* E . .
linear multistep methods , it can be shown that although (3.43) satisfies

the requirement of consistency with the differential system, it becomes

*See, for example, J. Todd, "Survey of Numerical Analysis,' McGraw-Hill,
1962, pp. 327-340.
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asymptotically unstable if the load-displacement curve at a generic point
tends to becoﬁe parallel to the displacement axis. The procedure in (3.43)
is shown schematically in Fig. 5. The second procedure, which is called "the
iterative incremental approach” solves Egn. (3.42) by an iterative scheme.
This is found to be very time consuming. In general, if incremental approach
is to be used ''the tangent stiffness method”, which will be described below

appears to be more efficient.

3.2.2 Tangent Stiffness Method

As will be described in Chapter 4, the constitutive law of plasticity
can be stated as follows

ij  _ijk4
7Y = C 6€k£ (3.44)

where
CleZ _ ijk4 (Tmn, ng’ g0 pq; M (3.45)

C

For a thermostress problem Cijkz, which will be referred to as the
elastic-plastic moduli, may be also a function of temperature T. 1In the
deformation theory of plasticity the expressions given by (3.44) are total
differentials and can be integrasted directly.

By mean value theorem, equations (3.44) can be expressed as

ij | =ijk4 (t) ,
AT(t) = C(t) Aekz (3.46)
where
=ijk4  =ijkd *mn kP mnpg m
C(t) = C(t) (r -, emn, E ;X ) (3.47)

. *mn *P
Here t denotes the increment number, T and €mn are some values of stress

and plastic strain, respectively, within the loading increment. For =



37

sufficiently small loading increment the values at the beginning of the

. . *mn *Pp
loading step may be substituted for T and emn

~-ijkd . =ijk4 mn P mnpq m
= C T € E : 3.48
C(t) (t) ( (t_1)7 mn(t-l)g y X ) ( )
This is called here the "first approximation method’. It is possible to

employ the techniques of numerical integration tc improve Egn. (3.48).
The Euler's modified method was found to yield good accuracy for this class

of problem [34]. This method may be stated in the following form

-ijkd . =ijkl -mn =P mnpq m. )
o= : ¢ .4
C(t) C(t) (7, emn’ E ;%) (3.49)
where
;mn _ Tmn + l A Tmn
To(t-1) 2 Tt
(3.50)
—eP = eP L A eP
mn ~ mn(t-1) 2 "t mn

This procedure requires each step of loading to be repeated once and it is
referred to as the 'Second approximation method.

Utilizing either (3.48) or (3.49), the elastic-plastic moduli of
Eqn. (3.46) become known. Equations (3.46) is then analogous to (3.9),
except that stress and strain tensors are replaced by their respective
increments. In other words, Equations (3.46) defines a pseudo anisotropic,
nonhomogeneous elastic material for each loading increment. Therefore, the
theorem of minimum potential energy can be used for each increment of loading.

The solution procedures are identical with those given in Equation (3.7)
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through (3.21) except that now [ka] is replaced by

T . .
[Ea] = J [B(x")] [C(x")] [B(x)] dv (3.51)

Va

and Equations (3.21) is now restated as

(k] {8a} = {:Q} (3.52)

The assemblage of the elements and the remaining procedures follow
the usual scheme. Equations (3.52) for the first and second approximation

methods are shown schematically in Figs. 6 and 7, respectively.
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3.2.3 Comparison of the Initial Strain and the Tangent Stiffness
Me thods

The "initial strain’ method stated in incremental form

(k] {8al = {1} + {ap} (3.42)
where
__l T
{ap} = [a 7] (a1} (3.37)"
;T
(a7} =f [BCx")] [E] {an} av (3.38)"
Va

and other quantities as defined before, is shown here to be identical to the
"tangent stiffness” method stated in (3.52). To illustrate, let us assume

that the contribution to {AT]} comes entirely from plastic deformation

- P
{an} = {ae'}
The plastic strain tensor can be expressed in terms of strain tensor itself
P
{ac} = [a] {oe} (3.53)

Matrix [A] can be defined according to the type of material and the
plasticity law used. A form of [A] is given in (4.44). Utilizing (3.8)

in (3.53) and substituting the results into (3.38) one obtains

{ar} = [kZ] {a} (3.54)
where
P i T ‘ i n
[ka] = j [B(x)] [E] [A] [B(x7)] dv (3.55)
v

A
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Now express {a} in terms of {Aq} as in (3.16) and substitute (3.54) into
the (3.37)' to get

{op} = (7] {0a} (3.56)

1

where
T
-1

P 1 [kl;] (a7} (3.57)

(k] = [A

il

Substitution of (3.56) into the (3.42) and transposition of {AP} yvields

[X] {8a} = {89} (3.58)

where

(%] = [k] - (K] (3.59)

It can be easily shown that [ﬁj is identical to [k] defined in (3.52)

by considering that
[C] = [E] - [E] [A] (3.60)

Expression (3.60) can be readily verified if we consider the relations
between the increments of stresses and strains. Therefore, the identity
of (3.42) and (3.52) is established.

Now consider the different algorithms discussed in connection with
the initial strain and the tangent stiffness methods. Expression (3.43)

after summing over m
n

), (6] {aa)={aQ)+ {4 _P1)

m=1
will be identical to the algorithm expressed in (3.41). The only difference

is that of computational procedures.
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In order to compare the algorithm of the tangent stiffness method (3.52)
with that of the initisal strain method (3.43), one may proceed as follows.
Using the first approximation method (3.48), expression (3.52) can be written

as
(% (mo1y ] {AmQ} = {AmQ} (3.61)

where [k(m—l)] signifies that this matrix has been computed from the in-
formation obtained in previous load increment. Expression (3.61), after

considering (3.60), may be recast in the equivalent form

P

(k] {pa} - [k, 4y {40} = {40] (3.62)

On the other hand, utilizing (3.56), expression (3.43) can be stated as
(k] {Aa} - [ ] {a a}={Aq] (3.63)
m (m-1) m-1 m

Comparing the last two expressions, it is seen that the difference between
the tangent stiffness method, (3,62), and the initial strain method, (3.63),

is in the quantity {Aq}, used in the second part of the left hand side.
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4. CONSTITUTIVE LAWS OF PLASTICITY

In this chapter the constitutive equations of the flow theory of
plasticity are discussed and the forms suitable for finite element method
are derived. Although generality of the exposition has been retained, only
the most relevant aspects for the problem considered are given. For a more
complete introduction and further details on the subject the reader may
consult the classical work of Hill [157] and the papers by Koiter [162]
and Naghdi [163].

A constitutive equation is a relation between forces and deformations
for a given material. Although attempts have been made to construct the
most general form of these relations through axiomatic approach, the complexity
of the general form looses its utility for the solution of particular
problems. Fortunately, under a given environmental conditions, only a
special form of the general relations is needed to approximate! closely the
material behavior. Ideal materials, such as elastic, visco-elastic, elasto-
plastic, thermo-visco-elastic, and so forth; are defined by particular
relations between the stress tensor and the deformation of the body. In
the sequel, the discussion is limited to the quasi-static, small deformations
of elastic-plastic solid. The material is assumed to be inviscid and attention
is confined to isothermal deformation. For simplicity the quantities are
defined in Cartesian coordinates in this chapter.

A constitutive equation for elastic-plastic solid should include the

state of stress and strain as well as their increments, in order to account
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for history dependence. The response of elastic-plastic material can be

described [161] by

(a) an initial yield condition, specifying the state of stress
for which plastic flow first sets in,

(b) a flow rule, connecting the plastic strain increments with
the stresses, plastic strains, and the stress increments, and

(c) a hardening rule, specifying the modification of the yield

condition in the course of plastic flow.

41 Initial Yield Condition:

The initial yield condition is generally represented as a surface in
stress space convex and containing the origin. Experimental evidence with
metals [153] indicates that the hydrostatic stress of an order of magnitude
of the yield stress has no influence on the initial yield nor indeed does
it affect plastic deformation itself. Also based on the experimental
results it is customary to assume that the plastic deformation takes place

without volume change
P
g,. =0 (4.1)

For these reasons, it is convenient to decompose the stress and strain

tensors into two parts

s = T - 88, ., s = (4.2

ij ij ij

W
3

ii
and

1 )
= £ - = e o
eij 15 eéij, e 3 €ii (4.3)
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where Sij and e, , are, respectively, the deviatoric stress and strain
and 61‘ is the Kronecker delta.
If the material is initially isotropic, the initial yield function may

be expressed entirely in terms of invariants of the deviatoric stress

(0] O
f =T (J2,J3) (4.4)
where

Jp =843 =0
1

Jo =2 515 Sij (4.5)
1

I3 3 5i5 ik Ski

are the invariants of the deviatoric stress. A state of stress for which
fo < o will not produce plastic flow, and a state of stress corresponding
to fo = 0 indicates the incipience of the plastic deformation. Various
forms have been suggested for the expression (4.4). Those which are
customarily used and have been verified by experiments are; the von Mises

yield condition [152]

f =J, -k = o0 (4.6)

the Tresca yield condition [151]

£° = 4J23 - 27J32 - 36k2J22 + 96k4J2 - 64k6 = 0 (4.7
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and the Prager = yield condition [155]

£° = J23 - 9/4J32 -x® -0 (4.8)

The constant k can be assigned based on the results of some simple experiments
such as the uniaxial tension or the pure shear test. Different physical
explanations have been given to interpret expression (4.6) among these the
strain energy density of distorsion, the octahedral shear, and the spherical
mean shear are best known. Equation (4.6) is also referred by the names of
other investigators, namely; Huber, Hencky, Nadai, and Novozhilov. However,
the name Mises criterion is the most widely used designation. Expression

(4.6) is sometimes given in terms of the principal stresses as

o 2 2 2 2
foved O‘ — — - — - 4.79
£ ( 1 02) + (02 03) + (03 Gl) 2c7y o (4.9)
where Oi, 02, Oé are the principal stresses and O& is the yield stress in

uniaxial tension test. Expression (4.7) was first suggested by Tresca

based on the maximum shear stress criterion in the following form

o] - g. =2k (4.10)
max min

where Oﬁax and Oﬁin are the maximum and minimum principal stresses, respectively.

