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Abstract

Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid

reorganization of biodiversity due to global environmental change has defied predic-

tion and tested the basic tenets of conservation and restoration. Conceptual and

practical innovation is needed to support decision making in the face of these

unprecedented shifts. Critical questions include: How can we generalize biodiversity

change at the community level? When are systems able to reorganize and maintain

integrity, and when does abiotic change result in collapse or restructuring? How

does this understanding provide a template to guide when and how to intervene in

conservation and restoration? To this end, we frame changes in community organi-

zation as the modulation of external abiotic drivers on the internal topology of spe-

cies interactions, using plant–plant interactions in terrestrial communities as a

starting point. We then explore how this framing can help translate available data

on species abundance and trait distributions to corresponding decisions in manage-

ment. Given the expectation that community response and reorganization are highly
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complex, the external-driver internal-topology (EDIT) framework offers a way to

capture general patterns of biodiversity that can help guide resilience and adaptation

in changing environments.

KEYWORD S
coexistence, conservation, environmental climate change, functional traits, networks, plant
community, restoration, species interactions, temporal dynamics, time series

PHOTO 1. Katharine N. Suding, recipient of the 2018 Robert
H. MacArthur Award.

INTRODUCTION

Accelerating global change, including both directional
changes (e.g., warming) and increased variation or extremes
(e.g., droughts and deluges), is receiving well-justified
attention from scientists and policy makers (Collins
et al., 2014; Field et al., 2014). Although great effort is
focused on managing the climate crisis (Steffen et al., 2018),
we face a biodiversity crisis that is equally profound
(Díaz et al., 2019). Biodiversity is declining faster today
than it has at any previous point in human history
(Ceballos et al., 2020), with current extinction rates far
outpacing speciation (De Vos et al., 2015). By 2050,
climate-induced habitat alteration is predicted to result
in the extinction of a third of the species on this planet
(Roman-Palacios & Wiens, 2020). Despite strong evidence
of nature’s benefits to people (Pecl et al., 2017) and a deep
moral imperative (Callicott, 2013), we have not made com-
parable progress advancing models of biodiversity change,

particularly at scales relevant for local management action
(Díaz et al., 2019).

Against the backdrop of globally elevated extinction
rates (Ceballos et al., 2020; Pecl et al., 2017), local
biodiversity change (within a terrestrial nature reserve or
marine protected area, for instance, where we expect
most species to have the potential to interact with one
another) is often idiosyncratic: Some areas are losing
species, other areas are gaining species, and still others
are surprisingly resilient (Chase et al., 2019; McGill
et al., 2015; Srivastava et al., 2021). One of the few gener-
alities is species turnover and shifts in abundance
(Blowes et al., 2019; Dornelas et al., 2014; Vellend
et al., 2017), reorganizing communities through time.

The multitude of ways ecological communities reor-
ganize exposes the limits of our ability to predict
biodiversity response and plan interventions to guide that
change (Hobbs et al., 2017; Lynch et al., 2021; Srivastava
et al., 2021). Species turnover within protected area bound-
aries defies the strong spatial roots of conservation
(Nicholson et al., 2021), traditionally well versed in
maintaining diversity within a defined place (Bergstrom
et al., 2021; Pimm et al., 2018). Further, community reor-
ganization in response to environments with no prior ana-
log defies the temporal roots of ecological restoration, built
on foundational concepts of recovery, succession, and
assembly back to a prior state (Palmer et al., 2014;
Suding, 2011). As suitable habitats shift, baselines change,
and reference states blur, we need information to guide
decisions about possible interventions and thier effect
on trajectories of community reorganization (Hobbs
et al., 2011; Prober et al., 2019; Shackelford et al., 2022;
Suding et al., 2015).

Generalizing local biodiversity response to global envi-
ronmental change is an incredible challenge, yet it can be
informed by several rich bodies of work. First, understand-
ing relationships between the environment and species
composition, both temporally and spatially, has been a
theme in ecology since its inception (e.g., Clements, 1916;
Gleason, 1926). A second body of work, often intersecting
with the first, has considered how species interactions
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structure communities and maintain diversity
(Leibold, 1995; MacArthur & Levins, 1967;
Tilman, 1994). Functional traits have emerged as a com-
plementary third approach to better understand the
mechanisms by which species respond to the environ-
ment and each other (Adler et al., 2012; HilleRisLambers
et al., 2012; Usinowicz & Levine, 2018). A key challenge is
to account for both the direct effects of the environment
and the indirect effects of the environment moderated by
interactions among species (Gilman et al., 2010; Suding
et al., 2008; Tylianakis et al., 2008; Tylianakis &
Morris, 2017).

Research across all three bodies of work supports the
expectation that global environmental change will almost
invariably drive changes in the organization of biodiversity
within a community, including the number (through gains
and loss) of species, their identity (through compositional
turnover), and their abundances (becoming more abun-
dant or rare), as well as how species interact together
(who is interacting with whom, type of interactions,
per-capita interaction strengths). This expectation shifts
the key question in biodiversity change from whether a
community will reorganize to how that reorganization will
play out through time (Avolio et al., 2020; Langley
et al., 2018). Simple biodiversity metrics (e.g., richness)
often provide little insight into the important shifts that
emerge (Godsoe et al., 2023), as reorganization has many
flavors: It can be compositional turnover and reshuffling
of species abundances that adaptively track global change
or it can be wholesale transformations with cascading
species loss (Hillebrand et al., 2018). Intervention to redi-
rect this reorganization, when it is desired, needs to target
these different pathways.

Here we develop a generalizable, four-step framework
that captures community reorganization in a way that sup-
ports the management of local-scale biodiversity dynamics.
First, we propose two primary axes influencing biodiversity
response—external drivers and internal topologies (the
structure of species interaction networks)—and suggest a
systematic way to generalize this variation. We then identify
research approaches (e.g., data collection and analyses) that
can build an understanding of community reorganization
across these axes to support strategic management
interventions. Third, we illustrate this approach in differ-
ent ecosystems that vary in their external drivers and their
internal topologies. Lastly, we provide a pathway for appli-
cation to management, emphasizing the ties between
different elements in the framework and interventions.
We end with some key uncertainties and paths forward
from here. In this initial conceptualization, we focus on
interactions within a single trophic level (e.g., plants
interacting with plants) and define a community according
to this within-guild framing. It will critical to expand this
initial framing to other taxa (e.g., beyond plants) and other

interactions (e.g., food web, plant–pollinator). We also
acknowledge the many advances at eco-evolutionary and
ecosystem interfaces, as well as at regional scales related
to species movements and range shifts, that are very appli-
cable but beyond the scope of this paper.

A TEMPLATE FOR LOCAL
BIODIVERSITY CHANGE

While we have made great progress in understanding
patterns of local biodiversity change (e.g., McGill et al., 2015),
the lack of a general template to understand how envi-
ronmental change is reorganizing a community can lead
protected-area managers to make decisions more focused
on avoiding any further reorganization than on guiding a
system toward a particular trajectory (Cook et al., 2013;
Yates et al., 2018). Our experience suggests that key to
identify important mechanisms is to consider how exter-
nal drivers modulate internal topologies—which we call
the external-driver, internal-topology (EDIT) framework.

