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Abstract

Kähler Geometry of non-Compact Toric Manifolds

by

Charles Cifarelli

Doctor of Philosophy in Mathematics

University of California, Berkeley

Associate Professor Song Sun, Chair

Toric manifolds and toric varieties have played an important and particularly illuminating
role in algebraic, symplectic, and Kähler geometry going back at least to the 1970’s. The high
degree of symmetry in many cases allows one to reduce the complexity of a given geometric
question, giving the impression that we can really “see” the structure. A notable example
of this in the Kähler setting is Donaldson’s classic paper [27].

Until relatively recently, this has been mostly confined to the setting of compact manifolds
(complete varieties). Both the algebraic and the symplectic perspectives have come to be
fairly well understood individually in the non-compact case, but there has been little applica-
tion of the intersection of the two theories, which naturally comprises toric Kähler geometry.
The notable exception to this rule is the case of toric Kähler cones [56, 55, 39, 17, 16]. These
non-compact manifolds inherit a great deal of structure from their compact link, which are
interesting spaces in their own right. However, these manifolds are (typically) highly singular
at precisely one point.

In this dissertation, we describe a procedure for the study of Kähler geometry on smooth
non-compact toric manifolds. This involves tying together the algebraic and symplectic
perspectives. We study a class of toric manifolds and show that here we can apply a non-
compact version of the classical Delzant classification together with its application to Kähler
geometry [4, 41, 24, 42]. We apply this to non-compact shrinking Kähler-Ricci solitons,
where we propose a useful class of complete Kähler metrics, and ultimately prove a general
uniqueness theorem for shrinking Kähler-Ricci solitons on non-compact toric manifolds.
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Chapter 1

Introduction

The terms toric manifold or toric variety typically refer to one of two types of geometric
objects:

1. A complete algebraic variety M which is an equivariant compactification of the alge-
braic torus TC = (C∗)n. This means thatM contains TC as a Zariski-open subset, and
that the natural action of TC on itself extends to an algebraic action of TC on M.

2. A compact 2n real-dimensional symplectic manifold (M,ω) together with an effective
Hamiltonian action of the real torus TR = T n. This means that TR leaves the sym-
plectic form ω invariant and that each vector field on M corresponding to an element
of the Lie algebra t of TR admits a Hamiltonian function.

The significant interest in such objects from the perspective of Kähler geometry dates
back to the work of Atiyah, Guillemin-Sternberg, and Delzant [4, 41, 24], which collectively
says that these two notions are equivalent. Somewhat more specifically, given a compact
toric manifold in the symplectic sense, there is a canonically associated algebraic variety
satisfying the equivariant compactification condition above. Moreover given a toric variety
in the algebraic sense, we can always associate a manifold which is toric in the symplectic
sense, and this association can be made canonical if we further choose a polarization. We
will explain this point in detail and explore the role of polarizations in Chapter 3. We refer
to the equivalence of the two definitions in this sense as the Delzant classification.

The mechanism for this correspondence, perhaps unsurprisingly, passes through Kähler
geometry. The key insight of Delzant is that given either a (M,ω) or M, there exists a
Kähler manifold (M,J, ω̃) such that

1. (M, ω̃) is TR-equivariantly symplectomorphic to (M,ω) and

2. (M,J) admits a TC-action, and is TC-equivariantly biholomorphic to M.

Thus, starting with a symplectic toric manifold (M,ω), we obtain an algebraic toric variety
M by passing through (M,J, ω̃), and vice-versa. What’s more, is that the TC-action on
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(M,J) extends the action of TR on M with respect to the natural inclusion TR ⊂ TC. We
call an extension of a real torus action of this form a complexification. Toric manifolds have
subsequently played an important role in the study of special metrics on compact Kähler
manifolds, starting with the work of Abreu [2, 1] and Donaldson [27, 26] on constant scalar
curvature metrics.

As soon as one begins to explore these ideas and how they behave in the non-compact
setting, we very quickly encounter examples that make it clear that a Delzant classification
cannot hold in all possible situations. We will see several such examples, but the basic one
goes like this.

Example 1.1. Let D ⊂ C be the unit disc. Then we have a natural S1-action by rotation
which preserves the usual Euclidean symplectic form ωE = i

2
dz ∧ dz̄. One readily checks

that the function f = x2 + y2 is the relevant Hamiltonian function, making (D, ωE) into a
toric manifold in the symplectic sense above. However, there is no corresponding variety.
One perspective on how to see this is that if the S1-action were to admit a complexification,
then the radial vector field r ∂

∂r
= x ∂

∂x
+ y ∂

∂y
would have to be a complete vector field, which

it clearly is not.

We refer to Chapter 3 for the details on this and other examples. This leads to the
following natural question:

Question 1. To what extent do the results above hold true for non-compact manifolds, and
how can we use this to study Kähler geometry?

One of the primary purposes of this dissertation is to provide a general framework for
the study of Kähler metrics on smooth non-compact toric manifolds. We propose a class of
toric manifolds, the AK-toric manifolds, and show that it is necessary and sufficient for a
manifold to admit this structure in order to obtain a Delzant classification. The main results
of Chapter 3 can be summarized as follows:

Theorem 1.2. The Delzant classification holds for AK-toric manifolds.

Chapter 2 contains a summary of some of the well-known basic theory for toric man-
ifolds, with an emphasis on the new non-compact perspective that we’ll need in Chapter
3, culminating in the definition of an AK-toric manifold. In order to get there, we intro-
duce yet another notion of what it means for a manifold to be “toric,” and study complex
toric manifolds. These are essentially complex manifolds (M,J) which admit an effective
and holomorphic (C∗)n-action. In the compact setting the Delzant classification renders a
definition of this form basically useless, we may as well just view each of these in their cor-
responding symplectic or algebraic categories. However in the non-compact case we will see
this as a useful intermediate, encapsulating one of the main issues with Example 1.1: the
question of whether a TR-action admits a complexification.

We achieve the classification in Chapter 3 by studying GIT constructions and relating
this back to existing structure theorems in the symplectic/complex analytic literature [11,
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46, 61, 64]. This chapter focuses on extending the well-known approach of Guillemin [42]
and Abreu [2] (c.f. [3]) for studying Kähler metrics on toric manifolds to the AK-toric case.

In Chapter 4, we illustrate the application of this framework in a study of Kähler-Ricci
solitons on non-compact toric manifolds. A shrinking Ricci soliton is a Riemannian metric
g together with a vector field X on M which satisfy

Ricg +
1

2
LXg =

1

2
g. (1.1)

They arise originally as blowup limits of Type I singularities of the Ricci flow [33, 58]. A
Ricci soliton is Kähler if X is real holomorphic and g is Kähler, and we say that it is gradient
if X = ∇gf for a smooth function f ∈ C∞(M). Kähler-Ricci solitons are similarly related
to the Kähler-Ricci flow. The tendency of the Kähler-Ricci flow to converge (in some sense)
to a shrinking Kähler-Ricci soliton, together with the relative simplicity of equation (1.1),
makes shrinking Kähler-Ricci solitons a natural generalization of a Kähler-Einstein metric
on a Fano manifold. The reason this is important is that shrinking Kähler-Ricci solitons are
known to exist [70] in many situations when there are known obstructions to the existence of
a Kähler-Einstein metric with positive scalar curvature. Indeed, any compact Fano manifold
admitting a shrinking Kähler-Ricci soliton with nontrivial vector field X cannot admit a
Kähler-Einstein metric [69, 68].

Toric geometry really entered the scene for the study of canonical metrics in Kähler ge-
ometry with the work of Batyrev-Salivanova [6], who showed that any compact toric Fano
manifold with vanishing Futaki invariant admits a Kähler-Einstein metric. This result was
generalized by Wang-Zhu [70], who showed using Tian-Zhu’s modified Futaki invariant [68]
that every toric Fano manifold admits a shrinking gradient Kähler-Ricci soliton. This was
followed by a good deal of related work, including an interesting formula of Li [51] relat-
ing toric combinatorics with the existence of Kähler-Einstein metrics, Berman-Berndtsson’s
generalization to the singular setting [8], and the afforementioned papers of Abreu [2, 1] and
Donaldson [27, 26].

The non-compact setting is considerably less well-known. Feldman-Ilmanen-Knopf [34]
found shrinking gradient Kähler-Ricci solitons with even larger symmetry T n ⊂ U(n) on
the total space of line bundles O(−k) → Pn−1 for k = 1, . . . , n. More recently, there
were examples of Fuatki [38], based on work of Futaki-Wang [40] which generalize the FIK
examples. In their setting M is the total space of any root of the canonical bundle over
a compact toric Fano manifold N , i.e. M is the total space of the negative line bundle
L → N with the property that Lp = KN for 1 < p < n. Other than this there is not much
currently known about existence. In this dissertation we focus on two problems related to
understanding shrinking Kähler-Ricci solitons on toric manifolds:

1. Using the Delzant classification for AK-toric manifolds to study shrinking Kähler-Ricci
solitons on AK-toric manifolds in general.

2. Apply this specifically to understand the uniqueness of these metrics.



CHAPTER 1. INTRODUCTION 4

Uniqueness already is an interesting question. There is interesting work of Kotschwar-
Wang on asymptotically conical [49] and asymptotically cylindrical [48] manifolds, but even
here in each case we can only deduce uniqueness among all metrics which are asymptotic
to a fixed model metric at infinity. Conlon-Deruell-Sun were able to get around this by
restricting attention: they show that the FIK examples are the unique shrinking gradient
Kähler-Ricci solitons with bounded Ricci curvature in the special case that M = O(−k)Pn−1

for n = 1, . . . , n− 1 [19, Theorem E] . Our main uniqueness result follows in this direction.
We restrict attention to those complex manifolds which admit an effective and holomorphic
TR-action and obtain a general uniqueness theorem:

Theorem 1.3. Suppose (M,J) is an n-dimensional complex manifold admitting an effective
and holomorphic TR = T n-action and suppose that g is a shrinking gradient Kähler-Ricci
soliton on M with bounded Ricci curvature with respect to the solition vector field X with
JX ∈ t. Then (M,J) is quasiprojective, and g is unique up to biholomorphism.

Consequently we recover [19, Theorem E], and moreover we see that the Futaki examples
are the only such metrics with bounded Ricci curvature in the case that M is the total space
of a root of the canonical bundle KN of a compact toric Fano manifold. This is the main
result of Chapter 4. Along the way, we will explore various ways that the theory developed
in Chapter 3 can be applied to study Kähler-Ricci solitons. In particular, we introduce a
space of Kähler metrics which admits an interesting space P of potentials. We introduce an
analoge of the Futaki invariant, considered originally in [19] for non-compact solitons, and
study its properties in the toric setting. We introduce an analog of the Ding functional D
[25] and again interpret its properties for AK-toric manifolds. The uniqueness result comes
as a consequence of the convexity of D.

Every real torus TR has a canonically defined lattice Γ ∼= Zn ⊂ t in its Lie algebra, defined
by all the closed one-parameter subgroups τ : S1 ↪→ TR. If we fix a Z-basis (Ξ1, . . . ,Ξn) for
Γ, this in particular determines a isomorphisms

TR → T n = S1 × · · · × S1

and
TC = Γ⊗Z C∗ → (C∗)n = C∗ × · · · × C∗.

It will be convenient throughout the dissertation to fix some such basis (Ξ1, . . . ,Ξn). Corre-
spondingly we will refer to our algebraic torus TC and real torus TR as (C∗)n and T n directly
indicating this choice.

Disclaimer. Parts of all Chapters 2, 3, 4 are based on our paper [15].
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Chapter 2

Toric manifolds

In this chapter we will recall some of the basic definitions and properties of toric manifolds
and algebraic toric varieties that we will use throughout the dissertation. Our focus is to
introduce the framework in which the rest of the text takes place. This chapter has some
new definitions based on our paper [15], but most of the material here is the result of many
authors in various fields throughout the last half-century.

The theme of this chapter is to meet each of our three main distinct different geometric
structures which we will refer to as “toric.” When working on compact manifolds (or, in
the algebraic setting, complete varieties), these notions all turn out to be equivalent in the
appropriate sense. This equivalence turns out to break down in the non-compact setting,
and recovering what we can of this will be a large focus of the material in Chapter 3. As
we will see moving forward, a key aspect of the study of toric manifolds is the rich interplay
between the algebraic, symplecitc, combinatorial, and complex perspectives.

2.1 Algebraic toric varieties

Here we will introduce most of the algebro-geometric preliminaries that we will use through-
out the text. Almost everything that we will mention here is contained in the comprehensive
textbook [21] (c.f. [36]). We do not attempt in any way to provide a comprehensive treat-
ment of the algebraic geometry of toric varieties, we present only what we explicitly use in
the later sections. We begin with the basic definition.

Definition 2.1 (Toric variety). A toric variety M is an equivariant compactification of
the algebraic torus (C∗)n. More precisely, this means that M is an algebraic variety which
contains the torus (C∗)n as a Zariski-open subset, and that the natural action of (C∗)n on
itself extends to a morphism of algebraic varieties τ : (C∗)n ×M →M .

We will use the term toric variety exclusively in this sense. Note that there is an asso-
ciated complex manifold (M,J) to any toric variety which comes naturally equipped with
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an effective and holomorphic (C∗)n-action. We will return to objects of this form and their
relationship with toric varieties in subsequent sections.

2.1.1 Combinatorics: fans, polytopes, polyhedra

Fix a real n-dimensional vector space V and an additive subgroup Γ ⊂ V such that Γ ∼= Zn.
As a matter of terminology, we will refer to Γ ⊂ V as the lattice and the points ν ∈ Γ
as lattice points. We will use V ∗ to denote the real dual vector space and Γ∗ ⊂ V ∗ the
corresponding dual lattice. We will use 〈·, ·〉 to denote the dual pairing V × V ∗ → R.

Definition 2.2. A rational polyhedral cone σ ⊂ V is a convex subset of the form

σ =
{∑

λiνi | λi ∈ R+

}
,

where ν1, . . . , νk ∈ Γ is a fixed finite collection of lattice points.

In this dissertation we will always tacitly assume that rational polyhedral cones are
strongly convex, meaning that they do not contain any (nontrivial) linear subspace of V .
The topological boundary of any rational polyhedral cone is itself a finite union of rational
polyhedral cones. We call these cones the faces of σ.

Definition 2.3. A fan Σ in V is a finite set consisting of strongly convex rational polyhedral
cones σ ⊂ V satisfying

1. For every σ ∈ Σ, each face of σ also lies in Σ.

2. For every pair σ1, σ2 ∈ Σ, σ1 ∩ σ2 is a face of each.

3. There exists at least one σ ∈ Σ whose interior is open in V .

We highlight a few properties that a fan may or may not have, which will turn out to be
in correspondence with some natural geometric properties of toric varieties.

Definition 2.4. Let Σ be a fan in V .

1. A rational polyhedral cone σ is smooth if there are exactly n one-dimensional edges
(or rays) {v1, . . . , vn}, and if one can find a Z-basis {ν1, . . . , νn} for the lattice Γ ⊂ V
such that νi ∈ vi. We say Σ is smooth if each n-dimensional cone σ ∈ Σ is smooth.

2. We say that Σ is complete if the union
⋃
σ∈Σ σ ⊆ V is the whole of V .

Definition 2.5. A polyhedron P ⊂ V ∗ is any finite intersection of affine half spaces Hν,a =
{x ∈ V ∗ | 〈ν, x〉 ≥ a} with ν ∈ V, a ∈ R. A polytope is a bounded polyhedron.
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The reason for considering polyhedra in V ∗ as opposed to V is mainly for consistence of
notation with the following sections. In most cases we will not make a careful notational
distinction between a polyhedron P and its interior, but where confusion may arise we will
denote by P the closed object and P the interior. Again, the topological boundary of a a
polyhedron P is a union of polyhedra {Fν} of one less dimension which we refer to as the
facets of P . Here the index ν is such that Fν lies in the plane 〈ν, x〉 = a. The intersections
of any number of the Fν ’s are again lower-dimensional polyhedra and together form the
collection of faces of P .

Definition 2.6. Let P be a polyhedron given by the intersection of the half spaces Hνi,ai .
We define the recession cone (or asymptotic cone) C of P by

C = {x ∈ V ∗ | 〈νi, x〉 ≥ 0} .

Given any convex cone C ⊂ V , the dual cone C∗ ⊂ V ∗ is defined by

C∗ = {ξ ∈ V | 〈ξ, x〉 > 0 for all x ∈ C}. (2.1)

Note that C∗ is necessarily an open cone in V , even when C is not full-dimensional.

Definition 2.7. A polyhedron P is rational if its vertices lie in the dual lattice Γ∗ ⊂ V ∗.

There is a natural fan ΣP in V associated to any full-dimensional rational polyhedron
P ⊂ V ∗. If we identify V ∼= Rn and 〈·, ·〉 with the natural Euclidean inner product, we can
think of ΣP as encapsulating all the information about the directions normal to the faces of
P . More precisely, we produce a finite set ΣP as follows. Fix a vertex v ∈ P and consider
only those facets {Fνi}ki=1 which contain v. Recall that each facet lies on a linear subspace of
the form 〈νi, x〉 ≥ −ai for νi ∈ V . Set Cv = {x ∈ V ∗ | 〈νi, x〉 ≥ 0}, and let σv = C∗v . Finally,
we let ΣP be the collection of all such σv running through each vertex of P , together with
each of their faces. In particular, note that the one-dimensional cones in ΣP are precisely
the rays generated by the “inner normals” νi ∈ V .

Proposition 2.8 (c.f. [21, Theorem 2.3.2]). The set ΣP is a fan.

2.1.2 Construction and structure of toric varieties

The goal of this section is to describe a general mechanism for constructing toric varieties
from combinatorial data as in the previous section. We fix a real n-dimensional vector space
V and a lattice Γ ⊂ V as above. The starting point for the discussion is the observation
that there is a natural process by which one can associate an affine variety to any strongly
convex rational polyhedral cone σ ⊂ V . To see this, fix such a σ, and let σ∗ denote the dual
cone. The set of lattice points Sσ = σ∗∩Γ∗ in σ∗ inherits the structure of a semigroup under
addition in V ∗. The semigroup ring C[Sσ] is defined as a set by
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C[Sσ] =
{∑

λss | s ∈ Sσ
}
,

and the ring structure is then defined on monomials by λs1s1 · λs2s2 = (λs1λs2)(s1 + s2) and
extended in the natural way. The affine variety is then defined to be

Uσ = Spec(C[Sσ]).

A careful study of the ring structure of C[Sσ] shows that Uσ comes endowed with a
canonical (C∗)n-action and an open subvariety U ⊂ Uσ which is equivariantly isomorphic to
(C∗)n itself. In other words, we have:

Proposition 2.9 ([21, Theorem 1.2.18]). Let σ ⊂ V be a strongly convex rational polyhedral
cone. Then the associated affine variety Uσ is a toric variety in the sense of Definition 2.1.

Example 2.10. Let V = Rn, Γ = Zn, and σ = Rn
+ ⊂ Rn be the positive orthant. Then

σ∗ = Rn
+ and Sσ ∼= Nn as a semigroup. The semigroup algebra C[Sσ] is then naturally

identified with C[z1, . . . , zn], and correspondingly we see that the affine toric variety Uσ
constructed is isomorphic to the affine space Cn with the standard (C∗)n-action.

Remark 2.11. One can see directly from Definition 2.4 that if σ ⊂ V is any smooth strongly
convex rational polyhedral cone, then there exists a basis of Γ which determines an isomor-
phisms V ∼= Rn, Γ ∼= Zn, and σ ∼= Rn

+. Consequently we see immediately that any smooth
affine toric variety is equivariantly isomorphic to Cn.

