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Generalization of the Dark Channel Prior
for Single Image Restoration

Yan-Tsung Peng , Keming Cao, and Pamela C. Cosman, Fellow, IEEE

Abstract— Images degraded by light scattering and absorption,
such as hazy, sandstorm, and underwater images, often suffer
color distortion and low contrast because of light traveling
through turbid media. In order to enhance and restore such
images, we first estimate ambient light using the depth-dependent
color change. Then, via calculating the difference between the
observed intensity and the ambient light, which we call the
scene ambient light differential, scene transmission can be esti-
mated. Additionally, adaptive color correction is incorporated
into the image formation model (IFM) for removing color
casts while restoring contrast. Experimental results on various
degraded images demonstrate the new method outperforms other
IFM-based methods subjectively and objectively. Our approach
can be interpreted as a generalization of the common dark
channel prior (DCP) approach to image restoration, and our
method reduces to several DCP variants for different special
cases of ambient lighting and turbid medium conditions.

Index Terms— Haze removal, sandstorm, underwater, image
restoration, transmission estimation, ambient light estimation.

I. INTRODUCTION

IMAGES or videos captured in different conditions some-
times suffer from visibility degradation because light is

scattered and absorbed with distance from the camera through
turbid media, such as fog, haze, sandstorms, or water. The
degradation reduces the visual quality of the images and videos
and affects the performance of computer vision applications.
Thus, developing an effective method to restore color and
contrast for such images is desirable. Fig. 1(a)-(e) shows five
different images degraded by light scattering and absorption.

There has been much research [1]–[5] on image defog-
ging and visibility restoration using the image formation
model (IFM) [6]. Fig. 2 shows how an image is described
using the IFM [6]–[8]. Here I c(x), the observed intensity at
pixel x , consists of the scene radiance J c(x) blended with
the ambient light Ac according to the transmission map t (x),
where c is one of the red, green, and blue channels. The
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Fig. 1. (a)–(e) Examples of different images degraded by light scattering and
absorption. The original image (a) is from [1], (b) is from [4], (c) is from [37]
(d) is from [21] and (e) is from [38].

Fig. 2. Image formation model.

transmission describes the portion of the scene radiance which
is not scattered or absorbed and which reaches the camera.
Thus, a larger value in the transmission map means that the
corresponding scene point is closer to the camera.

Using the IFM, He et al. [1] presented the dark channel
prior (DCP) to remove fog/haze in natural terrestrial images
via estimation of the ambient light and transmission. This
motivated many image restoration approaches [2]–[5], [9]–[16]
that improve and extend the DCP for different goals and
applications. However, haze with different color casts may lead
to under- or over-estimated transmission based on the DCP,
causing poor restoration results. In [4] and [5], restoration
methods for hazy and sandstorm images were presented; they
used adaptive gamma correction to solve the transmission
over-estimation caused by the low observed intensity due to
color casts, and adopted color correction to compensate for the
color cast. Nevertheless, the underlying reason for inaccurate
transmission estimation for images with color casts is that the
DCP is not as reliable for such images as for those without
color casts. This problem often cannot be solved only by
gamma correction. Hence, these methods are unable to restore
heavily tinted sandstorm images because most blue light is
scattered and absorbed, which causes the DCP to fail and
leads to inaccurate ambient light and transmission estimation.
In order to estimate medium transmission more precisely,
some researchers exploited learning algorithms to generate a
mapping function where the input is a hazy image, and the
output is its depth map [17]–[19]. However, these methods
only consider hazy images that have bright ambient light and
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no color cast, and are often unable to restore more general hazy
images with different lighting conditions and color tones.

Several studies also have been conducted on restoring
underwater images based on the DCP [9]–[11], [14], [15] or its
variants [12], [13]. However, measuring transmission for
underwater images based on the DCP [9]–[11], [14] fre-
quently fails to generate accurate results since red light is
more attenuated than other wavelengths underwater, and thus
the DCP based on RGB channels ends up considering only
the red channel, causing unreliable transmission estimation.
Several DCP variants consider only the green and blue chan-
nels [12], the RGB channels with the red inverted [13], or the
minimal information loss principle (MILP) [15] to try to
estimate transmission underwater, but they may still fail due
to different underwater lighting conditions and color tones.
Instead of using the DCP, the maximum intensity prior (MIP)
approach [16] calculates the difference between the maximum
intensity of the red channel and that of the green and blue
channels to estimate transmission. However, these methods
frequently perform poorly as the light absorption and lighting
conditions that exist in underwater images invalidate these
priors. For example, all the DCP-, MIP-, and MILP-based
restoration methods are unable to restore underwater images
with dim ambient light, where the background pixels are dark
and would be wrongly judged as being close.