The EDIT framework is aimed at contextualizing
shifts in biodiversity as a community reorganizes in
response to global environmental change (Figure 1).
First, communities often exhibit distinct responses to differ-
ent external drivers (e.g., higher temperature vs. variation
in rainfall) because the abiotic conditions created by
the drivers lead to specific functional responses (Avolio
et al., 2021). While these external drivers are typically
“slow variables” that change independently of internal
dynamics (Scheffer, 2009), they modulate community
organization via the internal network structure of
interacting organisms, which we call topologies (after
Kéfi, 2020; Petchey et al., 2009, among many others).
We draw from network ecology here, noting that most
usage of topologies has been largely in consumptive
(food web) or nontrophic multilayer (plant–pollinator)
networks focused on who interacts with whom; we
widen this usage with consideration of the direction
and strength of interactions important in competitive
networks (e.g., Soliveres et al., 2015). As topologies are
repeatable nonrandom configurations of structure, they
provide generalization of the interactions that character-
ize a particular community and how external drivers
may shift that structure (Cadotte et al., 2013; Lasky
et al., 2014; Letten et al., 2017; Pascual & Dunne, 2006).

The EDIT framework borrows concepts from com-
plexity science (e.g., Meadows, 2008) and stands on the
shoulders of ecological giants: Lindeman (1942) used a simi-
lar representation for ecosystem trophic dynamics (also
Sterner, 2012), Paine (1966) in food webs, and MacArthur
(1972) and May (1974) in their theoretical constructs. A
defining characteristic of the EDIT framework is that it
aims to support local managers who are navigating the
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complexity of the biodiversity and global change crises by
creating a generalizable template that can apply to a diver-
sity of ecosystems. By using accessible data sources—from
long-term patterns of abundance in monitoring, to results
of experimental manipulations and management trials, to
functional trait characterizations of species composition—
multiple forms of inference can capture community reorga-
nization (Adler et al., 2013; Case & Bender 1981; Funk
et al., 2017; Ives et al., 2003; Suding et al., 2008;
Wootton, 1993). Here, we highlight three types of external
drivers and four internal network structures that we expect
to be common in terrestrial plant communities (Figure 1).

External drivers

Climate change and associated changes in atmospheric
deposition and disturbance regimes impact ecosystems
by shifting both mean conditions and environmental

variability (Dickinson et al., 2014; Smith et al., 2009).
Although a large body of work emphasizes the impor-
tance of external drivers on community dynamics, it
is often difficult to link local-scale climate factors
with the reorganization of a community over time
(Antao et al., 2020; Vellend et al., 2017). These difficulties
often stem from climate variables affecting species through
a variety of pathways and environmental drivers varying
in importance across systems (Avolio et al., 2020; Felton
et al., 2021; Harrison, 2020). One way to generalize across
external drivers is to frame them in the context of major
controls on species fitness (selection after Vellend [2017]):
(1) those that shift the availability of limiting resources,
(2) those that increase stress via changes in
nonresources, and (3) those that increase the variability
in resource availability or stress conditions (Figure 1a,
Table 1a). In what follows, we briefly discuss expectations
for the direct effects of external drivers for each of these
three types of drivers (we consider indirect effects through

F I GURE 1 Framing local biodiversity response to global environmental change by (a) types of external drivers (top to bottom:

resource, green icon; stress, yellow; variability, blue) and (b) internal species interaction topologies (clockwise: dominance, purple;

negative frequency, brown; facilitative, gray; positive feedback, teal) allows for (c) a general set of predictions of community

reorganization (left to right: trait distributions, species rank abundance curves through time). It distinguishes the type of interventions

commonly made at the local level (b) from those at the regional policy level (a). Internal topologies are depicted with key species groups

(circles) linked by important interactions (dark solid arrows indicate negative, dotted arrows indicate positive, and looped arrows

indicate intraspecific interactions). Patterns of trait distributions (with the amplitude of the curve indicating the abundance of species

and the mean and variability of trait values along the x-axis) can be diagnostic of particular topologies (in b). Community

reorganization (c) can involve changes in the number (through gains and loss) of species, their identity (through compositional

turnover), and their abundances (becoming more abundant or rare); here we show how trait distributions and rank abundance curves

(abundance of species ranked by abundance, with curves at different time steps) may change over time with particular drivers:

see Tables 1 and 2 for specific expectations.
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TAB L E 1 Framing community reorganization to global environmental change by external drivers (a) and internal network topology

(b), with predictions of demographic response, functional trait response, and possible local management interventions.

Type Demographic responsea Functional response

Local management interventionsb

To direct To resist

(a) External drivers

Resource Increase population
growth (assuming
resource is limiting)

Benefit resource acquisitive
species, disadvantage
resource conservative
species

Add resources
(e.g., fertilize)

Decrease available
resources via
biomass-removing
disturbances (grazing, fire)
or microbial immobilization
(via C additions for N)

Abiotic stress Decrease population
growth

Benefit stress-tolerant/
avoidant species

Restrict nonresource
amelioration (e.g.,
temperature management,
shading) that would
alleviate stress

Prioritize enhancement of
foundation/nurse species or
physical structures
(e.g., zeedyk structures),
alleviate stressors

Environmental
variability

Decrease population
growth

Benefit species with
bet-hedging and/or plastic
traits

Limit regulation of
environmental
fluctuations (e.g., flow
regimes) or resource
inputs (e.g., irrigation)

Develop adaptive
management plans to reduce
exacerbating factors in times
of extremes (e.g., adjusting
grazing pressure)

(b) Internal network topology

Dominance Skew of per-capita
interaction strengths, with
a few strong negative
interactions, deterministic
hierarchy, or higher-order
interactions

Increase representation of
high resource optimal traits;
decrease or loss of species
with traits far from resource
acquisitive optimum

Act to increase fitness of
dominant plant through
interventions that target
other species

Introduce selective
disturbance agents that
target dominant species
and/or desirable species
with high niche overlap and
trait optima with dominant

Facilitative Skew of per-capita
interaction strengths, with
a few species (nurse
plants) exerting strong
positive effects on
beneficiary species

Increase representation of
traits that benefit from
nurse facilitation (less stress
tolerant); nurse plant traits
include abiotic tolerance,
aboveground stature, and
traits that affect abiotic or
biogeochemical conditions

Promote nurse plant
recruitment and
persistence up to
moderate densities,
introduce desirable species
that could otherwise not
persist without nurse
plant

Remove nurse plants

Negative
frequency

Self-limiting negative
frequency dependence
(advantage when rare);
strong negative
conspecific interaction
strengths

Broaden trait representation
related to niche
partitioning; loss of species
with high trait/niche
overlap

Remove undesirable
species with high niche
overlap, introduce species
dissimilar to residents
with low overlap

Limit abundance
fluctuations, homogenize
environmental variation
and fluctuation

Positive
feedback

Self-reinforcing positive
frequency dependence,
advantage when
abundant; priority effects;
strong positive conspecific
interaction strengths

Trait overdispersion
(bimodal distribution) at
larger scales due to local
priority effects; advantage of
traits related to positive
cross-trophic feedbacks
(plant–soil,
plant–pollinator)

Protect areas from
biomass-removing
disturbance to maintain
desirable feedbacks

Reduce biomass and legacy
effects alongside new
species introduction to shift
priority effects

Note: These should be treated as hypotheses, consistent with theory but in need of testing in experimental settings and in practical application. See text for

definitions and more explanation for each driver and topology.
aFor external drivers, expectations of direct effects of increasing intensity (e.g., increased resource availability) with the opposing patterns valid for decreasing
levels of external drivers. For topologies, expectations of intensification or shift to topology (e.g., toward increased dominance control).
bWe describe these in the context of resist–accept–direct (RAD) framework for decision making, after Lynch et al. (2021), where a third option for each is to
accept (do nothing).
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internal dynamics in the following sections), acknowl-
edging the large amount of prior work on these core
ecological concepts, the sometimes fuzzy expectations
related to the separation of direct and indirect effects,
and the many potential avenues of expansion.

