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Abstract

Single-Shot 3D Microscopy: Optics and Algorithms Co-Design

by

Fanglin Linda Liu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Laura Waller, Chair

Computational imaging involves simultaneously designing optical hardware and reconstruc-
tion software. Such a co-design framework brings together the best of both worlds for an
imaging system. The goal is to develop a high-speed, high-resolution, and large field-of-view
microscope that can detect 3D fluorescence signals from single image acquisition. To achieve
this goal, I propose a new method called Fourier DiffuserScope, a single-shot 3D fluorescent
microscope that uses a phase mask (i.e., a diffuser with random microlenses) in the Fourier
plane to encode 3D information, then computationally reconstructs the volume by solving a
sparsity-constrained inverse problem.

In this dissertation, I will discuss the design principles of the Fourier DiffuserScope from
three perspectives: first-principles optics, compressed sensing theory, and physics-based ma-
chine learning. First, in the heuristic design, the phase mask consists of randomly placed
microlenses with varying focal lengths; the random positions provide a larger field-of-view
compared to a conventional microlens array, and the diverse focal lengths improve the axial
depth range. I then build an experimental system that achieves < 3 µm lateral and 4 µm
axial resolution over a 1000×1000×280 µm3 volume. Lastly, we use a differentiable forward
model of Fourier DiffuserScope in conjunction with a differentiable reconstruction algorithm
to jointly optimize both the phase mask surface profile and the reconstruction parameters.
We validate our method in 2D and 3D single-shot imaging, where the optimized diffuser
demonstrates improved reconstruction quality compared to previous heuristic designs.
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Chapter 1

Introduction

1.1 Single-Shot 3D Imaging

Volumetric fluorescence imaging with video-rate capture at cellular resolution is essen-
tial for understanding dynamic 3D biological systems. To simultaneously monitor large
numbers of cells over time, imaging systems must record samples at tens-of-volumes per
second. Scanning-based volumetric microscopy techniques (e.g. wide-field, two-photon, con-
focal, light-sheet) rely on physically-moving components and sequentially acquiring images,
forcing a trade-off between temporal resolution and three-dimensional (3D) volume size.
Furthermore, spatio-temporal information can be ambiguous since the depth planes are not
captured at the same time. In comparison, single-shot 3D imaging techniques form an entire
3D object from a single acquisition, a promising strategy for achieving high speed imaging
over a large volume.

Single-shot 3D imaging with a 2D sensor is possible by using a hardware encoding proce-
dure followed by a computational decoding procedure. Light field microscopy (LFM) [1–8] is
one popular implementation of this, where a microlens array (MLA) is inserted in front of the
microscope’s image sensor to simultaneously capture 2D spatial and 2D angular information.
The resulting 4D light field can be used for digital refocusing, perspective synthesis, or 3D
reconstruction. However, using a 2D sensor to sample a 4D light field requires trading off
angular and spatial sampling, resulting in poor resolution. This is particularly undesirable
in microscopy, where resolution is the key performance metric.

Besides variations of LFM, there are other methods for single-shot 3D fluorescence mi-
croscopy.

Multifocal microscopy methods simultaneously capture multiple in-focus images at
different depths. This can be done by using beamsplitters and multiple cameras conjugate
to different depth planes [9]; however, the resulting system is expensive and bulky. To
acquire multiple depths with a single sensor, a distorted phase grating can be inserted in
the pupil plane to project different axial layers onto different sub-images on the sensor [10–
12]. A similar result can be achieved with superimposed Fresnel lenses [13] or a diffractive
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metalens [14]. For more than a few depth planes, multiplexed volume holography is a good
option due to its low cross-talk [15]. In all these methods, however, the FOV is sacrificed in
order to increase the number of depth planes (generally less than 25 [12]), limited by how
many sub-images fit on the sensor.

PSF engineering for point localization refers to methods that use a coded mask in
Fourier space but with the image captured in image (real) space. This results in a depth-
dependant PSF (e.g. astigmatic [16, 17], double-helix [18–20], tetrapod [21], etc.) that, along
with inverse algorithms, is well-suited to localize separated point-like molecules [16–19, 21],
but ill-posed when the object is continuous [20]. Because the Fourier DiffuserScope places
both the phase mask and the sensor near the Fourier plane, there is a much larger PSF in
which the energy is distributed into more features, so that the cross-correlation of laterally
and axially shifted PSFs is lower than that of engineered PSFs. As a result, the random
diffuser is better suited to reconstruct a 3D volume from an undersampled 2D measurement,
according to compressed sensing theory [22].

Lensless mask-based imaging, which uses a coded aperture for lens-free 2D [23] or
3D [24] imaging, first emerged in X-ray and gamma-ray systems [25, 26] for 2D imaging in
situations where lenses are difficult to implement. Amplitude coded masks are straightfor-
ward to design and easy to fabricate, but come with the inherent issue of blocking photons,
which leads to a low signal-to-noise ratio (SNR) in the acquisition and noise amplification
during reconstruction. Phase masks are more difficult to fabricate but have much better
light efficiency [27].

Diffuser-based microscopy describes several different architectures that emerged from
the original DiffuserCam [28], which is a lensless phase-mask-based imager that uses a dif-
fuser for encoding 3D information. The Computational Imaging Lab at UC Berkeley have
demonstrated 2D [29, 30], 3D [28, 29, 31, 32], and 4D light field imaging [33], flat [29]
and miniature microscopy [32]. The original diffuser was an off-the-shelf Gaussian pseudo-
random phase mask with 100% fill factor, placed directly in front of the sensor. However,
the resulting PSFs had substantial background light, which amplifies noise during deconvo-
lution. Moreover, these previous works are based on heuristic designs, lacking a theoretical
and numerical framework to design around relevant target system specifications like reso-
lution, depth of field, and field of view. This prevents such approaches from being broadly
useful as optical elements in compound system designs. Here, I use a designed diffuser made
of randomly-located microlenses to focus light into high-contrast random multi-focal spots,
providing good SNR across a large depth range, while maintaining the randomness of the
PSF. The system performance can be controlled and predicted based on the aperture and
focal length of the lenslets.

1.2 Computational Imaging System Design

Singe-shot 3D imaging aims to use optical elements to encode 3D information into a
2D measurement, then recovers the 3D information computationally. Methods can be bro-
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ken down into three main categories: surface depth recovery, source location recovery, and
voxelized intensity recovery.

Surface depth recovery solves a semantic segmentation problem by assigning depth
information to each pixel in an image. This problem attracts a lot of attention from the
self-driving automobile sector. Techniques such as LiDAR, radar, monocular, and stereo
images are widely used to achieve this goal [34–38].

Source location recovery’s primary application is to localize sparse fluorescence par-
ticles at a high resolution [17, 19, 39]. An estimation problem is solved to determine the
location of sub-diffraction-limited resolution point sources and reconstruct a point cloud.
There exist many numerical methods to solve the estimation problem ranging from maxi-
mum likelihood estimators [40, 41] to deep neural networks [42, 43].

Voxelized intensity recovery methods [5, 28, 29, 32, 44] assign an intensity at each
voxel in a 3D volume from a single 2D measurement, offering superior temporal resolution
over scanning-based methods. It is important to note that voxelized volume reconstruction
requires substantially more computer memory than depth maps and point clouds do. This
dissertation falls into this category.

For single-shot 3D imaging, many design methodologies have been used [5, 7, 19, 29,
32, 41, 43–57]. On one end of the continuum are heuristic designs based on first principles
[5, 19, 29, 44, 45]. In the middle are merit function driven design; for example, optimizing
for a specific imaging task based on a system’s point spread function’s (PSF) properties
such as minimizing the PSF’s off-axis auto-correlation and axial cross-coherence [32]. These
methods do not optimize based on the final volume produced by the pipeline [32, 40, 41].
Finally, on the far end of the continuum are end-to-end design methods. These methods
optimize directly on the output volume through the use a differentiable optical simulator in
conjunction with a differentiable reconstruction algorithm, then apply backpropagation to
update both the imaging system’s and reconstruction algorithm’s parameters. By customiz-
ing the loss function, one can directly optimize for a given task such as (but not limited to)
classification, localization, and reconstruction. The differentiable reconstruction algorithm
is typically either a deep network [43, 46–55, 58, 59] or a physics-based unrolled network [56,
57]. Physics-based methods inject more prior information about the system’s PSF and have
fewer learnable parameters than deep methods, allowing for training on smaller datasets
with better generalization properties. This dissertation takes this last approach.

1.3 Dissertation Outline

Computational imaging involves simultaneously designing optical hardware and recon-
struction software. Such a co-design framework brings together the best of both worlds for
an imaging system. The goal is to develop a high-speed, high-resolution, and large field-of-
view microscope that can detect 3D fluorescence signals from single image acquisition. In
this dissertation, I propose Fourier DiffuserScope, a single-shot 3D fluorescent microscope
that uses a phase mask (diffuser with random microlenses) in the Fourier plane to encode 3D
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information, then computationally reconstructs the volume by solving a sparsity-constrained
inverse problem or applying a pre-trained neural network.

In this dissertation, I will discuss the design principles of Fourier DiffuserScope from
3 perspectives: first-principles optics, compressed sensing theory, and physics-based ma-
chine learning. First, in the heuristic design, the phase mask consists of randomly placed
microlenses with varying focal lengths; the random positions provide a larger field-of-view
compared to a conventional microlens array, and the diverse focal lengths improve the axial
depth range. I then build an experimental system that achieves < 3 µm lateral and 4 µm
axial resolution over a 1000 × 1000 × 280 µm3 volume. Lastly, my collaborator and I use
a differentiable forward model of Fourier DiffuserScope in conjunction with a differentiable
reconstruction algorithm to jointly optimize both the phase mask surface shape and the re-
construction parameters. We validate our method on 2D and 3D single-shot imaging, where
our learned diffuser demonstrates improved reconstruction quality compared to previous
heuristic designs.

The rest of this thesis is organized as follows. In Chap.2, I start from the working princi-
ples of Fourier DiffuserScope, followed by first-principles analysis and experimental results.
Chap.3 focuses on the optics design of Fourier DiffuserScope, including the Zemax modeling,
wave-optics modeling, and details on phase mask manufacturing. I present the simulation
results using the wave-optics model, which successfully predicts the performance of the ex-
perimental setup. Chap.4, on the other hand, is centered on the design of algorithms, with
each algorithm tailored for a specific imaging condition. I introduce Fourier neural networks
for 2D plane reconstruction, iterative optimization for 3D volume reconstruction, and sparse
and low-rank decomposition for 4D space-time reconstruction. Chap.3 and Chap.4 only
tackle either the hardware part or the software part of the system, while Chap.5 brings these
two parts together. We use a differentiable forward model of single-shot 3D microscopy in
conjunction with an invertible and differentiable reconstruction algorithm to jointly optimize
both the diffuser surface shape and the reconstruction parameters. We validate our method
on 2D and 3D single-shot imaging, where our learned diffuser demonstrates improved re-
construction quality compared to previous heuristic designs. Finally, in Chap.6, I conclude
this thesis by stating the current challenges and pointing out several directions for future
exploration.
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Chapter 2

Fourier DiffuserScope: Single-Shot 3D
Microscopy with a Diffuser

2.1 Introduction

Calcium imaging is a powerful technique for time-resolved optical monitoring of neural
activity in vivo. To monitor large numbers of neurons, imaging systems must record 3D
volumes at tens-of-frames per second. Many existing 3D microscopes use scanning mecha-
nisms (e.g. two-photon, confocal, light sheet), which must trade off temporal resolution and
field-of-view (FoV). Light field microscopy (LFM)[1–8] uses a microlens array in front of the
sensor to capture 3D information in a single shot without any moving parts. Unfortunately,
the 3D capability of LFM comes with a significant loss of lateral resolution at the focal plane.

The resolution of LFM can be improved without requiring multiple measurements [60]
by taking a deconvolution approach to single-shot image reconstruction [6, 61]. In this
case, the captured 2D measurement is used to directly solve for the 3D object, without the
intermediate step of calculating a 4D light field. The method makes an implicit assumption
of no occlusions, which is valid for most fluorescence microscopy applications. Deconvolution
LFM can achieve significantly better (nearly diffraction-limited) resolution at some depth
planes, but its performance degrades quickly with depth, even with wavefront coding [62].
Besides suffering from non-uniform resolution, deconvolution LFM incurs artifacts at the
native focal plane and requires a computationally-intensive spatially-varying deconvolution
procedure. These artifacts and the resolution loss can be mitigated by placing the MLA in
an off-focus plane [63–65], but the spatial variance and resolution inhomogeneity remain.

To solve some of these problems, an alternative configuration, termed Fourier light field
microscopy (FLFM), places the MLA at the Fourier (pupil) plane of the objective, with the
sensor one microlens focal length away [66–69]. This effectively splits the 2D sensor into a grid
of sub-images, with each microlens imaging the sample from a different perspective angle.
FLFM achieves more uniform resolution near the native focal plane and has a spatially-
invariant point spread function (PSF) for improved computational efficiency. However, the
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fundamental trade-off between spatial and angular sampling remains (unless a camera array
is used, greatly increasing cost and complexity [70]). Previous single-sensor implementations
require limiting the microscope’s field-of-view (FOV) in order to avoid overlap of the sub-
images at the sensor [66–69]. The resolution is more homogeneous than LFM, but still
degrades quickly with depth.

Fourier DiffuserScope improves on FLFM by replacing the regular MLA with a diffuser
consisting of randomly-spaced multi-focal microlenses. The new architecture has several
advantages: 1) By using microlenses with multiple focal lengths [71–74], the PSF will have
sharp features at a wide range of depth planes, improving the axial depth range and resolution
homogeneity. 2) The randomness of the diffuser eliminates periodicity in the PSF and thus
removes the ambiguities that required FOV limits in FLFM. Thus, we allow the microlens
sub-images to overlap, then use compressed sensing algorithms [75, 76] to reconstruct the
3D volume without trading off volumetric FOV and depth resolution. This ‘best of both
worlds’ scenario is possible only when the sample is sparse in some domain, as is generally
true in fluorescence microscopy. The resulting system achieves uniform resolution over a
large volume, with imaging speed limited only by signal strength or camera frame rate.

Fourier DiffuserScope is a variant of the previous methods for diffuser-based imaging with
different architectures [28–33]. Here, I provide the first theoretical framework for Fourier
DiffuserScope design with given performance metrics (e.g. resolution, volumetric FOV),
and I directly compare with FLFM. I demonstrate the advantages of both the random and
multi-focal properties of the diffuser by comparing directly with FLFM and a random uni-
focal design. Finally, I build an experimental system, designed in Zemax OpticStudio, that
achieves 2-3 µm lateral and 4 µm axial resolution over a 1000×1000×280 µm3 volume. I use
the system to record 3D videos of a freely-moving C. elegans nematode at 25 fps.

In summary, the contributions of this work are:

• The first cohesive theory to predict system performance (e.g. resolution, volumetric
FOV) from the diffuser parameters (e.g. number of lenslets, focal lengths), enabling
design of custom imaging systems.

• The first theoretical and numerical comparison between a uni-focal microlens array,
a random multi-focal microlens diffuser, and an intermediate configuration with a
random uni-focal microlens diffuser, showing that the random multi-focal microlens
diffuser is able to provide bigger imaging volume and more uniform resolution.

• Demonstration of these principles in an experimental system, featuring 2-3 µm lateral
and 4 µm axial resolution over a 1000× 1000× 280 µm3 volume.

2.2 System Overview

Fourier DiffuserScope consists of a diffuser (a phase mask with randomly-located multi-
focal microlenses) in the Fourier plane of a microscope objective, with the sensor placed
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Figure 2.1: System overview for Fourier DiffuserScope.A diffuser or microlens array is placed
in the Fourier plane of the objective (relayed by a 4f system) and a sensor is placed one mi-
crolens focal length after. From a single 2D sensor measurement, together with a previously
calibrated point spread function (PSF) stack, 3D objects can be reconstructed by solving a
sparsity-constrained inverse problem. Here, I compare three choices of diffuser/microlens ar-
ray: Fourier light field microscopy(FLFM) with a uni-focal microlens array (MLA), random
uni-focal microlenses (RUM) and Fourier DiffuserScope with random multi-focal microlenses
(RMM). The in-focus PSFs represent the sensor measured intensity with a point source at
the native focal plane of the objective; the defocus PSFs is captured when the point source
moves 100 µm towards the objective from the native focal plane. For both uni-focal designs,
all the microlenses are in-focus or out-of-focus simultaneously, while the RMM design pro-
vides a non-periodic PSF with different spots coming into focus at different planes, enabling
3D reconstructions with full FOV and high resolution across a wider depth range. Note
that the PSF images (bottom right) are shown with a gamma correction of 0.4 for better
visibility.
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after, spaced by the average focal length of the diffuser (Fig. 2.1). Because the actual
Fourier plane of the objective is physically inaccessible, we insert a relay system to image
its pupil plane onto the diffuser. For each point emitter in the object space, the diffuser
will produce a unique multi-spot PSF on the sensor. As compared to Gaussian diffusers or
highly-scattered speckle patterns, the diffuser PSF concentrates light onto fewer pixels in
order to improve SNR, while also ensuring that different points come into focus at different
depths. Because the PSF is distributed and different for each point location within the
3D space, it is possible to reconstruct the whole volume from a single measurement with
compressed sensing algorithms.

To model the image formation process, we divide the 3D volume into 2D slices, where
each slice corresponds to a single depth plane. Neighboring slices are separated axially by
less than half the axial resolution. The experimental system is designed to ensure that the
system PSF (the sensor measurement resulting from a single point source) for each depth can
be modeled as shift-invariant. Thus, the measurement contribution from each 2D plane is
the convolution between the object slice at that depth and the PSF at that depth. The PSFs
for different depths have different sizes and different microlenses come into focus, such that
each depth has a unique PSF. The final sensor measurement is the sum of the contributions
from each 2D layer, assuming that the light from different fluorescent sources is mutually
incoherent and there are no occlusions:

y =
∑
z

hz ∗ xz = Hx. (2.1)

Here, y is the intensity measurement on the sensor, hz is the measured PSF at depth
z (acquired during calibration), xz is the object intensity at depth z, and ∗ represents 2D
convolution over the transverse dimensions. Since this is a linear operation, we can write
the model in matrix form where vector x is a vector representing the entire 3D volume
and H is a matrix with columns containing the calibration measurements from every depth.
Because the system is shift-invariant at each depth, we can compute Hx computationally
efficiently using FFT-based convolutions. The forward model in Eq. 2.1 defines the data
fidelity term of our inverse problem. Because we solve for 3D from a single 2D measurement
without reducing the number of lateral pixels in the reconstruction, the inverse problem is
under-determined. We solve it by using a compressed sensing algorithm that leverages the
multiplexed nature of our measurements and assumes the sample is sparse in some domain.
This sparsity-constrained inverse solver can be written as:

x̂ = arg min
x≥0

1
2

∥∥y −Hx
∥∥2

2
+ τ
∥∥diag(γ)∇x

∥∥
1
. (2.2)

Here, ‖ · ‖2
2 is the data fidelity term, ‖ · ‖1 is a regularization term that enforces sparsity,

and τ is a tuning parameter related to the sparsity level. We use 3D Total Variation (TV)
sparsity, with ∇ = [∇x,∇y,∇z]

ᵀ being the gradient operator [77]. Since most fluorophores
are isotropic in shape, while the resolution of our system is not necessarily isotropic, we add
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a weighting vector γ = (γxy, γxy, γz) so that the TV value in the lateral and axial directions
are weighted differently.