The combinatorial tools that allows one to generalize these concepts to produce toric
varieties which are not necessarily affine are fans. The basic idea is that a collection of
(n-dimensional) strongly convex rational polyhedral cones {σ} in V produces a collection of
affine toric varieties {Uσ}, which are then glued together in the appropriate way. The place
where the full information in the data of a fan (Definition 2.3) is used is precisely to determine
this gluing. We will not need to make any use of the details of this construction, but the core
idea is as follows. Suppose that σ1, σ2 ∈ Σ are full-dimensional and set τ = σ1∩σ2. Then τ is
again a strongly convex rational polyhedral cone, and as such there is a corresponding affine
toric variety Uτ . In fact, Uτ is further equipped with open (C∗)n-equivariant embeddings
φ1 : Uτ ↪→ Uσ1 and φ2 : Uτ ↪→ Uσ2 . Thus the map φ1 ◦ φ−1

2 can be used to glue Uσ2 to Uσ1
along Uτ in a way which is compatible with the (C∗)n-actions on each. Running through
each such pair of maximal-dimensional cones in Σ, we conclude that the fan Σ in V gives
rise naturally to a toric variety which we refer to asMΣ. The existence and basic properties
of MΣ are summarized as follows:

Proposition 2.12 ([21, Theorem 3.1.5, Theorem 3.1.19]). Let Σ be a fan in V . Then there
exists a normal and separated variety MΣ constructed as above, which is toric in the sense
of Definition 2.1. Moreover we have that

1. MΣ is smooth as a variety if and only if Σ is smooth as a fan.
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2. MΣ is complete as a variety (or compact, in the analytic topology) if and only if Σ is
complete as a fan.

Remark 2.13. From a geometric perspective, one can understand the meaning of this process
as follows. We can write the torus iteslf by identifying V ⊕ V ∗ ∼= Rn ⊕ iRn = Cn, and then
setting (C∗)n ∼= (V ⊕ V ∗)/Γ, where Γ acts only on the first factor. Then the k-dimensional
cones in Σ tell us, through the dual pairing, in what directions we should add in a (n− k)-
dimensional torus (C∗)n−k to construct MΣ from (C∗)n.

Example 2.14. Let Σ = {σ1 = [0,∞), σ2 = (−∞, 0], τ = {0}} be a fan in V = R. As we
saw in Example 2.10, Uσ1

∼= Uσ2
∼= C. Considering τ = {0}, we see that τ ∗ is the semigroup

generated by {1} and {−1}. The semigroup algebra is isomorphic to the Laurent polynomial
ring Sτ ∼= C[z1, z

−1
1 ], and Uτ = Spec(Sτ ) ∼= C∗. The maps φ1 : C∗ → C and φ2 : C∗ → C are

given by φ1(z) = z and φ2(z) = z−1, and so we see that the variety we have constructed is
MΣ

∼= P1.

So far we have given a description of one possible way that toric varieties can be con-
structed.It turns out that, in fact, all toric varieties can be obtained in this way. The
following result is well-known and goes back to the work of Sumihiro [65]:

Theorem 2.15 ([21, Corollary 3.1.8]). Let M be a toric variety. Then there exists a fan Σ
such that M =MΣ.

Proposition 2.16 (Orbit-Cone correspondence, [21, Theorem 3.2.6]). Let Σ be a fan in V
and MΣ be the associated toric variety. The k-dimensional cones σ ∈ Σ are in natural one-
to-one correspondence with the (n − k)-dimensional orbits Oσ of the (C∗)n-action on MΣ.
Moreover, there is a natural identification V ∼= t of V with the Lie algebra t of the standard
real torus T n ⊂ (C∗)n. Under this identification, given a k-dimensional cone σ ∈ Σ and a
corresponding orbit Oσ ⊂MΣ, we have that σ lies as an open subset of the Lie algebra tσ of
the k-dimensional real subtorus Tσ ⊂ T n that stabilizes the points on Oσ.

In this way the data of the fan encodes the information of all torus-invariant subvarieties.
Of special interest are the two extremes, i.e. k = n and k = 1. We can see immediately that
the fixed point set of the (C∗)n-action onMΣ corresponds to the set of n-dimensional cones
and is therefore always finite for any toric variety. On the other hand when k = 1, we see
that each ray σ ∈ Σ determines a unique torus-invariant divisor Dσ. This latter case will be
of particular importance throughout this dissertation. For our purposes, the key property is
that a torus-invariant Weil divisor D on MΣ naturally determines a polyhedron PD ⊂ V ∗.
To see this, first decompose D uniquely as D =

∑N
i=1 aiDσi , where σi ∈ Σ, i = 1, . . . , N is

the collection of rays. By assumption, there exists a unique minimal νi ∈ σi ∩ Γ. Then set

PD = {x ∈ V ∗ | 〈νi, x〉 ≥ −ai for all i = 1, . . . , N} . (2.2)

In fact, this procedure is essentially reversable. That is, given a polyhedron P ⊂ V ∗, we
can associate a polarized variety (MP , D) such that polyhedron determined by the divisor D
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on M through (2.2) is precisely P . In view of the goals of the subsequent sections, we intro-
duce a new definition, which is simply a natural extension of the (essentially local) concept
studied by Delzant [24] and many authors thereafter in the compact setting. Essentially, we
allow for polyhedra which represent R-divisors on toric varieties. Practically, this amounts
to studying polyhedra P of the form 2.2 where νi ∈ Γ but now the coefficients ai may vary
continuously (in contrast, note that ai ∈ Z in 2.2). More precisely we have the following.
Here we state something slightly more general than what was stated in [15].

Definition 2.17. [15, Definition 7] Let P ⊂ V ∗ be a (possibly irrational) polyhedron. Let
ΣP be the set of cones in V constructed as in Proposition 2.8. This may a priori not be a
fan if P is not rational.

1. We say that P is algebraic if ΣP is a fan.

2. We say that P is Delzant if ΣP is a smooth fan.

It is a straightforward consequence of the definitions that the normal fan of an algebraic
polyhedron P is complete if and only if P is a polytope. We then have the following corollary
of Proposition 2.12:

Proposition 2.18. Given any algebraic polyhedron P with normal fan ΣP , we can define
an associated normal and separated toric variety MP =MΣP . Moreover, we have

1. MP is smooth as a variety if and only if P is Delzant.

2. MP is complete as a variety (or compact, in the analytic topology) if and only if P is
a polytope.

Proposition 2.19 ([21, Theorem 7.1.10]). Let P be a full-dimensional Delzant polyhedron
in V ∗. Then the variety MP constructed above is quasiprojective.

We saw in (2.2) how the Orbit-Cone correspondence allows us to associate a rational
polyhedron PD to any torus-invariant divisor D on a toric manifold M . Suppose now that
P is a rational polyhedron, so that P admits a representation

P = {x ∈ V ∗ | 〈νi, x〉 ≥ −ai}

for νi ∈ Γ, ai ∈ Z, i = 1, . . . , n. LetMP be the associated toric variety. By construction, the
one-dimensional cones in the normal fan ΣP are spanned by the inner normals ν1, . . . , νN ∈ Γ
of the facets of P . By the Orbit-Cone correspondence, there is a unique torus-invariant Weil
divisor Dνi on MP associated to each νi. If we then set

D =
N∑
i=1

aiDνi , (2.3)

then it is clear that the polyhedron PD of 2.2 is equal to P . In sum, we have the following.
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Lemma 2.20. Let P ⊂ V ∗ be a full-dimensional rational polyhedron. Then there is a divisor
D on MP , given explicitly by (2.3), whose associated polyhedron is equal to P .

2.2 Complex and symplectic toric manifolds

The primary purpose of this section is to extend the previous discussion to the analytic set-
ting, ultimately with the goal of studying Kähler metrics on toric manifolds. In this direc-
tion, there are two distinct viewpoints. From the complex-geometric point of view, we study
complex manifolds (M,J) of complex dimension n with holomorphic (C∗)n-actions. The
alternative is to work in the symplectic setting, in which one considers real 2n-dimensional
symplectic manifolds (M,ω) together with an action of the real n-dimensional torus T n. In
this latter case one usually restricts attention to those T n-actions which admit a moment
map. The key feature of both is that the dimension of the torus is “as large as possible.”

Of course Kähler geometry concerns both viewpoints simultaneously. As we will see, in
the Kähler setting, on a compact manifold M the two perspectives are essentially equivalent,
and the Delzant classification is the piece providing the precise sense in which this is true.
For non-compact manifolds this will no longer hold, and the extent to which one can recover
a Delzant classification will be the subject of Chapter 3.

2.2.1 Complex toric manifolds

We begin this section by defining what it means for a complex manifold (M,J) to be toric.

Definition 2.21 (Complex toric manifold). A complex toric manifold is a complex manifold
(M,J) together with an effective and holomorphic action of the complex torus (C∗)n such
that

1. (M,J) is of Kähler type, meaning it admits at least one Kähler metric.

2. The fixed-point set of the (C∗)n-action is non-empty.

Notation 2.22. Let Aut(M,J) denote the holomorphic automorphism group of (M,J). We
will occasionally refer to the inclusion τC : (C∗)n ↪→ Aut(M,J) explicitly, in which case we
will say that (M,J, τC) is complex toric.

Remark 2.23. The condition 1 above is purely technical, and is not necessary for any of the
results of this chapter. In fact, we suspect that it is not necessary at all. Since the goal of this
dissertation is to study Kähler metrics, we do not dwell on the issue here, and in any case
it will be trivially satisfied in all of our applications. Note that the second condition implies
that the neither torus (C∗)n itself nor any product N × (C∗)k of a lower-dimensional toric
manifold satisfies Definition 2.21. In the algebraic literature, these are sometimes referred
to as “without flat factors.”
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A fundamental property of complex toric manifolds is that they, like toric varieties, are
always partial equivariant compactifications of the torus (C∗)n itself. When no confusion is
likely to arise, we will sometimes suppress the notation and simply write “a complex toric
manifold M” to mean the complex manifold (M,J) together with the data of the (C∗)n-
action.

Lemma 2.24. A complex toric manifold M always admits an open and dense subset U ⊂M
which is equivariantly biholomorphic to (C∗)n with its standard action on itself.

Proof. Choose a basis (Ξ1, . . . ,Ξn) for the canonical lattice Γ ⊂ t. By differentiating the
T n-action on M , we can view each Ξi as a holomorphic vector field on M . In particular, each
Ξi vanishes along an analytic subvariety Vi ⊂ M . Set D =

⋃n
i=1 Vi and U = M −D. Then

no element of t (viewed again as a holomorphic vector field on M) vanishes at any point of
U . Since the action is effective, the set {Ξ1, JΞ1, . . . ,Ξn, JΞn} viewed as real vector fields
form an R-basis for TpM for each p ∈ U . They clearly commute since (C∗)n is an abelian
Lie group. Moreover they are complete: the integral curves consist of real one-parameter
subgroups of (C∗)n and as such exist for all time. Thus, they can be integrated starting from
any basepoint p ∈ U to determine a (C∗)n-equivariant holomorphic injection (C∗)n ↪→ U .
Since none of the vector fields Ξi vanish on U , this map is surjective as soon as we know
that U is connected, which is immediate since codimR(D) ≥ 2.

In fact, the real codimension of D is exactly 2, at least generically.

Lemma 2.25. The analytic set D is a divisor, and moreover O(D) ∼= −KM .

Proof. Since none of the holomorphic vector fields Ξi vanish at any point in U , it follows
that the wedge product

s = Ξ1 ∧ · · · ∧ Ξn ∈ H0(M,−KM)

is not identically zero on M . Clearly the zero set Z(s) is a divisor with the property that
O(Z(s)) ∼= −KM . Moreover, s vanishes whenever any one Ξi vanishes, which means that
Z(s) = D.

Clearly Definition 2.1 implies that the underlying complex manifold to any algebraic
toric variety is a complex toric manifold. The converse turns out not to be true in general.
An example of a (non-compact) complex toric manifold which is not a toric variety can be
found in [46]. We will treat this example in a systematic study of the various equivalences
of definition in Chapter 3.

Example 2.26. The standard (C∗)n-action on Cn is given by

(λ1, . . . , λn) · (z1, . . . , zn) = (λ1z1, . . . , λnzn),

which is clearly effective and holomorphic. The orbit of p = (1, . . . , 1) is simply the inclusion
of (C∗)n ↪→ Cn. We can compactify this example by adding a Pn−1 at infinity. Indeed, let
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(C∗)n act on Pn by

(λ1, · · · , λn) · [Z0 : Z1 : · · · : Zn] = [Z0 : λ1Z1 : · · · : λnZn] .

Then, in the homogeneous coordinate system zj =
Zj
Z0

, we are precisely in the situation
above. In this way, we can view Cn as an equivariant compactification of (C∗)n by adding a
hyperplane whenever any of the coordinates zj → 0. Similarly, the usual picture of Pn as the
union of a (projective) hyperplane with Cn is equivariant with respect to these (C∗)n-actions.

2.2.2 Symplectic toric manifolds

Here we encounter another geometric object which is classically referred to as a “toric man-
ifold.” We begin with a general definition concerning smooth group actions on symplectic
manifolds.

Definition 2.27. Let G be a connected real Lie group with Lie algebra g. Suppose that
G acts smoothly on a symplectic manifold (M,ω) in a way which preserves the symplectic
form ω. This action is called Hamiltonian if it admits a moment map. This, by definition,
is a smooth map µ : M → g∗ satisfying

d〈µ, V 〉 = −iV ω. (2.4)

Here we view V ∈ g on the right-hand side as a vector field on M by differentiating the
action, and 〈·, ·〉 denotes the dual pairing g× g∗ → R.

In other words, the moment map is a smoothly-varying consistent choice of Hamiltonian
function for each vector field on M coming from the G-action. We will sometimes refer to
the smooth function 〈µ, v〉 : M → R as a Hamiltonian potential for V ∈ g. Note that this
all is a priori dependent on the symplectic form ω.

In this dissertation we will only really be concerned with the case when G is a compact
abelian group of dimension equal to half the real dimension of M . This brings us to the
analog of Definitions 2.1 and 2.21. As before, we let T n always denotes the real n-dimensional
torus and t its Lie algebra.

Definition 2.28 (Symplectic toric manifold). A symplectic toric manifold is a real 2n-
dimensional symplectic manifold (M,ω) together with an effective and Hamiltonian action
of the real torus T n.

Remark 2.29. There can be no action of a torus of higher dimension on M which is both
effective and Hamiltonian. Indeed, these together imply that there exists a point p ∈ M
such that the derivative dµp : TpM → t∗ is surjective. Since the action preserves ω, however,
it is clear from (2.4) that the Lie algebra t ⊂ TpM is contained in ker(dµp). It follows
immediately that the dimension of the torus cannot exceed half the dimension of M .
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Notation 2.30. Let Ham(M,ω) denote the Hamiltonian symplectomorphism group of (M,ω).
This is, by definition, the group of symplectomorphisms of (M,ω) whose Lie algebra consists
only of Hamiltonian vector fields. Similarly to 2.22, we will occasionally refer to the inclusion
τ : T n ↪→ Ham(M,ω) explicitly, in which case we will say that (M,ω, τ) is symplectic toric.

Many of the examples we have already encountered are symplectic toric.

Example 2.31. Consider Cn with the Euclidean symplectic form ωE = i
2

∑n
j=1 dz

j ∧ dz̄j.
The real n-torus T n acts in the usual way through U(n):

(eiθ1 , . . . , eiθn) · (z1, . . . , zn) = (eiθ1z1, . . . , e
iθnzn).

Identifying t ∼= t∗ ∼= Rn, it is straightforward to check that the map µ : Cn → Rn given by

µ(z1, . . . , zn) =
(
|z1|2, . . . , |zn|2

)
satisfies equation (2.4).

Example 2.32. Consider Pn with the T n-action given by

(eiθ1 , . . . , eiθn) · [Z0 : Z1 : · · · : Zn] =
[
Z0 : eiθ1Z1 : · · · : eiθnZn

]
.

Choose homogeneous coordinates of the form zj =
Zj
Z0

, in which setting one can write the

Fubini-Study symplectic form as ωFS = i∂∂̄ log(1 + |z|2). This action is Hamiltonian with
respect to ωFS, with moment map µFS : Pn → Rn given by

µFS ([Z0 : Z1 : · · · : Zn]) =

(
|Z1|2

|Z|2
, . . . ,

|Zn|2

|Z|2

)
.

In homogeneous coordinates this takes the form

µFS(z1, . . . , zn) =

(
|z1|2

1 + |z|2
, . . . ,

|zn|2

1 + |z|2

)
,

in which setting one can check immediately that it satisfies equation (2.4).

We will also be interested in studying symplectic toric structures on complex manifolds.
To this end we make the following definition.

Definition 2.33 (Compatible complex structure). An integrable complex structure J on a
symplectic toric manifold (M,ω) is compatible if the following conditions are met:

1. J preserves ω, i.e. ω(J−, J−) = ω(−,−).

2. The symmetric tensor gJ,ω(−,−) = ω(−, J−) is positive-definite (i.e. is a Riemannian
metric)
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3. The T n-action leaves J invariant (i.e. it is a holomorphic action with respect to J)

In fact, examples 2.31 and 2.32 fit neatly into a general picture consisting of our key
examples of Definition 2.33. Let T n ⊂ (C∗)n denote the real n-torus, whose inclusion in
(C∗)n as a real Lie subgroup is induced by the standard inclusion S1 ⊂ C∗. We let tC be
the Lie algebra of (C∗)n and t the Lie algebra of T n, so that tC ∼= t ⊕ iJt, where J is the
standard complex structure on (C∗)n. If (M,J) is any complex toric manifold, then clearly
the inclusion above induces an effective and holomorphic action of the real torus T n on
(M,J).

Definition 2.34. We say that a Kähler manifold (M,J, ω) is a AK-toric (or algebraic Kähler
toric) if the following are satisfied:

1. (M,J) is complex toric with (C∗)n-action τC : (C∗)n ↪→ Aut(M,J),

2. The fixed point set of τC, and thus the fixed point set of the underlying real torus
action τ : T n ↪→ Aut(M,J), is finite and nonempty,

3. (M,ω) is symplectic toric with respect to τ ,

4. There exists an element b ∈ t whose Hamiltonian potential 〈µ, b〉 : M → R is proper
and bounded from below.

The reason for “algebraic” in the terminology will be made clear in Chapter 3. In all
such cases, we see that J is compatible with (M,ω) in the sense of Definition 2.33. Given a
symplectic toric manifold (M,ω), however, there may well be compatible complex structures
J which do not give rise to an AK-toric manifold. Indeed, we will see examples of this in
Chapter 3. The essential problem is that (M,J) may not admit an action of the larger
complex group (C∗)n extending the original T n-action (i.e. the T n-action may not have a
“complexification”).

If M is compact, we will see in Chapter 3 (Theorem 3.23, Proposition 3.24) that this
definition is vacuous, in the sense that any symplectic toric manifold (M,ω), complex toric
manifold (M,J), or toric variety M can be given the structure of an AK-toric manifold.
For non-compact manifolds (varieties which are not complete), we will see several examples
where some but not all of these conditions are met.
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Chapter 3

Kähler geometry

Perhaps the single most interesting and important feature of Kähler geometry is that seem-
ingly purely geometric phenomena and structures often turn out to have seemingly purely
complex algebraic counterparts or explanations (and indeed vice versa). The very definition
of a Kähler metric induces and naturally intertwines analytic, geometric, and symplectic
structures, yielding complex and interesting relationships. From the analytic perspective,
one of the key consequences is simplification.

In studying geometry, we very often ask questions of the form “If I start with a manifold
M , can I find a Riemannian metric g on M with nice properties?” One of the most basic
examples of the “simplification” phenomenon goes as follows. If we restrict our attention to
metrics which are Kähler with respect to a given complex structure on M , we can choose a
background metric g with Kähler form ω, and only search within those metrics whose Kähler
form is related to ω by ω′ = ω+ i∂∂̄ϕ, with ϕ ∈ C∞(M). If M is compact, any other metric
with the property that [ω′] = [ω] satisfies this property. In this way we have reduced the
question of finding a Riemannian metric g ∈ C∞(Sym2(TM)) (an analytic question which a

priori depends on (n−1)(n−2)
2

parameters) to a question of finding a single smooth function
ϕ. This is not to say that analytic simplification is the only feature which sets the study of
Kähler metrics apart, but it is certainly a powerful tool which helps us see the picture, often
leads to a clearer and deeper understanding of the underlying structures that make things
work.

