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Abstract 

When a signature of natural selection is discovered on a gene that is pleiotropic or in tight 

linkage with other genes, it is challenging to determine which of the affected phenotypes is under 

selection. One way to make progress is to employ methods for analyzing natural selection on 

correlated traits, including both genotype and phenotype. We used this approach in threespine 

stickleback to estimate selection on a rapidly evolving trait, lateral armor plates, while 

controlling for variation at its major underlying gene, Ectodysplasin (Eda), and vice versa. This 

allowed for independent estimates of selection on lateral plates and on Eda via other traits. 

Previously, we demonstrated allele frequency changes at Eda in a pond experiment. Here we 

show that this resulted from selection on both plates and on Eda, implying additional selection 

on other phenotypic traits affected by the same gene. This represents the first evidence for direct 

selection on lateral plates independent of selection on the Eda locus and highlights the value of 

measuring selection on both phenotypes and genotypes in studies of adaptation.  
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Introduction  

The study of adaptation seeks to establish a link between phenotypic variants, their 

underlying genotypes, and their fitness in a given environment. Recent advances in sequencing 

and genomics have enabled researchers to identify genes and genomic regions under natural 

selection using genome scans (e.g. Beaumont and Balding, 2004; Linnen et al., 2009; Jones et 

al., 2012; Therkildsen et al., 2013) and experimental studies of changes in allele frequency over 

time (e.g. Korves et al., 2007; Barrett et al., 2008; Burke et al., 2010; Fournier-Level et al., 2011; 

Pespeni et al., 2013; Gompert et al., 2014). However, pleiotropy and genetic linkage complicate 

the effort to identify phenotypic targets of selection. Even if a focal phenotype has been 

identified, a signature of selection at a locus may result instead via other traits determined by the 

same gene or linked genes, dragging the focal trait along as a correlated response. The challenge 

is similar to that faced by researchers attempting to identify which trait or traits, among a 

correlated suite, are the direct targets of phenotypic natural selection (Lande and Arnold, 1983; 

Price and Langen, 1992). Statistical methods for estimating selection on correlated phenotypic 

traits (Lande and Arnold, 1983) have been useful in identifying the phenotypes that are direct 

targets of natural selection (e.g. Grant, 1985; Schluter and Smith, 1986; Price and Langen, 1992; 

Nagy, 1997; Reznick et al., 1997). Here we show that the same approach can be utilized to help 

determine whether selection on a focal phenotypic trait has contributed to changes in genotype 

frequency at an underlying gene.  

We apply the Lande-Arnold approach to a study of multivariate selection on armor 

plates and its major underlying gene, Ectodysplasin (Eda) (Colosimo et al., 2005), in threespine 

stickleback (Gasterosteus aculeatus). Freshwater populations established following colonization 

by the marine threespine stickleback after the last ice age (10-12,000 years ago) have repeatedly 
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evolved a reduction of bony lateral armor plates (Bell and Foster, 1994). Adult marine 

stickleback generally possess 30 to 36 lateral plates on each side of the body, whereas most 

freshwater populations founded by marine colonizers have between 0 and 9 plates (Bell and 

Foster, 1994). The rate of evolution of plate loss in freshwater can be rapid (Klepaker, 1993; 

Kristjánsson et al., 2002; Bell et al., 2004; Kristjánsson, 2005). In every known case, loss of 

plates in freshwater has taken place via the replacement of the “complete” armor allele at the Eda 

locus (hereafter, the C allele) by a relatively ancient “low” armor allele (the L allele) (Colosimo 

et al., 2005). The rapid and parallel substitution of one allele by another strongly suggests that 

natural selection is responsible (Simpson, 1953; Schluter and Nagel, 1995), but it does not 

identify the mechanism of selection. In particular, we remain uncertain whether armor plating is 

itself the target of selection, or whether its rapid evolution is a by-product of selection on other 

traits affected by the same underlying gene. 

Number of lateral plates has long been regarded as the direct target of natural selection 

(Bell and Foster, 1994), and there is some evidence in support of this hypothesis (Hagen and 

Gilbertson, 1973; Bell et al., 2004; Raeymaekers et al., 2007; Kitano et al., 2008; Leinonen et al., 

2011; DeFaveri and Merilä, 2013). However, no study has distinguished selection on lateral 

plates from selection on other traits that may be controlled by Eda or other tightly linked genes. 

