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Abstract

We present a full pipeline for producing all-quadrilateral, high-quality, low-singularity 2D surface

meshes, that strictly adhere to input boundary geometry while being guided by a prescribed size function.

The meshes are built for the simulation of groundwater flow, where input geometries are highly irregular

due to following e.g. rivers and mountain ranges, but are sampled at somewhat regular intervals. The size of

the produced elements are guided by a size function, coarsening or refining the mesh, allowing local control

over the trade-off between simulation speed and accuracy.

The irregular boundaries set groundwater flow apart from typical quad mesh generation applications,

where boundaries are typically smooth and able to be subdivided. Early testing with existing field-aligned

methods showed significant drawbacks to using the boundaries directly, so we developed a tool to splice

a non-conforming but reasonably-sized mesh into the fixed boundary, allowing arbitrary mesh generation

techniques to be applied to the problem of groundwater flow.

This left the problem of generating size-driven meshes, where a minimal number of singularities is

added to affect a change in size of the produced quads. Existing methods tended to focus on quads with

uniform size, or with size determined by the input geometry. By treating the target size function as a

Riemannian metric, we are able to exploit the curvature of the Levi-Civita connection to apply surface

meshing techniques to our problem of size-aware planar meshing. We build off of the approach in Globally

Optimal Direction Fields to first produce a cross field that approximates the desired growth, from which a

quad mesh can be extracted.

When analyzing the resulting cross fields, we found it difficult to estimate how well they matched the

desired size function without simply meshing them and measuring the resulting quads. Attempts to quantify

the growth in size implied by a cross field led to an analysis of anisotropy, size functions that are not uniform

in all directions. We were able to demonstrate that harmonic cross fields admit isotropic size functions, while

general cross fields still admit orthogonal anisotropic size functions. This gives us a method to quantify how

accurately a cross field matches the desired size function, independent of any size inaccuracy that arises

from the meshing process.

Finally, we use a combination of existing techniques to extract a quad mesh from the cross field, which

can then be stitched to the original boundary. We conclude with simple Laplacian smoothing as a post-

processing step to improve the quality of the resulting meshes.
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CHAPTER 1

Introduction

Groundwater refers to water in the ground (e.g., in aquifers) as opposed to surface water (e.g., in rivers

and lakes). Computer simulations are used extensively in groundwater management. They fill in when

physical measurement would be expensive and time consuming, like when comparing different management

schemes [WA95], or even dangerous, such as when analyzing the potential spread of a contaminant [CW84].

They are often more reliable than scale models, as many effects do not scale linearly between the laboratory

and reality.

These groundwater simulations rely on subdividing the region of interest into small cells, called ele-

ments, and establishing relationships between neighboring elements that will capture the behavior of the

whole system. The geometry and connectivity of these elements is referred to as the mesh. Based on the

physical characteristics of the material represented by an element, it will have different water storage and

flow characteristics. So, regions composed of mostly solid rock will have low permeability, reducing flow

between neighboring elements, forcing any flow to bypass the region via more-permeable materials. The

goal of these simulations is typically finding steady-state flow, where the water flowing into each element

matches the water leaving each element, except at elements specially marked as sources (such as along

rivers) or sinks (natural springs or man-made pumps) with fixed incoming or outgoing flow.

The initial goal of this research was the production of all-quadrilateral meshes for Finite Element Anal-

ysis (FEA) simulations, as part of a project with the California Department of Water Resources. The inputs

to the meshing problem consist of polyhedral boundaries of the regions to be meshed, along with interior

features such as rivers, mountains, and wells. The datasets used are on a geographic scale, on the order

of 10, 000km2. Features must be approximated to prevent the meshes from being subdivided too finely.

So, the features that make up large portions of the region boundary and internal features have already been

simplified to a given scale; this scale should be honored by the resulting elements, as further subdivision

will not result in recovering the accuracy lost from the initial simplification. Additionally, these meshes may

interlock with other meshes along common borders, so it is important that some perimeter segments do not

get subdivided, so that individual meshes can be combined along the common border.
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Because FEA techniques are used across many disciplines, there are many meshing techniques that cater

to specific inputs. Many of these assume a smooth boundary that can be subdivided arbitrarily, allowing the

meshing tool to segment the boundary as appropriate. Some methods are specialized for the case where

there is no boundary at all, as in the case of generating a 2D mesh on the surface of a 3D object. The jagged,

zig-zagging boundaries of geographic datasets make it especially difficult to generate meshes that strictly

match the boundary edges.

The accuracy of Finite Element Analysis is dependent on the size and shape of the individual elements.

Smaller elements increase the accuracy of the analysis at the expense of increased computation cost, but the

shape of the elements plays an important part of the accuracy of a simulation as well.

While there is an established collection of fast and robust algorithms for generating triangle meshes,

quadrilateral meshing is still an area of active research. In addition to being able to use FEM solvers

that operate on all-quad meshes, quad meshes offer more accurate interpolation than triangular elements

for a given element area [D’A00], and we are hoping that the reduction in element count in comparison

to a triangle mesh with the same target edge length will yield an increase in simulation speed. We must

ensure that the quads we generate are of sufficient quality. Unfortunately, there are no quality metrics that

universally guarantee accurate simulation results [Cha12]; different metrics are often used on a case-by-

case basis. This is a difficult, long-standing issue; therefore, our goal is to develop meshing methods that

are largely agnostic to specific quality definitions.

For a triangle mesh, the minimum angle within an element serves as a good indicator of quality. For

quadrilaterals, the minimum angle is clearly not a good enough metric; a rectangle with ideal, 90-degree

angles can still be arbitrarily skinny, and this poor aspect ratio can negatively impact simulation accuracy.

Another indication of mesh quality is the presence of singularities, often called irregular vertices, in the

mesh. For a quad mesh, singularities are vertices with more, or less, than four incident edges. Singularities

are a byproduct of changes in orientation or size of the elements in a quadrilateral mesh, and are commonly

found along complex boundary regions and wherever elements scale in size. Singularities reduce the ac-

curacy of linear FEM simulations, and increasing the order of the interpolation (by using quadratic instead

of linear interpolation over an element in the mesh) often incurs a prohibitive increase in computational

cost [CMP98]. Singularities induce problems with other types of meshing and simulation [VS17], so there

is a rich body of literature around preventing or removing singularities in meshes.
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Most meshing tools designed for FEA produce graded meshes, where the size of the elements scale

with a desired sizing function over the mesh. This is a trade-off between accuracy and solution speed; large

regions with relatively little change in function value can be approximated with larger elements, requiring

fewer elements, resulting in a faster solve.

So, the fundamental problem we are trying to solve is generating an all-quadrilateral (every element is

a quadrilateral) high quality (keep the minimum angle in the mesh as large as possible, while keeping aspect

ratio within user-specified bounds) low-singularity (generate as few singularities as possible) mesh, that

strictly adheres to the input geometry and any internal features, while trying to ensure that the sizes of the

generated quads follow a prescribed size function (allowing for high-density regions where high accuracy is

needed, and low-density regions where it is not).

The premier software for groundwater simulation is GMS, the Groundwater Modeling System. This is a

proprietary software package purpose-built for groundwater simulations. GMS handles both FEA and FDA

(Finite Difference Analysis, a simpler formulation particularly suited to regular grids) analysis, supports

automatic mesh generation, and runs the simulations. Their automatic mesh generator produces graded

triangulations, and uses triangle matching to join adjacent triangles into quadrilaterals if requested. This

matching process means that an all-quadrilateral mesh cannot be guaranteed, so only solvers that support

mixed meshes can be used. GMS also implements an approach called paving to produce guaranteed all-quad

meshes, but that approach is unable to honor internal boundaries within the mesh. [OJH96]

There is an open-source software package called Gmsh that is designed to generate meshes specifically

for FEA simulations. Like GMS, Gmsh produces triangle meshes and then uses a matching step when

quadrilateral meshes are desired. Gmsh provides guaranteed all-quad meshes by offering a Catmull-Clark

subdivision step, which divides all triangles in the mesh into three quads, and all quads into four quads (see

Figure 1.4). This process induces many singularities in the resulting mesh. [GR09]

The DWR’s interactive IWFM-MG software tool generates triangle meshes, using the high-quality

generic 2D meshing program Triangle [She96]. Both Triangle and Gmsh are recognized for producing

high-quality meshes. Figure 1.1 shows a section of a typical DWR dataset, as meshed by Triangle and

Gmsh. The difficulty that both programs face here demonstrates how difficult these datasets can be to mesh.

While Gmsh does a good job in the interior, the complexity of the boundary and inner features cause a

drastic reduction in quality. The thin region along the left edge where the triangle matching breaks down is
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of particular interest, as well as the presence of many very-obtuse angles, such as at the small bump on the

upper-right perimeter.

(a) All-triangle mesh from Triangle (b) Mixed mesh from Gmsh

FIGURE 1.1. A slice from California’s Central Valley, with boundaries and internal features
shown in red. Elements are colored according to the angle that deviates furthest from ideal,
60◦ and 90◦, respectively, where brighter elements have better angles. It is important to
note the areas where the complex internal features cause Gmsh to produce worse elements.

1.1. Background Concepts

1.1.1. Triangulation and Quadrangulation. Triangulation is the process of subdividing a polygon

into triangular faces. The most common approach is called Delaunay triangulation. The Delaunay criterion

mandates that, for each triangle in the mesh, no vertices in the mesh lie inside its circumcircle. Enforcing this

constraint maximizes the minimum angle in the resulting mesh; the smallest angle in any other triangulation

of the same polygon will meet or exceed the smallest angle in the Delaunay triangulation [She02].

Mesh refinement is the process of inserting additional vertices into the mesh, which are referred to as

Steiner vertices. These vertices are added to split existing triangles into smaller triangles of better quality.

This process is repeated until all triangles in the mesh meet a minimum quality criterion. This is not always

possible; poor input meshes or specifying too high of a quality bound can cause refinement algorithms to

subdivide indefinitely [She02].

Many forms of quadrilateral mesh generation begin with an existing triangle mesh. Some algorithms

generate this mesh themselves, while others accept it as input. This mesh is a background mesh if it is used

only for the representation or calculation of some value over the region. In other cases, the mesh will undergo
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transformations that lead to the final quad mesh. Typically, the mesh will be a triangulation computed via

Delaunay refinement, in order to provide accuracy for calculations or for better triangle quality which will

hopefully yield better output quadrilaterals.

In order for a polygon to be divided into quadrilaterals, it must have an even number of edges along its

boundary. This follows directly from the Euler characteristic, |V | − |E|+ |F | which relates the number of

vertices, edges and faces in a mesh, and equals 2 for a planar graph. Every edge is either incident to two

faces or lies along the boundary, so 4|F | = 2|E| − |B|. Multiplying the Euler characteristic equation by 2

yields 2|V | − 2|E|+2|F | = 4. Solving for 2|E| and substituting results in 2|V | − 2|F | − |B| = 4. Solving

for |B| gives |B| = 2(|V | − |F | − 2), showing that the length of the boundary must be even.

1.1.2. Mesh Quality. While the relationship of mesh quality to simulation accuracy is a difficult ques-

tion, the quality of a mesh interpolation of function values given at the vertices is relatively straight-forward.

The accuracy of a mesh element is the measure of the relative error between the value produced by

interpolating values calculated at the vertices over the element and the actual value of the function being

estimated over the surface. Reducing the size of the element will typically increase its accuracy, by de-

creasing the distance between the interpolant and sample points; subdividing each element in the mesh into

n elements should reduce the approximation error by a factor of 1/n, for the first-order elements we are

using [D’A00].

FIGURE 1.2. A common pattern seen when quad meshing quadtrees without T-junctions.

While area is a natural choice for metric when discussing element sizes, one-dimensional length is used

to maintain consistency when comparing edges and elements. Because this metric will change over the
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region, it is called the sizing function. Figure 1.2 shows a common growth pattern for increasing element

size, which is self-similar and shows a growth factor of doubling the edge length over every two edges along

the bottom of the image. This demonstrates that the growth in the metric over some distance can be directly

proportional to that distance while maintaining element quality.

The efficiency of a mesh element is the accuracy of the element divided by its area. This gives a metric

for mesh quality estimation relatively independent of resolution. For example, a very long, thin triangle

may not be accurate, but can be made more accurate by subdividing it. The resulting triangles will still not

be efficient, however, if their shapes do not improve on that of the original triangle. Quadrilateral elements

have been shown to have better efficiency than triangular elements [D’A00].

These are the two main driving forces behind mesh refinement; regions may be refined to improve

element quality (increasing efficiency) and to reduce their size (increasing accuracy). We are attempting to

subdivide the mesh as little as possible, so we must ensure that we produce highly efficient elements.

Common quality measures for planar quadrilaterals include minimum angle, maximum angle, length

ratio (or aspect ratio), stretch (ratio between the longest diagonal and shortest edge), and skew (minimum

angle between the two edges formed by connecting the midpoints of opposing edges).

A popular quality metric for a quadrilateral (or a hexahedron, in three dimensions) is the determinant

of the Jacobian matrix, sometimes confusingly just called the Jacobian. The Jacobian matrix is the linear

approximation of the nonlinear mapping between local coordinates of the quadrilateral to local coordinates

on an ideal quadrilateral, usually an axis-aligned square with side length 2, centered at the origin. The

Jacobian matrix encodes the orientation, scale, skew, and aspect ratio of the quadrilateral, and the determi-

nant reduces that to a single useful value. Typically, only the skew and aspect ratio (together referred to

as ‘shape’) are desired, as the orientation and scale of the mesh elements are not considered mesh quality

metrics. In these cases, the orientation and scale values are factored out, giving a determinant in the range

[0, 1], referred to as the normalized Jacobian (determinant). As the Jacobian determinant will vary over the

surface of the quadrilateral, it is calculated at predefined sample coordinates within the quadrilateral and the

worst Jacobian determinant is reported as the quality measure. [Knu01]

1.1.3. Cross Fields and Singularities. The topology of quad meshes gives rise to some useful con-

structs. A good quad mesh will have most vertices of degree 4. At vertices of degree 4, the incident edges

can be joined into paths, so that opposite edges form two crossing groups of paths. Borrowing terminology

from animation, these are called line loops and are defined to begin and end at either the perimeter of the
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surface or at poles, or singular vertices, which are vertices with a degree other than 4 (typically 3, 5 or 6). A

chord, sometimes called a quadrilateral strip, is the set of elements sandwiched between two neighboring

parallel line loops [DSC09].

A continuous analog of a quad mesh is a cross field, that defines four vectors at every point on a surface.

These four vectors exhibit π
2 rotational symmetry, meaning a vector rotated by iπ2 for any integer i is equiv-

alent to the original vector, similar to the 2π rotational symmetry in the Euclidean plane. At singularities,

or singular points, the direction vectors are not defined or are not smooth. Away from singularities, the four

orthogonal vector fields that make up a cross field are smooth.

The singularities in cross fields correspond to the singular vertices that terminate line loops. Dealing

with these points is a critical problem in quad meshing; three major approaches to generating quad meshes

are effectively heuristics as to where singular points should be placed [AFTR15]. Paving and medial axis

approaches attempt to restrict singular points to the center of the region, while cross field approaches try to

find an optimal layout over the entire surface. As seen in Figure 1.2, a change in sizing often requires many

singular vertices, so our goal is strike a balance between size growth and singularity count; our complex

boundaries will induce singularities anyway, so reducing singularities within the mesh interior should keep

the overall singularity count as low as possible.

A streamline is a path that is always tangent to a local vector or cross field. Therefore, every regular

point of a cross field lies on two perpendicular streamlines, just like every regular vertex in a quadrangulation

lies on two line loops; another way to look at this is that every regular point has four outgoing streamlines,

and every regular vertex has four outgoing edges. Just as an extraordinary vertex has more or fewer outgoing

edges, a singular point will have more or less than four outgoing streamlines, which are called separatrices.

Each separatrix begins and ends at a singularity or at a point along the boundary. The separatrices divide

the domain into singularity-free regions whose interiors are topological rectangles [KLF15], which we call

simple tiles. Simple tiles are not necessarily suitable as quadrilaterals on their own, but are often used as a

coarse initial mesh, within which some subdivision of each region is chosen to produce high-quality quads.

The subdivision process produces only quadrilateral elements, with the only singularities in the mesh along

the perimeters of the simple tiles, although we will also explore cases where additional singularities can be

used to improve the resulting meshes.
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1.2. Overview

Groundwater flow is not a typical application for quad meshing, and in investigating existing approaches

we encountered many factors that differed from typical problem domains. Our regions of interest are 2D

with complex boundaries, unlike many approaches which operate on a manifold embedded in 3D, often

having no boundaries at all. While reducing the singularity count and maximizing quality metrics for the

resulting quads are common goals, we differ in that our primary constraint is element size instead of element

alignment.

The irregularity of the input perimeters, often tracing geological features like mountain ranges or rivers,

make alignment with the input edges especially difficult. Our intuition was that that an “ideal” mesh in any

sense, whether a repeated template like in Figure 1.2 or simply a regular grid, is going to be ill-suited to

matching the boundaries given. This led us to create an approach where we can take an arbitrary “ideal”

mesh that does not match the boundaries and mate it to the boundaries in a way that preserves as much of

the interior region as possible. This allows us to generate a mesh while focusing only on the size constraints,

and then post-process it to ensure the result matches the boundaries.

Instead of trying to generate a quad mesh directly from the target size function, we noticed that many

state-of-the-art meshing techniques start by generating a cross field, from which a quad mesh can be ex-

tracted. A common trend is for the cross field to be optimized to fit alignment constraints, in particular the

principal curvature directions for manifolds embedded in 3D. With the insight that a changing metric in-

duces curved geodesics just like on a curved surface, we were able to generate cross fields using an existing

method by aligning with the metric’s curvature instead of the surface’s.

However, even in our 2D case without boundary conditions, we found that field generation is harder

than expected; the sizes implied by our generated cross fields often differed from our target size functions

in unexpected ways, even appearing to be a scalar function with a non-conservative gradient, which is

impossible! This led us to develop visualization tools and perform analysis that led to theoretical insights

into the relationship between cross fields and size functions, with a critical result being that many cross

fields do not have compatible scalar size functions and necessarily correspond to anisotropic metrics over

the domain.

With this better understanding of the relationship between cross fields and their size functions, we still

needed to extract a quad mesh from our generated cross field. Here, we were able to take advantage of

existing techniques, pulling inspiration from several approaches to generate all-quad meshes.
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(a) Region boundary and computed size function (b) Direction field as computed in Chapter 3

(c) Visualization of size and orientation (d) Singularities detected in direction field

(e) Extracted mesh (f) Removed quads near or outside original boundary

(g) Region stitched as described in Chapter 2

FIGURE 1.3. Overview of the meshing pipeline
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1.2.1. The Meshing Pipeline. We propose the following pipeline for mesh generation. The inputs

to this process are the perimeters of the region to be meshed, expressed as closed loops of connected line

segments, as well as a desired size function σ, which defines a target edge length at every point in the region.

Some of the size functions we will look at take the value of the edge lengths at the perimeters, and grow

as some function of distance to the perimeters, where the growth rate is a tradeoff between mesh grading

and singularity count; this can be seen in Figure 1.3a. The more aggressively the size function changes, the

more singularities will be induced in the interior of the mesh.

This mesh generation process is split into boundary and interior phases. Chapter 2 covers our approach

from All-Quad Meshing for Geographic Data via Templated Boundary Optimization [SA17] that allows us

to take an interior mesh and stitch it to the original boundary, allowing the mesh generation to focus on size

control and element quality. We accomplish this by carving away any quads from the interior mesh that are

outside of the region or are close to the original perimeter. This creates an empty channel between the mesh

and the outer perimeter that we fill using an optimization process described in Section 2.2.8. This introduces

many singular vertices, but due to the complexity of most boundary regions, this is typically unavoidable.

We then split the interior mesh generation into two steps: generating a cross field compatible with the

input size function and then extracting an all-quad mesh from the cross field.

In Figure 1.3a, the target size function increases linearly with the distance from the perimeter. This

size field is the only input to the process described in Chapter 3, which produces a cross field as shown in

Figure 1.3b. When taken together, these two fields define a size and orientation at every point, visualized in

Figure 1.3c by drawing a quad of the desired alignment and size at sampled points. Our field generation step

is based on the work of Knoppel et al. in Globally Optimal Direction Fields [KCPS13]. This is the focus

of Chapter 3, where we spend a significant amount of time delving into the mathematical underpinnings of

their approach.

Chapter 4 explores the connection between cross fields and size functions, including simpler derivations

of some of the results from Chapter 3. In particular, we address anisotropy, where the size function implied

by a cross field is actually two separate scalar fields, each representing length aligned with a different pair

of opposed vectors in the cross field. Each cross field implies a family of compatible size functions, and we

optimize within this space to find the size function that minimizes anisotropy. We published this chapter as

Anisotropy and Cross Fields [SA], although we have added some supplementary datasets here.
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Finally, Chapter 5 covers our approach for extracting a quad mesh from the cross field, based off of

the approach from Campen et al. in Quantized Global Parameterization [CBK15]. It is straightforward to

create an all-quad mesh such that the only singular vertices in the mesh are the singularities in the cross

field by tracing out the separatrices from each singularity. However, it is difficult to ensure that the resulting

mesh also obeys the target size function. QGP uses a generalization of the separatrix graph to produce a

subdivision of the graph that more closely follows the target size function. Once a parameterization has been

found with QGP, we use Coons patches [Coo67] to produce quads, which then serve as the interior mesh

for the approach outlined in Chapter 2.

Much of our focus is on the underlying mathematics and techniques, aiming for understanding of the

concepts over producing an optimized software product. As raw performance has not been a primary con-

cern, we have implemented all of these techniques in Python. We will explicitly highlight exceptions, such

as our C implementation of the computationally-expensive patch ranking process from Chapter 2, when we

leverage the optimized solvers from SciPy [VGO+20], and when we include functions provided by authors

of a paper as we do with Globally Optimal Direction Fields.

1.3. Prior Work in Quad Meshing

1.3.1. Indirect Quad Mesh Generation. Indirect mesh generation methods start with an existing

mesh, which is transformed into the final quadrilateral mesh.

FIGURE 1.4. Two iterations of Catmull-Clark subdivision, with thinner edges for each
successive division. Note that the first iteration creates extraordinary vertices for any non-
quadrilateral face.

1.3.1.1. Catmull-Clark Subdivision. Catmull-Clark subdivision [CC78] is a generalization of bicubic

B-spline patch subdivision. While initially created to smooth surfaces in 3D, it is also used extensively
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in two dimensions to produce a quad mesh from a mixed mesh. Each face generates a new vertex at the

average of its incident vertices, and each edge generates a new vertex at its midpoint. Each new face vertex

is connected by an edge to each new edge vertex. So, regardless of input geometry, the mesh has been

reduced to a set of quadrilaterals, each composed of one face vertex, two edge vertices, and one vertex from

the previous generation of the mesh. This process is repeated until the desired element size is achieved.

Unfortunately, the face vertex created by any non-square face will become a singularity, and any vertices

that started with valence ̸= 4 will remain as singularities. As the result of an iteration is all quadrilaterals,

these singularities are only created during the first iteration, but they persist in all subsequent iterations.

Often only a single iteration of the operation is performed in order to produce guaranteed all-quadrilateral

meshes; this is a common post-processing step for many approaches.

FIGURE 1.5. Q-TRAN uses matching and local topological operations to guarantee an
all-quadrilateral output mesh (bottom row) from a triangular input mesh (top row). The
resulting meshes have many singularities, although fewer than an iteration of Catmull-Clark
subdivision would produce from the given input mesh. Image is Figure 4 in [EKMD10]

1.3.1.2. Triangle Matching. A common approach for converting a triangle mesh into a quad mesh is

known as matching, where two triangles that share an edge are merged into a single quadrilateral. The

Blossom algorithm [Edm65] can be used to find a perfect matching, where every triangle is matched to a

neighbor and the resulting mesh is exclusively quadrilaterals. However, there is no guarantee that a perfect

matching exists, so matching algorithms often add an iteration of Catmull-Clark subdivision if an all-quad

mesh is necessary [RLS+12]. Even if a perfect matching is able to produce an all-quad mesh, any ver-

tex whose valence is not reduced to exactly four (ideal triangle mesh vertices have valence 6) becomes a

singularity. Even approaches that do not depend on Catmull-Clark to guarantee all-quad meshes, such as

Q-TRAN [EKMD10], typically generate many singularities; see Figure 1.5.
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1.3.2. Direct Quad Mesh Generation.

1.3.2.1. Paving. One approach to direct quadrilateral mesh generation that is successful in many ap-

plications is called paving, introduced by Blacker and Stephenson [BS91]. Their approach is to start at the

perimeter of a region to be meshed, adding a single row of quads based on the local shape of the boundary.

The resulting hole is recursively meshed, with terminal cases for a perimeter of length 6 or less. Angles

along the perimeter determine how quadrilaterals are added to form the row, but a concave boundary might

result in quads along different sides of the perimeter overlapping one another, requiring special cleanup op-

erations. The resulting meshes typically have high-quality perimeters, with singularities and lower-quality

elements relegated to the deep interior of the mesh.

While very useful for following the alignment of smooth boundaries, paving is not appropriate for our

inputs. Our difficult boundaries inevitably produce many singularities and low-quality elements near the

boundary, and paving additionally generates these in the interior.

FIGURE 1.6. The approach in [FAR16] is based on the medial axis of the region and op-
timizes the number and placement of singularities at the expense of nonuniform element
sizes. On top, lines perpendicular to the perimeter are traced inward to the medial axis,
a subset of which is used to subdivide the region into meshable tiles, with singularities
marked in blue. This then gets meshed (bottom), with element sizes heavily influenced by
distance between the perimeter and medial axis. Images are from Figure 25 in [FAR16].

1.3.2.2. Medial Axis. In an attempt to predict where these poor interactions will occur, the medial axis

transform can be used to predict where opposite sides of the boundary will eventually meet [QRPG04,

FAR16]. The medial axis of a shape is the set of all points that have two or more closest points along the
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boundary, or analogously, the set of all points where the distance field is not smooth. This approach cleans

up the regions where paving would introduce poor-quality elements and/or singularities, at the expense of

forcing opposed elements to align to the edge in the medial axis that separates them. This approach also

forces elements to scale with the distance between perimeter and medial axis, as seen in Figure 1.6.

Again, this approach would introduce a great deal of unnecessary complexity on our inputs, where the

medial axis is as complex as the boundary. Like paving, the ability for medial axis methods to produce

boundary-aligned elements is not helpful for our case, and they do not lend themselves to matching a given

size function.

1.3.2.3. Cross Fields. Our approach belongs to a collection of methods that produce quad meshes by

first solving for a cross field over the surface. Interestingly, the formulation of (and solution to) the cross field

generation problem is very similar to the groundwater flow itself, as it is typically solved as a finite-element

problem over a triangular background mesh. Iterative methods tend to be preferred here; the biconjugate

gradient method is used by [PZ07], and Gauss-Seidel iterations are used by [JTPSH15]. These will produce

a cross vector at each vertex in the background triangle mesh, so any singularities in the field will lie inside

the background mesh elements.

FIGURE 1.7. Singularity detection in triangles, from Figure 10 in [FAR15]. No interior
singularity results in zero total rotation (left). Net singularity count can be detected by
dividing total rotation by π/2, with the sign indicating positive (center) or negative (right)
singularities.

An element that contains a singularity can be found by following a path along the perimeter of the el-

ement and measuring the rotation of the cross field alignment along the way. The sum of the rotations of

the cross field will indicate the presence of singularities; see Figure 1.7 for an example over a triangle. This

can be done for any closed region but only detects the sum of all singularities in that region; two valence-5
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singularities are indistinguishable from a single valence-6 singularity, just as valence-3 and valence-5 singu-

larities will cancel out and no singularity will be detected. Thus, the element size of the background mesh

plays a crucial part in the construction of the cross field; a coarse background mesh will force singularities

to merge together.

Extracting a quality quad mesh from a cross field has proved to be surprisingly difficult. There are

several ways to create a quad mesh from a cross field; this process is called extraction in the literature.

In [JTPSH15], a second solve is performed, creating what they call a position field, encoding the relative

position of each vertex in the background mesh within its quad in the final mesh; in effect, each background

vertex produces four potential vertices for the output mesh, which are clustered and merged in order to form

the actual final output vertices. The other common approach is to generate an integer-grid map, which is a

parameterization that maps the surface to R2 such that the position field is axis-aligned after the mapping.

Then, in the inverse map, points in Z2 map back onto the surface as the final vertices. However, this approach

is susceptible to errors in the integer grid-map accuracy, and is highly dependent on machine precision, and

thus requires considerable cleanup post-processing to ensure quality output [EBCK13].
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FIGURE 1.8. The phases in Instant Field-Aligned Meshes [JTPSH15] when run on the
Sacramento Valley dataset. First, a cross field is computed that generally aligns with the
region boundaries, then a local parameterization step finds vertex positions. Finally, the
geometry is extracted. The final frame shows the deviation of the final mesh from the initial
region boundary, contraction in red and expansion in green.

These methods are currently very popular in the geometric modeling community, and we experimented

with using them directly on our input. While these methods generally produce very high quality elements,

they break down in situations like ours in which we have complicated outer boundaries. For example, in

Instant Field-Aligned Meshes [JTPSH15], most elements are nearly-perfect squares. However, throughout

the mesh, there are triangles and a few pentagons, and even non-convex elements, and more importantly for

us, the perimeter fails to follow the original input shape, as seen in Figure 1.8.

We found that this method did not handle varying size functions well, although we did use it for a

boundary-aligned fixed-scale interior mesh in Chapter 2.

1.3.2.4. Frame Fields. A generalization of the cross field is the frame field, which relaxes the orthogo-

nality and length constraints of a cross field to form a field comprised of the four vectors v, w,−v, and −w.

They were used in [PPTSH14] to produce surface meshes that match a set of sparse orientation and size

constraints, which sounds like an ideal candidate for our conditions. However, reported instability in cases
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with size changes of more than a factor of 10 in [PPTSH14] and the potential reduction in element quality

from non-orthogonal frame fields (forcing skewed elements) in general, were significant enough drawbacks

for us to focus on approaches based on cross fields instead.