The goal of this chapter is to provide a general framework for studying Kähler geometry
on non-compact toric manifolds. This is an extension of the well-understood situation for
compact manifolds, which goes back to the work of Atiyah, Abreu, Delzant, Guillemin, and
Sternberg [4, 2, 24, 42, 41] (we will explain this in detail in the following sections, for a
reference see the excellent survey [29]). The result in essence is that the extra symmetry
imposed by a good torus action allows us to even further reduce many questions about
Kähler metrics on M to questions about convex functions on Euclidean space. This latter
subject is extremely well-understood, with a history going back at least to Archimedes.
The entanglement of the complex analytic, symplectic, algebraic, and geometric structures
involved will, as expected, play a central role.
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Throughout this Chapter our primary interest will be AK-toric manifolds (M,J, ω) (Def-
inition 2.34). Recall that, as a consequence of Lemma 2.24, there exists in this setting an
orbit U = (C∗)n · p ⊂ M which is open and dense in M . We will begin by trying to under-
stand more explicitly the local geometry of T n-invariant Kähler metrics on the dense orbit
U ⊂ M . With this in mind, in Section 3.1 we study T n-invariant Kähler metrics on the
torus (C∗)n itself. We will ultimately treat the question of when these Kähler metrics extend
to metrics on M . To this end, we study in Section 3.2 how to classify the image of the
moment map associated to (M,ω, τ). The situation in the compact case is well-understood,
going back to the work of Atiyah, Guillemin-Sternberg, and Delzant [4, 41, 24]. As we will
see, there are many subtleties that arise in the non-compact setting, and we will see clearly
through explicit examples that one cannot hope for the situation to be as neat as in the
compact case. Through explicit examples and by piecing together some existing results in
the literature [46, 61, 64], we show that the assumptions in Definition 2.34 are necessary and
sufficient for the full Delzant classification to go through, in a sense we will make precise in
Section 3.2. In Section 3.3 we bring this discussion together with the local theory and treat
the extension problem of Kähler metrics on the dense orbit of an AK-toric manifold. In
Section 3.4, we briefly discuss an interesting class of AK-toric manifolds, the asymptotically
conical toric manifolds, and prove that they are indeed AK-toric.

3.1 Kähler metrics on toric manifolds part one: Local

theory

Here we will review some of the theory of torus-invariant Kähler metrics on (C∗)n. Everything
in this section is well-known, and we review it only because it is essential for the rest of the
dissertation. The main references for this section are [29, 66]. We begin by pointing out that
there is a canonical coordinate system (z1, . . . , zn) on (C∗)n, and throughout this section
we will use this notation to refer to these fixed background coordinates (this in fact is the
primary reason for considering actions of (C∗)n with a given coordinate system as opposed to
actions of a more abstract algebraic torus). If we have a complex toric manifold (M,J, τC),
once we choose a basepoint p ∈ U the dense orbit U ∼= (C∗)n · p ⊂ M then gives rise to
a local holomorphic coordinate system on M . One of the main analytic properties that we
exploit is that these “local” coordinates in fact cover almost all of M . As we see later on,
this makes the study of integral and other measure-theoretic quantities particularly useful
on toric manfiolds. Notice also that this justifies our convention of denoting by “J” both the
complex structure on M and the one on (C∗)n itself. Similarly, we will not make a notational
distinction between a Kähler metric ω and its restriction to the dense orbit, simply denoting
ω|U = ω. In general, the strategy will be to reduce questions about T n-invariant Kähler
geometry on M to questions about T n-invariant Kähler geometry on (C∗)n.

Although our primary interest of course is the situation above where we have a Kähler
metric ω on (C∗)n which is induced the restriction of a T n-invariant Kähler metric on an
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ambient toric manifold M , throughout the rest of this section we will treat the problem
abstractly and study arbitrary T n-invariant metrics on (C∗)n. In light of the picture of a
complex toric manifold as an equivariant compactification of (C∗)n, one can ask when this
process can be reversed, i.e. when a Kähler metric on (C∗)n induces such a metric on a given
ambient toric manifold. As far as the author is aware, this question was first studied by
Abreu [2]. We will return to this in detail in the later sections of this chapter.

3.1.1 Logarithmic coordinates

We begin by fixing some notation that we will use throughout the rest of the dissertation.

Notation 3.1. Fix a basis β = (Ξ1, . . . ,Ξn) for Γ ⊂ t which determines a natural bi-invariant
metric gβ on T n with respect to which it is orthonormal. This, in particular, induces a real
coordinate system (ξ1, . . . , ξn) on t. The metric gβ induces an identification t ∼= t∗, and
thereby a (real) coordinate system (x1, . . . , xn) on t∗. Moreover, with these conventions, the
dual pairing 〈·, ·〉 : t× t∗ → R is naturally identified with the Euclidean dot product on Rn.

As a smooth manifold, the algebraic torus (C∗)n can be identified with the tangent bundle
of the real torus T n. In fact, the perhaps most natural identification turns out to translate
much of the T n-invariant complex geometry on (C∗)n into convex geometry on t. To see this
let Log : (C∗)n → t× T n denote that map

Log(r1e
iθ1 , . . . , rne

iθn) = (r1, . . . , rn, θ1, . . . , θn). (3.1)

The next lemma is immediate, but we highlight it anyway because it is essential to our
approach that follows.

Lemma 3.2. The map (3.1) induces a one-to-one correspondence between T n-invariant con-
tinuous functions on (C∗)n and continuous functions on t.

If we let C0
T ((C∗)n) be those real-valued continuous functions on (C∗)n which are T n-

invariant, then the above Lemma says that there is a natural identification of C0
T ((C∗)n) with

C0(t). The key to the relationship with complex analysis is the following simple observation.
For simplicity of notation we state the result for smooth functions only, but it will be clear
from the proof that there are corresponding statements with less regularity.

Lemma 3.3. Under the correspondence given by Lemma 3.2, the operators

2z̄j
∂

∂z̄j
: C∞T ((C∗)n)→ C∞T ((C∗)n)

and
∂

∂ξj
: C∞(t)→ C∞(t)

are equal for any j = 1, . . . , n. In particular, any T n-invariant holomorphic function on
(C∗)n is constant.
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Proof. Fix any branch of the holomorphic logarithm function and let wj = log(zj) be the
coordinates on (C∗)n defined away from the corresponding branch cuts. On this branch cut,
notice that the real coordinates induced by (3.1) (ξ, θ) are well-defined and that

wj = ξj + iθj. (3.2)

Let h ∈ C∞T ((C∗)n) be smooth and T n-invariant. Clearly, this implies that h written in
the real coordinates (ξ, θ) is independent of θ. Writing now h in the local holomorphic
coordinates wj, we can see that

z̄j
∂h

∂z̄j
(z) =

∂h

∂w̄j
(w).

Finally, using that ∂
∂w̄j

= 1
2

(
∂
∂ξj

+ i ∂
∂θj

)
from (3.2), we see that

∂h

∂w̄j
(w) =

1

2

∂h

∂ξj
(ξ, θ) =

1

2

∂h

∂ξj
(ξ).

Since this description has no dependence on θ, it follows that it is in fact independent of the
branch of w = log(z) that we chose, which completes the proof of the first statement. Now
suppose that h ∈ C∞T,C((C∗)n) is a T n-invariant complex-valued function. Write h = h(w) in
the local coordinates 3.2 and then decompose h(w) = h1(w)+ ih2(w), where hi ∈ C∞T ((C∗)n)
are smooth T n-invariant real-valued functions. If h is holomorphic, then for any j we have
that ∂h

∂w̄j
= ∂h1

∂w̄j
+ i ∂h2

∂w̄j
= 0. By Lemma 3.2, the functions hk are induced from smooth

real-valued functions on t, and we continue to abuse notation and refer to these functions as
hk. Therefore

∂hk
∂w̄j

(w) =
∂hk
∂ξj

(ξ)

is real-valued, and hence it follows that ∂hk
∂ξj

= 0 for any k = 1, 2, j = 1, . . . , n, so that h is
constant.

Remark 3.4. As a consequence, we see that the restriction of the ∂̄-operator to the real-valued
functions

∂̄ : C∞T ((C∗)n)→ Λ1,0
T ((C∗)n)

is identified with the usual exterior derivative

d : C∞(t)→ Λ1(t).

Remark 3.5. The local holomorphic coordinates induced by w = log(z) (3.2) introduced
in the proof above are a useful computational tool that we will return to in later sections.
The proof exhibits a general principle, that T n-invariant complex data can be understood
“invariantly” in the coordinates (3.2), even though they themselves depend a priori on a
choice of branch of the logarithm.
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Another important elementary quality of this coordinate system is the following.

Lemma 3.6. Let ψ be any T n-invariant C2 function on (C∗)n with the property that

i∂∂̄ψ = 0.

Then, as a function on t, ψ is affine-linear.

Proof. Choose a branch of log, and then write in the coordinates (3.2):

0 = i∂∂̄ψ = i
∂2ψ

∂wi∂w̄j
dwi ∧ dw̄j =

1

2

∂2ψ

∂ξi∂ξj
dξi ∧ dθj.

Since second partial derivatives of ψ : t→ R vanish, it follows that ψ is affine-linear.

3.1.2 Invariant metrics

As we have seen, the introduction of logarithmic coordinates allows us to understand proper-
ties functions on (C∗)n in terms of properties of functions on Rn. The next step is to exploit
this in the study of Kähler metrics. The starting point for this discussion is an observation
due to Gullemin [42]:

Proposition 3.7 ([42, Theorem 4.1]). Let ω be any T n-invariant Kähler form on the al-
gebraic torus (C∗)n. Then the action is Hamiltonian with respect to ω if and only if there
exists a T n-invariant potential φ such that ω = 2i∂∂̄φ.

Suppose then that we have some Kähler metric ω on (C∗)n with respect to which the
natural T n-action is Hamiltonian. Proposition 3.7 furnishes for us a Kähler potential ω =
2i∂∂̄φ which we see immediately must be T n-invariant. We can therefore write ω in the local
holomorphic coordinate system (3.2):

ω = 2i
∂2φ

∂wj∂w̄k
dwj ∧ dw̄k.

Just as in the proof of Lemma 3.3, since the T n-action in these coordinates is given simply
by translation in the imaginary direction, we see that φ(w) is independent of θ. Abusing
notation as above, we write φ = φ(ξ) for the smooth function on t determined through
Lemma 3.2. Thus, the complex hessian of φ is just a multiple of its real hessian:

∂2φ

∂wj∂w̄k
=

1

4

∂2φ

∂ξj∂ξk
.

Expressing dwj and dw̄k in terms of ξ and θ via (3.2), we see all in all that we have:

ω =
i

2

∂2φ

∂ξj∂ξk
dwj ∧ dw̄k =

∂2φ

∂ξj∂ξk
dξj ∧ dθk. (3.3)
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Since the coefficients of ω define a metric on (C∗)n by assumption, we have by the middle
equality that if we view φ as a smooth function on t, its (real, Euclidean) hessian is strictly
positive definite! In other words, we have

Lemma 3.8. The Kähler potential φ for a T n-invariant Kähler metric ω on (C∗)n is deter-
mined by strictly convex function on t, which we also denote by φ.

The associated Riemannian metric g(−,−) = ω(−, J−) can also be understood explicitly
in these terms. That (wj = ξj + iθj) are holomorphically compatible with the standard
complex structure J on (C∗)n is equivalent to the fact that J ∂

∂ξj
= ∂

∂θj
and J ∂

∂θj
= − ∂

∂ξj
for

all j = 1, . . . , n. From this we can readily calculate:

g =
∂2φ

∂ξj∂ξk
dξj ⊗ dξk +

∂2φ

∂ξj∂ξk
dθj ⊗ dθk. (3.4)

As a final remark, we set the stage for the later sections of this chapter. Once we know
that the Kähler form is ∂∂̄-exact, we have an explicit representation for the moment map
µ : (C∗)n → t∗. Indeed, we define µ directly in logarithmic coordinates:

µ(ξ, θ) = ∇φ(ξ), (3.5)

where ∇φ denotes the Euclidean gradient

∇φ : t→ t∗ (3.6)

of φ, computed in terms of our fixed background coordinates (ξ1, . . . , ξn) on t. In terms of
the dual pairing, this says that for any b ∈ t, the moment map µ is defined by the relation

〈µ(ξ, θ), b〉 = 〈∇φ(ξ), b〉.

This can be checked directly. Fix b = (b1, . . . , bn) ∈ t, so that the corresponding holomorphic
vector field Xb on (C∗)n is given by

Xb =
n∑
j=1

bj
∂

∂θj
.

Then we have

−iXbω = bj
∂2φ

∂ξj∂ξk
dξk = d

(
bj
∂φ

∂ξj

)
= d〈µ, b〉.

Observe that, by the strict convexity of φ : t → R, the gradient ∇φ : t → t∗ is a
diffeomorphism onto its image Ω = ∇φ(t) ⊂ t∗. In this way the geometry begins to emerge
explicitly. The moment map µ = ∇φ writes the torus (C∗)n as a specific choice of fibration
by real tori:
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T n (C∗)n

Ω

∇φ

The metric on each fiber µ−1(ξ∗) is the flat metric with constant coefficients given by the

hessian Hessξ∗φ. Moreover, if we denote φij(ξ) = Hessξφ = ∂2φ
∂ξi∂ξj

(ξ) and then equip the Lie
algebra t with the Riemannian metric

gt = φij(ξ)dξ
i ⊗ dξj, (3.7)

then for any θ∗ ∈ T n the natural inclusion t ↪→ (C∗)n ∼= t × T n is an isometric immersion
onto the totally geodesic submanifold t× {θ∗}.

The next step is to classify the moment image Ω ⊂ t∗, which will ultimately bring us
back to our discussion of how to understand when the local picture we have just discussed
compactifies with respect to a given toric manifold M with (C∗)n ⊂M .

3.2 The Delzant classification

The main goal of this section is to classify the image of the moment map µ associated to a
symplectic toric manifold (M,ω, τ).

3.2.1 GIT construction of toric manifolds

In Section 2.1, we discussed an algebraic procedure which produced a toric variety MP from
the combinatorial data of an algebraic polyhedron P . We present here a different construction
which produces an AK-toric manifold (MP , JP , ωP ) (recall from Definition 2.34 that this
means there is a (C∗)n-action τC such that (MP , JP , τC) is complex toric and (MP , ωP , τ)
is symplectic toric). The construction is an example of the general procedure known as
Kähler reduction [47], which exploits the compatibility of the complex analog of Mumford’s
geometric invariant theory [57] with the Marsten-Weinstein symplectic quotient [54]. The
advantage to this perspective is that it simultaneously addresses the symplectic and complex
perspectives. For toric manifolds the picture in its most general form is due to Burns-
Guillemin-Lerman [11], but goes back to the work of Delzant, Kirwan and others [5, 3, 24,
47]. We will address the question of the precise sense and setting in which this construction
coincides with the algebraic one in the later sections of this chapter.

As always t will denote the Lie algebra of the real n-dimensional torus T n, and we fix
an integral lattice Γ ∼= Zn ⊂ t. In this way, we work in the context of Section 2.1 with
our real vector space V = t. Let P ⊂ t∗ be an algebraic polyhedron (see Definition 2.17).
The algebraic condition guarantees the existence of elements ν1, . . . , νN ∈ Γ and numbers
a1, . . . , aN ∈ R such that
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P = {x ∈ t∗ | 〈νi, x〉 ≥ −ai} (3.8)

for all i = 1, . . . , N . We will always assume that the collection {νi} is minimal, in the sense
that the deletion of one element of the collection would necessarily change the set P .

Definition 3.9. Let P be an algebraic polyhedron as above with a minimal collection of
ν1, . . . , νN ∈ Γ such that (3.8) holds. We say that νi are the inner normals of P if further
each νi is the minimal generator in Γ of the ray R · νi ⊂ t.

We define a map Ψ : ZN → Γ by

Ψ(y1, . . . , yN) =
N∑
i=1

yiνi,

which is necessarily surjective as a consequence of Definition 2.3. There is a natural R-linear
extension Ψ : RN → t which is also surjective, and thereby induces the short exact sequences

0→ k
ι−→ RN Ψ−→ t→ 0 (3.9)

and
0→ K

ι−→ TN
Ψ−→ T n → 0 (3.10)

Clearly, we can view K ⊂ TN as a subtorus with Lie algebra k. Moreover, we can
complexify the picture and obtain

0→ kC
ι−→ CN Ψ−→ tC → 0 (3.11)

and
0→ KC

ι−→ (C∗)N Ψ−→ (C∗)n → 0 (3.12)

Heuristically speaking, the complex manifold (MP , JP ) is obtained by removing a union
V of some linear subspaces in CN and taking the quotient CN/KC. If P is Delzant, then this
is literally true, the essential reason being that the KC-action is free on CN − V . In general,
the space MP will need to be singular, and the picture becomes more complicated. Since
the primary interest of this dissertation is the smooth case we will restrict ourselves to the
case where P is Delzant. With the appropriate definitions the same procedure can be made
to work in the analytic category, and we will describe briefly what these changes are below.
The situation is particularly well-understood in the algebraic category, see [21, Chapter 14]
for an overview.

We assume then for the moment that P is Delzant. In this case, the set V is described
as follows. By definition, set of cones ΣP in t constructed by 2.8 is a fan. For each cone
σ ∈ ΣP , set
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Vσ = {y ∈ CN | yi = 0 if νi 6∈ Σ},

and then
V =

⋃
σ∈ΣP

Vσ.

Notice that if σ′ ⊂ σ, that Vσ′ ⊂ Vσ, which implies the union above may as well be taken
over only the maximal cones in ΣP . In any case, we have the following. For a detailed proof,
see [21, Theorem 5.1.11].

Proposition 3.10 ([5, 21]). The KC-action on CN −V is free, and therefore there is a well-
defined quotient (MP , JP ) = (CN − V ) /KC. The quotient (C∗)N/KC, which is naturally
identified with (C∗)n through Ψ, acts effectively and holomorphically on (MP , JP ).

We will sometimes denote (MP , JP ) = CN//KC. Note that the set V , and thus the
complex structure JP , depends only on the normal fan ΣP of P . This is highly suggestive of
the fact that (MP , JP ) should be related to the toric varietyMΣP constructed in Section 2.1.
This is true; in fact the GIT description for toric varieties is due originally in the algebraic
setting to Cox [20].

Proposition 3.11. The toric manifold (MP , JP ) is equivariantly biholomorphic to the un-
derlying complex manifold of MΣP , where ΣP is the normal fan of P .

Proof. Once we know that we can find a rational polyhedron P ′ such that ΣP ′ = ΣP , this will
be a straightforward consequence of the fact that toric varieties are all isomorphic to GIT
quotients of a large enough affine space. The latter result is well-known, see [20, 21]. The
existence of such a P ′ is also straightforward. Given a Delzant polyhedron (or indeed any
algebraic polyhedron), we can find polyhedra Pε arbitrarily close to P but whose coefficients
ai as in (3.8) are rational. By the inherent discreteness of the normal fan, we see, at least
when ε is small enough, that the normal fan ΣPε = ΣP . So make some such choice of Pε
with ai ∈ Q. We then clear denominators: if k ∈ Z is such that kai ∈ Z for all i = 1, . . . , N ,
then the polyhedron P ′ = kPε is rational and satisfies ΣP ′ = ΣPε = ΣP .

To obtain the corresponding symplectic form ωP we first dualize (3.9):

0→ t
Ψ∗−→ (RN)∗

ι∗−→ k∗ → 0. (3.13)

As we saw in Example 2.31, the action of TN on CN is Hamiltonian with respect to the
Euclidean symplectic form ωE, with moment map µE : CN → (RN)∗ given by

µE(z1, . . . , zN) =
N∑
i=1

|zi|2e∗i ,
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where e∗i ∈ (ZN)∗ are the dual basis associated to the lattice ZN ⊂ RN . The subgroup
K ⊂ TN of course then also acts on CN , and it is not hard to see that this action admits a
moment map µK : CN → k∗ with respect to ωE by

µK = ι∗ ◦ µE.