For initially anisotropic material the initial yield function cannot

be expressed in terms of stress invariants alorme but may be represented as

£ (1,.) = fo(s. ) = o0 (4.11)
ij ij
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For this case, several forms have been suggested. The one proposed by
Hill [156] is widely cited, and can be stated as

o 2

1
== A - ¥ =
T =35 8% 5k 515 Sks ©
or,
£° = F(T. . -T )2 + G(T,,- )2 + H(T, -7 )2
= 227 "33 33711 11" T22
(4.12)
2 2 2
+ 2 (L T23 + M 731 + N le) -1 = o

where F, G, H, L, M, N are experimental constants. Expression (4.12) is a
generalization of (4.9) and reduces to (4.9) for isotropic materials.
Similar generalization of Tresca yield condition also have been

proposed.

4.2 Flow Rule

In plasticity, in a manner analogous to the existence of Green's strain
energy function in the theory of elasticity, it is postulated that the plastic

strain increment tensor is derivable from a plastic potential. Stated

symbolically,
s . = o) -2 (4.13)
ij oT,
1]
where
= (T eP ) (4.14)
g =8 157 %4 .

is the plastic potential and &M is a non-negative scalar. The plastic
potential g may be assumed to be identical with the yield condition. This has

been originally proposed by von Mises [154] and restated by Drucker [158]
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as a consequence of the stability postulate., 1In the latter case the flow

rule is referred to as the associated flow rule. Expression (4.13) may be

interpreted geometrically as the vector of the increment of the plastic

strain normal to the surface of the plastic potential (the normality rule).
The form (4.13) is applicable to regular regimes where the normal

to the plastic potential is uniquely defined. For singular regimes this

form is replaced by

P n %8y
6€ij = kgi 6Kk aTij (4.15)

where n is the number of regular regimes which meet to form the singular

regime. In the sequel only regular regimes will be considered.

4.3 Hardening Rule

From experimental results with uniaxial and biaxial states of stress,
it is known that during plastic deformation the yield surface is con-
tinuously changing in size and shape . - Hrardening rule is concerned
with the manner of constructing the consecutive yield surfaces. A general
form of this yield condition, which is sometimes referred to as the loading

function, can be stated as

P
f(r.., .., KY = o (4.16)
ij ij

where K is the parameter of work hardening and is, in general, a function of

the stress and the plastic strain tensors. Since the parameter K can be

P
incorporated in Tij and eij’ Equation (4.16) without loss of generality may
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be expressed as

£(T1,., € )= o0 {4.17)

Equation (4.17) reduces to (4.11) for the initial yield condition for an
annealed material.

Several hardening rules have been suggested. The isotropic hardening
rule (Fig. 8a), which at the progressively higher stresses predicts a uniform
expansion of the initial yield surface, is used most widely. For isotropic

hardening expression (4.17) reduces to

f=F(T1, ) -K=o0 (4.18)
ij

To define the work-hardening parameter K, two well-known measures have been
proposed [157]. One states that K is a function of the plastic work

only, and is otherwise independent of the strain path, i.e.,

K = G(W ) (4.19)
Y
where €P
k4
P
W = j T, . de, (4.20)
P 1] 1]
e}

is the plastic work. The other is based on the assumption that the work-
hardening parameter K is solely a function of the so-called equivalent

plastic strain. According to this approach

K =H (&) (4.21)
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where Ep is the equivalent plastic strain, defined as follows:
P
*ij )
“p _ p - _ /2 P L
g = J e, 6e = 3 [6eij 6€ijJ (4.22)

O

As pointed out by Hill [157], the above two measures of K are
*
equivalent for materials obeying the von Mises yield condition, as it can

be shown that

éwp =08 & (4.23)

where the quantity o is referred to as equivalent stress and is given by

o = JBJZ

In this case, by expressing (4.18) in two alternative forms

f=0-HE) =o (4.25)
f =0 - G(Wp) = o (4.26)
the relation
H - )
‘“C']‘:‘”= g 96 (4.27)
de dw
p

holds true between H and G.
The isotropic hardening rule does not account for the Bauschinger

effect. 1In fact, it predicts a negative Bauschinger effect. Therefore,

*The conditions for equivalence of these two measures for other yield
conditions having homogeneous polynomial forms were studied by Bland [160].
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isotropic hardening would not be satisfactory for the cases involving un-
loading followed by reloading along some new path. To account for the
Bauschinger effect, Prager [159] suggested s hardening rule which assumes a
translation of the initial yield surface which remains undeformed (Fig.8b ).
Prager employed a kinematic model to describe this hardening rule. For this
reason it is termed "kinematic hardening'. This hardening rule can be

represented by

Q
f =1 (Tij - ozij) = 0 (4.28)

where aij is a tensor representing the total translation of the initial
yvield surface. Prager suggested that the yield surface be translated in
the direction of the normal to the initial yield surface for any increment
of strain

o, = c be (4.29)
1] 1]

where the function ¢ is determined by an experiment. For a case where c¢

is treated as a constant, the process is called linear-hardening. Shortly
after Prager's proposal it was recognized that the properties of preserving
the shape, and of a pure translation of the yield surface along a normal,
do not in general remain invariant for the stress subspaces. To resolve

this shortcoming Ziegler [161] proposed to replace (4.29) by

by = (Ty = @ ) o0 (4.30)

where &T) ® o. Here, the magnitude of the plastic strain increment remains free.



One way to dispose of this indeterminacy is to assume that the vector
c 66?3 is the projectiocn of 6Tij (and thus of 6aij) on the exterior normal
of the plastic potential. This has the advantage that the results of
Prager's rule (4.29) and of its modified form (4.30} will coincide in many
cases. . Both rules give identical results for plane strain and alsoc for
a plane stress when lexon
Other hardening rules also have been advanced. The piecewise linear
yvield condition, which accomodates both translation and expansion of the
yield surface (Fig. 8d), and the concept of a yield corner stating that the
vield surface changes only locally (Fig. 8c) may be noted. The latter is a

consequence of the slip theory of plasticity.

Numerous tests have been conducted to check these theories, the

results are contradictory and no definite conclusions have been reached so far.

4.4 Strain-Stress Relations

As stated in Chapter 3, the increment of strain tensor may be de-

composed into the elastic and plastic parts

S¢ . = beb . + be (4.31)
ij ij ij

The increment of elastic strain is related to the increment of stress

through the generalized Hooke's law

E
= H
B¢, )

(4.32)
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For elastically isotropic material

1+v

Hijk,€:2E (9 S -

ikéj£+6i£ 3k ) 8 (4.33)

Y
E ij k&

The increment of plastic strain is expressed through the flow rule
(4.13). To determine &) one may proceed as follows. Since loading from a

plastic state must lead to another plastic state (called the consistency

condition by Prager), from (4.17) one has

5 = <L 7 o sf - o (4.34)
T P ij
ij aeij

Solving (4.13) and (4.34) simultaneously one gets

6xz—( of mkz)/(-a—efi—}; aag ) (4.35)

aTkl Tmn

Substituting (4.32) and (4.13) into (4,31) and taking into account (4.35)

one obtains

dg. ., = 8

1] 1560 OThs (4.36)

where

Sijee = Migre ~ < aii, aif >/<6’?’g'" = ) (4.37)

k4 mn ded
mn

4.5 Stress-Strain Relation

In some problems the inverse of (4.36) is required. Although, it may
be possible to express (4.36) first and then obtain its inverse through the
routine matrix inversion, however, for computational purposes it is desirable

to have the inverse readily available. Moreover, for the elastic-perfectly
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plastic material equation (4.36) cannot be defined at all. Fortunately,
because of special form of the constitutive relations of plasticity, it is
possible to find the inverse of (4.36) in 3 fairly simple manner. The
procedure is given below.

The generalized Hooke's law (4.32) can be expressed as

E P
753 = Bijkg %%k = Fijeg ey - 06 ) (4.
For the elastically isotropic material
Eijk£ = M(Gikéjﬁ+6i£6jk) + kéijékz 4.
where \ and U are the Lame's constants
E VE
FEtw 0 M Ty azw (4

Substitute (4.38) and (4.13) into (4.34) to get

oF (4.