Resource availability

Many aspects of environmental change can be viewed as
changes in resource availability (green icon in Figure 1a):
Notable for terrestrial plants are rainfall in water-limited,
atmospheric nitrogen (N) deposition in N-limited and
eutrophication in phosphorus-limited systems. Resource
limitation is classically defined by a change in a
resource that leads to an increase in production. Changes
in multiple resources can also occur simultaneously,
thereby colimiting plant production (Bloom et al., 1985;
Farrior et al., 2013; Seastedt & Knapp, 1993). When solely
considering the direct effects of external drivers, an
increase in the availability of limiting resources should
increase population growth rates and abundances of all
species, albeit to different extents (e.g., Dıaz et al., 2003;
Ives & Cardinale, 2004). Plants with traits related to
rapid resource consumption and growth, described as
a resource acquisitive syndrome, are thought to benefit
most from the direct effects of increased resource
availability, whereas a resource conservative syndrome
of traits is thought to characterize plants able to persist
as resource availability declines (Goldberg, 1990;
Tilman, 1982).

Abiotic stress

Environmental change can increase plant stress through
physiological pathways that are not driven by depletable
resources (e.g., yellow icon in Figure 1a). One clear way
to define plant stress was made by Grime (1979), who
argued that stress limits the ability of plants to convert
energy into biomass. For instance, low or high tempera-
ture, anoxic conditions, high salinity, heavy metals, and
ultraviolet light have often been considered abiotic
stressors for plants (Chapin et al., 1993). As opposed to
increased population growth rates in response to
increased resources, stress is expected to directly
decrease population growth rates. Species will be less
impacted by stress if they can tolerate (e.g., via resource
conservative traits protecting plants from tissue damage),
avoid (e.g., via altered physiology or growth), or escape
(e.g., via early or late phenology) increasing levels of
stress (Ives & Cardinale, 2004; Wardle & Peltzer, 2003).
The distinction between abiotic stress and resource

limitation is imperfect: Low water resource conditions
(e.g., drought) are also commonly considered a stress
that affects photosynthetic capacity, and some stressors
(e.g., temperature) can affect resources, such as nitrogen
availability, through microbial processes.

Environmental variability

We propose a third type of external driver related to a
shift in the historic range of variability experienced by
a system (blue icon in Figure 1a; Sala et al., 2015;
Vazquez et al., 2017). Extreme events, such as increased
rainfall and temperature variability, can affect the pro-
portion and timing of suitable growing conditions for a
given species and can cause the community reorganiza-
tion responses to lag behind the shift in environmental
conditions (Lawson et al., 2015). Population growth is
often expected to decrease in cases of increased environmen-
tal variability (see Drake [2005] and Rudgers et al. [2018]
for more detailed treatment). Increased demographic
stochasticity can accelerate this decline by elevating the
chance a population reaches a low-abundance threshold
with high extinction risk (Gravel et al., 2011). Species with
bet-hedging and highly plastic traits are thought to better
tolerate increased variability, depending on whether vari-
ability is predictable or stochastic, often at the cost of
lowered arithmetic mean fitness (Botero et al., 2015;
Simons, 2011).

Summary

Parsing the complexity of external forcing associated
with global change into three types of external drivers is
a clear simplification. Yet, this generalization facilitates
the connection of emerging climate exposure and
sensitivity studies (e.g., Dickinson et al., 2014) to
decades of theory and knowledge development around
core concepts of resource availability, abiotic stress, and
increased temporal variability (Flores-Moreno et al., 2019;
Gravel et al., 2011; Hart & Marshall, 2013). This lens
enables broad inference into the type of species (and their
traits) that are likely to respond directly to a given type of
external driver.

Internal network topologies

Species interactions are dynamic, varying across
species, space, and time via the structure of interac-
tions that compose an ecological network (Figure 1b;
Gilman et al., 2010; Losapio et al., 2019; Pellissier
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et al., 2018; Tylianakis & Morris, 2017; Zoller
et al., 2023). Networks can be represented with nodes
as species (or other component groupings based on,
e.g., traits or abundance) connected by links that repre-
sent interactions (and the strength of these interactions)
between nodes. Networks assemble in nonrandom sets
of topologies, possibly resulting from selection against
unstable configurations or emerging from properties of
interacting species (Kéfi et al., 2015; May, 1974; Paine,
1980). A network topology can provide insight into
important pathways that characterize community reor-
ganization, for instance, whether a given structure is
maintained or when a shift occurs to a contrasting net-
work structure (Pascual & Dunne, 2006; Ponisio
et al., 2019).

The translation of complex internal dynamics to
network topologies enables the identification of struc-
tures that inform common mechanisms of (and management
solutions for) community reorganization (Bascompte, 2010;
Bhatia et al., 2023; Cenci et al., 2018; Delmas et al., 2019;
Dormann et al., 2017). Here we develop a set of topologies
that describe interaction structures common in terrestrial
plant communities that also translate to theories of
species’ interactions, for example, differences in average
fitness and frequency dependence after Chesson (2000),
Grainger, Letten, et al. (2019a), Letten et al. (2017), and
many others. We propose four general types of network
topologies: dominance control, facilitative control, nega-
tive frequency control, and positive feedback control
(Figure 1b, Table 1b).

Dominance control

A competitive hierarchy orders species by their ability to
obtain limiting resources and, in doing so, negatively
affect the fitness of other species (Figure 1b: purple sym-
bol; Matias et al., 2018; Wainwright et al., 2019). Optimal
traits related to competitive ability confer high relative
fitness (Hardin, 1960) and increased dominance in com-
petitive hierarchies (Figure 1c; Kraft et al., 2015;
Perez-Ramos et al., 2019). Species with suboptimal traits
are more likely to be excluded. This type of topology often has
a skewed distribution of interaction strengths, with a few
abundant species having strong competitive effects, in terms of
per-capita interaction strengths, total interaction strengths
(abundance × pre-capita interaction strengths), or often (we
suspect) both. Interactions among other species are weak
and potentially intransitive without a consistent ordering
(Paine, 1992; Preston et al., 2019). Dominance could also
arise through higher-order interactions such as negative
interactions between less abundant species that benefit a
third species. We call this network topology dominance
control (Table 1b, purple icon in Figure 1b).

Facilitative control

Positive interactions have been increasingly recognized
as critical components in interaction network structure
(Bruno et al., 2003; Bulleri et al., 2016). Nurse plants are often
considered foundation species that enable the persistence of
other species through mechanisms such as soil moisture
retention, soil nutrient modification, abiotic stress ameliora-
tion, seed trapping, pollinator visitation, and herbivore
protection (Brooker et al., 2008; Filazzola & Lortie, 2014;
Gomez-Aparicio, 2009). These positive interactions can
expand species niches through increasing average fitness.
Like dominance control, the direct effects of external
drivers are often assumed to lead to nurse plant abun-
dance, while the interactions with the nurse plant deter-
mine persistence of the other species (Brigham & Suding,
2023). Traits that allow for the persistence of nurse plants
are expected to differ from the traits that allow for the per-
sistence of the beneficiary species, resulting in high trait dis-
persion and clustering (Schob et al., 2012). This type of
topology also should have a skewed distribution of inter-
action strengths, with a set of species (e.g., nurse plants)
positively affecting the growth rate of beneficiary spe-
cies. Interactions among beneficiaries may often be
weaker and more negative. We call this topology facili-
tative control (Table 1b; gray icon in Figure 1b).