Let ai ∈ R be as in (3.8), and define an element λP ∈ (RN)∗ by

λP =
N∑
i=1

aie
∗
i . (3.14)

Theorem 3.12 ([5, 11, 24, 47]). The K-action on µ−1
K (λP ) is free, thus the quotient MP =

µ−1
K (λP )/K is a smooth manifold. The restriction of the Euclidean symplectic form ωE to
µ−1
K (λP ) determines a unique symplectic form ωP on MP . As in the complex case the quotient
T n ∼= TN/K acts effectively on MP , preserving ωP . This action is Hamiltonian, and the
moment map µP : MP → (RN)∗/k∗ ∼= t∗ is determined by the restriction of ωE to µ−1

K (λP ),
and the image µP (MP ) ⊂ t∗ is precisely P . Moreover, the natural map (CN − V )/KC →
µ−1(λP )/K indentifying orbits is a T n-equivariant diffeomorphism. Under this identification,
the symplectic form ωP inherits the property of being Kähler with respect to JP from the
original Kähler triple (CN , JE, ωE).

Similarly to the complex quotient construction, we will occasionally use the notation
(MP , ωP ) = CN//

λP
K for the symplectic quotient construction above. Putting together

Theorem 3.12 with Proposition 3.10, we obtain from the data of a Delzant polyhedron a
Kähler manifold (MP , JP , ωP ) together with a (C∗)n-action τC with the property that:

1. τC is JP -holomorphic,

2. The underlying real torus action τ is Hamiltonian with respect to ωP ,

3. The moment map µP : MP → t∗ is has image equal precisely to P .

Remark 3.13. One of the key points in [11] is that this situation can be made to hold in an
appropriate sense when P is a more general algebraic polyhedron. As we already mentioned,
the manifold MP will necessarily be singular. The result is that the same description as
above holds on the interior F̊ of each k-dimensional face F of P for k = 0, . . . , n (the k = n
case being the dense orbit, which is fibered over the interior of P itself). In this way MP is
stratified by smooth Kähler spaces (MF̊ , JF̊ , ωF̊ ), which each have the properties described
above.

Suppose now further that P is rational. This forces the coefficients ai of (3.8) to be
integers, which in turn means that the element λP of (3.14) lies in the dual lattice (ZN)∗ ⊂
(RN)∗. As a consequence, there is a well-defined character χλP : (C∗)N → C∗,

χλP (λ1, . . . , λN) = λa11 . . . λaNN . (3.15)
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In particular, we can define an action of (C∗)N on the total space of the trivial bundle
OCN

∼= CN × C→ CN by

λ · (z1, . . . , zN , ζ) = (λ1z1, . . . , λNzN , χ
λP (λ)ζ), (3.16)

for λ = (λ1, . . . , λN) ∈ (C∗)N . In particular, there is a free action of KC on the total space
of OCN−V

∼= (CN − V ) × C, and therefore a well-defined quotient line bundle π : LP =
OCN−V /KC →MP . Moreover, we have:

Proposition 3.14 ([21, Theorem 14.2.13]). Using Proposition 3.11 to identify MP and
(MP , JP ), the line bundle LP is isomorphic to OMP

(D), where D is the divisor (2.3) onMP

associated to P .

We omit the proof here, but it is essentially a consequence of the (algebraic) GIT con-
struction of MP mentioned above. The result is that MP is isomorphic to Proj(RχλP ),
where RχλP is the ring of KC-invariant sections OCN under the action (3.16). From this
perspective, it is not hard to see that the divisor aHi given by the vanishing of zai on CN

passes via the quotient to the divisor aDνi (recall that Φ : ZN → Γ is defined by sending
the standard basis {e1, . . . , eN} to the inner normals {ν1, . . . , νN}). Finally, observe that we
have a natural KC-invariant section sP of OCN :

sP (z1, . . . , zN) = (z1, . . . , zN , z
a1
1 . . . zaNN ). (3.17)

Clearly, the zero divisor of sP is Z(sP ) =
∑
aiHi. Moreover, sP descends by construction to

a section of LP , whose zero divisor is then
∑
aiDνi .

The symplectic perspective, as it turns out, also fits in neatly with the picture.

Corollary 3.15. Using Theorem 3.18 to view (MP , JP , ωP ) as a Kähler manifold, we have
that ωP ∈ 2πc1(LP ).

This is a consequence of Guillemin’s explicit formula for ωP (see [11] for the non-compact
case), which we will see in more detail in Section 3.3.

3.2.2 The compact setting

We next begin to address the question of the relationship between the three definitions (2.1,
2.21, 2.28) of a toric space that we have mentioned here. Although it seems tempting to
phrase these relationships in categorical language, we will avoid doing so here. Essentially,
the a careful study of the morphisms in each category is sufficiently cumbersome that it
detracts from our main purpose, the study of Kähler metrics on an individual toric manifold.
We will nevertheless attempt to state the correspondences as clearly as possible. The story
begins with the pioneering work of Atiyah [4] and Guillemin-Sternberg [41]:

Theorem 3.16 ([4, 41]). Let (M,ω) be a compact symplectic toric manifold with moment
map µ : M → t∗. Then the image of the moment map µ(M) ⊂ t∗ is a polytope P , equal to
the convex hull of the image under µ of the fixed point set of T n on M .
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The connection with our general picture is due to Delzant:

Theorem 3.17 ([24]). Let (M,ω) be a symplectic toric manifold, which by the previous
theorem we know has the property that its moment image µ(M) ⊂ t∗ is a polytope P . Then
there exists a T n-equivariant symplectomorphism G : (M,ω) → (MP , ωP ), unique up to
symplectic automorphisms of (M,ω).

We note some immediate consequences of this result. First of all, this immediately imples
that the image P of any moment map µ with respect to ω is unique up to translations in t∗.
Moreover, by Theorem 3.12, we can use G to pull back the complex structure of (MP , ωP , JP )
and obtain a compatible complex structure J = G∗JP on (M,ω) with respect to which ω
is Kähler. But in fact we have more: we can also use G to pull back the (C∗)n-action on
(MP , JP ) to obtain a J-holomorphic (C∗)n-action τC on (M,J). Since G is equivariant with
respect to the T n-actions, the underlying real torus action τ of τC coincides with the original
T n-action on (M,ω). In other words, we can associate to (M,ω, τ) a complex toric manifold
(M,J, τC). More precisely, we have:

Corollary 3.18. Given any compact symplectic toric manifold (M,ω), there exists a com-
patible complex structure J making (M,J, ω) into an AK-toric manifold (Definition 2.34).
Moreover, if J ′ is any other such complex structure on M , then there exists a T n-equivariant
symplectic automorphism g of (M,ω) such that J ′ = g∗J .

In fact we have a converse as well:

Lemma 3.19. Let (M,J, τC) be a complex toric manifold (not necessarily compact). Then
there exists a symplectic toric structure with respect to which the real torus action τ under-
lying τC is Hamiltonian.

Proof. Choose a Kähler metric ω on (M,J) which, by averaging, we can assume to be
invariant under the T n-action τ . Since the fixed point set of τ is finite, a result of Frankel
[35, Lemma 2] says that the T n-action is Hamiltonian with respect to ω.

Using Lemma 3.19 together with Delzant’s theorem, we obtain a complex analog of
Corollary 3.18 when M is compact. The proof we give here comes from [15], and is based on
an idea of Abreu [2]. Our main tool is a structure theorem for Hamiltonian group actions
which admit holomorphic complexifications due to Sjamaar [64]:

Theorem 3.20 (Holomorphic Slice Theorem [64, Theorem 1.12, Theorem 1.23]). Let M be
a complex manifold and GC be a connected complex reductive Lie group which acts holomor-
phically on M . A slice at x ∈ M for the GC-action is an analytic subvariety S ⊂ M such
that

1. x ∈ S,

2. the set GCS of all orbits intersecting S (the “saturation”) is open in M ,
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3. the stabilizer (GC)x preserves S,

4. the map H−1
x : S ×(GC)x G

C → GCS defined on equivalence classes by H−1
x (p, g) = g · p

is a biholomorphism.

Suppose there exists a Kähler metric ω on M with respect to which the action of the compact
real form G ⊂ GC is Hamiltonian. Then there exists slices through any point x ∈ M such
that the G-orbit is ω-isotropic. If G is a real torus (and thus GC ∼= (C∗)n), then all orbits
are isotropic, and consequently there exist slices through all points of M .

Proposition 3.21 ([15, Lemma 2.14],[2, Proposition A.1]). Every compact complex toric
manifold (M,J) is equivariantly isomorphic to the underlying complex manifold of some toric
variety M. More specifically, there exits a (C∗)n-equivariant biholomorphism H : M →MP ,
where P is the image of the moment map of any T n-invariant compatible Kähler metric.

Proof. Let ω be a T n-invariant compatible Kähler metric on (M,J) with respect to which
the action is Hamiltonian, as guaranteed by Lemma 3.19. By Theorem 3.17, we know that
the image of the corresponding moment map µ : M → t∗ is a polytope P . For each k-
dimensional face Fi of P , choose a point pi in the interior. By [44, Theorem 4.1, part (v)]
(c.f. [41, 60]), each point q ∈ µ−1(Fi) is stabilized by a common torus T n−kFi

⊂ T n with
Lie algebra ti, and moreover Fi lies as an open subset of the dual k-plane t⊥Fi ⊂ t∗. By the
Holomorphic Slice Theorem 3.20, there exists a (C∗)n-invariant open neighborhood Ui ⊂M
of the orbit (C∗)n ·pi ⊂M and an equivariant biholomorphism Hi : Ui → (C∗)k×Cn−k, with
the standard (C∗)n-action such that Hi(pi) = (1, 0) and Hi(µ

−1(Fi) ∩ Ui) = (C∗)k × {0}.
We see that the stabilizer T n−kFi

acts in the coordinates induced by Hi by the standard
action on Cn−k. In this way, we produce an equivariant holomorphic coordinate covering
of M by running through each pi. Suppose now that F1, F2 are two k-dimensional faces
that which lie on the boundary of a higher-dimensional face E of P , and let HF1 : UF1 →
(C∗)k ×Cn−k, HF2 : UF2 → (C∗)k ×Cn−k, HE : UE → (C∗)l ×Cn−l denote the corresponding
maps as above. By equivariance, the transition map HF2 ◦ H−1

F1
is uniquely determined by

the inclusions of (C∗)l × Cn−l ⊂ (C∗)k × Cn−k given by HE. These in turn are determined
uniquely by the inclusions of the stabilizer algebra tE ⊂ tF1 , tF2 . As we have seen, the
stabilizer algebras tE, tF1 , tF2 comprise the normal directions to the faces E,F1, F2 in t∗,
respectively. In particular, the transition data of this covering is determined uniquely by the
normal fan ΣP of P . Now let (Wi, H̃i) be a cover of MP constructed in the same way. For
each face Fi of P , we have maps H̃−1

i ◦ Hi : Ui → Wi. Since the transition data for each
covering is uniquely determined by ΣP , we see that these local maps patch together to form
a well-defined biholomorphism M →MP .

Loosely speaking, we can summarize the correspondences so far by the following diagram:
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(M,J, τC)

P

M (M,ω, τ)

Kähler

CN//KC

ΣP

CN//
λP
K

GIT

µ

C−ify

Our next goal is to understand how the correspondences above behave with respect to
polarizations. Polarizations appear often in algebraic/Kähler geometry, and usually refer
to a piece of cohomological or intersection-theoretic data that we would like to fix before
studying a given problem. We will need the following fact from algebraic (toric) geometry
[21, Proposition 2.4.2, Proposition 6.1.10, Theorem 6.1.15]:

Lemma 3.22. Let M be a smooth complete toric variety with fan Σ in t. A torus-invariant
divisor D on M is ample (in fact, very ample) if and only if PD ⊂ t∗ is full-dimensional
and ΣPD = Σ.

Putting this together with the previous results this section and of Section 2.1, we see
that we have in fact encountered two examples of this:

1. A polarization (M, D) on a toric varietyM is a choice of ample torus-invariant Cartier
divisor D. We have already seen that associated to any polarization D on a smooth
toric varietyM there is a corresponding polytope PD (2.2). Moreover, we can associate
a polarized toric variety (MP , DP ) to any polytope P ⊂ t∗.

2. A polarization (M,L) on a complex toric manifold is a choice of positive holomorphic
line bundle L. Choosing any T n-invariant Kähler metric ω ∈ c1(L), we obtain by
Lemma 3.19 a polytope P defined as the image of the moment map µ corresponding
to ω. Conversely, starting with a polytope P ⊂ t∗ we have constructed a complex toric
manifold (MP , ωP ) and a holomorphic line bundle LP , which is positive by Corollary
3.15.

3. A polarization on a symplectic toric manifold (M,ω) can be thought of as simply the
cohomology class 2π[ω]. In this way, symplectic manifolds are all trivially polarized.
We’ve seen that the Atiyah, Guillemin-Sternberg Theorem allows us to associate a
polytope P to any compact symplectic toric manifold (M,ω), and that conversely we
have the symplectic quotient (MP , ωP ) to any polytope P ⊂ t∗.

In sum, we have:
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Theorem 3.23. Let (M,J, ω) be a compact AK-toric manifold. Suppose that 2π[ω] is an
integral class, so that there exists a holomorphic line bundle L → M with the property that
ω ∈ c1(L). Clearly then L is a polarization for (M,J) and 2π[ω] is a polarization for (M,ω).
We can also associate the structure of a polarized toric variety (M, D), and each type of
polarization is determined by a polytope P ⊂ t∗, unique up to translations in t∗, in the
following way:

1. Let P = µ(M) ⊂ t∗ be the image of any moment map with respect to ω associated to
the T n-action. Then P is a rational polytope, and moreover (M,ω) ∼= (MP , ωP ).

2. (M,J, L) ∼= (MP , JP , LP ) as polarized complex toric varieties.

3. By Proposition 3.21, we can view (M,J) as an algebraic toric variety M. Let sP ∈
H0(M,LP ) be the section defined by (3.17). Then D = Z(sP ) defines a polarization
on M.

The polarizations are related by

L

D P 2π [ω]

c1(L)

Z(sP )

O(D)

PD

LP

ωP

DP µ

Let (M,J, ω) be an arbitrary compact AK-toric manifold. Using Proposition 3.21, we
can identify (M,J) with (MP , JP ). Pulling back ω by this identification, we can view MP

with two different symplectic structures (MP , JP , ωP ) and (MP , JP , ω), both compatible with
JP . By the Delzant Theorem 3.17 the cohomology classes of ω and ωP coincide. Moreover,
Proposition 3.21 tells us that M admits a compatible algebraic structure. It is clear from
the proof of Proposition 3.21 that the polytope P still determines a divisor DP on M if we
allow for real coefficients.

Proposition 3.24. If (M,J, ω) is an arbitrary compact AK-toric manifold (i.e. 2π[ω] need
not be integral), then Theorem 3.23 still holds in the sense of R-divisors, R-line bundles, and
Delzant polytopes. Moreover, given M which is either

1. a symplectic toric manifold (M,ω),

2. a complex toric manifold (M,J),

3. the underlying complex manifold of a smooth projective toric variety M,

then M admits all three such structures, compatible with the original given one. All three
structures admit polarizations, and they too are compatible in the sense of Theorem 3.23.
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3.2.3 Smooth non-compact toric manifolds

Next, we begin to attack the problem of extending these classic results to the non-compact
setting. As we will see, there are real complications in the non-compact case and we cannot
hope for the Delzant classification to hold in full generality. We start by presenting some
examples, first of the “ideal” behavior which mirrors the structure present in the compact
setting, and then of some of the new problems that arise in the non-compact setting.

Example 3.25 (Ideal behavior). As we saw in Examples 2.10, 2.26, 2.31, Euclidean space
(Cn, JE, ωE) is AK toric. The corresponding moment map µE : Cn → Rn is a polyhedron
P = Rn

+, which has defining equations

P = {x ∈ Rn | 〈x, ei〉 ≥ 0, i = 1, . . . , n} ,

where ei ∈ Zn are the standard basis elements. Notice that there are exactly n inner normals
e1, . . . , en, and that as a consequence the Kähler quotient construction has KC = {0} acting
on (Cn, JE, ωE) itself. We have already seen that Cn ∼=MP . The divisor DP is the sum of
the coordinate hyperplanes Hi = Z(zi):

DP =
n∑
i=1

Hi.

Of course the line bundle LP is trivial, but specifically we can see that the character λP 3.14
itself acts trivially on OCn .

As we can see, with this simple example the correspondences of Theorem 3.23 still hold.
As we’ll see next, this is not the general expectation.

Example 3.26 (Image of the moment map need not be convex). Let ∆ ⊂ Cn be the standard
unit polydisc and set M = Cn −∆. The T n-action is still Hamiltonian with respect to the
restriction of the Euclidean metric ωE to M , the moment map µ : M → Rn being simply
the restriction of µE. As such, however, the image of µ inside of Rn is equal to the image of
µE(Cn) − µE(∆), which is equal to the positive orthant without the “unit cube,” which is
not convex. For example, the two-dimensional case n = 2 is given by:

In this example (M,ωE) is symplectic toric, and JE is compatible with ωE, but (M,JE, ωE)
fails to be AK-toric. The reason is that the T n-action does not admit a complexification.
This can be seen in at least two ways. Firstly, if there was such a complexification, the
corresponding holomorphic vector field would have to coincide with the Euler vector field:

X =
n∑
i=1

zi
∂

∂zi
,

which is incomplete on M . From another perspective, if such a complexification existed,
analytic continuation would furnish a biholomorphism M → (C∗)n. Note that in this ex-
ample, there is no algebraic variety to talk about, since the polyhedral set µ(M) is not a
polyhedron.
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Figure 3.1: A symplectic toric manifold whose moment image is not convex.

Even if the image of the moment map is convex, there are still issues with the Delzant
correspondence.

Example 3.27 (Another incomplete Kähler symplectic toric manifold which is not complex
toric). Now let M = ∆ be the unit polydisc of the previous example. By the exact same
reasoning as abive, the restriction of the Euclidean metric gives (M,ωE) the structure of a
symplectic toric manifold with respect to which JE is compatible. The image of the moment
map µ(M) ⊂ Rn is the half-open unit cube

µ(M) = [0, 1)× · · · × [0, 1),

which is convex, but not a polyhedron. Once again, the T n-action does not admit a complex-
ification, as such a (C∗)n-action would give rise to a biholomorphism (M,JE)→ Cn. Again
there is no algebraic structure to speak of, since µ(M) is not a polyhedron.

In fact, there can still be issues even if the image of the moment map is a polyhedron.

Example 3.28 (A complete Kähler symplectic toric manifold which is not complex toric).
Consider the unit disc ∆ = D ⊂ C, but instead with the hyperbolic Poincaré metric

ωH =
2i

(1− |z|2)2
dz ∧ dz̄.



CHAPTER 3. KÄHLER GEOMETRY 33

This metric is complete, and the S1-action on D is Hamiltonian with respect to ωH , with
moment map µ : D→ R given by

µ(z) =
2|z|2

1− |z|2
.

The image of µ is a polyhedron P = [0,∞), but as we have already seen, the S1 action
here does not complexify. Although there exists a toric variety MP

∼= C associated to the
polyhedron P , we have for the same reason that (D, JE) is not biholomorphic to MP .

Example 3.29 (Incomplete Kähler manifolds with (C∗)n-actions can have bad moment
maps). Let P be a polytope in Rn, M = MP be the associated projective toric variety,
and ωP be the Kähler metric on M determined by Proposition 3.21. By the Orbit-Cone
correspondence, each facet F of P determines a (C∗)n-invariant divisor DF on M . Choose
one such F and for simplicity of notation let D = DF . It follows then that there is a well-
defined restriction of the (C∗)n-action to the quasiprojective variety N = M − D which is
still effective and holomorphic. The restriction of ωP to N is Hamiltonian, and the moment
map µ : N → t∗ is just the restriction of µP : M → t∗. Thus µ(N) = µP (M) − µP (D). By
the same reasoning as in the proof of Proposition 3.21, we can see that µP (D) = F . Thus
µ(N) = P −F is not a polyhedron. See Figure 3.29 below for an example when M ∼= P1×P1

and D = {0} × P1.