SA=hE s fe,
ij

where
-1 of g of og
h = E, . - (4
ijk4 aTij a'rkz a{j a"rij

Substituting (4.41) into (4.13) we obtain

P
TR (4
where
_ og of
Aijkz = h 3T, . OT Emnk£ (4
iJ mn

38)

39)

.40)

413

.42)

.43)

.44)
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Upon substitution of (4.43) into (4.38) we get

& = C be

i5 ) (4.45)

kf

where

= E - A 4.46
Cijk£ ijkd Eijmn mnk 4 ( )

Expression (4.45) is the inverse of (4.36) and it can be shown that

1
Cijmn Smoke = 2 x50 %1055

4.6 Special Cases

The general expressions (4.36) and (4.45), may be specialized for
specific cases of yield conditions and flow rules. In the sequel it is

assumed that the associated flow rule holds; that is

(4.47)

P}
i
Hh

The special cases of the isotropic hardening using Hill's measure
of hardening (4.21), and the kinematic hardening with Prager's hardening

rule (4.29) will be discussed next.

4.6.1 Isotropic Hardening

If the material is initially isotropic by taking the equivalent plastic

strain~-see expression (4.22) - for the measure of work~hardening, we have

-pP
f = F(JZ,JB) - H(e) = o (4.48)
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If, in addition, von Mises yield condition is adopted, (4.48) may

be expressed as

f =0 - H(EP) = 0 (4.49)

Utilizing (4.49), the quantities needed to express the constitutive

relations can be found. Thus
of _ _%® _ 3
oT AT, . T 28 Tij
1]
(4.50)
3 _ L _di
P - Yo -
o€, . Cyde:P +J
1]

To determine the strain-stress relation, substitute (4.50) into (4.37) to
obtain

2
1 .3
Sijke = Me a0 B9 5155k (4.51)
where
H
g = 3 (4.52)
P
de

- ~-P .
which can be determined provided the ¢ - ¢ curve is given. If the data of
uniaxial tension test are used to define H', it can be shown that

(4.53)

where Et is the tangent modulus (see Fig. 9).




resulting expressions are

2. 5i5%ky
Cijk,ﬂ = w( 6ik6j,€+6i,@6jk) + A éijékz - 9 h -—?—-———
S s
) 13°k4
Aijkg = 3 MR 3
(0]
1
h 3u+H'

then

H' = E (T-QE’

2(1+Vv) (1-Q)

b= E[3-L(1-2V) ]

For the perfectly plastic material {=o,

L

h = 3n

be expected.

derived by substituting (4.50) into (4.42), (4.44), and (4.46).

The inverse of (4.51) for elastically isotropic material may be

The
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(4.54)

(4.55)

(4.56)

(4.57)

For the elastic state { = 1, and expression (4.56) gives h=o, as to
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4.6.2 Kinematic Hardening

Here, the Prager's hardening rule (4.29) together with the von Mises

yield condition is adopted. The yield condition can be expressed as follows
£=2 (s, .~ .) (s, ~@ ) -k = o (4.58)
T2 ij ij ij ij - ’

where k is the yield stress in a simple shear test. Making use of (4.58), we

obtain
F &
ST, . dT - sij T %45
ij ij
(4.59)
f
ép = - c (5;479 )
de, . J J
1]
Using (4.59), the expression (4.37) reduces to
Sigke = Pijue ¥ T3 (5557% ) (S (4.60)

2k ¢
The inverse relations for the elastically isotropic material may be obtained

using (4.46)

2
€ ks Fijug ~ ARG 700 (5 -0 )
A = 2ph (s, -~ ) (s, ,~@ )
ijk4 ij ij ki k4 (4.61)
B jrg = W08 8540, 40,0 + A8, 18,
o 1

2(2ut ) k>
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If the data from uniaxial tension test are used to define the quantities

¢, it can be shown that

(4.62)

2 2 C
-— H ! — — m—
¢=3 3 B

4

O& is the initiasl tensile yield stress and H' is the slope of OLSP

Generalized Plane Stress

In the next chapter the stress~-strain relations in the state of

generalized plane stress will be needed. Here, the expressions (4.54) and

(4.61) will be specialized for such a case.

In this case T£3 = 0, 6713 = o and further we assume that
6613 = 6623 = o0, hence
6TQB = Caavé 6eyé + c(y1333 beqq (4.63)
8T g = 033\(6 6€y6 + Chgqq 860 =0 (4.64)
Solve (4.64) for 6633 and substitute into (4.63), to get
STyp = aaayé Se s (4.65)
where
- ~ Capys “3333 ~ “aps3 C33vys (4.66)

c =
¥BYo €3333
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If the stress increment 67@5 is represented in its principal direction,
and for the case where the principal directions of stress do not change

during loading, the expression (4.65) can be stated in matrix form as

follows
5711 1111 C1122 %4
_ i i (4.67)
7o Ca211 C2222 S
Utilizing (4.54) and (4.61), the components of GQBYé are found to be
= E 2
Cvo = = [V - (1-0) S.8,] =€ (4.68)
1122 0 172 2211 ’
bt E 2
Cozpz = 7 [+ (1-0 57
where
2 2 2
Q= (1-v) L+ (1-D (S’1 +2v 8182+82)
for isotropic hardening using expression (4.54),
« _ -
ml..("r11 0.5 'r22)/o
52 = (T22 - 0.5 Tll) / C (4.69)
P 2 g 2
11 11 22 22
and for kinematic hardening, with the aid of expression (4.61),
S, = (7T - 0.5 7T —J‘ H'éep)/
1 11 ' 22 11 Y
path (4.70)
S, = (1,, - 0.5 7 —JH‘&@:P)/
2 22 ) 11 22 oy

path
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If the material is elastic-perfectly plastic, i.e., { = o, expressions (4.68)

reduce to the form

- E . 2
[ Ci111 =0 %
C --Esg -¢ (4.71)
< 1122 = 70 P17 T C2211 :
- E 2
\ C2222 ° O S
where
0=5°%+2vS8.8 + 872
=9 Y P15 2
and
Sl = (’Tll - 0.5 T22) /oy
Sz = (722 - 0.5 'rll) / oy

which is identical for both (4.69) and (4.70).
It may be noted that for’ the elastic state, when { = 1, expression

(4.68) together with (4.69) will reduce to the well-known expressions of the

elasticity

- - E
C1111 - C2222 - 2

1~V

(4.72)

= = VE
C1122 - C2211 - 2

1~V

Expression (4.70) for kinematic hardening, however, cannot be reduced directly
to the elastic case. Therefore, in the solution of elastic-plastic problems,

based on the assumption of kinematic hardening, the expression (4.72) should
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be used for the initial stages of loading (elastic), and during the un-
loading process.

For numerical work, the relations between the increments of the plastic
strain and the increments of total strain, equations (4.43), are needed. For
this purpose, the equation (4.43) may be specialized for the case of
generalized plane stress, referred to the principal directions. The results

can be stated as

6"31;1‘ | A1 Airas %11
p = _ _ (4.73)
6822/ Ag211 “a222 %99
where
51111 = (1-0 5, (8, + v8) / O
51122 = (-9 8 (5, + ) / Q
Aypyy = (1-0D 5, (S, + v8) / (4.79)
Bypos = (1-0 5, (5, + v8) / Q
0= - ¢+ (-0 (57 + 2185, + 59

The quantities Sl and Sz are the same as those defined in (4.69) for

isotropic hardening and in (4.70) for kinematic hardening.

4.8 Loading Criterion

In the incremental procedure of solution of the elastic-plastic

problems, in addition to the constitutive relations, it is necessary to
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have a criterion for loading and unloading. For this purpose the following
criterion is available

Loading
of ot . j>> 0 Neutral Loading (4.75)
1,3/
L Unloading

For each step of loading, expression (4.75) is first determined, and
depending on the sign of (4.75) the appropriate constitutive relations are
used for the next increment. For instance, for isotropic hardening the
expressions (4.68) are used for loading; for unloading, the elastic relations
(4.72) are utilized. For isotropic hardening, instead of (4.75), the

following criterion may be used

Loading
w2 o .
<: Neutral Loading

Unloading

where F is defined in (4.48).
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5. ANALYSIS OF ROTATIONAL SHELLS

Throughtout this chapter the Kirchhoff-Love hypotheses together with
the small deflection theory are adopted. The tangent stiffness method, dis-
cussed in Chapter 3, is employed and the derivation of element stiffness
matrix for a typical increment of loading is presented. For the sake of
brevity, the symbol A in front of all kinematical and mechanical variables
will be dropped. The formulation is confined to axisymmetric loading and
support conditions.

The details of the derivation of the element stiffness matrix is given
and the corresponding matrices are tabulated in Appendices A through F.
Although the formulations are given for rotational shells the cases of

cylindrical shells and circular plates are contained as special cases.

5.1 Equilibrium Equations

In rotational shells for axisymmetric loading, among the six equations
of equilibrium of shells, three equations are identically satisfied.
Adopting the sign convention for positive quantities as shown in Fig. 10,

the remaining three equations of equilibrium can be stated as follows

d r

35 (rNS) - N@ cos ¢ - ;I QS + rpS = 0

4 (rQ ) + N_ sin ¢ + r N -r = 0

ds S 6 r, s Py = (5.1)
d

— (rM ) - M_ cos ¢ + Q@ = o

ds s g s

*See, for example, Timoshenko and Woinowsky-Krieger, ''Theory of Plates and
Shells," 2nd ed., McGraw-Hill, 1959, pp. 534.
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iti N M M , and are shown in Fig. 5 and are
The quantities Ns’ g Mgs Mg, QS, pS a pr g
defined in the nomenclature.