In this paper, we improve DCP-based image restoration
using a new approach to estimating ambient light (which is
needed by the DCP restoration methods), and using adaptive
color correction incorporated into the IFM. The method can
be applied to enhancing and restoring foggy, hazy, sandstorm,
and underwater images, including both well-lit and dimly lit
images. The algorithmic contributions of this work, compared
to [22], include the depth-dependent color change for estimat-
ing ambient light for a wide range of degraded images, and
adaptive color correction in the IFM. We demonstrate that our
approach is a generalization of the DCP, and we present both
subjective and objective experimental results.

The rest of the paper is organized as follows. In Section II,
we review DCP-based image restoration [1] and its limitations.
Section III details the new method. Section IV reports exper-
imental results, and Section V summarizes the conclusions.

II. ENHANCEMENT AND RESTORATION BASED ON DCP

In this section, we review dehazing based on the DCP [1],
which was broadly adopted and improved to apply to
hazy, sandstorm, and underwater images [2]–[5], [9]–[14].
Assuming that light attenuation is homogeneous, the IFM [6]
is given by:

I c(x) = J c(x)t (x) + Ac(1 − t (x)
)
, c ∈ {r, g, b} (1)

where I c(x) is the observed intensity in color channel c at
pixel x , J c is the scene radiance, Ac is the ambient light, and
t is the transmission, where c is one of the RGB channels.
Note that we assume I c, J c, and Ac ∈ [0, 1].

For each pixel x in an image, the DCP finds the minimum
value among RGB channels in a local patch �(x) centered
at x , that is: Jrgb

dcp (x) = miny∈�(x)

{
minc∈{r,g,b} J c(y)

}
. For an

Fig. 3. Examples of depth estimation via the DCP (I rgb
dcp ); (a) and (b) are

successful cases while (c) and (d) are failure cases. The original images of
(a), (b), and (d) come from [1], [38], and [16].

outdoor terrestrial haze-free image, Jrgb
dcp is often close to zero,

because at least one of the three color channels will typically
have a low-intensity pixel in the local patch in �(x). It was
asserted in [4, eq. (9)] that Jrgb

dcp = 0 for about 75% of non-sky
pixels in haze-free images.

Dividing both sides of Eq. (1) by Ac and applying the
minimum operators to it, the term involving J c is dropped as
being close to zero, and the transmission estimate t̃rgb(x) =
miny∈�(x) t (y), described in [4, eq. (11)], is

t̃rgb(x) = 1 − min
y∈�(x)

{
min

c∈{r,g,b}
I c(y)

Ac

}
. (2)

Since t̃rgb has block-like artifacts, it can be refined by
median filtering [3], image matting [25], or guided filter-
ing [26]. To estimate Ac, the DCP for a hazy image is
calculated as:

I rgb
dcp (x) = min

y∈�(x)

{
min

c∈{r,g,b} I c(y)

}
. (3)

For the DCP of a hazy image, far and close scene points,
x f and xc, generally have I rgb

dcp (xc) ≤ I rgb
dcp (x f ) because of

scattered light. Therefore, I rgb
dcp provides depth information for

hazy images. Based on I rgb
dcp , ambient light Ac is selected from

one of the farthest and haziest pixels in the input image. Let
P0.1% be the set of positions of the top 0.1% largest valued
(assumed farthest) pixels in I rgb

dcp . Among these pixels, the one
with the highest intensity in the input image provides the
estimate of ambient light Ac [1]:

Ac = I c
(

argmax
x∈P0.1%

∑

c∈{r,g,b}
I c(x)

)
. (4)

Finally, by putting I c, t̃rgb and Ac into Eq. (1), the estimated
scene radiance is calculated as:

J c(x) = I c(x) − Ac

max
(
t̃rgb(x), t0

) + Ac, (5)

where t0 is empirically set in the range [0.1, 0.4] to increase
the exposure of J c for display.

In general, the DCP-based methods are based on three
assumptions made for hazy terrestrial images: overcast
lighting, spatially invariant attenuation coefficients, and
wavelength-independent attenuation. Sandstorm and underwa-
ter images have different possible lighting conditions and color
casts, which may violate the assumptions underlying these
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Fig. 4. Overall flowchart of our method. The original image is from [5].

TABLE I

FORMULAS FOR ESTIMATION OF DEPTH [1], [12], [13], [24]

TABLE II

FORMULAS FOR ESTIMATION OF TRANSMISSION [1], [12], [13], [24]

priors, producing poor restoration results. For example, red
light is strongly abosorbed underwater, so small values in
the red channel make the DCP values of a far scene small,
causing inaccurate image depth and ambient light estimation
(e.g., Fig. 3(d)). Therefore, several DCP variants [12], [13],
[23], [24] were created for ambient light and transmission
estimation with different lighting conditions and color casts,
shown in Table I and Table II.