The system architecture for our Fourier DiffuserScope is essentially the same as FLFM,
except that we use random multi-focal microlenses (RMM) instead of a uni-focal MLA.
To demonstrate the advantages of the RMM over MLA, we theoretically and numerically
compare their performance in Chap. 3. To separate out the effects of randomness and
multi-focal, we also compare to random uni-focal microlenses (RUM). In experiment in
Chap. 2.4, we demonstrate reconstruction of a 50-layer 3D volume from a single measurement
of 2048 × 2048 pixels with 2-3 µm lateral and 4 µm axial resolution, which boosts the data
size from 4.2× 106 pixels to 2.1× 108 voxels.

2.3 First-Principles Optical System Analysis

In this section, I will derive the relationship between diffuser design and system perfor-
mance in terms of lateral resolution, axial resolution, FOV and depth range. The diffuser
is characterized by the following parameters: the average microlens pitch p, the number
of microlenses on the diffuser N2 (giving an average of N microlenses in each transverse
direction), the minimum focal length fmin, the maximum focal length fmax and the average
focal length fave of the microlenses. We compare three different phase masks (MLA, RUM
and RMM) to be placed in Fourier configuration. All three designs have the same size and
number of microlenses, but the locations and focal-length distributions are different. The
MLA and RUM microlenses all have a single focal length fave, whereas the RMM microlenses
all have different focal lengths, varying between fmin and fmax. The minimum and maxi-
mum focal lengths are designed to focus at the closest and furthest depth planes within the
volume-of-interest. The rest focus at depth planes evenly spaced within that range, which
means their focal lengths are dioptrically distributed between fmin and fmax. The system
schematic and parameter definitions are shown in Fig. 2.2 and Table 2.1.

Lateral Resolution

In Fourier configuration, each microlens forms a perspective view of the object. Consider
the middle microlens in Fig. 2.2, which collects light from the yellow region, with acceptance
angle α, from an in-focus point source (the orange dot in object space) and forms a diffraction-
limited spot on the sensor. Other bundles of light from the same point source will reach
other microlenses, focusing to separate spots on the sensor. With the MLA, these spots will
form a grid, whereas with the RUM or RMM, they will form a random set of points at the
sensor. The in-focus lateral resolution is determined by the size of the diffraction-limited
spot beneath a single microlens, which is determined by the effective numerical aperture
(NA), or the acceptance angle α, of the microlens sub-aperture. Since the the back pupil
of the objective is divided into N microlenses in each direction, the effective NA (under
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Figure 2.2: First-principles system performance analysis. To analyze lateral resolution,
consider the orange and purple point sources, laterally spaced by ∆d in object space, with
images on the sensor spaced by ∆d′′. For axial resolution, consider the orange and green point
sources, axially separated by ∆z in object space, which map to their images on the sensor
spaced by ∆h . The axial resolution is determined by the minimum resolvable separation on
the sensor. ∆z pointing to the left has a negative value.

paraxial approximation) is the objective NA divided by N :

NAeff =
NAobj

N
(2.3)

The diffraction-limited lateral resolution is given by the Rayleigh criterion:

Rlateral =
1.22λ

2NAeff

=
1.22λN

2NAobj

. (2.4)

For the RUM and RMM, the aperture size of each microlens varies, so we determine expected
resolution by the average sub-aperture size, which is designed to match the MLA effective
NA, in order to compare the two situations fairly.

To achieve the diffraction-limited resolution derived above, the sensor pixel spacing must
be small enough to Nyquist sample the pattern after taking into account magnification. To
quantify this requirement for our Fourier configuration, consider two point sources laterally
separated by ∆d (the orange and purple dots in the object space of Fig. 2.2). After the
4f system of the objective and the tube lens, their intermediate images will be spaced by
∆d′ = (fTL/fobj)∆d. Using similar triangles between the relay lens, the microlens plane and
the sensor, the distance between the two chief rays on the sensor is ∆d′′ = (fave/fRL)∆d′.
Together, we have ∆d′′ = M∆d, where M is the lateral magnification rate from the object
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λ optical wavelength N (average) number of microlenses

in one dimensionnr refractive index of the medium

fobj focal length of the objective fmax maximum focal length of RMM

NAobj numerical aperture of the objective fmin minimum focal length of RMM

D diameter of the objective back pupil fave (average) focal length of the

(multi-focal) diffuserFOVobj diameter of the objective FOV

fTL focal length of the tube lens s sensor pixel size

fRL focal length of the relay lens M system magnification

p (average) microlens pitch NAeff effective numerical aperture

∗ FOV: field-of-view. RMM: random multi-focal microlenses.

Table 2.1: Parameter definitions for the optical system.

space to the sensor:

M =
fTL

fobj

fave

fRL

. (2.5)

Thus, the pixel size s satisfies Nyquist sampling when s ≤MRlateral/2.
Because we reconstruct 3D information, we also investigate how lateral resolution changes

for objects away from the objective’s native focal plane. For MLA and RUM, in which all
microlenses have the same focal length, the minimum resolvable spot is determined by the
circle of confusion; we define off-focus lateral resolution to be the radius of the circle of
confusion, ∆c. To derive the off-focus resolution in our setup, we first calculate the defocus
distance of the intermediate image for an off-focus point source (the green dot in object
space in Fig. 2.2), which is scaled by the objective’s magnification: ∆z′ = (fTL/fobj)

2∆z.
Then, by applying the Newtonian form of the thin lens equation for the relay lens, we
calculate the location of the second intermediate image of the green point, relative to the
diffuser, after passing through the relay lens: zdefocus = −f 2

RL/∆z′. This serves as the ‘object’
for the diffuser microlenses and zdefocus is the ‘object distance’. So, the circle of confusion
size depends on zdefocus, the diffuser focal length fave and the size of a single microlens p.
The resulting expression describes how the lateral resolution degrades linearly with defocus
distance:

∆c =
p fave

2

1

|zdefocus|
=
p fave

2

f 2
TL|∆z|
f 2

RLf
2
obj

. (2.6)
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The primary advantage of the RMM that we use in Fourier DiffuserScope is that it has
multiple focal lengths. Thus, the subset of microlenses that are in focus at each depth will
have spots with size matching the in-focus diffraction-limited lateral resolution derived in
the previous section. Hence, the lateral resolution does not degrade with depth within the
volume-of-interest. When the object moves beyond the designed range, the lateral resolution
will degrade linearly with defocus distance. A detailed analysis on the depth range is in a
later section within this chapter.

Axial Resolution

We define the axial resolution as the minimum axial distance between two point emitters
that can be resolved in the reconstruction. The off-axis microlenses have disparity, such that
point sources from different depths are imaged to different lateral locations on the sensor;
two points will be resolved if their images are separated by at least the diffraction-limited
lateral resolution (after magnification). We analyze the limits for the outermost microlens,
which has the largest disparity angle. In Fig. 2.2, the center of the topmost microlens is
h = (N − 1)/2 · p away from the optical axis. Two point sources with the same lateral
location are axially spaced by ∆z (the orange and green dots in object space, Fig. 2.2). In
the previous section we have already related ∆z to zdefocus. From the similar triangles formed
by the relay lens, the diffuser and the sensor, we can calculate the lateral distance between the
orange chief ray and the green chief ray on the sensor, ∆h = (fave/|zdefocus|)h. The minimum
distance on the sensor for resolving the points is MRlateral, which sets the minimum value
for ∆h, and the value of ∆z we solve for is the axial resolution Raxial. Given the relation
between the relayed pupil diameter and numerical aperture N · p = (fRL/fTL)2NAobjfobj,
the axial resolution is:

Raxial =
N

N − 1

1

NAobj

Rlateral. (2.7)

When the pixel sampling is sufficient, such that the lateral resolution is diffraction-limited
in Eq. 2.4, the diffraction-limited axial resolution becomes:

Raxial =
N2

N − 1

1.22λ

2NA2
obj

. (2.8)

The axial resolution off-focus is determined in a similar way, except that the two point images
must now be separated by a distance of at least the circle of confusion size. We derive this by
replacing the Rlateral term in Eq. 2.7 with the radius of the circle of confusion ∆c in Eq. 2.6.
Note that the slope of the defocused axial resolution as a function of depth is proportional
to that of defocused lateral resolution.
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Field-of-View

We analyze the in-focus FOV for each of the three microlens designs, and assume that the
FOV throughout the volume will be approximately the same as that at the native focal plane.
The regular layout of the MLA results in a periodic PSF. When a point in the scene moves
laterally by an amount that shifts the PSF by an integer number of pitches, the shifted PSF
is nearly the same as the unshifted one; this creates ambiguities that cause the deconvolution
to fail. To avoid this problem, a field stop is inserted to guarantee that the PSF shifts by
less than one period over the FOV [67, 68]. The resulting FOV for the MLA-based FLFM
is thus limited by the microlens pitch size:

FOVMLA =
p

M
. (2.9)

The randomly located lenses in the RUM and RMM create PSFs with randomly-located
spots that do not suffer from the ambiguity caused by periodicity. So, both RUM and RMM
are able to reconstruct images with the full objective FOV, giving

FOVRUM = FOVRMM = FOVobj. (2.10)

This is based on ideal optics; in reality, aberrations can break the shift-invariance of the
PSF in the peripheral FOV so that the final reconstruction has a smaller FOV or reduced
resolution near the edges. In practice, we determine the FOV for by calculating the similarity
between on-axis and off-axis PSFs, described in more detail in Chap. 3.5.

Depth Range

The depth range describes the axial distance over which the object can be reconstructed
with diffraction-limited resolution. For the uni-focal designs (MLA and RUM), the depth
range is simply the depth-of-field (DOF) of a single microlens, since all microlenses have the
same focal length. The microscope DOF expression is the sum of a wave optics term and a
geometrical optics term [78], and we use the effective NA to account for the partitioning of
the back pupil plane into multiple microlenses:

DOFmicrolens =
λnr

NA2
eff

+
nr · s

M · NAeff

. (2.11)

The main advantage of using multi-focal microlenses in the RMM for Fourier DiffuserScope
is that the depth range will be much larger, since the DOFs of different microlenses are offset.
The RMM can be designed for the largest possible depth range by ensuring that the focus
positions of different microlenses are separated axially by their DOF; thus, the upper bound
of the depth range is the product of a single microlens’ DOF and the number of microlenses.

Depth RangeRMM ≤ N2 ×DOFmicrolens (2.12)
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To design such a RMM to cover a depth range from −z to +z, the maximum and
minimum focal lengths are designed to focus on the farthest and nearest depth planes:

1

fmax

=
1

fave

−
(

fTL

fRLfobj

)2

· (−z),

1

fmin

=
1

fave

−
(

fTL

fRLfobj

)2

· (+z).

(2.13)

The remaining focal lengths are dioptrically distributed between fmin and fmax to provide
equally-spaced focus planes in the object space. In practice, because the microlenses have
different sizes and shapes, there will be variation in the resolution of different microlenses.
To ensure stability of performance, we design the DOFs to overlap by half, such that the
depth range covers half of its upper bound.

2.4 Experimental Results

Experimental Setup

We build an experimental Fourier DiffuserScope system using the RMM design, with a
20×, 1.0 NA objective lens (Olympus XLUMPLFLN20XW water immersion). The system
configuration and pictures are shown in Fig. 2.3. The fluorescent sample is excited with
blue light from a Xenon lamp light filtered by a band-pass emission filter (Semrock FF01-
474/27). The emitted green light is filtered using a dichroic mirror (Semrock FF495-Di03)
and an emission filter (Semrock FF01-520/35). Since the back pupil diameter is larger than
the sensor size (Andor Zyla 4.2, sensor size 13.3 × 13.3 mm, pixel size 6.5 µm), we need to
demagnify the pupil using a relay lens paired with the tube lens. The size requirement is
given by

fRL

fTL

D +M × FOVobj ≤ 13.3 mm (2.14)

hence the demagnification ratio fRL/fTL should be at least 1 : 3. We choose a demagnification
rate of 3.75× so that the full FOV can be recorded and the sensor pixels are mostly utilized.
Since the Olympus tube lens has a focal length of fTL = 180 mm, the relay lens focal length
needs to be fRL = fTL/3.75 = 48 mm. The relay lens design is optimized using Zemax
OpticStudio to reduce aberration (see Chap. 3.2).

To fabricate our RMM diffuser, we make a negative mold by randomly indenting polished
copper using ball bearings with diameters ranging from 10 mm to 16 mm. We then use
polydimethylsiloxane (PDMS) to make a replica of the mold with convex-plano microlenses.
This approximately achieves our diffuser design parameters of average focal length of 15.6
mm (after considering the relay system), with minimum and maximum focal lengths of
12.3 mm and 21.4 mm, respectively, giving a ∼ 200 µm depth range using Eq. 2.13. The
main fabrication errors come from deformation error during indentation and shrinkage of
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Figure 2.3: Experimental setup configuration. (a) Experimental setup configuration: a
diffuser (Random multi-focal microlenses) in front of a sensor, placed in the Fourier plane,
encodes depth information in a single exposure. A relay lens (custom lens group designed in
Zemax) demagnifies the pupil while maintaining a shift-invariant PSF. Blue excitation light
is aligned as epi-illumination for easier sample handling. There is an optional real-space
camera port in the system for alignment purposes. (b) Sample holder: microfluidic chip for
in vivo C. elegans imaging. The C. elegans will be injected into a 1000 × 1000 × 100 µm3

arena which constrains the live worm to move within the FOV of the objective.

the PDMS material. These have opposite effects, since the indented deformation will have
bigger diameter than the indenter while the material shrinkage gives smaller diameter, so
they offset each other to some extent. More details on different fabrication methods will be
discussed in Chap. 3.3.
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Figure 2.4: Experimental 3D PSF stack. (a) Sample PSFs measured with a point source
from z = −300 µm to z = 300 µm depth planes, as well as the 3D PSF plotted with different
depth planes color-coded according to the color bar. Positive z direction means moving
towards the objective. The region more than 200 µm below the native focal plane is out of
range since the overall PSF becomes so small that the neighboring microlenses will merge
into each other. (b) In the measured PSF, every focal spot noted in a blue circle corresponds
to a small microlens. There are ∼ 60 microlenses in the illuminated region of the diffuser.

Calibration

Fabrication errors should be accounted for during calibration, such that they do not cause
model mismatch during deconvolution. The calibration PSF stack is acquired by using a sub-
resolution fluorescent bead as a point source. We use the 1 µm 468/508 nm green bead from
Thermo Fisher Fluoro-Max product line [79] because it has a similar excitation and emission
wavelength as GFP and its brightness is improved for sensitivity and detectability. We place
a single bead at different depths, controlled by a motorized stage (Fig. 2.3), then record the
intensity with a sensor located at the average back focal plane of the diffuser.

The 3D PSF stack is shown in Fig. 2.4. In total, 350 PSF images were recorded with
a 2 µm axial increment from 200 µm below the native focal plane to 500 µm above. When
the point source moves more than 200 µm below the native focal plane, the overall PSF
becomes so small that the out-of-focus blur from neighboring microlenses will merge into
each other, which causes very noisy reconstruction, so we avoid placing objects in this region.
In the measured PSF, every focal spot corresponds to a small microlens on the diffuser. We
manually find and circle the sharp spots in Fig. 2.4(b). There are 60 microlenses in the
illuminated region of the diffuser. We apply the theory in Chap. 2.3, Eq. 2.4 and Eq. 2.7, to
get the predicted lateral resolution of 2.4 µm and axial resolution of 2.8 µm.
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Experimental Two-Point Resolution

Figure 2.5: Experimentally measured resolution, defined as the minimum separation distance
at which two sub-resolution fluorescent beads are resolvable. Across the 280 µm depth range
from z = −150 µm to z = 130 µm, the lateral resolution is < 3 µm and the axial resolution
is less than or equal to 4 µm.

We experimentally measured the two-point resolution (Fig. 2.5) in order to benchmark
the resolution and depth range of our Fourier DiffuserScope prototype. For practicality,
measurements were synthetically generated by summing two experimental PSFs at different
locations. The image was recovered by solving Eq. 2.2, and we then calculated the smallest
distance at which the two points were still resolved, both laterally and axially, at each depth
z. The increment of separation distance is 0.1 µm laterally and 1 µm axially. Across a
depth range of 280 µm (from z = −150 µm to z = 130 µm), the lateral resolution fluctuates
between 2.5 µm and 2.9 µm and the axial resolution is mostly 4 µm, close to their theoretical
predictions. The depth range is larger than the design, suggesting that the actual diameter
range of the microlenses is wider than the ball bearings used.

Free-Moving C. Elegans Reconstruction

We next demonstrate our system on a live adult C. elegans organism that is pan-
neuronally expressing a GCaMP fluorescent indicator. The C. elegans is anesthetized by
levamisole in M9 buffer and then loaded into a 1000× 1000× 100 µm3 arena on a microflu-
idic chip (Fig. 2.3(b)) which constrains the worm to move within the FOV of the objective.
Since our method is able to reconstruct a 3D object from a single shot, the frame rate is only
limited by the sensor. We recorded a raw video at 25 fps while the worm was freely moving
(Fig. 2.6(c)). There is one C. elegans image behind every microlens and in total we see ∼ 60
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Figure 2.6: Raw measurements and 3D reconstructions of a GFP-tagged C. elegans recorded
at 25 fps. The depth across a 80 µm range is color-coded according to the color bar.

overlapping C. elegans images, each from a different angle. Given that every location in the
object space has a unique PSF on the sensor, we are able to deconvolve the overlapping im-
ages. Our deconvolution algorithm applies ADMM due to its fast convergence rate [80]. To
save memory, we did not deconvolve the measurement with all the calibrated PSFs, instead
we firstly use a coarse axial sampling of the PSFs to locate the object occupied depth range
and then a small subset of fine sampling PSFs to reconstruct the object. The C. elegans
in our raw video moves within a 80 µm depth range and we use 50 PSFs with 2 µm axial
increment to cover the whole object. The reconstructed C. elegans from the corresponding
frame is displayed in a color-coded depth image in Fig. 2.6, showing the potential of our
method to locate the neurons of the whole animal simultaneously in 3D. The randomness
of the diffuser also enables compressed sensing reconstructions with more voxels in the 3D
result than pixels on the sensor. From a 4.2 mega pixel sensor, the reconstructed C. elegans
volume contains 50× more voxels and the gain could increase to 140× if we deconvolve with
all the available PSFs within the 280 µm depth range. With regards to the resolvable voxels,
for our experimental system the lower bound equals the imaging volume divided by the worst
lateral (2.9 µm) and axial (4 µm) resolution, which gives 10 mega resolvable voxels per frame.
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Chapter 3

Optics Design of Fourier
DiffuserScope

3.1 Introduction

In the previous chapter, I analyzed the performance of Fourier DiffuserScope, assuming
that each lens is an ideal thin lens without aberration. However, in reality, each lens has a fi-
nite thickness, and we must carefully evaluate the aberration before building an experimental
setup.