Interestingly, Chapter 4 is dedicated to anisotropic sizing, and as we will discuss in Chapter 5, even with

an orthogonal cross field, the meshing process is likely to induce some skew in the resulting quads.

1.3.2.5. Spectral Methods. There is an interesting approach used to generate all-quad meshes on closed

surfaces called spectral quadrangulation. They calculate a harmonic function over the surface, and then use

its Morse-Smale Complex to extract a mesh. The Morse-Smale Complex places a vertex at the location of all

minima, maxima, and saddles in the function and connects saddles to their neighboring extrema with edges.

This creates quadrilateral faces, each composed of one maximum, one minimum, and two saddles. The

original work [DBG+06] focused on creating subdivision surfaces, but other work [LHJ+14] used higher-

frequency functions to build a quad mesh directly. This method naturally forms singularities at maxima and

minima in the standing wave.

Unfortunately, this approach has difficulties along mesh boundaries. While [LHJ+14] discusses bound-

ary curve alignment, existing methods currently do not respect boundary vertices. This could be solved

with either an integer programming step assigning each vertex as a minimum, maximum, or saddle in the

function, which is computationally infeasible, or requires a subdivision step analogous to Catmull-Clark

subdivision, which we are trying to avoid.

1.3.2.6. Grid-Based Methods. Grid-based methods fill the interior of the region with a regular structure,

and then connect the outer perimeter (or shell) with the internal structure. These approaches are typically

template-based, for the internal and/or external elements. In two dimensions, the internal structure is typ-

ically a grid, potentially with templates that allow a quadtree subdivision of the interior if a graded mesh

is desired [EDF10, Sch96]. In 3D, the internal structure may be a body-centered cubic lattice [LS07], or a

lattice of acute tetrahedra that may offer better angle bounds [DCB13], with a similar templated approach

to using an octree for internal grading.

This is useful for domains with complex boundaries. For smooth but complex boundaries in R3, [LS07,

DCB13] give the best existing tetrahedral mesh quality bounds. They give strict bounds on resulting angles,

[10.7◦, 164.8◦] or [8.9◦, 158.8◦] depending on the settings used.

Our approach is similar to the methods used in [Sch96] and in [EDF10], where the internal structure is

overlaid onto the domain, and any elements that cross over a boundary or feature edge are removed. This
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results in an unmeshed channel that must be filled. Both of these prior approaches connect edges from

vertices on the interior region to the perimeter, such that these edges form a division of the channel into

quads. Our approach, greatly simplified, could be described as the exhaustive search to find a subdivision

of the channel into quads when considering a set of possible edges across the channel that each vertex could

be incident to, seeking to produce the the highest-quality perimeter.

1.3.3. Mesh Improvement. In addition to generating the mesh, there are many methods of improving

a mesh after it has been generated. One class of methods, smoothing, involves repositioning vertices to

improve element quality, while maintaining the connectivity of the mesh. We also consider local improve-

ment methods that change the connectivity of small groups of elements in the hopes of improving the mesh

overall. Here we consider improvement methods for all-quad meshes.

One of the most common forms of smoothing is Laplacian smoothing, the goal of which is to have each

vertex placed at the centroid of its neighbors. It is common in practice because it is easy to implement and

produces generally good results for many metrics; unfortunately, as it is not directly tied to any metric, it will

not be as effective as a smoothing process that is designed specifically to optimize a given metric [ABE99].

(a) Element Collapse (b) Element Open (c) Doublet Insertion and Removal

FIGURE 1.9. Topological improvement operations, from Figures 3, 4, and 6 in [CMP98].
Extraordinary vertices are marked with a square or circle depending on degree. Doublet in-
sertion will be followed up by another operation that will remove one of the two degenerate
quadrilaterals.

There are topological methods [ABO09,VT11,CMP98,VS17] that seek to improve the connectivity of

the mesh, reducing the number of singularities while maintaining, or even improving, the mesh resolution

and quality.

For example, the element collapse operation, shown in Figure 1.9a, removes an element from the mesh

by merging two vertices. The degree of the vertex resulting from the merge is two less than the sum of

the original vertices degrees; if both were degree-3 singularities, then the resulting vertex is a non-singular

degree-4. The other two vertices have their degree reduced by one. Element collapse and element open
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are the basic operations from which other operations are composed; while doublet removal (see Figure 1.9)

is useful to reason about, it is a special case of element collapse [CMP98]. In the preliminary stages of

this work, we added an element collapse cleanup phase of the Department of Water Resources IWFM-MG

plugin as it was an effective way of removing quadrilaterals with two very large angles without resorting to

cutting them into triangles. While these operations may be useful for singularity reduction for our approach

as well, we focus on limiting the number of singularities we produce.

1.4. Contributions

While there were many existing techniques that we were able to leverage in order to build our meshing

pipeline, the particular requirements of groundwater flow led us to the following contributions:

• A template-based optimization method that fills thin polygon boundaries with quadrilaterals, in

such a way that maximizes the lowest-quality element. We support arbitrary quality metrics, but

our implementation follows the standard max-angle metric.

• The insight that a non-uniform size function on a surface distorts the path of geodesics similarly

to how they would be distorted if the surface was curved. This allows us to apply the process from

Globally Optimal Direction Fields [KCPS13], which was designed to generate a cross field that

closely follows surface curvature, but in our case generates a cross field that closely follows our

sizing field.

• An analysis of the mathematics used in Globally Optimal Direction Fields [KCPS13], with deriva-

tions of many of the core concepts, with the hope that a thorough breakdown of the technique the

may make the material accessible to a more general audience.

• An analysis of the relationship between cross fields and compatible size functions, in particular

how the gradient of a cross field relates to the gradient of compatible size functions, including

a significantly simpler derivation of that relationship compared to the approaches taken in other

works.

• Demonstrating that a cross field must be harmonic to admit an isotropic metric, and that non-

harmonic cross fields are still able to produce orthogonal (skew-free) anisotropic metrics.

• The observation that a pointwise rotation of a cross field, achieved by adding some uniform value

(the phase) to the angle of the cross at every point, has an impact on the compatible size functions.
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This is not encountered in typical contexts, where field alignment is prescribed so phase is not

considered, and only has an effect on anisotropic size functions.

• A combination of existing techniques to form a more robust method of extracting an all-quad

mesh from a cross field; in particular, allowing the addition of additional singularities as seen in

Automatic generation of multiblock decompositions of surfaces [FAR15] to improve the parameter-

ization of Quantized Global Parameterization [CBK15], and using Coons patches from Surfaces

for Computer-Aided Design of Space Forms [Coo67] to robustly extract a quad mesh directly from

the quantization produced by QGP.
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CHAPTER 2

Perimeters and Constraints

2.1. Introduction

The following is a novel algorithm for all-quad meshing. As complicated boundary geometry and input

features are the source of most of the problems with existing methods, we work to separate the boundary

and features from open regions that are easier to mesh. We can use a variety of methods to mesh these open

regions; a regular grid works well in many cases, but we propose another method in Chapter 3.

We accomplish this by removing elements that are too close to input features, creating a thin contigu-

ous channel that separates the interior mesh from the boundary. Finding a high-quality all-quadrilateral

decomposition of this channel constitutes the bulk of the contribution in this chapter.

The implementation in this chapter uses a simple grid to mesh the interior regions. This process fills

the interior of the region with squares, removing any that would be placed too closely to the boundary or

any internal features. This has the side-effect of making the interior singularity-free; all singularities in

the resulting mesh will be inside or along the channel, which is likely to be high in singularities regardless

of meshing method applied, due to the complex boundaries. We cannot guarantee an optimal number of

singularities, but we clearly generate significantly fewer than the matching processes used in Gmsh or GMS.

The inputs to our groundwater meshing problem consist of the polygonal boundaries of the regions to

be meshed, along with interior features such as rivers, material boundaries, political boundaries (e.g. water

districts, counties, states), fault lines, and wells.

Our method is illustrated in Figure 2.1. We place a section of a regular grid, with a user-defined orien-

tation, in the interior of the region, leaving a channel between the grid and the region boundary. We then

construct a collection of small patches, each of which might contribute to a covering of the channel, and

score these by the quality of quadrangulation of the patch. We next select a covering of the channel by a

subset of the patches. Finally, we smooth the resulting mesh.

The intuition behind this grid-based approach is that the difficulty of meshing a geographic region lies

in the complexity of its boundary, to which the orientation of elements has to adapt; unlike the situation
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(a) Input boundary (b) With inlaid grid (c) Channel subdivided
into patches

(d) Meshed region (e) Smoothing to im-
prove angles and aspect
ratio

FIGURE 2.1. Overview of the meshing process, with an optional smoothing step. Colored
using a perceptually-uniform color scale [vdWS05], with brighter colors indicating better
internal angles.

in which there are smooth boundaries along which elements should be aligned, here the boundaries force

nearby element orientations to change frequently. A-priori gridding of the interior limits the singularities to

this difficult region and avoids unforced singularities in the interior.

Our approach produces all-quad meshes with element quality on par with modern tools that produce

mixed meshes, such as Gmsh or GMS, while providing a large reduction in the number of singular points.

We compare in depth in Section 2.3.

2.2. Construction

Like other grid-based approaches, our method fills the interior of the region with a regular grid. We

remove elements from the inner grid that are near the perimeter, creating an unmeshed buffer zone that we

call a channel. Channel width is a user-defined parameter that should be roughly one and a half times the

desired element size. In order to preserve the geographic boundaries without introducing extra vertices, we

use a wider channel and search for its best possible quadrilateral decomposition. We exploit the fact that the

channel is narrow to perform a search of a great many (but not all) of the possible quadrangulations of the

channel.

We organize this search by considering potential subdivisions of the channel into smaller polygons,

with 4, 6 or 8 sides, that we call patches; we chose patches of this size as a trade-off between quality and

computation time. We consider all possible local patches, select a quadrangulation of each one, and assign
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it a quality score, or rank. Then we select a compatible set of patches to produce the full channel covering

that maximizes the minimum rank.

To assign a quadrilateralization to each patch, we consider a set of templates for the decomposition of

6-sided and 8-sided patches. Each template is applied to each patch, and quality of each of the resulting

quads is measured; the quality of the template is the quality of its worst quad, and the rank of the patch is

the quality of its best template.

The combinatorial search for the best covering of the channel by templates is the most algorithmically

difficult part of the algorithm. We propose a process that simplifies the channel by iteratively merging

extrusions and loops, by using a form of Dijkstra’s algorithm, eventually reducing the channel into a simple

ring, which can be optimally traversed using the same algorithm.

We do not guarantee that our mesh is optimal. However, our algorithm is polynomial in the size of

the mesh, and we demonstrate some high-quality results. The rest of this section covers the details of the

algorithm and our implementation.

2.2.1. Input Format. The input region is given as a Planar Straight-Line Graph (PSLG). This is a

collection of vertices, and an unordered list of segments that connect pairs of vertices and do not intersect

except at vertices. We assume that input geometry has been discretized to approximately the desired edge

length h, with all incoming input segment lengths in the range [12h, 2h). Each segment must be preserved

in the output mesh; generally, input segments may not be be subdivided. This restriction may be relaxed in

order to improve angle bounds, in which case perimeter segments may be split at most once.

We also need to require a density bound on the vertices so that the neighborhood of radius 4h around

any input vertex contains at most a constant number of other input vertices. Also, we note that small angles

in the input force small angles in the output.

Some subset of the segments must form a fully closed outer boundary, defining the region to be meshed.

The region may also contain holes, also defined by closed loops. The boundary of every region, including

its holes, has to have an even number of edges; otherwise there is no decomposition into quadrilaterals.

We allow the PSLG to include interior features, which are paths that either terminate inside the region

or divide the region into subregions. Both sides of any path that terminates in the interior are included in

the boundary of the region, so they always add an even number of edges. Interior paths that split the region

must also have an even number of edges. All of the input PSLG edges become outer channel edges.
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In preprocessing, we combine the polygonal elements, identify the region and subregions to be meshed,

and orient their boundaries counter-clockwise, by “walking” each connected component of the PSLG.

2.2.2. Grid. A regular grid with edge length h is overlaid onto the region to be meshed. Any grid

vertices outside the region are culled, as well as any vertices that are within a fixed distance δ from the

perimeter of the region; we use δ = 1.4h, but it can be set by the user.

Grid cells where all four corners remain are promoted to quads and form the interior of the mesh;

remaining edges that connect grid vertices are enforced as edges that must remain in the output mesh, even

if both of the two incident grid cells have been removed; this can be seen in Figure 2.2. Isolated vertices

with no neighbors are discarded. Grid edges that are not in the interior of the grid are called inner channel

edges.

Just as the input segments were “walked” to produce polygons with consistent orientation, the edges of

the interior regular grid are walked in the opposite direction, producing a polygon with inverted orientation.

Specifically, we are walking along the half-edges that are adjacent to the channel, where some edges, such

as the hanging edges on the right side of Figure 2.2, will be traversed in both directions. These edges are

not culled when the channel is carved as they serve to limit the width of the channel, as well as the lengths

of the edges that will eventually cross it.

FIGURE 2.2. Input PSLG with inlaid grid

2.2.3. Cross-Edge Construction. Our next goal is to identify cuts that split the channel into nicely-

quadrilateralizable patches. In addition to the outer and inner channel edges, we create additional cross
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FIGURE 2.3. Histogram of patch footprints for a subregion of the Sacramento Valley
dataset. Brighter pixels indicate more patches overlap that location.

edges that divide the channel; cross edges will separate patches from other patches. Cross edges usually

connect inner and outer channel vertices, but there are also usually cross edges that connect non-consecutive

vertices along the outer perimeter, and similarly along the inner grid. In order to produce the family of

candidate cross edges, we test all pairs of vertices within a multiple of the desired mesh edge length h,

keeping only those that do not cross an inner or outer edge. Our current test length is 4h.

2.2.4. Patch Generation. We begin by finding all triangles in the graph formed by the inner and outer

channel edges and the candidate cross edges. Then, any triangles that share a cross edge are glued together,

forming a four-sided patch. This process of gluing along cross edges is continued between all patches (not

just patches with the same number of edges), and all resulting patches with between 4 and 8 edges are kept

as candidates for the following covering step. Note that we keep patches with odd edge lengths 5 and 7; as

we will describe in Section 2.2.5, we sometimes introduce Steiner points along long cross edges, increasing

a patch’s side number. Three iterations of joining are sufficient to create all possible patches of side-length

at most eight.

There is significant overlap in the resulting patches; typically, a point in the channel is covered by

hundreds of, and possibly a few thousand, overlapping patches, as seen in Figure 2.3.
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FIGURE 2.4. Templates for quadrilateral decomposition of patches, each paired with an
example of a patch “in the wild” that was optimally subdivided with that template. The four
degree-6 templates are shown above the thirteen degree-8 templates, with both sets ordered
by decreasing rank of the example patch.

2.2.5. Patch Subdivision and Ranking. Our next step is to quadrilateralize all patches, using a set of

templates, and rank each patch by how well it can be divided into quads. The templates we use are shown

in Figure 2.4, and their construction is discussed in Section 2.2.6. While the vertex positions along the

perimeter of the patch are fixed, a template may have internal Steiner points, which are free to move within

the patch. For each template applied to each patch, we place the interior points using a Tutte embedding,

such that every vertex is located at the barycenter of all connected vertices. A Tutte embedding does not

optimize any specific mesh quality function; we use it for efficiency and because it produces generally high-

quality results. We rank the results using the chosen quality metric. In our implementation, we use the

maximum deviation of any quad angle from 90 degrees; we ignore quad aspect ratio at this point because all

edges are guaranteed to be roughly the same size. We will use an explicit quality metric that includes aspect

ratio when smoothing, as described in Section 2.2.10.

We use four possible templates for 6-sided patches and thirteen templates for 8-sided patches, but many

of the templates are asymmetric and must be tested in different rotations on each patch. For any given patch,

one rotation of one template will yield the highest quality subdivision, and that will determine the rank (and

final quadrangulation) of that patch.

Cross edges may be split by adding a vertex at the midpoint, so that a 5-sided patch with a split edge

will be meshed as a 6-sided patch, a 7-sided patch will be meshed as an 8-sided patch, most 6-sided patches

will be meshed as both 6-sided patches and 8-sided patches, and most 4-sided patches will be meshed as

both 4-sided patches and 6-sided patches. In the patch selection processes described below, two patches that
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FIGURE 2.5. Example degenerate templates. In the doublet case, quads ADGI and AIGH
share two edges AI and IG. In the non-manifold case, edge AD is shared by the three quads
ABCD, ADEF, and the zero-area ADIJ.

share a cross edge will only be considered neighboring if both patches agree on whether to split the shared

cross edge or not. In practice, this means that a single patch will actually be 2|cross edges| different patches,

each with a different set of split edges.

2.2.6. Template Generation. We consider templates that use at most three Steiner vertices to decom-

pose 6-sided patches and at most four for 8-sided patches. Some experiments using more Steiner vertices

did not improve the results for any of our examples.

There are four possible 6-sided templates, one for each of 0-3 Steiner vertices. There are other possible

2- and 3-vertex configurations, but they result in a degeneracy where two interior quads share two connecting

edges. The first three templates cover all configurations listed in “Figure 10: Closure of boundaries with

six nodes” in the seminal paper on paving [BS91]. Our fourth case improves the quad-decomposition of

concave patches, which are not likely to arise in paving except perhaps on pathological input.

We used a recursive definition to enumerate all of the templates for 8-sided patches using at most four

Steiner vertices. As shown in Figure 2.6, an 8-sided patch can be decomposed in one of five ways, corre-

sponding to cutting off one, two, or three vertices from the patch. The leftmost template shows a single

vertex being cut off; a single Steiner vertex must be added to ensure that the both subregions still have

even perimeters; we do not consider adding three Steiner vertices in this case because it would produce a

10-sided patch. The two middle templates represent two vertices being cut off of the template, with zero and
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FIGURE 2.6. Recursive steps for creating 8-sided templates. From the left: corner vertex
split, quad ear-cut, 6/8 split, 6/6 split, and 8/8 split. Steiner vertices are shown as hollow
circles.

two Steiner vertices being added along the cut, respectively. The final templates show the patch being cut

in half, with one or three vertices being added to ensure even perimeters. The resulting 6-sided and 8-sided

regions are then recursively decomposed, stopping when at most four Steiner points are used. If the result is

a quadrangulation of the original 8-sided patch, it is kept.

This recursive process produces the same topological decomposition many times. Eliminating duplicate

topologies still leaves us with 1,006 unique 8-sided templates. The vast majority of these, however, are

degenerate. Figure 2.5 shows two examples of degenerate templates, which are either doublets or non-

manifold regions. Removing degenerate templates reduced the set of possible templates to only 36.

Even 36 templates, however, are expensive to try on each of hundreds of thousands of 8-sided patches,

especially since each is tried in multiple rotations. To reduce the number of options, we tried the entire

set on the Sacramento Valley and Merced datasets provided by the DWR, inserting the grid at different

rotations and slightly different sizes to produce different channels, and then divided these into patches for

testing. Interestingly, we observed that almost all templates were the best choice for at least one patch from

this large dataset. But, templates that were used rarely were the best choices for “difficult” patches, which

tended to be low-ranked, so that they were not selected for the final mesh anyway. Based on this experiment,

we selected the thirteen most-used eight-sided templates, which are shown in Figure 2.4.

In Figure 2.4, the first of the six-sided templates, and two of the eight-sided templates, add no Steiner

vertices. One might be tempted to think that these templates are redundant, since the quads they define

should already have been found as four-sided patches. However, due to the fact that a cross edge may be

split, the diagonals of these templates may not be cross edges, so we do need to consider them at this stage.
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2.2.7. Megapatches. We refer to a patch that includes just one cross edge as a cap, a patch that includes

two as a bead, and a patch that involve three or more cross edges as a junction. Any cover of the channel

consists of some selection of caps and junctions, connected by sequences of beads.

A patch without any neighbors sharing one of its cross edges cannot be a part of a complete covering,

and is removed from consideration. This may in turn result in further patches being removed.

(a) Example channel sec-
tion with different sizing
parameters

(b) Example patches with
their quadrilateralizations.

(c) Patch connectivity (d) Merging into megap-
atches, which store the de-
composition from the par-
ent patches.

FIGURE 2.7. Examples of the two megapatch formation processes. Above, a cap is merged
with its neighboring junction. Below, a loop is merged together, forming a bead. Color and
bold edges are used to distinguish the patches from their underlying quads.

Similarly, a cap represents a dead-end in the channel; see Figure 2.7. The cap can be removed by

merging it with all of its neighbors. The resulting megapatches internally remember the originating patches,

but can be treated like a single patch for the purposes of finding an optimal covering. Just as with the original

patches, the quality of a megapatch is the quality of the worst contained quad, so it is simply the minimum

of the ranks of the two merging patches. If the resulting megapatch is again a cap, it can be further merged

to form larger megapatches. This process of forming megapatches is repeated until no caps remain.

Each megapatch that is topologically a cap represents some complete covering from its single cross

edge back to the originating cap. So, for each (oriented) cross edge, only a single megapatch will ever

need to be stored, representing the highest-quality meshing of that portion of the channel. This makes

growing megapatches from caps computationally efficient, as inferior megapatches are easily identified and

discarded. However, as megapatches expand over junctions, one is stored for each pair of oriented cross

edges, so we stop the expansion process to avoid the combinatorial explosion of potential megapatches.
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For some very thin input regions, where the boundary and features prevent an interior grid from being

placed at all, the channel has genus zero. In this case, the best covering megapatch will represent the final

meshing of the region, so our algorithm can terminate here.

In the more common case, the input region is large enough to allow placement of the interior mesh, so

the channel has genus one or greater. In this case, the process of growing megapatches from caps cannot

cover the region; as each megapatch grows from the originating cap, it will eventually hit a junction patch,

and cannot continue growing. It does form a megapatch containing the junction patch, and the resulting

megapatch has one fewer cross edge than the junction did; it typically becomes a bead with only two cross

edges, as seen in the top of Figure 2.7. This process continues until every cap has grown into bead (or

junction) megapatches.

2.2.8. Covering the Channel with Patches. At this point, there are no caps remaining in the set of

patches, the region has non-zero genus, and the covering we seek is a collection of cycles, possibly connected

by junctions; Figure 2.1c shows the case where the cover is a single cycle of patches.

The case of a single cycle is solved using a variant of Dijkstra’s algorithm. Here, we search for the

widest path, which is similar to a shortest-path problem, except that the width of a path is the minimum rank

of any of its edges, which we aim to maximize. An arbitrary perimeter edge along the cycle is selected;

any single-cover of the region will contain exactly one of the patches incident to this edge. These patches

are iteratively tested for the widest path around the loop back to itself, with the caveat that once a patch has

been reached, the search forward from that patch must not traverse the cross edge that initially reached that

patch. This condition is necessary to ensure a single-cover of the region. The widest path from all of the

tested patches is taken to be the final cover for the region.

This approach can also be used to reduce the genus of a channel by one. The genus of a channel is

determined by the number of connected components in the interior. Taking all patches incident to one of

the isolated interior components yields a loop much like the genus-one case, except that patches in the loop

may have cross edges that are not incident to the isolated component and thus do not have a neighbor across

that edge in this subset of patches. Instead of taking only the widest path from the best patch, all paths

from all patches are considered. For each combination of unsatisfied cross edges along the path, a new

megapatch is formed, representing this particular path around the interior component. This can be seen in

the lower portion of Figure 2.7. This will be performed for all isolated components in the interior except for

the largest, which is left as the genus-one case.
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2.2.9. Computational Complexity. We consider the complexity in terms of the outer channel edge

count p and the total area of the region. First, we note that the interior grid produces O(area/h2) elements,

which are easy to determine within that time bound. The final channel cover contains O(p) quads, since

each outer channel edge ends up incident to a single patch.

The complexity of our channel covering algorithm is greater than the output size, however, since we

generate a significantly greater number of potential patches. Since we only connect vertex pairs within

distance 4h with cross edges, and we assume that there are not more than a constant number of these, a

vertex will participate in at most a constant number of cross edges. A single vertex, in turn, will belong

to only a constant (although large!) number of patches, giving us a total bound of O(p) on the number of

patches considered. For convenience, we will count each junction patch multiple times, in particular k − 1

times, where k is the number of cross edges on the boundary of the junction patch; k is at most eight.

40.71◦ to 139.18◦ 53.22◦ to 128.20◦ 52.81◦ to 127.08◦ 52.42◦ to 126.20◦ 55.23◦ to 124.77◦ 55.23◦ to 124.77◦

FIGURE 2.8. Successive smoothing iterations. Angles and aspect ratios of inner elements
are sacrificed for overall angle improvement.

Let us consider the process of forming a set of megapatches, starting from a cap. This is equivalent to

forming a widest path tree, starting at the cap, with distinct junction patches at the leaves. The set of patches

considered when computing this tree includes anything reachable from the cap without passing through

a junction. It can be computed in time O(pi lg pi) in the number of patches considered, using our current

O(n lg n) implementation of widest path based on Dijkstra’s algorithm. There is anO(n) algorithm [Pun91]

that we could also use here. The cap patch, and all bead patches examined while making the tree, will be

removed in subsequent sub-problems and represented by one or more of the megapatches associated with

the junction patches at the leaves. So each of them is processed once. Each (leaf) junction patch will end

up with one of its cross edges inside the megapatch. The junction patch may appear in subsequent sub-

problems, either as a bead patch, or as a junction with one fewer cross edges. Since a junction with k cross

edges loses a cross edge every time it is used, and then finally is counted once as a bead, it is counted k − 1

times.
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Genus reduction is a relatively expensive process. There is a large (but constant) bound on the number

of source patches considered, which we will call the patch density d. This means each genus reduction phase

is a O(dpi lg pi) search, replacing the pi patches with O(dj) megapatches for a loop with j junctions.

Treating d and j as constant, the total time is O(p lg p) in the size p of the input; using the theoretically

better widest path implementation would bring this down to O(p). Unfortunately, the constant is very large

because the number of patches, while O(p), is very large. Also, it is important to note that the solve to find

the highest-quality channel cover is currently one of the fastest phases in the overall process, in practice, so

we do not feel the need to replace it yet.

(a) Sacramento Valley, meshed (b) With smoothing to enhance angles (c) With smoothing to enhance angles and
minimize stretch
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Angle histogram for the mesh above. The
red bar, which includes all 90◦ angles,
is drawn at 1/40 of actual height. The
dashed lines show extreme angles.
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Angle comparison between regular (blue)
and smoothed (red) meshes. Note the
spikes at 120◦ and 60◦, corresponding to
valence-3 and valence-5 singularities.
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As expected, preserving element aspect
ratios results in a drop in average angle
quality but still improves the poorest an-
gles.

FIGURE 2.9. Analysis of angles in the resulting meshes, with optional smoothing steps.
Smoothing only to enhance angles will produce arbitrarily skinny rectangular elements,
creating visible “pinches” in the mesh.

2.2.10. Smoothing. We perform smoothing as a post-processing step. Instead of the common Lapla-

cian smoothing, we try to improve the angles directly by repositioning each Steiner vertex such that it
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minimizes the deviation of all dependent angles from 90◦. We currently use the Nelder-Mead Simplex

algorithm [NM65, Bro01], which is available in the mesh smoothing package Mesquite [KFDT] and rec-

ommended for non-differentiable functions, such as taking the maximum of several metrics. We use the

implementation in SciPy [VGO+20] for our angle-based smoothing. A benefit to this approach is that our

ranking function may be directly used here; should we switch to a quality ranking function that is a combina-

tion of aspect ratio, maximum angle, and deviation from ideal size, that ranking function can still carry over

to the smoothing step. An example of the smoothing is shown in Figure 2.8. We also employ a smoothing

function that is a combination of angle deviation and stretch, the scaled ratio between the longest diagonal

of the quad and the shortest edge, as seen in Figure 2.9.

An obvious benefit to the smoothing is that it relaxes the interior grid and allows elements along the

perimeter to take on better shapes. However, the templates that were applied to the perimeter elements may

no longer represent the ideal topological configuration. Local topological mesh improvement method may

be able to improve these.

2.3. Results

Our working code is written in Python and was executed with PyPy 5.1.0 for the timings we report here.

Even though we take advantage of the Just-in-Time compilation of PyPy, the code is rather slow. Initially,

Figure 2.9a, without smoothing, took just under 30 minutes to run. The smoothing to produce Figure 2.9c

took an additional 10 minutes for 30 iterations; we require more smoothing passes as it takes longer for the

interior regions to converge to a configuration that is balanced with the perimeter.

We profiled the code to guide our optimization efforts. The most expensive phases of the algorithm,

in decreasing order of overall runtime, are template application and patch ranking (89%), patch generation

(5%), perimeter edge reordering and isolated region detection (3%), inner grid generation and channel for-

mation (1%). The time taken to actually solve for the optimal channel cover was under four seconds, making

it one quarter of a percent of the overall runtime; the most complex channel in this run was only genus two,

so we expect quick solution times. A full 10% of overall execution time is spent simply measuring the

quality of potential quadrilaterals within the patch ranking phase.

We expect that a speed-focused reimplementation in C++, taking advantage of ample opportunities

for parallelism, would produce Figure 2.9a (again, without smoothing) in under a minute. However, our

profiling has indicated that the template application phase was an obvious bottleneck. Parallelizing just that
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(a) Mesh produced by GMS (b) Mesh produced by Gmsh
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(c) Angle histogram for Gmsh

(d) Our method (e) Our method, smoothed
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(f) Angle histogram for our ap-
proach

(g) Gmsh (h) Our method, smoothed (i) Our method, allowing perime-
ter edges to be split in half,
smoothed

FIGURE 2.10. Eastern edge of Merced County, California. The border is extracted
from (a), and meshed with Gmsh (b,g) and our tool (d,e,h,i).

phase, by running 8 separate Python threads, reduced the total runtime to just 526 seconds. We further

reduced the overall runtime to 165 seconds by porting just that code to C++, parallelized with OpenMP.