The original images in the first two columns of Fig. 3 have
lighting conditions appropriate to the DCP-based methods.
Dark foreground pixels cause the dark channel to have a small
value, so they are correctly estimated as being close. The
background lacks dark pixels, so these regions are correctly
estimated to be relatively far away. By contrast, the DCP works
poorly for the original images in the last two columns of Fig. 3.
The sandstorm image has small values in the blue channel,

so the DCP in Eq. (3) has small values everywhere coming
from the blue channel; the entire scene is mistakenly judged as
being very close. The underwater image in the fourth column
was captured with artificial lights. The bright foreground is
erroneously viewed as being far while the dark background is
incorrectly deemed to be close. In Section IV, we will show
other examples where the DCP-based methods do not work
properly because of different lighting conditions and color
casts.

III. DESCRIPTION OF THE METHOD

Fig. 4 depicts the overall flowchart of our method. The steps
are explained in the following sections.

A. Ambient Light Estimation

We generalize the DCP based on the depth-dependent color
change, which describes whether a given color channel tends
to have larger or smaller values as depth from the camera
increases. A three-bit indicator s = sr sgsb is used, where
sc = 1 means that light for channel c tends to increase
with depth, while sc = 0 indicates that light for c tends to
decrease, where c ∈ {r, g, b}. There are 8 different values
for the indicator: s ∈ {000, 001, . . . , 111}. To determine the
indicator for an image, we estimate a rough depth map Dr

based on the observation that far scene points tend to have
smoother regions (due to scattering) and so have smaller
gradients than close scene points. A gradient map is first
computed as G(x) = √

Gh(x)2 + Gv (x)2, where Gh and Gv

are the horizontal and vertical 3 × 3 Sobel operators applied
to the input image. Assuming depth in a small local patch is
uniform, a modified gradient map Gm is estimated by dilating
G and filling holes [27]. Then, we set Dr (x) = 1−Fs(Gm(x)),
where Fs linearly stretches Gm to the range [0, 1].

The relationship between depth and I c is modeled via
regression: Î c(x) = bc + ac × Dr (x), where ac and bc

are estimated using argminac,bc

∑
x

(
I c(x) − Î c(x)

)2.
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Fig. 5. The flowchart of calculation of the depth-dependent color change.

Fig. 6. The regression analysis plot using image I and the improved depth
map D from Fig. 5.

The indicator sc for channel c equals 1 if ac > 0 and equals 0
otherwise, where c ∈ {r, g, b}. In addition, a larger |ac|
means higher significance of the corresponding channel c to
determine the scene depth. Rather than using Eq. (3) as the
depth map estimate for purposes of estimating ambient light,
we estimate the depth map D using the indicator sr sgsb and
|ac| as:

D(x) = min
c,y∈�(x)

(
1 − wc | sc − I c(y) | )

, (6)

where wc = tanh(k|ac|) is the significance weighting factor
for channel c, where k = 4 is an empirical constant. Here the
function tanh(z) = ez−e−z

ez+e−z is the hyperbolic tangent.
Fig. 5 shows the flowchart of calculation of the depth-

dependent color change. There are two main reasons why
we chose to use linear regression for capturing correlation
between RGB intensity values and scene depth. First, the linear
fit is simple, and is sufficient for our purposes. Second,
the error of the linear fit between RGB intensities and depth
tends to be smaller when an accurate depth map is used. For
example, the fit is much better in Fig. 6 where the RGB
intensities of image I are plotted with the improved depth
map D from Fig. 5. We also tried other color spaces but found
the RGB color space to be the best fit for our method.

Using the indicator s and the significance weighting factors
w = [wr , wg, wb], we have developed a general formulation
for DCP-based methods. The approach for hazy images [1],
sandstorm images [4], [5], and some underwater
images [9]–[11], two approaches for night-time terrestrial
images [23], [24], and two approaches for underwater
images [12], [13] are all special cases of Eq. (6), as will be
discussed later.

Fig. 7 shows comparisons of depth estimation based on
the DCP [1], DCP variants [12], [13], [24], and our depth
estimation. Fig. 7(a) shows a hazy image and its estimated
depth maps. I rgb

dcp works for the hazy image since its s and w
indicate that the values of all three color channels, which are
all significant, tend to increase with depth. Fig. 7(b) shows
an underwater image where both I rgb

dcp and I gb
dcp work since

s = 111 and w are similar to those for I c in Fig. 7(a).
However, the depth estimated using I r ′gb

dcp is not accurate for
Fig. 7(b), because its sr = 1 means the values of the red
channel increase with depth but I r ′gb

dcp , which inverts the red
channel, considers the red values decrease with increasing
depth. The sandstorm image in Fig. 7(c) has small blue values,
causing I rgb