Negative frequency control

Self-limitation or negative frequency dependence occurs
when differences in species resource use cause intraspecific
interactions to be more intense than interspecific
interactions. As a result, when any one species increases
in abundance, it interacts more with conspecifics, and its
per-capita growth rate slows (Figure 1b: brown symbol;
Dostal et al., 2018; Grainger, Levine, & Gilbert, 2019b;
Hallett et al., 2018). When interactions are largely struc-
tured by negative frequency dependence, species have
high growth rates when rare and slowed population
growth when abundant, fostering the persistence of multi-
ple species (stabilizing mechanism after Chesson, 2000).
Networks structured by negative frequency control are
thought to have high functional diversity and low niche
overlap (Figure 1b; HilleRisLambers et al., 2012; Kraft
et al., 2015). As similar negative frequency dependence
can occur due to interactions with other trophic positions
as well, such as through the role of host-specific enemies
(Bever, 1994; Johnson et al., 2017). Networks with this
structure have strong negative conspecific associations,
with weaker interactions across heterospecific associations
(and possibly more intransitivity; Yang & Hui, 2020). We
term this type of topology negative frequency control
(Table 1b, Figure 1b in brown).
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Positive feedback control

Positive frequency dependence occurs when a species has
an advantage as it becomes more abundant. Mechanisms
include self-reinforcing effects on soil communities,
resource cycling, or trophic interactions (Figure 1b, teal
symbol; Suding & Hobbs, 2009). Positive feedbacks can
accelerate compositional change and cause community
divergence into alternative states (Bachelot et al., 2020;
Chung et al., 2019; Larios et al., 2017). With positive
feedback control, species arriving first have an establish-
ment advantage (priority effect) and the ability to mod-
ify environments (Figure 1b: teal symbol; white boxes)
in a way that favors their continued performance over
others (Song et al., 2020; Yelenik & D’Antonio, 2013).
Subsequent community divergence results in patchiness
and overdispersed bimodal distributions of traits at
larger scales (Figure 1c bottom row, arrows pointing
toward divergent trait optima; Fukami et al., 2005).
Networks with this structure have positive effects
among conspecifics, particularly for species exhibiting
self-reinforcing effects. Weaker interactions are
expected to occur among heterospecifics, with poten-
tially diverging positive or negative effects from the
modifying species. We call this topology positive feed-
back control (Table 1b, teal icon in Figure 1b).

Summary

The influence of internal dynamics is widely viewed as a
key reason for the difficulty in predicting local diversity
change (Chen et al., 2019; McGill et al., 2015). The four
types of interaction topologies detailed above—dominance,
facilitation, negative frequency, and positive feedback—are
common expectations for contrasting structures that can
enable generalization of internal dynamics. These four
topologies also array along gradients related to niche
and fitness differences (similar to Spaak et al., 2021),
with dominance to facilitation along a fitness axis
(where traits affect per-capita growth rate regardless of
species frequency) and positive to negative frequency
control along a niche axis (where frequency and the
similarity of traits relative to others affect per-capita
growth). Networks with a weak or random structure of
interactions that do not fit in these bins could be consid-
ered either additional topologies (e.g., neutrality or strong
abiotic control) or transient states due to slow dynamics or
disequilibrial lags (CaraDonna et al., 2021; Williams et al.,
2021). More work on the assembly and disassembly of
topologies will better illuminate these dynamics over time
(Bascompte & Stouffer, 2009).

External drivers modulating internal
topologies (EDIT)

While network structure has often been treated as a static
system characteristic, accumulating evidence indicates
that external drivers can indeed change the structure of
species interactions (Table 2; Poisot et al., 2015;
Valiente-Banuet et al., 2015). For instance, a community
that is resilient to changes in external drivers might often
persist in its current topology following disturbance, with
moderate changes in interaction strength among species.
In contrast, when external drivers shift the community
into a different topology (e.g., from negative frequency
to dominance control), it may often lead to community
transformations with more abrupt shifts in composition,
richness, and the distribution of functional traits (e.g.,
Cenci et al., 2018; Landi et al., 2018).

Expectations for terrestrial plant communities suggest
common pathways by which external drivers can medi-
ate internal dynamics to shift topologies (Table 2,
Figure 1b internal arrows). Increasing resource avail-
ability (e.g., nitrogen deposition) is expected to directly
benefit species that rapidly acquire resources and grow
fast and shift topologies toward dominance control
(Matias et al., 2018; Olsen et al., 2016; Wainwright
et al., 2019). Increasing stress is predicted to harm
tolerant species the least and shift topologies toward
facilitative control (i.e., the stress gradient hypothesis;
le Roux & McGeoch, 2010; Maestre et al., 2009).
Increasing environmental variation can directly benefit
bet hedging and plastic species, while shifting topolo-
gies toward negative frequency control with increased
importance of niche differences (Adler & Drake, 2008;
de Mazancourt et al., 2013); it may also shift organization
from dominance to facilitative control during stressful
times such as droughts (Ploughe et al., 2018). Positive feed-
back topologies are often expected at intermediate resource
or stress conditions and then lead to threshold behavior as
resource availability or stress conditions intensify (Dudney
et al., 2018; Larios et al., 2017).

Summary

External drivers are expected to moderate internal dynam-
ics, potentially shifting one topology toward another
(gray arrows in Figure 1b). We expect that shifts in
topology might often constitute more substantial com-
munity reorganization and indicate a loss of resilience.
We note here that these more substantial shifts could
align with conservation or restoration goals or they
might be considered catastrophic collapses. Approaches
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to infer network structure through species associations
or functional trait proxies, which we detail in the next
section, could help identify decision-making points.

APPROACHES TO INFER DRIVERS
AND TOPOLOGIES

One value of a general heuristic framework is that it can
be used with differing levels of knowledge and informa-
tion, allowing multiple types of users and application in
diverse systems. Research approaches vary in generality
and certainty, allowing flexibility in how the framework
can be applied. We detail three main ways of collecting

and applying data in this framework to understand com-
munity reorganization over time and point to efficacious
management interventions.

Experimental manipulations of external
drivers and internal interactions

Understanding internal interaction structure in commu-
nities has long relied on experimental approaches, such
as pairwise comparisons or species removals (Allesina &
Tang, 2012; Grilli et al., 2017; Levine et al., 2017). While
these approaches may be infeasible in conservation or
restoration settings, they provide precise, causal estimates

TAB L E 2 External drivers modulate internal dynamics in several ways depending on potential for external drivers to shift internal

network topologies.

Modulation Indicators of shift

Local management to either direct or resist shifta

To direct shift To resist shift

Resource driver shifts
other topologies to
dominance control

Enhanced resources foster
dominance and increased niche
overlap; trait overdispersion
shifts to trait under dispersion
centered at trait optima

Selective disturbance or removal
targeting resource acquisitive
species, in combination with
resource reduction measures, or
the addition of fluctuating
environmental conditions
(e.g., through varied
disturbances)

Ensure representation of
species with trait optima
(resource acquisitive), aid
resource retention; consider
opportunities to diversify along
other axes (e.g., phenological,
bet hedging)

Stress driver shifts other
topologies to facilitative
control

Persistence of species in
proximity of nurse plants,
divergence of functional diversity
into nurse and beneficiary
clusters

Plant nurse plants at
intermediate densities

Remove nurse plants and
augment/add species that can
persist without need for
positive interactions

Variability driver shifts
other topologies to
negative frequency
control

Fluctuating conditions diversifies
niche space, fostering negative
frequency dependence and
reducing niche overlap while
increasing functional
dissimilarity

Establish diverse communities
with low niche overlap, initially
monitor and aid persistence of
dissimilar and rare species in
their “bad” times (e.g., by
restoring storage mechanisms
[seed or bud banks])

Maintain desired trait
optimum (e.g., resource
acquisitive and productive
species) by selecting or
supporting species that also
exhibit high trait adaptability
(e.g., high plasticity);
reduce variability through
resource additions in
“bad” times (fertilizer,
irrigation)