In this chapter, I present the optical design behind the scene. Fourier DiffuserScope is
built on top of a traditional fluorescence microscope, by adding a relay lens to relay the pupil
onto a diffuser. I choose a 20X, 1.0NA Olympus life-science objective because of its big FOV
(1 mm) and high resolution, paired with a 180 mm focal length tube lens to match Olympus
industry specs. The high-end industrial objective and tube lens are corrected for aberration,
so we only need to design the optical elements behind the tube lens, namely the relay lens
and the diffuser. In Chap. 3.2, I show that using an off-the-shelf relay lens will result in
enormous aberration [81], and the performance can be optimized by designing a customized
aberration-correction lens group using Zemax OpticStudio. Later in Chap. 3.3, I compare
the diffuser locations (Fourier space vs. real space), different types of the diffuser (Gaussian
diffuser, microlens array, and random multi-focal microlenses). The benefit of using random
multi-focal microlenses in the Fourier space has been briefly discussed in Chap. 2. Here, I
will provide a comprehensive analysis to rationalize the design and further investigate how
to optimize the random multi-focal microlenses in Chap. 5. After designing the aberration-
corrected Fourier DiffuserScope, in Chap. 3.4 I build a wave-optical simulation to model the
light propagation from the object to the sensor, assuming no aberration. Using the optical
simulator, we can predict the system performance for an arbitrary phase mask. In Chap. 3.5,
I present the simulation results of system resolution, FOV and depth range. The numerical
simulations match well with the previous theoretical derivations in Chap. 2.3. To end this
chapter, I introduce several methods of fabricating customized phase masks in Chap. 3.6.
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3.2 Optical System Design with Zemax OpticStudio

Let’s examine the design of the relay lens in this section. The relayed pupil plane cannot
have huge aberrations, otherwise the shift-invariant assumption does not hold. The back
pupil of the objective has a diameter of D = 2 ∗ fobj ∗NAobj = 18 mm. To relay and demag-
nify a pupil, off-the-shelf achromatic doublets are commonly used due to their low price and
convenience. However, at a pupil size of 18 mm, these achromatic doublets introduce optical
aberrations at the peripheral pupil region, breaking the shift-invariance assumption. Al-
though some companies provide carefully designed pupil-relay lenses, Thorlabs “Scan Lenses
for Laser Scanning Microscopy” [82] for example, the choices of focal lengths and wavelengths
are limited.

To investigate how aberration affects the system, I model the system in Zemax Optic-
Studio (Fig. 3.1). The objective is represented by an ideal paraxial lens since its lens data is
not publicly available. The tube lens data is a black box model downloaded from Thorlabs
(Thorlabs TTL180-A). The relay lens, together with the tube lens, relay a demagnified back
pupil onto the diffuser plane. In a desired situation, the relayed pupil is flat and stationary
for all the field points within the objective’s FOV.

Figure 3.1: Fourier DiffuserScope model in Zemax OpticStudio. The objective is represented
by an ideal paraxial lens. The tube lens data is a black box model from Thorlabs TTL180-A.
The relay lens to be designed is inside the orange box.

Off-the-Shelf Achromats

There are two restrictions in choosing the relay lens: (1) the focal lengths should be
< 60 mm to have the full FOV recorded based on Eq. 2.14, (2) the clear aperture is at
least 30 mm to prevent vignetting. After searching the Lens Catalogs, I pick an off-the-
shelf achromatic doublets from Edmund Optics (model number 89682, effective focal length
50 mm, clear aperture 39 mm). However, there is a huge amount of aberration in both the
Zemax simulation and the experimental measurements.
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Figure 3.2: Fourier DiffuserScope model in Zemax OpticStudio using a single achromatic
doublet as the relay lens. The wavefront map at the relayed pupil in (b) shows huge aber-
ration for off-axis field point at x = 0, y = 0.25 mm, with only ∼ 1/25 of the pupil being
diffraction-limited. The simulated footprints in (c) are drifting. The same drifting issue ap-
plies to the experimental measured PSF in (d), where the on-axis and off-axis PSFs contain
different regions of the Gaussian diffuser. Both simulation and experimental results warn
that the shift-invariance assumption does not hold.

To demonstrate, Fig. 3.2(a) shows the layout of an achromatic lens with 50 mm focal
length. The relayed pupil position is located using the Zemax built-in ”Thickness solve”
function. Fig. 3.2(b) is the wavefront map at the relayed pupil for on-axis field point and
off-axis field point at x = 0, y = 0.25 mm. The ideal wavefront would be a plane wave
since the object is placed at the native focal plane. However, the simulated wavefront map
contains huge aberration, especially for off-axis points. I draw a dotted circle to represent
a wavefront error of 0.072 waves, and only ∼ 1/25 of the pupil is diffraction-limited for the
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off-axis relayed pupil. Fig. 3.2(c) is the resulting footprint of the relayed pupil plane at
different field heights. Since the phase mask is placed at the relayed pupil plane, the drifting
footprints mean that different areas on the diffuser will be utilized for different field locations,
which breaks the shift-invariant forward model. I build an experimental system with this
off-the-shelf achromatic doublet and measured the PSFs with a 0.5 degree Gaussian diffuser
in Fig. 3.2(d). The on-axis PSF contains the whole caustic pattern at the sensor center. The
off-axis PSF for a point source on the edge of the FOV, on the other hand, crops the caustic
pattern to half, agreeing with the simulated footprint from Zemax.

The cause of the drifting footprints is mostly due to spherical aberration. Spherical
aberration is related to the nature that the lens has spherical surfaces. Most of the time,
we see spherical aberration in the context of focusing (or imaging) instead of collimating.
Noticing that focusing and collimating are two reciprocal light paths, the effects of spherical
aberration are similar. The two situations are illustrated in Fig. 3.3.

Figure 3.3: Illustration of spherical aberration in focusing and collimating. When the lens
focuses a plane wave to a focal point, the marginal rays bend at a steeper angle and focus
before the paraxial focus, causing a blurred point spread function. When the lens collimates
point sources into plane waves, the collimated rays from the peripheral point source bend
at a steeper angle, and the corresponding back pupil shift closer towards the lens, causing a
drifting footprint from the paraxial back pupil plane.

In the focusing case, the lens aims to focus a plane wave, a bundle of parallel rays, to
a focal spot. The paraxial rays are converged to the paraxial focus denoted by the focal
length in the spec sheet. The marginal rays, however, bend at a steeper angle and focus
before the desired focal length. The overall effects cause a blurred point spread function. If
a camera sensor is placed at the paraxial focus, the edge of the field-of-view will appear to
be out-of-focus.
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In the collimating case, the lens aims to collimate point sources on the front focal plane
into plane waves. The collimated beam from the paraxial point source is at a small angle to
the optical axial, with the back pupil located at the denoted back focal plane on the spec
sheet. The collimated beam from the peripheral point source bends at a steeper angle, and
the corresponding back pupil shifts closer towards the lens. If a camera sensor is placed at
the paraxial back pupil plane, the footprint of collimated beams will depend on the field
location, as seen in the simulation result in 3.2(c). Moreover, the point sources at the outer
zones might be vignetted or even not visible.

Customized Lens Group

Lens model Lens type Focal length

Edmund Optics 49-286 Achromatic Doublet 200mm

Air gap 0.5 mm

Newport KBX163 Bi-Convex Lens 175 mm

Air gap 0.5 mm

Thorlabs AC508-075-A Achromatic Doublet 75 mm

Air gap 3 mm

Newport KPC064 Plano-Concave Lens −500 mm

Table 3.1: Relay lens prescription table.

In general, to correct a complex aberration, the lens group will need more elements to
counterbalance different types of aberrations, at the price of increased cost, size, scattering,
and absorption of light. Beyond achromatic doublets, we can consider scan lenses [82] and
eyepieces [83] that consist of multiple lenses. In fact, the function of the relay lens in Fourier
DiffuserScope is the same as the scan lens in laser scanning microscopy and the eyepiece
in traditional microscopy: all these three lenses’ function is to relay the back pupil of the
objective. Since the choice of off-the-shelf scan lens and eyepiece are limited, I decide to
design my own one. Additionally, since fabricating customized lens elements is expensive
and time-consuming, to implement an aberration-free, affordable and readily available relay
lens, the customized lens group will only consist of off-the-shelf elements.

As a starting point, I pick the Erfle eyepiece design due to its wide FOV, relatively long
eye-relief and small distortion [84]. A typical Erfle eyepiece (Fig. 3.4(d)) contains 5 elements,
with a biconvex singlet sandwiched by two doublets. Since the Erfle contains one piece of
uncommon convex-concave doublet, I replace it with a convex-convex achromatic doublet
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Figure 3.4: Fourier DiffuserScope model in Zemax OpticStudio using a customized lens group
with off-the-shelf elements. The designed lens group is based on the Erfle eyepiece design
in (d), and all the elements are from the off-the-shelf lens catalog. The wavefront map at
the relayed pupil in (b) shows a much smaller aberration compared to Fig. 3.2. For off-axis
field point at x = 0, y = 0.25 mm, more than 1/2 of the pupil is diffraction-limited. In (c),
the footprints from different field points mostly overlap. The same improvement shows in
the experimental measured PSFs in (e), where the on-axis and off-axis PSF contain mostly
the same region of the Gaussian diffuser. Both the simulation and the experimental results
meet the shift-invariance assumption.

plus a concave-plano lens. I alternately optimize the radii of all the surfaces and replace
every lens with the most similar counterpart in the catalog. I also optimize the air gap
between every two components which can be controlled by using a spacers inside the lens
tube. After many iterations, I arrive at the final design described in the Table 3.1. The
wavefront map at the relayed pupil in Fig. 3.4(b) shows a much smaller aberration compared
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to Fig. 3.2(b) . For off-axis field point at x = 0, y = 0.25 mm, more than 1/2 of the pupil is
diffraction-limited. In Fig. 3.4(c), the footprint of the peripheral field from the new design
mostly overlaps with the center footprint and the aberration is greatly reduced. The relayed
pupil size is 4.8 mm which means that the effective de-magnification rate of the back pupil
plane is 3.75× and the effective focal length of the lens group is 48 mm.

3.3 Phase Mask Design and Modeling

To encode 3D information with a phase mask, the only requirement is that each voxel in
the 3D object space generates a unique PSF, and thus the voxel location can be unambigu-
ously identified during reconstruction. Under this minimum requirement, a wide variety of
system designs would work, and each has its pros and cons in resolution, volumetric FOV,
noise sensitivity, computation cost, and manufacture feasibility.

In this section, I analyze different systems designs under the topic of single-shot 3D
imaging with a phase mask. I first compare placing the phase mask in the real space (light
field microscopy [5]) versus in the Fourier space (Fourier light field microscopy [68], Fourier
DiffuserScope [44]). I then compare different types of phase mask: Gaussian diffuser in
DiffuserCam [28], microlens array in the light field microscopy [5] and the Fourier light
field microscopy [68]), random microlenses in the flat diffuser microscope [29], and random
multifocal microlenses in Fourier DiffuserScope [44] and Miniscope3D [32]. Following the
analysis, I will also provide PSF comparisons between these phase masks.

Real Space vs. Fourier Space

To compare the pros and cons of placing a phase mask in the real space versus the
Fourier space, I use the microlens array in the light field microscope as an example. Light
field camera [85] and light field microscope [5] use a microlens array in the native image
plane, or real space, to simultaneously capture 2D spatial and 2D angular information.
The resulting 4D light field can be used for digital refocusing, perspective synthesis, or
3D reconstruction. The resolution of LFM can be improved by the wave-optics model [61],
allowing for reconstruction of high-spatial frequencies through simulated PSF deconvolution.
However, LFM with the real-space configuration has several major disadvantages:

1○ The PSFs are laterally spatially-varying, resulting in a computationally-intensive de-
convolution procedure.

2○ LFM suffers from reconstruction artifacts at the native focal plane.

3○ The resolution degrades rapidly with defocus.

4○ The numerical aperture (NA) of the objective and the microlens array must be matched
to avoid aliasing, which hinders design flexibility.
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Figure 3.5: Light field microscope configuration and simulated PSFs. (a) Traditional light
field microscope contains a microlens array in the native image plane and a sensor at the
back focal plane of the microlenses. The system is simulated with a 20X 0.4NA objective
and a microlens array with 125 µm pitch and 3125 µm focal length. All PSFs are plotted
with a gamma correction of 0.6 to enhance visibility. (b) In-focus PSFs (z = 0 µm) with
various lateral shifts. The PSFs are spatially-varying in the lateral dimension with a period
of the microlens pitch, and the forward model cannot be modeled as a convolution with a
single PSF, resulting in a computationally-intensive deconvolution procedure. (c) Depth-
dependent PSFs of on-axis point source (x,y = 0 µm). The size of the PSF around z = 0 µm
equals the microlens pitch, and this degradation of resolution causes reconstruction artifacts
around the native focal plane.

I present simulated PSFs of an LFM system in Fig. 3.5 to elaborate on the above-
mentioned disadvantages. The configuration of a traditional light field microscope is shown
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in Fig. 3.5(a), containing a microlens array in the native image plane and a sensor at the
back focal plane of the microlenses. I simulate an LFM system with a 20X 0.4NA objective,
a microlens array with a 125 µm pitch and a focal length of 3125 µm, and the wavelength
is 510 nm. The microlens NA ( 125

2×3125
= 0.02) is set to match the objective NA, and the

NA-match relationship is given by the following Eq. 3.1. The NA-match requirement limits
the choice of microlens arrays as described in disadvantage 4○.

NAobj

Mobj

= NAµlens (3.1)

I follow the wave-optics model in [61] and plot the simulated PSFs in Fig. 3.5(b)(c)
with a gamma correction of 0.6 to enhance visibility. The disadvantage 1○ is demonstrated
in Fig. 3.5(b) where the PSFs are spatially-varying in the lateral dimension. Although
the translational variance has a period of the microlens pitch, the forward model cannot
be modeled as a convolution with a single PSF, ending up with increasing both memory
consumption and the computation speed during deconvolution. Moreover, in disadvantage
2○, when the point source locates at the native focal plane, the in-focus PSFs are of the size

of the microlens pitch, so that the in-focus lateral resolution equals the microlens pitch. This
degradation of resolution causes artifacts around the native focal plane during deconvolution

and the axial artifact region is given by |z| ≤ pitch2

2λM2
obj

in [61]. In the case of my simulation,

the diffraction-limited resolution of the objective is 1.22×λ
2NA

= 0.78 µm, while the in-focus
lateral resolution is 125 µm, 160× worse than the objective’s diffraction-limited resolution.
The reconstruction artifact will appear in the axial region between z = ± 1252

2×0.51×202
µm =

±38.30 µm. Existing LFM systems circumvent this issue by placing the sample on one
side of the native focal plane and wasting half of the volumetric FOV [6, 61, 86], placing
the MLA in an off-focus plane [63–65], or applying wavefront coding [62]. However, even
with these methods applied, the performance degrades quickly when the point source moves
out of a single microlens’ depth of field because all microlenses have the same focal length
(disadvantage 3○).

To solve some of these problems, an alternative configuration, termed Fourier light field
microscopy (FLFM), places the MLA at the relayed Fourier (pupil) plane of the objective,
with the sensor one microlens focal length away [66–69]. The configuration of a Fourier light
field microscope is presented in Fig. 3.6(a). Placing the phase mask in the Fourier space
can extend the range of depths with high resolution. Since a point source in the objective’s
focal plane will become a plane wave and shine on the whole diffuser, an in-focus point
source attains a sharp PSF, getting rid of the artifacts around the native focal plane. In
contrast to LFM, where often only one side of the focal plane is employed, we can now use
diverging and converging waves coming from both sides of the focal plane. The Fourier-space
configuration effectively splits the 2D sensor into a grid of sub-images, with each microlens
imaging the sample from a different perspective view. I simulate an FLFM system with a
20X 0.4NA objective, the same one used in the previous LFM simulation. The back pupil
has a diameter of 8 mm and is 1:1 relayed onto the microlens array with 1.6 mm pitch and
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Figure 3.6: Fourier light field microscope configuration and simulated PSFs. (a) Fourier light
field microscope contains a microlens array in the relayed Fourier space and a sensor at the
back focal plane of the microlenses. The system is simulated with a 20X 0.4NA objective,
a 1:1 relay system and a microlens array with 1.6 mm pitch and 65 mm focal length. All
PSFs are plotted with a gamma correction of 0.6 to enhance visibility. (b) In-focus PSFs (z
= 0 µm) with various lateral shifts. The PSFs are spatial-invariant in the lateral dimension,
and the forward model can be modeled as a convolution with a single PSF for each depth,
resulting in a computationally-efficient deconvolution procedure. (c) Depth-dependent PSFs
of on-axis point sources (x,y = 0 µm). All the focal spots beneath each microlens become
out-of-focus simultaneously, resulting in a shallow axial imaging range.

65 mm focal length. I build a wave-optics simulation which will be described in Chap. 3.4
and plot the lateral and axial PSFs in Fig. 3.6(b) and (c). The sharp in-focus PSFs are
diffraction-limited by the microlens’ NA, containing high-frequency information to recover



CHAPTER 3. OPTICS DESIGN OF FOURIER DIFFUSERSCOPE 29

high-resolution during reconstruction. The in-focus resolution is 1.22× λ
2×NAobj/5

= 3.89 µm,

only 5× worse compared to the objective’s diffraction-limited resolution because there are 5
microlenses dividing the pupil. Unlike the traditional LFM, FLFM fundamentally resolves
the artifacts near the native focal plane. Furthermore, the PSFs are shift-invariant in the
lateral dimension for improved computational efficiency.

FLFM solves the disadvantages 1○ 2○ 4○ of LFM, but the disadvantage 3○ of LFM remains
because the axial PSFs become blurry due to defocus and therefore result in a shallow
axial imaging range. Besides, placing the periodic MLA in the Fourier plane causes a new
disadvantage. When a point in the scene moves laterally by an amount that shifts the PSF
by an integer number of pitches, the shifted PSF is nearly the same as the unshifted one;
this creates ambiguities that cause the deconvolution to fail. To avoid this problem, usually
a field stop is inserted to guarantee that the PSF shifts by less than one period over the
FOV [67, 68]. In summary, LFM with the Fourier-space configuration, or FLFM, has two
major disadvantages:

1○ The resolution degrades rapidly with defocus, resulting in a shallow axial imaging
range.

2○ The lateral FOV is limited in order to avoid overlap of the sub-images at the sensor

Different Types of Phase Mask

If we use a phase mask in the Fourier space or far-field, the computational-efficient
convolutional forward model applies to various phase mask designs. Here, I compare three
popular types of phase mask (smooth Gaussian diffuser, microlens array, random multifocal
microlenses) from resolution, noise sensitivity, and cost. I also provide numerical models to
evaluate each type of phase mask in simulation. To model a pure phase mask with a given
surface height map T (x, y) and refractive index n, I assume there is no absorption (fill factor
= 100%, transmittance = 1) and the complex transmission function t(x, y) only depends on
the phase delay φT (x, y):

t(x, y) = 1 ei[φT (x,y)],

and φT (x, y) =
2π(n− 1)

λ
T (x, y).