In a previous study we detected strong selection at the Eda locus in marine stickleback 

transplanted to freshwater ponds (Barrett et al., 2008). The experiment was conducted to test the 

“growth hypothesis” for the adaptive value of low armor plating in freshwater, namely, that low 

armor is favored because of the high cost of mineralizing bone under reduced ion availability 

(Giles, 1983; Bell et al., 1993; Marchinko and Schluter, 2007). The experiment tested the 

prediction that low-armor phenotypes would have faster growth, leading to higher survival and 
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earlier reproduction, by measuring relative fitness of genotypes at the underlying Eda gene. All 

transplanted adult marine stickleback were heterozygous at the Eda locus (CL genotype), and 

they bred in artificial ponds to produce a cohort of all three genotypes (CC, CL, and LL) whose 

frequencies were then tracked over the course of a year. Some of the results of the study 

supported the growth hypothesis. In particular, mean body length was positivity correlated with 

the number of low alleles a fish possessed. Barrett and colleagues (2008) also found strong 

selection at the Eda locus. No such selection on Eda was detected in similar crosses raised in the 

lab (Barrett and Schluter, 2010). These results are consistent with the growth hypothesis; 

however, the study did not directly measure selection on lateral plates. Thus, it remains to be 

determined whether the observed changes in Eda genotype frequencies were the result of 

selection on plates or selection on other (unknown) traits affected by the Eda locus.  

Here we estimate the strength of selection on lateral plates while controlling for Eda 

genotype. This is possible because genetic and phenotypic variation in lateral plate number is 

present within Eda genotypes (Colosimo et al., 2005). If selection acted on lateral plates, it 

should be detectable even while holding Eda genotype constant. Conversely, if genotype 

frequency changes at Eda resulted only via its pleiotropic effects on other selected traits, then 

holding Eda genotype constant should eliminate apparent selection on plates. In this case, 

holding plate number constant should have little effect on the estimated strength of selection on 

Eda genotype. 

 

 



6 
 

Materials and Methods 

Pond Experiment 

The original experiment is fully described in Barrett et al. (2008). Briefly, 45 or 46 wild 

adult marine threespine stickleback heterozygous at the Eda locus were introduced into four 

experimental freshwater ponds on the University of British Columbia campus. The fish were 

allowed to reproduce and, beginning in August 2006, 50 F1 progeny per pond per month were 

destructively sampled, assayed for standard length, and genotyped at a diagnostic marker for the 

Eda locus (Colosimo et al., 2005). The allele and genotype frequencies of the four F1 populations 

were then compared over the course of a year. 

Here we focus on the three samples of juvenile fish taken in September, October, and 

November 2006, during which the strongest changes in genotypes frequencies were detected at 

the Eda locus (Fig. 1). Selection increased the CC genotype frequency by 19% between 

September and October, and lowered the CL genotype frequency an equal amount. C allele 

frequency decreased from October to November, however, driven by a 15% decrease in CC 

genotype frequency and a 12% increase in CL genotype frequency. During both periods the LL 

genotype frequency remained largely unchanged.    

 

Lateral Plate Phenotype 

We measured the number of lateral plates in a random sample of individuals from each of 

the three genotypes, yielding a total of between 76 and 85 fish from each of the September, 

October, and November samples in the Barrett et al. (2008) experiment (241 fish in total). Fish 

specimens were fixed in 10% formalin and stained with 0.001-0.002% w/v alizarin red S powder 
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in a 2% w/v potassium hydroxide solution. Stained fish were then photographed under 

standardized conditions and the total number of lateral plates on the left side was counted.  