dcp to only consider the blue channel and to fail to

produce a proper depth map. As can be seen in Fig. 7(d), I r ′gb
dcp

works well for the underwater image since red values tend to
decrease and green and blue values tend to increase with depth
based on its s while I rgb

dcp , assuming an opposite tendency for

red, does not work. I gb
dcp works somewhat imprecisely (fish is

wrongly judged as being far) because it does not consider the
red channel. Fig. 7(e) and (f) show two underwater images
with artificial lighting, for which I rgb

dcp , I gb
dcp and I r ′gb

dcp all do
poorly estimating the depth because none of them works when
green values decrease with increasing depth. I r ′g′b′

dcp works well
when the values in all three color channels tend to decrease as
the depth increases, such as the underwater image in Fig. 7(f)
and the dimly-lit image in Fig. 7(g). Our method, which
incorporates the depth-dependent color change indicators and
significance weighting factors, is capable of generating proper
depth maps for all of these degraded images with different
color change and lighting conditions.

Ambient light is estimated from the input pixels correspond-
ing to the top 0.1% farthest pixels in D:

Ac = 1

| P0.1%
D |

∑

x∈P0.1%
D

I c(x), (7)

where P0.1%
D is the set of positions of the top 0.1% largest-

valued pixels in D.

B. Scene Transmission Estimation

Transmission estimation based on scene ambient light dif-
ferential was presented in our preliminary work [22], but here
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Fig. 7. Comparisons of depth estimation based on the DCP [1], [4], [5], [9]–[11], DCP variants [12], [13], [24], and our method for images with different
light lighting conditions and color casts. The first row of images shows (a) A hazy image with s = 111, (b) an underwater image with s = 111, (c) a sandstorm
image with s = 111, (d)-(f) underwater images with s = 011, 001, 000, and (g) a dimly lit image with s = 000. The next four rows show the estimated depth
images using various methods. The last row shows our depth images. The original image of (g) and depth images shown here undergo simple individual
contrast stretching or scaling steps for display. Original images are taken from [1], [38], [37], [16], [39], and [44].

we explain it from a different perspective to show the DCP
generalization. In [1], the DCP-based transmission estimate
t̃rgb(x) = 1 − minc,y∈�(x)

{
I c(y)

Ac

}
can also be expressed as:

t̃rgb(x) = max
c,y∈�(x)

{
1 − I c(y)

Ac

}
= max

c,y∈�(x)

{
Ac − I c(y)

Ac

}
.

(8)

The transmission is commonly written as an exponential decay
term based on the Beer-Lambert law [30] of light attenuation
as t̃(x) = e−βd(x), where d(x) ≥ 0 is the distance from the
camera to the radiant object and β is the spectral volume atten-
uation coefficient, so t̃ ≥ 0. In [1], whenever Eq. (8) would
yield a negative number (that is, Ac < I c(y), ∀y ∈ �(x)),
then t̃(x) gets clipped to zero. Therefore, scene transmission
estimated using Eq. (8) would be inaccurate. To address this,
we estimate transmission [22] as:

t̃ pro(x) = max
c,y∈�(x)

( | Ac − I c(y) |
max(Ac, 1 − Ac)

)
, (9)

where median filtering [3] and linear stretching (to the range
[0.2, max(̃tpro)]) are applied to refine the estimated trans-
mission. The intuition behind this expression for t̃ pro is that
the numerator captures the absolute difference between the

observed intensity and the ambient light, and large values of
this quantity correlate with proximity to the camera. That is,
observed intensity for close scene points consist more of scene
radiance and less of ambient light, and based on Eq. (9),
will have large t̃ pro. By contrast, observed intensity for a
farther scene point consists less of scene radiance and more
of ambient light, and t̃ pro is small.

C. Generalization of the DCP

Our approach is a generalization of the DCP-based
approaches both for ambient light estimation and transmission
estimation. First, consider transmission estimation (Eq. (9)).

1) When the ambient light is bright (Ac ≥ 0.5) and
Ac ≥ I c, c ∈ {r, g, b}, which holds for many foggy
and hazy images, then max(Ac, 1 − Ac) = Ac, so the
expression becomes identical to the DCP [1]:

t̃ pro(x) = max
c,y∈�(x)

( Ac − I c(y)

Ac

)
= t̃rgb(x). (10)

2) When ambient light is dark (Ac ≤ 0.5) and Ac ≤ I c,
c ∈ {r, g, b}, which holds for most dimly lit images,
Eq. (9) reduces to the method [24] which uses inverted

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on November 13,2020 at 20:01:00 UTC from IEEE Xplore.  Restrictions apply. 