Figure 3.2: A quasiprojective toric variety whose moment image does not describe the alge-
braic structure.
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These examples seem to suggest that the well-behavedness of the moment map is entirely
dependent on the completeness of the metric. The next example shows that even this is too
much to ask.

Theorem/Example 3.30. There exists a complete S1-invarint Kähler metric ω on C whose
moment image µ(C) ⊂ R is bounded.

Proof. We will choose ω of the form

ω =
i

2
F (|z|)dz ∧ dz̄,

where F : [0,∞) → (0,∞) is a smooth function. The corresponding Riemannian metric is
then

g = F (|z|) (dx⊗ dx+ dy ⊗ dy) .

From this we can see that the antiholomorphic diffeomorphism z 7→ z̄ is an isometry with
respect to g. This, together with S1-invariance, implies that radial lines emanating from 0
are the images of geodesics. Thus, there are geodesics γ : [a,∞) → C whose images lie in
the positive reals R+ ⊂ C, and so we may think of γ(t) simply as a positive real number. In
this way, write γ = (γ(t), 0) in the real coordinates (x, y). Since γ̇ is a multiple of ∂

∂x
, the

geodesic equation restricted to R+ reduces to

γ̈ + Γ1
11(γ̇)2 = 0.

Since the metric is diagonal, the Christoffel symbol Γ1
11, again restricted to the positive reals,

is given simply by

Γ1
11 =

1

2
g11∂g11

∂x
=
F ′(x)

2F (x)
.

The geodesic equation is then separable:

∂γ̇

∂t

1

γ̇
= −1

2

∂

∂t
log(F (γ(t))),

so that

γ̇ =
1√
F (γ)

. (3.18)

We now let F : [0,∞)→ (0,∞) be any smooth function with the property that

F (r) =

{ (
1

r log(r)

)2

r ≥ 2

1 r ≤ 1
.

We first claim that with this choice the metric ω is complete. Indeed, this will be true if and
only if γ is defined for all time. Choose a such that γ(a) = 2. We solve (3.18) explicitly.
Along γ, we have that F = 1

(x log(x))2
, so that
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γ̇ = γ log(γ).

In this case we can solve for γ(t) = ee
t+c

. By modifying the choice of a, we can assume that
c = 0. In any case γ is clearly defined for all time, and so ω is complete.

Now let f : C → R be the Hamiltonian potential for the tangent vector X of the S1-
action, so that ∇gf = JX = r ∂

∂r
. Let ηt : [0,∞) → C be the flow line of JX starting at

2 ∈ C, so that η(s) = es ∈ R+ ⊂ C for s ∈ [log(2),∞). The energy of of η is given by

E(ηt) =

∫ t

log(2)

g(η̇, η̇)ds =

∫ t

log(2)

g(∇gf, η̇)ds

=

∫ t

log(2)

df(η̇)ds = f(η(t))− f(η(log(2))) = f(et)− f(2).

But now we see that

∫ t

log(2)

g(η̇, η̇)ds =

∫ t

log(2)

F (es)e2sds =

∫ et

2

xF (x)dx

=

∫ et

2

1

x(log(x))2
dx =

1

log(2)
− e−t.

Letting t→∞, we see that f is bounded on the positive reals. Since f is S1-invariant, f(C)
is bounded.

In particular, even though C is certainly an affine toric variety, even the completeness of
ω is not enough to guarantee that there exists a varietyMµ(C) such that C ∼=Mµ(C). We will
see in a moment (Lemma 3.32) that the existence of a Hamiltonian potential which is proper
will be enough to guarantee that the image of the moment map is a Delzant polyhedron P .
If there is also an action of the complexified group, then (Proposition 3.33) we can also show
that M ∼=MP . Thus, the AK-toric case is the correct setting in which to expect a Delzant
correspondence for non-compat manifolds. Indeed, as Example 3.30 shows, the assumption
of a proper Hamiltonian potential is non-trivial, and need not be satisfied even for a complete
T n-invariant Kähler metric on a complex toric manifold. In general, one must impose extra
geometric assumptions on the metric for such a potential to exist. This will always be the
case if ω is a shrinking gradient Kähler-Ricci soliton, for example, a situation which we will
study in detail in Chapter 4.

We turn now to an example first described, to the author’s knowledge, by Karshon-
Lerman [46]. Here we see yet another new complication in the non-compact case, namely
infinite topology.

Example 3.31 (A complex toric manifold which is not a toric variety) [46, Example 6.9]).
We begin by defining a polyhedral set P ⊂ R2 as the convex hull of the set of points
vk = (k(k − 1)/2, k) for k = 0, 1, 2, . . . .
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Figure 3.3: A toric manifold M with infinite topology. In particular, M is not a Kähler
quotient of CN .

Note that this is not a polyhedron as defined by Definition 2.5. However, [46, Theorem
1.3] implies that there exists a symplectic toric manifold (M,ω) with moment map µ : M →
R2 whose image is equal to P . In fact, M also admits a compatible complex structure J and
an effective and holomorphic (C∗)2-action; the complex manifold (M,J) can be obtained
from P1 × C as a limit by sequentially blowing up a fixed point of the (C∗)2-action. The
fixed point set is the preimage under µ of the set of vertices {vk}, which is isolated but not
finite. Once again there is no algebraic structure, in this case because the normal fan of P
is infinite.

So, clearly some extra care is required in the non-compact case. From the symplectic
perspective, Prato-Wu [61] observed that one can obtain a version of the Atiyah, Guillemin-
Sternberg theorem if we make the a priori assumption on the existence of a certain well-
behaved Hamiltonian potential. From this stage, the general theory developed by Karshon-
Lerman [46] for non-compact symplectic toric manifolds applies, and from this we can obtain
a version of the Delzant theorem suitable for our purposes.

Lemma 3.32. Let (M,ω) be a symplectic toric manifold with finite, nonempty fixed point
set. Suppose that there exists b ∈ t such that the function 〈µ, b〉 : M → R is proper and
bounded from below. Then the image of the moment map µ is a Delzant polyhedron P , and
moreover (M,ω) is equivariantly symplectomorphic to (MP , ωP ).

Proof. Since the fixed point set of the T n-action is finite, it follows from [61, Proposition 1.4]
and the preceeding remarks that the existence of such a b ∈ t is sufficient to show that the
image of the moment map µ is a polyhedral set in t∗. This means by definition that µ(M) is
equal to the intersection of finitely many half spaces. It then follows immediately from [46,
Proposition 1.1] that P is a Delzant (unimodular) polyhedron. Finally, [46, Theorem 1.3,
c.f. Theorem 6.7] furnishes the desired equivariant symplectomorphism.
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We recall that an AK-toric manifold admits such a Hamiltonian potential 〈µ, b〉 : M → R
by definition. Thus, the image µ(M) ⊂ t∗ of the moment map is always a Delzant polyhedron.
This lets us put together an analog of Proposition 3.21 in the AK-toric setting:

Proposition 3.33 ([15, Lemma 2.14]). An AK-toric manifold (M,J, ω) equivariantly bi-
holomorphic to (MP , JP ), where P is the moment polyhedron. Consequently, (M,J) is in
particular quasiprojective.

Proof. To prove the proposition, we proceed as in Proposition 3.21. The crux of that proof
was the Holomorphic Slice Theorem 3.20, whose key components were:

1. a Kähler manifold (M,J, ω),

2. a Hamiltonian group action of a compact group G, and

3. a holomorphic action of the complexified group GC, extending the original action.

These are guaranteed for an AK-toric manifold by definition with G = T n, GC = (C∗)n.
Since we know that the image of the moment map is a Delzant polyhedron, the proof of
Proposition 3.21 then carries through.

This, together with Lemma 3.19, treats the first part of the Delzant correspondence for
non-compact AK-toric manifolds. The next step is to understand the polarizations.

Proposition 3.34 ([15, Proposition 2.15]). If (M,J, ω) is AK-toric, then the moment poly-
hedron P is determined up to translation by the cohomology class [ω].

Proof. The polyhedron P determines a torus-invariant divisor Dω on (M,J) as follows. Since
(M,J) is biholomorphic to (MP , JP ), we use this biholomorphism and assume without loss
of generality that (M,J, ω) = (MP , JP , ω) with ω not necessarily equal to ωP . Recall that
(MP , JP ) naturally carries the structure of the algebraic toric variety MP . Thus, we can
identify the normal fan Σ of P with the fan corresponding to MP . Let νi be the minimal
generator in Γ of the ray σi ∈ Σ corresponding to the direction normal to each facet Fi of
P . Then each Fi of P has the local defining equation `i(x) +ai = 0, where `i(x) = 〈νi, x〉 for
some ai ∈ R. Recall that σi defines via the Orbit-Cone correspondence an irreducible Weil
divisor Di. The divisor Dω is then given by

Dω =
∑

aiDi. (3.19)

We can assume without loss of generality that the irreducible component D1 of Dω is com-
pact. If there is no such D1, then it follows that there is a b ∈ Rn and A ∈ GL(n,Z) such
that the affine transformation Ax + b takes P to the positive orthant Rn

+, and so M ∼= Cn.
Note that the entire construction behaves well with respect to restriction, so that D1 =MF1 .
Since P is Delzant, so is F1, and so it follows that D1 is a nonsingular projective variety. If
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we restrict ω to D1, we obtain a moment map for the T n−1-action µ1 : D1 → t1, where t1 ⊂ t
is the orthogonal complement of the stabilizer algebra of D1. Then the image of µ1 is the
face F1 of P corresponding to D1. After potentially acting by an element of GL(n,Z), we
can assume that 〈ν1, x〉 = x1, so that t1 can be identified with the subspace x1 = 0. Inside
of t1, F1 is then defined by 〈ηi, (x2, . . . , xn)〉 ≥ −αi for some ηi in the lattice and αi ∈ R.
Thus, the Delzant polytope F1 determines a divisor ∆ =

∑
αi∆i on D1, where ∆i are the

torus-invariant divisors on D1 corresponding to ηi through the Orbit-Cone correspondence.
Since (D1, ω|D1) is itself a compact symplectic toric manifold, we can now appeal to the

well-established theory of the previous section. Specifically, it follows from Proposition 3.24
that the cohomology class of the symplectic form ω|D1 is given by

[ω|D1 ] =
∑

αi[∆i].

The coefficients αi, by definition, fix the defining equations of F1 inside t1. Thus, we see
that the facet F1 is uniquely determined by [ω] up to translation in t1. By the Orbit-Cone
correspondence, the subspace t1 on which F1 lies is uniquely determined by the fixed fan Σ,
up to translation in its normal direction. We see then that the set of vertices {v1, . . . , vk}
of F1, which is the image under µ of the set of fixed points T n-action that lie in µ−1(F1), is
determined uniquely up to a translation in t∗ by [ω]. Now each vertex of P lies on at least
one compact facet, otherwise again we would be in the situation where P = Rn

+. Hence,
we can repeat this process for each compact torus-invariant divisor to see that the set of all
vertices {v1, . . . , vK} of P is determined up to translation in t∗ by [ω]. It is clear then that
the same is true of P .

Corollary 3.35 ([15, Corollary 2.16]). Let M be AK-toric with moment polyhedron P =
{x ∈ t∗ | 〈νi, x〉 ≥ −ai for all i = 1, . . . , N}, and suppose that ω represents c1(L). Then
L ∼= O(Dω) is the line bundle associated to the divisor Dω =

∑
aiDi.

Proof. Recall that (M,J) ∼= (MP , JP ) ∼= MP . Let Σ be the normal fan of P so that
MP =MΣ. Since M is smooth we have by [21, Proposition 4.6.2] that L ∼= O(D) for some
torus-invariant divisor D =

∑
βiDi with βi ∈ Z. Recall that PD ⊂ t∗ denotes the polyhedron

associated to D given by

PD = {x ∈ t∗ | 〈x, νi〉 ≥ −βi, for all i = 1, . . . , N} , (3.20)

where ν1, . . . , νN are the minimal generators of the rays σi ∈ Σ. If D and D′ are any two
torus-invariant divisors on M with integer coefficients, we define an equivalence relation by
declaring that D ∼ D′ if and only if there exists some ν ∈ Γ∗ such that PD′ = PD + ν,
where PD and PD′ are the polyhedra (3.20) defined above. By [21, Theorem 4.1.3], D ∼ D′

if and only if O(D) ∼= O(D′). Suppose that D1 is a compact torus-invariant Weil divisor in
M . As before, such a D1 must exist unless M ∼= Cn and P = Rn

+. Perhaps by modifying
D by the equivalence relation, we can assume that the coefficient β1 corresponding to D1 is
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zero. In other words, there is a section s1 of L which does not vanish identically on D1. Let
F1 ⊂ P be the facet corresponding to D1. As before, the Delzant polyhedron F1 determines
a unique torus-invariant Weil divisor ∆ =

∑
αi∆i on D1. The restriction of s1 to D1 is a

section of L|D1 which vanishes along ∆i = D1 ∩ Di to order αi. In particular, we see that
the coefficients αi of ∆i are equal to those βi such that Di ∩D1 6= ∅. Let Dω =

∑
aiDi be

the divisor on M associated to ω as in (3.19) of the previous proof. We claim that Dω ∼ D.
As before, we can act by GL(n,Z) so that 〈ν1, x〉 = x1. Write P1 = Pω + ν1 so that the face
F1 + ν1 corresponding to D1 now lies on the hyperplane x1 = 0, and in general P1 is defined
by 〈x, νi〉 ≥ 〈ν1, νi〉 − ai = −ãi. Then it is straightforward to compute that the coefficients
αi are equal to those ãi such that Di ∩D1 6= ∅. Running across all compact divisors of M ,
we see that the coefficients ai in the defining equations for Pω are uniquely determined by
βi up to equivalence. In particular, Dω ∼ D.

In sum, we have established:

Theorem 3.36. Theorem 3.23 and Proposition 3.24 hold for AK-toric manifolds in the
sense of R-divisors, R-line bundles, and Delzant polyhedra.

3.3 Kähler metrics on toric manifolds part two:

Moment maps and extension

We return now to the direct study of Kähler metrics as in Section 3.1.

3.3.1 The Legendre transform

Let (M,J) be a complex toric manifold and ω be a compatible Kähler metric with respect
to which the T n-action is Hamiltonian. As we saw in Section 3.1, there exists a point p ∈M
such that the orbit U = (C∗)n · p ⊂ M is open and dense, and moreover there is a smooth
T n-invariant function φ ∈ C∞T ((C∗)n) such that ω|U = 2i∂∂̄φ. We will abuse notation and
denote the restriction ω|U simply by ω. The function φ can be understood (Lemma 3.2) as
a strictly convex function on t, and the moment map µ|U : U → t∗ is just the Euclidean
gradient ∇φ : t → t∗. Since ∇φ is a diffeomorphism, we can use this to define an alternate
angular coordinate system on (C∗)n:

(C∗)n Log−−−→ t× T n ∇φ×id−−−−→ Ω× T n.

Recall our background coordinate system (x1, . . . , xn) on t∗. By construction, when we
change coordinates by the transformation above, the symplectic form ω is just the standard
Euclidean form
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ω =
n∑
i=1

dxi ∧ dθi. (3.21)

Since the coordinate change was not holomorphic, we cannot expect the coefficients of
ω to determine those of the corresponding Riemannian metric. To understand the metric
structure, we need some basic machinery from convex function theory. That we are changing
coordinates by means of the gradient of a strictly convex function is highly suggestive of the
following general procedure.

Lemma 3.37. Let V be a real vector space and φ be a smooth and strictly convex function
on a convex domain Ω′ ⊂ V . Then there is a unique function L(φ) = u defined on Ω =
∇φ(Ω′) ⊂ V ∗ by:

φ(ξ) + u(x) = 〈ξ, x〉 (3.22)

for x = ∇φ(ξ). The function u is smooth and strictly convex on Ω. Moreover, L has the
following properties:

1. L(L(φ)) = φ,

2. ∇φ : Ω′ → Ω and ∇u : Ω→ Ω′ are inverse to each other,

3. φij(ξ) = uij(∇φ(ξ)), where φij = ∂2φ
∂ξi∂ξj

and uij =
(

∂2u
∂xi∂xj

)−1

ij
,

4. L((1− t)φ+ tφ′) ≤ (1− t)L(φ) + tL(φ′).

For a comprehensive reference on the Legendre transform and its basic properties, see
Rockafellar’s book [62].

Remark 3.38. The first two items above together with the symmetry of equation (3.22) imply
that the Legendre transform is symmetric in u and φ.

In the next lemma, we collect some useful properties of the behavior of the Legendre
transform under certain linear operations, all immediate consequences of Lemma 3.37.

Lemma 3.39. Let φ be a C1 strictly convex function on V and u = L(φ) be its Legendre
transform. Let Ω denote the image of the gradient ∇φ : V → V ∗. Suppose that we are given
a lattice Γ ⊂ V , and identify GL(n,Z) with the maximal subgroup of GL(V ) which preserves
Γ.

1. For B ∈ GL(n,Z), set φB(ξ) = φ (Bξ). Then L(φB)(x) = u((BT )−1x), and the image
of ∇φB : V → V ∗ is equal to BT (Ω).

2. For b1 ∈ V , set φb1(ξ) = φ(ξ− b1). Then L(φb1)(x) = u(x)+ 〈b1, x〉. Clearly, the image
of ∇φb1 is also equal to Ω.
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3. Symmetrically, for b2 ∈ V ∗, set φb2(ξ) = φ(ξ) + 〈b2, ξ〉. Then L(φb2)(x) = u(x − b2)
and the image of ∇φb2 is equal to Ω + b2.

4. If a ∈ R, then L(φ+ a) = u− a.

Sketch of the proof. As we mentioned above, these are all elementary consequences of 3.37,
and so we will only prove the second property to give the flavor of how proofs of this sort
go. Let u = L(φ). Applying (3.22) to φ, we have

φ(ξ − b1) + u(∇φ(ξ − b1)) = 〈(ξ − b1),∇φ(ξ − b1)〉.

Since ∇φb1(ξ) = (∇φ)(ξ − b1), we see that

φb1(ξ) + u(∇φb1(ξ)) + 〈b1,∇φb1(ξ)〉 = 〈ξ,∇φb1(ξ)〉,

from which it follows immediately from (3.22) that L(φb1)(x) = u(x) + 〈b1, x〉.

3.3.2 Symplectic coordinates

Returning to the scenario at the beginning of this section, let ω = 2i∂∂̄φ on U ∼= (C∗)n ⊂M
as before. Let u(x) = L(φ) ∈ C∞(Ω) be the Legendre transform of φ ∈ C∞(t). Combining
(3.4) with Lemma 3.37, we see that after changing coordinates by ∇φ, the metric g on Ω×T n
is given by

g = uijdx
i ⊗ dxj + uijdθi ⊗ dθj, (3.23)

where as before uij is the Euclidean Hessian of u and uij its inverse. From this we see
immediately that the complex structure J is given by

J =

(
0 −uij
uij 0

)
. (3.24)

Now the picture becomes more clear. From the complex perspective, the complex structure
J is kept standard and the Kähler structure (g, ω) is determined by the convex function φ
on t, whereas from this new perspective the symplectic form ω is standard and the Kähler
structure (g, J) is determined by the convex function u on Ω ⊂ t∗.

Definition 3.40. The convex function u defined as above by the Legendre transform of the
Kähler potential φ is called a symplectic potential for the Kähler structure on M .

As we have noted, the moment map µ : M → t∗ is defined only up to translation.
Moreover, we have defined our choice of moment map in terms of a choice of Kähler potential
φ for ω. By Lemma 3.6, the choice of φ is unique up to the additon of an affine function on
t. Let a(ξ) = 〈ba, ξ〉+ ca be affine, and set φa = φ+ a. Then we have

∇φa = ∇φ+ ba,

which clearly acts to translate the image of the moment map. By Lemma 3.39, we have
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Lemma 3.41. The gauge group t∗ × R acts feely and transitively on the set of Kähler
potentials φ for a given Kähler form ω on (C∗)n by the addition of the affine-linear functions.
The action of the subgroup t∗ × {0} is naturally identified with the action of translating the
image of the moment map, with the effect on the symplectic potential being simply the pullback
u(x) 7→ u(x− ba).