We cannot guarantee that any given channel can be meshed, but testing shows that finding a cover is very

likely. We ran a series of tests against the Merced dataset, with different combinations of desired edge length
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TABLE 2.1. Statistics for Merced County Meshes

Gmsh Our Method Allowing Perim. Splits
Delaunay DelQuad Base Smoothed Base Smoothed

Image - 2.10b,2.10g 2.10d 2.10e,2.10h - 2.10i
Elements 3412 2161 2017 2017 2082 2082
Triangles 778 262 - - - -

Quads 2634 1899 2017 2017 2082 2082
Angle Min. 25.23 18.06 35.84 35.88 40.77 40.77

Max. 149.42 151.97 146.20 146.20 136.02 138.21
Singular Points 1146 286 134 134 153 153

Degree-3 277 55 93 93 101 101
Degree-5 849 228 41 41 52 52

Other 20 3 0 0 0 0

h, channel width δ, grid orientation and offset. The desired edge length was linearly sampled from the mean

input edge length to one standard deviation below. Among 360 test cases, 18 failed to produce a covering

of the channel. Eight of these succeeded after increasing the maximum cross edge length from 4h to 5h,

at the expense of almost doubled runtime and memory usage. Nine tests failed due to groups of internal

edges that formed zero-area polygons, bypassing an orientation check and allowing them to be walked in

the wrong direction. These cases succeeded after manually reversing the direction of the offending group of

edges. There were only four grid offsets tested, with a zero or one-half phase shift in either dimension, and

every failed test case had at least one corresponding successful test case that differed only in offset.

FIGURE 2.11. Replacing the inner grid with the boundary-aligned output of Instant Field-
Aligned Meshes [JTPSH15]. The target element count was set at one-quarter the desired
amount, and then Catmull-Clark subdivision was applied to ensure an all-quad interior at
the target resolution.
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Figure 2.9 shows our method on the northernmost portion of the Sacramento Valley in California. While

our objective function during the initial meshing process is based exclusively on element angles, that is not

sufficient for the smoothing step, shown in Figure 2.9b, as it squishes some interior elements into arbitrarily-

skinny rectangles. For the smoothing step, we use an objective function that takes element shape into account

(Figure 2.9c).

We compare our method against Gmsh [GR09] in Figure 2.10, using data from Merced County, Califor-

nia, which was extracted from a mesh produced by GMS [OJH96]. We show the meshes without color to

better contrast the three methods. Angle histograms are shown for both methods; note that the histogram for

Gmsh (Figure 2.10c) is skewed toward smaller angles as it also produces triangles. If the boundary condi-

tions are relaxed, and perimeter edges are allowed to be split at most once, at their midpoint, we produce the

mesh seen in Figure 2.10i; while the interior quality is quite similar, the poorest angles along the perimeter

are significantly improved. Table 2.1 shows statistics for some of the meshes shown in Figure 2.10.

We are exploring the use of alternate interiors for our meshing process. For example, Figure 2.11 shows

the output of Instant Field-Aligned Meshes [JTPSH15] as a replacement for the interior grid. The result is a

mesh where the interior aligns with the boundaries while also strictly adhering to the complicated boundary

of the region.
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CHAPTER 3

Size-Aware Cross Fields

This chapter includes a novel extension to the construction found in Globally Optimal

Direction Fields [KCPS13] that allows for the generation of size-compatible cross fields, as well as our

definition of size-compatibility, which is covered in Section 3.2.1. As such, significant portions of this chap-

ter are dedicated to explaining the mechanisms underlying the GODF approach, as well as the derivation

and evaluation of our extension. In Chapter 5, these fields will be used to produce all-quad meshes.

We take an input size field and optimize toward a compatible cross field, which we may not exactly

achieve. The size field must be continuous, but is otherwise unrestricted, although higher rates of change in

the size field tend to lower the quality of the resulting mesh. We estimate the sizing implied by a cross field

in order to evaluate the resulting fields here, with a more rigorous definition of size explored in Chapter 4,

followed by mesh extraction in Chapter 5.

This chapter is split into four main sections. Section 3.1 covers the foundational topics for cross fields,

including intuition and implementation details where appropriate. Section 3.2 discusses the sizes implicit in

meshes and cross fields, as well as our observation that a varying size function on a 2D surface behaves in

many ways like a curved surface in 3D, allowing us to exploit tools that use surface curvature, like GODF.

In Section 3.3, we derive much of the underlying math behind GODF and describe our implementation. We

end by exploring a few cross fields produced with this method in Section 3.4.

3.1. Cross Fields

3.1.1. Conformal Maps.

DEFINITION 3.1.1 (Map). A map M is a relation between two regions r1 and r2, such that every point

p ∈ r1 has a corresponding M(p) ∈ r2. While the inverse map M−1 is a useful concept, some of the maps

we will consider do not have a unique inverse: there may be p1 ̸= p2 where M(p1) =M(p2).

A map M between two regions r1 and r2 may be arbitrarily defined and indeed is often a collection

of independent functions mapping subregions of r1 onto r2. In practice, M is a piecewise function defined
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over a triangle mesh, but for the sake of simplicity many of our examples will be complex polynomials, such

as the complex map f(c) = c2 for example, which maps the point c = i − 1 to f(c) = c2 = −2i. We

can see this as a map from the complex plane to itself, or from one complex plane to another; also, treating

source and destination regions as Euclidean planes, the same complex function f(c) = c2 would map the

point p = (−1, 1) to the point M(p) = (0,−2). Much of the related research is in the context of mapping

a 2D surface embedded in R3 to the Euclidean plane, so this will often serve as a third mental model for the

associated concepts.

DEFINITION 3.1.2 (Tangent Plane). Given a point p on a surface S, a tangent plane Tp is a plane

through p that is tangent to the surface S. The local neighborhood of S around p may be flattened by being

projected onto the tangent plane. The tangent plane Tp defines a local coordinate system, with p as the

origin.

p1 M(p1)

r1 r2

x

y

dM
dx

dM
dy

FIGURE 3.1. The map M takes p1 ∈ r1 to
M(p1) ∈ r2.

At any point on the Euclidean plane, the tangent plane is

another Euclidean plane.

DEFINITION 3.1.3 (Differential). The differential dM of a

mapM from r1 to r2 at a point p ∈ r1 are the vectors dM
dx ,

dM
dy ,

given local coordinates x and y defined at p.

This correspondence between the basis vectors at p and

the differential vectors at M(p) defines a relationship between

the tangent planes Tp and TM(p), but not necessarily the regions r1 and r2; Tp and TM(p) are Euclidean

planes, even if the regions r1 and r2 are not. The map M and a coordinate system defined on r1 produces

a (possibly curved) coordinate system on r2; the differential dM and a coordinate system defined on Tp

produces a straight coordinate system on TM(p).

The maps we are considering may be between arbitrary curved surfaces embedded in R3. The differen-

tials of these maps map between flat tangent planes at the source and destination points. The utility of these

tangent planes is that they establish a correspondence between the neighborhoods around p and M(p) in a

manner that is independent of the underlying coordinate systems of r1 and r2; any change in the coordinate

system in r1 will not change the tangent plane, but only the basis vectors that points in the tangent plane are

expressed with respect to, which will cause a corresponding change in the differential vectors. The map M
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induces this linear transform between the tangent spaces Tp and TM(p), and like any linear transformation,

it is a combination of rotation, scale, mirror, and skew.

DEFINITION 3.1.4 (Conformal Map). A conformal map M is an angle-preserving map: for any two

curves C1, C2 ∈ r1 that intersect at point p, the mapped curves M(C1) and M(C2) meet at M(p) ∈ r2

at the same angle. The equality condition for angles implies that the inverse of a conformal map is also

conformal.

Conformal maps are of particular interest because the differential of a conformal map is orthogonal

if the basis vectors in r1 are orthogonal and have the same length. The orthogonality and size conditions

means that the transform between tangent spaces Tp and TM(p) can only consist of rotation and scale; we

will not consider anti-conformal maps where all angles are negated, which would be the case if M mirrored

the tangent planes. In order to illustrate several concepts relevant to the construction of cross fields, we

will explore a specific class of conformal maps: complex analytic maps. These are important because all

conformal plane-to-plane maps are complex analytic functions, and vice-versa.

(a) f(c) = c (b) f(c) = c2 (c) f(c) = c (d) f(c) = c2

FIGURE 3.2. Iso-integer line drawing and checkerboard drawing for complex functions;
the color information is calculated in the source coordinates c, and mapped onto the position
f(c).

Figure 3.2 illustrates the complex map f(c) = c2 in two ways. The left figures draw lines along integer-

valued coordinates, with additional quarter lines in gray, while the right images show a checkerboard pattern

used in Will Bolden’s Complex function plotter [Bol21]. This checkerboard pattern looks at the Euclidean

encoding c = x + iy, and darkens any region where ⌊x⌋ ≡ ⌊y⌋ mod 2, and the remaining pixels are

colored by H = −arg(c) in a HSV color space such that ±π is red; Figure 3.2c shows the full spectrum.

The colors evaluated at c are then mapped onto the coordinates at f(c). Practically, when actually rendering

the images, these are evaluated by taking the pixel coordinates, translated and scaled rescaled to the area
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of interest, and evaluating the inverse map f−1(c) =
√
c, yielding the “original” complex coordinate that

the color information is derived from. It is important to note that the inverse map is not unique, as every

nonzero complex number z = c2 has two roots c; in polar coordinates, the two magnitudes are identical

but the angles differ by exactly π, so we take the canonical root to be the one where the sign of the angle

(mod2π) matches the original angle. This only influences the choice of color, as both roots share the same

parity when drawing the checkerboard.

Note that, in Figure 3.2d, the color of the non-checkered tiles can be used to determine the source

coordinate in the Euclidean plane. So, within each square, each point has coordinates in both the origin

surface r1 and final surface r2. This process is often called reparameterization, as there are many cases

where the (often simpler) coordinate system of the source surface is preferred to the actual embedding of

the mapped surface. A concrete example of this is texture atlasing in 3D graphics, where each point p on a

3D model has model coordinates in R3, expressing the location of the point in the local environment, and

texture coordinates in R2, giving a location into a 2D texture that will be used for color information. This

not only allows color information to be stored for just the surface of the object, but also defines a coordinate

system on the surface of the object allowing for animation techniques that are inherently local. A widely

used example of this is applying a noise function to add surface detail via a pseudorandom function of the

local surface coordinates so the result is consistent regardless of where the model is located in the scene 1.

FIGURE 3.3. f(c) = c2/3

With the goal of drawing all-quad meshes in mind, this is a promis-

ing start. A conformal map from the Euclidean plane onto our surface

gives a decomposition of the surface into quads; this chapter is an ex-

ploration of the properties we want such a map to have, and a method of

computing one. A conformal map ensures that a grid on r1 maps to quads

on r2 where the produced quads meet at perfect 90-degree angles, How-

ever, the mapped quads are curved, and once discretized to form quads

with straight-line edges between all four vertices, the angles will neces-

sarily deviate from ideal. However, this does mean that refinement can be

employed to achieve arbitrarily-high quality bounds for most vertices; as

seen in Figure 3.3, there is an irregular vertex at the center that cannot be improved, regardless of the amount

1Ken Perlin’s foundational paper on the topic [Per85] explicitly did not use surface coordinates but instead used local object
coordinates for solid textures, implicitly defining color information for the entire volume. Noise based on surface coordinates
simplifies consistent texturing of deformable objects.
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of refinement performed. Six incident quads intersecting at that point means that the best-case scenario is

that all angles are π
3 ; any attempt to bring one angle closer to the ideal π

2 necessarily worsens the other

angles. These irregular vertices are known as singularities and are an instrumental part of how a cross field

behaves.

3.1.2. Direction Fields.

DEFINITION 3.1.5 (Direction Field). A direction field γ over a surface S defines a direction at every

point p of the domain: γ : p ∈ S 7→ θ ∈ [0, 2π)

A direction field differs from a vector field in that direction fields only provide directions, and do not

include magnitude, at each point in the region. Except at critical points, which will be discussed later,

this direction smoothly changes over the region; as the distance between two points approaches zero, the

difference between their associated directions also approaches zero. A direction field is often computed over

a region as a precursor to a final mesh, the two most common cases being a 2D manifold surface in 3D space

or the interior of a polygon in 2D space. We focus on the latter case.

A generalization of direction fields allows rotational symmetry, where a rotationally-symmetric direc-

tion field of degree-n will define n evenly-spaced directions at each point. Analogous to how adding a

multiple of 2π to an angle does not change its resulting direction, adding a multiple of 2π
n to an angle in

a degree-n field does not result in any change, because each direction lines up with one of the symmetric

copies. In this sense, the only meaningful values an angle can take are in the range [0, 2πn ).

DEFINITION 3.1.6 (n-RoSy Direction Field). An n-fold Rotationally-Symmetric direction field or n-RoSy

direction field is a direction field that exhibits rotational symmetry of degree n. Directions that differ by 2π
n

are considered equivalent: for every every point p of the domain: γ : p ∈ S 7→ θ ∈ [0, 2πn ), and the standard

definition of continuity is extended such that lim|∆x|→0 θx+∆x − θx = 0(mod2π
n ).

Due to their utility for generating quad meshes we focus on cross fields, where n = 4, and angles are in

the range [0, π2 ), but much of what is said here generalizes to n ̸=4. We will use the term direction field to

refer to n-RoSy direction fields in general.
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(a) A LIC rendering, an intuitive representation of the direction along
the entire field, with the four direction vectors shown at some sample
points.

You Are
Here

This Way
Forward

(b) A simple representation of a point
in the field. While only one direc-
tion is explicitly stored (shown solid),
the three implicit directions (shown
dashed) are equivalent at this point.

FIGURE 3.4. A 4-RoSy direction field.

(a) Rendering (quarter-)integer-
valued isolines

(b) Source coordinate parity
checkerboard

(c) The Line Integral Convolution
(LIC)

FIGURE 3.5. The complex map f(c) = c3/4 rendered using three techniques. Discussed
further in Section 3.1.11, the LIC is able to render arbitrary direction fields.

We now introduce one more visualization, particularly suited for direction fields: the Line Integral

Convolution. Shown here in Figure 3.5c, it provides an intuitive display of a direction field by appearing

to be combed along each direction simultaneously, resulting in a distinct knurled or cross-hatched effect.

Section 3.1.11 covers how LIC images are generated.

As an example of a commonly-used direction field, we can consider navigation on Earth. This direction

field is based on the Earth’s magnetism, which defines the direction North at every point, except at the poles
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where there is no North at the North Pole, and every direction is North from the South Pole. This is a

1-RoSy direction field, as a direction is effectively unchanged after rotating by 360◦. If this was a cross field

instead, a compass would point at the closest cardinal direction, instead of always North. This is equivalent

to a compass with an unmarked cross; while the magnet under the cross is always pointing North, it is

impossible to tell which of the four arms of the cross is the actual Northward direction, so North, West,

South, and East all become interchangeable. This is an example of a 4-RoSy field that does not correspond

to an underlying conformal map.

3.1.2.1. Cross Fields and Quad Meshes. There is a strong, albeit imperfect, relationship between quad

meshes and cross fields.

Within any quad, there is an implicit coordinate system u, v that measures the position of some interior

point p between the two pairs of opposing edges; typically, these are the same coordinates used when

performing bilinear interpolation over the quad. However, these vectors are not guaranteed to be orthogonal

or the same length, so a quad mesh does not directly imply a cross field, but it does come close (Section 3.1

of [BLH+17] describes a method to (and pitfalls of) extracting an orthogonal cross field from an arbitrary

quad mesh).

This process may be reversed; around any point p in a cross field, an arbitrarily-sized square may be

drawn. This does not produce a quad mesh, of course, as there is nothing to establish connectivity between

quads, or to prevent their overlap. If however, we consider the infinitesimal edge length ϵ, the square instead

becomes an infinitesimal neighborhood around p; This in effect produces a mesh of infinite density that is

perfectly aligned with the given field. While illustrative, this is not exactly practical; the work required to

extract a quad mesh from a cross field with more useful element sizes is the topic of Chapter 5.

The meshes produced in Chapter 5 will not have perfectly-rectangular quads, except in the case of a

constant field. So, while there is a relationship between cross fields and quad meshes, there is information

lost in each conversion. Therefore, given a field φ̂ extracted from a quadrangulation Q, which was in turn

extracted from a field φ, we expect that φ̂ ̸= φ, although they should be quite similar.

3.1.2.2. Direction Interpolation. Our direction fields are represented by a discrete sample of directions,

stored at the vertices of a triangle mesh, with the angles being interpolated over each triangle to define a

continuous direction field over the region. We will now discuss some of the necessary considerations when

deciding how to represent and interpolate directions.
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Careful consideration needs to be taken when interpolating angles, especially in n-RoSy fields. Even

with regular direction (1-RoSy) fields, correctly interpolating between two directions requires checking to

see whether a clockwise or counterclockwise rotation would be correct. This is in contrast to interpolating

between two rotations, which are inherently oriented. Interpolating half-way between the directions 0 and

3π
2 will yield 7π

4 , because that is the shortest path between them. If the same values were treated as rotations,

the sign of the second value implies it is a counter-clockwise rotation, and the correct midpoint between them

would be 3π
4 .

Another way to represent directions in 2D is as 2-vectors, or equivalently as complex numbers. Interpo-

lating between vectors no longer requires testing to see which is the correct direction to rotate in, as storing

the direction as two components eliminates the 2π ↔ 0 changeover that necessitates the direction check.

However, this introduces another potential issue: interpolating between two directly opposed directions re-

sults in a vector where both components are zero, which cannot be normalized back to a proper direction.

In practice, this case is unlikely to arise when interpolating two vectors, but when interpolating discrete

directions to form a continuous field, we will encounter this situation at singularities, which we will discuss

momentarily.

Rotational symmetry reintroduces the rotation problem when interpolating directions, even when those

directions are represented as vectors or complex numbers. In a 4-RoSy field, the direction vectors (1, 0) and

(0, 1) are equivalent, so interpolating between them should result in the (unchanged) vector (1, 0). Clearly,

performing simple component-wise interpolation is insufficient.

In GODF, Knoppel et. al. created a representation where n-RoSy directions are stored as complex

numbers, raised to the nth power [KCPS13]. Multiplying complex numbers adds their rotations, so this

effectively multiplies any rotation by n. Importantly, this means that the canonical values for a n-Rosy

direction, which are in the range [0, 2πn ), are mapped to the range [0, 2π), regardless of n. These vectors

may be interpolated just like non-symmetric directions in the complex plane, without the need to check

both potential directions of rotation between them. Once interpolated, taking the fourth root of the rotation

restores the canonical n-RoSy value in [0, 2πn ). We also use this field representation, storing fourth-power

rotations at every vertex of a triangle mesh; the direction at any point can be evaluated by using barycentric

interpolation of the vertex rotations and then taking the fourth root to yield a complex vector, which can be

normalized to produce a unit direction vector, but is most often passed to the two-parameter inverse tangent

function atan2 to produce a scalar rotation angle.
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At first, this might seem like an excessive amount of work to avoid the bookkeeping of checking di-

rections. The critical difference between representing directions as a complex value to the nth power and

any of the other discussed methods is that interpolation between the higher-order complex values is order-

independent. Interpolating between three directions in any of the other representations can result in a dif-

ferent outcome just based on the order of the arguments, even when their relative factors are fixed; this is

discussed further in Section 3.1.2.3.

3.1.2.3. Direction Field Representation. The direction field is stored in relation to the background tri-

angle mesh on which it is computed. Each vertex in the triangle mesh stores a single direction, and the

direction associated with any point p in a triangle t is a weighted sum of the angles at the vertices, weighted

by the barycentric coordinates of p ∈ t.

These angles are stored relative to some baseline direction. Working in 2D, we can take the baseline

direction to be the +X axis, as this provides a consistent and valid reference direction over the entire

surface. This is more difficult for a 2D surface embedded in R3, where each angle is in the plane tangent to

the vertex, for which there is no globally-consistent baseline orientation. Storing a baseline vector for every

vertex would be sufficient, but [KCPS13], for example, uses the lowest-indexed edge incident to the vertex

to give a consistent baseline vector without incurring additional memory usage.

(a) Interpolation from complex values at
background mesh vertices

(b) Interpolation from intermediate ras-
terized angles

FIGURE 3.6. A point singularity in the highlighted triangle is exaggerated by naively bi-
linearly interpolating angles (right), compared to complex-valued interpolation (left). The
colors represent the angle θ ∈ [0, π2 ), with the sharp transition around the singularity show-
ing both “sides” of the singularity wrapping around in opposed directions.
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As mentioned in Section 3.1.2.2, care must be taken when interpolating directions, especially in ro-

tationally symmetric fields. In an attempt to improve the performance of queries into direction fields for

our special case of a planar domain, we tried rasterizing the triangle mesh onto a regular grid, where the

alignment at each point was stored as a rotation θ ∈ [0, π2 ]. This allows very efficient sampling of an arbi-

trary query point p by much the same process as texture mapping: rescaling p to p′ = (x, y) in coordinates

relative to the rasterized texture T , use fx = x − ⌊x⌋ and fy = y − ⌊y⌋ as weights for bilinear interpo-

lation between T⌊x⌋,⌊y⌋, T⌊x⌋+1,⌊y⌋, T⌊x⌋,⌊y⌋+1, and T⌊x⌋+1,⌊y⌋+1. In each of the of the three interpolation

steps performed during bilinear interpolation, a check must be performed to determine whether a clockwise

or counter-clockwise rotation is the shorter rotation. This works for singularity-free regions, but further

distorts cells with a singularity as seen in Figure 3.6.

Instead, we use barycentric interpolation of angles over the triangles of the background mesh, with

two different angle representations. For general use, we interpolate complex-valued angles raised to the 4th

power, as described in GODF [KCPS13]. We also use a scalar-valued angle α in situations where we need to

know∇α, because barycentric interpolation of scalar values results in∇α being constant over each regular

triangle. This requires extra processing to ensure that singular triangles are handled correctly, so singular

triangles are split at the singularity to produce three sub-triangles that can be interpolated over without the

possibility of interpolation order causing the discontinuity seen in Figure 3.6.

The general case for querying the direction field is when tracing paths through the field, which we will

discuss momentarily. This process has very high spatial locality, with many queries being located in the same

background mesh triangle as the preceding query. As the process for computing the resulting angle relies on

the barycentric coordinates within the triangle, we start each query by computing the barycentric coordinates

within the most recent triangle searched. If all barycentric coordinates are nonnegative, the query point is

in the same triangle, and the resulting direction can readily be computed. If there is a negative coordinate,

the query point is outside the current triangle, and the most-negative coordinate is used to select one of the

three neighboring triangles that share an edge with the current triangle. This repeats with the neighboring

triangle, walking across the mesh until the correct triangle is found or a boundary edge is crossed. This

process depends on a background mesh with convex elements and no interior holes; cases like the airfoil

dataset in Figure 4.10 with an internal (wing) boundary fall back to a hash grid. A hash grid is an axis-

aligned subdivision of the space into small squares, where each square index can be rapidly computed from

the query coordinates. Each square contains a list of all triangles it overlaps, so once the correct square is
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identified a relatively small number of triangle queries needs to be performed to find the containing triangle.

The hash grid is the fallback option because it incurs higher memory usage and is typically slower.

3.1.3. Field Lines.

DEFINITION 3.1.7 (Field Line). A field line is a continuous curve that is tangent to the direction field at

every point.

We consider curves whose movement is restricted to be aligned with the direction field. In these cases,

each field line leaving a point represents the one-dimensional collection of points reachable in that direction.

This gives an intuitive sense for moving within the direction field, as “following” the field simply means

traversing along a field line. Every regular point p in an n-RoSy field has n field lines emanating outward

from p. We will handle irregular points shortly.

For even rotational symmetries, each field line is bidirectional; for any heading θ, θ+π is symmetrically

equivalent. Conversely, odd rotational symmetries exhibit monodirectional field lines. So, for an n-RoSy

field, if n is odd, there will be n field lines that appear to originate from each point, which are themselves

continuations of the n field lines leading into each point. If n is even, there will be n
2 field lines that appear

to pass through each point, as the forward direction of each vector matches a reverse direction of another.

FIGURE 3.7. Two parallel field lines
that intersect

In the case of a 4-RoSy field, field lines are also perpendicular

to the field at every point, meaning that any given regular point will

have two field lines passing through it, although it is possible that

they are two different sections of the same field line, as seen in the

self-intersections in the red paths in Figure 3.7.

As field lines are defined to be field-aligned, they may only

cross at angles that are multiples of 2π
n in an n-RoSy field, so when

dealing with cross fields, all field lines cross at angles of π
2 . How-

ever, when tracing field lines, numerical inaccuracy may cause (de-

generate) collisions with angles of 0 or π. These may arise naturally,

if a field line naturally forms a closed loop, but they most commonly

arise from errors in the tracing process, caused by excessively large step sizes in areas of high curvature.

This is a failure case and is an indicator that the chosen parameters are not sufficient for the current cross
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field; decreasing the step size or regenerating the cross field with a denser background mesh are the most

common fixes.

The restriction that field lines must be aligned with the underlying field gives rise to a notion of parallel

field lines. A property of parallel lines in Euclidean space works well here: two field lines can be considered

parallel if their angles of incidence with a common third field line sum to π radians (unlike parallel lines

in Euclidean space, there is no guarantee of equidistance between the lines). It is even possible for them to

intersect, although we will strengthen our definition of parallel later on to remove this case.

3.1.4. Singularities. There are several related edge-cases in the concepts presented above. As shown in

Figure 3.2d, it is possible to have a continuous map from a region with inherent nondegenerate quadrilaterals,

such as the Euclidean plane, and end up with apparent triangles where two edges of the resulting degenerate

quadrilaterals are colinear. If a mesh was to be extracted from the checkerboard pattern, the center of the

image would have a vertex with only two edges, while all other vertices would have four incident edges. It

is as if the corresponding point in the direction field is missing two of the four directions. This can even be

seen without needing to necessarily extract a mesh to look at the connectivity; simply attempting to evaluate

the direction of a point in a direction field can have undefined results. For example, when interpolating in

a system where directions are stored as complex values, it is possible for the interpolants to cancel out and

result in an undefined direction. These different behaviors are directly related, and the point at which they

occur is called a singularity.

DEFINITION 3.1.8 (Singularity). Singularities, also referred to as singular, critical, or irregular points,

are isolated points that represent irregular connectivity. In quad meshes, they are vertices that are not

incident to four edges or, equivalently, not incident to four quads. In an n-RoSy direction field, a singularity

sits at the intersection of some number ̸=n of field lines. Generally, points on the region boundaries are not

considered to be singular as the full local neighborhood of the point is not known. We follow the convention

of labeling these singularities, whether in a mesh or cross field, by their valence: the number of incident

edges (in a quad mesh) or field lines (in a direction field).

Not all complex maps produce direction fields with integer-degree singularities, such as f(c) = c
9
8 ,

as shown in Figure 3.8. However, as a non-integer-degree singularities produce line discontinuities in the

direction field, we restrict our singularities to having integer degrees to ensure the only discontinuities in the
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direction field are the singular points themselves. This restriction is implicit in our field representation, as

we will discuss in Section 3.1.6.

FIGURE 3.8. A singularity with non-integer degree produces a line of discontinuity in the
direction field.

For some surfaces, there must be singularities in the direction field; this was first demonstrated for a

sphere by Henri Poincaré in 1886 [Poi86] 2 and is now known as the Hairy Ball Theorem, as it demonstrates

the impossibility of combing a hairy ball without introducing tufts where the hair sticks out or bald spots

where hair around a point is combed in different directions. More formally, any direction field defined on a

sphere must have at least two singularities.

3.1.5. Holonomy. Holonomy is a term from differential geometry which we will repurpose here in

terms of a direction field. In this section, we will consider an n-RoSy direction field γ where the angle is

always within the range [0, 2πn ].

DEFINITION 3.1.9 (Holonomy). Holonomy measures the observed change in a direction field over a

closed loop. Given a smooth parametric curve ℓt over an n-RoSy direction field γ, such that ℓ0 = ℓ1, the

holonomy Ω is

Ω =

∫ 1

0
min
0≤i<n

((
γℓt+dt

)
−
(
γℓt

)
+

2πi

n

)
dt

with i ∈ N selecting for the minimum-magnitude rotation that obeys the rotational symmetry of the field γ.

The minimization inside the integral serves to correct discontinuities in γ that are not discontinuities in the

field: if we represent the field γ by a scalar-valued angle a, immediate changes in a of (integer multiples of)

π
n are not a rotation but simply a change in its representative within its symmetry equivalence class. These

arise from the piecewise definition of the map M , where a single streamline in the field may be an isoline of

u in one map and v in another.

2What I can remember of French from high school is not sufficient to work through technical writing, so I cannot confirm if Poincaré
singled out and named this specific case.
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We compute holonomy in our discrete representation by evaluating γ at the vertices of a line-segment

loop. The holonomy is simply a running total of the difference in field alignment observed along each step

across a line segment, accounting for field symmetry. These segments must be sized appropriately to avoid

selecting the incorrect minimum for a given step; a step from p0 to p1 is too large if it produces a different

rotation than the sum of steps from p0 to their midpoint pm and then from pm to p1. This will happen when

the rotation from p0 to p1 is greater than π
n in either direction; because the angles themselves are only unique

to a factor of 2π
n , a larger rotation must be measured by accumulating smaller measurements. By adding

additional quadrature points, the measurement is able to capture the actual behavior of the field, whereas

the original measurement produced erroneous data, just as sampling a function below the Nyquist frequency

yields an incorrect signal.

We define the holonomy of a simply-connected region r to be the holonomy of the region boundary. If

a region is subdivided into subregions, the holonomy of the original region is the sum of the holonomies of

the subregions. We focus on two types of region in particular: the triangles of the background mesh, and

regions whose boundaries are everywhere tangent to the field, which we call tiles.