PENG et al.: GENERALIZATION OF THE DCP FOR SINGLE IMAGE RESTORATION 2861

RGB channels and is meant for night videos:

t̃ pro(x) = max
c,y∈�(x)

( I c(y) − Ac

1 − Ac

)
= t̃r ′g′b′(x). (11)

3) When Ar ≤ 0.5 and Ar ≤ I r , and Ak ≥ 0.5 and
Ak ≥ I k , k ∈ {g, b}, which holds for some underwater
images where red light is greatly absorbed, Eq. (9)
reduces to the method [13] which uses RGB channels
with red inverted:

t̃ pro(x) = max
y∈�(x)

( I r (y)− Ar

1− Ar
,

Ag − I g(y)

Ag
,

Ab− I b(y)

Ab

)

= t̃r ′gb(x). (12)

4) In [4] and [5], Huang et al. found that sometimes images
with strong color casts (in which one color channel
had a small value in Ac and I c < Ac) would lead
to transmission over-estimation. They adopted adaptive
gamma correction to try to solve this transmission
over-estimation problem. Our general formulation has
a solution to this situation as well. For example, when
I b ≤ Ab ≤ 0.5, and Ak ≥ 0.5 and Ak ≥ I k, k ∈ {r, g},
which holds for most sandstorm images where blue light
is greatly absorbed by sand, Eq. (9) can be considered
as a variant of t̃rgb [1] which uses the RGB channels
with the blue adjusted:

t̃ pro(x) = max
y∈�(x)

( Ar − I r (y)

Ar
,

Ag − I g(y)

Ag
,

�b
Ab − I b(y)

Ab

)
, (13)

where �b = Ab

1−Ab ≤ 1 is a multiplicative factor that
down weights the blue channel to overcome the over-
estimation problem. That is, as Ab gets darker and
I b ≤ Ab, �b becomes smaller, making the blue channel
less important in estimating transmission.

Next, ambient light estimation based on the depth-dependent
color change (Eq. (6) and (7)) is a generalization of the
DCP-based methods as follows:

1) D reduces to I rgb
dcp [1] when wc = 1, ∀c and s = 111,

which means that RGB values tend to increase with
depth. This is the situation for most hazy images and
some underwater images. In such cases,

D(x) = min
c,y∈�(x)

(
1− | 1 − I c(y) | ) = min

c,y∈�(x)
I c(y)

= I rgb
dcp (x). (14)

2) D reduces to I gb
dcp [12] when wr = 0, wg = wb = 1 and

s = −11 (“ − " in s means don’t care), which means
that green and blue values tend to increase with depth
while red values are ignored in estimating depth. This
corresponds to some underwater images where red light
is almost completely absorbed. In such cases,

D(x) = min
y∈�(x)

{1, 1− | 1 − I g(y) |, 1− | 1 − I b(y) |}
= min

c∈{g,b},y∈�(x)
I c(y) = I gb

dcp(x). (15)

Fig. 8. Examples of changing hue or brightness of restored scene radiance by
adjusting ambient light with given transmission estimated using our method.
(a) Original images. (b), (c), and (d) are the restored images using different
ambient light. The original images are from [4] and [38].

3) D reduces to I r ′gb
dcp [13] when wc = 1, ∀c and

s = 011, which means that blue and green values tend
to increase with depth while red tends to decrease. This
is the situation for most underwater images where red
color attenuates more as depth increases. In such cases,

D(x) = min
y∈�(x)

{1 − I r (y), 1− | 1 − I g(y) |,

1− | 1 − I b(y) |} = I r ′gb
dcp (x). (16)

4) D reduces to I r ′g′b′
dcp [23], [24] when wc = 1, ∀c and

s = 000, which means that RGB values all tend to
decrease as depth increases. This is the situation for most
images taken at night with artificial lighting. In such
cases,

D(x) = min
c,y∈�(x)

{1 − I c(y)} = I r ′g′b′
dcp (x). (17)

D. Radiance Restoration With Adaptive Color Correction

Some input images have color casts which need to be
removed in the restoration. If scene radiance is recovered from
a degraded image with a color cast using Eq. (5), it often leads
to an even stronger color cast. Thus, we incorporate color
correction into the IFM. The approach is to adjust ambient
light. Based on Eq. (5), we have:

J c(x) = I c(x)

f (x)
−

[
1

f (x)
− 1

]
Ac (18)

where f (x) = max(̃trgb(x), t0) ∈ [t0, 1], and 1
f (x) − 1 ≥ 0.

Hence, large values in Ac result in small values in J c and vice
versa. Without considering what the “true" ambient light is,
if the algorithm assumes a bright ambient light has suffused
throughout the observed image, and attempts to restore the
image based on that assumption, the resulting restored image
will be darker, as the extra brightness is removed, compared to
the restoration that would have resulted from an assumption of
a dimmer ambient light. An example is shown in Fig. 8 row 1,
where as the ambient light is estimated as being brighter,
the restored scene radiance gets darker.