 Lateral plate number was positively correlated with standard length, a measure of fish 

body size, particularly in CC and CL genotypes (CC, r = 0.83, P = 2.07x10
-13

; CL, r  = 0.53, P = 

4.94x 10
-12

; LL, r = 0.07, P = 0.45), indicating that the number of plates had not completed 

development in many of the juvenile individuals in the samples. We used a breakpoint regression 

method (Fig. A1) to size-adjust plate number, as follows: we fit a model in which the logarithm 

of plate number y increased linearly with fish length x up to a threshold value, x*, beyond which 

no further change took place: 

 Y = a + bx     for x < x* 

 Y = a + bx*   for x > x* 

The constants a, b, and x* were estimated from the data using nonlinear least squares (using the 

“nls” function in R, version 2.15.0; R Development Core Team 2012). Log plate counts were 

used in this analysis to reduce the skew of the data. The intercept and slope, a and b, were free to 

vary between Eda genotypes. We assumed that the threshold size x* was the same for all three 

Eda genotypes, since more complex models that also varied the threshold x* between genotypes 

did not improve the fit, as judged by AIC scores. Incorporating separate coefficients for each of 

the four ponds also did not improve the fit, and the analyses we present here do not include pond 

effects. The threshold x* value was estimated to be 34.0 mm ± 1.3 SE (Fig. A1). In our selection 

analyses, log plate number for each fish was size-adjusted to a body length of 34.0 mm. Adjusted 

log plate counts were then back-transformed to the original and more intuitive non-log scale. 

Adjusted plate counts exceeding the value 32 were reduced to 32 to ensure that the range did not 

exceed the natural maximum seen in our data set.  



8 
 

 

Selection Analysis 

We estimated selection coefficients (standardized partial regression coefficients) using the 

method for cross-sectional data (Lande and Arnold, 1983):  

  ̂= P
-1

[ ̅after –  ̅before],  

where   ̂ is the vector of estimated selection coefficients,  ̅ is the vector of means of the focal 

phenotype trait and genotype scores (hereafter, “traits”) before and after selection, and P is the 

matrix of variances and covariances of the traits before selection. Separate analyses were carried 

out for the two episodes of selection, one between September and October 2006, and the other 

between October and November 2006 (Fig. 1).  

The vectors of trait means included the size-adjusted number of plates as the focal 

phenotypic trait. Genotype was scored using two genotype indicator variables. The first genotype 

variable (“additive”) coded the LL genotype as -1, the CL genotype as 0, and the CC genotype as 

1. The second genotype variable (“dominance”) coded homozygous genotypes (LL and CC) as 0 

and the heterozygotes (CL) as 1. All selection coefficients were standardized by multiplying each 

partial regression coefficient by the standard deviation of the trait before selection, to allow 

comparison between trait and genotype scores measured on different scales (Lande and Arnold 

1983). Since Eda genotype is categorical and lateral plate number is numerical, the method used 

here is an analysis of covariance to tease apart the contributions of genotype and plates to 

relative survival. Note that  ̂ is not strictly a selection gradient because the traits do not have a 

multivariate normal distribution. 

Our analysis is within a single generation, and hence requires no assumptions about the 

probability distribution of breeding values of the numeric trait. Lande (1983) presents the theory 
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for predicting evolutionary response to selection on a quantitative trait influenced by a major 

locus and having an otherwise additive genetic basis. We do not predict evolutionary response 

here because our focus is on selection. 

We also calculated standardized univariate selection intensities (s') separately for lateral 

plates and the genotype variables as: 

s' = ( ̅after -  ̅before)/ ̂before, 

where  ̅before and  ̅after are the phenotype or genotype trait means (coded in the same way as the 

dominance variable) before and after selection and  ̂before is the estimated standard deviation of 

the trait before selection.  

 For simplicity, our analysis used size-adjusted lateral plates. However, we carried out an 

additional analysis in which size (standard length) was included as a trait along with unadjusted 

lateral plate number and Eda genotype. To accommodate the nonlinear relationship between 

plate number and size, it was necessary to adjust the standard length of the largest individuals to 

a maximum of 34.0 mm, the estimated breakpoint (Fig. A1). The results of this analysis were not 

quantitatively different from the simpler analysis using size-adjusted plates and we do not 

present it.  

 To simplify further, our first analysis excluded the LL genotype and retained the CL and 

CC genotypes (Table 1). In this case there is only one genotype variable in the linear model (CL 

genotype is scored as 1 and CC is scored as 0), which incorporates the dominance component of 

Eda genotype but also half the additive component. This simplification is justified because CC 

and CL genotypes have high variance (Table A2) and overlap in plate number, which is required 

to disentangle the separate effects of plates and genotypes on fitness. The variance-covariance 

matrices for the one-genotype analysis are given in Tables A3 and A4 (one for each pair of 
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months). In contrast, there is little plate number variation within the LL genotype, and little 

overlap in plate number with the other genotypes. A second analysis that included the LL 

genotype and the dominance variable is reported in the online appendix (Table A1; see Tables 

A5 and A6 for the variance-covariance matrices).  