Stress and resource
drivers shift positive
feedback control to
other topologies

Both increased abiotic stress and
increased resource availability
reduce priority effects and
increase trait determinism;
positive feedback control
operates in intermediate stress/
resource conditions

Target species for removal that
have strong positive feedbacks,
address legacy effects in soils or
trophic communities to disrupt
feedbacks, aid in vegetation shift
consistent with resource or stress
driver

Avoid patch-removing
disturbances that reset priority
effects

Note: Here we list several expectations of how particular external drivers may shift topologies. A shift may or may not be desirable, depending on management
goals. Communities can also reorganize (e.g., in composition or abundance rankings) and maintain a particular topology.
aWe describe directing and resisting these shifts following resist–accept–direct (RAD) framework for decision making (Lynch et al., 2021), where a third option

for each is to accept the shift.
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of species interactions. For instance, pairwise interaction
trials (without varying the frequency of one species
relative to another, e.g., 0:1, 1:1, 1:0) are used to esti-
mate per-capita competitive hierarchies and facilita-
tive effects. Varying the frequency of pairwise species
interactions (e.g., 1:9, 5:5, 9:1) allows for direct tests of
some types of structure (negative frequency control,
positive feedback control). “Invasion when rare” is
a complementary approach often used to identify
frequency dependence (e.g., when an individual per-
forms better when invading communities/patches
dominated by conspecifics rather than heterospecifics,
or vice versa).

Each of these approaches can be extended to address
how external drivers modulate internal topologies. We
have used “invasion when rare” approaches, for instance,
to determine feedbacks and alternative states in California
grasslands along a gradient of nitrogen availability (Larios
et al., 2017) and density/frequency gradients combined
with rainfall manipulations to determine mechanisms of
coexistence on California rangelands (Hallett et al., 2019).
While these approaches are time-intensive and often allow
for only a subset of species and environmental conditions
to be considered, they are a direct way to estimate the
structure of interaction networks and how external drivers
can change that structure to lead to biodiversity change
(Maynard et al., 2020; Perez-Ramos et al., 2019;
Wainwright et al., 2019).

Inference with long-term
observational data

Various approaches to inferring drivers and internal
topologies from observational multispecies data sets
exist, including population demographic (Farrer
et al., 2014; Tredennick et al., 2017), multivariate
autoregressive (Ives et al., 2003; Hampton et al., 2013),
S-map (Sugihara et al., 2012), multivariate joint species
distribution (Ovaskainen et al., 2017), and other related
models (Clark et al., 2020; Weiss-Lehman et al., 2022).
While the specifics of these methods vary, they share
the general approach of partitioning the spatiotemporal
variation in community data sets to components that
relate to the effects of environmental characteristics, spe-
cies interactions, and random processes. They approximate
species interactions as pairwise associations within a sam-
pling unit (e.g., a negative per-capita association would be
indicated if one species increased while another one
decreased, after variation due to environmental effects was
taken into account). These pairwise associations can be
compiled into a matrix describing the associations of each
species with every other, with the diagonal indicating

intraspecific effects. Topologies can be broadly inferred
from these matrices; for instance, self-limitation would be
indicated by strong negative strengths in diagonal ele-
ments, and skewed distributions would be indicated by a
few strong and many weak associations across the matrix.
Comparisons at different points in time and across space
(e.g., reference and managed sites) allow inference of com-
munity dynamics and management effects.

There are many reasons why correlative studies
describing drivers and interactions from observational
data should be interpreted cautiously, including the
underlying challenge that correlations can fail to cap-
ture causal drivers and will miss higher-order interac-
tions (Blanchet et al., 2020; Godwin et al., 2020). While
there are constraints in interpretation, these rapidly
developing methods allow a bridge between theory and
a common type of data set within the management com-
munity: repeated monitoring of local community composi-
tion. We have used observational data, combined with
demographic modeling approaches, to infer the mecha-
nism of frequency control in serpentine grasslands, for
instance (Hallett et al., 2019), and a hybrid approach
where we manipulated external drivers experimentally
and inferred internal interactions with hierarchical model-
ing in alpine habitats (Collins et al., 2022). We provide
more details of these examples in the following section.

Inference with functional traits

Functional trait frameworks are a burgeoning research
area in ecology, and there is potential to expand their use
as a diagnostic of the type of external driver and topology
associations with reorganization dynamics (Cadotte
et al., 2013; Dwyer & Laughlin, 2017; Zirbel &
Brudvig, 2020). Monitoring shifts in functional traits at
the community level (e.g., community-weighted means)
can help identify the influence of key external drivers
(e.g., increasing representation of stress tolerant or
resource acquisitive traits might point to the predomi-
nance of a stress or resource driver, respectively).
Comparing changes in functional trait distributions can
help identify internal topologies (e.g., converging to a
trait optimum would be consistent with dominance con-
trol, while the increasing breadth of trait values would
suggest negative frequency control; Figure 1c) (de Bello
et al., 2021; Flores-Moreno et al., 2019; Guimaraes, 2020).

Utilizing functional trait information, while promis-
ing, also warrants careful consideration. One important
and challenging step is to identify traits with measurable
fitness consequences related to external drivers and inter-
nal topologies in a system (Larson et al., 2015;
Laughlin & Laughlin, 2013). While there has been a lot
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of work exploring traits related to resource availability as
an external driver, traits related to abiotic stress (e.g., tol-
erance and avoidance traits) and environmental variabil-
ity (e.g., plasticity bet-hedging traits) have been less
studied. In addition, traits at the seed and seedling stage
rather than adult life history may be especially relevant
in response to variability and stress drivers (Larson et al.,
2023). Like traits related to external drivers, the predomi-
nance of assessing functional traits consistent with one
type of topology may overlook the possibly of other types
of internal dynamics. In particular, traits that reveal
mechanisms of positive frequency dependence in feed-
back control or that are associated with positive interac-
tions in facilitative control are understudied. As these
gaps are filled, functional trait information offers a strong
complementary approach, alongside abundance-based
species information, to understanding external drivers and
internal topologies contributing to biodiversity change.

Summary

Several methods enable inference of external driver and
internal topologies in a community, including experi-
mentation, long-term monitoring data, and statistical
modeling, complemented by functional trait information.
Inference from these approaches can be bolstered by
intuition and place-based experiential knowledge of
managers, local stewards, and indigenous peoples.
Together, these multiple forms of inference can develop
a template for identifying external drivers and internal
topologies important to community reorganization as
well as point to which types of interventions, if any,
may be effective in guiding dynamics along desired
trajectories.

APPLYING THE EDIT
FRAMEWORK: COMBINING
EXTERNAL DRIVERS AND
INTERNAL TOPOLOGIES TO
UNDERSTAND LOCAL
BIODIVERSITY CHANGE

Characterizing how internal topologies mediate responses
to external drivers can be done using several approaches;
all will allow insight into how a community reorganizes in
response to global change. Here, we provide three case
studies from our work in different terrestrial plant com-
munities, with different approaches, to demonstrate the
value of inferring the external driver and changes in the
internal topology of interactions in order to better under-
stand and manage community reorganization under global
change.

Dominance control in alpine tundra with
increased resources (nitrogen, water) in
contrast to increased stress (warming)

Observations at Niwot Ridge (Colorado Rocky Mountains,
USA) over the last several decades indicate a substantial
warming trend, high interannual variability in precipita-
tion (the majority of which falls as snow), and a history
of atmospheric N deposition (Crawford et al., 2020). We
assessed how three species groups in moist meadow
alpine tundra (the most abundant species, a bunchgrass
Deschampsia caespitosa; the three next abundant spe-
cies, subdominants; and the next four most abundant
species, moderates) respond to experimental manipula-
tions of warming, nitrogen, and snow over 16 years
(Farrer et al., 2015; Collins et al., 2022; Figure 2). We
used a dynamic competition model (gjamTime; Clark
et al., 2020) to infer the direct effects of environmental
drivers and shifts in internal interactions on community
organization across these global change scenarios.