There are in fact other gauge symmetries at play here. Recall that we have fixed a basis
(Ξ1, . . . ,Ξn) for Γ ⊂ t from the outset, and as a consequence we have our preferred coordi-
nate system (ξ1, . . . , ξn) on t. This is equivalent to viewing (C∗)n as a torus with coordinates
(z1, . . . , zn), rather than simply an abstract algebraic torus. The (C∗)n-equivariant automor-
phisms of (C∗)n are precisely GL(n,Z), and they act on t by the usual matrix multiplication.
Appealing to Lemma 3.39, we have

Lemma 3.42. The equivariant automorphism group GL(n,Z) of (C∗)n acts on our choice
of coordinates on t, and therefore our coordinate representation of the image Ω ⊂ t∗ of the
moment map. The action is by usual matrix multiplication Ω 7→ BT (Ω), with the action
on Kähler potentials given by φ(ξ) 7→ φ(Bξ) and on symplectic potentials given by u(x) 7→
u((BT )−1x).

Finally, there is the action of (C∗)n on M to account for. Recall that in order to introduce
coordinates on our dense orbit U ⊂ M , we had to choose a base point p ∈ U . Of course
(C∗)n acts transitively on U by construction, and the ambiguity of this choice is reflected as
follows:

Lemma 3.43. In logarithmic coordinates, the action of (C∗)n on itself is given by

λ · (ξ1, . . . , ξn, θ1, . . . , θn) = (ξ1 + log(|λ1|), . . . , ξn + log(|λn|), θ1 + arg(λ1), . . . , θn + arg(λ1)).

If |λ|2 6= 1, then multiplication by λ : M → M will not preserve a T n-invariant Kähler
form ω on (M,J). For b1 ∈ t, the pullback of ω = 2i∂∂̄φ by the element e−b1 ∈ (C∗)n has
Kähler potential equal to φb1(ξ) = φ(ξ − b1), and consequently symplectic potential ub1(x) =
u(x) + 〈b1, x〉.

For the last point, we have once again used Lemma 3.39.

3.3.3 The canonical potential

We now turn to one of the most useful and interesting reasons to study toric manifolds in
symplectic coordinates. Recall that, given a Delzant polyhedron P , we have a canonically
associated AK-toric manifold (MP , JP , ωP ) obtained as a Kähler quotient of CN . Suppose,
as always, that P ⊂ t∗ has defining equations

P = {x ∈ t∗ | 〈x, νi〉 ≥ −ai} (3.25)

for ν1, . . . , νN ∈ Γ ⊂ t and a1, . . . , aN ∈ R.
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Notation 3.44. Let P be a Delzant polyhedron described as in (3.25). When no confusion
is likely to arise, we will sometimes denote by `i(x) the linear function 〈x, νi〉 determined by
the inner normal νi.

As above, we can write ωP = 2i∂∂̄φP for φP ∈ C∞(t) strictly convex. By Lemma 3.41, we
can choose φP uniquely up to the addition of a constant such that the image of ∇φP : t→ t∗

is equal to P . With such a choice, let uP = L(φP ) ∈ C∞(P ) be the corresponding symplectic
potential. It turns out that uP has a simple explicit formula in terms of the data of the
polyhedron P , due originally to Guillemin [42] in the smooth compact case and more recently
to Burns-Guillemin-Lerman [11] in the much more general setting of Remark 3.13.

Proposition 3.45 ([11]). The smooth convex function uP is given explicitly on P by

uP (x) =
1

2

N∑
i=1

(`i(x) + ai) log (`i(x) + ai) . (3.26)

We can finally now treat the question of to what extent these local descriptions can
be related to the global picture. To this end, suppose that we have an AK-toric manifold
(M,J, ω) with moment polyhedron P ⊂ t∗. An important consequence of the existence of an
equivariant symplectomorphism (M,ω) ∼= (MP , JP ), which is guaranteed by Lemma 3.32, is
the following.

Proposition 3.46. Let (M,J, ω) be an AK-toric manifold with moment polyhedron P . In
particular, there is a symplectic potential u ∈ C∞(P ) associated by the moment map. The
function u takes the special form

u = uP + v, (3.27)

where v ∈ C∞(P ) extends smoothly to the boundary of P .

Proof. By Lemma 3.32 (see also [61]), the moment map µ : M → t∗ is proper. The result now
follows immediately from [3, Proposition 1]. Alternatively, according to [3, Lemma 2, c.f.
Remark 3], u admits such a description as soon as we know that (M,ω) is T n-equivarianly
symplectomorphic to (MP , ωP ). This follows from Lemma 3.32.

If we now consider the situation of Section 3.1 once again, we can ask the converse:
When does a T n-invariant Kähler metric ω = 2i∂∂̄φ on (C∗)n extend to a Kähler metric on
some ambient toric manifold? The Delzant correspondence of Section 3.2 makes it clear that
this must depend at least on the image of the corresponding moment map µ, which in this
situation is given by the Euclidean gradient ∇φ. We will only answer this question when
the image of ∇φ is a polyhedron; this will be more than sufficient for our purposes. For a
proof, see [3, Lemma 2].

Lemma 3.47 ([2, 1, 3]). Let ω = 2i∂∂̄φ be a T n-invariant Kähler metric on (C∗)n, and
suppose that the image of µ = ∇φ : (C∗)n → t∗ is equal to the interior of a Delzant polyhedron
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P . Let u = L(φ) ∈ C∞(P ) be the symplectic potential associated to φ via the Legendre
transform. Then ω extends to a smooth Kähler metric on (MP , JP ) if the function

v = u− uP

extends smoothly past the boundary of P .

3.4 Asymptotically conical metrics

We conclude this chapter with a brief foray into an interesting class of examples of this
theory: Kähler cones and especially asymptotically conical metrics. Toric geometry has
been instrumental in the study of Sasaki-Einstein metrics on Kähler cones. These metrics are
Ricci-flat, and thus form a natural component of the study of the AdS/CFT correspondence
in string theory. Toric Sasaki-Einstein geometry was first studied by Martelli-Sparks-Yau
[56, 55] from this perspective. This served as a starting point for great deal of recent work
in the purely mathematical realm on K-stability and Sasaki-Einstein geometry (see [18] and
the survey [52] for results in this direction). Sasaki-Einstein metrics were discovered to exist
in great generality on certain toric Kähler cones by Futaki-Ono-Wang [39], thus providing a
large class of non-compact Ricci flat Kähler metrics. These in turn were used to construct
special complete metrics on resolutions of these cones, for example Ricci-flat metrics [17] and
Kähler-Ricci solitons [40, 38].

In this section we give a short overview of the necessary background before explaining
how to fit this in to the general theory of this chapter.

3.4.1 Kähler cones and affine toric varieties

Here we give some backround Riemannian cones and their relation to toric geometry. The
main references for this section are Martelli-Sparks-Yau [56, 55] and VanCoevering [17, 16].
Let S be a compact smooth manifold of odd dimension dimR S = 2m + 1, and consider the
product M = R+ × S. A cone metric g on M is a Riemannian metric of the form

g = dr2 + r2gS, (3.28)

where r is the “radial” coordinate on R+ = (0,∞) and gS is a Riemannian metric on S.
Note that a cone metric is always incomplete as r → 0. If M is a complex manifold equipped
with a complex structure J , we say that g is a Kähler cone if g is Kähler with respect to J
in the usual sense. Let n = 2m+2 be the complex dimension of M . In case that g is Kähler,
the radial vector field r ∂

∂r
is holomorphic and thus there is a natural real holomorphic vector

field

K = Jr
∂

∂r
, (3.29)
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usually called the Reeb vector field. Let ω be the Kähler form associated to (g, J). The Reeb
vector field K is Hamiltonian, with potential given by r2/2:

iKω = −1

2
dr2. (3.30)

In fact ω is always ∂∂̄-exact:
ω = i∂∂̄r2. (3.31)

We now suppose that (M,ω) is symplectic toric, which we recall means that there is an
effective action of the real n-dimensional torus T n on M which is Hamiltonian with respect
to ω. The basic result is that the Delzant correspondence holds for cones [11, 50, 56, 17, 16].
What this means, in sum, is as follows. The moment map µ : M → t∗ always has image
equal to a rational polyhedral cone C. Recall from Section 2.1.2 that associated to any
rational polyhedral cone C ⊂ t∗ is a unique affine toric varietyMC . By the same process as
in Section 3.2.1, we have the symplectic and holomorphic structures (M,ω) and (M,J) are
(independently) isomorphic to that of a unique Kähler quotient (MC , JC , ωC) of CN [11, 50,
17]. That is, we have (M,ω) ∼= (MC , ωC) and (M,J) ∼= (MC , JC) ∼=MC .

In sum, we know that, up to biholomorphism, we may view g as a Kähler metric on the
affine toric variety MC . In particular, the T n-action always complexifies. It is not difficult
to compte [56] that whenever (M,ω) is symplectic toric, moreover, the Reeb vector field K
necessarily lies in t. One of the key results of [56] is:

Lemma 3.48 ([56]). The Reeb vector field K ∈ t is determined by an element of the dual
cone C∗ ⊂ t of C ⊂ t∗.

3.4.2 Asymptotically conical toric manifolds

Let P ⊂ t∗ be a Delzant polyhedron with recession cone C, and suppose that the C ⊂ t∗

has full dimension, so that we have toric varietiesMP andMC corresponding to the normal
fans ΣP and ΣC . Now clearly every cone σ ∈ ΣC also lies in ΣP , and this induces a
morphism of varieties π : ΣP → ΣC which restricts to the identity on the dense orbit of
MP . In fact, if we let E be the union of all compact torus-invariant divisors in MP , then
π :MP − E →MC − {o} is an isomorphism and hence π is a (C∗)n-equivariant resolution
of singularities [21, Chapter 11]. In particular, if we remove the unique fixed point o of the
(C∗)n-action on MC , then MC − {o} is smooth 1.

The smooth complex manifold (MC , JC) corresponding toMC−{o} is then diffeomorphic
to R× S for some compact smooth manifold S. This decomposition is by no means unique,
but in any case we can equip MC with various Riemannian cone metrics. Let (M,J) =
(MP , JP ) be the complex toric manifold associated to MP . We introduce a class of Kähler
metrics on MP which are asymptotic to some such Riemannian cone metric on MC .

1It is perhaps not hard to see that this is an intrinsic combinatorial property of the cone C ⊂ t∗ which
it inherits from the Delzant condition on P . In the literature, a cone C of this type is referred to as a good
cone [50, 56]
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Definition 3.49. Fix a real holomorphic vector field X on (M,J) such that JX ∈ t. Let
π : M → MC be the (C∗)n-equivariant resolution of singularities above. We say that a
T n-invariant Kähler metric ω with corresponding metric g on (M,J) lies in the class AP,X
of asymptotically conical metrics if

1. ω ∈ [ωP ] = 2πc1(LP ),

2. the T n-action is Hamiltonian,

3. π∗X = r ∂
∂r

, and

4. there exists a Riemannian cone metric g0 on MC and compact subsets K1 ⊂ M ,
K2 ⊂MC such that π|M−K1 : M −K1 →MC −K2 is a biholomorphism and

|(∇g0)k(π∗g − g0)|g0 < Ckr
−k−1−ε, (3.32)

for k = 0, 1 and some ε > 0 on all of MC −K2.

We do not claim that this rate is optimal, we simply make a convenient choice for this
basic discussion. It is straightforward to verify that g is T n-invariant if and only if g0 is
T n-invariant, and that any such g0 is necessarily Kähler with respect to JC .

Lemma 3.50. Let π : M → MC be an equivariant resolution of a toric Kähler cone MC.
Suppose that we have a T n-invariant Kähler metric g on M , a Riemannian metric g0 on
MC, and ε > 0 such that

|(∇g0)k(π∗g − g0)|g0 ≤ Ckr
−ε−k,

on M − K1
∼= MC − K2, where r is the radial coordinate on MC, and k = 0, 1. If there

is a holomorphic vector field X on M which commutes with the T n action and such that
π∗X = r ∂

∂r
, then g0 is a toric metric on MC, i.e. it is Kähler with respect to JC and

invariant under the T n action.

Proof. The lemma essentially follows from the fact that there exists is a one parameter
family of holomorphic automorphisms rλ : M → M , commuting with the T n action, which
descend via π to the scaling of the radial coordinate of MC by λ. The asymptotically conical
condition for k = 0 immediately implies that pointwise

π∗g0 = lim
λ→∞

λ−2r∗λg,

since λ−2r∗λg0 = g0. Therefore if τ ∈ T n,

τ ∗π∗g0 = lim
λ→∞

λ−2τ ∗r∗λg = lim
λ→∞

λ−2r∗λg = π∗g0.
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Since π : M − E → MC − {o} is an equivariant biholomorphism, it follows that τ ∗g0 = g0.
The same line of reasoning shows that JC is g0-orthogonal. Once we know this, the same
argument repeated again, this time with k = 1 shows that JC is g0-parallel.

In particular, there is a Kähler form ω0 and Reeb vector field K = JCr
∂
∂r

associated to
g0 on MC , and by construction π∗JX = K. In what follows we will drop the dependence on
π as a matter of notation, and simply consider JX = K, J = JC , g, and g0 on MC − K2

directly.

Lemma 3.51. Let f be the Hamiltonian potential for JX on M . Then there exists a constant
C such that

sup
p∈MC−K2

∣∣∣∣f − r2

2

∣∣∣∣ < C. (3.33)

Proof. First we show that |iJX(ω−ω0)|g0 ≤ Cr−ε. Note that |JX|2g0 = |K|2gC =
∣∣r ∂
∂r

∣∣2
gC

= r2.

This implies

|iJX(ω − ω0)|2g0 = |iX(g − g0)|2g0 ≤ |X|
2
g0
|g − g0|2g0 ≤ Cr−2−ε.

Since f and r2/2 are Hamiltonian potentials for JX with respect to ω and ω0 respectively,
we see that

∣∣∣∣ ∂∂r
(
f − r2

2

)∣∣∣∣ =

∣∣∣∣d(f − r2

2

)(
∂

∂r

)∣∣∣∣ =

∣∣∣∣iJX (ω − ω0)

(
∂

∂r

)∣∣∣∣
=
∣∣∣〈iJX(ω − ω0), dr〉g0

∣∣∣ ≤ |iJX(ω − ω0)|2g0 ≤ Cr−2−ε,

since dr is the dual one-form to ∂
∂r

with respect to g0 and |dr|2g0 =
∣∣ ∂
∂r

∣∣2
g0

= 1. Choosing a

large enough so that K2 ⊂ {r < a} ⊂MC , we obtain

∣∣∣∣f(r)− r2

2

∣∣∣∣ ≤ ∣∣∣∣∫ r

a

∂

∂s

(
f(s)− s2

2

)
ds

∣∣∣∣+ C ≤
∫ r

a

∣∣∣∣ ∂∂s
(
f(s)− s2

2

)∣∣∣∣ ds+ C

≤ C

∫ r

a

s−2−εds+ C ≤ C1 − C2r
−1−ε ≤ C

In particular, the Hamiltonian potential f is proper and bounded from below. Therefore
we automatically have

Corollary 3.52. If ω ∈ AP,X , then (M,J, ω) is AK-toric.
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Chapter 4

Kähler-Ricci solitons

We begin this chapter with an introduction to the study of Kähler-Ricci solitons on toric
manifolds. We show that our main uniqueness result Theorem 1.3 can be reduced to a similar
uniqueness question of independent interest on AK-toric manifolds. We give a description
of solitons in terms of toric data, and reduce the equation (4.2) to two real equivalent real
Monge-Ampère equations, depending on whether we take the complex or the symplectic
viewpoint. As an important consequence, we prove that the real Monge-Ampère equation
completely determines the image of the moment map for a Kähler-Ricci soliton on an AK-
toric manifold.

Section 4.2 is dedicated to the Futaki invariant. Originally defined in [37], provides an
obstruction to the existence of Kähler-Einstein metrics on compact Fano manifolds. This was
generalized by Tian-Zhu [68] to the case of shrinking Kähler-Ricci solitons. In principle this
version still provides an obstruction, but in this setting it has the added benefit of allowing us
to characterize the soliton vector field X. This was further generalized to the non-compact
setting, originally by Martelli-Sparks-Yau [56, 55] (c.f. [18]) for Sasaki-Einstein metrics and
then Conlon-Deruelle-Sun [19] for Kähler-Ricci solitons. We show, independently of [19],
that there is a reasonable sense in which the Futaki invariant can be defined and use this
to prove uniqueness of the soliton vector field X, thus recovering their work in the toric
case. Moreover, we show that a holomorphic vector field with respect to which the Futaki
invariant vanishes always exists.

We move on to discuss a functional D, introduced by Ding in [25]. The Ding functional
has played an increasingly important role in the study of special metrics in Kähler geometry,
particularly since the work of Berman [7] making the connection with algebro-geometric
stability. It was shown by Berndtsson [9, 10] that D is convex along geodesics in the space
of Kähler metrics on a compact Fano manifold. In the toric setting, these goedesics take a
particularly simple form when we pass to the symplectic viewpoint. The properness of the
Ding functional was first established by Tian [67] for compact Fano manifolds not admitting
any holomorphic vector fields (see also [59]). The Ding functional was extended to treat
solitons with non-trivial vector field by Tian-Zhu [68], and the properness of D was eventually
shown to be equivalent to the existence of a soliton by Cao-Tian-Zhu [12]. We begin Section
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4.3 by introducing a suitable space P of Kähler metrics on which much of the picture goes
through. We show that the Ding functional can be defined on P , and we prove convexity
and properness statements for D along the lines of [8, 43] from which we can deduce one of
our main theorems 1.3

4.1 Kähler-Ricci solitons on a toric manifold

4.1.1 Background

Let (M,J) be a complex manifold.

Definition 4.1. A pair (ω,X) is a shrinking Kähler-Ricci soliton if ω is a Kähler metric, X
is a real holomorphic vector field, and

Ricω +
1

2
LXω = ω. (4.1)

A Kähler-Ricci soliton is gradient if X = ∇gf for a smooth function f ∈ C∞(M).

Lemma 4.2. A shrinking gradient Kähler-Ricci (ω,X) soliton satisfies

Ricω + i∂∂̄f = ω. (4.2)

Proof. This is just the statement that, if f is any smooth function, and if X = ∇gf , then
1
2
LXω = i∂∂̄f . We compute

Jdf(V ) = df(JV ) = −iJXω(JV )

= −ω(JX, JV ) = −ω(X, V ) = −iXω(V ),

so that

1

2
LXω =

1

2
diXω = −1

2
dJdf = id

1

2
(df + iJdf) = i∂∂̄f.

Remark 4.3. A shrinking Kähler-Ricci soliton being gradient is actually equivalent to the
equation

Ricω +
1

2
LX1,0ω = ω.

This is the definition used in Tian-Zhu [69, 68], for example.

A Kähler-Ricci soliton is complete if both the metric ω and the vector field X are com-
plete. However, we have from [72] that the soliton vector field X is complete whenever the
metric is, so this is really only a condition on ω.
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4.1.2 Reduction to the AK-toric case

This section will be occupied with the proof of the following theorem, which we originally
proved in [15].

Theorem 4.4 ([15]). Let (M,J) be a complex manifold with an effective and holomorphic
action of the real torus T n with finite non-empty fixed point set. Suppose that JX ∈ t, and
that (ω,X) is a complete shrinking gradient Kähler-Ricci soliton with bounded Ricci curva-
ture. Then there exists an automorphism α ∈ Aut(M,J) of (M,J) such that (M,J, α∗ω) is
AK-toric. In particular, (M,J) is quasiprojective.

Throughout this section, (M,J, ω,X) will be as in Theorem 4.4, and g will be the cor-
responding Riemannian metric. The proof consists of several steps. We first show that the
T n-action automatically complexifies. To do this, we introduce some notation from [19].

Notation 4.5. We let autX denote the space of holomorphic vector fields on M which
commute with the soliton vector field X, and gX ⊂ autX be the subspace of real holomorphic
Killing fields commuting with X.