 We generated 95% confidence intervals for partial regression coefficients for each pair of 

months using a bootstrap resampling procedure. Each bootstrap replicate involved resampling 

with replacement, for a given month, the genotypes of n individuals from the corresponding 

Barrett et al (2008) data set, where n is the number of individuals measured in our sample (the 

number for which we have lateral plate measurements). Next, for each genotype i we resampled 

ni phenotypes from the distribution of lateral plates corresponding to each genotype in the data. 

Resampling was done 10,000 times. Standardized partial selection coefficients were then 

calculated on each bootstrap replicate. The 0.025 and 0.975 quantiles of the coefficients were 

used to calculate the 95% confidence intervals of the parameters. The 95% confidence intervals 

of the selection intensities were estimated in the same way.  

All our analyses incorporate pond as a fixed effect, essentially treating individual fish as 

the unit of replication. This is in contrast to the Barrett et al. (2008) study, which treated pond as 

a random effect and the unit of replication. Our approach here is justified because our goal is not 

to test for selection generally, as in the case of Barrett et al. (2008), but rather to investigate more 

narrowly the targets of selection within an experiment that has already demonstrated selection. 

All of the ponds responded similarly, and including pond in the analysis did not affect the results. 

For simplicity we present only the results for the analyses without the pond variables. 

All statistical analyses were conducted in R (version 2.15.0, R Development Core Team 

2012). 
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Results 

We detected strong selection both on Eda genotype and on lateral plates (Table 1; Table 

A1) using multivariate methods. Between September and October, selection favored the Eda CC 

genotype over the CL genotype: point estimates of selection for the genotype variable and 

phenotypic trait, lateral plates, were similar in magnitude (Table 1), although the 95% confidence 

interval for lateral plates narrowly spanned zero. Between October and November the direction 

of selection changed, now favoring the CL genotype. During this period, selection on lateral 

plates and genotype was slightly weakened and the confidence intervals for both variables 

spanned zero (Tables 1). Thus, selection on plates and genotype could not be disentangled in this 

episode. These analyses include only two genotypes and hence a single genotype variable that 

lumped additive and dominance components. When we analyzed all three genotypes in the 

September-October episode by including two genotype variables, one for each of the additive 

and dominance components, we detected strong selection on the dominance component of 

genotype (Table A1). The CL genotype was disfavored, in agreement with the findings of Barrett 

et al., (2008), who detected heterozygote underdominance for fitness. The point estimate of 

selection on plates was positive, but the confidence interval (barely) spanned zero. All 

confidence intervals for selection between October and November spanned zero, again indicating 

that selection on plates and genotype could not be disentangled in this episode (Table A1). 

If we had limited our analyses to univariate estimates of selection (s'), which by 

definition do not account for selection on correlated characters, the picture would have appeared 

different. The mean number of adjusted plates changed only slightly between September (18.7 

+/- 0.91 SE), October (19.01 +/- 1.04 SE) and November (18.65 +/- 0.89 SE) (Fig. A2). 
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Consequently, the estimates of selection intensity indicated much weaker selection on lateral 

plates relative to selection on Eda genotype, which was at least an order of magnitude greater 

(Table 2). Additionally, unlike the selection intensity estimates for Eda genotype, the selection 

intensity estimates for lateral plates were near zero. Correspondingly, if selection estimates on 

lateral plates were only univariate (Table 2) the selection on lateral plates that was detected in the 

multivariate analysis (Table 1) would have been missed.  

 

Discussion 

 We compared the magnitude of selection on a trait and its major underlying gene to 

investigate the targets of selection during two episodes. Univariate estimates of selection 

indicated strong selection on Eda genotype and only weak selection on lateral plate phenotype 

(Table 2). Our aim was to determine whether changes in Eda genotype frequency within a cohort 

in an experiment were due to selection on lateral plates themselves, as has been repeatedly 

suggested (Hagen and Gilbertson, 1973; Reimchen, 1992; Bell et al., 2004; Kitano et al., 2008), 

or the result of selection on some other unmeasured traits affected by the same underlying gene. 