(3.2)

Given an incident wave Ein, the output wave exiting the phase mask Eout will be the complex
multiplication between the incident wave and the phase mask’s transmission function:

Eout(x, y, z = 0) = Ein(x, y)t(x, y). (3.3)

To simulate the PSF of a phase mask with plane-wave illumination, we have Ein = 1, and
propagate the output field from the back of the phase mask to its focal plane and acquire
Eout(x, y, z = f). The intensity measurement at the sensor is the square modulus of the
complex field:

I(x, y, z = f) = |Eout(x, y, z = f)|2 . (3.4)
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Figure 3.7: Compare the surface height, PSF, and the PSF auto-correlation of different phase
masks. All three phase masks have 5 mm side length and 15 mm focal length. The simulated
point spread function assumes plane-wave illumination and uses angular spectrum method
to propagate the light field to the focal plane of the phase mask. The PSF auto-correlation
versus lateral shift is used to quantify the reconstruction performance. The PSF of the
smooth Gaussian diffuser has noticeable background light, resulting in noise amplification
during reconstruction. The PSF of the microlens array has a periodic structure, resulting in
ghost images in reconstruction. The PSF of the random multifocal lenslets has high-contrast
focal points and pseudo-random structure, enabling a reconstruction with high SNR and large
FOV.
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Smooth Gaussian Diffuser

Off-the-shelf diffusers are being used for lensless single-shot 3D imaging in several sys-
tems [28, 87]. These pseudorandom planar phase masks are inexpensive, convenient and
easily scalable. The surface height T (x, y) can be modeled as a random matrix convolved
with a Gaussian kernel:

T (x, y) = A [rand(x, y) ∗N(0, σ)] (3.5)

where A is a scaling parameter to adjust the surface height. rand is a uniform distributed
random matrix with values between [0, 1]. N(0, σ) is a 2D Gaussian Kernel with a standard
deviation of σ. ‘∗’ is a 2D convolution operator. Since the smooth Gaussian surface does not
contain spherical surfaces, we cannot directly apply the Lens-Maker’s Formula to calculate
its focal length. Alternatively, we can approximate the surface as a summation of many 2D
Gaussian kernels, g(x),and each 2D Gaussian surface is a plano-convex lens. The “radius” of
a Gaussian is the radius of curvature of its peak, where the surface has the strongest focusing
power. The radius of curvature can be calculated based on the first and second derivatives
of the function.

g(x) = A exp[− x2

2σ2
]

g′(x) = A
−x
σ2

exp[− x2

2σ2
]

g′′(x) = A
−1

σ2
exp[− x2

2σ2
] + A

x2

σ4
exp[− x2

2σ2
]

R(x) =

∣∣∣∣∣ [1 + g′(x)2]
3
2

g′′(x)

∣∣∣∣∣
=⇒ R(x = 0) =

σ2

A

(3.6)

Once we have the radius of curvature of the Gaussian surface (R1 = σ2/A), with the knowl-
edge that the other side is flat (R2 = ∞), we can use the Lens-Maker’s Formula to get the
approximated focal length:

fGaussian =
σ2

A(n− 1)
(3.7)

where n is the refractive index of the material.
Using the above-mentioned equations, I simulate a smooth Gaussian diffuser surface with

5 mm side length, 15 mm focal length in Fig. 3.7. The surface contains random convex and
concave bumps, directing incoming light into a caustic pattern, or PSF of the diffuser. The
simulated PSF assumes plane-wave illumination and uses angular spectrum method (See
details in Chap. 3.4) to propagate the light field to the focal plane of the phase mask. The
caustic pattern contains random sharp lines spread in all directions, which enable good
resolution at all depths and a highly structured PSF for deconvolution. To quantify the
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sharpness and the matrix condition of the caustic pattern, I calculate the auto-correlation
versus lateral shift and then examine the full-width at half-maximum (FWHM) of the peak
and the sidelobes. A smaller FWHM value stands for a sharper PSF, which contains higher
frequency information and will provide better spatial resolution for an imaging system. The
high sidelobes represent an ill-conditioned matrix for sparsity-constrained reconstruction.
Because when the shifted PSF is similar to the un-shifted version, it is challenging for an
inverse algorithm to determine the true location of an object, causing higher noise ampli-
fication during deconvolution. From the PSF auto-correlation comparison in Fig. 3.7, the
smooth Gaussian diffuser has an FWHM of 212.32 µm and a sidelobe of more than 20%.
Compared to lens-based phase masks, the smooth Gaussian diffuser ends up with a worse
spatial resolution and a fair matrix condition.

Microlens Array

Microlens Array (MLA) is a phase mask consisting of a regular array of microlenses,
being widely used in light field imaging. Each microlens is a convex-plano spherical lens that
concentrates all incoming light into a diffraction-limited spot beneath. The PSF of this type
of phase mask contains an array of high-contrast and sharp focal spots.

To model the complex transmission function of a microlens array with focal length fµlens
and period d, we start from a single microlens, and the rest of them are all identical. This mi-
crolens, tµlens(x, y), can be modeled as an amplitude mask tA(x, y) representing the aperture
and a phase mask φT (x, y) representing the refraction of light.

tµlens(x, y) = tA(x, y)ei[φT (x,y)]. (3.8)

Using parabolic approximation when the radius of a lens is much larger than its aperture
size, namely R� d, the phase shift of the lens is

φT (x, y) = − k

2fµlens
(x2 + y2). (3.9)

The amplitude term tA(x, y) is related to the microlenses’ shape and filling factor. If the
filling factor = 100%, meaning each microlens’ aperture is square with a side length equals
the period d,

tA(x, y) = rect(
x

d
)rect(

y

d
). (3.10)

If the microlenses’ apertures are circular with a diameter equal to the period,

tA(x, y) = circ(

√
x2 + y2

d/2
). (3.11)
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Once we have the profile of a single microlens, the whole microlens array is a summation
of shifted microlenses and can be described as a convolution between tµlens(x, y) and a 2D
comb function with period d.

t(x, y) = tµlens(x, y) ∗ [comb(
x

d
)comb(

y

d
)] (3.12)

Plotted in Fig. 3.7, I simulate a microlens array with 25 microlenses, 5 mm side length and
15 mm focal length. The PSF has very low background light and very sharp focal points.
The PSF auto-correlation diagram has a narrow central peak with a FWHM of 9.05 µm,
and the sidelobes close to the central peak are nearly 0. However, when the regularly-
spaced microlens array is translated by exactly one period, the shifted PSF largely overlaps
with the on-axis PSF in FLFM, resulting in an increased auto-correlation and higher noise
amplification. In my simulated case with 25 focal spots, laterally shifting one period will
end up with 20 overlapping focal spots, and thus 2 side peaks with an auto-correlation value
of 0.8. In order to avoid the side peaks, the field-of-view of FLFM is limited in order to
avoid overlap of the sub-images at the sensor; otherwise, the reconstruction shows periodic
ghosting effect.

Despite the downsides mentioned above, having a regular structured phase mask makes it
easier for fabrication and calibration. There are plenty of off-the-shelf microlens arrays with
varying parameters from Thorlabs, RPC photonics, Holographix, etc, and it is a standard
procedure to customize one with specific parameters. Knowing the focal length and period of
a high-quality microlens array, it is also possible to use simulated PSFs for 3D reconstruction
without calibration, which eases out the experiment procedure [6, 61].

Random Multifocal Microlenses

Random multifocal microlenses (RMM) acquire the benefits of MLA and resolve several
shortcomings. Like MLA, RMM encodes depth information with microlenses in front of
the sensor, providing an in-focus PSF with a high SNR. However, unlike MLA, RMM is
randomly-spaced with varying focal length, more similar to a diffuser. Randomizing the
location of the microlenses breaks the ambiguity caused by periodicity, enabling full-FOV
imaging with a sparsity-constrained inverse solver. Assigning different focal lengths to the
microlenses, as in the RMM, extends the imaging depth range, within which there is always a
subset of microlenses in focus. This trades SNR near the native focal plane for an increased
depth range due to spreading high-frequency information across the whole volume. The
RMM PSFs form nearly orthogonal columns of the design matrix, enabling a compressed
sensing 3D reconstruction with more voxels than the pixels in the 2D measurement.

To simulate an RMM surface with side length L containing N microlenses, I begin with
finding out the location and focal length of each microlens. The centers of the randomly-
spaced microlenses, (xi, yi)i=1,...,N , are independent, identically distributed and is generated
one-by-one from a random distribution (I use continuous uniform distribution here), under
the constraint that the distance between adjacent centers is at least 70% of the averaged
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microlens pitch d = M/
√
N . The value 70% is a tuning parameter to prevent randomly

generated microlenses from overcrowding.

xi, yi ∼ U[0,L] for i in 1, ..., N

s.t.
√

(xi − xj)2 + (yi − yj)2 ≥ 0.7 ∗ d for any i, j in 1, ..., N.
(3.13)

The minimum and maximum focal lengths affect the axial range of the imaging volume,
and the rest focal lengths are evenly spaced within that range. Based on the lens maker’s
formula of thin lenses, and knowing that one surface is flat (radius = ∞), I acquire the
following relationship between the ith microlens’ surface radius Ri and focal length fi:

Ri = (n− 1)
1

fi
for i in 1, ..., N (3.14)

I draw the spherical sag of the microlenses in Eq. 3.15 and Fig. 3.8. The final diffuser
surface is a point-wise maximum over the individual spherical lens profiles with a maximum
thickness of t. The aperture shape of the microlenses is irregular, determined by the centers
and radii of the adjacent microlenses, similar to a weighted Voronoi diagram.

s(xi, yi, Ri) = t+Ri

√max (1−
(
x− xi
Ri

)2

−
(
y − yi
Ri

)2

, 0)− 1

 (3.15)

T(x, y) = max
i

s(xi, yi, Ri) (3.16)

Figure 3.8: Random multifocal microlenses parameterization. I draw the spherical sag s of
the microlenses with varying locations (xi, yi) and focal lengths Ri. The final diffuser surface
T is a point-wise maximum over the individual spherical lens profiles.

Similar to the smooth Gaussian diffuser and microlens array, I simulate a random mul-
tifocal microlenses phase mask containing 25 microlenses, with a side length of 5 mm and
an average focal length of 15 mm (ranging from 12 mm to 18 mm). Like the MLA, the
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PSF of RMM has high contrast and a central peak with a FWHM of 11.77 µm. Due to
some microlenses being defocused, the FWHM of RMM is slightly wider than the MLA,
but still much narrower than the smooth Gaussian diffuser. Unlike the periodic MLA, the
auto-correlation no longer has high side peaks, with all the side lobe areas being close to
zero. This effectively avoids ambiguity during reconstruction, and the FOV of RMM is only
limited by shift-invariance.

3.4 Wave-optical Forward Model

I have mentioned the forward model in Chap. 2 Eq. 2.1, in which the image formation
of Fourier DiffuserScope is compressed into a linear measurement matrix H. To determine
H that contains the PSFs of the optical system, I introduce the wave-optical forward model
based on Fourier optics [88] in this section. This simulation framework, not limited to
Fourier DiffuserScope, works for a general configuration of phase-mask-based single-shot 3D
microscope including Fourier LFM.

In summary, the simulation is ordered as follows. From a point source location in the
object space, I calculate the spherical wavefront at the the back focal plane, then multiply
by the apodization function of the objective to get the wavefront distribution at the pupil
plane. The wavefront at the pupil is then scaled by the relay system, multiplied by the
transmission function of the phase mask, and propagated to the sensor using the angular
spectrum method. I first define the simulation parameters in Table 3.2, then dive into the
implementation of each function.

Sampling Requirements

Figure 3.9: Sampling rate in the object space and frequency space.
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M size of the square simulation grid in one axis

L width of the simulation grid (mm)

(x, y) lateral coordinate in the object space

(u, v) lateral coordinate in the frequency space

(u′, v′) lateral coordinate in the relayed frequency space

(x0, y0, z0) point source location in the object space

λ wavelength

k = 2π
λ

wavenumber

fobj focal length of the objective

n refractive index of the immersive media

NAobj Numerical aperture of the objective

fTL focal length of the tube lens

fRL focal length of the relay lens

NAµlens Average numerical aperture of the microlenses

fµlens Average focal length of the microlenses

s sensor pixel size

Table 3.2: Parameter definitions for numerical simulation.

The object space and the frequency space are connected by the following Fourier trans-
form,

uFourier(u, v) =

∫ ∞
−∞

∫ ∞
−∞

uReal(x, y) exp[−j k

fobj

(ux+ vy)]dxdy (3.17)

where (x, y) are the Cartesian coordinate in the object space, or real space, and (u, v) are
the Cartesian coordinate in the pupil space, also called Fourier space, or frequency space. In
Fourier transforms, the resolution at one space is inversely proportional to the field width at
another space. In other words, the field width L in the real space determines the pixel size
δu in the frequency space, and vice versa. Since the simulation grid size M stays constant
during Fourier transform, a larger field width at the real space provides a higher sampling
resolution at the frequency space.



CHAPTER 3. OPTICS DESIGN OF FOURIER DIFFUSERSCOPE 37

To Nyquist sample the minimum resolvable spot in the real space, simulation pixel size
must satisfy

δx =
L

M
≤ 1

2

λ

2NAobj

. (3.18)

From the inverse relationship, the width of the frequency space is 1
δx

= M
L
≥ 2 × 2NAobj

λ
,

within which the back pupil occupies a center circle with a diameter of
2NAobj

λ
. Another

sampling requirement that resides in the Fourier space is to Nyquist sample the minimum
resolvable spot on the sensor, because the sensor is behind a Fourier-space phase mask. The
width of the simulated field in the sensor plane is demagnified from the pupil plane to be
M
L
fRL

fTL
. So we have

δx′ =
M

L

fRL

fTL

≤ 1

2

λ

2NAµlens

. (3.19)

Combining Eq. 3.18 and Eq. 3.19 yields the final constraints on the sampling grid,

2
fRL

fTL

2NAµlens

λ
≤ L

M
≤ 1

2

λ

2NAobj

. (3.20)

It is worth noting that Eq. 3.20 gives a good starting point to determine the sampling
rate. However, it’s always recommended to check the beam profile at every surface in the
optical path after running the whole simulation. Due to some irregular surface shapes (e.g.,
the RMM) or fast diverging/converging beams (e.g., defocused point sources), the phase
changes quickly in certain area and a higher sampling rate might be necessary to avoid
aliasing. Users need to plot the phase profile of each surface to make sure the optical field is
adequately sampled.

Point Sources

The point source to an optical system is an impulse function, namely Dirac delta function,
to a linear system. An ideal point source, in theory, should be infinitely small. But in
numerical simulation, the point source must have a finite spatial extent and the smallest size
available is the grid size in the object space. If a point source must be acquired, previous
work used a narrow Gaussian function with a quadratic phase, sinc-Gaussian function, and
so on [89].

Fortunately, in this case, we can utilize the Fourier transform feature of a lens to avoid
the sampling issue. Since a point source has infinite spatial bandwidth, its Fourier spectrum
is constant across all spatial frequencies. Knowing the point source location, we can derive
the pupil function using Fourier optics. In the following paragraphs, we decouple the pupil
function for an arbitrary point source location (x0, y0, z0) into three parts: defocus corre-
sponds to the axial location z0, lateral shift corresponds to the lateral displacement (x0, y0),
and apodization corresponds to the nature of the objective lens.
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Pupil Functions

1○ Defocus and Spherical Wavefront

In this discussion, I only consider the effect of defocus z0, and assume all point sources
are on-axis, namely x0 = y0 = 0. A delta function at origin is Fourier transformed into a
constant. Similarly in optics, a point source at the front focal point (z0 = 0) is transformed
into a plane wave in the back pupil, udefocus = c.

When z0 6= 0, the light emitted from the point source forms a spherical wave at the front
focal plane, which is then Fourier transformed. One way to simulate the defocused pupil is to
apply a Fourier transform to the object-space spherical wave numerically, but computing an
FFT is slow. Here, I use thin lens equation to derive an analytical defocused pupil function.
From the Newtonian form of the thin lens equation, a point source at z0 away from the front
focal plane is imaged to a point at z′ = −f 2

obj/z0 away from the back focal plane. With the
knowledge of the image location, we can infer the spherical wavefront at the back pupil to
be

udefocus =
E0

r
exp[−sign(z′)jkr], (3.21)

where

r =
√
u2 + v2 + z′2,

z′ = −
f 2

obj

z0

.

u, v are the frequency coordinates in the Fourier space.

2○ Lateral Displacement and Wavefront Tilt

In Fourier transform, a lateral displacement in the real space converts to a phase shift in
the Fourier space; and correspondingly, an off-axis point source in the object space results
in a tilted wavefront in the pupil space. I build a coordinate system shown in Fig. 3.10
with the origin being the front focal point of the objective lens and the positive z pointing
towards the light propagation direction. In the spherical coordinate systems, a tilt angle is
decomposed into a polar angle θ and an azimuthal angle φ. The relationship between the
Cartesian coordinate (x, y, z) and the tilt angle (θ, φ) is expressed as

θ = arctan(

√
x2 + y2

fobj − z
),

φ = arctan2(y, x).

(3.22)



CHAPTER 3. OPTICS DESIGN OF FOURIER DIFFUSERSCOPE 39

Figure 3.10: Wavefront tilt angle diagram.

For an off-axis point source at (x0, y0, z0), I apply a phase ramp Φ(u, v) to account for
the tilt due to (x0, y0) 6= (0, 0) [90], such that the output field

utilt = uin exp [jΦ(u, v)], (3.23)

where

Φ(u, v) = k(x cosφ+ y sinφ) tan θ. (3.24)

3○ Apodization Function

The previous discussions on defocus and tilt ignore the physical size of the lens and
assume the back pupil extends infinitely. However, the lens back pupil has a finite size in
the frequency space limited by its NA and wavelength. The diameter of the back pupil in
the frequency space is

2NAobj

λ
. The area outside of the back pupil is physically cropped and

the pixel value should be set to zero.
Within the back pupil, we consider ‘apodization’, a tapering function that gradually

brings a sampled signal down to zero at the edges of the pupil. In low-NA objectives,
paraxial approximation holds well and apodization can be ignored. In high-NA objective
with NA> 0.7, the apodization effect becomes noticeable and must be included in the sim-
ulation. For a lens designed to meet the Abbe sine condition, the apodization function is
P (θ) = P (r)

√
cos(θ), where r =

√
u2 + v2 and θ = arcsin(r λ

n
) [91]. Namely, the field after
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apodization becomes

uapod(r) =

{
uin(r)

√
cos[arcsin(r λ

n
)], if r ≤ 2NAobj

λ

0, otherwise
(3.25)

where r =
√
u2 + v2.

⇒ In summary, with the consideration of defocus, lateral shift, and apodization, the final
format of the optical field at pupil is

upupil = uapod · utilt · udefocus. (3.26)

Magnification

The relay lens and the tube lens form a 4f system that relays the back pupil onto the
phase mask with a demagnification rate of RRL

RTL
. Since in the experimental system the demag-

nification rate is less than 5, we assume the 4f system is ideal and ignore any distortions.
The relayed optical field urelay has the same structure as upupil, but at a small scale.

urelay(u′, v′;L′) = upupil(u, v;L), (3.27)

where u′ = u× fRL

fTL

, v′ = v × fRL

fTL

, L′ = L× fRL

fTL

.