When our regions of interest are closed polycurves consisting of sequences of field-aligned paths (which

will be further investigated in Section 3.1.3), the holonomy can be calculated by measuring the turn along

each path; the field-aligned path never deviates from the field by definition, so the holonomy along the path

is simply the difference between the headings at the start and end of the path. Importantly, the turn is a

difference in rotations instead of directions, so there are no symmetry conditions and no bounds, as the turn

is itself the integral of the difference in direction along the curve, with the rotation of each step too small

to trigger symmetry behavior. Figure 3.7 shows two field lines in red that have total turn of almost 2π if

viewed as traveling from right to left. In practice we focus on simply-connected tiles, where the maximum

rotation magnitude would be 2π from, e.g., an enclosing circle. The field-aligned paths must meet at some

angle θ = i2πn , so there is no change in holonomy when transitioning from one field-aligned path to another.

The total holonomy of a tile, bounded by a collection of field-aligned curves, is simply sum of the turn along

each of the curves.

The holonomy of a region is a function of all of the singularities enclosed in the region; this is the

Generalized Poincaré-Hopf theorem from [RVLL08]. If a region contains no singularities, the holonomy is

zero; the rotations of the direction field along any enclosing path balance out to zero. A region containing

a single degree-3 singularity will exhibit a π
2 holonomy; two degree-3 singularities or a single degree-2
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singularity would both have holonomies of π. Just like software tests only expose the presence of bugs,

but cannot guarantee their absence, this test can only expose singularities; a neutral holonomy does not

indicate that a region is singularity-free, because it could contain singularities of opposed magnitudes whose

holonomies cancel out.

(a) f(c) = c4/2

Degree-2 Singularity; Ω = π
(b) f(c) = c4/3

Degree-3 Singularity; Ω = π
2

(c) f(c) = c4/4

No Singularity; Ω = 0

(d) f(c) = c4/5

Degree-5 Singularity; Ω = −π
2

(e) f(c) = c4/6

Degree-6 Singularity; Ω = −π
(f) f−1(c) =

(
(c+ 6)(c− 6)

)1/4
Two Degree-3 Singularities; Ω = π

FIGURE 3.9. Visualization of the holonomy of singularities of various degrees using com-
plex functions that induce each singularity. The arrows demonstrate a closed path where
the eventual inconsistency in the arrow alignment corresponds to the degree of the enclosed
singularity, or their sum as seen in (f). Note that (f) is given in terms of the inverse function,
which was used to generate the image, in order to highlight the two singularities which are
complex roots.

3.1.6. Singularity Detection via Holonomy. Although immediately apparent to a human observer

when looking at a LIC rendering of a direction field, such as Figure 3.5c, singularities are not explicit

in the direction field representation, and a search must be performed over the entire region to locate them.

As described in the previous section, singularities can be detected within any closed region by examining the
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holonomy of the region boundary. Figure 3.9 illustrates this process: the degree of the singularity at the cen-

ter of the image can be identified by walking a path encircling the singularity, shown here as arrows drawn

over the squares. The squares are drawn such that they align with any arrows drawn in adjacent squares, but

in all images with a singularity present there is one pair of arrows that do not align; the holonomy of the

region is the rotation between the two unaligned arrows. Note that the paths in Figures 3.9a and 3.9f have

the same holonomy; a nonzero holonomy indicates a singularity is present but cannot distinguish between a

single degree-2 or two degree-3 singularities.

When detecting the singularities in our computed direction fields, we simply measure the holonomy

of every triangle in the mesh. Because we are computing the holonomy of triangles, we only have three

sample points; any additional sample points would just be interpolations of the angles at the vertices and

would provide no new information. For triangle t012, the holonomy is the sum of the three transitions:

v0 → v1, v1 → v2, and v2 → v0. In a 4-RoSy field, the maximum difference between two angles is π
4 ; if the

difference was greater, one of the symmetric directions would be closer, resulting in a smaller difference.

The same logic is why angles in Euclidean space can differ by at most π. So, by adding three values, each

θi ∈ [−π
4 ,

π
4 ], the sum must be −3π

4 <
∑

i θi <
3π
4 . However, as this sum must be a multiple of π

2 , there are

only three potential holonomies for each triangle, 0 and ±π
2 .

Thus, by using a triangular background mesh, detectable singularities are limited to degree 3 and 5,

and there can be at most one per triangle. Figure 3.10 demonstrates what happens when a direction field

with a degree-6 singularity gets encoded as rotations at the vertices of a triangle mesh: the holonomy from

the single degree-6 singularity is pushed into neighboring triangles, where the central degree-6 singularity

has been reduced to degree-3, and is now flanked by three degree-5 singularities in each of the adjacent

triangles. So, an attempt to encode a direction field with higher-degree singularities, or simply too many

singularities close together, will cause the holonomies of individual triangles to shift such that singularities

maybe be merged, split, or moved. The resulting field is still a valid direction field, but it has a different set

of singularities.
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FIGURE 3.10. Direction field with a degree-6 singularity with a triangle mesh overlaid
(left). Directions are sampled at the mesh vertices, from which a new direction field can be
interpolated (right). Note there are now 4 singularities in the right image.

3.1.7. Singularities and Curvature. In the plane, a circle with radius 1 will have circumference 2π.

Equivalently, the angle covered by sweeping all the way around a point is 2π. This does not hold for a

curved surface. Sweeping around a point with positive Gaussian curvature, such as any point on a sphere,

will sum to less than 2π, while a point with negative Gaussian curvature, like a point in a saddle, will have

a sweep angle of more than 2π.

Every point in the Euclidean plane has a sweep angle of 2π. Singularities in a cross field, incident to

some number ̸= 4 of field lines, appear to have a sweep angle ̸= 2π, as all field lines logically meet at

π
2 angles. Singularities in a cross field imply curvature, as if the cross field was mapped from a curved

surface, because the number of incident squares differs from 4. This is as if any observed deviation of the

angle between two streamlines at a singular point from π
2 is due to perspective error while viewing a perfect

square rising out of (or into) the plane.
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FIGURE 3.11. Visualization of the relationship between singularities and surface curva-
ture. In both rows, a portion of the unit disc (left) can either be deformed into a flat disc
(center) or instead folded into a surface embedded in 3D. Interestingly, no points other than
the central singularities demonstrate any curvature.

Figure 3.11 shows how singularities can be thought of as indicating curvature. Instead of simply de-

forming the partial disc into a complete disc, slightly distorting the space to close up the disc, the partial

disc can be bent into a cone (or saddle) in a way that does not deform the original space.

This somewhat paradoxical concept of a planar surface with curvature is related to the size function

that we are attempting to approximate and will be investigated further in Section 3.2.5. However, as can be

seen in Figure 3.9, there is an apparent increase in the size of quads when moving away from a degree-2 or

degree-3 singularity, and similarly, a decrease in the size of quads moving away from a degree-5 or degree-6

singularity, with the size change being more drastic with degrees further away from 4, or with increasing

holonomy (and consequently curvature). This connection between quad size and curvature is how we use

approaches based on surface curvature in order to achieve our target size function.

3.1.8. Separatrices.
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DEFINITION 3.1.10 (Separatrix). A separatrix is a field line that begins or ends at a singularity. Every

non-terminal point along the separatrix is non-singular; a separatrix cannot have a singular point along its

path. Instead two distinct separatrices would meet at that singularity.

In this context, we consider separatrices that pass through even-degree singularities to be distinct sepa-

ratrices that meet at the singularity; a valence-6 singularity is adjacent to six separatrices but only three field

lines. Because we are focusing on cross fields, and the field lines are bidirectional, we take the perspective

that separatrices originate at a singularity and are directed outward. While it is possible for a separatrix to

travel between two singularities, and as we will see in Chapter 5 it is even beneficial, it is highly unlikely

for the separatrices to exactly align, so we ignore that case for now.

All of the separatrices can be combined to form the separatrix graph. The vertices in this graph include

all of the singularities in the field, simply because any missing singularity would mean that a separatrix has

been omitted, as well as any point where two separatrices cross. These crossing points, being in the interior

of a separatrix, must be regular points, so in our case of a 4-RoSy field, all separatrices cross at right-angles.

The separatrix graph divides the space into singularity-free regions, because all singularities are already

vertices in the graph, and thus are restricted to region boundaries. These regions are all four-sided, as a lack

of interior singularities means that the holonomy of the region is zero, and any other number of sides would

indicate a different holonomy. We call these regions simple tiles, which we will revisit in Section 5.0.1.2.

DEFINITION 3.1.11 (Simple Tile). A simple tile is a region bounded on all sides by field lines, with no

singularities in the interior of the region.

This construction allows us to complete our definition of parallel. Considering a simple definition of

parallel lines to be that they never intersect, our definition is based on how strongly we can guarantee that

they do not intersect. An intersection between two field lines that are mutually perpendicular to a third

implies the creation of a three-sided field-aligned region, which implies a nonzero holonomy and thus the

existence of a singularity somewhere between the three field lines. However, if we know that a region is

singularity-free, such as a simple cell in the separatrix graph, it would not be possible for the portions of

the two field lines within the region to be perpendicular to a third and also intersect. We call this locally

parallel, where only the portions of the field lines within the singularity-free region are guaranteed to not

intersect.
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FIGURE 3.12. Separatrix
graph for a region with right-
to-left growth, with valence-5
singularities on the left and
valence-3 on the right.

Any field line entering one face of a simple tile must leave via the

opposing face; changing direction enough to collide with either of the other

two faces at a right angle would imply a non-zero holonomy and therefore

a singularity on the interior of the region, while colliding with a zero angle

implies the field line is one of the bounding separatrices, and no other

intersection angles are possible as both the region boundaries and field

lines are strictly field-aligned.

Given the full separatrix graph, we can also define a third, even

stronger definition of parallel. Two field lines, not just segments of them,

are globally parallel if they are locally parallel somewhere and no singu-

larities are ever present between them. In a simple tile in the separatrix

graph, there are two sets of mutually-orthogonal field lines, with each set entering and leaving the tile

through a different pair of opposed edges. All of the field lines in one of these sets are locally parallel, and

cannot be separated by a singularity; otherwise, one of that singularity’s separatrices would separate the two

field lines and would have subdivided the simple tile in the separatrix graph into two smaller simple tiles.

Therefore, every simple tile in the separatrix graph contains two orthogonal sets of globally-parallel field

lines. In this sense, the separatrix graph completely defines the global behavior of the direction field.

FIGURE 3.13. A series showing the evolution of the motorcycle graph for the same field
as shown in Figure 3.12. Green paths indicate live motorcycles, while red paths indicate
crashed motorcycles and therefore complete regions of the graph.

3.1.9. The Motorcycle Graph. An alternative to the separatrix graph is the motorcycle graph [EGKT08],

named after its similarity to the Light Cycle game from the 1982 movie Tron. Instead of separatrices being

traced out in their entirety, “motorcycles” are driven out from each singularity along each separatrix path.

Their paths are traced out simultaneously, and whenever one crosses an existing path, it explodes, leaving a
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T-junction in the graph; the path for this motorcycle terminates at the point of collision instead of continuing

along the surface. Figure 3.13 shows this process, with green paths indicating “live” motorcycles and red

paths indicating the associated motorcycle has crashed so the segment is complete. Figure 3.12 shows that

the separatrix graph for the same area is much more complicated. The motorcycle graph similarly divides

the region into rectangular, singularity-free regions, but the bundles of field lines within each region are only

guaranteed to be locally parallel. Within each region, the T-junctions are explicitly marked to differentiate

those intersections from a degenerate vertex with a 180◦ opening, such as the one at the center of Figure 3.9a

that only has two incident edges. Each rectangular region will only have four corners (with 90◦ internal an-

gles) but may additionally have vertices corresponding to outward T-junctions along the edges (with 180◦

internal angles).

The benefit is that the motorcycle graph is typically drastically simpler than the separatrix graph, with

a separatrix only being “live” immediately around its originating singularity. This simplifies the separatrix

graph while preserving the property that the region has been subdivided into simple tiles, and for this reason

the motorcycle graph is used both for the basis of mesh extraction in Chapter 5, as well as for visualization

in this chapter.

3.1.10. Path Tracing. There are performance and accuracy concerns involved with the process of trac-

ing field lines, especially around singularities. It is sufficient to move in steps, sampling the direction at a

point and moving a fixed distance in the sampled direction. Taking shorter steps increases the accuracy of

the resulting field lines; short steps are most helpful in areas of high curvature, so we make sure to reduce

our step size whenever near a singularity.

The more pressing issue, however, is that an excessively long step length might incorrectly align with

one of the orthogonal directions instead. Directions in an n-RoSy field that deviate by 2π
n are considered

equivalent, so there is no way to distinguish between +π
n and −π

n rotations. For example, taking two steps

in an 4-RoSy field that turn to the left π
6 is safe, but when taken in a single step instead, the direction would

“overflow” and appear to be a rightward π
6 turn.

Singularities represent the most drastic change in field direction, so we try to avoid sampling close to a

singularity whenever possible.

3.1.11. Line Integral Convolution. The Line Integral Convolution is a visualization technique that

is used to produce intuitive renderings of direction fields, with streaked patterns that are aligned with the
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direction field [CL93]. The image is constructed by sampling a source image of random noise. For each

pixel in the output image, n field lines are traced (along the n-RoSy field) outward from the pixel. The

random noise is sampled along these field lines, and the value for the pixel is the average of these samples.

For our cross fields, 4 field lines are traced from each sample pixel, generating the characteristic cross-hatch

pattern that shows the two orthogonal directions at each point.

To explain the pattern in the LIC image, it is helpful to look at the neighborhood around any pixel in the

image. Figure 3.14 shows two pairs of close sample points, with the first pair sitting on a common field line,

shown in red. While field lines have zero width, the noise image is being sampled along the paths, giving

them an effective width of one pixel. If a neighboring pixel sits along a common field line with the source

pixel, we would expect them to be similar, as they will both have sampled along this same path; other than

a few samples at the far ends of the field line, both points will have sampled the same values along the path,

so the only variance between the two points comes from the contents of the two disjoint green paths. If the

two pixels do not sit along the same field line, then they should differ drastically, as they are sampling along

different paths, with only two short regions of overlap between them. By roughly doubling the number

of independent random samples, the unaligned pixels will have approximately double the variance in their

sampled values. It is this difference in variance that produces the pattern that is visibly always aligned with

the field. Even if the pixels are not perfectly aligned with the field line, their similarity will be proportional

to the overlap between the two parallel field lines between them.

(a) Sample LIC Image

▽ ▽

(b) Aligned Sample Points

▽

▽

(c) Unaligned Sample Points

FIGURE 3.14. LIC image construction. By sampling along field lines, neighboring points
(b) that are on a common field line (red), will tend to be similar in the output image, as
half of their sampled values are identical. Unaligned points that do not share a field line
(c) differ drastically in the output image, as they only share two small regions of overlap
between otherwise disjoint paths.
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With random samples in the range [0, 1), the expected value of any of pixel is 0.5. Producing LIC images

by using these values directly as pixel brightness results in muddy images that are difficult to parse, as the

vast majority of pixels fall within a fairly narrow band. We instead rescale the values to better observe the

variance in the sums. Scaling according to the minimum and maximum values over the image can introduce

noticeable brightness and contrast changes between images as the random sampling process will produce

highly variable extrema. For consistency we scale to the fixed range [49 ,
5
9 ] for all LIC images seen here,

clamping values outside the range.

There is no special treatment for singularities when generating a LIC image; they are apparent to ob-

servers simply because we notice the abnormal behavior of the field lines around the singularity.

3.1.12. Motorcycle Graph Numerical Stability. In an effort to avoid problems that occur when sam-

pling near a singularity, which is precisely the case for the initial portion of every motorcycle’s path when

generating the Motorcycle Graph, we start this process by tracing inward toward each singularity. Starting

along the perimeter of a disc centered around the singularity, we search along the perimeter in order to find

the inward field line that comes closest to approximating each separatrix, which is simply the field line that

passes closest to the singularity. From a point on the disc boundary we can trace inwards, following the field

line until it passes the singularity. We then perform an orientation test, to see which side of the singularity

the field line passed. This allows us to perform a binary search, keeping the two paths on either side of the

singularity and choosing the midpoint on the arc connecting the seed points as the starting point for the next

field line. After a fixed number of iterations, the next midpoint generates a field line that is saved as the

initial portion of the separatrix, and a motorcycle is saved at the starting point on the disc, except facing

outward, ready to begin the motorcycle graph construction.

Generally, motorcycles all move at the same rate; biasing motorcycles, such as having them move at

different speeds, would simply change the precedence of which motorcycle “lives” through any collision

in the separatrix graph, when the most important information is that the intersection happened in the first

place. Keeping all motorcycles at the same speed ensures that each motorcycle is likely to be active only in

the areas where it is most important, specifically in areas near its originating singularity.

In areas of high curvature, an oversized step may induce an erroneous 90◦ turn in the motorcycle’s path

from the actual path, which will eventually lead to a 3- or 5-sided region in the motorcycle graph. These

irregular tiles may be handled directly, which we discuss in Section 5.1.6, but we prefer to prevent those

regions from forming in the first place. Reducing the size of steps that the motorcycles take in areas of high
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curvature is one possible solution, but it is not sufficient to only reduce the step size near the originating sin-

gularity by, e.g., starting the motorcycles off with a reduced step size that increases as it travels; motorcycle

paths also need to be accurate where they terminate, especially if they terminate near another singularity.

A partial solution is to oversample motorcycle paths, keeping a uniform step size and some large fraction

of the samples, so the resolution of the resulting polyline is much coarser than the steps that were taken to

produce it.

It is possible for a motorcycleM1 from a singularity S1 to come arbitrarily close to any other singularity

S2, but for that to happen, it must be traveling locally parallel to a separatrix created by some motorcycleM2

from S2. In this case, the path ofM1 is not as important as ensuring that it impacts the correct separatrix; the

step most likely to cause a “wrong turn” (switching to a different phase of the cross field) due to curvature

will be near S2, and therefore likely to be over an existing separatrix from S2. In this case, testing to ensure

motorcycles collide with existing field lines at right angles can serve as good warning, as a motorcycle

colliding with a parallel field line is an indication that the step size is too large.

3.2. Size

Now that we have covered the basics of cross fields and have explored the parallels between cross fields

and quad meshes, we will now investigate size: how cross fields and quad meshes both imply metrics,

and how a metric causes shortest-length paths to curve. Our primary contribution in this chapter is the

realization that the curvature of these paths resembles surface curvature when computing cross fields on

manifold surfaces embedded in 3D, which allows us to take advantage of surface meshing techniques to

achieve size-driven meshes. In particular, we build off of the approach from Globally Optimal Direction

Fields [KCPS13], which generates cross fields from the curvature of manifold surfaces and will be explored

further in Section 3.3.

3.2.1. Size-Aware Meshing.

DEFINITION 3.2.1 (Size Field). A size field σ is a scalar function that defines a real-valued size σp at

every point p of the domain, which will typically be the Euclidean plane, but could be a closed surface S:

σ : p ∈ S 7→ σp ∈ R. Size is a one-dimensional quantity, in our case corresponding to the desired edge

length in the produced quad mesh. We say a mesh is compatible with a given size field if the length of each

edge is within some bounds of the size values sampled along it.
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Edge length serves as a one-dimensional metric used to express the relative size of nearby elements in

the mesh. This metric is not precise as its primary purpose is comparing grading, or how the relative sizes

of elements change over the mesh, which will indicate relative element densities; ideal element densities

depend on the function that the mesh is being created to simulate. This metric translates nicely across

a variety of environments; it is useful in both two and three dimensions, as it follows the square root of

quadrilateral area and the cube root of hexahedron volume for ideal, nearly-square elements. It conveys the

scale of mixed-element meshes without needing to consider the differences between the shapes, areas, or

volumes of the different elements. A strict measure of edge lengths, such as taking the average lengths of the

edges within a quad, would have discontinuities moving from quad to quad, and is not particularly helpful.

Instead, edge lengths serve as a mental model for assessing whether a mesh is compatible with a requested

sizing field, as well as how the size of elements change over a mesh.

DEFINITION 3.2.2 (Grading). Also referred to as telescoping, grading is the intentional change in ele-

ment size over a region of a mesh. It is often used to increase mesh resolution in areas of interest, in effect

prioritizing those areas at the expense of others where the decreased resolution is acceptable. Grading may

be necessary when running a simulation with a sufficiently-dense constant-size mesh would be prohibitive

due to time or memory constraints.

△ p0 △ p1 △ p2
FIGURE 3.15. A copy of Figure 1.2, showing the grading of a common growth template.
All three marked points have three incident edges of the same length, giving a consistent
value for the edge-length metric at these points. Note that the distance from p0 to p1 is three
times the edge length at p0, and similarly the distance from p1 to p2 is three edge-sized steps
from p1. While the lengths of the edges are doubling, so are the distances between sample
points (the edges themselves), showing that the edge lengths are growing linearly, or with a
constant grading.
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If mesh elements are required to be nicely-shaped, the grading within a mesh is at most linear; the

change in observed edge length is proportional to the distance traveled. This implies that the size functions

we target should be Lipschitz-continuous, with the Lipschitz constant chosen to balance between growth

rate and element quality. Intuitively, the distance between opposing edges within a quad varies linearly

across the quad, effectively being a linear interpolation of the other two edges. By imposing quality metrics

on the quads, and avoiding extreme internal angles and aspect ratios, we expect any sequence of quads to

be roughly self-similar. Growth can be achieved by repeating patterns of quads, such as the example shown

in Figure 3.15, where the edge length doubles with each repetition of the template. The template itself

has singularities of degree 3 and 5, but the repeated application of the template can create higher degree

singularities, such as the degree-6 singularities seen here.

(a) 3-5 growth pattern (b) Diverging field lines (c) Redirected field lines

FIGURE 3.16. A LIC rendering of a field with two singularities (left), corresponding to the
common growth pattern shown in Figure 3.15. The growth is apparent in the divergence of
field lines (center), which depends on other field lines being diverted out of the way (right).

Grading can also be achieved without singularities by divergence in the field lines, where relative growth

in the resulting edge lengths is proportional to the relative increase in distance between the diverging field

lines. This can be seen in Figure 3.21. Our goal is to utilize both sources of grading to produce a quad mesh

whose edge lengths are compatible with an input size field σ.

While there is no inherent scale to a cross field, each pair of parallel field lines represents a potential

chord of quads, so if the field lines diverge, the potential edges across the chord must lengthen as well.

Ideally, two globally-parallel field lines should always be the same distance apart according to σ, so sampling

the distance between them and dividing by σ at the sample location should result in a constant value; the

more consistent those values are, the better the cross field matches the desired grading from the sizing field.
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Exploring the relationship between a given cross field and the set of compatible size fields is the topic of

Chapter 4.

For example, in Figure 3.16b, the red field lines are globally parallel; while the height of the bundle

obviously differs from one side of the image to the other, the bundle should always have the same intrinsic

height, when measured in terms of the size field. Considering this field was derived from the template seen

in Figure 3.15, where the field lines travel between two sets of quads that differ in size by a factor of two,

the fact that the height of the bundle doubles over that same span implies that the cross field in Figure 3.16

is compatible with the size field implied by Figure 3.15.

FIGURE 3.17. Equally-spaced field lines
moving through the same cross field as Fig-
ure 3.16. Blue field lines are not deflected.
Red field lines are redirected to allow the
green lines to diverge. The yellow field line
is an artifact of the synthetic field, and is
globally parallel with the green lines.

In Section 3.4, we use this technique of measuring the dis-

tance between globally-parallel field lines to evaluate how well

a cross field matches the desired growth in a size field.

Diverging chords pose an interesting problem that is illus-

trated in Figure 3.16, which shows a synthetic cross field de-

signed to mimic the behavior seen in Figure 3.15. As diverging

chords get wider, it takes fewer of them to cover an area. How-

ever, as is often the case, the chords are prevented from fanning

out by constraints, in this case by the regions of the field that

are perfectly horizontal along the top and bottom of the region.

So, in order for some chords to grow (Figure 3.16b), other

chords must be diverted (Figure 3.16c) to make space. Singu-

larities are the mechanism by which bundles of field lines are

redirected, pulling chords over each other (for positive holo-

nomy singularities; degree< 4), or apart from each other (with

negative holonomies; degree> 4), leaving room for other bun-

dles to diverge and expand to fill the space. All of these paths are shown simultaneously in Figure 3.17, with

the yellow path being particularly instructive because it represents the transition between the red and green

field lines; it is clearly near a separatrix (not shown) for the degree-3 singularity, but there is also some

distortion due to the fact that this is a synthetic field designed to mimic the growth of Figure 3.15.

As we noted in Figure 3.9, there is a correlation between the sign of the singularity and the sizes of the

quads. Singularities with degree less than 4 have relatively small quads near the singularity, increasing in
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size in proportion to the distance to the singularity, with singularities with degree greater than 4 showing

the reverse relationship. Near any one singularity, the growth rate is uniform in all directions; of particular

importance is combining opposite singularities in order to control the direction of the growth, as seen in

Figure 3.15 where degree 3 and 5 singularities are arranged in a pattern to force a left-to-right growth rate.

As seen in Figure 3.9f, singularities can be combined to achieve arbitrary growth rates, with denser clusters

of singularities effecting faster growth. However, as the singularities themselves will become vertices in any

resulting mesh that follows the cross field, this imposes a limit on the resulting edge lengths, which cannot

be longer than the distance between singularities. This implies that producing sparse meshes is a harder

problem than producing dense meshes, as dense meshes allow for dense clusters of singularities, allowing

for stronger grading, which in turn gives better control over sizing overall.

A B C

D E F

FIGURE 3.18. Six points, each surrounded by a unit circle in the metric implied by a
varying size function that increases to the right. Two geodesics are shown: the geodesic in
green (between B and C) is parallel to the gradient of the size function, and remains straight,
while the geodesic in red (between B and E) is warped by the size function, bowing outward
in the direction of increased size.

3.2.2. Geodesics. Figure 3.18 illustrates the relationship between a non-uniform size function and the

induced curvature that we take advantage of. There are six points that are grid-aligned in paper-space,

meaning they are equidistant when measured on the page, but there is an associated metric on the surface

that distorts distances, so |AD| > |BE| > |CF |. This distortion changes the shape of geodesic curves;

because space is “bigger” on the right, a geodesic will bend rightward because it can make more progress

in the larger metric. The red geodesic is strongly distorted, while the distortion has no effect on the green

geodesic because it is parallel to the size function gradient. This bending of space appears to behave just

like geodesics on a curved surface like a globe, (although, on a globe, the metric is constant): two points

with equal latitudes will share a geodesic that bends away from the equator, while two points with equal
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longitudes will have a “straight” geodesic along the longitude. That is, the curved space with a constant

metric has similar geodesics as our planar system with a varying metric.

Note that we have been seeing geodesic curves throughout this chapter, as Figures 3.2, 3.3, 3.5 and

3.9 all show quads with distinctly curved sides after they have undergone some transformation. In these

cases, these edges are all geodesics, as they travel along the shortest path in the new metric induced by the

transformation. As the new metric increases or decreases outward from the center of each example, the lines

along the gradient (through the center of each image) all remain straight, while all other lines appear to bend

in proportion to their alignment with the gradient, demonstrating the same pattern as shown in Figure 3.18.

3.2.3. Riemannian Surfaces.

DEFINITION 3.2.3 (Riemannian Surface). A Riemannian Surface is a surface with an associated metric

g that is used to measure lengths on the surface. When viewed as an extension of the inner product, the

standard inner product aT b becomes aT gb, with g taking the form of a n × n symmetric positive definite

matrix called the metric tensor.

Given that we already have a desired size function σ defined over our triangulated mesh M , we can

define the metric tensor as:

g =

σ2 0

0 σ2


We can see that this scales the length of any vector v = (x, y) by σ as expected:

|v| =
√
v · v =

√√√√√[
x y

]σ2 0

0 σ2

x
y

 =
√
σ2x2 + σ2y2 = σ

√
x2 + y2

3.2.4. Einstein Notation and Covariance. The following sections rely on Einstein Notation for some

equations, which is a technique for succinctly expressing tensor operations developed for the Theory of

Relativity. An in-depth exploration of the topic is beyond the scope of this section (and dissertation!); we

refer readers to Benjamin Crowell’s Special Relativity [Cro21] for as approachable of an introduction as the

topic permits. But, we will attempt a summary that will be sufficient for the material that follows.

3.2.4.1. Explicit Index Manipulation. The core of Einstein Notation is specifying interactions between

vectors, matrices, and multidimensional arrays, using subscripts and superscripts to indicate which indices

interact.
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In linear algebra, operations between vectors and matrices are implied by their ordering within an equa-

tion. Einstein Notation makes these pairings explicit, by using free variables as subscripts and superscripts

(we will discuss which is used when momentarily) to mark which indices are iterated over to perform an

operation.

Taking a vector rotation as an example, where the vector v is multiplied by the rotation matrix R,

resulting in u = Rv, which actually implies:

u1 = R11v1 +R12v2

u2 = R21v1 +R22v2

This would be expressed in Einstein Notation as:

ui = Ri
jv

j

we do not need to explicitly state that u and v are column-vectors as the columns (the second index) of R

are explicitly tied to v by sharing the same index variable j.

This is particularly helpful when working with arrays of 3 or more dimensions, such as the 2×2×2 array

Γ which we will encounter shortly.

3.2.4.2. Covariant and Contravariant Values. Tensors are a particularly important class of arrays. A

defining property of tensors are their transformation laws, which define how a tensor must change in re-

sponse to a change of basis in order to represent the same physical quantity. In particular, we want the

results of certain operations to be invariant to coordinate changes, and this is achieved by defining how the

arguments of those operations change with respect to a change in coordinate system.

Contravariant vectors react to a change in basis by undergoing an opposite change. 2D displacement is

a good example: the vector (1, 2) measured in meters becomes the vector (0.001, 0.002) when measured

in kilometers. By changing the spatial scale, the spatial basis vectors (1, 0) and (0, 1) are essentially being

multiplied by one thousand, while contravariant values expressed in that basis get divided by one thousand

in order to retain the same physical meaning.

Covariant vectors, on the other hand, react to a change in basis by undergoing the same change. What

is the work W = F · d performed by a 10-Newton force in the +x direction over the example displacement

d = (1, 2)? If we represent the force F = (10, 0), a simple dot product gives us F ·d = (10, 0) ·(1, 2) = 10.