Eliminate QS among (5.1) to obtain

M

4 (rN ) + L d (rM ) - (—Q + N ) cos ¢+ rp =0
ds S r. ds S r ) S
1 1
42 aM, M, N (5.2)
— (rMS) - g5 cos ¢ + (— - NQ) sin ¢ -~ —— + rp = o
ds S r r r

5.2 Strain-Displacement Relations

Adopting Kirchhoff's hypotheses and Love's first approximation, the
strain-displacement relations for axisymmetric small deformation of shells

%k
of revolution can be stated as

€ ( € © K
s s s
. = 0 + G y (5.3)
C] ) )
where
s ds r,
(5.4)
e? = L (u cos ¢ + w sin ¢)
g T
are the strains of the middle (reference) surface,
K o= - 9X
s ds
(5.5)
K - cos ¢
e r

*Ibid. pp. 534-535.
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are the curvature changes, and

dw u .
X = = - - (5.6)

is the meridional rotation. The subscripts s and 0, respectively, refer to
the meridional and circumferential variables. The quantities u, w, ¥ and C
with positive sign are shown in Fig. 11.

For future use equations (5.4), (5.5), and (5.6) will be represented
in terms of a new set of variables. Expressing the displacements of the
middle (reference) surface of a shell in local cartesian coordinates E-1),

the following relations between (u,w) and (u u2) hold, Fig. 12

17
u cos B sin B [ u,

w -sin B cos B <L.u2

In the following treatment, by applying the chain rule of differentiation,

(5.7)

differentiation with respect to arc length s is replaced by differentiation

with respect to normalized cord variable € using

_ Ad€
ds = cos B (5.8)

where /£ 1is the cord length AB, Fig. 12. Making use of (5.7), (5.8) and

the relation

dB _dT coszﬁ (5.9)
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one can recast expressions (5.4), (5.5), and (5.6) as follows:

du du
o 1 1 2 2
€S =z(g§~+a—§f——tan B cos B
(5.10)
o .
€ =7 (u1 sin{ + u, cos )
2
du du du
K o= 1o [——l T (1-tan®B) cos>8 + L tan B+ 2 —2 7" tanp cos B
s ﬁz dg qe? dg
E 2
du ] 3
- 5 cos B
dg
(5.11)
K - Lo (ii_ ten B - EE% > (sin{ + cos { tanPB) cosBB
6 = 4r \d§ dg
and
du du
N A 2 2
X =73 < 3E tan B + qE > cos B (5.12)
where
n" dzn
N ==
dg

The relation T = M(E) will be discussed in section 5.6 of this chapter.

5.3 Stress-Strain Relations

For shells of uniform thickness, any thin layer parallel to the
middle surface is assumed to be in the state of generalized plane stress.
If the shell is of variable thickness, this assumption is still taken to
be valid for a thin layer whose thickness varies in proportion to the shell
thickness itself. Therefore, the relations between the increment of

stresses and strains for axisymmetrical deformation, as stated in (4.67),
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FIG12 DISPLACEMENTS OF THE MIDDLE SURFACE
( ALTERNATIVE)

Middle surface

FIG.I3 A PIECE OF ROTATIONAL SHELL
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can be written as

C C €
[Ts ss s6 s

/ (5.13)

S/
i

or symbolically

{r} = [c] {e} (5.13)°
2x1 2x2 2x1

The matrix [C] is in general a function of the state of stress and history
of loading for a generic point and hence it is a function of the coordinates
of the point in question. The dependency of [C] matrix on the state of
stress and history of loading can be accounted for by the procedures stated
in (3.48), or (3.49). Since the deformation is axisymmetric, the matrix
[C] for a material point in the plastic state is independent of the

coordinate &, that is

[c] = [C(s,Q] = [C(E,D] (5.14)
2x2 2x2 2x2

It may be noted that although the transversal shear stress ng does
not vanish, it does not enter into the stress-strain relations as the result

of the Kirchhoff hypothesis.

5.4 Potential Energy

The potential energy of a rotational shell undergoing an axisymmetric
deformation under sn increment of surface loading and in the absence of

body and inertial forces can be expressed as
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mu,w) = f € dv - f (pS utp. w+my) dA - j (NS u+Qs W+MSX)dC (5.15)
v A C
T
where
1
- = - i 5.
g 5 (Tses + Teee) , Strain energy density (5.16)
dv = (1 + f—) (1 + ri—) d{ dA = d{ dA volume element (5.17)
1 2
LdE .
dA = 2T r ds = 2mr —=, an area element of the middle
cos B (5.18)
(reference) surface
A_ - part of middle (reference) surface where loading

is specified

m - meridional moment per unit area of middle (reference)
surface

C -~ edge(s) of shell-parallel circle(s) -

and the bar over ps, p , m, Ns’ QS and MS indicates that these quantities

r
are specified. The approximation expressed by (5.17) is consistent with
the Love's first approximation.

Substitute (5.3) into the (5.16) and then integrate over the

thickness of the shell to get

g 1 (e} o} 1 T
j'h € df =5 (N_esN el K+ MK) = 2 {e} ) (5.19)
-3 1x4 4x1

where

§ N h [ T

f S 2y S

= Jﬂ dg (5.20)
h
2



are the in-plane forces per unit length,

are the bending moments per unit length,

T
{e}

1x4

T
{m}

1x4

1

<Ns N

6

M, My )

and

superscript T denotes the matrix transpose.
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(5.21)

(5.22)

(5.23)

it may be noted that

expressions (5.20) and (5.21) are valid within the limitations of the Love's

first approximation.

to get

Substitute (5.13) into (5.20) and (5.21), then making

4x1

or symbolically

{m}

4x1

= [D] |

4x4  4x1

e}

use of (5.3)

(5.24)

(5,24)2
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where
h
2
(1 = fh [C(E, 0] d¢
2x2 ) 2x2
h
1= [% [c€,0] ¢ag=[n,]
12 U ’ 21 (5.25)
2x2 E 2x2 2x2
)
h
,,] = J? feg,01 & ag
2x2 E 2x2
T2

“ [D] will be referred to as the rigidity matrix.

Upon substitution of (5.24) into (5.19), expression (5.15) may be stated

as follows

1 T T T
mu,w) = 5 J e} oI} aa - [ (v} {p} aa - [ v} P} ac (5.26)
A AL C
where
T

{V} ={uwx (5.27)

o T — — —_
b} =Cp, p, m) (5.28)
31T = «¢ NG M) (5.29)

It can be verified that the first variation of 1 in (5.26)
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yvields the equilibrium equations (5.2) as its Euler equations.

5.5 Evaluation of the Rigidity Matrix [D]

The rigidity matrix expressed by equations (5.25) can be evaluated by
employing any method of the numerical integration for definite integrals.

At sections where the stresses due to bending moment dominate those
due to membrane (in-plane) forces, the stress distributions across the
thickness have a high gradient. These sections, in general, are more suscep-
tible to the early on-set of plastic deformation, For an adequate
representation of the elastic-plastic moduli [C] at such sections by means
of interpolating functions, the values of these moduli must be calculated
at a number of points sufficiently close to each other. This requirement
is particularly needed to adequately account for the history of the
deformation process. Since the values of [C] should be available at a
great number of points, the integrals (5.25) can be determined with the aid
of some simple methods of the numerical integration. The discussion of

two of these methods will follow.

5.5.1 Application of the Rectangular Rule

The shell thickness is divided into a number of layers. The values
of [C(E,Q)] are evaluated at the center of each layer of the selected cross
sections. It is assumed that the material properties do not vary along the
thickness of the layer. The problem may then be thought of as one con-

sisting of a shell made of anisotropic elastic thin layers. The integration




of (5.25) can be carried out as follows

(D, (9] = [D (D]
2x2 2x2
* 1

[D,,(®] = [D, ()] = [D (D] - 5 n& [D(D)]

2x2 2x2 2%2 2%x2

* 1.2

[D,,(8)] = [D,(D)] - n(E) [D'()] + 5 h™(E) [D ()]

2x2 2x2 2x2 2x2

where

n -
D71 = B [C(E,E)] (-5 )

n —
[0*(5)] = 3 & [C(E,5)] (1 - nZ )
n -
D, (D] =2 & [C(E,B)] () - n )
A o=Lim h - h)
k-2 kT k-l

The quantities h, are as shown in Fig. 14.

k

If the layers are taken to be of equal thickness, i.e., hk

the expressions (5.31) can be represented in the following form

n
(] =22 5 [czhp]
2x2 2x2
2 1
) - 1
] =28 5 [ega)] k-
2% n2 k=1 222 k 2
3 n
Dy, = 22 5 feg,ip] ¢F -k D

2x2 n 2x2

75

(5.30)

(5.31)

= (k h)/n,

(5.32)
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Middle surface
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where

- (B2 D)o

Note that it is preferable to take n to be an even integer.