Under ambient conditions, the tundra plant community
was relatively stable, with little change in abundances over
time (Figure 2a). Each group experienced strong intraspe-
cific relative to interspecific competition, consistent with
a negative frequency topology under ambient conditions
(Figure 2d).

Manipulation of an abiotic external driver (warming)
shifted a negative frequency topology in ambient condi-
tions toward a competitive reshuffling and dominance
control (Figure 2e). While warming exerted only weak
direct effects across all species groups, Deschampsia expe-
rienced increased competition from other species groups
under warmed conditions, driven by negative effects of
those species on N. As the magnitude of interspecific
competitive effects approached that of intraspecific
effects, the reshuffling of the competitive hierarchy
resulted in increased abundance of several subdominant
forb species (Figure 2b) that are emerging as better com-
petitors for limited N under these warmer conditions.

When warming was accompanied by increased snow
and nitrogen, external changes also shifted the negative
frequency topology in ambient conditions to dominance
control, yet in this case they enhanced the success of the
most abundant species, Deschampia, and caused declines
in the other species groups (Figure 2c). Consistent with
its increase over time in this treatment, Deschampsia
positively responded to the external changes, and specifi-
cally to increased N availability. We did not detect any
direct environmental effects on the other species groups,
suggesting their declines were due to internal dynamics.
Competitive effects for these other species groups were
primarily driven by increased interspecific competition
with each other, while Deschampsia experienced a reduc-
tion in interspecific competitive effects (Figure 2f). This
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F I GURE 2 Legend on next page.
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example also highlights the importance of changes in total
interaction strengths (abundance × per-capita effects) that
can result from direct positive responses to external drivers
such as resource availability.

Viewing how trait distributions shift under these global
change scenarios also illuminate the direct effects of exter-
nal drivers and changes in internal topologies. Under ambi-
ent conditions, a wide distribution of functional traits
characterizes the moist meadow alpine tundra (Spasojevic
et al., 2013; Spasojevic & Suding, 2012), with Deschampsia
having traits (high leaf dry matter content, tall stature, low
specific leaf area [SLA]) characteristic of abundant alpine
grasses globally (Figure 2g–i shows the distribution of one
trait, leaf dry matter content, as an example). The suite of
traits exemplified by Deschampsia is thought to lead to high
biomass accumulation through lateral spread (Stanisci
et al., 2020) and enhanced drought tolerance and freezing
resistance (Pescador et al., 2016), particularly when associ-
ated with adequate levels of soil N. Warming shifted the
trait distribution toward avoidant strategies such as early
phenology and lower leaf dry matter content (Figure 2h),
supporting the reordering of the competitive hierarchy
found by Collins et al. (2022). In contrast, with
warming, snow, and N, the trait distribution narrowed
toward the trait optima of Deschampsia, with reduced
abundance of species that have opposing suites of traits,
consistent with the intensification of dominance control
(Figure 2i).

Negative frequency control in serpentine
grassland experiencing climate (rainfall)
variability

The serpentine grassland of the Bay Area (CA, USA)
supports a diverse set of annual plant species (Hallett

et al., 2014; Hobbs et al., 2007) (Figure 3a,b). This system
is characterized by highly variable precipitation, which
is forecasted to become more variable over time. Hallett
et al. (2018), by modeling population dynamics across
the six most abundant species, demonstrated that
this community was structured by a negative frequency
topology. Intraspecific interactions were strong for all
species, causing population growth rates to decline as
abundance increased. In comparison, interspecific inter-
actions were weaker than intraspecific interactions
(Figure 3c,d).

The abiotic driver in this case, temporal variation in
rainfall, created favorable and unfavorable conditions for
species differently across time. Species with high intrinsic
growth rates experienced stronger negative frequency
dependence and, consistent with Adler et al. (2012), were
less sensitive to the external driver of rainfall variability.
This trade-off shifted the network of species interactions
in wet and dry years, as some species were more sensi-
tive to rainfall when rare, while others were more
sensitive when they were abundant (Figure 3c,d). While
species abundances shift with rainfall, functional diversity
in such traits as specific leaf area (SLA) were maintained
(Fernandez-Going et al., 2012).

Over the last several decades, increased resources
through atmospheric N deposition have impacted serpen-
tine grasslands (Eskelinen & Harrison, 2014; Gilbert
et al., 2020; Grainger, Levine, & Gilbert, 2019b;
Weiss, 1999). As N levels increased later in the time
series, an exotic grass, Bromus hordeaceus, that was his-
torically moderately abundant and fluctuated with rain-
fall conditions at low N conditions (Figure 3e,f, orange),
was able to increase in abundance in both dry and wet
years. Interactions with the historically most abundant
species, Plantago erecta, indicate strong competitive inter-
actions and a shift toward a dominance control topology

F I GURE 2 Example of dominance control from our work in the alpine tundra. Cover change of the most abundant species

(Deschampsia cespitosa, in blue), a grouping of the next most abundant three species (sub-dominants, in rust), and the four next

abundant species (moderates, in green) over 16 years under (a) ambient conditions, (b) experimental warming (open-top chambers),

and (c) warming plus snow (snow fence) and N (addition) conditions. The structure of interactions in ambient conditions

(d; see k for legend) suggests dominance control, with asymmetric competitive interactions among the species groups. Warming (a

stress driver) shifted the competitive hierarchy to reorder species abundances (e), while the addition of snow and N (resource

availability) intensified dominance (f). Panel (k) explains legend for (d–f), where line width indicates strength of associations and

circle size indicates relative abundance of each species group (ranging 5%–75% cover). Abundance of each of 15 species as a function

of one functional trait, leaf dry matter content, in (g) ambient conditions, (h) warming, and (i) warming

plus snow and N addition. Colors correspond to abundance classes from (a) to (c), height of curves indicate mean species

abundance, position on the trait axis indicates mean and SE of trait measurements. Insets (g–i): rank abundance curves for

each treatment. While species richness changed very little, increased evenness with rank shifts occurred in (h) and reduced

evenness in (i). Experimental site in the moist meadow tundra, Niwot Ridge, Colorado, with a diversity of forbs alongside the

abundant bunchgrass (j). See Collins et al. (2022) for more details of the experimental design and modeling framework. Photo credit:

Emily Farrer.
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F I GURE 3 An example of frequency control where trade-offs in the intensity of negative density dependence (self-limitation) maintain

coexistence in a variable environment. Population size of six common plant species (a): native annual forbs (Calycadenia multiglandulosa,

light blue; Lasthenia californica, green; Microseris douglasii, dark blue; Plantago erecta, rust), a native annual grass (Vulpia microstachys,

pink), and a nonnative annual grass (Bromus hordeaceus, yellow) fluctuates over time in a serpentine grassland (inset, b). Here we find

interspecific interactions (gray dashed arrows) to be weak compared to intraspecific interactions (solid looped arrows). Trade-offs in the

strength of conspecific limitation between years with low rainfall (c) and high rainfall (d) maintains diversity. Yet, when the increase in N

inputs due to atmospheric deposition are included (e, f), frequency control is overwhelmed by dominance of Bromus at high N, with less

response to rainfall variability (just Bromus and Plantago are shown in [e, f] for clarity). Notation follows Figure 2k, with the addition of

lambda estimates (growth rate when rare) denoted by the thickness of the line around each species circle. Arrow width indicates strength of

intraspecific interactions and circle size indicates relative abundance of species. See Hallett et al. (2018) and Hernandez (2021) for more

details of the study design and modeling framework. Photo credit: Lauren Hallett.
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regardless of rainfall variability (fig. 3e,f;
Hernandez, 2021). Following similar dynamics in the
tundra, a shift toward dominance control at high
N correspond to trait diversity decline and a shift toward
the trait optimum of the competitive dominant Bromus
species (Hallett, unpublished data).