In the same fashion, a small value in one color channel
of the ambient light leads to a substantial increase in that
color in the restored image. In Fig. 8 row 2, going from
(b) to (c) to (d), the assumed values of the green and
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blue channels remain constant, but the red value drops from
0.65 to 0.35 to 0.05. As the ambient is assumed to have less
red, the restored image based on that assumed ambient has
more red. That is, we can adjust the estimate of ambient light
based on the input image to remove color casts.

Iqbal et al. [28] proposed to keep constant the color channel
with the dominant color cast, and scale up the other channels
to correct the image color based on the gray world assump-
tion [31]. This approach may suffer from color distortion
when there is a strong color cast. Motivated by [28], [29],
we calculate color correction coefficients ϕc as

ϕc =
{

maxk∈{r,g,b} I k
avg

I c
avg

} 1√
max(ξ(Dσ ),1)

,

ξ(z) =
{

z, z > �

∞, z ≤ �,
(19)

where I c
avg = max(avgx I c(x), 0.1). Dσ = ‖μ‖2−‖σ‖2‖σ‖2

is
defined in [29] for measuring the intensity of a color cast,
where μ = (μa, μb)

T represents the means of the chromatic
components in the CIELab color space, and σ = (σa, σb)

T

has the chromatic variances. A larger Dσ means a stronger
color cast, and Dσ ≤ � is taken to mean no color cast, where
� is a threshold. Here, we set � = 0. The original work [29]
used symmetrical positive and negative thresholds to define
regions of color cast, ambiguity, and no color cast, but we
simplify this with a single threshold. This choice could be
adjusted based on the application (e.g., optimized separately
for underwater or sandstorm or haze images).

Then, we adjust the ambient light estimate with Ac
ϕ = Ac

ϕc .
By using Ac

ϕ in Eq. (5), the estimate of scene radiance is

J c
ϕ (x) = I c(x) − Ac

ϕ

max
(
t̃ pro(x), t0

) + Ac
ϕ, (20)

where we set t0 to 0.3. Lower values of t0 remove more
haze but may produce images that are noisy or look less
natural, so the exact choice of this parameter depends on the
type or purpose of the image. According to Eq. (19), when
Dσ ≤ �, which means there is no color cast, then ϕc = 1, and
Ac

ϕ = Ac.

Eq. (19) can be explained in two parts. First
we ignore the exponent and consider the quantity

γ c = maxk∈{r,g,b} I k
avg

I c
avg

. For an image with a reddish cast,

the average red value is larger, so this γ quantity would
equal 1 for red and have larger values for blue and green.
Using a large value in ambient light produces small values in
the restored output whereas a small ambient value leads to an
opposite result, so using these γ values in the denominator
means that we lower the green and blue ambient values, thus
increasing blue and green output scene radiance for color
balance. The exponent 1√

max(ξ(Dσ ),1)
aims to avoid color

distortion when there is a strong color cast. For example,
if a scene shows entirely green plants, Dσ is large because
the green color cast is very strong, but one does not want to
remove it (of course there are some images with strong color
cast that would benefit from color correction). The exponent

Fig. 9. Examples of scene radiance restoration with and without adaptive
color correction. (a) Original images with estimated ambient light. Restored
scene radiance (b) without, and (c) with color correction. The original images
are from [5], kkj.cn, and [40].

ensures that as Dσ grows large, ϕ goes to 1, so there is no
color correction.

Fig. 9 shows examples of scene radiance restoration
with and without adaptive color correction. The restored
images with color correction have more color-balanced results.
Therefore, instead of performing color correction on the recov-
ered J , we can achieve both scene radiance restoration and
color correction by adjusting the ambient light estimate with
the color correction coefficients.

IV. EXPERIMENTAL RESULTS

In this section, we compare our method against various
DCP-based restoration methods for foggy, hazy, sandstorm,
and underwater images. For terrestrial images, we compare
against several state-of-the-art IFM-based image restoration
methods described in [4], [5], [17], and [19]. For underwater
images, we compare with the methods described in [12]
and [14]–[16]. First we present a qualitative visual comparison
(including transmission maps) and then present objective no-
reference quality assessment, and a subjective evaluation using
35 test subjects. At the end of the section, failure cases for
our method are discussed.

A. Qualitative Assessment

We show 10 degraded images, including 2 hazy/foggy,
4 sandstorm, and 4 underwater images, with different color
tones and lighting conditions. In Fig. 10, the original image
is hazy with bright ambient light and does not have a color
cast. All methods work well for this case.