5.5.2 Application of the Trapezoidal Rule

As in the previous case, the thickness of shell is divided into n
number of layers of equal thickness. The values of [C(E,[)] are determined
at the interfaces of layers as well as at the upper and lower faces of the
shell proper. Then, the expression (5.25) can be integrated and the results

are as follows

_h(® (1 s 1
(0,01 = 28 (Lee, 0)1+ 3, [eCs, 6] + & [ecs, ¢, 1)
2x2 2x%x2 2x%2 2x2
2 ¢ n ¢
@] - 2E& 1 [C(E, 8D ) £ + I, [e(5,6)] ;Ci‘- v ece g, ) =)
2x2 2x2 2x2 2x2
3 (2 a ¢ 2 C .2
_h () (1 -1 ko1 coon+l
[0y (0] = 5L (L 1e(e, 616D + | Z, (05, 601 + 5 [C(5, 6, D ImD™)
2x2 2x2 2x2 2x2
(5.33)
where

(- (- )

It may be noted that for the integration of the rigidity matrix, it
is not necessary to think of z shell consisting of layers. Other inter-

polation functions may be selected to approximate the variation of the

material properties along the thickness.
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5.6 Representation of the Element Geometry

Here the objective is to define the geometry of the middle (reference)
surface of a typical shell element. Since the shell proper is axially
symmetric, it is sufficient to define the shape of its meridional curve.

It is possible to develop the stiffness matrix for any special type
of a shell without idealizing its geometry. But if versatility is required,
it is necessary to select an element which can closely idealize any
meridional shape of a shell of revolution. For this purpose two alternative
approaches may be conceived.

One consists of expressing the geometric variables, which enter into
the strain-displacement relations and are functions of surface coordinates,
in polynomial forms. These geometric variables are the coefficients of the
first and the second fundamental forms of the reference (middle) surface.
The unknown coefficients of these polynomials are determined by specifying
the values of the geometric variable for any given shell at selected points,
This approach has two shortcomings:

(a) The geometric variables are not independent and in
general they have to satisfy the Gauss-Coddazi relations.
These relations can not be identically satisfied.

(b) For some regions of a shell the procedure of
determination of the unknown coefficients becomes

ill-conditioned.
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This approach was used in Ref. [26] by expressing cos @ as

2
cos @ = C1 + 02 s + C3 s

where s is the arc length. As the result, in regions of a shell where ©

is close to zero, the determination of Cl’ C2 and C3 becomes ill-conditioned
and the stiffness matrix obtained on the basis of these coefficients is
inaccurate. In addition sin @ can not be expressed exactly by a polynomial
of s in terms of constants Cl’ C2, and CS' Although this approach is

quite general and can be used for any type of shells, this special case may
clarify the two shortcomings mentioned above.

The alternative approach consists of replacing the given meridional
curve by a substitute curve which matches with the original curve at
selected points. This substitute curve may be represented either in a
local or global coordinates. The latter scheme turned out to be ill~-
conditioned for the limiting cases.

In this dissertation the scheme of selecting a substitute curve in
local coordinates is adopted. Figure 15 shows a manner of representing
this curve. Two types of orientation for the curved element are shown in

this figure. With the sign convention indicated in Fig. 15, the following

relation applies

« - -
¢+ Y+ B= (5.34)

)

By adopting the sign convention stated in Fig. 15, and utilizing the relation
(5.34), other orientations of meridional curve and local coordinates &-T|

can be readily treated.
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¢ >0, Bi>0,,(0)>0
(a) ¢ >0, 8;<0,n(1)>0

¢i<ow Bl)o
(b) rh (0)>0
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FIG.I15 MERIDIONAL CURVE




81

Two kinds of substitute curves have been utilized in this dissertation.
In one, the curve passes through the given end points (nodal points) and
at these points has the same slopes as those of the specified curve itself.
If the normalized abscissa £ is used - that is the abscissa is divided by
the cord length -, the equation of the substitute curve may be expressed

as follows

M= & (1-8) (a1 + a, £)
where

a, = tan Bi

a, = - (tan Bi + tan Bj)

The second type of curve was chosen such that, in addition to
accomodating for the specified slopes, the end (nodal point) curvatures
can also take the specified values. The equation of this curve may be

represented as

M= € (1-8) (a1 + a, € + aq §2 + oA, §3) (5.36)
where
al = tan Bi
-t B ._1__ .ﬂ//
8p = AR B TNy
1 u u
a, = - (5 tan Bi + 4 tan Bj) + (5 ﬂj - T!)
1 u
a, = 3(tan Bi + tan Bj) + 5 (ﬂ; - TE)
u dzﬂ §
ﬂ = 5 = - 3
dg r cos B

£ is the cord length.
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In the above expressions, r1 is positive if the meridional curve is convex

with respect to the positive Traxis.

The parameters in (5.35) and (5.36) can be determined from input data

as follows:

Ar =, - 1
j i
Az = 2z, - =z,
J i
5
as = [ar® 4 2%
Ar

sin § = s

cos ¥ = ™

sin = Cos cos - sin sin
B, ?, ] ? ]

H
cos B = 8in CP CcOS \b + COS QP sin q]
n n n

(5.37)

Having established the substitute curve, we can express all the

geometric quantities which enter into (5.4) and (5.5)

as follows

tan B = ﬂ'
r=or, o+ LE (sin ¥ + T cos ¥)

or (5.10) and (5.11)

(5.38)
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cos @ = sin B cos { + cos B sin ¥ = (ﬂ' cos ¥ + sin ¥) cos B

(cos | - ﬂ’ sin ¥} cos B

sin ¢ = cos B cos ¥ - sin B sin ¥

where

and T[, = 9‘:[[

=3
i
val

It may be noted that other substitute curves, which match with the given

curve at some intermediate points, could be employed also.

5.7 Displacement Pattern

As discussed in Chapter 3, the essential feature of the displacement
model of the finite element method is the expansion of displacements in
terms of a relatively complete set of functions in a small sub-region.
Although these base functions can be chosen arbitrarily, polynomials are
the most suitable forms for numerical work.

In the analysis of shells by the finite element method using curved
element the displacements may be expressed either in surface coordinates
or in local Cartesian coordinates. The former is in general a curivilinear
coordinates.

Expressing the displacement in the surface (curvilinear) coordinates
has the advantage that the compatibility of the displacements at the inter-
faces of the adjoining elements can be easily achieved. But since the
displacements are generally expressed in polynomial forms, the inclusion

of rigid body modes creates a formidable problem.
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It is possible to separate the rigid body and deformation modes in the
displacement expansion. For the case of axisymmetric deformation of shells

of revolution the displacements may be expressed as follows

(5.39)

where the subscripts r and d refer to rigid body and deformation components,
respectively. For the problem in question only a single rigid body mode,
translation along the axis of symmetry, exists. By introducing a constraint
(support) parallel to this axis at a location along the meridian, it is
possible to separate these two types of modes. Imposing a constraint at

the location shown in Fig, 16, the displacement components for the rigid

body translation can be expressed as

u, = - al sin @
(5.40)
wr = o& cos @
and the one for the deformation modes as

u, = @ cos @ + ¢ §

d 2 * 3 0 <E <1 (5.41)
w, = & sin + 0 £ 4+ « §2 + o §3

a2 CPi 4 5 6

where Q's are the generalized coordinates. The number of generalized
coordinates is taken to be equal to the number of degrees of Ffreedom of the

element, two displacements and one rotation at each node. It may be verified
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that at node "i", Fig. 16, the component of the displacement along the axis

of symmetry arising from the deformation mode vanishes

- i -+ =
Vi u, sin mi w4 cos ¢i 0

Although the above procedure provides a means for accomodating rigid
body modes, it has a serious shortcoming. A necessary condition for a
solution by the finite element method to converge uniformly is that the assumed
deformation patterns should contain the constant straining modes. A close
scrutiny of (5.41) reveals that it does not meet this requirement. For
instance, consider the case of uniform expansion of a shell, that is when
w = const. and u = o.

The second approach, that is representing the displacements in a local
rectilinear coordinates, has the advantage that the requirement of the
rigid body mode for each element can be automatically fulfilled. For a
general type of shell, this approach has a shortcoming that it becomes
difficult to satisfy the compatibility of displacements at the element
interfaces. Fortunately, however, for axisymmetric deformation of
rotational shells this creates no problem. Taking the £-1] axis as the local

coordinates, Fig. 12, the displacements may be expressed as

= ¥ 4+ &
! 1 o 5

0 <€ =1 (5.42)

2 3
= o
u2 a3+oz4§+5§+016§
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Since the displacement patterns (5.42) are relatively complete, the uniform
convergence of the solution by reducing the size of elements is assured,

Comparison of these two approaches is given in Chapter 6 in a numerical
example, For the membrane type of shell the second approach was found to be
superior to that of the first one.

For future reference the displacement patterns (5.39) and (5.42) will
be specialized for the case of a central cap. Fig. 17. Because of symmetry,
at the point located on the axis of symmetry the component of displacement
perpendicular to this axis and meridional rotation vanish., Utilizing these

internal boundary conditions

U, =20
i
(5.43)
= 0
A4
where
U=mucos © +w sin @ = u, sin v+ u, cos ¥
B W A SR N
X = 35 r £ dg dg
in connection with the expressions (5.39), one obtains
Qé = Qé =0
Hence, for the central cap the expressions (5.41) should be replaced by
ug = %5
(5.44)

3

=
il

9
g = %5 %S
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Similarly, the relations (5.42) given in terms of the local rectilinear

coordinates specialize into the following:

u = - 0{ cos ¥ + aéé

(5.45)
u, = & sin  + o & tan B, + o §2 + @ §3
2 1 3 i 5 6

Note that the number of generalized coordinates «'s has been reduced to four
which is equal to the number of degrees of freedom for the central cap.