Using Lande-Arnold (1983) methods for correlated characters, we found that selection on lateral 

plates was of similar strength as selection on Eda genotype in one of two episodes (Tables 1 and 

A1), although barely non-significant. In the second episode, confidence limits for both selection 

coefficients spanned zero and thus selection on plates and genotype could not be disentangled 

(Tables 1 and A1). The three-genotype analysis incorporating a dominance variable (Table A1) 

indicates that the selection on Eda genotype (Table 1) was largely the result of selection against 

heterozygotes, rather than on the additive component of genotype; this heterozygote 

underdominance for fitness was previously suggested by Barrett et al. (2008).  
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 These results suggest that the rapid changes in genotype frequency at the Eda locus 

during experimental freshwater introduction were partially due to selection on lateral plate 

phenotype and partially due to selection on additional, unmeasured traits controlled by Eda or a 

tightly linked gene. However, genotype and phenotype are strongly correlated (r = 0.698), and 

their separate effects on fitness could not be separated in the second episode (October - 

November). While the analysis of selection on correlated traits has its limitations (discussed by 

Mitchell-Olds and Shaw, 1987), we suggest these methods may help to disentangle whether 

selection is directly or indirectly influencing a phenotypic trait of interest when genotype at its 

major underlying locus is known.  

Direct selection on lateral plate phenotype has long been thought to be the main factor 

driving the repeated evolution of reduced lateral plate armor in freshwater populations (Hagen 

and Gilbertson, 1973; Reimchen, 1992; Bell et al., 2004; Kitano et al., 2008; Leinonen et al., 

2011). A number of studies have suggested that plate reduction has been favored in freshwater 

due to an increased cost of mineralizing bone in freshwater due to reduced ion availability 

relative to marine environments (Giles, 1983; Bell et al., 1993). This hypothesis has some 

empirical support; Marchinko and Schluter (2007) and Barrett et al. (2008) found that low-plated 

genotypes grew faster in fresh water. Other work suggests that reduced predation in freshwater 

environments relative to the marine environment is responsible for lateral plate reduction 

(Moodie et al., 1973; Reimchen, 1992; Reimchen, 2000). Lateral plate reduction has also been 

suggested to improve swimming ability by increasing burst speed and buoyancy, which may aid 

in predation avoidance (Bergstrom, 2002; Myhre and Klepacker, 2009). However, until now no 

study had disentangled the direct effect of plates on growth, and survival from the effects of Eda 

via other unmeasured phenotypic traits.  
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Two previous studies of geographic variation in lateral plates and Eda genotype 

frequencies found that genetic variance among populations (Fst) at Eda was lower than 

phenotypic variance in lateral plates (Qst/Pst) (Raeymaekers et al., 2007; DaFaveri and Merilä, 

2013), relative to total variance. This suggested stronger divergent selection among populations 

on lateral plates than on Eda frequencies. These results are consistent with our findings of 

selection on plates in a pond experiment. However, when we estimated the direct contribution of 

lateral plates to changes in Eda genotype frequencies, we found that lateral plates only partially 

explain these changes. Statistically controlling for number of lateral plates did not eliminate the 

signal of strong selection on Eda. These results highlight the value of measuring selection on a 

trait and its major underlying gene to help identify targets of selection. 

On the basis of these results, we suggest that the rapid and repeated evolution of low-

plated armor in freshwater may be the result of both selection on lateral plates and a correlated 

response to selection on other unmeasured traits affected by Eda. Eda has been suggested to have 

diverse pleiotropic effects (Barrett et al., 2009a; Saider et al., 2013). For example Eda has been 

shown to affect the number of neuromasts along the lateral line (Wark et al., 2012; Mills et al., 

2014). It is currently unclear if Eda’s effect on neuromast distribution is direct or whether it is 

mediated indirectly through lateral plate development (Mills et al., 2014). Thus, there is potential 

that some of the selection that we detect at the Eda locus and/or lateral plates is due to selection 

on the lateral line sensory system. In addition to its role in lateral plate and neuromast 

development, variation at Eda is associated with variation in schooling behavior (Greenwood et 

al., 2013) and propensity to switch between water conditions of varying salinity (Barrett et al. 

2009b). In addition, selection might be acting on traits controlled by genes in linkage 
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disequilibrium with Eda (Colosimo et al., 2005), which lies in a region of low recombination 

(Hohenlohe et al., 2011).   