Fig. 11 gives an example of restoring a dark hazy image
with a bluish color cast using restoration methods without
color correction. The methods [17], [19] barely enhance
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Fig. 10. Restoration example where all methods are successful. (a) Original image. Restored results and corresponding transmission maps obtained using:
(b) [17], (c) [19], (d) [4], (e) [5], and (f) our method. The original image is from [6].

Fig. 11. An example of restoring a dark hazy image with a color cast. (a) Original image. Restored results and transmission maps obtained using: (b) [17],
(c) [19], and (d) our method without color correction (ϕc = 1). The original image is from [6].

Fig. 12. Restoring the dark hazy image with a color cast in Fig. 11 (a)
using methods with color correction. Restored results and transmission maps
obtained using: (a) [4], (b) [5], (c) our method (ϕc = [1.44, 1.28, 1]).

the contrast of the image because of imprecise transmission
estimation for dark hazy images. The processed result using
our method has better contrast. Fig. 12 demonstrates more
restoration results for the dark hazy image in Fig. 11(a) but
using methods with color correction incorporated into the
algorithm. The image obtained using [4] presents an even
stronger color cast. The method [5] wrongly estimates the
entire scene as very close to the camera, leading to negligible
restoration. Our method, adjusting ambient light using color
correction coefficients ϕc = [1.44, 1.28, 1], removes the color
cast by magnifying red and green intensities while enhancing
contrast.

Fig. 13 shows four sandstorm examples with different color
distributions. Based on the histograms of the original images,
we consider the images from the first to last row to be shot
in progressively thicker sandstorms. In the first row, the scene
transmission estimated by [5], [17], and [19] is inaccurate,
so their processed images are not sufficiently enhanced. The
processed images by our method and [4] both look color
corrected, but our method has better contrast.

For the second image, the transmission estimated using the
methods [17], [19] is wrong, and the restored images are
similar to the original. The method [5] fails to enhance contrast
of the image and does poorly on color correction. Our method
and [4] both correct color while our restored image has better
contrast.

For the third image, the processed images obtained using the
methods [4], [5], [17] are hardly enhanced. The method [5]
does not correct color properly, so the result image looks
a little greenish. Although [19] enhances contrast, its color
cast problem worsens. Our method is able to produce a
better enhanced and color-corrected result. The last original
image with a thick sandstorm has very little blue color, which
invalidates all the methods except for ours.

Lastly, Fig. 14 demonstrates restoration of underwater
images with different color tones and lighting. All methods
work well for the first case, and the result images all look
restored and enhanced although some color differences exist.
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Fig. 13. Restoring sandstorm images with different color distributions. (a) Original images and their color histograms. Restored results and transmission
maps obtained using: (b) [17], (c) [19], (d) [4], (e) [5], and (f) our method. The original images are from [4], [41], and [42]. Note that it is better to view
this figure on a screen.

The second original image of Fig. 14 is dimly lit, which
invalidates the DCP-, MIP-, and MILP-based methods.
The processed images by the DCP-based [12], [14], MIP-
based [16], and MILP-based [15] methods look insignificantly
restored because of the incorrect transmission estimation. Our
method generates a much brighter result with more details.
The third input image has more blue and green color than red.
The processed images from [12], [14], and [16] are negligibly
restored because of inaccurate transmission estimation.
Although [15] can slightly enhance the contrast of this image,
our processed image is more vivid and has better contrast. The
last image is very greenish, and the methods [12], [14]–[16]
only slightly alter the image, whereas our method produces
an output with better contrast and more balanced color.

B. Objective Assessment

Image restoration methods can involve objective evalua-
tion [32]–[35]. We choose 58 terrestrial images (Fig. 15),

TABLE III

AVERAGE e, r AND NIQE VALUES FOR THE IMAGES

OF FIG. 15 RESTORED BY VARIOUS METHODS

with haze, fog, and sandstorm, etc., and use three no-reference
image quality metrics. The Natural Image Quality Evaluator
(NIQE) [33] uses space domain natural scene statistics, and a
small value represents better quality. The other two, e and r ,
are blind contrast metrics for which larger values mean better
contrast [32]. Table III shows the average e, r and NIQE
values for the various restored images of Fig. 15, and our
method performs better. We also choose 55 underwater images
(Fig. 16) with different color tones and lighting, and use
NIQE and two other no-reference quality metrics, Underwater
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Fig. 14. Restoring underwater images. (a) Original images. Restored results and transmission maps obtained using: (b) [16], (c) [12], (d) [14], (e) [15],
(f) our method. The original images come from [38], and [13]. Note that it is better to view this figure on a screen.

Fig. 15. Terrestrial test images from [1], [4]–[6] and Google Images.

Image Quality Measure, UIQM [34], and Underwater Color
Image Quality Evaluation Metric (UCIQE) [35], for which
larger values represent higher quality. Table IV shows average
UIQM, UCIQE, and NIQE values of the original images
in Fig. 16 and their various restored versions. Our method
outperforms the other methods.