Work is invariant to the coordinate system, so if we change the coordinate system from meters to kilometers,
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we can work backwards from 10 = F · d = F · (0.001, 0.002) to show that F needs to be (10000, 0). We’re

not changing the force F , as the units now are Kg mm s−2, but it is perhaps more helpful to think of the

operation F ·, which takes a vector quantity (displacement) and returns a scalar quantity (work), as having

transformed to preserve the resulting scalar as a basis-invariant quantity. Thus, the operation F · is covariant,

transforming with a change in basis, to counteract the opposite change that the displacement d undergoes.

Contravariant vectors cover most of the “standard” vector quantities we’re used to in Linear Algebra,

so the contravariant label is often omitted. Covariant vectors are often shortened to covectors. Einstein

Notation uses the placement of indices to indicate the basis for that index: superscripts denote contravariant

indices, and subscripts denote covariant indices.

The metric tensor, introduced in Section 3.2.3, is a covariant quantity. However, if we want to maintain

the invariant of the metric under a change of basis, The metric tensor changes with the square of the basis

change, because gijvivj is the squared length of v. Recall that the length of a vector v in a metric g is

|v| =
√
vT gv, so measuring the length of a vector v′ = (xc ,

y
c ) after a basis change c yields the original

length, unchanged:

|v′| =
√
v′ · v′ =

√
v′T g′v′ =

√√√√√[
y
c

x
c

]c2σ2 0

0 c2σ2

x
c

y
c

 =

√
c2σ2

x2

c2
+ c2σ2

y2

c2
= σ

√
x2 + y2

Additionally, the metric tensor gives us a method of converting between covariant and contravariant

bases:
vi = gijv

j

vi = gijvj where gij = (g−1)ij

3.2.5. Parallel Transport Across Mesh Edges. On Earth, we are accustomed to the fact that the short-

est path between any two points is along a geodesic, which in the context of global navigation is an arc of a

great circle around the globe. When plotted on a map, the geodesic will likely appear to curve, not because

the path turns but because the directions themselves are changing as progress is made along the path, due to

the distortion incurred by squishing a curved surface onto a flat map. Nonetheless, when navigating on the

globe or the map, care must be taken to distinguish between whether the surface or the path is curving.

Parallel transport is the mathematical formalization of the idea of removing the influence of surface

curvature, so we can determine how much the path itself curves. Geodesics are the “straight” rulers against

which paths are measured and are also the means of continuing a path along an arbitrarily curved surface.
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If we take the size function given by the metric tensor, changes in the metric induce curvature in the

Riemannian surface, which then induces curvature in the geodesic curves. We will now explore the paths of

the geodesics resulting from the varying metric.

V V
dV

V + dV

p
q

Tp Tq

FIGURE 3.19. Parallel transport of a vector V from a point p to q. V is moved from the
tangent plane Tp to Tq by expressing it in the basis vectors of Tq and then the vector dV
is added to form V + dV , the transported vector. A critical property is that V ∈ Tp and
V + dV ∈ Tq will share the same angle with the geodesic between p and q; if V at p is
tangent to the geodesic between p and q (blue), then V + dV will be tangent to it at q. So,
dV is a measure of how much the geodesic itself curves from p to q.

Figure 3.19 shows how parallel transport is used to calculate the change dV in an arbitrary vector V

when moving from point p to q on a surface, making a step du = q − p. We use the identity (e.g. [LR89]):

dV k = −Γk
ijV

iduj (3.1)

Ignoring for a moment what each variable is, the Einstein Notation used here tells us several things: dV ,

V , and du are all 1×n (contravariant) vectors, and Γ is an n×n×n array. As illustrated in Figure 3.19,

this identity establishes the change dV in a vector V , when moving along a step du over a surface with

connection Γ.

The Christoffel Symbol Γk
ij determines the connection, or how vectors change as we move from one

point to an infinitesimally close neighbor, due to the curvature of the surface. The connection is not uniquely

defined in general, but we use the Levi-Civita connection, which is the unique torsion-free connection.

Torsion is induced rotation of the tangent plane when moving along a curve on the surface, so the Levi-Civita

connection ensures the only rotation of tangent vectors is to correct for surface curvature. The Levi-Civita

connection defines3 the 2×2×2 array Γk
ij as:

3 [LR89], Equation 5.14
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Γk
ij =

1

2
gkm

(
∂gmi

∂uj
+
∂gmj

∂ui
− ∂gij
∂um

)
(3.2)

In an attempt to supplement reader (and author) unfamiliarity with Einstein Notation, we express the

2×2×2 array Γk
ij in the following matrix-esque notation, with the front and back 2×2 arrays (the two

different values for index i) separated by a bar:

Γk
ij =

 Γ1
11 Γ1

12 Γ1
21 Γ1

22

Γ2
11 Γ2

12 Γ2
21 Γ2

22


This appears cumbersome at first, but looking at Γk

ijV
i in isolation, we can see that this is a 2×2×2

array. If we contract it with a 2×1 column vector V i, we get a 2×2 array that we can display in standard

matrix notation. Formally, this temporary matrix T k
j = Γk

ijV
i maintains the indices j and k, while i has

been removed by contracting with V . We order the entries of Γk
ij in this pseudo-matrix notation so that the

front-and-back matrices collapse into the 2×2 temporary matrix T , which is then correctly aligned to have

the j index cancel out when multiplied with duj .

 Γ1
11 Γ1

12 Γ1
21 Γ1

22

Γ2
11 Γ2

12 Γ2
21 Γ2

22

Vx
Vy

 =

Γ1
11Vx + Γ1

21Vy Γ1
12Vx + Γ1

22Vy

Γ2
11Vx + Γ2

21Vy Γ2
12Vx + Γ2

22Vy

 =

T 1
1 T 1

2

T 2
1 T 2

2


We can re-write Equation 3.2 for our specific conformal metric tensor g in this more cumbersome but

familiar notation as:

Γ =
1

σ

 ∂σ/∂x ∂σ/∂y −∂σ/∂y ∂σ/∂x

∂σ/∂y −∂σ/∂x ∂σ/∂x ∂σ/∂y

 (3.3)

3.2.5.1. A Discrete Example. We will now look at an example to ensure the behavior of our derived

equations matches the intuition we established in Section 3.2.2.

Parallel transport on a Riemannian surface gives us the change dV observed in a tangent vector V when

moving along the surface as the metric g varies. Instead of the infinitesimal step du given in Equation 3.1, let

us consider a discrete step (Sx, Sy), as we will eventually be stepping over edges in the background mesh,

where S = vj − vi. We will also consider the change induced over the step to be a rotation θ instead of

vector dV ,

θ = angle(V + dV )− angle(V )
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with the function angle(V ) = atan2(Vy, Vx) returning the signed (counter-clockwise) rotation from the +x

direction. This works for our triangles in the plane where the +x can serve as a basis vector as it lies in the

tangent plane of all triangles. On a curved surface, the angles would need to be properly adjusted to reflect

the individual basis vectors for each triangle.

We want to ensure the behavior of θ matches the intuition from Figure 3.18, in particular that we see no

rotation along the size gradient, and bending toward the region of higher size when moving perpendicular to

the gradient. We will consider the rotation induced by parallel transport in the scenario where we have the

local size factor σ = 1 and where the gradient is in the +x direction; ∂σ/∂x = 1, and ∂σ/∂y = 0. When

applied to Equation 3.3 we get:

Γ =

 1 0 0 1

0 −1 1 0


which can be applied to Equation 3.1:

dV =

 1 0 0 1

0 −1 1 0

Vx
Vy

Stepx

Stepy



dV =

Vx Vy

Vy −Vx

Stepx

Stepy


If we take a unit step in the +x direction, which is along the gradient of the size field,

dV =

Vx Vy

Vy −Vx

1
0

 =

Vx
Vy

 = V

so θ = angle(V + dV )− angle(V ) = angle(2V )− angle(V ) = 0.

This demonstrates that moving directly along (or against) the gradient does not induce a rotation along

the edge.

On the other hand, taking a unit step in the +y direction, perpendicular to the gradient of the size field,

dV =

Vx Vy

Vy −Vx

0
1

 =

 Vy

−Vx


so θ = angle(V + dV ) − angle(V ) = angle(V + rotate−90◦V ) − angle(V ) = angle(V ) − 45◦ −

angle(V ) = −45◦.
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Specifically, moving across the gradient induces the greatest rotation along the edge. This is a negative

(clockwise) rotation, so an upward V will be rotated toward the direction of increasing size. This matches

the intuition from Figure 3.18. Note that the direction of V had no effect on the outcome; the rotation

depends only on the direction of the step taken.

This works as an approximation if each step size du, and thus the lengths of the edges in the background

mesh, is small enough for dV to be reliably represented as a rotation θ. This is taken into consideration

when we generate the background mesh; as the size function (and therefore its gradient as well) are known

during mesh generation, this becomes the predicate for continued mesh refinement: if any pair of vertices of

an element would permit a rotation greater than some threshold θmax, it must be subdivided.

3.2.5.2. Calculation. Note that the value of the initial vector V being transported does not matter for

this calculation. We can rearrange Equation 3.1 into dV k = (−Γk
ijdu

j)V i, where it becomes apparent that

the matrix applied to V is independent of V . As we just want the induced rotation θ, we set V = (1, 0).

This simplifies to θ = angle(V + dV ) + angle(V ) = angle(V + dV ) + 0 = atan2(dVy, dVx + 1.0)

dV =

 ∂σ/∂x ∂σ/∂y −∂σ/∂y ∂σ/∂x

∂σ/∂y −∂σ/∂x ∂σ/∂x ∂σ/∂y

Vx → 1

Vy → 0

Sx
Sy



=
1

σ

∂σ/∂x ∂σ/∂y

∂σ/∂y −∂σ/∂x

Sx
Sy


So, taking (∂xσ, ∂yσ) = (∂σ/∂x, ∂σ/∂y) to be the average of the gradients at vertices i and j, and

similarly σ as the average of the size function at both vertices:

dV =
1

σ

∂xσ ∂yσ

∂yσ −∂xσ

Sx
Sy


Splitting this into components,

dVx = (∂xσSx + ∂yσSy)/σ

dVy = (∂yσSx − ∂xσSy)/σ (3.4)

we can use the components to calculate the angle of rotation observed over the step S:

θ = atan2((∂yσSx − ∂xσSy)/σ, 1.0 + (∂xσSx + ∂yσSy)/σ) (3.5)
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3.3. Globally Optimal Direction Fields

Now that we know the curvature induced by a varying metric, we can integrate this into the GODF

approach in order to produce size-driven cross fields. Instead of immediately presenting the solve performed

by GODF, we build intuition by working through the problem formulations that lead up to the actual solve.

We start with their definition of a smooth field, introduce the Helmholtz equation that allows us to solve

for the smoothest field as an eigenvalue problem, and then use a Finite-Element Method formulation that

discretizes the continuous eigenvalue problem into a piecewise linear function over the background triangle

mesh.

For an introduction to Finite-Element Methods, we direct the reader to Francisco-Javier Sayas’ A gentle

introduction to the Finite Element Method [Say15], and we will try to match their notation, as well as the

notation in GODF, whenever possible.

GODF [KCPS13] describes a method to produce N-RoSy direction fields on manifold surfaces that

balance being as smooth as possible while optionally as aligned as possible with a guidance direction field,

such as e.g. the curvature of the underlying surface. Without a guidance field, their smoothness constraint

optimizes toward straight (geodesic) paths, which only curve in the direction normal to the surface. Formally,

logically straight lines on the surface are the ones that follow the the Levi-Civita connection (described in

Section 3.2.5) on the surface. Our (varying) size function over our (flat) surface is a Riemannian metric,

so also defines a Levi-Civita connection over the surface; in our case the geodesics do curve in the surface

plane, but they are true shortest-path curves in the metric.

Smoothness here refers to the Dirichlet energy ED of a field ψ over surface Ω (which is our mesh M ,

once discretized):

ED =
1

2

∫
M
||∇ψ||2 dA

We will minimize the Dirichlet energy by way of a related problem, the Helmholtz equation:

−∆f = λf

In Euclidean geometry, ∆ is the Laplacian operator, which is the divergence (∇·) of the gradient (∇)

of the function f . As we’re dealing with a Riemannian surface, ∆ indicates the Laplace-Beltrami operator,

a generalization of the Laplacian operator that takes into account parallel transport on surfaces, in our case,

curved by a size function. However, for the time being, we will describe the math in terms of the Euclidean
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Laplacian operator, to build intuition for the problem, and refer the reader to the appendices of [KCPS13]

for derivations involving the Laplace-Beltrami operator.

Harmonic functions, where ∆f(p) = 0 for all p ∈ Ω, represent a special class of solutions to the

Helmholtz equation. They are not guaranteed to exist, but when they do, they are associated with an eigen-

value of λ = 0. We will revisit harmonic functions in Section 4.5, where we investigate the consequences

of harmonic fields on their associated size functions.

The trivial solution f = 0 is harmonic but is not a useful result, so we enforce unit norm over f to avoid

the trivial solution. While there may or may exist an eigenvalue λ = 0, we consider the smallest eigenvalue

λ1 and its associated eigenfunction f1 which have the useful “max-min” property:

λ1 = inf
f ̸=0

∫
Ω ||∇f ||

2 dA∫
Ω ||f ||2 dA

With the enforced unit norm on f this simplifies to:

λ1 = inf
f ̸=0

∫
Ω
||∇f ||2

If there is a nontrivial harmonic solution, it will be found as f1 with λ1 = 0. However, in most cases,

there will only be a trivial harmonic solution, so f1 will be the minimum-energy function among those with

unit norm, but not a minimum-energy function in general, so will not be harmonic.

We can add the homogeneous Neumann boundary condition, and formulate the eigenvalue problem as

a boundary-value problem:

find value λ and function u ̸= 0 such that

 −∆u = λu in Ω

∂u
∂n = 0 on Γ

In order to solve this, we want to transform this continuous eigenvector problem into a discrete eigen-

vector problem. We start with Green’s Theorem∫
Ω
(∆u)v dA+

∫
Ω
∇u · ∇v dA =

∫
Γ
(
∂u

∂n
)v ds

which introduces the virtual function v, also called the “test function”. This allows a relation to be made

between area integrals over Ω on the left side of the equation and line integrals over Γ on the right. While u

is unchanged, and is still the function we are trying to solve for, v can be any function so long as it takes the

value zero on the boundary ΓD. Any virtual function v provides a constraint on u.
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Applying Green’s Theorem to the eigenvalue formulation of the boundary value problem yields the

weak or variational form of the eigenvector problem:

find value λ and function u ̸= 0 such that


∂u
∂n = 0 on Γ∫
Ω∇u · ∇v dA = λ

∫
Ω uv dA in Ω, for all v

such that v = 0 on Γ

3.3.0.1. The Discrete Eigenvalue Problem. The formulation above provides a simple representation of

an eigenvalue finite-element problem, but it needs to be discretized to a finite-dimensional form where we

can compute a solution. This section is effectively the solution to Exercise 3 from Chapter 4 in [Say15].

We first discretize the problem over our background triangle mesh, so our solution u will be piecewise-

linear. We apply the decomposition:

u =
∑
i

uiϕi

which encodes the piecewise-linear function u as a vector u, where each element ui is a scalar value as-

sociated with vertex vi. The function ϕi is the hat function, a linear basis function such that ϕi = 1 at vi

and ϕi = 0 at all other vertices, and is linearly interpolated everywhere else. Within some arbitrary triangle

tjkl, there will only be three nonzero basis functions: ϕj , ϕk, and ϕl. Observe that the gradient of u is the

gradient of the basis functions scaled by u:

∇u =
∑
i

ui∇ϕi

Starting with our formulation from Green’s theorem, noting that the right-hand side
∫
Γ(

∂u
∂n)v ds is

always zero due to the Neumann boundary condition:

Find u ̸= 0, λ such that
∫
Ω
∇u∇v dA = λ

∫
Ω
uv dA for all functions v (3.6)

we can derive the entries of the Mass and Energy (also known as Stiffness) matrices. Since u has one

component per vertex, we need one virtual function per vertex to set up a solvable system of equations. As

this is valid for any piecewise-linear function v, we consider each of our linear basis functions ϕi to be one

of the virtual functions v that must be satisfied.
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The left-hand side of Equation 3.6,∫
Ω
∇u∇v dA =

∑
i,j

ui∇ϕi∇ϕj = (∇ϕi · ∇ϕj) · u =Wu

yields a system of n equations, where each vertex j evaluates a separate v = ϕj , so∇v becomes∇ϕj . This

is the Stiffness Matrix W in [Say15] and is referred to as the Energy Matrix A in [KCPS13].

In dealing with the right-hand side of Equation 3.6, we split the integral over the surface Ω into integrals

over each triangle tijk:

λ

∫
Ω
uv dA = λ

∑
j∈tijk

∫
tijk

uv dA

For any point p in triangle tijk, we have the barycentric coordinates bi, bj , and bk, where p = Vibi +

Vjbj + Vkbk, where Vi is vertex i, not to be confused with the virtual basis hat function vi. So, u evaluated

at any interior point p is u(p), and can be calculated as u(p) = uibi + ujbj + ukbk. Because each equation

v = ϕi singles out a particular i, we end up with the surprisingly simple v = bi, resulting in:∫
tijk

uv =

∫
tijk

(uibi + ujbj + ukbk)bi

This evaluates to: ∫
tijk

uv = 2|tijk|
[
1

12
ui +

1

24
uj +

1

24
uk

]
These become entries in the n×n mass matrix M , where each entry is built up by iterating over all

triangles such that:

Mii ←
1

6
|tijk|

Mjk ←
1

12
|tijk|

Finally yielding

λ

∫
Ω
uv = λM · u

This formulation of the Mass matrix matches the usage seen in [KCPS13] (on the top of the left column

on page 7). Mii matches exactly and they note that their calculation for Mij approaches this expected value

as the triangle curvature approaches zero.

Note that each triangle tijk will be evaluated three times - once for each choice of j. So, the given

entries for Mii also apply to Mjj and Mkk, and Mjk applies to all indices jk where j ̸= k, including e.g.

Mkj .
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Finally, with the definitions for the Mass and Energy matrices, finding a function u consistent with

Equation 3.6 involves solving the generalized eigenvector problem:

Wu = λMu

3.3.0.2. Connection, Encoded as Matrix. In the previous section, we covered a simple form of the

finite-element method. The construction we employ from GODF to produce a cross field from an input size

function differs in a few key ways. Primarily, instead of solving for a scalar function u over the region, u

is now a complex-valued function, and accordingly the symmetric matrices M and W above become the

Hermitian matrices M and A; while [Say15] used W for the energy matrix, we will now use A to match the

usage in [KCPS13].

Additionally, GODF uses different computations for the mass and energy matrices than we have pre-

sented, because we did not take surface curvature into account, for clarity. As we called out, our calculation

for the entries of the mass matrix match their approach for flat triangles. Appendix D in GODF includes the

derivation of these updated functions, and high-accuracy implementations are included in the supplemental

materials.

The mass and energy matrices are built up by summing over each triangle tijk in the mesh. Repeated

indices refer to diagonal entries for a single vertex, such as Mii. Entries Mjk also imply corresponding

operations forMij andMki. As both matrices are Hermitian, the off-diagonal matrix entries will be complex

conjugates: Mij =Mji.

There are a number of per-triangle or per-edge intermediate values that are computed in building the

matrices.

The transport coefficient rpq is the complex value representing the induced rotation when traveling from

vertex p to vertex q. Given a geodesic connecting the two mesh vertices, [KCPS13] defines ρp as the rotation

that aligns the local coordinate system at p with the geodesic, and ρpq = ρq − ρp as the rotation in radians

between the two coordinate systems; a vector in the coordinate space of vertex vp will be rotated by ρpq when

represented in the tangent space of vertex vq. In our case in 2D, an alignment vector used in [KCPS13] is

not necessary to orient each tangent space, simplifying the calculation of ρpq below.
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The geodesic along a step [Sx, Sy] between vertices p and q does not need to be calculated explicitly;

we can compute the angle of deviation by using Equation 3.5:

θ = atan2((∂yσSx − ∂xσSy)/σ, 1.0 + (∂xσSx + ∂yσSy)/σ) (From 3.2.5.2)

Combined with the rotation angle (multiplied by the field symmetry; equivalent to raising the resulting

complex rotation to the nth power):

ρpq := nθpq ( [KCPS13] Eqn. 4)

and the definition of the transport coefficient

rpq := eiρpq ( [KCPS13] Unnumbered)

we are able to directly compute the complex value:

rpq = e4i·atan2((∂yσSx−∂xσSy)/σ,1.0+(∂xσSx+∂yσSy)/σ)

The holonomy Ωijk over a triangle is defined as

eiΩijk := rijrjkrki ( [KCPS13] Eqn. 13)

so we evaluate Ωijk = arg(rijrjkrki) where the arg function yields the phase of its complex argument; it

may be defined as:

arg(x+ iy) = atan2(y, x)

The triangle area |tijk| and edges pst = pt − ps are computed directly from the vertices pi, pj and pk.

In ancillary materials, [KCPS13] provide high-accuracy implementations of the helper functions Mas-

sIJ and DirichletIJ, as these functions are likely to suffer numerical precision issues if naively implemented.

These functions are the per-triangle integrals necessary to build the mass and energy matrices, but here are

being computed over curved surfaces, with the assumption that each triangle has constant curvature from

the holonomy Ωijk over the triangle tijk. We use these functions in our implementation.

Substituting in the helper functions into the matrix summation terms yields:

77



Mii =Mjj =Mkk = 1
6 |tijk|

Mjk = rjk|tijk|MassIJ(Ωijk)
( [KCPS13] Eqn. 17)

Aii = ∆ii − s
Ωijk

|tijk|Mii

Ajk = ∆jk − s
(

Ωijk

|tijk|Mjk − ϵjk
irjk
2

) ( [KCPS13] Eqn. 18)

∆ii =
1

4|tijk|

[
|pjk|2 +Ω2

ijk
|pij |2+⟨pij ,pik⟩+|pki|2

90

]
∆ij = rij

1
|tijk|DirichletIJ(Ωijk, |pki|2,−⟨pki, pjk⟩, |pjk|2)

( [KCPS13] Unnumbered)

In addition to the ∆ij energy given above, the complex conjugate is also used (note the leading rij ,

instead of the rij in the previous equation):

∆ji = rij
1

|tijk|
DirichletIJ(Ωijk, |pki|2,−⟨pki, pjk⟩, |pjk|2)

Currently, we’re working with s = 0, representing what Knoppel et al. call the “Dirichlet energy” for-

mulation, where the boundary conditions are assumed to have a derivative of zero. The Dirichlet energy has

increased singularity count and straighter field lines, while the alternate energy formulation in [KCPS13]

splits the Dirichlet energy into “holomorphic” and “anti-holomorphic” components, offering fewer singu-

larities and a balance of the two, respectively. Because we’re using the Dirichlet energy, A = ∆.

Now that the mass and energy matrices have been built, it is possible to solve the generalized eigenvector

problem Au = λMu, where our goal is the vector u associated with the smallest nonzero eigenvalue. Each

entry ui in the vector holds the fourth power of a complex number, representing a rotation in the tangent

plane at vi.

We leverage the SciPy software suite to perform the solve, and take advantage of their sparse matrix

formats to efficiently construct M and A. As the shape of the matrix is |V |×|V |, but we only store values

along the diagonal and along entries corresponding to mesh edges, both of which are only O(|V |), using

the sparse matrix linear algebra functions is a necessary performance optimization. We start with the SciPy

Dictionary-Of-Keys matrix, scipy.sparse.dok matrix, which simply stores index-value pairs, avoiding the

restructuring required for other formats when new entries are added to the matrix. Then, we convert these

matrices to the Compressed Sparse Column format, scipy.sparse.csc matrix, which is a format that is much

more efficient for the following solve. We use the scipy.sparse.linalg.eigs solver in shift-invert mode by

specifying the optional parameter sigma= 0. The LAPACK solvers that SciPy is built on top of are better
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Algorithm 1 Globally-Optimal Direction Field Generation
1: procedure CALCULATE TRANSPORT COEFFICIENTS
2: for edge eij ∈ edges do
3: σ = (σi + σj)/2
4: g = (gi + gj)/2
5: S = vj − vi
6: dVx = (∂xσ · Sx + ∂yσ · Sy)/σ
7: dVy = (∂yσ · Sx − ∂xσ · Sy)/σ
8: θij = atan2(dVy, 1 + dVx)
9: ρij = −n ∗ θij

10: rij = cos(ρij) + i · sin(ρij) ▷ rij = eiρij

11: rji = cos(ρji)− i · sin(ρji) ▷ rij = rji

12: procedure CALCULATE MASS AND ENERGY MATRICES
13: M = [0] ▷ Entries in M and A are accumulated over all triangles
14: A = [0]
15: for triangle tijk ∈ triangles do
16: Mii ←

|tijk|
6 ;Mjj ←

|tijk|
6 ;Mkk ←

|tijk|
6

17: Ωijk = arg(rij · rjk · rki)
18: Mij ← rij · |tijk| ·MassIJ(Ωijk)
19: Mjk ← rjk · |tijk| ·MassIJ(Ωijk)

20: Mki ← rki · |tijk| ·MassIJ(Ωijk) ▷ M is Hermitian, so Mij =M ji

21: Mji ← rji · |tijk| ·MassIJ(Ωijk)
22: Mkj ← rkj · |tijk| ·MassIJ(Ωijk)
23: Mik ← rik · |tijk| ·MassIJ(Ωijk)

24: Aii ← 1
4·|tijk| · (|pjk|

2 +Ω2
ijk ·

(|pij |2−⟨pij ,pki)⟩+|pki|2)
90 ) ▷ edge pij = pj − pi

25: Ajj ← 1
4·|tijk| · (|pki|

2 +Ω2
ijk ·

(|pjk|2−⟨pjk,pij)⟩+|pij |2)
90 )

26: Akk ← 1
4·|tijk| · (|pij |

2 +Ω2
ijk ·

(|pki|2−⟨pki,pjk)⟩+|pjk|2)
90 )

27: Aij ← rij
1

|tijk| · DirichletIJ(Ωijk, |pki|2, ⟨pki, pjk⟩, |pjk|2)
28: Ajk← rjk

1
|tijk| · DirichletIJ(Ωijk, |pij |2, ⟨pij , pki⟩, |pki|2)

29: Aki ← rki
1

|tijk| · DirichletIJ(Ωijk, |pjk|2, ⟨pjk, pij⟩, |pij |2) ▷ A is Hermitian, so Aij = Aji

30: Aji ← rij
1

|tijk| · DirichletIJ(Ωijk, |pki|2, ⟨pki, pjk⟩, |pjk|2)
31: Akj← rjk

1
|tijk| · DirichletIJ(Ωijk, |pij |2, ⟨pij , pki⟩, |pki|2)

32: Aik ← rki
1

|tijk| · DirichletIJ(Ωijk, |pjk|2, ⟨pjk, pij⟩, |pij |2)

33: A← A+ 10−8 ·M ▷ Avoid factorization issues, as noted in Section 7 of [KCPS13].

Algorithm 1 Globally-Optimal Direction Field Generation, Continued
1: procedure CALCULATE DIRECTION FIELD
2: Solve Au = λMu ▷ Solved via scipy.sparse.linalg.eigs()
3: for point p ∈ triangle tijk do
4: α, β, γ = barycentric weights(p, tijk)
5: φp = arg( n

√
αui + βuj + γuk) + c ▷ c ∈ [0, 2π) constant over the entire mesh.
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suited to finding large eigenvalues, so shift-invert mode allows SciPy to transform the smallest-eigenvalue

problem into a largest-eigenvalue problem by inverting the input matrix. [VGO+20]

3.3.1. Direction Field Conversion. The vector u now stores the directions that we want to interpolate

over the mesh to form the full direction field. Calculating the direction of the field at any point p requires

finding the triangle tijk containing p and then interpolating the values stored at the vertices to find φp.

Figure 3.20 illustrates the barycentric interpolation used to calculate φp. The barycentric coordinates α, β,

and γ are the fraction of the area of tijk covered by the triangle opposite the vertex the weight is assigned

to, e.g. the weight α is assigned to vi and is the relative area of the triangle formed by p, vj , and vk. The

interpolated value α · ui + β · uj + γ · uk, like the values in u, are all complex numbers to the nth power.

It is important to take the nth root of the angle after interpolation, in order to avoid the issues with angle

interpolation described in Section 3.1.2.2.

To find φp, in our 4-RoSy field, we calculate:

φp = arg( 4
√
α · ui + β · uj + γ · uk)

vi

vj

vk

p

(a) Splitting tijk at p, forming three triangles, the areas of which are
the weights of the barycentric coordinates.

α = area( p, vj , vk) / area(vi, vj , vk)
β = area(vi, p, vk) / area(vi, vj , vk)
γ = area(vi, vj , p) / area(vi, vj , vk)

qp = α · qi + β · qj + γ · qk
(b) Calculating barycentric coordinates,
and applying them to find some quantity
qp, interpolated from values stored at the
vertices qi, qj , and qk.

FIGURE 3.20. Calculating barycentric coordinates for a point p in triangle tijk

Interpolating the values for u over the mesh M results in a piecewise-linear function, linear within each

triangle tijk and continuous over the entire region, with discontinuities in ∇u along each edge. However,

the final field φ is no longer linear due to the fourth root and implicit normalization when converting from

the complex vector to an angle.

The values u are derived from deltas over each edge in the background mesh. It is as if we are given

given uj−ui for each edge eij and have solved for some valid u, or in a continuous sense, given∇φ and are
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integrating over the region to solve for the field φ, This means there is an untapped degree of freedom here,

where adding some offset ϕ to some vertex k, giving ûk = uk + ϕ ends up with the same solution except

that ϕ has been added to all vertices ûi = ui + ϕ ∀i; the resulting û is valid for any choice of ϕ. Another

way to consider this is that the resulting field φ, which is represented by an angle function α interpolated

over triangles from u, is equally valid for any constant offset ϕ: φ = α+ ϕ. We will refer to ϕ as the phase

of the field φ, and we will see that phase plays an important role in the meshes we generate in Section 3.4.3.