Spherical Microlenses

The basic building block of an MLA and an RMM is convex-plano microlenses with
spherical surfaces. Each spherical lens contains optically dense material with varying thick-
ness, adding phase delays to the incident wavefront. In Eq. 3.9, I briefly mentioned the
phase transformation of a lens. Here, I elaborate on the derivation behind the spherical lens
model. The lens geometry is plotted in Fig. 3.11.

Let the thickness at (x, y) be ∆(x, y), the phase delay becomes

Φ(x, y) = kn∆(x, y) + kn0[∆0 −∆(x, y)], (3.28)

where n is the refractive index of the lens material, n0 is the refractive index of the surround-
ing environment which is usually air, and ∆0 denotes the lens on-axis thickness ∆(0, 0). So
the transmission function of a lens is a phase transformation

t(x, y) = exp[jΦ(x, y)] = exp[jk∆0 + jk(n− 1)∆(x, y)]. (3.29)

Since the lens shape is known to be convex-plano, assuming the radius of the spherical
surface is R, the thickness function is
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Figure 3.11: Geometry for a spherical lens to calculate the phase mask thickness function.

∆(x, y) = ∆0 −
(
R−

√
R2 − (x2 + y2)

)
= ∆0 −

(
R−R

√
1− x2 + y2

R2

)
(3.30)

≈ ∆0 −

(
R−R(1− x2 + y2

2R2
)

)
= ∆0 −

x2 + y2

2R
.

The approximation is based on paraxial rays only interacting with the very center area of
the lens so that x2+y2

R2 � 1.
Substitute of Eq. 3.30 into Eq. 3.29, we have the expression of the lens phase transfor-

mation using the surface radius,

tphase(x, y) = exp

[
jk∆0 + jk(n− 1)(∆0 −

x2 + y2

2R
)

]
(3.31)

= exp[jkn∆0] exp

[
− jk(n− 1)

x2 + y2

2R

]
.

The constant phase term exp[jkn∆0] is often dropped since only the phase delay term mat-
ters. And the final phase transformation function becomes

tphase(x, y) = exp

[
− jk(n− 1)

x2 + y2

2R

]
. (3.32)

For thin convex-plano lenses, the radius and the refractive index can be converted into
the focal length using 1

f
= n−1

R
, yielding an equivalent expression of the phase transformation
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function,

tphase(x, y) = exp

[
− jkx

2 + y2

2f

]
. (3.33)

The last step is to account for the physical size of the lens and bring in the amplitude
term. With a lens aperture of D, the final lens transmittance function is

tµlens(x, y) = circ

(√
x2 + y2

D/2

)
exp

[
− jkx

2 + y2

2f

]
. (3.34)

Until now, this derivation converges to Eq. 3.9. The RMM and MLA phase masks are
simulated by composing multiple microlens phase transformation functions. I use tphase mask

to represent a general transfer function of any kind of phase mask. The optical field right
after the phase mask is

uphasemask(u′, v′) = urelay(u′, v′) · tphasemask (3.35)

Physical Optics Propagation

The next step of the simulation pipeline is to propagate the optical field from the back
of the phase mask to the sensor plane. When light propagate in free space, the wavefront
coherently interferes with itself. To model the coherent propagation, two widely accepted
algorithms are ‘Fresnel diffraction propagation’ and ‘angular spectrum propagation’, both
with advantages and disadvantages. The rule of thumb to choose a propagation algorithm
is to calculate the Fresnel number. The Fresnel number Fn depends on the diameter of the
beam A and the distance Z between the source and the observation plane, Fn = A2

λZ
.

When the propagation distance is large, that is Fn < 1, the observation plane resides
in the far field and the Fresnel propagator should be chosen. In this case, the phase of the
optical field is measured relative to a reference sphere with a radius equal to Z. Although
the total number of simulation size M remains constant, the pixel size δu will change as the
beam propagates, adjusted to the field size change during propagation. On the other hand,
when the observation plane resides in the near field, namely Fn > 1, the angular spectrum
propagator works well. Different from the Fresnel propagator, the phase of the optical field
is measured relative to a plane. Both the simulation size M and the pixel size δu stay the
same between the source and the observation planes [92].

In the experimental system, I use an Olympus 20×, 1.0NA objective, a fTL = 180 mm
tube lens, a fRL = 48 mm relay lens, and a RMM with an average focal length of fµlens =
15.6 mm. The physical pupil size D = 2 × fobj × NAobj = 2 × 9 × 1.0 = 18 mm. After the
4f system, the beam size becomes A = D × fRL

fTL
= 18 × 48

180
= 4.8 mm. The propagation

distance equals the average focal length of the microlenses, Z = fµlens = 15.6 mm. So, the

Fresnel number Fn = 4.8 mm2

520 nm×15.6 mm
= 2.84 > 1. Therefore, the angular spectrum propagator
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is a better choice in this simulation. I apply the angular spectrum algorithm [88] to acquire
the optical field on the sensor plane,

usensor = uphasemask(u′, v′) ∗

[
exp (jkz)

jλZ
exp

(
jk

2Z
(u′2 + v′2)

)]
, r =

√
Z2 + u′2 + v′2 (3.36)

= F−1

[
F
[
uphasemask(u′, v′)

]
F
[exp (jkz)

jλZ
exp

(
jk

2Z
(u′2 + v′2)

)]]

= F−1

[
F
[
uphasemask(u′, v′)

]
exp (jkz) exp

(
− jπλZ(f 2

u′ + f 2
v′)
)]

where ∗ denotes 2D convolution, F denotes Fourier transform, F−1 denotes inverse Fourier
transform, fu′ and fv′ are the frequency coordinates corresponds to u′ and v′.

Sensor Measurement

Since camera sensors only capture intensity information and ignore phase, the final step
is to convert the optical field at the sensor plane into a realistic sensor measurement. The
intensity of the simulated field is proportional to the absolute square of the electrical field,

Isensor = usensor · usensor. (3.37)

If the sensor pixel size s is larger than the simulation grid size at the sensor plane δu′,
a downsampling procedure with a rate of s

δu′
is necessary. To better represent the physical

process, the downsampling algorithm should bin all the values within a sensor pixel block
instead of skipping. To this end, the final output of the simulation pipeline is

Ioutput = downsample
(
Isensor,

s

δu′
)

(3.38)

3.5 Simulation Results

I use simulations to numerically validate the design theory derived in the previous section
and to demonstrate the advantage of using RMM over MLA and RUM. I set the target
performance to be ∼ 2 µm resolution across a ∼ 200 µm depth range using a 20×, 1.0NA
objective lens (fobj = 9 mm, NAobj = 1.0, FOVobj = 1.1 mm, D = 18 mm). The design
wavelength is λ = 510 nm for common green fluorescent calcium indicators. The tube
lens and the relay lens form a 1 : 1 relay system to conjugate the back pupil plane onto
the phase mask, so the diffuser side length equals the pupil diameter (N · p = 18 mm).
Calculated from Eq. 2.4 and Eq. 2.7, the diffuser has at most N = 5 microlenses in one
transverse direction with an average pitch size p = 3.6 mm, resulting in an effective NA
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of 0.2 and predicted resolution Rlateral = 1.56 µm and Raxial = 1.94 µm. The average focal
length of the RMM (fave = 58.5 mm), matched to the focal lengths of the MLA and RUM,
is chosen to achieve a total magnification of M = 6.5×. For the RMM, with the goal
of ±z = ±100 µm, the microlens focusing at the nearest and farthest depth planes have
fmin = 54.6 mm and fmax = 63.1 mm, respectively. The focal lengths of the remaining 23
microlenses are dioptrically distributed between fmin and fmax.

The surface height of the three phase mask designs are shown in Fig. 2.1. The centers
of the randomly-spaced microlenses are generated from a uniform distribution, under the
constraint that the distance between adjacent centers is at least 70% of the microlens pitch.
A spherical surface is placed at the center of each microlens location, taking into account
the focal lengths and refractive index (nr = 1.56 for photopolymer). Then, I take the point-
wise maximum surface height to form the final diffuser with 100% fill factor. The sensor is
located at the distance of the average focal length behind the diffuser, with the 2 µm pixel
size ensuring Nyquist sampling of the diffraction-limited pattern.

The resulting PSFs are shown in Fig. 2.1, with the in-focus PSF being the intensity
pattern at the sensor for a point source at the native focal plane of the objective, and
the defocus PSFs being the intensity for a point source off-focus by 100 µm towards the
objective. For both uni-focal designs (MLA, RUM), all the lenslets are in-focus or out-of-
focus simultaneously, while for RMM each microlens comes into focus at a different plane.

Resolution

To characterize the lateral and axial resolution, which vary with depth, I reconstruct
volumes from acquisitions with two point sources at varying separation distances. For this
very sparse scene, the reconstruction converges in only 5 iterations of Richardson-Lucy with-
out regularization [93, 94]. I stop after 8 iterations and consider the two points resolved
when there is at least a 20% intensity drop between them, as in the Rayleigh criterion. For
lateral resolution, the two points are placed on the same depth plane with separation only
in the x-y direction; for axial resolution, the two points are both on the optical axis and
symmetrically set apart from the designated depth plane. The results in Fig. 3.12 compare
the reconstruction resolution for the three diffuser/MLA designs, with comparison to the
theory presented in Chap. 2.3.

At the native focal plane (z = 0 µm) the MLA has a lateral resolution of 0.6 µm and the
RUM has a lateral resolution of 1.1 µm (Fig. 3.12(a)), somewhat better than the predicted
Rlateral = 1.56 µm owing to deconvolution. However, the resolution of both uni-focal designs
(MLA, RUM) degrades rapidly with depth; based on Eq. 2.6, the slope of the resolution with
depth is 0.13 laterally and 0.1625 axially. The lateral resolution of Fourier DiffuserScope
(RMM) remains relatively steady over a large depth range (z = −80 µm to z = 90 µm),
varying between 1.4 ∼ 2.6 µm.

The axial resolution (Fig. 3.12(b)) follows similar trends. The highest axial resolution
for both MLA and RUM is 1.75 µm at the native focal plane, which is somewhat better than
the theoretical prediction of Raxial = 1.94 µm (Chap. 2.3). The axial resolution of RMM
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Figure 3.12: Comparison of simulated and theoretical two-point resolution at different depth
planes for the three cases of Fourier microlens designs: Fourier light field microscope’s MLA,
RUM and Fourier DiffuserScope’s RMM. (a) Lateral resolution and (b) axial resolution at
different depth planes. The MLA used in Fourier light field microscope (red solid line) and
the random uni-focal microlenses (blue solid line) have the best resolution at the native focal
plane (z = 0) but the performance degrades rapidly outside a small range of depth planes
(z = −10 µm to z = 10 µm), as predicted by theory (cyan dashed line). The RMM used in
Fourier DiffuserScope (orange solid line) has slightly worse resolution at z = 0, but achieves
good resolution across a much larger depth range (z = −80 µm to z = 90 µm). Within
this range, the resolution stays fairly close to the predicted multi-focal resolution (magenta
dashed line).

oscillates between 2.0 ∼ 3.8 µm within a 170 µm depth range. Thus, I conclude that the
RMM design, relative to the MLA and RUM, slightly sacrifices lateral and axial resolving
power at the native focal plane, but gains uniformly high performance across a large imaging
volume.

Field-of-View

To compare the FOV of the three different designs, I simulate and reconstruct a 2D
phantom that fills the objective FOV (1.1 × 1.1 mm2), placed at the native focal plane of
the objective (where the uni-focal microlenses have the best performance). The theory in
Chap. 2.3 predicts that the random diffusers (RUM, RMM) should be able to reconstruct
the whole object, while the MLA will only reconstruct FOVMLA = 554 µm.

To simulate the imaging pipeline accurately, I take into account the aberration from
plano-convex microlenses, which means that the PSF at the edges of the FOV will have subtle
differences from the center PSF. I divide the object into 10 × 10 µm2 blocks, convolve each
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Figure 3.13: Simulations comparing field-of-view (FOV) for different microlens designs. (a)
The FLFM (with MLA) reconstruction suffers from ghosting replicas (green regions in the
error map) due to its periodic structure. Both the RUM and the RMM reconstruct the
phantom successfully. The error of the random diffusers mainly occurs at sharp edges, which
can be fixed by adding total variation regularization. Error = reconstruction − ground
truth. (b) Cosine similarity between the on-axis PSF and off-axis PSFs is used to quantify
the shift-invariance assumption. The MLA has the highest similarity value (red), but its
FOV is limited by the microlens pitch. The similarity of RUM (blue) and RMM (orange)
are all above 75% across the full objective FOV.

block’s content with its corresponding PSF (calculated at the center of the block) and then
sum up the convolution result from all the blocks to get the simulated measured image. After
the spatially-variant block-wise convolution is done, I add 5% Gaussian noise to generate the
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final measurement shown in Fig. 3.13(a), first row. The simulated MLA measurement has
a periodic pattern because of its periodic PSF, while the diffuser measurements are more
random.

To reconstruct the image, I deconvolve the simulated acquisition with a single on-axis
PSF (assuming shift invariance) using Richardson-Lucy deconvolution [93, 94]. The result
is shown in Fig. 3.13(a), second row. No regularization is added (τ = 0 in Eq. 2.2) in order
to compare the worst-case performance. The reconstruction using the MLA shows periodic
replicas and large errors, due to the ambiguity of its PSFs. Restricting the FOV with a field
stop eliminates this ambiguity at the cost of a reduced FOV. Both random diffusers, which
do not have ambiguities in their PSFs, are able to reconstruct the whole object faithfully.
The RUM has a slightly better peak signal-to-noise ratio (PSNR), since at the native focal
plane all its microlenses are in focus, while only some of the RMM microlenses are. The error
maps (error = reconstruction − ground truth) in Fig. 3.13(a) show significantly less error
for the random microlenses designs than for the MLA, and errors for the random designs
are mainly at edges of objects, which can be reduced by adding TV regularization to the
reconstruction.

The shift-variance introduced by the aberrations in the simulation will cause model-
mismatch that reduces the performance of the system when using a single-PSF reconstruc-
tion. To quantify the shift-variance, I examine the cosine similarity (normalized cross-
correlation) between the on-axis and off-axis PSFs (Fig. 3.13(b)). At each lateral shift
location, I register the off-axis PSF to the on-axis PSF [95] and calculate the inner product
between them. The similarity value for randomly-located microlenses is at least 75% across
the FOV, which is sufficient for single-PSF deconvolution [28]. At the edges of the FOV, the
similarity goes down because the aberration and distortion are most severe at the periphery.
The MLA provides the highest values because all microlenses have a regular shape and are
of the same size, but the benefits are not useful because the FOV is actually limited by
periodicity, as described in Chap. 2.3. The randomly distributed microlenses have irregular
borders where the surfaces of neighboring microlenses are merged, which increases the aber-
ration, and the multi-focal diffuser adds additional defocus aberration as compared to the
uni-focal diffuser.

If high accuracy near the periphery is important, we can correct model mismatch with
a spatially-varying deconvolution algorithm [29]. This algorithm calibrates the PSFs at
multiple points across the FOV and interpolates them to find the PSFs at each position. It
should give better reconstructions, but at a cost of significantly longer computation times
and larger memory requirements. In my experimental system, the highest angle incident
onto the diffuser (13 degrees) is much smaller than the highest angle (50 degrees) in [29],
and the shift-invariant assumption holds well. Thus, I choose to use only a single PSF for
each depth for computational efficiency.
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Figure 3.14: Simulated 2D measurements and 3D reconstructions of a sparse spiral object
with different microlens designs. The ground truth object is a 200 µm-long spiral made of
spheres. The Fourier light field microscope (MLA) and the RUM only resolve the spheres in
the area around the native focal plane (green shaded area), whereas Fourier DiffuserScope
(RMM) extends the depth range to cover almost the entire volume.
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Depth Range

The two-point resolution in Fig. 3.12 can be used to estimate the depth range. For the
uni-focal designs (MLA, RUM), the lateral resolution remains below its predicted in-focus
value over a range of ∼ 20 µm, which is in agreement with the depth range predicted by
Eq. 2.11 using the system parameters: DOFmicrolens = 0.51×1.33

0.22
+ 1.33×2

6.5×0.2
= 19 µm. The multi-

focal design has stable performance from z = −80 µm to z = 90 µm, demonstrating the
improvement of depth range over uni-focal designs.

To demonstrate the depth range differences, I reconstruct a long 3D spiral of point
sources covering a 200 µm depth range (Fig. 3.14). This phantom contains 39 spheres of
2 µm diameter, with the first one at z = 95 µm and the last one at z = −95 µm, spaced
axially by 5 µm (resulting in a 3 µm gap between spheres axially). The lateral distance
between the spheres starts from 3 µm (gap is 1 µm) at the center of the spiral and increases
up to 7 µm (gap is 5 µm) at the outer circle of the spiral. The lateral extent of the spiral
(66 µm) stays within the restricted FOV of the MLA to avoid ghosting artifacts. I divide the
200 µm-long object into 200 layers of 2D slices, implement the forward model in Eq. 2.1 and
add 5% Gaussian noise to the simulated measurement (Fig. 3.14). The measurement contains
25 sub-images of the spiral object, one for each microlens which observes the spiral from a
specific angle; in this way the 3D information is encoded into a single 2D acquisition. The
simulated measurements highlight why the depth range of the multi-focal RMM (Fourier
DiffuserScope) is much larger than the uni-focal design cases. For the uni-focal (MLA,
RUM) cases, only the waist area of the spiral is sharp in all the sub-images. For the multi-
focal RMM, different spiral sub-images contain different sharp areas; hence, more in-focus
information about the entire depth range passes into the measurement.

The 3D reconstructions for each of the three cases are shown in Fig. 3.14. I use a PSF
calibration stack with fewer (100) PSFs than were used in the forward simulation, to mimic
practical axial sampling rates of continuous objects. The sparsity parameter (τ = 10−5) is
hand-tuned and remains the same for all cases. From the reconstructions, the benefit of
using multi-focal microlenses is obvious. 36 spheres are clearly resolved (from z = −80 µm
to z = 95 µm) with the RMM design, while only up to 13 spheres are resolved with the uni-
focal designs (green shaded regions). The depth range of the three cases matches the depth
range where the axial two-point resolution is under 5 µm. However, from both the two-point
resolution result and the 3D object reconstruction result, the depth range of the RMM is
slightly worse than predicted. This is likely due to most microlenses being out-of-focus at
both ends of the targeted depth range, causing a lack of high-frequency information that is
difficult to deconvolve.

3.6 Diffuser Fabrication Methods

When we consider purchasing a phase mask, off-the-shelf products are always the first
choice whenever possible. However, to the best of my knowledge, there is no off-the-shelf
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random multifocal lenslets available so far. The closest off-the-shelf product I found is the
random pitch micro lens array from Nalux CO., LTD[96], but unfortunately these microlenses
all have the same focal length.