Positive feedback control in California
grasslands at intermediate resource levels

California grasslands can have well-defined patches of
both native perennial bunchgrasses and annual exotic
grasses (Figure 4a–c). This patchiness persists under
some environmental conditions but not others, and
global change drivers can push a system both in and out
of these conditions (Larios et al., 2013). In a series of
“invasion when rare” experiments, combined with demo-
graphic modeling along a gradient of atmospheric N
deposition (Larios et al., 2017), native perennial grasses
(e.g., Stipa pulchra, Figure 4b) were the dominant species
at low N availability, while at high rates of N deposition,
exotic annuals (e.g., Avena fatua, Figure 4c) were the
superior competitor, suggesting a reordering of com-
petitive hierarchies as the external driver intensified
(Figure 4d,f). However, as opposed to cases of dominance
control at high or low N, a positive feedback topology
occurred at intermediate N inputs (Figure 4e). With inter-
mediate external inputs, internal interactions depended on
initial conditions: Native bunchgrasses were competitively
superior at high abundance but could not successfully
invade when starting from a low abundance (Figure 4h,k).
Exotic annuals also exhibited this positive frequency
dependence, where they could not invade when rare
but could exclude other invaders when abundant
(Figure 4h,k).

Many processes can maintain positive feedbacks in
nature. In this case, the presence of the native grass
Stipa pulchra promotes a microbial community that
in turn enhances its growth and reproduction (Chung
et al., 2019; Larios & Suding, 2015). Feedbacks that
maintain the exotic annual grass Avena fatua dominance
in intermediate environmental conditions do not appear
to be microbially mediated but rather maintained by high
propagule pressure (Larios et al., 2013).

Application of traits in a system with feedback control
is not straightforward, as the traits important in these
feedbacks are rarely quantified. Here, the native grass
Stipa and exotic grass Avena vary in traits along
the resource axis, as would be expected: Stipa, which
dominates at low N, is resource conservative, and Avena,
which dominates at high N levels, has resource acquisi-
tive traits, causing the trait distribution in systems with

patches dominated by both to be bimodal (Molinari &
D’Antonio, 2014). While we can identify the feedbacks as
related to differences in plant–soil interactions (Larios &
Suding, 2015), we suspect that the traits that would best
predict these feedbacks are different from those we typi-
cally measure in a functional trait framework. Expansion
of what we consider important traits (e.g., root exudates,
immune system, propagule pressure traits) would allow
broader inference.

Summary

Across these systems, we illustrate how types of external
drivers and internal system topology provide a helpful
framework for understanding community reorganization
under global change. These factors generalize the complex-
ity of global change and the network of interactions that
structure communities. We have inferred external drivers
and internal topologies using statistical models that
encompass competitive, demographic, and functional
dimensions (Collins et al., 2022; Farrer et al., 2014;
Hallett et al., 2018, 2019; Larios et al., 2017). Each
approach brings important caveats and considerations
(Dormann et al., 2017; Feng et al., 2020). Yet, in an era of
rapid change where solutions are urgently needed, we hope
that the benefits of inference and generalization to highlight
useful management interventions outweigh their costs.

APPLICATION TO MANAGEMENT

Planning in restoration and conservation often starts
with specific challenges related to changing biodiversity
within a system. For example, common management
goals may include reducing the abundance of an invad-
ing exotic species, bolstering rare or vulnerable species
that are in decline, and re-establishing multiple,
service-providing native species. Despite the common
compositional focus of these goals, the processes under-
lying these challenges inevitably vary depending on
external drivers and internal topologies. Without taking
these into account, management efforts may be ineffec-
tive at best, and detrimental at worse. For example, in
invaded landscapes of the Western United States, restora-
tion seed mixes have historically included species known
to have competitive traits (e.g., crested wheatgrass) as a
means of reducing dominant invasive species; however,
without anticipating the full role of seeded species within
internal networks, these efforts have sometimes pushed
communities toward a topology that fails to meet manage-
ment goals (e.g., with low native diversity; reviewed in
Davies et al., 2020).
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Here we describe pathways for the EDIT framework
to be applied by science–manager teams to both iden-
tify the dynamics underlying a management challenge
related to global change and evaluate potential solu-
tions. Importantly, while the EDIT framework aims to
understand community reorganization in the face of
global change, the framework does not assume that
one set of dynamics is more or less desirable from a
management perspective. Thus, a first step is to identify
management goals and desired trajectories of change.
Second, science–management partners can work together
to combine the necessary data inputs and modeling

approaches to implement the EDIT framework. We
point to the applied potential of combining modeling
approaches with monitoring data sets, functional trait
assessments, and experiential knowledge to inform
understanding of external drivers and internal topologies
in a community. A last step, which we detail in this sec-
tion, is to determine if interventions are needed and, if
so, what they might be. Because the efficacy of an inter-
vention will depend on the external drivers and internal
dynamics of the system (Tables 1 and 2), the EDIT frame-
work can be used to evaluate potential solutions to the
identified management challenge.

F I GURE 4 Example of positive feedback control in California grasslands (a) where initial conditions (whether the species is abundant

or rare) influence long-term abundance patterns. Modeled abundance patterns incorporating demography of a native perennial bunchgrass

(purple, Stipa pulchra [b]) and an exotic annual grass (brown, Avena fatua [c]) across a gradient of soil N levels (d, low; e, moderate; f, high),

with dashed lines indicating the “invading” species starting as rare and solid lines indicating the species at high initial conditions. In (d) and

(f), long-term abundance patterns do not depend on initial conditions: Stipa competitively dominates at low N (g, j) and Avena dominates at

high N (i, l). At intermediate levels of N (e), the species starting as abundant maintains dominance. The structure of interactions is also

affected by initial conditions (native grassland where Stipa abundant, g–i; invaded grassland with Avena abundant, k–l; initial abundance
indicated by size of dashed circle). At intermediate N levels (h and k), the abundant species has positive density dependence and strong

asymmetric competitive effects on the rarer species, shifting abundance patterns. Notation follows Figure 2k, with the addition of lambda

estimates (growth rate when rare) denoted by the thickness of the line around each species circle. Arrow width indicates strength of intra-

and interspecific interactions, with dashed lines indicating positive density dependence, circle size indicating abundance of species group,

and dashed circles indicating starting conditions. See Larios et al. (2017) for more details of the study design and modeling framework. Photo

credits: Loralee Larios (a), Katharine Suding (b–c).
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External drivers

Based on the EDIT framework, adjusting system inputs
(i.e., critical external drivers) is an effective way to mod-
erate outputs of interest to management
(i.e., biodiversity response). Yet, it is often difficult to
control external drivers through local interventions
(Clark et al., 2020; Saavedra et al., 2017). Proximal
approaches (e.g., suggestions in Table 1a) often come
with impacts that may reduce management efficacy. For
instance, to address the dominance of undesirable spe-
cies that are associated with increased resource avail-
ability, grazing could be used to remove excess biomass
and nutrients, but it may also cause soil disturbance
and selectively remove palatable species that are not the
target of management (Fenn et al., 2010; Weiss, 1999).
Adding carbon (e.g., in the form of sugar or sawdust)
can also be used to reduce soil available N, but the
reduction may be transient and costly at scale
(Clocchiatti et al., 2023). Likewise, when it is difficult to
establish restoration species due to unsuitable abiotic
conditions, the introduction of foundational plants can
alleviate an abiotic stress, but also affect other species
interactions (Losapio & Schob, 2017; Soliveres &
Maestre, 2014). Thus, despite the need to address exter-
nal drivers of global change, local interventions to
address the external driver are often difficult. A key
decision point may be whether additional or alternative
interventions aimed at modifying or supporting the inter-
nal network topology can be leveraged (Table 2).