3.4. Evaluation

In this section we evaluate some cross fields produced by the method we’ve presented. Chapter 4 will

explore size computation in more rigor, but for now we will use the relative distance between chosen field

lines throughout the region as a proxy for growth. While we look at two different phases of the first example

dataset to measure field growth in different directions, we observe that the chosen phase of the cross field

has an impact on the resulting size functions; we will explore this more in Section 4.13.

a
b

c d
e

fg

hi

j

k

l
m

n

(a) Field aligned with desired size
gradient

o

pq

r

(b) Field aligned with observed size
gradient

Location + Length Ratio
a 7.75 b 13.55 1.75
c 7.61 d 13.55 1.78
e 7.44 f 13.65 1.83
g 7.26 h 13.83 1.91
i 7.02 j 14.08 2.01
k 6.78 l 14.59 2.01
m 10.01 n 7.20 0.72
o 5.02 p 15.47 3.08
q 10.01 r 11.09 1.11

(c) Distance measurements between
parallel field lines, with growth ratios.

FIGURE 3.21. Two alignments of a generated direction field aiming for a doubling of the
size moving from left to right.

3.4.1. Singularity-Free Grading. Figure 3.21 shows a case where the desired grading is sufficiently

simple and gradual enough to be accomplished without singularities. The input sizing function doubles from

the left of the image to the right, and is constant along any vertical path.

Figure 3.21a shows the field roughly aligned with the desired size gradient. The red field lines are mov-

ing along the desired gradient, so the distances between them should increase along with the size function,

which is seen by all of them roughly doubling. The blue field lines are moving perpendicular to the desired
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gradient direction, so they should remain a fixed distance apart; but there is an observed decrease in distance

of 28%. Figure 3.21b shows the same cross field, but with an phase ϕ that is rotated 45◦ with respect to the

direction of the desired gradient. The two pairs of field lines behave very differently, appearing to be radii

and perimeters of circles centered just past the bottom-left corner of the image. The field lines from the bot-

tom left, the apparent radii, show a tripling of distance over the image, while the other pair of lines remain

relatively equidistant. This second set of field lines matches the intuition we established in Figure 3.18,

where the field lines following the gradient are straight and those across the gradient are curved as if they

are being pulled in the direction of growth. It also serves to extend our intuition: the straight field lines that

follow the gradient must also get further apart as the implied size function increases, suggesting that the

produced gradient is actually radial, radiating outward from some point off to the bottom-right of the image.

The target configuration, therefore, is unachievable; there cannot be an exact solution to a constant non-zero

size gradient, as the straight field lines that follow the gradient need to diverge proportionally to the gradient.

As seen here, the optimization process still produces a smooth field that approximates the desired behavior.

This example demonstrates the limitation of relying entirely on field-line divergence to achieve growth,

by not including any singularities. The best approximation of a constant gradient was the observed radial

gradient. The resulting growth is not aligned with the desired gradient direction but instead with the direction

that minimizes the error in growth over the entire image. So, the excessive growth seen in the radii is what,

when averaged over the image, causes the properly-aligned paths to hit their marks. This misalignment is

also what causes the blue path to deviate from constant-width.
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FIGURE 3.22. Synthetic example size function layout. Fields are calculated for the entire
region, but exhibit enough symmetry where one quadrant effectively conveys the behavior,
so the images are cropped to show more detail. Three different easing functions are used to
transition sizes along the unshaded region.

3.4.2. High-Growth Synthetic Example. In this example, we consider a region defined by two con-

centric circles, where the size function increases from its minimum at the edge of the outer circle, to its

maximum at the edge of the inner circle. These images are symmetric, so images will be zoomed into the

upper-right quadrant. We purposely include a thick border region around the entire extent with a constant

size, so that the resulting field is forced to include all relevant singularities in the region of interest; this is

to avoid confounding issues such as seen in the example from Section 3.4.1: is the region really singularity-

free, or is the observed radial pattern the result of a degree-0 singularity just off-image?

As noted when discussing element growth rates in Section 3.2.1, we expect quad sizes to change linearly

over the region. However, in Section 3.2.5.2, we observed that the strength of the deflection of the field is

proportional to the change in the size function and inversely proportional to the size itself; this means that

linear growth in the size function will induce the strongest curvature in areas where the size is the smallest.

This can cause problems when combined with a fixed-density background mesh, as regions with a

small-but-growing size function can have a large enough curvature to cause it to overflow beyond π
2 and

wraparound to −π
2 , or vice-versa. An adaptive background mesh proportional to target size would not be

efficient, as zero-growth areas with small size do not benefit from high mesh resolution. A better solution

is to use an adaptive background mesh that estimates the desired curvature over each cell in the background
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mesh, and then refines each cell where the curvature exceeds a given threshold. This gives the benefit that

regions with any constant size are also sparsely meshed.

(a) Adaptive background mesh for linear growth (b) Adaptive background mesh for exponential
growth

FIGURE 3.23. An exponentially growing size function distributes the curvature evenly over
the region, so the area where the size grows has roughly constant density in the adaptive
background mesh.
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(a) LIC render for linear growth (b) LIC render for exponential growth

FIGURE 3.24. The LIC renders show the difference between linear and exponential growth
in the target size function, where exponential growth has more uniform distortion over the
entire growth regions, while linear growth biases the distortion toward the areas of smaller
size.

Even when using an adaptive background mesh, aggressive growth rates that grow linearly will result in

high-curvature regions which are very densely meshed. We will explore the relationship between curvature

and size in Chapter 4, particularly in the derivation of Equation 4.3, but for now we will simply assert that

the relationship between the field angle α, in particular the curvature |∇α|, and the compatible size function

σ is |∇α| ∝ |σ−1∇σ|. A constant ∇α gives uniform element sizes in the adaptive background mesh, so

we solve for a σ that is proportional to its own gradient, which gives an exponential function for σ. In

this circular example, using a σ with exponential growth has the effect of allowing singularities to migrate

inward from the outermost edge, and they end up more evenly distributed over the region. This effect is

quite pronounced, so we also consider using a cubic easing function as well, offering a balance in terms of

mesh quality and singularity placement between linear and exponential growth.

While the term “easing” is used for the non-linear growth rates, taken from the animation technique of

applying a one-dimensional function to an interpolant, the goal is not to remove discontinuities. In fact,

none of the functions used here are C1 smooth due to the abrupt stop in growth when transitioning to the

constant (maximum) size at the inner radius, (C) in Figure 3.22. We tested easing functions with smoothed

transitions to the minimum and maximum value, and did not notice a significant difference in outcomes.
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FIGURE 3.25. Observed growth rates for different background meshes and easing func-
tions applied to the target size growth rate.

(a) Log-scale energy for linear growth with fine adap-
tive base mesh

(b) Log-scale energy for linear growth with fine fixed
base mesh

FIGURE 3.26. Minimum-energy configurations for highest- and lowest-growth entries
from Figure 3.25. Note that the adaptive background mesh case (left) corresponds to zero
overall growth, and the energy is concentrated in the band where the highest growth should
have occurred, while the fixed background mesh case (right) still has the (considerably
weaker) high-energy outer band as well as spikes in energy corresponding to singularities
in the resulting cross field.

As seen in Figure 3.25, changes to the background mesh and size function have a drastic impact on

the final observed growth rate in the output cross field. In each of these cases, we measure the growth
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rate by taking the geometric average of many sampled growth rates, following a pair of streamlines from

the perimeter of the region to the center. Chapter 4 considers better ways of measuring the growth rate

associated with a cross field. The subtle differences in how a background mesh or easing function ends

up distributing the curvature over the triangles in the background mesh can have effects that are difficult to

predict. As seen in Figure 3.26, linear growth represents the most difficult problem to solve, as most of the

relative growth is relegated to the edge of the growth region. In some cases, this causes the minimum-energy

cross field to exhibit no growth at all; it is easier for the optimizer to “ignore” the growth from a relatively

small group of high-curvature triangles than it is for it to distort the entire region to achieve the desired

growth rate. However, because the curvature tends to be highly concentrated (in areas where the size σ is

the smallest), the fine fixed-size linear base mesh can produce very strong growth, sometimes overshooting

the desired growth target. The exponential growth functions tend to perform the most consistently, although

not enough to use it exclusively; we often test with several easing functions for any given dataset, keeping

one or a selection of the best performing parameters. The cubic easing function differs surprisingly from

the exponential, given how similar they are in Figure 3.22; cubic is more consistent than the linear, and

occasionally more able to match the targeted growth than the exponential. Much of this behavior was

unexpected, and while the exponential case tends to make the sparsest background meshes for a given growth

rate, speeding up later calculations, the lack of a clear optimal choice among the three easing functions

indicates the problem is more complicated than we had initially thought; further investigation led us to

the analysis and visualization we present in Chapter 4. Similarly, uniform background meshes sometimes

outperform their adaptive counterparts, preventing us from using either option exclusively.
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(a) Target size function

(b) Direction field and motorcycle graph

(c) Log-scale Dirichlet energy

FIGURE 3.27. The Sacramento Valley dataset. The original perimeter is clearly visible in
the Dirichlet energy, where the linear interior size function meets the constant exterior size
(dark purple in (a)).

3.4.3. Use Case: Geographic Dataset. We will use the Sacramento Valley dataset to explore the full

meshing pipeline. Figure 3.27 shows the initial size function, the LIC and motorcycle graph, and a log-scale

measure of the (minimized) optimization energy over the region. The LIC and motorcycle graph correspond

to one possible phase of the cross field, while the energy function is the same for all phases.

The target size on the exterior of the region is constant to avoid adding extra singularities along the

boundary, which might be necessary to accommodate the growth in a region that will be carved away from

the mesh (as in Chapter 2) anyway. The straight streamlines towards the outside of Figure 3.27b show that

the size is effectively constant along the outside of the region, matching the target size function.

Both the field and the motorcycle graph show the divergence of streamlines as they flow into the interior

of the region, indicating that there is growth matching what we have requested. The energy measured in

Figure 3.27c has bright spots coincident with all of the singularities, mostly placed along the perimeter and

medial axis.

We will follow this dataset in the following chapters, measuring the growth rate compatible with our

computed cross field in Chapter 4, and computing final meshes in Chapter 5.
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FIGURE 3.28. Log-scale heatmap of energy that is minimized by the solve process. Typ-
ically, the highest-energy regions correspond to singularities in the direction field, but in
rare cases, singular bands form, which typically result in chains of singularities along a
path of abnormally-high curvature. This was a linear 10× growth case on a coarse fixed
background mesh, which is normally a relatively easy target to achieve. The high-energy
streaks are areas where there would typically be individual singularities, but here there are
pairs and triplets, as if this configuration is slightly beyond what could be achieved with a
normal arrangement of singularities, but is not far enough beyond to separate the singulari-
ties enough to induce growth.
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FIGURE 3.29. LIC render of a somewhat
paradoxical field. Using the highlighted
field line segments as a proxy for the size
function, it appears as if the size function
implied by this cross field is constantly
shrinking while moving in a clockwise di-
rection.

3.4.4. A Prelude to Anisotropy. Figure 3.29 shows an

example that was instrumental in developing Chapter 4. Flow-

ing between each of the colored blocks in a clockwise se-

quence implies that the implied size function is constantly de-

creasing, or has a negative directional derivative along the en-

tire cycle. This is impossible for a size function, as we have

been representing it, to achieve; if the size function is a scalar-

valued field, the size measured along any closed path must re-

turn to the original value. We will revisit a very similar field

in Figure 4.7 (right), where it is apparent that this field does

achieve some growth without the use of singularities, at the

expense of high anisotropy, the topic of the next chapter.
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CHAPTER 4

Size Function Families from Cross Fields

Using the process described in Chapter 3, we create size-compatible cross fields corresponding to target

size functions, although we were only able to approximate the growth in the resulting fields by measuring

the divergence in pairs of parallel field lines. This chapter explores the infinite family of size functions

implied by a given cross field, and the necessity of representing the size functions as two orthogonal vector

fields instead of a single scalar field. The difference in magnitude of the two vectors at any point is the

anisotropy, and measures the aspect ratios of the quads that will be produced when meshing the field. This

chapter was published as Anisotropy and Cross Fields [SA], although here we consider additional datasets

and conclude with a discussion of implementation caveats.

4.1. Introduction

A cross field assigns two orthogonal unoriented directions to every point in a two-dimensional region.

A common approach to constructing a quad-mesh is, roughly, to construct a cross field on the input domain,

and then sample streamlines from the cross field to produce quads; but as we saw in Chapter 3, it rarely

works out to be so easy!

Here is one fundamental issue with this approach. Within any regular infinitesimally small region we

can always sample streamlines to form a mesh in which the quads approach perfect squares as the density

increases. But globally, the curvature of the cross field might force some quads to be arbitrarily anisotropic.

This is well-known, in the sense that existing methods deal with it; for instance, Quantized Global Parame-

terization [CBK15] empirically chooses streamlines so as to minimize anisotropy (as in Figure 4.1). In this

paper, we lay out the math describing how the curvature of a cross field may force any mesh directly derived

from it to be be anisotropic, and we give a numerical algorithm to measure the minimal anisotropy inherent

in a given cross field.

We only handle a simple case. We assume we are given a smooth cross field, defined on an open or

closed domain R in the plane (not necessarily a disk). We allow the cross field to have singular points, but

only of valence 3 or 5 (see Figure 4.2). We require every streamline to have finite length, and we do not
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FIGURE 4.1. A cross field (left) in the plane, with singular points of valence 3 or 5 (high-
lighted). We assign two lengths at every point to define an anisotropic orthogonal frame field
(visualized as an orange rectangle) at each point, and optimize to minimize the anisotropy
(center). A quad mesh constructed with the cross field as a guide using an approach based
on [CBK15] reflects the effects of the anisotropy inherent in the cross field (right). Brighter
shades indicate larger element anisotropy.

allow any streamline to both begin and end at a singular point. Thus, although we allow cycles, we exclude

cross fields that contain limit cycles (Figure 4.2), and also cycles containing singular points.

Given our limitations on R, our conditions on the the input cross field are reasonable. Other kinds of

singular points can be (and often are) simulated by clusters of singular points of valence 3 and valence 5.

A streamline with two singular endpoints can be eliminated by a local perturbation of the cross field. Limit

cycles cause infinite anisotropy and streamlines of infinite length, so we cannot say much about cross fields

that contain them.

We show that a cross field meeting our conditions is always 2-integrable, by which we mean we can

assign two lengths to the two orthogonal directions at each point, consistent with the curvature of the cross

field. We explain intuitively what we mean by “consistent” via the following purely theoretical construction.

For some large enough n, we select a discrete set of n streamlines that decomposes R into intrinsic rectan-

gles, that is, four-sided regions whose curved sides are segments of streamlines or closed boundaries, so that

the region sides meet at right angles, except at singular points. We increase n towards infinity, interpolating,

if possible, our initial discrete set of streamlines with a smooth distribution of streamlines. In the limit,

the streamlines divide R into infinitesimally small perfect rectangles with straight sides (“tiny bricks”). In

this sense, R is the the infinite sum of a set of infinitesimal rectangles. Definition 4.3.1, below, is a more

technical definition of integrability.
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The infinitesimal limit rectangles may be arbitrarily anisotropic (that is, their two side lengths may

differ). Some of the anisotropy may come from our choice of the smooth streamline distribution, and some

may be forced by the curvature of the cross field. What distribution of streamlines minimizes the anisotropy,

so that our infinitesimal rectangles are as square as possible? That is, how much anisotropy is forced by the

cross field? This is the question we address.

The infinitesimal rectangles might all be perfect squares, in which case we only need one length function

(known as the conformal factor); we say such a cross field is 1-integrable. It is widely understood that a

cross field is 1-integrable if and only if it can be produced by a conformal map from the plane to itself (see

Section 4.5). But not all cross fields can be produced in this way; Figures 4.1 and 4.7 show examples. In this

more general case, we show that there is a always a one-dimensional space (up to scale) of ways to assign

two length functions consistent with the curvature of the cross field.

Next, we describe how we optimize the length functions within the set of feasible assignments so as to

minimize anisotropy. Given an input cross field obeying our conditions, we can thus compute and visualize

the minimal anisotropy of its best infinitely fine “tiny bricks” mesh. We present some results on measuring

the anisotropy of an input cross field.

Finally, we observe that if a limit cycle is simple - that is, if it does not cross itself - it can be removed

without adding any new singularities.

We emphasize that producing a finite quad mesh at a reasonable resolution poses additional challenges

beyond controlling anisotropy. For instance, the finite mesh must incorporate the separatrices (the stream-

lines incident to the singular points) and any corners of the closed boundaries, and mesh quality includes

other measures such as angle error. Thus the output mesh may depart from the optimal streamline distribu-

tion or from the streamlines themselves, as in, for example [TPP+11] or [LCK21], or in Figure 4.1.

Nonetheless our results are useful in various ways.

• If we construct a quad mesh which fails to meet a target sizing function or minimum anisotropy

bound, we can estimate how much of this failure was inherent in the cross field and how much was

due to downstream steps of the meshing process. This is useful since the cross fields we compute

in practice are almost never exactly 1-integrable.

• Instead of designing cross fields only for smoothness under constraints, we could also optimize for

isotropy or targeted anisotropy.

• The idea for removing limit cycles in Section 4.12 appears to be novel.
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FIGURE 4.2. We allow our cross fields to contain singular points of valence 3 (top left) and
5 (bottom left), but not limit cycles (right).

4.2. Related work

There is a great deal of research on using cross fields to construct quad meshes. The design of cross

fields was surveyed in [VCD+16], and their use in quad meshing appears in the surveys [BLP+13,Cam17].

Since harmonic angle functions lead to 1-integrable cross fields, most cross field design papers fo-

cus on this goal. This difficult computational problem has inspired a great deal of research, including

[RVAL09, KCPS13, ACBCO17, VO19, CCS+21]. Much of this research focuses on quad meshing on a

closed orientable surface embedded in R3, where a cross field might be computed as part of a seamless

parameterization, eg. [BCE+13,CSZZ19]. In this situation there are stronger constraints on the cross field,

which we avoid in our simple planar case; we return to this important topic in Section 4.14.

All singular point configurations allowed under Euler’s Theorem can be quadrangulated, with the excep-

tion of the torus with two singular points of valence 3 and valence 5 [SZC+22, JT73]. However, this does

not directly imply that they all admit 2-integrable cross fields or that all smooth cross fields are 2-integrable.
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More closely related to our work is research on the explicit construction of 2-integrable cross fields.

Constructing a frame field, in which the two unoriented directions at a regular point need not be orthogonal

and may have different lengths, was explored in [PPTSH14] and [DVPSH15]. Odeco tensors, studied

in [PSS21], were used recently in a section of [JCR23] to construct 2-integrable frame fields, by solving a

PDE with objectives equivalent to our Equations 4.3 and 4.4.

Another relevant line of research has approached the problem of constructing a frame field by construct-

ing a metric on the domain. In [JFH+15], a smooth orthogonal frame field is optimized so as match an

arbitrary input metric as well as possible. In [CZK+19], they construct a metric that is guaranteed to admit

an orthogonal frame at every point, which is equivalent to constructing the orthogonal frame field itself (see

Section 4.3).

We can handle our simple case using fairly accessible mathematics, although we will point out some

relevant sophisticated concepts as we go along.

4.3. Definitions

4.3.1. Input. We assume that we are given a smooth cross field X(α) represented by an angle-valued

function α : R → R mod π
2 in a region R of the plane; see Figure 4.3. Specifically, for any real-valued

a : R→ R, let α = a(x, y) mod π
2 , and define the cross at (x, y) to be the unordered set of four directions

[α, α+ π
2 , α+π, α+ 3π

2 ], or, equivalently, the unordered set of two unoriented directions [α, α+ π
2 ]. (Often

the angle is represented by a complex number, which is easier for computation, but this representation will

yield some intuitive equations later on.)

Locally, we can orient the two directions and write the cross at any point as two orthogonal unit vectors,

the columns of a rotation matrix: cosα − sinα

sinα cosα


Cross fields are also called 4−RoSy fields [PZ07] or 4−directional symmetry fields [RVLL08].

A streamline in a cross field, like a streamline in a vector field or direction field, is a curve γ(t) whose

tangent at every point is the direction of the field. We called these field lines in Chapter 3. In a cross field,

two unoriented streamlines pass through every regular point. Each streamline either forms a cycle or begins

and ends at a boundary or singular point. In a cross field, a streamline may cross itself at right angles; that

is, cycles are not necessarily simple.
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FIGURE 4.3. The cross field is given by a periodic angle-valued function α(x, y), in radi-
ans, defined on the region R. The range of α(x, y) is [0, π/2]. The cross at a point (ma-
genta), is given by four rotations of the vector (cosα, sinα). The blue curves are stream-
lines. The orange arc indicates α, and the orange vector indicates ∇α, the direction in in
which the cross rotates counter-clockwise most quickly. We observe that∇α is not aligned
with the streamlines.

The cross field X(α) may contain isolated singular points, at which the number of incident streamlines

is not two. We only consider singular points of valence 3, incident to three streamlines, and valence 5,

incident to five (these are also called singular points of index −1 and 1, respectively). Let S be the set of

singular points.

FIGURE 4.4. Some vectors from∇α superimposed on the cross field X(α), colored based
on distance to the nearest singular points. The magnitude of∇α increases near the singular
points.
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In a disk-shaped neighborhood of any regular point, we can represent α using a scalar function a which

may extend beyond the range [0, π/2]. In particular, the vector field∇α = ∇a is well-defined, and it forms

(like all gradients) a vector field with zero curl, although possibly with non-zero divergence (recall that the

curl of vector field (u(x, y), v(x, y)) is vx − uy, and the divergence is ux + vy). The magnitude of ∇α

increases near a singular point s. The singular points of the vector field∇α are the singular points of X(α),

and α is undefined at the singular points.

A limit cycle is a cycle into which other streamlines “spiral in”; that is, a streamline γ is a cycle and

there is another streamline ζ such that ζ(t) approaches γ as t goes to infinity; see Figure 4.2. X is smooth

at a limit cycle γ. Since we forbid limit cycles, the neighborhood of a cycle streamline is covered by a set

of nearly parallel cycles.

The cross field X is defined on a region R of the plane. We can require X to be aligned with the

boundaries of R, or not; but we do not allow periodic boundaries, at which X would have to match.

FIGURE 4.5. Sometimes streamlines, like the one highlighted in magenta, can cross them-
selves, locking the aspect ratio σ : τ at the point of intersection. This shows that some cross
fields require anisotropy.

4.3.2. Orthogonal frame fields. Our goal will be to assign a length function along every undirected

streamline, and hence two lengths at every regular point. Since, for example, a streamline can cross itself
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at right angles, as in Figure 4.5, we usually cannot define the lengths as two separate continuous scalar

functions on R. Instead, we will focus on a local neighborhood of every regular point and require the length

functions to be smooth in every neighborhood. Then we will make a global argument to show that the

functions can be globally as well as locally smooth.

Let us define some local notation. In a neighborhood N(p) of any regular point p, the two sets of

streamlines, and their length functions, can be separated. Within the neighborhood, we call the two length

functions σ(x, y), τ(x, y) (even if, globally, both come from the same set of streamlines). Also locally,

we can orient both sets of streamlines. Now we can write a local orthogonal frame as two vectors, or the

columns of a matrix: σ cosα −τ sinα

σ sinα τ cosα


In the next section, we will see that the change in σ or τ along a streamline is determined by the curvature

of the orthogonal set of streamlines. We use these relationships to give the following definition.

DEFINITION 4.3.1. A cross field is 2-integrable if we can define a length function for each direction

vector at each point, creating an orthogonal anisotropic frame field, such that

(1) (smoothness) in the neighborhood of any point p ∈ R, the two scalar length functions are both

smooth (say, C2-continuous), and

(2) (α-consistency) along any streamline, the associated length function is consistent with α, as de-

fined by Equations 4.3 and 4.4, below.

4.4. Local parameterization

What is stopping us from assigning, for example, σ = τ = 1 everywhere? Unless we are extremely

lucky, this will not correspond to the aspect ratios of any possible set of infinitesimal rectangles aligned with

X(α). We capture this idea as follows. Let Px,y and Pu,v be two copies of the Euclidean plane. Assume

there is a smooth map M from some neighborhood in Pu,v to N(p), the neighborhood of p ∈ R ⊂ Px,y.

Under map M , infinitesimal axis-aligned squares in Pu,v are mapped to rectangles aligned with the cross

field in Px,y. See Figure 4.6.
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FIGURE 4.6. On any neighborhood, we consider a local mapM from plane Pu,v into plane
Px,y. The JacobianK ofM takes infinitesimal axis-aligned squares in (u, v) to infinitesimal
rectangles aligned with the cross field in (x, y). The inverse Jacobian takes infinitesimal
squares in (x, y) to parallelograms in (u, v).

We do not need to write down M explicitly in order to understand the local behavior of infinitesimal

squares. We are just interested in its derivative, the Jacobian matrix:

K =

xu xv

yu yv

 =

σ cosα −τ sinα

σ sinα τ cosα


Here, σ, τ and α are functions of (x, y), but x(u, v), y(u, v) are functions of u, v.

Locally, the inverse map M−1 always exists, and its Jacobian K−1 is the inverse of the Jacobian of M :

K−1 =

ux uy

vx vy

 =

(1/σ) cos(−α) −(1/σ) sin(−α)
(1/τ) sin(−α) (1/τ) cos(−α)

 (4.1)

It is easier to figure out how σ, τ have to change with α by looking atK−1 because its elements ux, uy, vx, vy

are all functions of (x, y).

We note that K−1 also determines a Riemannian metric at p. If γ(t) is a unit-speed curve in (x, y), then

the length of γ using the metric K−TK−1 is the length of M(γ(t)) in (u, v):∫ length γ

t=0

[
(K−1 γt)

T (K−1 γt)
]1/2

dt (4.2)
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We also observe that the rows, rather than the columns, of K−1 are orthogonal (unless σ = τ ), so K−1 is

not in general an orthogonal frame, and it maps squares to parallelograms.

The functions u, v have to satisfy

(ux)y = (uy)x

(vx)y = (vy)x

That is,∇u and ∇v, like all gradients, have zero curl. From (ux)y = (uy)x we have

((1/σ) cosα)y = ((1/σ) sinα)x

⇐⇒ −σy cosα− σ sinα αy = − σx sinα+ σ cosα αx

⇐⇒ ∇σ ·(− sinα, cosα) = − σ ∇α·(cosα, sinα)

and using (vx)y = (vy)x we have

((−1/τ) sinα)y = ((1/τ) cosα)x

⇐⇒ τy sinα− τ cosα αy = − τx cosα− τ sinα αx

⇐⇒ ∇τ ·(cosα, sinα) = τ ∇α·(− sinα, cosα)

We highlight these two partial differential equations.

∇σ ·(− sinα, cosα) = − σ ∇α·(cosα, sinα) (4.3)

∇τ ·(cosα, sinα) = τ ∇α·(− sinα, cosα) (4.4)

(One can also derive these equations by requiring a Lie bracket to be the zero vector, as in [JCR23]. Alter-

natively, one could relate the metric K−TK−1 to the curvature of∇α via the Levi-Civita connection.)

4.5. Isotropic cross fields

If τ = σ everywhere, then the maps M,M−1 are conformal, and the isotropic metrics KTK,K−TK−1

are called isothermal. Most cross field design programs optimize towards conformal maps (by minimizing

the Dirichlet energy or the Ginzberg-Landau energy, or following the Ricci flow, etc.). With τ = σ, our two
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differential equations become

∇σ ·(− sinα, cosα) = − σ ∇α·(cosα, sinα)

∇σ ·(cosα, sinα) = σ ∇α·(− sinα, cosα)

Thinking of the vectors (cosα, sinα) and (− sinα, cosα) as an orthonormal coordinate system, we see that

σx = − σαy (4.5)

σy = σαx (4.6)

So in a region where σ = τ , there is a unique solution for σ given α, up to a global scale factor. We can think

of Equations 4.5 and 4.6 as a way of writing the usual Cauchy-Riemann equations ux = vy and uy = −vx,

which describe a conformal map.

In order for the differential equations 4.5 and 4.6 to be solvable, however, (σx, σy) has to have zero curl.

That is, at every point in R,

(σαx)x = (−σαy)y

σxαx + σαxx = −σyαy − σαyy

−σαxαy + σαxx = −σαxαy − σαyy

which shows that α must be harmonic (that is, αxx + αyy = 0), and therefore ∇α has zero curl and zero

divergence at every point. Clearly, there are functions a which are not harmonic, and thus cross fields α that

are not harmonic.

4.6. Singular points

In a neighborhood containing a singular point s of odd valence, we cannot separate the streamlines into

two distinct sets; so the functions σ, τ can be smooth on the entire neighborhood only if they are identical at

s.

OBSERVATION 4.6.1. At a singular point s, σ(s) = τ(s).

So to understand the relationship of σ and α at singular points we can examine the well-understood

isotropic case. A singular point s of valence 3 is similar (scaled, rotated and/or translated) to the singular
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point at the origin induced by the complex map M−1(z) = z3/4, which we can write in terms of (x, y) and

(u, v) as

M−1(x, y) = (x2 + y2)3/8e(3/4)i arctan(y/x) = (u, v)

We can similarly write the complex derivative K−1(z) = 3/4z−1/4 as

K−1(x, y) = 3/4(x2 + y2)−1/8e(−1/4)i arctan(y/x) = (u, v)

From Equation 4.1, we see that 1/σ(x, y) = 3/4(x2 + y2)−1/8 and −α = (−1/4) arctan(y/x). Recalling

that ∇ arctan(y/x) = (−y, x)/(x2 + y2), we find

σ =4/3 (x2 + y2)1/8

=⇒ ∇σ =1/3 (x2 + y2)−7/8(x, y)

α =1/4 arctan y/x

=⇒ ∇α =1/4 (x2 + y2)−1(−y, x)

We can verify that these equations obey Equations 4.5 and 4.6. They imply a counter-clockwise rotation

of∇α around s (as in Figure 4.4) and a zero of σ at s.

Similarly, a singular point s of valence five at the origin is produced byM−1(z)→ z5/4, withK−1(z) =

5/4 z1/4. In this case we find that∇α rotates clockwise, and s is a pole.