Then we have the following general structure theorem from [19]:

Theorem 4.6 ([19, Theorem 5.1]). For (M,J, ω,X) as in Theorem 4.4, we have

autX = gX ⊕ JgX . (4.3)

Furthermore, autX and gX are the Lie algebras of finite-dimensional Lie groups AutX and
GX corresponding to holomorphic automorphisms and holomorphic isometries commuting
with the flow of X. Moreover, the identity component GX

0 of GX is maximal compact in
AutX

Lemma 4.7. There exists a complexification of the T n-action on M , i.e. an action of (C∗)n
whose underlying real torus corresponds to the original T n-action.

Proof. As always, fix a basis (Ξ1, . . . ,Ξn) for Γ ⊂ t. Since JX ∈ t, it is clear that [X,Ξi] =
[X, JΞi] = 0 for any i. In particular, t ⊂ autX . Since the scalar curvature of g is bounded
by assumption, we have by [19, Lemma 2.26] that the zero set of X is compact. Therefore
by [19, Lemma 2.34], it follows that for each i, Ξi and JΞi are complete. In particular,
the flow of (Ξi, JΞi) determines a unique effective and holomorphic action of C∗. Repeating
this process for each i, we can integrate out the system (Ξ1, JΞ1, . . . ,Ξn, JΞn) to obtain an
effective and holomorphic (C∗)n-action, whose corresponding action of the underlying real
torus coincides with the original one by construction.

Lemma 4.8. There exists an automorphism α of (M,J) such that α∗X = X and α∗g is
T n-invariant.
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Proof. By construction, the (C∗)n-action on M of Lemma 4.7 satisfies tC = t ⊕ Jt ⊂ autX .
It follows that the (C∗)n-action τC on M embeds (C∗)n ⊂ AutX , and so the real torus
T n ⊂ (C∗)n lies in some maximal compact subgroup G of AutX . Since any two maximal
compact subgroups of a reductive group are conjugate by Iwasawa’s theorem [45], it follows
such that there exists an automorphism α sending G to GX

0 by conjugation. Consequently,
T n ⊂ G preserves the metric α∗g. The fact that α∗X = X follows because α is the time-one
flow of a holomorphic vector field which commutes with X.

Lemma 4.9. The T n-action is Hamiltonian with respect to α∗ω.

Proof. By [71, Theorem 1.1] it follows that any manifold which admits a complete shrinking
Ricci soliton must satisfy H1(M) = 0. If as before Ξ1, . . . ,Ξn is our basis for t, let θj ∈
C∞(M) be smooth functions satisfying −iΞjω = dθj. Then one defines a moment map
explicitly by the formula µ(x) = (θ1, . . . , θn).

Remark 4.10. There is of course an ambiguity in the choice of each θj of the addition of a
constant. Put together, this corresponds to a translation of the image µ(M) ⊂ t∗. As we
saw in Section 3.3, this can be controlled for at the level of the Kähler potential φ, and we
will see in later sections that there is a natural choice of such normalization.

By definition, we have that X = ∇gf , and so we see that X = ∇α∗gα∗f . It follows then
that

dα∗f = iXα
∗g = −iJXα∗ω, (4.4)

so that α∗f is a Hamiltonian potential for the flow of JX with respect to α∗ω. If we let
JX = bX ∈ t, it follows that, up to a constant

α∗f = 〈µ, bX〉,

where µ : M → t∗ is the moment map for the T n-action with respect to α∗ω of Lemma 4.9.
The final piece we need to prove Theorem 4.4 is the following.

Proposition 4.11 ([13, Theorem 1.1]). Let (M, g, f) be any non-compact complete shrinking
gradient Ricci soliton. The soliton potential f grows quadratically with respect to the distance
function dg defined by g, so there is a constant cf such that

1

4
(dp − cf )2 ≤ f ≤ 1

4
(dp + cf )

2.

Proof of Theorem 4.4. Lemmas 4.8 and 4.9 establish the existence of a holomorphic auto-
morphism α : (M,J) → (M,J) such that α∗X = X and (M,ω) is symplectic toric. By
Lemma 4.7, there is an effective holomorphic (C∗)n-action extending the original T n-action.
Proposition 4.11 guarantees that the soliton potential α∗f corresponding to α∗g is proper
and bounded from below. Thus (M,J, α∗ω) is AK-toric, and so by Proposition 3.33 (M,J)
must be quasiprojective.
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Remark 4.12. Recall that, by Lemma 3.32, we know that the image of the moment map
µ : M → t∗ is a Delzant polyhedron P , and that Proposition 3.33 actually guarantees that
(M,J) is biholomorphic to the toric variety MP associated to P . By Theorem 3.36, there
is an effective holomorphic line bundle LP ∼= O(D) → M such that some multiple of ω lies
in c1(LP ).

4.1.3 The equation in logarithmic coordinates

By Theorem 4.4, it suffices to work in the AK-toric setting for the purposes of studying
shrinking gradient Kähler-Ricci solitons, at least if they have bounded Ricci curvature. In
this section, we work with a given AK-toric manifold (M,J, ω) and a holomorphic vector
field X such that (ω,X) define a shrinking Kähler-Ricci soliton. We make no assumption
on the curvature at this stage. As always, we let U ∼= (C∗)n ⊂ M be the dense orbit in M
with coordinates (z1, . . . , zn). Recall that, since the T n-action is Hamiltonian, we can write

ω = 2i∂∂̄φ =
∂2φ

∂ξi∂ξj
dξi ∧ dθj, (4.5)

where φ ∈ C∞((C∗)n) comes from a smooth strictly convex function φ : t→ R (see Lemma
3.8). We begin with the following

Lemma 4.13. If ω is a T n-invariant shrinking gradient Kähler-Ricci soliton on an AK-toric
manifold with soliton vector field X, then JX ∈ t.

Proof. Let f : M → R be a smooth function so that X = ∇gf . Since ω and hence Ricω
are T n-invariant, we know from (4.2) that i∂∂̄f is also T n-invariant. By averaging f over
the torus, we can assume that f , and thereby X = ∇gf , is also T n-invariant. So we are
in a good setting to interpret this data in logarithmic coordinates. Let w = log(z) be local
holomorphic logarithmic coordinates on (C∗)n (3.2), so that ξ = Re(w) and θ = Im(w) are
our real logarithmic coordinates on (C∗)n ∼= t × T n. Recall that the metric g is given by
(3.4):

g = φijdξ
i ⊗ dξj + φijdθ

i ⊗ dθj,

where φij(ξ) = ∂2φ
∂ξi∂ξj

. Since f satisfies ∂f
∂θj

= 0 for all j = 1, . . . , n, it follows that f = f(ξ)

is independent of θ (c.f. Lemma 3.2). Therefore

X = ∇gf = φij
∂f

∂ξj
∂

∂ξi
(4.6)

Moreover, if we write

X1,0 = X i(w)
∂

∂wi
,

it follows that

X i(w) = φij
∂f

∂ξj
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is also independent of θ and real-valued. Thus, since X is holomorphic,

0 = 2
∂

∂w̄k
X i =

∂

∂ξk

(
φij

∂f

∂ξj

)
.

We see therefore that the coefficients X i(w) = φij ∂f
∂ξj

= biX ∈ R are constant. From (4.6) we
see that

X = biX
∂

∂ξi
, (4.7)

so that

JX = biX
∂

∂θi
∈ t.

Notation 4.14. We will let bX = (b1
X , . . . , b

n
X) ∈ t denote the coefficients of X.

We can use this to rewrite the soliton equation (4.1) on the dense orbit U ∼= (C∗)n ⊂M
in logarithmic coordinates.

Proposition 4.15. Suppose that (M,J, ω) is an AK-toric manifold and that X is a holo-
morphic vector field on M such that (ω,X) is a shrinking gradient Kähler-Ricci soliton.
Then there exists a unique affine function a(ξ) on t such that φa = φ − a satisfies the real
Monge-Ampère equation

det(φa)ij = e−2φa+〈∇φa,bX〉. (4.8)

Proof. Using (4.5) and (3.3), we see that

Ricω = −i∂∂̄ log det

(
∂2φ

∂wi∂w̄j

)
= −1

2

∂2

∂ξi∂ξj

(
log det

(
∂2φ

∂ξi∂ξj

))
dξi ∧ dθj.

Moreover, from (4.7), we have

LXω = 2i∂∂̄LXφ = 2i∂∂̄X · φ =
∂2

∂ξi∂ξj
〈∇φ, bX〉dξi ∧ dθj.

Combining all this with (4.1)

ω − Ricω −
1

2
LXω = 0

we get

0 = i∂∂̄ (2φ+ log det(φij)− 〈∇φ, bX〉)

=
1

2

∂2

∂ξi∂ξj
(2φ+ log det(φij)− 〈∇φ, bX〉) dξi ∧ dθj,
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and so the function 2φ+ log det(φij)− 〈∇φ, bX〉 on t has vanishing Hessian, and is therefore
equal to an affine function a(ξ). Define

φa(ξ) = φ(ξ)− 2a(ξ)

and let c be the constant c = 2〈∇a, bX〉. Then it is clear that

2φa + log det(φa,ij)− 〈∇φa, bX〉 = c.

Thus, by modifying a by the addition of a further constant, we have that φa satisfies (4.8).

4.1.4 The equation in symplectic coordinates

Since (M,J, ω) is AK-toric, we know from Section 3.2 that the image of the moment map
µ : M → t∗ is a Delzant polyhedron P . We can therefore, as in Section 3.3, use the moment
map µ = ∇φ to change coordinates on (C∗)n ∼= t × T n ∼= P × T n. We would next like to
understand how the soliton equation (4.8) behaves under this change. Applying Lemma 3.37
directly, one obtains

Proposition 4.16. Let (M,J, ω) be AK-toric with moment polyhedron P , and suppose that
(ω,X) is a shrinking gradient Kähler-Ricci soliton. Let φ ∈ C∞(t) be the Kähler potential
on the dense orbit which satisfies (4.8). Then the corresponding symplectic potential u =
L(φ) ∈ C∞(P ) satisfies

2(uix
i − u(x))− log det(uij) = 〈x, bX〉, (4.9)

where ui = ∂u
∂xi

and uij = ∂2u
∂xi∂xj

.

Recall that the moment polyhedron P ⊂ t∗ is defined uniquely only up to translation
in t∗ from the original data (M,J, ω). By Proposition 4.15, however, using the fact that
ω satisfies (4.2), we have a natural choice of normalization by demanding that the Kähler
potential φ satisfies (4.8). This fixes our moment map µ = ∇φ uniquely.

In fact, we can describe the image P under this normalization explicitly. Recall from
Remark 4.12 that M is biholomorphic to MΣ where Σ = ΣP is the normal fan of the
polyhedron P . Let ν1, . . . , νN be the corresponding inner normals (see Definition 3.9). Let
Di be the divisor associated to νi as guaranteed by the Orbit-Cone correspondence. From
Lemma 2.25, we have

Lemma 4.17. The divisor D =
∑N

i=1 Di represents the anticanonical class, i.e.

O
(∑N

i=1Di

)
∼= −KM . (4.10)

This brings us to one of our main results of great practical significance. The observation
is originally due to Donaldson [29], and by the results in Chapter 3 can be made to hold in
the non-compact setting as well.
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Theorem 4.18. Let (M,J, ω) be AK-toric with moment polyhedron P , X be a holmorphic
vector field such that (ω,X) is a shrinking gradient Kähler-Ricci soliton, and let φ ∈ C∞(t)
be the unique Kähler potential on the dense orbit which satisfies (4.8). Then the image
of ∇φ : t → t∗ is precisely the polyhedron P−KM associated to the anticanonical divisor
−KM =

∑N
i=1 Di, i.e.

P−KM = {x ∈ t∗ | 〈νi, x〉 ≥ −1, i = 1, . . . , N} . (4.11)

Proof. We know that the image of ∇φ is equal to some Delzant polyhedron P . We first
claim that P is at least some translate in t∗ of P−KM . Since the metric satisfies (4.2), we can
see that ω is the curvature form of the T n-invariant hermitian metric hX on −KM given by

hX = e−f (ωn)−1 .

The fact that P is a translate of P−KM now follows from Corollary 3.35. Next we nail down
P explicitly. In our background coordinate system (x1, . . . , xn) on t∗ we can, by definition,
write

P = {x ∈ t∗ | 〈νi, x〉 ≥ −ai}
for some ai ∈ R, where νi ∈ Γ, i = 1, . . . , N is the set of inner normals. By Proposition 4.15,
we know that the symplectic potential u = L(φ) ∈ C∞(P ) satisfies

2(uix
i − u(x))− log det(uij) = 〈x, bX〉,

where bX ∈ t is the point corresponding to the real holomorphic vector field JX. For
simplicity of notation, let ρ(x) ∈ C∞(P ) denote the auxiliary function

ρ(x) = 2(uix
i − u(x))− log det(uij), (4.12)

so that the equation 4.9 takes the form ρ = 〈x, bX〉. Recall that the canonical symplectic
potential uP (x) is given by

uP (x) =
1

2

∑
(`i(x) + ai) log(`i(x) + ai).

By Proposition 3.46, the fact that the Kähler metric ω = 2i∂∂̄φ on (C∗)n extends to metric
on M ∼= MP implies that there exists a smooth function v ∈ C∞(P ) such that

u = uP + v.

Fix any facet F of P ′. We may assume that F is given by `1(x) = −a1. Up to a change of
basis in t∗ (which notably does not affect the coefficients ai, see Lemma 3.39), we may also
assume by the Delzant condition that `1(x) = x1. Choose a point p in the interior of F .
Near p, uP can therefore be written

uP (x) =
1

2
(x1 + a1) log(x1 + a1) + v1,
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where v1 extends smoothly across F . The symplectic potential u itself therefore is given by

u = uP + v =
1

2
(x1 + a1) log(x1 + a1) + v1 + v.

It then follows that in a small half ball B in the interior of P ′ containing p, ρu can be
expressed as

ρu(x) = x1 log(x1 + a1)− (x1 + a1) log(x1 + a1) + log(x1 + a1) + v2,

where v2 again extends smoothly across F in B. Since ρu = 〈x, bX〉, and the linear function
〈x, bX〉 clearly extends past the boundary of P , it follows that a1 = 1.

In accordance with the work of Section 3.2 (see Theorem 3.23, Proposition 3.24, Theorem
3.36), we define:

Definition 4.19. The pair (M,−KM) forM a toric variety is called anticanonically polar-
ized if M∼=MP where P = P−KM .

Thus, Theorem 4.18 says that any toric manifold which admits complete shrinking gra-
dient Kähler-Ricci soliton is an anticanonically polarized toric variety. Notice that the poly-
hedron P−KM always contains the origin. As it turns out, this is an important property,
especially in the non-compact setting. To see this, let P ⊂ t∗ be any Delzant polyhedron
containing zero in its interior. The function ρ(x) of the previous proof turns out to have
some interesting and useful properties that will help us study convex functions on P , and
thereby Kähler metrics on MP .

Notation 4.20. Given a function u ∈ C∞(P ) we will denote by ρu the function

ρu(x) = 2(〈x,∇u〉 − u(x))− log det(uij). (4.13)

Lemma 4.21. Let u be a smooth and strictly convex function on P , and let φ = L(u) be the
Legendre transform. Then ∫

P

e−ρudx =

∫
∇u(P )

e−2φdξ,

and consequently ∫
P

e−ρudx <∞.

To prove this, we begin with the following useful elementary lemma.

Lemma 4.22. Let φ be a strictly convex function on an open convex domain Ω′ ⊂ Rn. Let
u be its Legendre transform defined on Ω. If 0 ∈ Ω, then there exists a C > 0 such that

φ(ξ) ≥ C−1|ξ| − C. (4.14)

In particular, φ is proper.
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For smooth functions, this is fairly straightforward. If 0 ∈ Ω, then there is a point
ξ∗ ∈ Rn such that ∇φ(ξ∗) = 0. Since φ is strictly convex, φ obtains its unique minimum at
ξ∗. Considering then the values of φ over a small ball centered at ξ∗, using convexity again
one easily establishes (4.14). We will not need this result for more general convex functions
in this dissertation, but the same basic idea holds true, see for example [8] for a proof.

Proof of Lemma 4.21. We apply the change of coordinates x = ∇φu(ξ), where ξ denotes
coordinates on the domain Ω ⊂ Rn of φ. Then from Lemma 3.37 we have

det(uij)dx = dξ,

and

u− 〈∇u, x〉 = −φ(ξ).

Therefore ∫
P

e−ρudx =

∫
Ω

e−2φdξ.

Then from Lemma 4.22 we know that e−φ is integrable on Ω.

Remark 4.23. In the situation of Lemma 4.21, even if Ω 6= Rn, since φ satisfies (4.14) we can
extend the function e−2φ from Ω to all of Rn by zero continuously. As such, whenever we
write ∫

Rn
e−2φdξ,

we are referring to this choice of extension, which clearly does not affect the integral.

Corollary 4.24. Let P ⊂ Rn be a Delzant polyhedron, M = MP , and suppose that ω is
a T n-invariant Kähler metric with P as its moment polyhedron. Let v be the holomorphic
vector field on M determined by bv ∈ t and θv be a Hamiltonian potential for Jv. Then∫

M

e−θvωn <∞

if and only if bv lies in the dual recession cone C∗.

Proof. We work on the dense orbit in symplectic coordinates (C∗)n ∼= P × T n in which case
ω is given simply by ω =

∑
dxi ∧ dθi. The integral then becomes∫

(C∗)n
e−θvωn =

∫
P×Tn

e−〈x,bv〉dxdθ = (2π)n
∫
P

e−〈x,bv〉dx.

We prove that this integral is finite this is finite precisely when bv ∈ C∗. Let C ⊂ t∗ be the
recession cone of P with dual cone C∗. It follows immediately from the definition 2.6, 2.1
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that the interior of C∗ is characterized by those b ∈ t such that the linear function 〈x, b〉 on
P is positive outside of a compact set. Indeed, for each b ∈ t, set

Hb = {x ∈ Rn | 〈x, b〉 ≤ 0},

and

Qb = Hb ∩ P .

Then Qb is compact if and only if 〈b, νi〉 > 0 for each inner normal νi of P . Since C is
spanned by the inner normals {νi}, it follows that Qb is compact if and only if b ∈ C∗.

Corollary 4.25. Let P be a Delzant polyhedron containing zero in its interior, and suppose
that there exists a solution u ∈ C∞(P ) to (4.9). Then the element bX ∈ t determining JX
lies in C∗.

Proof. Since P contains zero in its interior, we have by Lemma 4.21 that∫
P

e−ρudx <∞.

Since u satisfies ρu = 〈x, bX〉, we have∫
P

e−〈x,bX〉dx <∞.

Since the restriction of the Hamiltonian potential θX for JX to P×T n is given by θX |P×Tn =
〈x, bX〉, it follows from Corollary 4.24 that bX ∈ C∗.

4.2 The Futaki invariant

The results of the previous section can be summarized, loosely, by the statement

Motto 4.26. Shrinking Kähler-Ricci solitons on a toric manifold, compact or otherwise, can
be studied entirely in terms of convex functions on a fixed polyhedron in Rn.

Namely, given any shrinking gradient Kähler-Ricci soliton on a toric manifold M , there is
a corresponding symplectic potential u on the polyhedron P−KM which completely determines
the metric on M . Moreover, u satisfies the real Monge-Ampère equation (4.9). In the sequel
we will see how in many cases it is advantageous to study real Monge-Ampère equations with
the same form as (4.9) on the polyhedra directly, even when our primary interest is global.
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4.2.1 The weighted volume functional

Suppose that (N,ω) be a Fano manifold with a given Kähler metric ω ∈ 2πc1(N). Given
a holomorphic vector field v, we can always find a complex-valued function θv such that
∂̄θv = iv1,0ω, which exists by the Hodge theorem since compact manifolds with c1 > 0 always
satisfy H1(N) = 0. We can then define a functional on the space of holomorphic vector fields
on N by

F (v) =

∫
N

e−θvωn.

In order for this to be well-defined of course we must have some normalization for θv. With
an appropriate choice, it turns out that F (v) is independent of choice of the metric ω in its
cohomology class [68]. The modified Futaki invariant of [68] is then defined as the derivative
FX : h → C of F at a given holomorphic vector field X. Then FX is independent of the
choice of reference metric, and in [68] it is shown that FX must therefore vanish identically
if X is the vector field corresponding to a Kähler-Ricci soliton on N . A necessary condition
therefore for X to occur as the vector field of a shrinking gradient Kähler-Ricci soliton on
N is that FX ≡ 0.