It may be interesting to note that for a closed shell the governing
differential equations expressed in finite difference forms become singular
at points located on the axis of symmetry; whereas in the finite element
method this singularity can be removed by imposing the internal boundary
conditions and restricting the displacement field. This is important if the
solution of a closed shell near the axis of symmetry is to be found and is
one of the advantages of the finite element method.

Although in the above derivation the number of @'s was taken to be
equal to the number of degrees of freedom of the element; it is possible to
take a greater number of &'s and then using a general condensation procedure

to establish the force displacement relations at nodal circles.

5.8 Element Stiffness Matrix

The general scheme discussed in Chapter 3, that is the procedures
explained in connection with Equations (3.6) through (3.24), will be

specialized for a curved element. Representation of the displacement both
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in the surface and the local (rectilinear) coordinates will be employed.
For future reference the element stiffness matrix derived through the use
of displacement expressed in surface coordinats is designated by FDC (i)
(Frustum whose Displacements are expressed in Curvilinear Coordinates) and
the one in local Cartesian coordinates by FDR (i) (Frustum whose Displacements
are expressed in Rectilinear Coordinates.) The index "i" is assigned unity
for the meridional curve given in (5.35) and it is assigned 2 for the one
stated in (5.36).

Utilizing Equations (5.4) and (5.5) or (5.10) and (5.11), together with
(5.41) or (5.42), the strain-displacement relations may be expressed as
follows

{e} = (B] {o}
4x1 4x6 6x1 (5.46)

where {€} is defined in (5,22) and the matrix [B] is given in Appendix A.
For a closed cap the expression (5.44) or (5.45) are to be used and the
corresponding [B] matrix is given in Appendix B.

The relations (5.39) or (5.42) together with the relative expression

for meridional rotation may be represented in matrix form as

{v}l = [e(8)] {e}
3x1 3x6 6x1 (5.47)
where
T
{vl=Cu w x ) for FDC
C
and
T
vl =<(u u x ) for FDR

R 1 2
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The matrix [¢(E)] is stated in Appendix C.

The surface loads in (5.28) can be expressed in terms of interpolating

functions. For a linear interpolation it may be written as
)= -9 {p;}+ 2 {p] (5.48)
3x1 3x1 3x1

For a sufficiently small element the variation of thickness and elastic-~

plastic moduli along the meridian may be approximated linearly

h(g) = (1-8) hi + £ hj (5.49)
[C(E,QD ] = (1-8) [c(0,D] + E [Cc(1,D] (5.50)
2x2 2x2 2x2

Expressions (5.49) and (5.50) can be utilized to evaluate (5.32) or
(5.33) explicitly. It may be noted that although linear interpolation for
surface loads, thickness, and elastic-plastic moduli is suggested in (5.48)
through (5.50); other interpolation formulas may be used as well. Then it is
necessary to specify these values at intermediate points.

Having employed (5.26) for an element, the element stiffness matrix
and generalized forces as defined in Equations (3.11) and (3.12), respectively,

can be expressed as

=

1 T 2z
[k, = [[BD] [DE] [BD] x(D £ (1-1") df (5.51)
6x6 °
1 T 5 5
o} = [ [e®1 o(®} r® 211 ag (5.52)
o

6x1
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where the common factor of 21 in front of the integrals has been dropped.
The quantities required to evaluate (5.51) and (5.52) have already been
defined in (5.32), (5.33), (5.46), (5.47), and (5.48). 1In (5.52) it was
assumed that no body force is present.

The evaluation of integrals (5.51) and (5.52) cannot be easily
achieved in closed forms. However, the techniques of numerical integration
can be used to advantage to evaluate these integrals. The Gauss' integration
formula* was utilized in this dissertation.

Corresponding to the displacement transformation matrix [A] in (3.15)
the following relations hold

{a} = 4--2) = [A] {o} (5.53)
v 6x6 6x1

The matrix [A] and its inverse are given in Appendix D. With the aid of
[A—l] the element stiffness matrix and generalized forces can be transformed

into physical coordinates {v} and may be stated, as in (3.17) and (3.18), as

-1t -1
(k] =[a 7] [k ] [A 7] (3.17)
6x6 6x6 6x 6x6

..1 T
Q1 =[a"] {a} (3.18)

The matrices [k] and {Q} defined in (3.17) and (3.18) are defined in
local coordinates. 1In order to assemble the elements, these matrices must

be expressed in some global coordinates. If the r-z coordinates are taken

* ¥ 1

See, for example, 'Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun, National Bureau of Standard, 1964,

pp. 887.
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as the global coordinates, Fig. 15, the transformation can be stated as

{Q} = [TJ {I‘} (5.54)
6x6 6x1 ’
where
r u
i T
S IER CEE S S R
6x1 Yy 3x1 X i
6x1 3x1

The matrix [T] is given in Appendix E.

Alternatively, if the slope of the meridional curve is continuous,
the surface coordinates (5,8, at nodal circles may be employed to assemble
the element stiffness matrices. The transformation is similar to that of
(5.54) except that {r} should be defined as

T
{ri} ={u w X)),

1x3
and the corresponding [T] matrix is expressed in Appendix F.

Utilizing (5.54), the expressions (3.17) and (3.18) are transformed

into
T
[k 1 =[] [x] [T] (5.55)
6x6 6x6 6x6
T
{1 =1[r] f{e} (5.56)
6x 6x6 6x1

With the aid of (5.55) and (5.56) expression (3.21) can be expressed

as follows

[k, {r} = {q. ] (5.57)

6x6 ©X1 6x1
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Using the direct stiffness procedure, Equations (5.57) can be combined
for all elements to achieve compatibility and equilibrium at nodal circles.
This will lead to a set of simultaneous equations, as in (3.22)

[K] {r} = (R} (3.22)
NxN Nx1
where N is the number of degrees of freedom of the system. The stiffness
matrix [K] is in general a tridiagonal matrix. Having solved (3.22), the

stresses can be computed as explained in (3.23).

5.9 General Procedure

The procedure to analyze the elastic-plastic deformation of shells of
revolution, utilizing the scheme described in this chapter, can be outlined
as follows. The shell is assumed to be initially free from residual
stresses. The first increment of loading is applied and the magnitude of
the load is scaled such that plastic deformation just sets in at some region
within the shell. The loading is then continued in small increments. For
each increment, equations (3.22) are solved for nodal displacements and the
increments of the strain are determined using equations (5.46). The in-
crements of stress and of plastic strain are obtained with the aid of (4.67)
and (4.73), vrespectively. Then the criterion for loading (4.75) is checked.

For the case of loading, the equivalent plastic strain increment (4.22)

2
/3

- 2 2
P _ p p p p
Ae” = ,\/(Ael) + (be) (bey) + (Le)
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is computed and is added to the previous equivalent plastic strain,

=P It % =p
e(m) = e(m_l) + Ag

where m refers to the number of loading increment. If the data of uniaxisl
test are given, the value of E?m) is used to read tangent modulus Et and
edquivalent stress 8, Fig. 9. &Since the data for uniaxial test are generally
given in the form of a table, linear interpolation is used to obtain the
values of Et and O for intermediate points. The value of O is utilized to
modify the new state of stress. The quantity Et together with the modified
state of stress is used to establish the new material properties, Equations
(4.68) and (4.74). This will provide sufficient information to proceed to
the next increment of loading. If the "second approximation method"”, Egns.
(3.50), is used, each step of loading is to be repeated as shown in Fig. 7.
The problem of convergence is largely dependent on the type of
material properties and the geometry of structure. For the solution of any
problem the results for different magnitude of loading increments are to be
compared and the optimum size of loading increment is to be selected. It
was observed that for hardening materials a larger value of loading increment
can be selected compared to that of perfectly plastic materials. 1In
addition, for loading close to the collapse load the analysis becomes very
sensitive and requires s smaller size of loading increment to be used. With
the availability of computer program, however, the trials for optimum loading

increments are not very laborious.
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6. NUMERICAL EXAMPLES

In this chapter, the procedures discussed in previous chapters are
applied to some sample problems. First a brief description of the computer
program is given. Then the different elements which were developed are
compared, and the best element is selected. Two examples are worked out for
the elastic range, and the solutions are compared with theoretical and
experimental results which are available in the literature. Finally, two

examples for the elastic-plastic range are analyzed.

6.1 Description of the Computer Program

A computer program using FORTRAN IV language was developed for the
sclution of rotational shell problems using the method discussed in the
previous chapters,

The general procedures of the computer program are indicated in the
concise flow chart shown in Figure 18. Each block in this chart is labeled
and a few remarks concerning the blocks are mentioned below:

1. Input data are read from the input deck. The program can

treat examples with number of nodes up to 100 and number of

layers up to 20. The number of load increments is not restricted.