In either case, we avoid tracing streamlines very close to singularities due to the difficulty in accurately

estimating σ and τ as∇α grows without bound.

4.7. Integrating σ and τ

When α is not harmonic, τ and σ differ. Equations 4.3 and 4.4 are not sufficient to determine ∇σ and

∇τ . But they do completely determine two directional derivatives per point, one for σ and one for τ . (This

section is an example of the “method of characteristics” for solving first-order PDEs.)

In particular, for a unit-speed curve γ(t) through a point p ∈ R, with unit direction vector (− sinα, cosα),

the directional derivative

dσ

dt
= ∇σ ·(− sinα, cosα) = −σ ∇α·(cosα, sinα)
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FIGURE 4.7. Given the isotropic cross field derived from by the conformal map z → z3/4

(left) we (of course) find that the minimum anisotropy is zero; that is, we can set σ = τ
everywhere. A cross field with nonzero divergence (right) exhibits large anisotropy, even in
some regions where ∇α = 0. We computed this twisting cross field by requesting a large
isotropic scale in the center and a smaller isotropic scale on the outside, and minimizing the
Dirichlet energy. Like most sets of user-defined cross field constraints, there is no harmonic
α function that meets them. The non-harmonic X(α) we found does achieve the large
isotropic scale in the center and smaller isotropic scale in the corners, but requires large
anisotropy. Requesting a larger scale difference in this case produces singular points, which
allows the scale change with lower anisotropy.

So, for a streamline following (− sinα, cosα), given a single value of σ somewhere along the streamline,

we can find all the other values of σ along the streamline by integrating using Equation 4.3.

Similarly we can integrate τ along the streamlines with direction (cosα, sinα), using Equation 4.4:

dτ

dt
= ∇τ ·(cosα, sinα) = τ ∇α·(− sinα, cosα)

Fortunately, these are exactly the streamlines we have.
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For example, consider an intrinsic rectangle not containing a singular point. We can set arbitrary values

of σ along one edge and arbitrary values of τ along another, and then integrate both into the interior using

equations 4.3 and 4.4. If the initial values of σ are smooth along the edge, the two-dimensional σ function

across the interior of the intrinsic rectangle will be smooth, and similarly for τ .

Recall that the variables σ and τ are only defined on a small local neighborhood not containing a

singularity. As seen in Figure 4.5, a streamline in a cross field can intersect itself at right angles, and at

the intersection point σ and τ are defined by different points along the same field line. At points of self-

intersection like these, the ratio between σ and τ is fixed, since any change to one value on the streamline

changes the other.

4.8. Global consistency of σ and τ

The previous section established that we can locally integrate σ and τ along streamlines within a disk-

shaped singularity-free neighborhood. So the length function along an entire streamline γ is determined if

we set the value at any one point p ∈ γ. A connected set of adjacent streamlines whose length values are

continuous along any curve orthogonal to them all will have continuous values throughout their length.

FIGURE 4.8. Illustration for Theorem 4.8.1. Mapping a point p on cycle γ(0) to parameter
space Pu,v takes the cycle to a line. A parallel line at distance ϵ maps back (pulls back) to a
nearby cycle. The distance between the two cycles in Px,y always returns to the same value
as we loop around, and converges to ϵτ(p) as ϵ→ 0.

Self-intersecting streamlines are not a problem. But what about cycle streamlines? Say γ is a cycle

following direction (cosα, sinα). If we fix the value of τ(p) at one point p ∈ γ, and we integrate along

γ using Equation 4.4 and return to p, do we always get the value of τ(p) that we started with? Notice that

this is not true of every function; for instance, integrating∇α around a cycle gives 2π rather than zero, even

though ∇α has zero curl.

104



THEOREM 4.8.1. Let γ be a cycle streamline, not a limit cycle, with no singular point in its neighbor-

hood. Let τ be the length function orthogonal to γ. The function τ is smooth everywhere on γ.

PROOF. Since γ is not a limit cycle, a small neighborhood of γ is covered by a set of nearby disjoint

parallel cycle streamlines.

Let γ0 = γ. Recall the mappings M : (u, v)→ (x, y) and M−1 : (x, y)→ (u, v) from Section 4.4. At

an arbitrary point p ∈ γ, let q = M−1(p). See Figure 4.8. From q, a an ϵ step in the v direction takes us to

point q + ϵv, which is mapped by K to step orthogonal to γ0, landing us on a nearby cycle γϵ. As ϵ goes to

zero, the distance from p ∈ γ0 to the nearest point on γϵ converges to the infinitesimal width

w(p, ϵ) =

[0 ϵ
] σ cosα σ sinα

−τ sinα τ cosα

σ cosα −τ sinα

σ sinα τ cosα

0
ϵ

1/2

= τϵ

with w(p, ϵ)/ϵ converging to τ . Since cycles are smooth and closed, if we traverse all the way around and

return to p, we get the same infinitesimal width w(p, ϵ) and thus we converge to the same value of τ . □

Setting the value of σ = τ at a singular point s determines the length function along the (3 or 5)

separatrices adjacent to s. We required each of these separatrices to end at the boundary, not at another

singular point. Hence,

OBSERVATION 4.8.2. We can choose the values of σ = τ at each singular point independently of each

other.

THEOREM 4.8.3. There is an infinite one-dimensional set of ways to choose the length functions along

each streamline, consistent with σ, τ being smooth on the neighborhood of any point in R.

PROOF. First, we select the size values σ = τ at the singular points. There is a discrete finite set of

such values, and we can choose them independently because of Observation 4.8.2. This choice determines

the length values along the separatrices. The separatrices divide the remaining streamlines into groups, such

that we cannot deform a streamline from one group into one from another group without crossing one or

more singular points, or leaving the region (that is, the groups are homotopic).

Some groups may be unions of cycles, while others begin and end on the boundary. Within each group,

we can pick any one-dimensional curve segment g crossing each streamline in the group once (for example,

g might be a segment of one of the streamlines in the orthogonal direction, or a boundary curve). We pick
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a smooth length function along g, respecting any length values already fixed at the endpoints because they

lie on separatrices. This fixes the length values all along the entire group of streamlines. The length values

are continuous at the separatrices since they were continuous at g. All of the length values along all of the

segments g form an infinite one-dimensional set, parameterizing all the possible length assignments. □

Now that we have a globally-integrable size representation, we can finally explain the paradox encoun-

tered in Chapter 3, specifically Figure 3.29. We will refer to a similar, mirrored field in Figure 4.7 (right),

where chords seem to be narrowing when traveling in a counter-clockwise path. Along any of these counter-

clockwise cycles through the region, as τ shrinks, σ is growing, and vice-versa. The fact that the change

in σ or τ aligned with the direction of travel is not directly observable from the cross field itself, unlike the

change in σ or τ perpendicular to the direction of travel which can be approximated by the relative distance

of neighboring field lines, was an obstruction along the path to considering a two-component size function

to begin with.

4.9. Divergence of τ∇α

In this section we comment on the behavior of∇α on a cycle streamline. Let γ be a cycle streamline γ,

not a limit cycle, and let us use τ as the length function that is integrated along γ.

The flux of the vector field∇α across a cycle γ is∫
γ
∇α·(− sinα, cosα)ds

The usual physical intuition is that if α is the flow of some quantity as a function of time, the flux is the net

movement of the quantity across the curve γ per unit time.

OBSERVATION 4.9.1. If x > 0, we have (lnx)x = 1/x. So

∇ ln τ =
∇τ
τ

LEMMA 4.9.1.1. The flux of the vector field∇α is zero across any cycle streamline γ.
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PROOF. The proof of Theorem 4.8.1 showed that the function τ is smooth everywhere on cycle γ, and

thus, so long as τ > 0 everywhere, the function ln τ is also smooth everywhere on γ. So

0 =∫
γ
∇(ln τ)·(cosα, sinα)ds =∫

γ

∇τ
τ
·(cosα, sinα)ds =∫

γ
∇α·(− sinα, cosα)ds

□

If γ is a simple cycle, the flux is also the right-hand side of Gauss’s divergence theorem:∫ ∫
interior γ

∇ · ∇αdA =

∫
γ
∇α·(− sinα, cosα)ds

That gives us:

OBSERVATION 4.9.2. Let γ be a simple cycle streamline. The total divergence of the vector field∇α in

the region bounded by γ must be zero.

This tells us, on the one hand, that simple cycles only appear in quite special cross fields, since in general

the divergence of ∇α at an arbitrary point is not zero. The situation in which ∇ · ∇α is everywhere zero is

the useful case in which α is everywhere locally harmonic.

On the other hand, since divergence can be positive or negative, the total divergence of∇α in the interior

of a cycle streamline γ may be zero without∇ · ∇α = 0 at any point in the interior.
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4.10. Definition of anisotropy

For non-harmonic α, we need a functional that we can optimize to choose among the valid values of

σ, τ . In this section we consider minimizing the anisotropy A. We can optimize it as follows:

min
σ,τ

∫
R
A(x, y)dA

s.t.

−(σy) cosα− σ αy sinα = −(σx) sinα+ σ αx cosα

(τy) sinα− τ αy cosα = −(τx) cosα− τ αx sinα

 in R,

∫
R
(σ2 + τ2)dA = 1

Making σ2 + τ2 integrate to one over the whole region keeps them from going to zero.

There are many ways we could define the anisotropy function A. We use:

A =
[σ
τ
+
τ

σ
− 2

]2k
(4.7)

The exponent k ≥ 1 is an integer. Raising the anisotropy to an even power ensures it is positive, although

the constant offset −2 sufficiently penalizes negative aspect ratios that we do not see negative σ or τ in

practice. The greater k, the more it penalizes the maximum anisotropy over R. Subtracting two from the

sum of the two ratios gives an energy function that equals zero for isotropic size functions.

4.11. Discretization, optimization and visualization

In order to perform the optimization, we first select a sparse set L of streamlines to represent the cross

field. For each ℓ ∈ L, we arbitrarily set σ(p) for some point in ℓ, which determines the σ values along the

streamline, based on Equation 4.3. We then define a scalar multiplier for each streamline ℓ, which changes

all of its σ values simultaneously. Each intersection between two streamlines in L is a point where both σ

and τ are defined. We evaluate the function A from Equation 4.7 at each of these points.

Minimizing the anisotropy measure is achieved through an iterative process. We resize σ along each

streamline ℓ ∈ L in turn so as to minimize the sum of the anisotropy measures of all intersections involving

ℓ. If a pass through all streamlines yields no improvement, or an improvement below a given threshold, the

optimization is complete. Since the total sum of the anisotropy measures at all intersections is reduced at

each step, this process terminates.
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To select the lines in L, we start with a subset T of streamlines that captures the topology of X . These

may be the separatrices (as in Figure 4.1) or they may be regular streamlines (as in Figure 4.10). Along

the streamlines in T , we select orthogonal streamlines to include in L until every point on a line in T is

sufficiently close to a streamline of L. We do not use separatrices in L as growth of ∇α near singularities

makes robust size estimation difficult.

As a check, we find that this algorithm behaves well on conformal cross fields, even though we do not

use Equations 4.5 and 4.6. The conformal cross field in Figure 4.7 (left) exhibits a worst-element anisotropy

of 1 : 1.0033.

We visualize anisotropy in two ways. In low-anisotropy cases, we draw an orange rectangle centered at

every intersection point p of two lines in L, reflecting the aspect ratio and sizes given by σ(p), τ(p). One

might expect that there is some scale factor that would grow all of the squares to nicely “collide” with their

neighbors, creating a rough approximation of a mesh; this is not true because L is chosen before we find σ

and τ . When anisotropy is very large, we visualize it instead using a color scale as in Figure 4.10. There, σ

and τ are interpolated over the region, and a per-pixel anisotropy is calculated (except for near singularities

along the wing surface where the singularity is not fully enclosed by representative streamlines).

4.12. Removable limit cycles

Simple limit cycles appear in vector fields as well as cross fields and are studied in dynamical systems.

There are two kinds of limit cycles, stable and unstable. Unstable limit cycles do not cause much trouble;

they disappear under small smooth perturbations of α, while stable limit cycles persist. A stable limit cycle

γ is one in which, as we traverse γ, the nearby streamlines on either side either all approach or all move

away from γ (depending on our direction of travel on γ). See Figure 4.9.

Some limit cycles in cross fields are forced by the topology, for example, the torus with one singular

point of valence 3 and one of valence 5 must have a limit cycle which is also a fundamental cycle of the

torus; this is why it cannot be meshed. But limit cycles may also appear where they are not forced.

As we see in Figure 4.9, a stable simple limit cycle γ in a planar cross field can be removed by replacing

a small neighborhood around γ, without adding new singular points. Before removal, on one side of γ, one

set of streamlines cycles in towards γ and the other set crosses γ, and similarly on the other side. To remove

γ, we smoothly add a twist of π/2 to α in the neighborhood of γ, so that each streamline spiraling into the
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FIGURE 4.9. A simple stable limit cycle (left) can be smoothly replaced with a region
within which a twist of π/2 swaps the two sets of streamlines (right). The streamlines
away from the cycle remain unchanged, and the region in which the swap occurs can be
made arbitrarily thin. An exaggerated∇α vector (yellow) has been drawn on top of the left
image, along with the components tangential (green) and normal (red) to the limit cycle;
limit cycles are distinguished by the nonzero normal component (and hence have a non-
zero net flux of∇α.)

neighborhood is connected to a streamline crossing γ, and visa versa. Since we need two sets of streamlines,

this trick does not work on vector fields.

4.13. Results

The cross field in Figure 4.1 is the upper-right portion of a cross field computed using the adaptation

of [KCPS13] described in Chapter 3; it was given initial conditions requiring small isotropic elements over

a region in the center and large isotropic elements on the outside, as in Section 3.4.2.

In Figure 4.10, we show a cross field generated from a two-dimensional simulation of airflow over

a wing, NACA Airfoil 8650 from [SQB21]. The original flow vector field had more than one hundred

singularities. We created a cross field by adding the orthogonal direction at each point and then smoothed it.

This reduced the number of singularities and had the additional benefit of removing two ellipse-shaped limit

cycles corresponding to vortices in the fluid flow. Each limit cycle was replaced by a pair of valence-three

singularities surrounded by a lens-shaped region with less total curvature. The central part of the image has

very low anisotropy as the vertical path lines can be freely adjusted to match the horizontal path lines. The

left side of the image has slightly more anisotropy as those collisions represent streamlines that form cycles
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around the entire wing. The turbulent airflow to the right of the wing creates extreme anisotropies as areas

of high rotation in the field require tiny chord widths. The propagation of these extreme anisotropies away

from the turbulent region could be fixed by adding more singularities as we move into the non-turbulent

region.

In the following examples, we look at the minimum-anisotropy size function compatible with a cross

field that was generated from a size function as described in Chapter 3. Given the target size function s from

which the cross field was derived, the accuracy at any given pixel is the ratio of the computed size function
√
στ and the target size s. In the images, blue represents the fact that the size function

√
στ is smaller than

the target size function s, and red indicates that it’s larger, both getting darker as the ratio gets more extreme.

In Figure 4.11 we see the anisotropy for the Sacramento Valley dataset. It exhibits the same field-aligned

streaks as the airfoil dataset, where singularities induce high anisotropy which propagate along the nearby

streamlines. Unlike the CFD simulations that would be performed on the airfoil dataset, where a large

volume around the wing is necessary for the simulation and thus adding additional singularities can serve to

limit the anisotropy in important regions of the mesh, the exterior anisotropy here is not a concern because

it’s going to be trimmed anyway, as discussed in Chapter 2.

4.14. Discussion

The main theoretical limitation of this work is that it only applies to bounded regions in the plane.

The interesting case of a cross field where all streamlines have finite length on a two-dimensional surface

embedded in R3 is much more structured. The separatrices all begin and end at singular points, and all

other streamlines must be cycles. Observation 4.8.2 does not hold. Might there be a cycle of separatrices

for which there is no set of lengths obeying Equations 4.3 and 4.4 and Observation 4.6.1? In [CZK+19],

they use a version of the “tiny bricks” argument to establish that we can consistently assign two length

functions at every point away from the separatrices, but it is not clear that these length functions can or must

be continuous at the separatrices or singular points.

A particular quirk of our cross-field generation process, the focus of Chapter 3, is that each of our cross

fields X(α0) are produced in such a way that the cross field X(α) = X(α0 + ϕ) is also a valid solution,

for any constant value ϕ, which we call the phase of the field. While the content in this chapter focuses

on the analysis of fixed cross fields, the key factor in computing σ and τ is ∇α, which does not change

with a change in phase ϕ. However, a change in phase ϕ does change the resulting field lines, changing
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the connectivity of the surface and thus the resulting optimal size function, except, again, in the case of a

harmonic α which allows an isotropic size function σ=τ . Figure 4.12 shows the relative size of
√
στ versus

the desired size function s, for two different phases α1 = α0 +
π
4 . While largely similar, the extreme values

in both directions are larger in magnitude for the right image, and there are regions throughout that are too

large in one and too small in the other. While we expect the results of any two phases to generally agree,

changing the connectivity over which σ and τ are optimized can have a large impact on the resulting size

function’s accuracy and anisotropy. We cannot yet offer intuition on how to select an optimal ϕ, as we have

not observed a useful correlation between ϕ and e.g. size accuracy.

4.14.1. Implementation Caveats. Forward Euler integration has been used here for tracing stream-

lines, with a fixed step size s, and for improved accuracy the paths are oversampled: for every point saved

along a field line, k steps of length s/k are taken, with the intermediate points discarded.

Just as the streamlines themselves are approximated by this integrated polyline, calculating σ and τ

depends on the integral of∇α, which is assumed to be constant over each segment of the polyline. Unfortu-

nately, this leads to a significant loss of accuracy near singularities. It is not necessarily a problem of sample

density, but of bias; as a streamline passes a singularity, if there is a bias towards the singularity on one side

and a bias away on the other, the computed change in σ on one side of the singularity will not match the

opposing change in the other. Let us consider a simpler problem that exhibits the same behavior: summing

over the range ±10 of an odd function with a 10% bias:

sum ( a t a n ( i *0 .01 ) f o r i in range ( − 1000 , 1 0 0 1 ) ) → −3.7214675785435247 e −13

sum ( a t a n ( i *0 .01 − 1e −3) f o r i in range ( − 1000 , 1 0 0 1 ) ) → −0.2942354325191827

sum ( a t a n ( i *0 .001 ) f o r i in range ( −10000 ,10001) ) → −1.425082274408851 e −12

sum ( a t a n ( i *0 .001 − 1e −4) f o r i in range ( −10000 ,10001) ) → −0.2942265249199314

As demonstrated in the last two lines, this disparity is not eliminated by finer sampling; finer sam-

pling can reduce the bias observed between some pair of approaching and receding sample points, but also

increases the number of sample points taken, so it may even increase the integrated bias!

However, ∇α does not necessarily need to be approximated in this manner; if α is stored as a scalar

value at the vertices of a background triangle mesh, and linearly interpolated over the triangles, ∇α is

constant over every triangle in the background mesh. Then it is a matter of ensuring that the streamlines are

properly discretized along triangle boundaries. Unfortunately, this representation does not work for singular

triangles, which is where it is most needed, because barycentric interpolation of scalar angles cannot be
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performed over a singular triangle; there is no consistent assignment of angles at the three vertices such that

barycentric interpolation correctly follows the correct interpolation along all three edges.

We propose a workaround: force ∇σ = ∇τ = 0 within some distance of every singularity. It is

important to keep these regions centered on the singularities to avoid recreating the same bias-induced

errors. Values of σ and τ are not likely to be particularly reliable near a singularity anyway as∇α→∞, so

the loss of utility in having the values of σ and τ clamped near singularities is minor. On the other hand, it

does mean that the influence from distant singularities is incorrectly clamped to zero, suggesting that these

regions should be kept as small as possible.

As we have not implemented this proposed fix yet, we instead tried to minimize the effect of the sin-

gularities by discarding any representative streamline that gets too close to a singularity. This became a

balancing act; too small a buffer zone results in larger errors in integrating ∇σ, and too large a buffer zone

means there are large gaps in the mesh that we use to compute anisotropy. This can be seen in Figure 4.14,

where the areas of worst anisotropy (Figure 4.13) do not have sufficient coverage in both directions by the

representative field lines.
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x1 : 1 2 : 1
x 200 : 1

x
FIGURE 4.10. Airflow over an airfoil, with prominent trailing vortices. We start with a
cross field that is aligned with the airflow around the wing (top); the background LIC is
colored to match field direction to highlight singularities. Next, representative streamlines
(top image, white) are traced, with some cells having more or less than four sides due to
contained singularities. We optimize for a minimal-anisotropy configuration on the rep-
resentatives, and we visualize the anisotropy by interpolating colors (bottom). The most
extreme aspect ratio is 192:1.
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x x0.2× x0.5× x1× 2×
x 5×

x
FIGURE 4.11. Anisotropy and size accuracy of the Sacramento Valley dataset from Sec-
tion 3.4.3, with the area outside of the original boundary darkened.
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x0.2× x0.5× x1× 2×
x 5×

x
FIGURE 4.12. Accuracy of the produced size function of two different phases of the Sacra-
mento Valley dataset. The relative accuracy across the regions differs due to the difference
in phase changing the connectivity of the motorcycle graph and thus the paths that stream-
lines take through the region, demonstrating that the growth we achieve in our derived size
functions (and later, meshes) is dependent on phase.
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FIGURE 4.13. Anisotropy (left) and relative size (right) of the high-growth synthetic
dataset from Section 3.4.2, both with the same phase. The worst anisotropy is 38.8:1, and
the size ratios range from 11.5× too small to 12.2× too large. Overall, the cross field fell
slightly short of the target 50× growth rate.

117



FIGURE 4.14. Representative streamlines used in the high-growth synthetic dataset. Re-
gions of high compression, easily seen in Figure 4.13 as extreme anisotropy regions (nearly
black) along the middle of each side of that image, are undersampled here because we avoid
streamlines that come too close to singularities.
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CHAPTER 5

Mesh Extraction from Cross Fields

Using the process in Chapter 3, we are able to create direction fields from size functions, and in this

chapter we describe a process to extract a quad mesh from the direction field. Our approach is based on

Quantized Global Parameterization [CBK15] by Campen, Bommes, and Kobbelt, which parameterizes the

space into field-aligned tiles, which we can then quadrangulate as Coons patches [Coo67]. The resulting

meshes can be used as the interior meshes for the approach in Chapter 2.

5.0.1. Quad Meshes and 4-RoSy Direction Fields. There is a strong relationship between 4-RoSy

direction fields and quad meshes.

An analog of the direction field itself can be derived from an all-quad mesh. Within any quad, the

two pairs of opposing edges form two axes, progress along which are the two parameters when performing

bilinear interpolation over the quad. Progressing in either direction along both axes produces four directions,

but these will not be properly orthogonal unless the quad has all right angles; the opposing directions will still

be colinear, but the two pairs will be skewed in relation to each other. Sections 3.1 and 3.2 of [BLH+17]

describe a method where this skew can be eliminated to produce a 4-RoSy direction field with the only

discontinuities in the field at irregular vertices. These discontinuities are singularities in the direction field,

with degree matching the valence of the source irregular vertex.

In this chapter, we explore this relationship in the other direction. Given a 4-RoSy direction field, find

the corresponding quad mesh. This is a discretization, with denser samplings providing more accurate

representations, which we must balance against the size function we are targeting.

5.0.1.1. Chords. In a quad mesh, a chord is a series of quads connected end-to-end, such that each pair

of neighboring quads share an edge and that only opposite edges in any given quad are used this way. In

regions with no boundary, such as manifold surfaces, tracing out a chord inevitably lands back at the starting

quad (facing the same direction), forming a loop, although the path may cross itself several times along the

way. In bounded regions, chords may form loops or may begin and end at the region boundary.
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Recall from Section 3.1.8 that two field lines are parallel if they travel in the same direction (in other

words, both paths are isolines of u or both paths are isolines of v in some logical (u, v) coordinate space)

and there are no singularities between them. In a direction field, we say that a chord is any region bounded

by two parallel field lines. The two sets of edges forming the boundary of a chord of quads is very similar

to the field lines bounding a chord in the field, as both represent a continuous ribbon.

A special case arises when the field line bounding a chord is a separatrix. The originating singularity for

the separatrix lies on the boundary of the chord, and another of that singularity’s separatrices will continue

the chord boundary. In a case where both ends of a separatrix terminate at singularities, there will be multiple

singularities on the same chord boundary. During the meshing process, these separatrices will be discretized,

and those edges will become the boundaries of chords of quads in the resulting mesh.

Because a chord of quads traverses the entire region, either by ending at boundaries or forming closed

loops, it can be removed topologically from a mesh: it can be collapsed by merging the two opposed non-

shared edges in each quad, turning the chord of quads into a chain of edges connected end-to-end. This is

a simple operation topologically and does not introduce any additional singularities. In fact, as this process

causes vertices to be merged, it may actually remove singularities from the mesh, by merging two singular

vertices together. The opposite operation is a split, where a chain of edges is expanded into a chord, or

alternately where a chord is bisected into two chords by adding a new chain of edges down the center.

Starting with a complete mesh, repeatedly selecting and removing chords will eventually result in the

entire mesh being collapsed down to a single vertex. In Section 5.1, we discuss the meshing technique

described in [CBK15] which essentially reverses this process: we produce a mesh by starting with the

motorcycle graph collapsed down to a single vertex and iteratively select edge paths through the mesh to

expand into chords.

5.0.1.2. Simple Tiles. Both the separatrix graph (Section 3.1.8) and the motorcycle

graph (Section 3.1.9 [EGKT08]) trace out separatrices in a direction field to form logically rectangular

regions that are free from interior singularities. The motorcycle graph reduces the complexity of the result-

ing decomposition by allowing T-junctions in the graph and terminating separatrices when they intersect an

existing separatrix, limiting the extent over which separatrices are active.

DEFINITION 5.0.1 (Simple Tile). A simple tile is a region bounded on all sides by field lines, with no

singularities in the interior of the region.
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In our case of using cross fields, simple tiles are logically rectangular; they are bounded by four field

lines. Technically, a simple tile may be an annulus, where two opposite bounds of the region are along

the same field line, but in practice there would be an enclosed singularity whose separatrices would cut the

annulus into a rectangular region, so we will assume that all simple tiles are logically rectangles. In the

separatrix graph, where the separatrices are split into segments where they collide, each tile is bounded by

exactly four edges. The T-junctions introduced by the motorcycle graph allow an arbitrary number of edges

along each face of a tile, although those edges are all segments of the four bounding field lines.

These tiles are referred to as structured submeshes in [EGKT08] because the it will typically be meshed

as a structured N ×M grid of quads. A structured grid is one in which the regular structure is exploited

so that connectivity does not have to be explicitly represented or stored. We do not take advantage of the

structured nature of the resulting quads and in fact violate this regularity in Section 5.1.4.

There is a natural connection between the simple tiles in a separatrix graph and chords; field-based

meshing techniques typically use field lines as the basis for subdividing the region into quads to begin with,

with each tile subdivided into anM×N grid of quads. Each tile encloses two orthogonal sets of parallel field

lines that take the same path through the mesh, that will eventually become a sequence of quads forming a

chord.

5.0.2. Arbitrarily-Dense Subdivisions. The separatrix graph provides a subdivision of the domain

into simple tiles such that every tile is covered by either two distinct orthogonal chords or one chord that

self-intersects orthogonally. Any chord may be further subdivided by selecting a field line interior to the

chord and splitting along it, forming two new chords that together cover the same area as the original.

Consider an ε-subdivision to be a repeated refinement such that every chord always has width less than

some sufficiently-small ε. This subdivision produces small area elements that are each bordered by four

field lines, with area less than ε2. As ε approaches 0, the area elements shrink in size, and the curved

segments of the bordering field lines are better approximated by straight lines. Except for the area elements

immediately adjacent to a singularity, where colliding field lines are not perfectly orthogonal, as ε → 0

these area elements eventually result in rectangular cells of infinitesimal area.

121



FIGURE 5.1. Three different subdivisions of the complex map z 7→ z
1/4

A perfectly isotropic ε-subdivision would be one where all area elements (except those incident to a

singularity) approach squares. While ε serves as an upper bound on cell size, the relative sizes of the area

elements then yields a metric that varies across the region; each pair of neighboring area elements are both

part of the same chord, so their relative sizes correctly reflect the divergence of field lines. An example of

an isotropic subdivision is shown in Figure 5.1.

Any complex analytic function gives an example of the isotropic case, where the resulting size function

is isotropic as described in Chapter 4. Thus, when the direction field φ is harmonic, defined as ∆φ = 0,

there is a compatible isotropic size function.

5.0.3. Anisotropy. While we have a rigorous definition of anisotropy in a cross field from Chapter 4,

here we will look at anisotropy of quads as the result of iteratively subdividing chords. This serves as an

introduction to the iterative process of Quantized Global Parameterization that will follow.

In general, ε-subdivisions of cross fields of planar regions do not produce square elements. This

anisotropy is measurable as the aspect ratios of the area elements, as they deviate from being perfectly

square. This anisotropy comes from two possible sources, the subdivision process and the direction field it-

self. Chapter 4 discussed the anisotropy inherent in the direction field; here we will focus on the subdivision

process.

The choice of how to subdivide each chord in the separatrix graph to restrict its width to below ε

determines the widths of the resulting chords, and the aspect ratio of each element is determined by the

width of the two chords that overlap it. While Section 4.10 considered anisotropy in a continuous sense,

here we deal with anisotropy in a very discrete sense: given a simple tile, what N ×M subdivision gives

the most isotropic set of quads?
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FIGURE 5.2. A potential subdivision of a self-intersecting chord

As we saw in Chapter 4, there are some regions where the direction field itself determines the aspect

ratio over some simple tiles. Consider a tile where a chord intersects itself, as shown in Figure 5.2. The

diagonal is comprised of all of the points where some field line within the chord self-intersects. For all of

the infinitesimal quads produced along the diagonal, no choice of subdivision can affect one dimension of

each quad without having an identical effect on the other dimension. Furthermore, if there is growth along

any of these subdivided chords, meaning that the field lines enclosing the chord converge or diverge over

the course of the loop, that enforces a fixed aspect ratio for each quad along the diagonal. As ε approaches

zero, it becomes clear that for each point p on the diagonal, the aspect ratio at p is determined entirely by

the growth along its corresponding field line, which is independent of any subdivision process; the aspect

ratio of any non-infinitesimal quad along the diagonal is the integral of the aspect ratios for all of the points

along the diagonal. The refinement process is effectively only choosing the intervals along the diagonal

from which chords are extruded and cannot influence the aspect ratios further.