C. Subjective Evaluation

For the subjective experiment, we pick 25 images from each
set (Fig. 15 and Fig. 16). Similar to [36], each method is

Fig. 16. Underwater test images from [13], [16], [38] and Google Images.

compared against our method with all possible image pairs
generated using the 25 terrestrial and 25 underwater images.
There were 35 participants (26 males and 9 females), all of
whom are in their twenties or thirties except for one in
his forties. The participants were non-experts, consisting of
students and a faculty member from UC San Diego. They all
have normal or corrected to normal vision.

For each image pair (25 × 4 pairs for each image set) the
subject was asked to choose which image is preferred, or if
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TABLE IV

AVERAGE UIQM, UCIQE, AND NIQE VALUES OF THE ORIGINAL IMAGES
IN FIG. 16 AND THEIR RESTORED VERSIONS FROM ALL METHODS

TABLE V

SUBJECTIVE EXPERIMENT RESULTS. THE NUMBERS REPRESENT HOW

MANY TIMES THE COMPARISON ALGORITHM OR OUR ALGORITHM

WAS CHOSEN AS PREFERRED, AND THE NUMBER OF TIMES
THEY WERE VIEWED AS HAVING THE SAME QUALITY

the images have the same visual quality. The total number
of comparisons that each participant performed is 200. All
the image pairs shown to each participant were in a random
order. For each pair, the images were displayed side by side
randomly. Participants could observe an image pair as long as
they like before making a choice, but their choice cannot be
changed once made.

The results, in Table V, show our method substantially
outperforms each of the other methods for both terrestrial and
underwater image sets. Average-max-min preference charts are
shown in Fig. 17 , where we average (and take maximum and
minimum values) across participants. So, for each method,
the maximum and minimum possible values of the scores
for a method are 25 and 0 for a single participant, meaning
the participant votes for the method 25 or 0 times. The
figure demonstrates our method is highly preferred. In Fig. 18,
the chart shows the average percent (over the compared meth-
ods) of participants who preferred the proposed method for
each terrestrial or underwater image, which further supports
that our method is preferred for each image. Note that the
images are re-numbered to go from highest average percent to
lowest average percent.

D. Failure Cases

As our method is based on the IFM, it fails when the
input image cannot be explained by the model. For example,
an image with multiple illumination sources may violate the
underlying assumption that ambient light is uniform. Fig. 19(a)
has lights at different depths, and cannot be properly restored
based on the IFM. Also, our assumption that RGB values
tend to increase or decrease roughly linearly with scene depth
does not hold, which leads to wrong ambient light selection
(the yellow dot in Fig. 19(a)) and transmission estimation
(the second row of Fig. 19(a)).

To calculate the depth-dependent color change, it is assumed
that gradients of far scene points tend to be smaller than those
of close scene points. The original image of Fig. 19(b) has
sharp edges in both close and far scene points, which violates
our assumption and causes the algorithm to fail. So extremely
clear water will reduce the validity of the algorithm, but such
cases need less restoration in any case.

Fig. 17. Average-max-min preference charts based on all participants for
the subjective experiment. (a) Terrestrial images, (b) Underwater images.
(Left: The number of times our method was preferred over the comparison
methods; Right: number of times compared methods were preferred. Same
quality responses are ignored in this figure.)

Fig. 18. The chart shows the average percent (over the compared methods) of
participants who preferred the proposed method for each terrestrial/underwater
image for the subjective experiment.

Fig. 19. Failure cases showing original images and their transmission maps.
Yellow dots represent locations from which ambient light is estimated.

Other failure cases may arise with large uniform foreground
objects. For example, a submarine or ship hull in the
foreground may be very smooth with small gradients,
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and would be wrongly judged as being far away. If it
encompassed a small area of the image, it might not be a
problem, but if it were sufficiently large, and depending on the
object color, it could cause the RGB color change analysis to
fail.

V. CONCLUSION

We use the depth-dependent color change, scene ambient
light differential, and adaptive color-corrected IFM to better
restore degraded images, such as hazy, foggy, sandstorm,
and underwater images. We first analyze the depth-dependent
color change of the input image to measure scene depth
for ambient light estimation. With this estimate, the scene
ambient light differential is calculated to estimate scene
transmission. Lastly, the input image is restored based on
the adaptive color-corrected IFM. Using a wide variety of
degraded images with different color tones/casts, contents, and
lighting conditions, we demonstrate that our method produces
satisfying restored and enhanced results and outperforms other
IFM-based methods. Our approach was shown to unify and
generalize a wide variety of other DCP-based methods which
are aimed at underwater, nighttime, haze, and sandstorm
images.
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