However, the full capacity of the core storage, 32768 locations

of IBM 7094, was not completely utilized. The dimension statements

may be modified to accommodate up to 200 elements. For higher

number of elements an out-of-core storage is to be employed.
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The program provides for a linear variation of element
thickness along the meridian, Therefore, any variation of
shell thickness may be approximated by linear variation within
each :element,

For a closed shell, numbering of nodal points should be
started from the point on the axis of symmetry.
2. The matrices [B], defined in Appendices A and, B, are computed
at several points within each element and are stored on tape.
The tape is later read back to calculate the element stiffness
matrices [kajy see (3.11). The matrices [A_l] [ T] defined in
Appendices D, E, and F are also computed for each element and
are stored on tape. This tape is used to transform {Qa} and
[ka] to {Q} and [k], respectively. 1In addition, the matrices
[B] computed at the ends of each element are stored to determine
the increments of strain.
3. The applied load increment which may consist of concentrated
and distributed loads are read. The distributed load is
transformed to equivalent nodal circle load using (5.52) and
(3.18), then they are added to ring (councentrated) load to
establish the load vector {r}q To facilitate the data preparation,
the intensities of distributed load at nodal circles are read
and linear interpolation is used to account for variation along

the meridian, see (5.48).
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Integration of (5.52) is carried out by Gauss' method of
integration. Examples with different number of integration
points were worked out and the results were compared, In most
cases no significant changes in the results were observed after
increasing the number of integration points above 5. For
conformity with the integration of (5.51),10 integration points
are taken for each element.

4. The rigidity matrices (5.25) are established using the procedure
given in (5.30). A linear variation of the material properties
along meridian is adopted for each element., With the aid of

[B] computed in block No. 2 and rigidity matrices, the stiffness
matrices [ka] is computed. As mentioned before, the integration
of (5.51) is achieved using Gauss' method of integration.

Having obtained [ka]’ the element stiffness matrices in global
coordinates are established. The assemblage of stiffness
matrices, to set up [K], is fulfilled using the direct stiffness
method.

5. Solution of (3.22) for {r} is obtained using Gauss elimination
method. The properties of symmetry and band structure of [K] are
taken to full advantage in storing this matrix and in the

solution of the simultaneous equations (3.22). Since [K] is
positive definite no pivoting is required.

6. Having determined {r} and generalized displacements {a}, the
strain increments and stress resultants are obtained using (5.46)

and (5.24), respectively.



7. The procedure for computing the new material properties for
each load increment is illustrated in the flow chart as shown in
Figure 19. The chart indicates the procedure for a typical
loading increment m. Notations are mostly those used in Chapter
4. Quantities with subscript T are temporary and are adjusted.
In this diagram; branch (I) indicates that the material point

is still in the elastic state, branch (II) corresponds to the
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initiation of plastic deformation or reloading after an unloading,

and branch (III) is associated with the continustion of loading.
Here, the term loading signifies the loading which produces
plastic deformation and corresponds to the state of stress in
the neighborhood of a material point. Matrix [a], with a change
of notation, is defined in (4.74). To expedite convergence the
expression in block 4 is replaced by aT < 0.999 6ﬁ~1°

The procedure shown in this chart is applicable to
isotropic hardening as well as to perfectly plastic material,
Equations (4.68) and (4.69). With a slight modification,
kinematic hardening can be also treated by replacing (4.70) for
(4.69) and making appropriate modification for loading criterion.

As far as computer time for the whole process is concerned,
this mainly depends on the number of elements and the number of
loading increments. As a guideline, for a sclution with about
30 elements and 20 layers the computer time for the execution
of the first loading increment is one second/element and for the
execution of any other loading increment is 0.8 second/element.

The execution time per element reduces if the number of elements

increases.
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6.2 Comparison of the Elements

Two types of elements, designated by FDR(i) and FDC(i)*, which were
discussed in Chapter 5 are compared here by means of a numerical example.
Geometry of all of these elements are expressed in local Cartesian coordinates
€-T, (5.35) and (5.36). Other curved elements were also developed in terms
of their intrinsic geometry. Their formulations are more involved and require
some approximations. The numerical examples indicate that they yield
inferior results comparing to those presented here.

For the purpose of comparison an example of a hemispherical shell
under internal pressure is selected. A roller edge which does not restrain
normal displacement and meridional rotation is specified. For this type
of loading and support conditions the membrane theory, within the
limitation of the Love's first approximation, gives the exact solution
and no bending moment should appear anywhere in the shell. Its closed

form solution is as follows
1
=N = N_==pR
N 5 [

M=M =M_,=0

S )
- (1-vy PR
w o= (1-V) oFL
u =20

* See, page 89
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This example serves particuarly to detect any bending moment which may be
generated in the shell as the result of geometrical idealization.
For the numerical computation, the following material properties and

dimensions are selected

v = 0.30
6 .
E = 10x10 psi
h = 3 in. thickness of sphere
R = 100 in. radius of sphere
p = 1 psi internal pressure

which gives
N = 50 # /in

w = 1-1/6 x 10~4 in.

Figures 20 through 25 show a comparison among FDR(1), FDR(Z), and
FDC(2) with 3 and 9 elements. The results clearly indicates that FDR(2)
is superior to FDR(1l) and FDC(2), in prediction of both the displacements
and stresses. In this example the solution with 9 elements in a computer
working with 8 deciminal digits; FDR(2) yields accurate results up to
6 digits, whereas the accuracy of FDC(2) and FDR(1l) does not exceed 3
and 4 significant digits, respectively. Hence, although in some figures
the plotted points for different elements coincide, the degree of accuracy
is not the same. A comparison of results for FDR(1l) and FDR(2) shows a
relative improvement that can be achieved by matching curvatures at nodal

circles.
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To compare the results obtained with a curved element with those of a
conical element, the same example was worked out using the computer program
developed in Ref. [13]. The hemisphere was divided into 9 elements. A
spherical cap was used for the central element and the remaining elements
were conical. The results for displacement and meridianal bending moment
are shown in Fig. 26. It indicates that the overall displacements agree
closely with the exact solutions but there is a sudden jump at P = 90o
which deviates from the exact solution by 45%. The principal inaccuracy
appears to be in the prediction of bending moments. The largest bending
moment, which occurs at @ = lOO, produces stresses at outer layers which
are greater than those of membrane forces. The high concentration of
bending moments at nodal circles, which are the results of idealization in
geometry, is more undesirable in the plastic analysis than in the elastic
analysis. Because these bending moments may cause a premature onset of
plastic deformation which could lead to an overall change in the

characteristic of the system.
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6.3 Comparison in the Elastic Range

The curved element developed here is compared with a theoretical
solution obtained elsewhere by another method and with the results of an
experiment in the elastic range. In these examples the shell geometries
are relatively simple and can be managed by classical methods. The intent
of comparisons given here is merely to show the reliability of the proposed
approach but not its versatility. The results of these examples and those of
may others, which were worked out but not reported here for the sake of
brevity, show a rapid convergence of the solution. Since the curved element
is employed, any shell geometry can be closely approximated. In general,
the solution can be achieved with fewer number of subdivisions compared
to that with conical elements. As an illustration of this, a case is cited

in connection with the toroidal shell example.

6.3.1 Toroidal Shell

The shell consists of a torus which is loaded by internal pressure,
A refined procedure, which combines both the direct integration and the
finite-difference approach, was used in Reference [11] to achieve a solution
of this problem. The results reported in [11] are compared with the results
of the finite element solution developed here.

Because of symmetry only the upper half of the torus is analyzed.
The internal boundary condition: at the junction of the upper and the
lower half, which indicate that the meridional rotation and displacement

should vanish at this junction, were imposed to achieve the solution.
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FDR(2) elements of several mesh sizes were employed. The comparison for
the normal displacement, w, and meridional bending stress st are shown in

Figures 27 and 28. The results by the finite element method are plotted

for the number of elements equal to 16 and 30. The input data are as follows:

E = 1OX106 psi v = 0.30

h = 5 in. shell thickness

R = 100 in. torus radius

a = 150 in. as shown in Fig. 27
p = 1000 psi internal pressure

The sizes of elements selected for this analysis can be inferred from the
location of the points on these figures. As can be deduced from these
figures, the convergence of the solution is fast and a remarkable accuracy
can be achieved by taking a relatively small number of elements. It may
be noted that the same problem was tackled in a graduate student research
report at Berkeley* using the conical element developed in [13], where a
less satisfactory result is reported even with 120 relements.

Other examples of toroidal shell with different relative geometry
were also worked out. It was observed that for smaller % ratios finer

subdivisions should be used to obtain a comparable accuracy for bending

h
moments. This is due to the fact that with the decrease in the R ratio

* e
J.R. Chisholm, "Finite Element Solution of Toroidal Shells of Revolution,
Graduate Student Research Report No. 225, SESM Division, Univ. of Calif.,
Berkeley, Fall 1965.



the membrane stresses become dominent compared
Therefore, the order of accuracy of the digits
stresses diminish. To recover the significant

to keep the number of elements constant but to

113

to those of bending.
expressing the bending
digits, it is also possible

retain a larger number of

digits in the computation. The increase in the required number of elements

to achieve the desired accuracy, however, was found not to be excessive.

The optimum element size can be easily reached

obtained by using different element sizes.

by comparing the results
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6.2.2 Toriconical Shell

A special type of toriconical shell is selected. The shell consists
of a cylinder which is closed at one end by a 450 spherical segment and a
cone, Fig. 29. At the junctions of cylinder-to-sphere and sphere-to-cone
the slopes are continuous but the meridional curvatures are not.