This study serves as a reminder that although genetic and genomic studies are 

informative about the evolution of traits, alone they provide insufficient evidence for selection on 

those traits, even when the link between a particular genotype and phenotype appears clear. 

Correspondingly, estimates of natural selection on phenotypes will remain an important 

component in genomic studies of adaptation (Travisano and Shaw, 2013) and are required to 

indicate whether mechanisms such as correlated selection are at work.  
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Online Appendix: Supporting Information 

 

Table A1: Standardized partial selection coefficients for the lateral plate phenotype, Eda 

genotype, and dominance for the September to October and October to November periods. 95% 

confidence intervals are reported in brackets.  

 September-October October-November 

  ̂  ̂ 

Lateral plates  0.35 (-0.08, 0.78) -0.16 (-0.83, 0.40) 

Additive genotype -0.04 (-0.43, 0.38) -0.04 (-0.65, 0.69) 

Dominance -0.47 (-0.83,  -0.14)  0.26 (-0.14, 0.71) 

 

 

Table A2: Variance in lateral plate number for each Eda genotype by month. 

 September October November 

CC 22.1 25.8 24.3 

CL 19.7 19.1 18.7 

LL 9.5 8.4 8.7 

 
 
 

 

 

 

Table A3: Variance covariance matrix for the standardized traits included in the one-genotype 

variable Lande-Arnold analysis for the September – October period. 

 Lateral Plates Additive Genotype 

Lateral plates 0.70 0.17 

Genotype 0.17 0.41 
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Table A4: Variance covariance matrix for the standardized traits included in the one-genotype 

variable Lande-Arnold analysis for the October – November period. 

 Lateral Plates Additive Genotype 

Lateral plates 0.63 0.23 

Genotype 0.23 0.40 

 

 

 

Table A5: Variance covariance matrix for the standardized traits included in the two-genotype 

variable Lande-Arnold analysis for the September – October period. 

 Lateral Plates Additive 

Genotype 

Dominance 

Lateral plates 1.04 0.68 0.06 

Additive 

genotype 

0.68 0.10 -0.16 

Dominance 0.06 -0.16 1.01 

 

 

 

Table A6: Variance covariance matrix for the standardized traits included in the two-genotype 

variable Lande-Arnold analysis for the October – November period. 

 Lateral Plates Additive 

Genotype 

Dominance 

Lateral plates 1.05 0.81 0.01 

Additive 

genotype 

0.81 1.07 -0.14 

Dominance 0.01 -0.14 0.94 
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Tables 

 

Table 1: Standardized partial selection coefficients for lateral plate phenotype and Eda genotype 

for the September to October, and October to November, episodes. 95% confidence intervals are 

reported in parentheses.  

 

 September-October October-November 

  ̂  ̂ 

Lateral plates  0.34 (-0.04, 0.74) -0.21 (-0.66, 0.22) 

Eda genotype -0.42 (-0.07, -0.79) 0.26 (0.77, -0.23) 

 

 

 

 

Table 2: Standardized univariate selection intensities for Eda genotype and lateral plate 

phenotype. 95% confidence intervals are reported in parentheses. 

 

 September-October October-November 

 s' s' 

Lateral plates  0.04 (-0.29, 0.38) -0.04 (-0.33, 0.25) 

Eda genotype -0.39 (-0.21, -0.56) 0.28 (0.07, 0.52) 
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Figure Legends 

 

Figure 1: Eda genotype frequencies of marine stickleback after introduction to freshwater 

ponds. CC: carries two copies of the “complete” armor allele; CL: carries one “complete” allele 

and one “low” allele; LL: carries two copies of the “low” allele. Data points represent the mean 

of four ponds; error bars represent the standard error of the mean. Data re-plotted with 

permission from Barrett et al. (2008).  

 

Online Figure A1: Relationship between length and number of lateral plates. Fish reach their 

adult number of lateral plates at ~34 mm in length, indicated by the broken line. Solid lines 

indicate the fitted breakpoint regression, Black: CC genotype fish; light grey: CL genotype fish; 

dark grey: LL genotype fish.  

 

Online Figure A2: Change in size-corrected lateral plate number for all genotypes across the 

sampling period. The horizontal black line indicates the sample median and the boxes denote the 

interquartile range. 
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