Dominance control

When an external driver shifts a system to a dominance
topology, interventions that reduce the abundance or
interaction strengths of the dominant species might be
required (Funk & Wolf, 2016). For instance, in serpentine
systems (Figure 3) that are transitioning from negative
frequency control to dominant control with increasing
N levels, grazing interventions might target the exotic
brome dominating with increased N alongside, efforts to
reduce resource inputs. We acknowledge that identifying
feasible approaches to selectively reduce the abundance of
one species is not trivial. In some cases, like the alpine
tundra system where the dominant species is native
(Figure 2), increased dominance may not warrant costly
intervention. In other systems where a shift toward domi-
nance control may lead to ecosystem transformation, the
EDIT framework may help science–manager partners
identify intervention strategies like fire, thinning, selective
grazing, or herbicide application to reduce the strength of

competitive effects and shift the topology away from domi-
nance control.

Facilitative control

Maintaining facilitative topologies requires prioritiz-
ing the establishment of particular species that provide
refuge for others that may otherwise fail to establish
(Soliveres & Maestre, 2014; Thomsen et al., 2010). The
EDIT framework could help identify thresholds for
nurse plant densities that optimize positive interac-
tions (e.g., Brigham & Suding, 2023).

Negative frequency control

Maintaining networks with strong negative frequency
dependence requires a focus on functional diversity and
maintenance of complementary species (niche breadth).
These types of interventions may best focus on maintaining
and perhaps even creating environmental (abiotic and
biotic) heterogeneity (Hallett et al., 2017; Stein et al., 2016).
In frequency control topologies, removal of undesirable spe-
cies may be most effective when the species’ growth rate is
depressed. For instance, removal efforts should coincide
with low population growth rates of the invader in a ser-
pentine system (Bromus, Figure 3) due to its rainfall sensi-
tivity (Hallett et al., 2018).

Positive feedback control

Positive feedback topologies can be resilient to changing
environmental conditions due to the strength of internal
feedbacks. Yet, once the environment changes past a
certain threshold, abiotic effects can overwhelm internal
feedbacks and lead to rapid change (Dudney &
Suding, 2020). Thus, managers might expect longer
periods of stasis and increased risk of abrupt changes under
extreme environmental conditions (Turner et al., 2020).
These systems also require increased attention to initial
conditions and legacies, as needed interventions may differ
depending on what species dominates initially, and through
what type of feedback (Godoy, 2019). For instance, protec-
tion of intact Stipa grasslands (Figure 4) at intermediate N
levels is a priority. Breaking feedbacks related to undesir-
able forms of resilience (e.g., those created by invasive spe-
cies) might need to combine a removal of legacies with the
introduction of new, adapted species that shift priority
effects (Cleland et al., 2015; Schantz et al., 2015).
Restoration of exotic Avena grasslands, for instance, may
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best target native forbs rather than Stipa at higher N levels
(Larios et al., 2017).

Summary

A core guiding concept across the EDIT framing is that
efficacious intervention depends on understanding the
dynamics causing biodiversity change (e.g., external
drivers, internal topology) rather than patterns in species
richness or rank abundances alone (Bergstrom et al., 2021;
Lindenmayer & Likens, 2010). Opportunities to address
external drivers at the local scale may be limited, given
global phenomena, and local intervention more often
suited to address internal dynamics in the context of global
change. Understanding the available options is key, and
these options fundamentally depend on an understanding
of how community reorganization is occurring in the con-
text of global change.

CONCLUSIONS

Continued demands on nature, combined with changing
global conditions, will cause substantial shifts in biodi-
versity during our lifetimes. Some of these changes will
be irreversible. Actions to lessen the impact of external
drivers of global change (e.g., climate mitigation, pollu-
tion reduction, land protection) are necessary but not suf-
ficient to prevent future biodiversity declines. By
considering community reorganization as a key compo-
nent of local diversity change that is driven by external
drivers and how these drivers modulate internal dynamics,
EDIT can provide a template to guide future biodiversity
trajectories that ideally benefit nature and society. We argue
here for a balance between a mechanistic, quantitative
understanding utilizing models of external and internal
dynamics of change and generalizable approaches that can
fuel practical inference with available compositional moni-
toring and functional trait data sets. We hope to have dem-
onstrated how these approaches can be used to diagnose
which EDIT components are operating within a given
system and how this insight can be used to guide efforts
to manage community reorganization through time.

As we expand from traditional diversity measures to
consider external drivers and internal controls on com-
munity reorganization, establishing dynamic goals, such
as ensuring that systems can adapt to and track global
environmental change, will be increasingly possible. These
goals are already in use qualitatively, with policymakers
often using terms such as ecological integrity (Donohue
et al., 2016; Lajeunesse et al., 1995; Suding et al., 2015),

self-sustainability (Palmer et al., 2014), and ecosystem
health (Díaz et al., 2015). Quantitative metrics based on
how external drivers modulate internal topology can
bridge these qualitative constructs. However, this is new
territory, particularly for terrestrial plant–plant interac-
tions, with many unanswered questions: Do these
topologies represent distinct, nonrandom states, or is it
better to describe community topologies as a gradient of
many types of interactions? How do transient and
lagged responses in topologies affect our power of
inference? By narrowly defining community topologies,
do we overlook important complexity (e.g., multilayer
networks) that drives community responses to global
change?

While imperfect, multiple modes of inference are essen-
tial to make informed, purposeful choices about how to
respond to community reorganization due to global envi-
ronmental change (Beaury et al., 2020; Dudney et al., 2022).
Institutional support that includes “safe-to-fail” actions and
experimentation is key to empowering managers to make
innovative decisions that go beyond reactive triage (Aplet &
McKinley, 2017). Management interventions, particularly
in combination with monitoring, can also test our scien-
tific inference in a decision-making space (e.g., the
resist–accept–direct framework; Lynch et al., 2021) and
increase adaptive capacity (Dudney et al., 2022). In the face
of uncertainty under global change, bidirectional exchange
between scientists and managers will best refine this
framework and inform on-the-ground management
interventions.

Lastly, placing the external drivers and internal topol-
ogies into a few baskets is a clear oversimplification.
Certainly, different systems may vary in the types of
external threats they experience and how they are inter-
nally organized in network structure, and our narrow
focus on plant–plant interactions in terrestrial plant com-
munities misses important taxa, interaction types, and
multilayer networks (Pellissier et al., 2018; Pilosof et al.,
2017). As disturbance can initiate new assembly
(DeSiervo et al., 2023; Kopecky et al., 2023), another key
unknown is whether management intervention during a
period of disassembly may be an effective precursor to
guide reassembly toward a desired trajectory of reorgani-
zation (Perez-Navarro et al., 2021; Seidl & Turner, 2022).

Even at the broadest level, the drivers and topologies
we suggest should be considered hypotheses for testing
and refinement. In these times when progress is urgently
needed, however, we hope that they offer heuristic value
in thinking about the connection between different eco-
logical theories of change and how these theories can
provide managers a template to guide opportunities for
intervention.
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