Two specimens of toriconical shell where tested under internal pressure
in the elastic range by Morgan and Bizon* at the NASA Lewis Research Center,
Cleveland, Ohio. The results of an experiment on the smaller size specimen,
which was prepared with higher degree of precision in fabrication, are
compared with the finite element solution.

The material properties and the dimensions of the specimen are as

follows:
E = 1Ox106 psi v = 0.30
h = 0.06 in. shell thickness
D= 12.00 in. outer diameter of cylinder
4 = 9.50 in.. . cylinder length
L = 18.0 in. total length of shell
¢O = 45° half-angle of the cone
p = 250 psi internal pressure

The theoretical results with the aid of FDR(2) element were obtained

using the above data. Two different mesh sizes were selected: one with

* 1
W.C. Morgan and P.T. Bizon, 'Experimental Evaluation of Theoretical Elastic
Stress Distribution for Cylinder-To-Hemisphere and Cone-to-Sphere Junctions
in Pressurized Shell Structures,’ NASA Technical Note, D-1565, February 1963.
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The results between the two solutions indicate close agreement, Figures 29

and 30 show the meridional and the circumferential stress distribution
predicted by theory and that obtained in the experiment.

plotted to show the distribution of the effective stress

as was defined in (4,24).

The correlation between the theory and the

experiment is within the range of the test control.

.T«
It may be mentioned that the NASA paper
theoretical results which are obtained based on the classical solutions

for a sphere, a cone,

of superposition.

Ibid

also reports some

Figure 31 is also

and a cylinder combined together by using the method
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6.4 Elastic-Plastic Solutions

Two examples are reported below to demonstrate the application to
elastic-plastic problems. Von Mise yield condition and the associated
flow rule were used in these examples. The first example is chosen to
compare the result with that of a previous report where a different approach
was used. The other is concerned with a case study for torispherical
pressure vessel,

6.4.1 Circular Plate

A simply supported circular plate of elastic-isotropic hardening
material is selected. The material properties and dimensions are the same

as those reported in Examples No, 6 of Ref. [34], where

a = 10 in. plate radius

h =1 in. plate thickness
6 .

E = 10x10 psi

v = 0.33

oy = 16,000 psi elastic limit
6

Et = 3x10 tangent modulus

For the analysis using the finite element method, 20 elements and 20
layers were selected. After initiation of plastic deformation at the center
of plate, loading was increased with increments of 10 psi.

Results of this example together with that obtained in [34] are
shown in Figures 32 to 34. For comparison, solution according to elastic
theory is also plotted in Figures 32 and 33. A redistribution of moment as
a result of plastic deformation is apparent in Figure 33. Except for =

slight change in elastic-plastic boundaries, a good correlation is obtained.
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6.4.1 Torispherical Shell

A torispherical pressure vessel head subjected to uniform internal
pressure is analyzed here. The material is assumed to be elastic-perfectly
plastic. An example is worked out for a shell of uniform thickness with

the following dimensions:

D = 10 in. diameter of head skirt
L=D radius of sphere

r = 0.060D meridional radius of torus
t =0.004 D shell thickness

The material properties are taken as follows

30x106 psi

=3}
i

Y = 0.30

o, = 30,000 psi

Three different element sizes, with 16, 32, and 47 elements; were
tried for a shell under 25 psi internal pressure and the result for normal
displacement w is plotted in Fig. 35, where a good convergence is observed.

An example with 47 elements;

20 elements in the spherical segment
16 elements in the toroidal segment

11 elements in the cylindrical segment

and 20 layers was analyzed for elastic-plastic solution. After the appli-

cation of the first increment of load of 42 psi, which is slightly less
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than the yield pressure; the loading was continued with different load
increments of 6, 3, and 1.5 psi. The results for normal displacement w
at the center of shell, ® = 0, versus internal pressure is shown in Figure
36 where the trend of convergence can be observed. By comparing these
three curves, it can be deduced that the rate of convergence increases as
the magnitude of load increment decreases. The results of solution with
1.5 psi load increment are plotted in Figures 37 to 42, Figures 37, 38,
and 39 show the normal displacement w, meridional moment Ms’ and circum-

ferential in plane force N respectively, for loading of 60, 81 and 102

g’
psi. The elastic solution for 102 psi is also shown in these figures.
Figures 38 and 39 clearly indicate a redistribution of stresses as the
result of plastic deformation. In Figure 40 the boundaries of elastic-
plastic zones are shown at several stages of loading, where a plastic
region initiated at torus is propagated towards the spherical and
cylindrical segments. Finally, Figures 41 and 42 show the stress path
at several points along the meridian. It is interesting to note that
although the external load was applied proportionally, the stress path
does not remain radial. As the result, the deformation thecry of
plasticity is not quite suitable for this class of problem.

It may be of interest to compare the results obtained here with
the limit load predicted in Ref. [62] and another paper by Shield and

= 0,004 these

Sl

*
Drucker. For the dimensions of shell selected here with

* " .

R.T. Shield and D.C. Drucker, Limit Strength of Thin Walled Pressure
Vessels With an ASME Standard Torispherical Head,' Proc. of 3rd U.S.
Nat. Congr. Appl. Mech., pp. 665-672, 1958,
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authors predict an ultimate pressure of

= 0.364, p' = 87 psi

This pressure is shown in Figure 36, which is lower than what might be
considered as limit pressure using the procedure presented here. This
might be attributed to the various approximations which were introduced

in the above references namely; elimination of M, from the yield criterion,

o
neglecting MG and MCP in the equilibrium equations, and estimating the
ultimate pressure from its bounds. In addition, the three hinge mechanism,
which was assumed to achieve an upper bound, was not realized here.

The design pressure according to the ASME Unfired Pressure Vessels

sk
Code for a torispherical shell is equal to

D  2SEt
T LM+0.2t
where,
D . .
p - design pressure, psi
S - maximum allowable working stress, psi
E -~ lowest efficiency of any joint in the head
L - inside spherical radius, inches
1
M_Z (3+A<£)
r
r - inside toroidal knuckle radius, inches

*
ASME Boiler and Pressure Vessel Code, ''Section VIII, Unfired Pressure
Vessels," 1965.
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t - minimum required thickness of head after forming, inches
(exclusive of corrosion allowance)
and the inside diameter of the head skirt D is taken to be

equal to L. Defining the load factor n

the above formula can be recast as
20 t
=
P LM+0.2¢t

where

u D
p = np

For the example given here it tumns out that

u
p

1l

135.5 psi
which is higher than what might be considered as limit pressure in Fig. 36.

Note that the effect of workhardening was not considered in this example.
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7. CONCLUSIONS

A numerical method has been presented for the analysis of elastic-
plastic shells of revolution under axisymmetric loading and support conditions.
The shell is assumed to be torsion-free, and Kirchhoff hypotheses together
with Love's first approximation and small deflection theory are adopted.

The method is quite general and is applicable to any shell geometry, loading,
support conditions, and material properties; subject to the condition of
axial symmetry. The approach is suitable for a routine computation on a
digital computer.

The finite element method using the displacement model 1is selected to
analyze the system., For a close idealization of the shell geometry, a
curved frustum is taken as the primary element. Because the shell is axially
symmetric, only the meridian is to be defined. In a search for geometric
representation of a curved element, two schemes are considered. One is to
express this curve in terms of its intrinsic equations. This is found to be
numerically laborious and requires some approximations. The approximations
are not suitable for the entire range of latitude angle. The other is to
represent the curve in some local coordinates. Employing the latter approach,
an element was developed which can take specified slopes and curvatures at
its nodal circles and is well-conditioned for any shell geometry. It appears
possible to generalize these two schemes to express the geometry of a curved
element for a shell of arbitrary shape.

Representation of displacement patterns of a curved element is another
important problem. The displacement patterns can be alternatively expressed

in either surface (curvilinear) or local (rectilinear) coordinates,. Comparison
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of the two approaches was made with the aid of numerical examples. The latter
was found to be superior in accommodating for rigid body translation and
constant straining modes.

In general, idealization of the meridional curve with the aid of curved
elements is found to greatly improve the results. The accuracy of the solution
is considerably increased. At the same time, a smaller number of elements can
be used in comparison to that of a conical element. Moreover, the extra effort
for deriving the element stiffness matrix for a curved element and the extra
computer time for execution is very small. It should be noted that for a very
thin shell where the membrane forces become predominant and the bending effects
are localized, a very fine mesh should be used near the boundary layer region
even with a curved element. An improvement of the solution can be achieved
by allowing more degrees of freedom in the displacement patterns. The solution
can proceed either by a condensation technique or by including extra degrees
of freedom, such as change of curvature, at nodal circles. This requires
further investigations.

An incremental technique using the tangent stiffness method was utilized
for the elastic-plastic solution. Flow theory of plasticity was:employed
which allows the trace of any loading history. Although any material properties
can be specified, the examples are given for elastic-perfectly plastic and
elastic-isotropic hardening materials using Mises yield condition and its
associated flow rule.

Finally, a computer program was developed which can treat any rotational
shells with arbitrary geometry and support conditions. The shell thickness may
vary along the meridian and any distributed and/or concentrated ring loads can
be specified. With the aid of numerical examples, the convergence and the

accuracy of the method is found to be entirely satisfactory.
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