Most tiles are not covered by a single self-intersecting chord but instead by two independent chords,

which will be subdivided independently. The subdivision process itself is not a discretization of a 2D region

into smaller 2D regions but a discretization of 1D regions (any arbitrary width across each chord) that are

extruded along the cords, the pairwise product of which yields the subdivision of each tile in the separatrix

graph, covering the entire domain. The resulting aspect ratios of the quads within each subdivided tile are

simply a function of how the two intersecting chords are individually subdivided.
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5.0.4. Increasingly-Sparse Subdivisions. As we will see in Section 5.1.7, one of the challenges in

meshing is that larger elements are inherently harder to produce, as smaller elements allow for more degrees

of freedom. While an infinitesimal subdivision is a useful theoretical construct, it is not the end goal; in

general, we want as few (and thus, as large) elements as possible meeting the quality constraints we have.

Not only is an ε-subdivision too fine, but the separatrix graph from which it was generated is also very

likely to be too fine. If a very aggressive change in growth is requested, this will induce many singularities

and in turn may even cause the motorcycle graph to be too fine a subdivision; this is a failure case that

we will not consider here. This highlights an inherent conflict when trying to have large elements: a more

aggressive growth rate requires more singularities, but a higher singularity count will increase the number

of separatrices, decreasing the size of the simple tiles in the motorcycle graph, limiting the size of the largest

elements.

While the bulk of this chapter consists of a process for extracting a quad mesh from a motorcycle graph,

the important intuition is that the motorcycle graph intentionally removes parts of separatrices far from their

originating singularity.

5.0.5. Separatrix Graph Techniques. The separatrix graph is a natural starting point for generating

all-quad meshes. Each simple tile within the separatrix graph can be subdivided along both axes to form a

grid of simple tiles, with the number of subdivisions of each chord allowing some control over final element

size. In order to prevent T-junctions in the final mesh, neighboring tiles within the separatrix graph must have

the same number of subdivisions along the separatrix segment separating them, setting up an integer system

of equations as seen in [FAR15]. This integer solve is necessary because any given separatrix segment might

have an ideal number of subdivisions based on the local metric given by the input sizing function, which

may not perfectly match the number of subdivisions on corresponding segments elsewhere, none of which

are likely to be integer values. Using a global solve is one way to find a set of integer subdivision counts

that best respects each segment’s local desired subdivision count while maintaining global consistency.

[FAR15] also employ templated subdivisions, some of which add new singularities in order to allow

regions to have different numbers of subdivisions along opposite sides. We will revisit this concept in

Section 5.1.4.

5.0.5.1. The Motorcycle Graph. [FAR15] enumerates several problems arising from using the separatrix

graph, noting that there are regions that can be arbitrarily small (along one or both axes), that separatrices

are not guaranteed to end at a boundary, and, as mentioned earlier, that the locally-optimal number of

124



subdivisions across a chord may differ significantly along its length. They suggest using the motorcycle

graph as a means of reducing region count. While they do not directly mention limit cycles, they give

consideration to the nautilus, a specific configuration which arises in the motorcycle graph in the presence

of a limit cycle, which we address in Section 5.1.4.

Instead of performing one global solve to determine the optimal number of subdivisions along each

separatrix segment, [CBK15] uses an iterative approach that progressively improves the mesh, which we

will discuss in depth shortly. The most striking benefit is that the mesh implied by the current number of

subdivisions across each edge is always valid. Degenerate scenarios, such as non-simple tiles with more

or less than 4 bounding field lines (which must therefore contain singularities that are not in the separatrix

graph), are collapsed to a point, ensuring every simple tile remains in a meshable state.

While not directly mentioned in [FAR15] or [CBK15], the T-junctions along region boundaries in the

motorcycle graph can alleviate some of the issue with chains of regions disagreeing about subdivision count.

Chords in the separatrix graph are bounded by parallel separatrices, so each perpendicular separatrix they

cross represents an opportunity to terminate the progress of the separatrices and chords. With shorter chords,

there is less opportunity for divergence in the desired subdivision count.

5.1. QGP: Quantized Global Parameterization

The Motorcycle Graph construction was described in Sec 3.1.9. The following process is based on the

approach of Quantized Global Parameterization [CBK15] for computing a meshable subdivision of the mo-

torcycle graph into simple tiles. To complete our quad-meshing algorithm, we use Coons patches [Coo67] to

mesh the simple tiles according to the computed subdivisions, and extend the QGP approach with additional

singularity placement similar to [FAR15].

5.1.1. Initialization. The goal is to assign a subdivision count si for every edge ei in the Motorcycle

Graph, where these edges are the separatrix segments bounding the regions.

In a separatrix graph, requiring every simple tile be subdivided into a simple grid results in a constraint

that s0 = s2 and s1 = s3, for some region r bounded by edges e0, e1, e2, and e3. In a motorcycle graph,

each side (e.g. r0) of the simple tile may be composed of several edges, so the constraint becomes:

∑
ei∈r0

si =
∑
ej∈r2

sj (5.1)
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with a similar constraint for the remaining sides r1 and r3. This ensures that each region may be subdivided

with quads without adding any further singularities to the mesh. The condition si ≥ 0 prevents degenerate

topologies; si = 0 means that edge is collapsed, which is valid, but a negative number of subdivisions is

not.

Every edge ei has an ideal real-valued subdivision count ŝi =
∫
ei

dx
σ . This would be |ei|

σ if the size

function was constant over the edge. [CBK15] define the following energy function:

∑
ei

(
si
ŝi
− 1

)2

The goal then becomes to minimize the difference between the actual and ideal subdivision count for each

edge. Here, σ is the isotropic size function that was used to generate the cross field, but an optimized σ

such as the minimum-anisotropy fields from Chapter 4 could be used as well, although optimizing toward

an isotropic size function naturally reduces anisotropy.

We start with the initial condition si = 0 ∀i. This configuration represents all vertices, singularities or

otherwise, collapsed down to a single vertex.
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FIGURE 5.3. Three potential ways to preserve the region constraint when increasing the
number of subdivisions along an edge.

5.1.2. Iteration. In order to improve the mesh (and lower the energy metric), we must modify the

number of subdivisions si along some edge ei to be closer to its goal ŝi. Ensuring that si ≥ 0 is straight-

forward, but preserving Equation 5.1 is more involved. As seen in Figure 5.3, increasing some si requires

either increasing some sj along the opposite side of the region, or decreasing some sk along the same

side of the region. That change to sj or sk will, in turn, require further changes, until either reaching

the boundary of the motorcycle graph or returning to the origin edge ei. This turns into a search process,

finding an augmenting path, either a loop or a perimeter-to-perimeter path, that results in the largest drop
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to the energy function, starting with the selected edge ei. All edges are tested, and the edge with the most-

beneficial augmenting path is selected and the changes to all subdivision counts si along the path are updated

accordingly. This continues until no edge can produce a beneficial augmenting path.

5.1.3. Region Subdivision. Once the iteration has completed, we are left with an integer for every edge

in the motorcycle graph, representing the number of chords that will cross that edge. Each simple tile of the

motorcycle graph needs to be subdivided accordingly, to generate the final mesh. However, the perimeters

of these simple tiles are arbitrary field lines; while logically rectangular, they can have significant curvature,

as in Figure 5.4 where the tile is bent such that opposite sides are bounded by the same field line! This does

not require special handling; it just means that one edge can appear on two sides of the same simple tile.

In order to facilitate the process of meshing each rectangular region, we treat each region as a Coons

Patch. This defines a (u, v) parameterization over the patch from the boundary curves, with both u, v ∈

[0, 1], and the curves themselves having fixed u or v values of 0 or 1 [Coo67]. This allows us to take points

and lines in the u, v space where each region is an axis-aligned rectangle, and map them to points and curves

in the x, y space of what will be the mesh.

In particular, we use bilinear Coons patches, so the blending functions F0 and F1 used in [Coo67] are

simply linear interpolation. We start with the four boundary curves Ci all with counterclockwise winding,

such that Ci(u) is the point at distance u|Ci| along curve Ci, and C0 is the bottom curve with coordinates

(u, 0). The (x,y) coordinates for any point on the patch are derived from three different interpolants: the

point linearly interpolated between the points with progress u along the top and bottom curves from the left,

added to the point linearly interpolated between the points with progress v along the left and right curves

from the bottom, minus the point bilinearly interpolated between the four corners where the curves meet.

P (u, v) = lerp(v,C0(u), C2(1− u))

+ lerp(u,C3(1− v), C1(v))

− lerp(v, lerp(u,C0(0), C0(1)),

lerp(u,C2(1), C2(0)))

(5.2)

It is not as simple as tracing axis-aligned paths in (u, v) to separate the region into quads because the

subdivisions along each edge are not necessarily aligned with each other; for example, none of the lines

separating left-to-right chords in Figure 5.3 are perfectly horizontal. So, for a horizontal path from (0, v0)
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to (1, v1), the curve traces the path f(u) = (u, lerp(u, v0, v1)). These are precisely the paths seen in logical

(u, v) space in Figure 5.3. As a result, the edges of our mesh are not field lines and do not necessarily meet

at right angles.

5.1.4. Additional Singularities and the Nautilus. Inspired by the approach of [FAR15], we can relax

the restriction that opposite faces of each rectangular region must have the same number of chords. This

requires adding extra singularities to each region; adding two singularities, one of valence-3 and one of

valence-5, preserves the neutral holonomy of the tile while allowing us to redirect a chord in a direction

of our choice. This must be done with care, so we add a penalty to each chord redirected in this way, to

bias the meshing to prefer chords that travel straight through each rectangular region, and to encourage later

augmenting paths to eliminate these redirections wherever possible.

The nautilus is a case that poses a particular problem for this style of meshing and is the structure seen

in the motorcycle graph when the field contains a limit cycle (discussed in Section 4.12); it is shown in

Figure 5.4. The problem arises due to the chord restriction on the tiles, quantified by Equation 5.1, where

the nautilus forces the same edge to appear on two sides of the tile: r0 = e0 and r2 = e0, e1. This results in

the relationship s0 = s0 + s1, implying s1 = 0, resulting in all chords that impact edge e1 throughout the

rest of the mesh getting collapsed, which can cause a significant drop in element quality.

We instead relax Equation 5.1, allowing unequal subdivisions along opposite sides of the tile, as long as

the discrepancies between both pairs of sides have the same magnitude. The relative signs of the differences

determine the orientation of the placed singularity pairs; chords from the side of the vertical borders with

more subdivisions need to get redirected to the corresponding “denser” side of the horizontal borders (left

and top of Figure 5.4, respectively).
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FIGURE 5.4. Subdivisions of the nautilus in logical (u,v) coordinates (left) and physical
(x,y) coordinates (right). The extra singularities allow chords to be redirected, which would
otherwise require the collapse of the upper ridge and all incident chords.

The optimal placement of these extra singularities within the region remains an open problem, although

the combinatorial space grows quickly enough where we advise against a brute-force approach. As is ap-

parent in Figure 5.4, each valence-3 singularity stops a sequence of edges from reaching the opposite edge.

In this sense, each singularity has integer coordinates (i, j), and the coordinates of the singularities in Fig-

ure 5.4 were chosen to maximize the stride of the i and j sequences, spacing out the singularities within the

tile. The subdivisions are equally spaced along each tile edge, with singularity-free rows and columns sim-

ply directly connected across the tile, and the remaining rows and columns bisecting their nearest neighbors

and terminating at singularities.

5.1.5. Important Behavior.

5.1.5.1. Chord Drift. The invariant across simple tiles in the motorcycle graph is simply that the number

of chords entering one edge matches the number of chords leaving the opposite edge. The positioning and

width of these chords is not enforced; the resulting mappings do not follow field lines through the interior of

the region when the chords are connected, which results in skew in the resulting quads as seen in Figure 5.3.

In general, the denser the subdivision, the more the chords will naturally align, resulting in less skew; this
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can be seen in the two leftmost images in Figure 5.3, where the increase in perimeter subdivisions allows

the left-right subdivisions to be closer to horizontal, meaning the resulting edges will be closer to following

field lines.

5.1.5.2. Singularity Merging. As mentioned in Section 5.0.4, a large number of singularities simultane-

ously allows for a large change in size while hindering the largest achievable size for any individual quads.

In some circumstances, there may be singularities generated to induce growth that cannot be achieved due

to the density of the singularities nearby; looking at the direction field as an infinitely fine grid, the addition

of the singularities allows for the relative growth we are looking for, but when scaled up to match the target

size function, the mesh cannot admit quads of the growth induced by the singularities.

In these circumstances, it is helpful to merge singularities together. The restriction that [CBK15] adds

to prevent this behavior is due to a difference in context; their singularities are a result of a parameterization

process that reflects the surface topology and must be obeyed, while our singularities are all opportunities

for growth that may not be achievable.

When two singularities are merged, their indices, the difference from the field degree, are added together.

So, merging a valence-3 singularity with a valence-5 singularity, indices −1 and +1, respectively, results in

a non-singular point of index 0 and valence 4. Merging two valence-3 singularities results in a valence-2

singularity, which induces quads with an internal angle of π. This last degeneracy generally results in poor

performance of the simulations run on the mesh, so it is best to avoid merging singularities into valences of

two or less.

Even in cases where two singularities merge to form a regular non-singular vertex, the singularity is not

totally removed as the separatrices remain. While the separatrices represent a slice through the mesh that is

not required, resulting in smaller quads than would be otherwise possible, merging the singularities together

also merges the separatrices, collapsing the thin chord that would have separated the separatrices had the

singularities not been merged. The remaining separatrices may also be further merged with neighbors,

further reducing their cost.

5.1.6. Degenerate Tile Collapse. Any simple tile with no splits along any of its incident edges rep-

resents a configuration where all vertices in the region get merged into a single logical vertex. This is one

mechanism by which singularities are merged, but it also applies to cases where, for example, an excessively

large step size induced a turn along a separatrix in the motorcycle graph, resulting in an interior cell in the

graph with more (or less) than four incident edges. These degenerate cases are no longer simple tiles, as
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topologically they must contain a singularity even if there is no singularity in the field; the error in tracing

the boundary of the region means it has induced some amount of turn in the perimeter and has created a

virtual singularity in its interior. Even though the region itself is degenerate, it can be collapsed into a single

vertex, which allows a valid mesh to be constructed. The index of the resulting vertex will be the sum of the

indices of all points in the region, including the corners of the tile and the virtual singularity; while this most

typically happens in areas of abnormally high curvature near clusters of singularities, where the relative den-

sity of singularities makes for small simple tiles that can be collapsed without significantly reducing overall

mesh quality, if the simple tile is large, its collapse can have a drastic negative impact on the resulting mesh.

It is preferable to ensure these degenerate tiles do not get produced in the first place, typically via dense

sampling rates for streamlines, and oversampling, where the streamlines are densely sampled but only a

fraction of the samples are retained. There are performance penalties associated with both of these methods,

and they do not guarantee that any given motorcycle graph will be free of degenerate tiles. The motorcycle

graphs in Figure 5.5 have these degenerate tiles, and were successfully meshed as seen in Figure 5.6.

FIGURE 5.5. Series of motorcycle graphs for different phases of the same underlying field.
While simple tiles may be collapsed to allow for the generation of quads larger than any
single simple tile, larger simple tiles are less likely to need to be collapsed and are therefore
preferable to configurations that cover the same area with many smaller simple tiles.

131



FIGURE 5.6. The same motorcycle graph, meshed at 1×, 2×, 3×, and 4× densities, fol-
lowed by smoothed variants of the same meshes. Quad color indicates size accuracy

√
area/s

with respect to the target size function s.
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FIGURE 5.7. Quality measures for the different subdivision levels of the unsmoothed
meshes from Figure 5.6, with gray vertical lines highlighting extremal values. With in-
creasing subdivision levels, interior angles, skew, and relative size all drastically improve,
while anisotropy gets worse. Given that the meshing process is minimizing size error, the
anisotropy of increasing subdivision levels will converge to a distribution worse than the
continuous anisotropy calculated in Figure 4.13, which minimized anisotropy. Merged cells
have resulted in quads with almost 180◦ angles as well as extreme-valence singularities, and
both effects are diminished with increasing subdivision levels.

5.1.7. Scale Factor Comparison. The quantization of the region into a mesh is easier to accomplish

with smaller elements as illustrated in Figure 5.6. The same motorcycle graph was meshed at four different

scale factors, and the resulting quads were colored based on their size relative to the target size. The high-

density outer region is relatively easy to achieve, as demonstrated by all four scale factors having nearly

identical normalized element sizes. However, results vary in the interior region, with the densest mesh

exhibiting the highest growth rates. Due to the large number of singularities required to achieve this growth,

the less-refined examples have to more aggressively collapse chords, resulting in singularities with extreme

valence.

5.1.8. Results.

5.1.8.1. Synthetic Growth Case. We return to the high-growth synthetic example from Section 3.4.2.
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Figure 5.5 shows a series of motorcycle graphs for varying phases of the field. The structure of the

motorcycle graph is dependent on the phase of the cross field, as how the separatrices align with each other

determines the shapes of the simple tiles. The larger the tiles, the larger the quads that can be made without

collapsing nearby chords. The large central simple tile (as in the upper-right image) is strongly affected

by phase, with some phases causing it to shrink like a camera aperture until it is effectively collapsed and

the area is covered by four simple tiles instead. This has a significant impact on achievable growth rate.

This shows that searching for the best phase for a given mesh may be a valid, if computationally-expensive,

optimization strategy.

In Section 4.13, we computed the size function with minimal anisotropy for this dataset and found that

the compatible size function for the cross field did not admit the target growth rate, as seen in Figure 4.13.

While the original size function is used for the meshing process, we are unable to achieve the 50× ratio

between interior and exterior elements. Looking at the meshes in Figure 5.6, the outer perimeter elements

are all too large, with the innermost element ranging from too small to too large as the subdivision level

increases. With further subdivision, we expect that the size accuracy of the mesh elements to converge

toward the continuous size accuracy of Figure 4.13 in Section 4.13.

Figure 5.6 looks at different densities of the same phase, where the motorcycle graph is split according

to the size function s/k for 1 ≤ k ≤ 4. The aggressive target growth rate ends up forcing many simple

tiles to be collapsed, with large-degree singularities present in Figure 5.6, and extreme-degree singularities

shown in Figure 5.8.

FIGURE 5.8. While the meshes in Figure 5.6 successfully collapse simple tiles to form a
quad that is larger than any of the tiles individually (see Figure 5.5), the collapse of tiles can
lead to very high-degree singularities which would be unsuitable for simulation.
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(a) Input boundary (b) Target size function
(c) Extracted mesh

A

B

C

(d) Expected size accuracy

(e) Stitched result (f) Result with Laplacian Smoothing

FIGURE 5.9. The Sacramento Valley dataset.

5.1.8.2. Sacramento Valley. Figure 5.9 showcases our full pipeline using the Sacramento Valley dataset.

Starting with a polyline boundary that is often quite jagged, we derive a size function that increases into the

region based on the distance to the boundary and the edge length at the boundary. We use that size function

to produce a cross field which extends beyond the original boundary, as described in Chapter 3, which is

then meshed using the process outlined in this chapter. Quads from this mesh are carved away until the

resulting mesh fits within the original boundary, with a channel being formed between the boundary and the

interior mesh. This channel is meshed using the technique from Chapter 2. We also consider a smoothed

version of the resulting mesh.
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The final mesh does not exactly achieve the targeted growth rate, especially in the upper region of the

image. However, the open area in the lower portion of the mesh does achieve the desired growth, with the

largest elements actually exceeding the expected size. Once smoothed, the largest elements shrink down to

below the target size, but the quality of the quads is significantly improved.

The stitching process, while adding many singularities along the channel, is able to isolate the interior

regions from the chaotic boundaries; this is most evident along the lower portion of the right side of the

mesh, where the boundary is particularly jagged and transitions nicely to the interior mesh. This effect is

rather drastic in the smoothed mesh.

The size estimate in Figure 5.9d was for a minimally anisotropic configuration and is a reasonable

match for the size of the quads actually achieved in Figure 5.9e. A region where we expected quads to

exceeded the target size, marked A, were instead slightly smaller than the target size, potentially due to the

isotropy in the region as meshed not matching the minimally isotropic continuous solve. Region B correctly

estimates quads being smaller than the target size function, and Region C correctly estimates slightly larger

quads along the perimeter (although most of these will be replaced as the mesh is stitched to the perimeter)

followed by an area of undersized quads toward the interior before growing again.
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CHAPTER 6

Concluding Remarks

Our goal in this thesis was to construct all-quadrilateral, high-quality, low-singularity meshes that meet

the constraints imposed by groundwater flow simulations, in particular user size control and exact confor-

mance to highly irregular boundaries. We split this problem into phases, with each phase tackling a different

constraint, and demonstrate promising results with the resulting pipeline. In exploring the problem space,

we have encountered several interesting problems, and we have presented our solutions to many of them.

We would like to end with some of the problems that we have not fully solved.

6.1. Combinatorial Explosions in Channel Coverage

There are several different steps in the stitching process of Chapter 2 that needed to be artificially

bounded due to the combinatorial nature of the problems. In particular, the generation of patches to cover

the channel can rapidly grow out of control if the number of patches is not carefully constrained. We are

able to assume that the size of the quad edges in the interior mesh is close to the size of the perimeter edges

in the boundary because the interior meshes we generated were either fixed-size grids or meshes explicitly

built to match a size function. This allows us to limit the number of subdivisions across the chord naı̈vely,

simply considering candidate vertices within a fixed radius. A more general solution would likely be a

more incremental approach, starting with the most orthogonal edges across the channel and only searching

for additional candidates as the threshold for a completed circuit around the channel drops. This would be

necessary to support channels that varied in width, as opposed to the fixed-width channels we employ now.

A lazier approach to patch generation would likely dramatically improve performance. Currently,

patches along the channel are generated and ranked in batches, with relaxed constraints for each subse-

quent batch as the previous batches were unable to successfully cover the channel. When a batch of patches

fails to cover the channel, it is typically only in a few regions where the region boundary is poor and forces

the generation of patches with small angles. Relaxing the quality constraints to generate a new batch of

patches over the entire channel is likely to generate many unnecessary patches, as most of the channel is

already covered by high-quality patches. Integrating the patch generation along with the search process,
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generating and ranking patches on-demand, could allow the lower-quality patches to be generated only in

areas of low coverage where they are needed, instead of over the entire channel.

6.2. Singularity Placement

We based our work in Chapter 3 on Globally Optimal Direction Fields [KCPS13] due to their automatic

creation and placement of singularities based on curvature, in our case the curvature induced by the changing

metric. While the optimization performed by GODF is able to exactly match harmonic angle functions

(such as the conformal map used in Figure 4.7), most size functions will not be harmonic, including the size

functions we are using where distance grows from a region boundary. In these non-harmonic cases, there

will be disagreement between the target size function and the growth in the produced cross fields.

The GODF optimization process is looking for a small quantity of integer-valence singularities to pro-

duce a smooth cross field. Within these constraints, it produces a cross field that is in some sense optimally

close to having the growth prescribed in the target size function. Exactly how the result differs from the tar-

get size function is unconstrained, although in general the resulting cross fields tend to have less growth than

requested. So, it may be helpful to perform a second optimization step, tweaking the input parameters to see

if a solution to a similar problem may be more suitable than our initial result, such as by overestimating the

requested growth to find results that more closely match it (typically at the cost of a less smooth mesh with

more singularities).

We have already been performing this second layer of optimization, both directly, by testing against

multiple eased variants of the desired growth pattern and different growth rates, and indirectly, by changing

the background mesh, which changes the search space of the optimization process. Unfortunately, how this

set of inputs influences the accuracy of the produced cross fields is unclear, as the results of changing any

parameter tend to be erratic as seen in Figure 3.25. The intuition we have built up is that exponential growth

on an adaptive background mesh is a good first bet, offering consistent results, although one of the other

configurations will often better match the target growth.

While we have achieved good results, we have not been able to establish a link between these parameters

and the growth and anisotropy of the resulting cross fields. This is clearly a problem that needs to be explored

further.

The confusion around this problem first led us to look for a better way to quantify the growth expressed

in the resulting cross fields. In exploring this, we encountered the seemingly-impossible size functions with
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non-conservative gradients, due to the unexpected anisotropy in the results, which was the inspiration for

Chapter 4.

6.3. Sampling Accuracy of Streamlines

Chapters 4 and 5 both depend heavily on the accuracy of the streamlines, whether it is the paths them-

selves or values sampled and integrated along them. In discussing the field φ as being represented by some

angle function α, it is tempting to follow the same abstraction in the implementation by having the field be

some function of only position, with the software layers built on top oblivious to the representation below.

By abstracting away the triangles of the background mesh, critical information is lost. Instead of the

field being some function α that gets sampled at regular intervals to form polyline streamlines, the field

should instead produce line segments such that each segment is entirely contained by a single background

mesh triangle. The most important components of the streamline, specifically the integral of α to define the

path and the integral of ∇α to determine the growth, are entirely defined by the position and heading of the

streamline on entering the triangle and the position of and angles stored at the triangle vertices.

If the angle on the background mesh is a scalar angle, as we suggest in Section 4.14.1, ∇α is constant

over the triangle, making integration much easier. Even if the angles are represented as complex values,

as we use, the constant ∇α is still a very close approximation for non-singular triangles, and knowing the

bounds of the triangle can further help with integration by helping to eliminate the bias that comes with

integrating over these samples, also discussed in Section 4.14.1.

Furthermore, with a scalar-valued α, it is possible to represent the field over each non-singular triangle as

two potential functions whose gradients are orthogonal, where all streamlines over the triangle are isolines

in one of the two potentials. This representation would practically eliminate the issue of high curvature

causing streamlines with too large a sample interval to incorrectly snap to the orthogonal direction discussed

when we first introduced path tracing in Section 3.1.10. Unfortunately, handling singular triangles appears

to either require non-orthogonality of the direction field near a singularity or nontrivial remeshing around

singularities, so additional work is needed for this be a complete representation of cross fields.
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Graphics (TOG), 27(2):1–13, 2008.

[SA] L. Simons and N. Amenta. Anisotropy and cross fields. Computer Graphics Forum, n/a(n/a):e15132.

[SA17] Lance Simons and Nina Amenta. All-quad meshing for geographic data via templated boundary optimization. Pro-

cedia Engineering, 203:388–400, 2017. 26th International Meshing Roundtable, IMR26, 18-21 September 2017,

Barcelona, Spain.

[Say15] Francisco-Javier Sayas. A gentle introduction to the finite element method. https://team-pancho.github.

io/documents/anIntro2FEM_2015.pdf, 2015.

[Sch96] Robert Schneiders. A grid-based algorithm for the generation of hexahedral element meshes. Engineering with com-

puters, 12(3-4):168–177, 1996.

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In

Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering,

volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996. From the First

ACM Workshop on Applied Computational Geometry.

143

https://team-pancho.github.io/documents/anIntro2FEM_2015.pdf
https://team-pancho.github.io/documents/anIntro2FEM_2015.pdf


[She02] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Computational geom-

etry, 22(1-3):21–74, 2002.

[SQB21] Andrea Schillaci, Maurizio Quadrio, and Giacomo Boracchi. A database of CFD-computed flow fields around airfoils

for machine-learning applications, March 2021.

[SZC+22] Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis Zorin. Which cross fields

can be quadrangulated? global parameterization from prescribed holonomy signatures. ACM Transactions on Graph-

ics (TOG), 41(4):1–12, 2022.

[TPP+11] Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. Simple quad domains for field

aligned mesh parametrization. In Proceedings of the 2011 SIGGRAPH asia conference, pages 1–12, 2011.

[VCD+16] Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela

Ben-Chen. Directional field synthesis, design, and processing. Computer graphics forum, 35(2):545–572, 2016.
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and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,

17:261–272, 2020.

[VO19] Ryan Viertel and Braxton Osting. An approach to quad meshing based on harmonic cross-valued maps and the

Ginzburg–Landau theory. SIAM Journal on Scientific Computing, 41(1):A452–A479, 2019.

[VS17] Chaman Singh Verma and Krishnan Suresh. A robust combinatorial approach to reduce singularities in quadrilateral

meshes. Computer-Aided Design, 85:99–110, 2017.

[VT11] Chaman Singh Verma and Tim Tautges. Jaal: Engineering a high quality all-quadrilateral mesh generator. In Pro-

ceedings of the 20th International Meshing Roundtable, pages 511–530. Springer, 2011.

[WA95] Herbert F Wang and Mary P Anderson. Introduction to groundwater modeling: finite difference and finite element

methods. Academic Press, 1995.

144


	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Background Concepts
	1.2. Overview
	1.3. Prior Work in Quad Meshing
	1.4. Contributions

	Chapter 2. Perimeters and Constraints
	2.1. Introduction
	2.2. Construction
	2.3. Results

	Chapter 3. Size-Aware Cross Fields
	3.1. Cross Fields
	3.2. Size
	3.3. Globally Optimal Direction Fields
	3.4. Evaluation

	Chapter 4. Size Function Families from Cross Fields
	4.1. Introduction
	4.2. Related work
	4.3. Definitions
	4.4. Local parameterization
	4.5. Isotropic cross fields
	4.6. Singular points
	4.7. Integrating  and 
	4.8. Global consistency of  and 
	4.9. Divergence of 
	4.10. Definition of anisotropy
	4.11. Discretization, optimization and visualization
	4.12. Removable limit cycles
	4.13. Results
	4.14. Discussion

	Chapter 5. Mesh Extraction from Cross Fields
	5.1. QGP: Quantized Global Parameterization

	Chapter 6. Concluding Remarks
	6.1. Combinatorial Explosions in Channel Coverage
	6.2. Singularity Placement
	6.3. Sampling Accuracy of Streamlines

	Bibliography