Figure 3.15: Random multifocal microlenses manufactured by PowerPhotonic Ltd. using the
LightForgeTM fabrication service. (a) Surface height map sent for fabrication. The maximum
surface sag is 38 µm, within the 50um range from the LightForgeTM spec sheet. The side
length of the phase mask is 7500 µm and is plotted onto a 10 µm x 10 µm sampling grid as
a 750×750 matrix. The edge of the circular outline is tapered to avoid sharp edges. (b)
Manufactured RMM in a 1-inch sample holder. The surface is highly smooth with extremely
low roughness. (c) Experimentally measured PSF stack with a 1 mm axial interval. Each
microlens goes into and out of focus within the 5 mm range.

The industrial manufacturers use numerous ways to fabricate micro free-form optics with
high quality at high costs. For example, diamond turning, laser writing and lithography
are suitable for fast prototyping with few pieces, and injection molding with machined mold
is suitable for mass production. If the free-form optics is composed of microlenses with
a filling factor < 100%, meaning that neighboring microlenses do not attach, technologies
based on silicon processing including wet etching, melt and re-flow, are also popular choices.
Here, in Fig. 3.15 I show an RMM sample manufactured by PowerPhotonic Ltd. using the
LightForgeTM fabrication service. The maximum surface sag is 50 µm, and the surface map
is plotted onto a 10 µm × 10 µm sampling grid. The surface shape matches perfectly with
my design, and is highly smooth with extremely low roughness. There are sharp edges on
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the original design where two microlenses merge. Due to physical limitations, the fabricated
surfaces are rounded off into a concave or convex feature, which avoids light diffraction on
the edge and doesn’t affect the resulting PSFs. I then measure the PSF stack of the RMM
sample in the experiment, by placing the RMM in front of a camera sensor and gradually
moving a point source in the axial dimension. The point source is a fiber head with 0.2 NA.
The laser light outcoming from the fiber head directly incidents on the RMM, which is then
formed into PSFs on the sensor. In the PSF stack shown in Fig. 3.15 (c), the fiber head
is moving away from the RMM at a 1 mm increment. Each microlens goes into and out of
focus within the 5 mm range.

Since those commercial methods are either high-cost or require special skills, they are
often not accessible to individuals. I also explore how to fabricate a random multifocal
microlenses phase mask at low cost and medium quality. In the following section, I present
four methods: indentation, droplet, two-photon polymerization, and inkjet printing. For
each method, I explain the working principle, pros and cons, and provide initial results of a
sample RMM phase mask.

Indentation and Replication

Indentation stands for deforming the surface of a material by indenting with a probe
that has a know geometry and load. This method is widely used to measure the mechanical
properties, such as hardness, of a material. Since the deformed surface remains the shape of
the indenter, with a ball-shape indenter, indented material can serve as a negative mold for
microlenses. Cirino et al [97] employed a CNC machine with a ball-nose indenter to precisely
control the location and load of indenting and subsequently replicated the surface shape by
injection molding on PMMA. Without modifying a CNC machine or acquiring special tools,
we instead used hand indentation to fabricate an in-house RMM in [44].

We make a negative mold by randomly indenting polished copper using ball bearings with
varying radii (Fig. 3.16 : Indentation). The choice of radii comes from the designed focal
lengths and the refractive index of RMM material. The number of microlenses on the RMM
is controlled by the number of hand indenting, but the location of each indenting is random.
We then pour a thin layer of polydimethylsiloxane (PDMS) or UV-curing epoxy onto the
copper mode, which is then placed inside a vacuum pump to remove air bubbles (Fig. 3.16
: Replication). For solidification, the PDMS material is baked in the oven, and epoxy
is cured by UV light using a nail lamp. Finally, we carefully peel off the RMM containing
convex-plano microlenses (Fig. 3.16 : Random multifocal microlenses). The main fabrication
errors come from deformation error during indentation and shrinkage of the material during
solidification. These have opposite effects, since the indented deformation will have bigger
diameter than the indenter while the material shrinkage gives smaller diameter, so they offset
each other to some extent. With some trial and error, we use ball bearings with diameters
from 10 mm to 16 mm and PDMS material to approximate RMM with focal lengths from
12 mm to 21 mm.
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Figure 3.16: Hand indentation and replication of random multifocal microlenses. We make
a negative mold by randomly indenting polished copper using ball bearings. The surface
shape is then replicated into convex-plano microlenses using PDMS or UV-curing epoxy.

Droplet

Droplets make use of the surface tension of the material to form microlenses[98], and
they have better surface quality compared to the replicated one. We fabricated a phase
mask with a droplet-based technique for the flat diffuser microscope in [29]. Drops of optical
epoxy (Norland 63 [99]) were formed and cured on a hydrophobic surface. We then handpick
the droplets with suitable sizes under a microscope, and transfer those onto a glass coverslip
to form the RMM, generating lenslets with approximately 250 µm diameter. Due to the
strong surface tension of the epoxy, the droplets have smaller radii and thus smaller focal
lengths than desired. The final RMM is index-matched with PDMS to increase the microlens
focal length to about 1.5 mm.

Two-Photon Polymerization

3D printing, also known as additive manufacturing, is a fabrication process by adding
material layer by layer, which is in contrast to traditional methods involving subtracting
material. For typical 3D printers based on stereolithography (SLA), material jetting, or
selective Laser sintering (SLS) technologies, currently the minimum layer thickness is bigger
than 15 µm. However, the RMM requires a surface height resolution of 1 µm over a FOV of
at least 5 mm.

Two-photon polymerization is a newly developed type of 3D printing to fabricate micro-
optics on the sub-micron resolution scale [100]. Although photoresist is only sensitive to
UV light (350–400 nm) and the two-photon polymerization uses a near-infrared femtosecond
laser (780–800 nm Ti:sapphire), the material absorbs two photons simultaneously in a small
focus area that leads to a polymerization process. In contrary to the SLA technique which
directly uses a UV laser, the two-photon technique can achieve a resolution beyond the
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diffraction limit of the objective due to the nonlinear nature of the two-photon polymerization
process [101]. In a subsequent step, similar to other 3D printing technologies, the redundant
photoresist is washed out to reveal the 3D printed structure.

We fabricate RMM samples with the Nanoscribe two-photon polymerization machine,
Photonic Professional GT2, located in the Stanford Nanofabrication Facility. We upload a
3D STL file of the RMM design to DeScribe, a print job developing software for Nanoscribe,
then a workflow is generated with user-chosen printing parameters including scan speed,
laser power, stitch overlapping, and so on. Nanoscribe uses planar galvanometric scanning
to precisely control the polymerization location within the FOV of the objective and the
biggest FOV has a diameter of ∼400 µm with the 25× Nanoscribe objective. If larger objects
need to be printed, several blocks need to be stitched together by moving the substrate with
a mechanical stage.

As shown in Fig. 3.17, we apply Nanoscribe to two print jobs: a large RMM design
with a 4.2 mm side length and an average microlens diameter of ∼900 µm, and a small
RMM design with a 1.8 mm side length and an average microlens diameter of ∼300 µm
used in [32]. Both RMMs are printed with the 25×, 0.8 NA objective and 1 µm layer
thickness, paired with the Nanoscribe IP-S photoresist since it provides smooth surfaces
and low shrinkage. For the large RMM design (Fig. 3.17 (a)), several blocks are needed to
piece together a single microlens. The offset and tilt error from the mechanical stage cause
uneven seams cutting through the center of the microlenses. The stitching artifacts can be
very detrimental to the RMM’s focusing capability. As seen in the experimental PSF, the
focal points are blurry or even split into 2-3 sub-focal points. Fortunately, for the small
RMM design where each microlens stays within the objective’s FOV, we can employ the
adaptive stitching algorithm [102] to arrange the stitching seam to be at the microlenses’
edges. The method to find out the edges is similar to the Voronoi segmentation. Given a set
of centers and radii of circles in a plane, the task is to assign each coordinate in the plane
to one of the given circles. For each coordinate in the plane, the distance to all centers is
calculated, and the closest center with the minimum distance is the assignment. As a result,
a dividing line is defined by the fact that the distance to two or more centers is equal. Once
the adaptive stitching mask is obtained, the writing instructions per block can be generated
using TipSlicer [103]. Fig. 3.17 (b) compares the designed and experimental PSFs at three
depth planes, showing a good match with some degradation at the end of the volume.

Conclusion

The indentation manufacturer method and droplet method are imprecise and thus lacks
reproducibility. While as-built surface shape is calibrated and computationally accounted for,
using more precise manufacturing methods could improve the surface quality of the diffuser
and guarantee the system performance, especially for microscopic applications. Two-photon
polymerization are suitable when the size of the microlenses is smaller than the objective’s
FOV. Otherwise, professional industrial manufacturers should be the top choice if budget
allows.
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Figure 3.17: Random multifocal microlenses fabrication with Nanoscribe. (a) For the large
RMM design with a 4.2 mm side length and an average microlens diameter of ∼900 µm,
several blocks are needed to piece together a single microlens, and the stitching artifacts
detriments the RMM’s focusing capability. (b) For the small RMM design with a 1.8 mm
side length and an average microlens diameter of ∼300 µm, adaptive stitching algorithm is
employed to put the seams at the boundaries of the microlenses to mitigate artefacts. The
designed and experimental PSFs show good agreement, with slight degradation at the edge
of the volume.
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Chapter 4

Algorithm Design of Fourier
DiffuserScope

The raw acquisition on the camera encoded by the phase mask is a multiplexed measure-
ment that cannot be directly interpreted for 3D imaging. So a reconstruction procedure is
necessary to recover the depth information. If we know a physics-based forward model of the
optical system, the reconstruction is an inverse of the forward when well-conditioned, which
can be solved using one-step inverse algorithms, iterative convex optimization, and neural
networks. In this chapter, I will discuss different reconstruction algorithms used for 2D, 3D,
and 4D imaging (3D space plus 1D time).

For 2D imaging, since the forward model is a 2D convolution between the object and
the PSF, the most straightforward method is to do one-step deconvolution algorithms, for
example, inverse filtering, regularized inverse filtering, and Wiener filtering. However, when
the camera is not big enough to capture the whole convolved image, the forward model
becomes a 2D convolution followed by a crop function. In this case, partial information is
lost during cropping so that the measurement can no longer be directly inverted. Iterative
algorithms with regularizers (e.g., Richardson-Lucy, gradient descent, FISTA, ADMM, etc.)
can successfully constrain the reconstruction to an optimal solution using compressed sens-
ing theory. Pre-trained neural networks also contain prior knowledge of the system and is
able to predict a reconstruction at a faster speed, without iterations. For 3D imaging, the
measurement is a summation of multiple convolutions. Each pixel on the camera is traced
back to more than one voxels in the volume. For example, in the dataset in Fig. 2.6, there
are 50 × more voxels than the captured pixels. The information is hugely compressed such
that the inverse procedure is ill-posed unless adding priors. For 4D imaging, the space-time
model becomes critical to decouple spatially overlapping signals in the temporal domain,
and vice versa. Making use of the temporal information between frames can help with the
reconstruction by separating the background from the dynamic signals.
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4.1 2D Plane Reconstruction Algorithms

The 2D image acquisition model is y = h ∗ x + n = F−1[F(h)F(x)] + n, where y is the
sensor acquisition, x is the object of interest, h is the PSF, and n is the noise. The sources of
noise are often divided into two general components: signal-dependent noise, namely shot-
noise following a Poisson distribution; signal-independent noise, such as read-out noise, dark
current, quantization noise, which are modeled as a Gaussian distribution. The aim of image
reconstruction is to produce an estimate of the object x̂ from a noisy acquisition y.

2D deconvolution methods fall into three categories: one-step filtering, iterative recon-
structions, and neural networks.

• One-Step Filtering
One-step filtering is fast, but tends to amplify noise. It is difficult to incorporate various
types of priors, and only works for well-conditioned problems [104, 105]. The most
direct approach of deconvolution is inverse filtering corresponding to the least-squares
solution, x̂ = F−1[F(y)/F(h)]. Inverse filtering is parameter-free, but the denominator
term 1/F(h) might contain close-to-zero values and drastically amplifies noise in the
frequency domain. A simple fix is to add a constant to the denominator to avoid
dividing by zero issues, termed regularized inverse filtering, where x̂ = F−1[ F(y)

F(h)+λI
].

Another method to improve inverse filtering is to add a damping factor related to the
SNR, yielding the well-known Wiener filtering [106],

x̂ = F−1

[
|F(h)|2

|F(h)|2 + 1/SNR
· F(y)

F(h)

]
, where SNR =

signal mean

noise std
. (4.1)

The SNR term requires prior knowledge of the signal and noise, which is often im-
practical. A common approximation is to use the mean value of y as the signal term
and use the standard deviation of y as the noise term. Wiener deconvolution with
hand-tuned parameters generally achieves acceptable results when the inverse problem
is well-conditioned, but fails in compressed sensing when the problem is ill-conditioned.

• Iterative Reconstructions
Iterative reconstructions can solve ill-conditioned problems by combining prior infor-
mation. The main drawback of iterative approaches is that the convergence speed is
often too slow for real-time imaging.

With an extended FOV, the convolved image, h ∗ x, becomes wider than the camera
size. Only the center part will be captured and the forward model becomes a 2D
convolution followed by a crop function, y = crop(h ∗ x) + n. In this case, the inverse
problem becomes ill-posed, meaning that there exist an infinite number of solutions
that would result in the same measurement. The general formulation is to use convex
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optimization to iteratively minimize a loss function, which consists a data-fidelity term
and a regularization term.

x̂ = arg min
x

∥∥y − crop(h ∗ x)
∥∥2

2
+ Γ(x). (4.2)

The data-fidelity term enforces that the reconstructed object, after a known imaging
model, matches the measurement. The regularizer term, Γ(x), enforces prior knowledge
of the latent image. Some common priors on the object include non-negativity, native
sparsity ||·||1, gradient sparsity using total variation ||D(·)||1, smoothness ||·||2, wavelet
sparsity ||W (·)||1, etc. Once a physical problem is formatted into an optimization
problem with constraints, various solvers can be applied to find the optimal solution.
The detailed implementation of FISTA and ADMM of 2D diffuser imaging can be
found in this tutorial [107], to name a few.

• Neural Networks
Neural networks-based methods have been widely used in solving inverse problems,
such as denoising, deconvolution, and super-resolution. In convolutional neural net-
works (CNN), we apply a sequence of linear filtering operations alternating with simple
point-wise nonlinear activation functions. These filter weights are optimized during the
training process with a minimization of the cost function. After training, the forward
operation of a CNN is very fast with the help of hardware (GPU in our case) ac-
celeration, and the gradients w.r.t. these weight parameters are computable via the
chain rule and the backpropagation algorithm. Efficient implementation of CNN mod-
els has been realized in standard libraries and frameworks, such as TensorFlow [108]
and PyTorch [109]. Once training is finished and the parameters are pinned down, the
inference step is lightning fast. However, a CNN model is not a silver bullet without a
large amount of high-quality data (i.e., garbage in, garbage out). Fortunately, in the
case of 2D plane reconstruction, this is not a problem. Generating simulated training
data is fairly straightforward because the forward model (convolution + cropping) is
readily available and easy to compute. As for the network architecture, there are a
great variety of choices [110–112], such as the number of convolutional layers, filter sizes
and types of nonlinear activation functions, etc. The number of learnable parameters
of a CNN model is a rough indicator of its complexity as well as the computational
cost. In fact, neural networks can also be built up with unrolling iterative optimization
algorithms (e.g., ADMM, FISTA, etc.), turning each iteration into a layer of neural
network [30, 113, 114].

In this section, I propose a novel neural network architecture, termed FourierNet, to
tackle 2D diffuser imaging reconstruction. The architecture of FourierNet is based on a
physical understanding of the optical forward model and is tailored for image deconvolution
with a large PSF.
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FourierNet Overview

Because the size of the diffuser PSF can be as big as the camera sensor, the measured
image could potentially encode signals from any pixel of the original image. Therefore, a
reconstruction neural network must take into consideration all the pixels of the measured
image, and the conventional small kernels (3× 3 or 5× 5) for CNN models are not enough.
Here, I instead apply a kernel with the same size of the input image to achieve such a global
context.

Note that such a choice of image-size kernel is computationally heavy in conventional
real-space convolution, but can be efficiently implemented in the Fourier space, where the
convolution is converted to a element-wise multiplication of the Fourier-transformed image
and the weight matrix. Compared with a 2D real-space convolution with a computational
complexity of O(N4), the Fourier-space multiplication cuts the computational complexity
down to O(N2 log2N). For input images with 256× 256 pixels, we can achieve a speedup of
two orders of magnitudes. We name this architect FourierNet.

Since the neural network is a universal function approximation, adding more weights
to the neural network leads to better approximation of high-dimensional functions, namely
more complicated objects in our case. The extra weights can be added in series (e.g., deep
ResNet [115]) or in parallel (e.g., UNet [110]). As shown in Fig. 4.3, UNet, through cascading
downsampling and upsampling convolutional layers to capture features at different scales, is
especially suitable for imaging processing tasks. Similar approaches can be applied in the
Fourier space [46, 116, 117], where downsampling in real-space corresponds to a cropping in
the Fourier space, and vice versa. Such a multi-scale Fourier convolution network is called
Fourier-UNet, as shown in Fig. 4.3.

FFT-based Conv2d

Conv2d is a 2D convolutional layer that outputs the 2D cross-correlation between the in-
put signal and the layer’s weights. In TensorFlow and PyTorch libraries, the built-in Conv2d
layers are implemented using conventional sliding inner-product methods, suited for small
kernel size. If the input image has N × N pixels and the kernel size is M ×M , the time
complexity of conventional Conv2d is O(N2M2), considering only 1 kernel. Alternatively,
if the cross-correlation is calculated using Fourier transform, the time complexity of Fourier
transforming the input image is O(N2 log2N), the time complexity of element-wise multipli-
cation in the Fourier space is O(N2). To make our life easier, I directly use the kernel matrix
in the Fourier space. In total, the time complexity is O(N2 log2N + N2) = O(N2 log2N).
The time complexity of conventional Conv2d increases at a rate of M2, while the time com-
plexity of FFT-based Conv2d is independent of the kernel size. For N = 256 and M = 256,
N2M2

N2 log2N
= 11300, so it is essential to use FFT-based Conv2d for big kernel sizes.

Our FFT-based Conv2d layer implementation is shown in Fig. 4.1. The input image
is zero-padded to double its size in the real space such that the frequency resolution is
increased. Because the images are real signals, I choose to do Fourier transform with the rfft
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Figure 4.1: FFT-based Conv2d layer implementation

(discrete Fourier Transform for real input) algorithm implemented in PyTorch. A follow-
up element-wise multiplication is done in the Fourier space. Note that the usage of rfft
not only keeps the symmetry of the Fourier coefficients (Cω = C∗−ω), but also reduces the
number of complex parameters in the Fourier-space weight matrix. The products after
the multiplication is converted back to the real space using irfft (inverse discrete Fourier
Transform for real input), and cropped to match the size of the input images. I implement
the FFT-based Conv2d as a neural network module with the same input and output structure
as conventional Conv2d.

Dataset

In this work, I use a modified Stanford Dogs dataset [118] to train and test our neural
network models. The original dataset contains 20,580 images with varied sizes (different
resolution and aspects) covering 120 breeds of dogs. I crop them to square images and
resize to 256× 256 pixels, as shown in Fig. 4.2(a). In addition to the ground-truth images,
I use the forward model to generate simulated measurements by performing a convolution
with respect to the PSF and then cropping the result, y = crop(h ∗ x). This procedure is
illustrated in Fig. 4.2(b). Note that the PSF in the forward model is acquired from an actual
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Figure 4.2: The dataset contains 20,580 image pairs, of which 80% (16464 images) are
training samples, 19% (3910 images) are validation samples, and 1% (206 images) are testing
samples. Each pair of data contains a ground-truth image and a simulated measurement
image. (a) Ground-truth data. I modified the Stanford Dogs dataset [118] to square images
with 256×256 pixels. (b) I generate simulated measurements by convolving the ground-truth
image with the PSF and then cropping the result, assuming no noise.

Fourier DiffuserScope using a random Gaussian diffuser, and no noise is considered in the
forward model. I use 80% of data (16464 images) as training samples, 19% (3910 images)
as validation samples, and 1% (206 images) as testing samples. A batch size of 20 is used
during training.

Neural Network Architecture

I built 4 different neural network models to investigate the effect of kernel sizes and the
total number of parameters. First, I define the Vanilla CNN to be two identical blocks of
2D real-space convolution with 32 different 3 × 3 kernels followed by a ReLU, as shown in
Fig. 4.3. To capture features at different scales, I beef up the Vanilla CNN into a 3-layer
UNet, where the input images pass through a downsampling and then upsampling path with
skip connections. Note that the 3-layer UNet still adopts a 3×3 kernel in the Conv2D layer.



CHAPTER 4. ALGORITHM DESIGN OF FOURIER DIFFUSERSCOPE 61

Figure 4.3: Neural network architecture of (a) Vanilla CNN, (b) 3-layer UNet, (c) Fourier-
CNN, and (d) Fourier-UNet. Both input and output images have a size of 256× 256 pixels
with RGB channels.

Fourier-CNN, unlike Vanilla CNN, first performs the convolution in the Fourier space to
learn the features with a global context, then uses a conventional Conv2D layer to manage
fine tuning. An UNet-style generalization of Fourier-CNN is the so-called Fourier-UNet in
Fig. 4.3, where Fourier-transformed input images are distilled further with cropping and mul-
tiplication with a correspondingly smaller weight matrix. The results are packed into a large
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matrix in the Fourier space before an inverse Fourier transform. A follow-up conventional
Conv2D layer is again used to learn the features. Note that our architecture is simpler and
faster than the one in [46] where an inverse Fourier transform is performed at each level.

Results

Figure 4.4: Sample reconstructed images with neural network models comparing Vanilla
CNN and Fourier-CNN. (a) Input images simulated with the DiffuserCam forward model.
Output images with (b) Vanilla CNN, (c) Fourier-CNN. (d) Ground-truth of the input
images.

As expected, the small kernel size of Vanilla Net leads to poor performance of recon-
struction, as illustrated in Fig. 4.4, while Fourier-CNN achieves much better results with
the global context. Applying downsampling and upsampling techniques in UNet enables
multi-scale feature recognition, leading to an effectively larger kernel size. The details of
images can thus be reproduced in Fig. 4.5. It is beneficial to have both a large kernel in the
first place and multi-scale feature recognition, for which the Fourier-UNet is designed.

To better assess the neural network models, I plot the validation loss as a function
of epoches, as shown in Fig. 4.6. Fourier CNN and Fourier-UNet are much more stable
and converge faster than Vanilla CNN and 3-layer UNet. Fourier-UNet achieves the best
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Figure 4.5: Sample reconstructed images with neural network models comparing Fourier-
CNN, UNet and Fourier-UNet. (a) Input images simulated with the DiffuserCam forward
model. Output images with (b) Fourier-CNN, (c) UNet, and (d) Fourier-UNet. (e) Ground-
truth of the input images.

reconstruction performance, however, the usage of multi-scale feature recognition in Fourier-
UNet only have marginal gain compared with flat Fourier CNN. Fourier CNN is therefore
the most efficient neural network model in this study.

I demonstrate the power of Fourier CNN using natural images and smooth Gaussian
diffusers. This is a general workflow for deconvolution with big kernels, and can be applied
to microscopic applications as well.

4.2 3D Volume Reconstruction Algorithms

To reconstruct a 3D volume from a single 2D measurement, the inverse problem is highly
ill-posed, and we must add priors to recover a reasonable solution. Numerous methods
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Figure 4.6: Validation loss comparison

have been applied to 3D diffuser imaging and light-field imaging reconstruction, including
Richardson-Lucy [61], FISTA [29], ADMM [28], CNN [119], etc. In this section, I introduce
how to use the Richardson-Lucy (RL) optimization solver as an example for 3D volume
reconstruction. More details of the FISTA and ADMM implementation of diffuser image
reconstruction can be found in [120].

Richardson-Lucy as an Inverse Solver

RL [93, 94] is a maximum-likelihood estimation assuming that the noise follows a Poisson
distribution, y ∼ P(Ax), where P models a Poisson process and A summarizes the image
formation model. The log-likelihood of having a measurement y given an object x is

log(L(x)) = log(p(y|x)) = yT log(Ax)− 1T (Ax)−
M∑
i=1

log(yi!), (4.3)

where the log operation is applied element-wise and M represents the total number of pixels
on sensor. Since for a given measurement, the last term

∑M
i=1 log(yi!) is a constant, the

gradient of the log-likelihood has the following expression,

∇ log(L(x)) = AT
( y

Ax

)
−AT1, (4.4)

where the division y
Hx

is element-wise. Once the iterative algorithm converges to the optimal
solution, the log-likelihood won’t change, and its gradient equals zero: ∇ log(L(x)) = 0.
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From this conclusion, the multiplicative update of RL writes

x(k+1) = x(k) ×
AT
(

y
Ax(k)

)
AT1

. (4.5)

Here, both the multiplication × and the division y
Ax(k) ,

·
AT 1

are implemented element-wise.
If the initialization x0 ≥ 0, during the multiplicative update, the non-negative nature is
preserved in the following iterations.

Forward and Backward Function

Although the derivation of RL update in Eq. 4.5 is carried out in matrix form, this
algorithm is found useful in a wide range of matrix-free problems, as long as we replace A
with the forward function and replace AT with the backward function.

The 3D forward model has been introduced previously in Eq. 2.1. With FFT acceleration,
the forward function implementation is as follows.

Forward function: Ax =
∑
z

F−1
(
F(hz)F(xz)

)
=
∑
z

Azxz. (4.6)

For a given depth z, the convolution operator can be represented by a Toeplitz matrix,
Az = F−1diag(h̃z)F . h̃z is the discrete Fourier transform of hz, and is also the eigenvalues
of the Toeplitz matrix Az. F is the discrete FFT matrix.

The backward function, on the other hand, is ATx. For each z layer, the operator turns
into ATz = F †diag(h̃z)

†(F−1)†, where † stands for conjugate transpose of complex matrices.
Since the discrete FFT matrix is unitary with a scaling factor, F−1 = 1

n
F †. Therefore,

ATz = F−1diag(h̃z)
†F . This means that the backward function in the Fourier space has the

following implementation.

Backward function: Ax =
∑
z

ATz xz =
∑
z

F−1

((
F(hz)

)†F(xz)

)
. (4.7)

In summary, Algorithm 1 outlines the pseudo-code for the RL deconvolution for 3D
diffuser image reconstruction. It is worth noting that, similar to FISTA and ADMM, regu-
larizers can be added to RL to help with convergence speed and suppress noise. Interested
readers can refer to [121] for details.

4.3 4D Space-Time Reconstruction Algorithms

The most straightforward approach to reconstructing a video is to apply the reconstruc-
tion algorithm frame by frame, as it does in Fig. 2.6. However, the background fluorescence
signal originating from static components breaks down the sparsity assumption and decreases
the signal-to-noise ratio of the dynamic fluorescence signals. Moreover, the temporal behav-
ior of calcium indicators can be employed as a constraint in the space-time domain [86,
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Algorithm 1 Richardson-Lucy 3D reconstruction

x← ones(W,H) ; . Initialization
while k ≤ Itermax do

ŷ← zeros(W,H)
for z = 1 to zmax do . Forward function

ŷ← ŷ + ifft [ fft(hz) fft(xz) ]
end for
r← y/ŷ
r̂← ones(W,H)
µ← zeros(W,H)
µ̂← zeros(W,H)
for z = 1 to zmax do . Backward function

µ← µ + ifft [ conj( fft(hz)) fft(r) ]
µ̂← µ̂ + ifft [ conj( fft(hz)) fft(r̂) ]

end for
µ← µ/µ̂ . Normalization
x← x× µ . Update

end while

122], which can demix the spatial and temporal footprints of each neuron. In this section,
I make use of the temporal information between frames to help with the reconstruction by
separating the background from the dynamic signals.

Inspired by background removal algorithms based on Robust Principle Component Anal-
ysis (RPCA) [123, 124], I perform sparse and low-rank decomposition on our raw video,
which is a spatial-temporal matrix. The temporal sparse component contains the dynamic
moving objects, and the temporal low-rank component contains the static object and noise
which serve as background. This sparse and low-rank decomposition separates the raw video
into a temporal sparse video and a temporal low-rank video. I then use the inverse solver
to reconstruct the two components separately with different sparsity priors: native sparsity
for the sparse component and total variation sparsity for the low-rank component. In the
experiments with a hydra sample tagged with GCaMP, the tentacle movements are exagger-
ated and the mostly stationary body is separated. The resulting reconstruction highlights
the hydra movements more than the frame-to-frame method.

Methods

Fourier DiffuserScope is a fluorescence microscope with a diffuser (random multifocal
lenslets) in the Fourier space and the sensor placed immediately after (Fig. 4.7a). The raw
camera measurement contains overlapping sub-images; each sub-image comes from a lenslet
imaging the 3D object from a different perspective and with a different focal plane. From
the captured raw video of a dynamic sample, I use non-negative RPCA to perform a sparse
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and low-rank decomposition:

min
L≥0, S≥0

‖L‖∗ + λ‖S‖1 subject to A = L + S, (4.8)

where matrix A is a spatial-temporal matrix representing the raw video. Each column of A
represents a 2D frame in the video. I aim to decompose A into a low-rank matrix L and
a sparse matrix S, by minimizing the nuclear norm of L and the l1 norm of S with tuning
parameter λ [123].

Next, I feed the sparse video and the low-rank video into the sparsity-constrained re-
construction algorithm in Eq. 4.9. Each frame, a column in L or S, is reconstructed inde-
pendently. Here, y is a 2D frame, v represents the reconstructed 3D volume, H is a matrix
containing the calibrated 3D point spread function (PSF) stack, and Φ transforms v into
a domain where the 3D object is sparse. The temporal sparse component is sparse in the
native 3D space and Φ is an identity matrix; the gradient of the temporal low-rank compo-
nent is sparse and Φ is a finite-difference operator. After reconstruction, I use open-source
software, Icy [125], to render and visualize the final results.

v̂ = arg min
v≥0

1

2
‖y −Hv‖2

2 + β‖Φv‖1. (4.9)

Results

I recorded a freely-moving hydra, tagged with GCaMP, at 25 fps using our Fourier Dif-
fuserScope [44]. The volumetric field-of-view is 1×1 mm2 laterally and 400 µm in depth. The
voxel size in the reconstructed 3D volume is 2 µm laterally and 3 µm axially. A total of 500
frames (20 seconds) were captured. The non-negative RPCA decomposition in Eq. 4.8 is
solved using the alternating direction method of multipliers (ADMM) and the 3D recon-
struction in Eq. 4.9 is optimized using the fast iterative shrinkage-thresholding algorithm
(FISTA [126]) on an NVIDIA TITAN X (Pascal) GPU. We view the final 3D reconstruction
by stacking layers of each cross-section of the object, then repeating for each time frame to
generate a video. Results show improved visibility for the active and moving portions of the
hydra, specifically the tentacles (near the top). In contrast, the pedal disc (near the bottom)
is less actively moving and more prominent in the low-rank component.
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Figure 4.7: Sparse and low-rank video processing pipeline for Fourier DiffuserScope. (a)
The optical system is a fluorescence microscope with a diffuser (random multifocal lenslets)
in the relayed pupil plane. The video processing pipeline starts by decomposing the raw
video into sparse and low-rank components, then reconstructs the corresponding 3D volumes
separately by solving a sparsity-constrained inverse problem with knowledge of the system
3D PSF stack, and lastly overlays the two components to get the final reconstruction. (b)
Selected frames from the reconstructed video with the sparse component (top) and the low-
rank component (bottom) (c) Comparison between our new decomposition method (top)
and the previous frame-by-frame method (bottom). The sparse reconstruction exhibits finer
features including the tentacles.
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Chapter 5

Optics and Algorithms Co-Design of
Fourier DiffuserScope

5.1 Introduction

Many design methodologies have been used on single-shot 3D imaging systems [5, 19, 29,
32, 41, 43–57]. We categorize these methods into three group: heuristic designs based on first
principles [5, 19, 29, 44, 45], merit-function-driven designs that optimize for a specific imaging
task based on a system’s point spread function’s PSF properties [32, 40, 41], and end-to-end
design methods that optimize directly for a given task through the use of a differentiable
optical simulator in conjunction with a differentiable reconstruction algorithm [43, 46–59].
Physics-based end-to-end learning methods incorporate physical understanding about the
system and therefore require fewer learnable parameters than deep neural network methods,
enabling efficient training on smaller dataset as well as better generalizability. Our work in
this chapter takes the last approach.

In this chapter, I (in collaboration with co-authors) demonstrate improved performance
with an end-to-end optimized RML and reconstruction algorithm, using physics-based learn-
ing [57]. Our key contributions are as follows:

• Presented a physics-based learning framework to jointly optimize both the optical
hardware (i.e., diffuser design) and the software (i.e., reconstruction algorithm).

• Demonstrated higher lateral and axial resolution over the imaging volume compared
to heuristic designs.

• Implemented a memory-efficient backpropagation algorithm to fit a 3D volume of 6-
million voxels and 10 reconstruction unrolls into a 24 gigabyte GPU.
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Figure 5.1: Overview of our physics-based learning pipeline. First, we simulate the point
spread function (PSF) stack of the optical system with learnable diffuser parameters, Θ. The
PSF stack is convolved with a 3D datasets, then a shot noise is added to produce a noisy,
simulated measurement. The ISTA-Net+ reconstruction network with learnable parameters,
Φ, takes in the PSF stack and the noisy simulated measurement, and outputs a reconstructed
volume which is fed into a loss function. The loss is backpropagated through the pipeline to
update both the diffuser’s and the reconstruction network’s learnable parameters, Θ and Φ.
The inset depicts our diffuser-based single-shot 3D microscopy setup. The optical system
consists of a traditional fluorescence microscope with the addition of a relay lens to image
the Fourier plane onto the diffuser, which is placed just before the sensor.

5.2 Physics-based Learning Pipeline

Our physics-based learning pipeline (Fig. 5.1) aims to jointly optimize the diffuser design
(i.e., surface height of a refractive phase plate) and the reconstruction parameters. The
optical simulator takes as input the current diffuser surface parameters, Θ, and outputs
the microscope PSF corresponding to each depth plane. A noise-free 2D measurement is
generated by laterally convolving each plane’s PSF with each plane of the 3D training volume
and then summing over depth. Noise is then added using the noise model in 5.2 and the
noisy, simulated measurement is fed into an ISTA-Net+ [114, 126] reconstruction network
with learnable parameters, Φ. A loss function penalizes both `2 reconstruction error between
the ground truth and reconstruction, and error in the learned inverse of the sparsifying
transform. The optical system and reconstruction parameters (Θ and Φ, respectively) are
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jointly updated using gradient-based updates in a memory-efficient manner.

Diffuser Parameterization

Our RML diffuser (Fig. 5.1) consists of a number of plano-convex lenslets of varying focal
lengths. The learnable parameters are each lenslet’s lateral position coordinates and radius,
Θi = {xi, yi, ri}. Compared to a parameterization using a pixel-wise surface height [43, 51],
our diffuser model dramatically reduces the number of learnable parameters, thus preventing
overfitting and decreasing the amount of data required for training. Compared to a Gaussian
diffuser [28], contour-shape diffuser [27] or a Zernike polynomial based phase mask [59], our
lenslets-based surface focuses light to sharp points, providing higher signal-to-noise ratio
(SNR) and frequency coverage over a wide depth range [29, 32, 44]. The final diffuser
surface is a point-wise maximum over the individual spherical lens profiles with a maximum
thickness of t (refer to Eq. 3.15 and Eq. 3.16):

Since we cannot take derivatives of the loss function with respect to the number of
lenslets, we instead optimize the number of lenslets by starting with extra lenslets and
allowing some to merge and exit the pupil during the learning process. In practice, the
number of learned lenslets is consistent for each imaging scenario regardless of the initialized
number, demonstrating robustness of the pipeline.

Imaging Model

In this section, we describe our imaging model to encode 3D information into a single 2D
frame. Based on the Fourier DiffuserScope setup [44], we use a differentiable forward model
followed by a differentiable noise model to generate simulated measurements, which are fed
into Chap. 5.2 to reconstruct a 3D volume.

Optical System

The configuration of optical system is shown in the inset of Fig. 5.1. The system begins
with a 20× 0.8 NA objective lens and a tube lens (with focal length fTL = 180 mm), as
in a traditional fluorescence microscope. Because the Fourier plane of the objective resides
inside the objective tube and is inaccessible, we design a relay lens with fRL = 48 mm to
form a 4f system together with the tube lens and place the diffuser at the relayed Fourier
plane. The sensor is 15.6 mm behind the diffuser. This setup results in an overall system
magnification of 6.5×. The size of the imaging volume is 500× 500× 50 µm3 consisting of 11
depth layers with an increment of 5 µm. We model our optics using wave-optics propagation
in the following section.

Differentiable Forward Model

The wave-optical forward model is the same as the one described in Chap. 3.4. The 3D
volume is divided into a stack of 2D slices of finite thickness in depth. Assuming our system
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is laterally shift-invariant, we only need one PSF from each depth layer to fully characterize
the system response. From an on-axis point source at each depth layer, we calculate the
spherical wavefront at the objective back focal plane, and then multiply it by the apodization
pupil function. The wavefront at the pupil is demagnified by the relay system and passes
through the diffuser. The diffuser is modeled as a pure phase mask with phase delay φ =
exp

[
i2π
λ

(nr − 1)T
]
, with refractive index, nr, and surface thickness, T(Θ), embedding Θ in

the forward model. The electric field behind the diffuser is then digitally propagated to the
sensor via angular spectrum method based on the Fresnel approximation [88]. The intensity
images at the sensor from all the depth layers form a PSF stack, hz=1...d, where hz represents
the simulated PSF at depth z and there are in total d = 11 depth layers in our training. The
simulated measurement is modeled as the sum of all the lateral 2D convolutions of object
slices and PSFs, one for each depth:

y =
∑

z hz
[x,y]
∗ vz = Av. (5.1)

where, y is the noise-free intensity image,
[x,y]
∗ denotes the lateral 2D convolution, vz is the

object intensity at depth z. v represents the entire 3D volume and A is a matrix with
columns containing the PSF stack, used to write our forward model in compact matrix form.

Noise Model

We expect to receive approximately 30k photons per fluorescent bead [43], allowing us to
model the noise as a Poisson distribution and to neglect read noise. Unfortunately, the sam-
pling of the Poisson distribution is not differentiable with respect to its input, complicating
the computation of gradients with respect to the diffuser parameters. By the Central Limit
Theorem, we can use the Gaussian approximation of shot noise (Eq. 5.2), giving a noise
model that is differentiable with respect to the diffuser parameters. This noisy, simulated
measurement ynoisy is then fed into our differentiable reconstruction algorithm:

ynoisy = y +
√

y ∗ n (5.2)

n ∼ N (0, 1). (5.3)

Physics-based Reconstruction

Our reconstruction algorithm aims to solve the following sparsity-constrained inverse
problem:

v̂ = minv ‖y −Av‖2
2 + λ‖G(v)‖1, (5.4)

where λ is a regularization parameter and G(·) is a transform that sparsifies the 3D vol-
ume. Traditional iterative optimization algorithms - for example, Fast Iterative Shrinkage-
Threshold Algorithm (FISTA) [126] can be used to solve this problem, but suffer from slow
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computation time (due to the large number of iterations required) and require hand-tuning of
the hyper-parameters and proximal operators. Deep network based reconstruction methods
are significantly faster than iterative optimization, but these black boxes lack an understand-
ing of the physical system [30, 114]. Consequently, more training data is needed in order to
achieve sufficient generalization at test time.

Here we apply a physics-based ISTA-Net+ [114] of 10 unrolled ISTA iterations, each con-
sisting of a gradient step followed by a proximal step, as shown in Fig. 5.2 (a). The learnable
parameter set, Φ, includes the regularization parameter λ, the sparsifying transform G(·)
and its left inverse G̃(·), as in Φ = {λ,G, G̃}. The loss function driving the training of the
pipeline is:

L =
1

M

M∑
m=1

‖v̂(N)
m − vm‖2

2 + γ‖G̃(G(vm))− vm‖2
2, (5.5)

where M is the number of training examples per batch, γ is a tuning parameter, subscript m
denotes the m-th training example, superscript N denotes the total number of unrolls, and
the second term encourages G̃(·) to be the left inverse of G(·).

A physics-based reconstruction approach is taken by including the forward model in the
reconstruction algorithm to help minimize training data requirements and prevent overfit-
ting. Additionally, by including the forward model in the reconstruction algorithm, the
reconstruction takes in the PSF stack, which is a function of the diffuser’s parameters Θ,
allowing for the derivative of the loss to be taken with respect to them. We treat both up-
date steps of this algorithm as forward Euler steps, allowing for inversion through backward
Euler steps with a fixed point method. This enables the use of memory-efficient learning
techniques (see Chap. 5.2) [56, 127, 128].

Memory-Efficient Backpropagation

Backpropagation is used to calculate the gradient of a single output with respect to
multiple learnable variables of a system, with relatively low time complexity, by using a
large amount of memory to store the full computational graph during the forward pass.
Due to the 3D nature of our problem, GPU memory is at a premium. Therefore, we use
memory-efficient backpropagation techniques to fit our problem in memory with a reasonable
increase of compute time, allowing for calculating the necessary gradients from a series of
unrolls while only having to fit a single unroll in memory. The primary memory-efficient
backpropagation technique used is forward checkpointing based [129] but the model is also
compatible with reverse checkpointing [128].

Forward checkpointing [129] consists of saving the output of each unroll of our network
during the forward pass while deleting the computational graph. On the backward pass,
we calculate the adjoint state by passing each checkpoint through its proceeding layer while
saving the computational graph. Then auto-differentiation is used to take derivatives with
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Figure 5.2: Physics-based reconstruction algorithm.(a) Our reconstruction network uses
ISTA-Net+ with N unrolled iterations of ISTA, each including a gradient step followed by
a proximal step. The proximal step consists of a learned nonlinear sparsifying transform G,
soft thresholding, and a learned left inverse of the sparsifying transform G̃. (b) Memory-
efficient backpropagation calculates the nth layer’s gradients in three steps: 1) recompute the
layer’s input from output. 2) recompute the layer’s auto-differentiation graph. 3) recompute
the gradients.

respect to the learnable parameters. For simple cases such as in Chap. 5.3, forward check-
pointing works well when the checkpoint size and/or the number of checkpoints are small.
When more unrolls are needed and checkpoints cannot be stored for each unroll, we imple-
ment a layer inversion framework [128] as shown in Fig. 5.2 (b). This framework requires
each unroll to be invertible, then each layer’s input can be recalculated by inverting its out-
put, followed by recomputing the gradient of the loss function with auto-differentiation. By
trading the time to calculate the inversion with the memory to store checkpoints, we can
further reduce the memory requirements when necessary.

5.3 Learned Results

The size of the imaging volume is 500 × 500 × 50 µm3 consisting of 11 depth layers in
5 µm steps. The model was trained on a simulated dataset consisting of 200 volumes of
750 × 750 × 11 voxels containing 1 and 2 micron beads. The beads were simulated using
Gaussians with FWHM equal to the desired bead size. The distribution of the peak intensity
of the beads is uniform from .8 to 1.2. The volumes are then multiplied by the desired photon
emission level at training time to achieve the desired SNR. We also allow the density of the
fluorescent beads to vary across training volumes. Testing was performed on 40 volumes
generated in the same fashion as the training set. The model and training pipeline are
written primarly in Pytorch and training was performed on a NVIDIA RTX 3090 GPU.
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Figure 5.3: (a) Simulated 3D training volume with randomly placed fluorescent beads.
(b) When the beads are constrained to a single depth plane, the learned random multi-
focal lenslets (RML) consists of one dominating lens, as expected. (c) When the beads are
constrained to two depth planes, the learned RML contains two lenses, each focusing at one
depth plane. Maximum intensity projections show the reconstructed test volumes match
well with ground truth.

Learned Diffuser for 2D and 2.5D Imaging

First, we first perform two ’sanity checks’ to show that the pipeline functions as expected,
by optimizing the RML for two imaging scenarios where a reasonable guess of the ideal RML
is known. We use a small volume at 1/15 the size of our experimental system to speed up
computation time and reduce our carbon footprint.

In the first scenario, all beads are constrained to the center depth plane of the volume.
This simplifies the problem to 2D imaging and a single lenslet focusing at that depth should
be ideal. As seen in Fig. 5.3 (b), a single lenslet dominates the RML but more than one lenslet
is present due to the non-convexity of the problem. In the second scenario, the beads are
constrained to 2 depth planes at opposite ends of the volume. In this scenario, a RML with
two lenslets, each focusing at one of the depth planes, is expected. As seen in Fig. 5.3 (c), two
lenslets dominate the RML. In both scenarios, the learned RML matches our intuition, and
the reconstruction of the testing volume matches well with the ground truth. We conclude
the pipeline is functioning sufficiently and move to more complex imaging scenarios.
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Learned Diffuser for 3D Imaging

Figure 5.4: a) 3D volume in simulation under objective b) Initialization of random mi-
crolenslet (RML) surface height map. Note the green dots indicate the centroid of each
active lenslet c) Initial focal distance of lenslets d) Maximum intensity projections (MIPs)
of initial volume reconstruction e) Learned RML surface height map f) Learned focal dis-
tance distribution of active lenslets g) MIPs of reconstructed volume using learned RML
and learned reconstruction algorithm

Next, we compare our learned RML and algorithm to a heuristically-designed RML with
unlearned algorithms in Fig. 5.4. In our training data, we use beads of 1 µm and 2 µm
diameter, randomly spaced in a 3D volume of 500× 500× 50 µm3 with 5 µm axial steps. To
achieve 1 µm lateral resolution over a 50 µm depth range, from first principles derivation [44],
we need 3.2 lenslets in each direction, the square of which rounds up to 11 lenslets. Hence,
the heuristic designed diffuser contains 11 randomly-located lenslets of varying focal length,
focusing at uniformly-spaced depth planes. For the learned design, since we cannot take
derivatives of the loss function with respect to the number of lenslets, we instead optimize
the number of lenslets by starting with more than necessary and allowing them to merge
and exit the pupil during the learning process. In experiments, the number of lenslets in
the learned RML is consistent for each imaging scenario regardless of the initialized number,
demonstrating robustness of the pipeline. The learned surface in Fig. 5.4 contains 8 lenslets;
the lower number of lenslets increases the numerical aperture of each lenslet, collecting
more photons per focus point and boosting SNR under our Gaussian-approximated shot
noise model. For the case of the unlearned algorithm, we used an L1 proximal step with
ISTA reconstructions ran until convergence. This runs ∼30x slower than our proposed
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reconstruction network while achieving worse normalized mean square error (NMSE). Note
that to reduce memory requirements and training time, the scale of this simulated system is
1/4 of our experimental system.

5.4 Conclusion

We demonstrated improved reconstruction speed and improved image reconstruction
quality for Fourier DiffuserScope single-shot 3D microscopy by designing an optical element
(a diffuser) that jointly optimizes the experimental setup and reconstruction algorithm via
end-to-end learning. This data-driven approach directly optimizes the reconstruction loss
and provides better insights into design for a non-traditional optical system where the first
principles are limited.
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Chapter 6

Conclusion

In this dissertation, I explored the design of Fourier DiffuserScope from optical hardware
and algorithm perspectives, and demonstrated it is advantageous to jointly optimize the ex-
perimental setup and the reconstruction algorithm. This data-driven approach directly opti-
mizes the reconstruction loss and provides better insights into the design of non-traditional
optical systems where the first principles are limited.

In this chapter, I reflect on some challenges in the current system, provide possible
solutions and propose directions for future works.

6.1 Challenges

There are still some challenges preventing the Fourier DiffuserScope from being more
practical.

Scattering Effect

In the forward model, I didn’t take into account tissue scattering which might impede the
measurements. The scattering potential can be incorporated to enable deeper tissue imag-
ing with higher-fidelity reconstructions, further suppressing noise and enhancing resolution.
Scattering models including multi-slice [130, 131], SEAGLE [132], etc., can be combined
with light field imaging [7, 133] as well as the diffuser measurements.

Sensor Model

The sensor settings will drastically affect the final measurement, but I didn’t fully model
the sensor, except for downsizing the intensity measurement to simulate the smear effect of
the sensor pixels. However, phenomenons like the angular-dependent response, anti-aliasing
filtering, and pixel non-uniformity are not considered. Moreover, if the output image is not
in RAW format, the underlying image signal processor (ISP) pipeline is crucial to the final



CHAPTER 6. CONCLUSION 79

image. The ISP pipeline for a certain camera varies case by case, but typically includes
white balancing, denoising, and demosaicing for color sensors. An open-source ISP model,
for example ISET [134], can be attached to the wave-optical module.

Generalizability of Priors

The outputs of sparsity-constrained algorithms vary with the choice of priors, which can
be very subjective. Moreover, the hyperparameters controlling the weight of each regularizer
are often hand-tuned. The criteria for a good set of parameters is based on past experience.
Moreover, a carefully tuned algorithm might overfit a specific experimental system or a
certain type of data, and cannot be generalized well to other models. Iterative algorithms
with no tuning parameters or regularizers, e.g. the vanilla Richardson-Lucy algorithm, will
provide a baseline and should be used to characterize the system metrics. As for pre-trained
neural networks, we need to feed in with diversified training data, and stop early to prevent
overfitting.

Memory Constraints

The raw diffuser measurements need reconstruction algorithms to reveal the object. It-
erative algorithms cannot display the object in real time. In fact, for the video shown in
Fig. 2.6, each frame took ∼ 25 minutes to reconstruct on a GPU. For a 25 fps video, that
is 625 minutes of reconstruction time for every second of measurement. Pre-trained neural
networks are able to give the reconstruction after 75ms latency for a small image patch
(480 × 270 pixels) [30]. However, the size of the neural network scales with the size of
the object. Due to memory limitations, with a single 12GB GPU, current applications are
limited to 2D reconstruction with a small image patch. Using a single 24GB GPU, we are
able to fit 10 unrolled ISTA to reconstruct a 3D volume containing 750 × 750 × 11 voxels
in [135]. The solutions to the memory limitations might lie in the following two categories,
or a combination of both. (1) Benefit from the development of the semiconductor industry,
GPUs, or cloud TPUs, will keep increasing their memories. So far, GPUs have reached 64
GB memory and cloud TPUs have reached 32 TiB memory, and yet more to come. (2)
Use parallelization algorithms. For instance, JAX [136], a recent machine learning library
developed by DeepMind, has a built-in function named pmap to execute codes in parallel
across multiple GPU/TPU devices.
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6.2 Future Work

Besides addressing those current challenges, there are quite a few new fields in which we
can broaden the applications of diffuser imaging, and new techniques that we can utilize to
empower the design of the next-generation diffuser imaging systems.

New Applications

Single-Shot Panoramic Imaging

A panorama is an image capturing a 360-degree view around the camera and is essential to
robotic vision and autonomous driving. Current single-shot panorama systems use a camera
ring or a wide-angle fisheye lens, which are bulky and expensive. Alternatively, diffusers
are thin, flexible and can be easily bent. If using a single sensor, we can bend the diffuser
sheet into a dome shape to capture light coming from all angles. If using a ring of cameras,
we can roll the diffuser sheet into a cylinder circling the cameras. All in all, diffusers have
the potential to provide a lightweight, small form-factor, and low-cost solution to panoramic
imaging.

New Photodiode Sensors

The sensor technologies keep evolving. There are some new types of photodiode sensors
available, expanding the boundary of computational imaging.

Sony Polarsens is a CMOS sensor that has on-chip polarizers with four different angles.
Different from placing a polarizer in front of a traditional CMOS sensor, Polarsens has
the polarizer grid between the on-chip lens and the photodiode, which not only accurately
aligns the polarizers with the pixel but also yields a higher extinction ratio. Polarization is
useful in material strain detection, screen defect detection, surface angle detection, etc. This
polarization camera could be combined with diffuser for 3D polarization imaging.

In late 2021, Sony released its first high-speed high-resolution event-based sensors with
the smallest pixel size of 4.86 µm. While traditional cameras capture complete scenes at
each frame, the event-based cameras only react to the change of light intensity, reducing
the data bandwidth and power consumption. The maximum frame rate can reach 1.06 Giga
events per second. This type of sensor is especially suitable for dynamic scene imaging
including neuron imaging and particle tracking, and is possible to be integrated into a light
field imaging or a diffuser imaging system.

Thermal Imaging

Thermal detectors are a type of sensor detecting infrared light from black-body radia-
tion and generating temperature information without contact. It is found useful in human
detection, gas detection, failure analysis, etc. Different from photodiode-based cameras
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that convert light directly into electrons through the photoelectric effect, thermal detec-
tors instead first convert photons to heat using absorbers, and the heat is then converted
into electrical signals. There are three types of thermal detectors: thermopiles detect the
change in electromotive force, pyroelectric sensors detect the change in electrical polariza-
tion, bolometers detect the change in resistance. Although a single photodiode-based sensor
has already reached 20-mega pixels, the number of pixels on the thermal detectors is quite
limited. For example, the micro-bolometer sensor from Teledyne FLIR has up to 640× 480
pixels; the thermopile array manufactured by Heimann Sensor has up to 120×84 pixels; the
pyroelectric sensor has up to 4 detection zones. Since thermal sensors are often pixel-limited,
we can use compressed sensing to enhance the sensor resolution. For example, we can place
a random microlens diffuser made of Si or Ge in a thermal detection system and reconstruct
a scene with more pixels than that on the sensor.

New Designs

Accurate and Lightweight Optical Simulation

From geometric optics to wave optics, there are different methods to simulate the PSFs
of an optical system [137].

In this thesis, I used wave-optics to simulate the system PSFs in [44] and [135]. The
wave-optical model propagates the complex electrical field from surface to surface until the
sensor plane. It fully captures the phase information to simulate the PSFs with diffraction.
However, it needs a high sampling rate to avoid aliasing, namely at least Nyquist sampling
the smallest resolvable spot and zero padding the field. Furthermore, the whole sampling
grid is applied to every surface, increasing the memory requirements.

The geometric PSF traces many rays and plots a spot diagram to show the geometric
aberrations of the system. The rays don’t contain any phase information, and thus there is
no interference between those rays. This method is memory-efficient because as few as one
ray is stored in the memory each time while computing multiple rays in parallel can speed up
the simulation. Monte Carlo sampling can further speed up the procedure by reducing the
number of rays traced. Unfortunately, geometric PSF is only accurate when the PSF is much
larger than the diffraction limit, where geometric aberration is the main contribution to the
PSF distribution. An end-to-end neural network with differentiable ray tracing has been
implemented for lens design [138]. However, since the pure geometric ray tracing ignores
diffraction, its application is limited to the macro photography scale and not suitable for
microscopic imaging purposes.

In between the pure geometrical and the pure wave-optical PSFs, there exist another
method termed Huygens PSF. The Huygens PSF treats rays as local plane waves containing
both amplitude and phase. For each ray, the amplitude, coordinates, direction cosines,
and optical path difference are logged. At the sensor plane, the algorithm sums up all the
plane waves coherently. Similar to the wave-optical PSF, the Huygens PSF contains phase
information and accounts for diffraction; similar to the geometric PSF, the Huygens PSF
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can trace only one ray each time to save memory, and Monte Carlo sampling can be applied
too. Moreover, the Huygens PSF is accurate in situations where the diffraction needs to be
considered, or the pupil is hugely aberrated. Zemax OpticStudio contains a Huygens PSF
function and can be integrated into Matlab/Python codes using the ZOS-API. It is also
possible to implement a differentiable Huygens PSF to enable end-to-end learning.

Neural Network Architecture

Empowered by physical understandings of a optical system, emerging neural network
architectures show better results in some imaging tasks. In Chap. 4.1 of this thesis, I showed
an example of how using a simple 3-layer CNN with large kernels can provide a significantly
better deconvolution result than a multi-layer UNet, by knowing that the PSF to be decon-
volved has a large size. There are several other new neural network designs we may dig more
into in the future. For instance, neural representations with coordinate-based multi-layer
perceptrons (MLP), which map a coordinate to its corresponding value, have been demon-
strated for 3D view synthesis [139] and optical refractive index tomography [140]. The
image formation model of the coordinate-based MLP can be easily replaced to reconstruct
3D objects from other optical systems, say diffuser images. Furthermore, the concept of
coordinate-based MLP is not limited to 2D or 3D space coordinates but can be generalized
to represent time points, spectral wavelengths, polarization states, and so on. Another pow-
erful tool for imaging-based neural networks is the transformer. Transformers are invented
for natural language processing originally and are later proved to be useful in handling the
coordinate relationships in image pixels. Positional encoding is a popular transformer that
enables the representation of high-frequency details. Recent works show that Fourier fea-
tures [141] and sinusoidal activation functions [142] can also broaden the frequency coverage
of neural networks. These transformers can serve as an add-on module to existing neural
network architectures.
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