It is shown in [19] that these ideas can be generalized to the non-compact setting in the
presence of a complete shrinking gradient Kähler-Ricci soliton with bounded Ricci curvature.
As in [19], we refer to F as the weighted volume functional. Suppose that a real torus T k

acts on M holomorphically and effectively with Lie algebra t, and that the soliton vector
field X satisfies JX ∈ t. In this case, there is still a smooth function θv associated to each v
with Jv ∈ t. In fact θv is real-valued, and hence is a Hamiltonian potential for the T k-action.
By the Duistermaat-Heckman theorem [32, 31, 61], there is an open cone Λ ⊂ t where the
weighted volume functional F , and thereby the Futaki invariant, can be defined. Moreover,
the domain Λ can be naturally identified with the dual asymptotic cone of µ(M) ⊂ t∗ (see
[61, Definition A.2, Definition A.6]). Just as in [61], we shall see that Λ is in natural bijection
with the space of Hamiltonian potentials which are proper and bounded below on M . In this
setting, the soliton vector field X has the property that JX ∈ Λ and is the unique critical
point of F [19, Lemma 5.17]. This is analogous to the volume minimization principle of [55]
for the Reeb vector field of a Sasaki-Einstein metric.

We begin with an elementary proposition:

Proposition 4.27. Let P ⊂ t∗ be a Delzant polyhedron containing zero in its interior. Then
there exists a unique linear function `P (x) determined by P such that∫

P

`(x)e−`P (x)dx = 0 (4.15)

for any linear function ` on P .
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Proof. By Corollary 4.24, the function e−〈b,x〉 is integrable on P if and only if b lies in the
interior of the dual recession cone C∗. Hence there is a well-defined function F : C∗ → R
given by

F (b) =

∫
P

e−〈b,x〉dx.

Then

∂

∂bj
F = −

(∫
P

xje−〈b,x〉dx

)
.

The function F is clearly convex which immediately gives uniqueness. To show existence,
it suffices to show that F is proper. That is, given a sequence bj in the interior of C∗ such
that either |bj| → ∞ or the sequence {bj} approaches a point on the boundary, we need to
show that F (bj)→∞. Consider the former case first. Using the natural inner product on t,
we can view the dual recession cone C∗ as sitting inside of t∗. Since 0 ∈ P , the intersection
Q = −C∗ ∩ P has positive measure in Rn. Now suppose that {bj} is any sequence in C∗

such that |bj| → ∞. Let y ∈ Q be a fixed point in the interior and choose ε sufficiently
small so that Bε(y) ⊂ Q has strictly positive Euclidean distance to the boundary ∂Q. In
particular, we then have that infv∈Sn−1∩C∗〈v,−y〉 > 0. We choose ε sufficiently small so that
δ = infv∈Sn−1∩C∗〈v,−y〉 − ε > 0. For any x ∈ Bε(y), write x = y + rw for r ∈ [0, ε) and
w ∈ Sn−1. Then we have, for any (b, x) ∈ C∗ ×Bε(y),

−〈b, x〉 ≥ 〈b,−y〉 − r|b||v| ≥
(〈

b

|b|
,−y

〉
− ε
)
|b| ≥ δ|b|.

Therefore, we see immediately that

F (bj) =

∫
P

e−〈bj ,x〉dx ≥
∫
Bε(y)

e−〈bj ,x〉dx ≥
∫
Bε(y)

eδ|bj |dx.

Since |bj| → ∞, we have then that F (bj)→∞.
Consider now the latter case. The key point is that ∂C∗ is defined by those b̄ ∈ Rn such

that there exists at least one c̄ ∈ C with 〈b̄, c̄〉 = 0. Choose b̄ ∈ ∂C∗. The result essentially
follows from the fact that the polyhedron Qb̄ defined above is unbounded. More explicitly,
if c̄ is a point with 〈b̄, c̄〉 = 0, then for any x0 ∈ Qb̄ we have that x0 + λc ∈ Qb̄ for any
λ ≥ 0. If we then fix a small (n− 1)-disc Dε(x0) ⊂ Qb̄ perpendicular to c, consider the tubes
Tλ = {x+ rc | x ∈ Dε(x0), r ∈ (0, λ)} ⊂ Qb̄. Take a sequence of points bi → b̄ with bj in the
interior of C∗, and define Qbj and Hbj as above. Recall that each Qbj is bounded. Choosing
ε small enough, and perhaps after removing finitely many terms from {bj}, we can assume
that Dε(x0) is contained in Qb1 . Let λj be the largest positive number such that Tλj ⊂ Qbj .
Since Qbj → Qb̄, we see that λj →∞. Then we have

F (bj) =

∫
P

e−〈bj ,x〉dx ≥
∫
Tλj

e−〈bj ,x〉dx = λj

∫
Dε(x0)

e−〈bj ,y〉dy,
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where y are the coordinates on Dε(x0). Clearly F (bj)→∞.

The function F : C∗ → R appearing in the proof in fact has the following geometric
significance:

Definition 4.28. Let (M,J) be a complex toric manifold, and let ω be any symplectic form
giving (M,J, ω) the structure of an AK-toric manifold with moment map µ : M → t∗ whose
image is a Delzant polyhedron P . Let C∗ ⊂ t be the dual recession cone of P , and define
the P-weighted volume functional FP : C∗ → R by

FP (b) =
1

(2π)n

∫
M

e−〈µ,b〉ωn. (4.16)

Lemma 4.29. The P-weighted volume functional FP : C∗ → R is well-defined, and inde-
pendent of the choice of ω with moment image P .

Remark 4.30. This can be viewed as a non-compact analog of the classic result that the
Futaki invariant on a compact manifold is independent of the Kähler metric used to define it
within a given cohomology class. In the non-compact setting, we need the extra assumption
of a proper Hamiltonian potential, as there may well be metrics in a given cohomology class
whose moment image is not a Delzant polyhedron, see Example 3.30.

Proof. We compute directly

FP (b) =
1

(2π)n

∫
M

e−〈µ,b〉ωn =
1

(2π)n

∫
(C∗)n

e−〈µ,b〉ωn

=
1

(2π)n

∫
t×Tn

e−〈∇φ,b〉 det(φij)dξdθ

=

∫
P

e−〈x,b〉dx,

where in the last line we have used the moment map µ = ∇φ to change coordinates ∇φ :
t→ P . As we saw in the proof of Proposition 4.27, the integral is finite if and only if b lies in
the interior of the dual recession cone C∗. Moreover, the right hand side is then completely
independent of ω so long as the image of ∇φ is equal to P .

Note that FP does depend a priori on the choice of Kähler potential ω = 2i∂∂̄φ. Of
course, one can always force this to be intrinsic to the polarization that P determines on
M by making a specific artificial choice of P up to translation and then normalizing φ
accordingly. However, as we have seen for Kähler-Ricci solitons there is a canonical choice
such that φ satisfies the real Monge-Ampère equation (4.8), in which case the image of ∇φ
is equal to P−KM . The weighted volume functional of [19] is associated intrinsically to any
complex manifold admitting a complete shrinking gradient Kähler-Ricci soliton. We recover
their weighted volume funcitonal F (up to the factor of (2π)n) as follows.
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Definition 4.31. Let (M,−KM) be any anticanonically polarized AK-toric manifold. The
weighted volume functional F : C∗ → R is defined by

F (b) = FP−KM (b) =
1

(2π)n

∫
M

e−〈µ,b〉ωn, (4.17)

for any Kähler metric ω with moment map µ : M → P−KM .

4.2.2 The Futaki invariant and uniqueness of the soliton vector
field

Definition 4.32. Let (M,−KM) be an anticanonically polarized AK-toric manifold. Given
a real holomorphic vector field v with Jv ∈ t, let bv denote the coefficients of Jv. The Futaki
invariant Fv : t→ R is defined to be the total derivative of the weighted volume functional
F at the point bv ∈ t. That is,

Fv(b) = − d

dt

∣∣∣∣
t=0

F (bv + tb) = − 1

(2π)n

∫
M

〈µ, b〉e−〈µ,bv〉ωn

= −
∫
P−KM

〈x, b〉e〈x,bv〉dx,
(4.18)

where θv = 〈µ, bv〉 is the Hamiltonian potential dθJv = −iJvω determined by µ.

Remark 4.33. By extending Fv complex-linearly to tC ∼= t ⊕ it, we can recover the more
familiar complex-valued Futaki invariant Fv : tC → C.

The goal of this section will be to prove the following theorem. This was originally proved
in [19], see [19, Theorem D, Lemma 5.17] for general shrinking gradient Kähler-Ricci solitons
when t is the Lie algebra of the T k-action generated by JX. We give an independent proof
in the toric setting, which boils down to the elementary existence result 4.27.

Theorem 4.34 ([15]). Let (M,J, ω) be an anticanonically polarized AK-toric manifold.
Then there exists a unique vector field X with JX ∈ t that could be the vector field as-
sociated to a shrinking gradient Kähler-Ricci soliton. If such a soliton (ω,X) exists, then

1. JX ∈ C∗ ⊂ t, and

2. JX is the unique holomorphic vector field in t such that FX ≡ 0.

Lemma 4.35. Let P be a Delzant polyhedron containing zero in its interior, and suppose
that there exists a solution u ∈ C∞(P ) to (4.9). Then the linear function 〈x, bX〉 on P
satisfies ∫

P

`(x)e−〈x,bX〉dx = 0

for any linear function `(x) on P . Thus, 〈x, bX〉 is equal to the linear function `P of Propo-
sition 4.35.
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Proof. First, we claim that any function u ∈ C∞(P ) which is the Legendre transform u =
L(φ) of a smooth convex function φ on Rn satisfies∫

P

`(x)e−ρudx = 0

for any linear function `(x) on P . Indeed, for each j = 1, . . . , n, compute∫
P

xje−ρudx =

∫
Rn
φje
−φdξ = −

∫
Rn

(
e−φ
)
j
dξ.

By Lemma 4.22, we know that e−φ decays at least exponentially in |x|. Thus, integration by
parts yields that the term on the right-hand side is zero. Then if u satisfies ρu = 〈x, bX〉, it
follows that

∫
P

xje−〈x,bX〉dx =

∫
Rn

(
e−φ
)
j
dξ = 0

for each j.

Proof of Theorem 4.34. Let ω1 and ω2 be two T n-invariant Kähler metrics on M satisfying
(4.2) on M with vector fields X1 and X2. By Theorem 4.18, we know that each moment map
µs, s = 1, 2, has image equal to P = P−KM . Moreover, by Lemma 4.16, we know that ωs is
uniquely determined by a symplectic potential us on the fixed polyhedron P which satisfies
the real Monge-Ampère equation ρus = 〈x, bs〉. By Lemma 4.35, the function 〈x, bs〉 satisfies∫

P

`(x)e−〈x,bs〉dx = 0

for each linear function `(x) on P . In particular, 〈x, bs〉 is equal to the fixed linear function `P
determined in Proposition 4.27. Clearly, there is a unique bP ∈ t such that `P (x) = 〈x, bP 〉.
Let XP denote the holomorphic vector field with JX ∈ t on M such that

X1,0
P =

n∑
j=1

bjP zj
∂

∂zj

on the dense orbit. (In other words, X =
∑n

j=1 b
j
P

∂
∂ξj

and JX =
∑n

j=1 b
j
P

∂
∂θj

). We have
in particular that LXPωs = LXsωs. Since ωs is T n-invariant and JXP , JX1, JX2 ∈ t, this
immediately implies that X1 = X2 = XP .

4.3 The space of Kähler metrics

Throughout this section we work with the following assumptions. We have a fixed complex
anticanonically polarized toric manifold (M,J,−KM). By Theorem 4.34, there exists a



CHAPTER 4. KÄHLER-RICCI SOLITONS 64

unique real holomorphic vector field X with JX ∈ t being the unique critical point of the
weighted volume functional F . We suppose that there exists a background Kähler metric
ω′ ∈ 2πc1(M) such that

1. (M,J, ω′) is AK-toric,

2. there exists H ∈ C∞(M) such that ω′ − Ricω′ − 1
2
LXω′ = i∂∂̄H, and

3. ||H||L∞(M) <∞.

We denote the anticanonical polyhedron P−KM ⊂ t∗ of (4.11) simply by P . The soliton
vector field X corresponds to the linear function 〈x, bX〉 on P of Proposition 4.27, and we
define the constant VX by

VX =

∫
P

e−〈x,bX〉dx. (4.19)

On any Kähler manifold (N, J, ω), compact or otherwise, we let H denote the space of all
Kähler metrics ωϕ = ω + 2i∂∂̄ϕ such that the difference ω − ωϕ is ∂∂̄-exact.

4.3.1 The space of symplectic potentials

By Propositions 3.33, 3.34 and Corollary 3.35, the image of the moment map µ : M → t∗

associated to any Kähler metric ω such that (M,J, ω) is AK-toric and [ω] = [ω′] = 2πc1(M)
is a translate of the anticanonical polyhedron P = P−KM . If we normalize so that the image
is precisely equal to P , then by Proposition 3.46 any such ω is uniquely determined by a
symplectic potential u = uP + v ∈ C∞(P ). We therefore consider the following space of
symplectic potentials.

P =

{
u = uP + v

∣∣∣∣ ∫
P

ue−〈x,bX〉dx <∞ , (u)ij > 0, v ∈ C∞(P )

}
. (4.20)

Remark 4.36. Since uP = O(|x| log |x|), we clearly have that
∫
P
uP e

−〈x,bX〉dx <∞. Thus for

any u = uP + v ∈ P , we also have that
∫
P
ve−〈x,bX〉dx <∞.

Lemma 4.37. The background metric ω′ admits a symplectic potential u′ ∈ C∞(P ) which
lies in P.

In order to prove this, we need the following useful lemma.

Lemma 4.38 (c.f. [29, Lemma 1]). Let P be a polyhedron containing zero in the interior
and u ∈ C∞(P ) be any strictly convex function such that the gradient ∇u maps P diffeo-
morphically onto Rn. Then ∫

P

ueρudx <∞.
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Proof. Let φ(ξ) = L(u). Recall that by Lemma 4.22, φ grows at least linearly in |ξ|, and
in particular is necessarily bounded from below. Assume that φ is minimized at the origin.
Then ∫

P

ueρdx =

∫
Rn

(〈∇φ, ξ〉 − φ) e−φdξ ≤
∫
Rn

(〈∇φ, ξ〉+ C) e−φdξ.

The second term
∫
Ce−φdξ is bounded again by Lemma 4.22, so that∫

P

ueρdx ≤
∫
Rn
〈∇φ, ξ〉e−φdξ + C.

In polar coordinates we have∫
Rn
〈∇φ, ξ〉e−φdξ =

∫
Sn−1

∫ ∞
0

rn
∂φ

∂r
e−φdrdΘ.

Integrating by parts, we obtain∫
Sn−1

∫ ∞
0

rn
∂φ

∂r
e−φdrdΘ = n

∫
Sn−1

∫ ∞
0

rn−1e−φdrdΘ = n

∫
Rn
e−φdξ.

Note that the boundary term converges since φ = O(r) as r →∞. Thus∫
P

ueρdx ≤
∫
Rn
〈∇φ, ξ〉e−φdξ + C = n

∫
Rn
e−φdξ + C <∞.

If φ is not minimized at the origin, since ∇φ = P and 0 ∈ P it follows that there is a point
ξ∗ such that ∇φ(ξ∗) = 0. Repeating the proof replacing φ with φ̃(ξ) = φ(ξ − ξ∗) achieves
the desired conclusion.

Proof of Lemma 4.37. The metric ω′ admits a symplectic potential u ∈ C∞(P ) by assump-
tion, since

[ω′] = [Ricω′ +
1

2
LXω′ + i∂∂̄H] = 2πc1(M).

Now, let φ′ ∈ C∞(t) be a Kähler potential for ω′ on the dense orbit so that ∇φ(t) = P . It
follows from Lemma 3.6 that there exists an affine function a(ξ) such that

H + a(ξ) = 2φ′ + log det(φ′ij)− 〈∇φ′, bX〉.

We claim that a is constant. Indeed, passing to the Legendre transform u′ = L(φ′), we see
that

H(∇u′) + 〈∇u′, ba〉+ ca = ρu′ − 〈x, bX〉.

Now H comes from a smooth function on all of M , so in particular H(∇u′) : P → R extends
continuously to the boundary. As we saw in the proof of Theorem 4.18, since P = P−KM it
follows that ρu′ extends continuously to the boundary of P . This proves the claim, noting
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that ∇u′ = ∇uP + ∇v = O(log(dist(x, ∂P ))) does not extend continuously to ∂P unless
ba = 0. Therefore we see that

sup
x∈P
|ρu′ − 〈x, bX〉| = sup

p∈M
|H| < C, (4.21)

and hence ∫
P

u′e−〈x,bX〉dx <∞

by Lemma 4.38.

Proposition 4.39. Any symplectic potential u ∈ P determines a unique HT of T n-invariant
Kähler metric ω in the cohomology class 2πc1(M).

Proof. First we note that, since ∇uP (P ) = Rn, v extends smoothly past the boundary of P ,
and u is strictly convex, the gradient ∇u maps P diffeomorphically onto all of Rn ∼= t. By
Lemma 3.47, if φ = L(u) ∈ C∞(t), the Kähler metric ω = 2i∂∂̄φ extends smoothly to all
of M . The extension is clearly Hamiltonian with gradient image equal to P = P−KM , and
hence [ω] = 2πc1(M).

As such, we will sometimes say that a Kähler metric ω ∈ P as a shorthand to mean that
ω admits a symplectic potential u lying in P .

Remark 4.40. As we saw above, any u ∈ P satisfies ∇u(P ) = Rn. As a consequence of
Lemma 4.22, therefore, any such u can only be negative outside of a compact set. It follows
that any u ∈ P is L1 with respect to the measure e−〈x,bX〉dx on P .

4.3.2 Geodesics

Lemma 4.41. The space P, as a subset of, C∞(P ) is convex.

Proof. This is immediate. A convex combination ut = tu1 + (1− t)u0 of two strictly convex
functions u0 and u1 is strictly convex. If ui = uP + vi, for vi ∈ C∞(P ), then ut = uP + vt for
vt = tv1 + (1− t)v0. Finally,∫

P

ute
−〈x,bX〉dx = t

∫
P

u1e
−〈x,bX〉dx+ (1− t)

∫
P

u0e
−〈x,bX〉dx <∞.

Definition 4.42. Let u0, u1 ∈ P be any two symplectic potentials. The convex combination
ut = tu1 + (1− t)u0, t ∈ [0, 1] is called a geodesic.

The terminology comes from a now standard picture originally due to Donaldson, Mabuchi,
and Semmes [28, 53, 63]. The idea is that the space of Kähler metrics H on a compact man-
ifold (M,J, ω) comes naturally equipped with a Riemannian metric (sometimes called the
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“L2-metric”), from which perspective one can understand H as a formal “non-compact dual”
symmetric space to the symplectomorphism group of (M,ω). With respect to this metric, a
path of Kähler metrics ωt = ω + 2i∂∂̄ϕ is a geodesic if and only if

ϕ̈t −
1

2
|∇gtϕ̇t|2gt = 0. (4.22)

The existence of geodesics, even on a compact Kähler manifold, is an interesting problem.
It was conjectured by Donaldson [28] that H is a metric space with respect to the L2 metric
distance, and this was verified by Chen [14] by proving the existence of paths which solve
(4.22) in a weak sense. In fact, it was proved by Darvas [22] that on any compact Kähler
manifold (except for the outlying case that M = CP1) that one can always find a pair of
Kähler metrics which cannot be connected by a smooth geodesic. The familiar fact from the
compact setting is that this obstruction disappears when we consider T n-invariant metrics
on toric manifolds, and smooth geodesics become readily available.

Proposition 4.43. A path ωt of the form ωt = ω + i2∂∂̄ϕt in P satisfies (4.22) if and only
if the corresponding path of symplectic potentials ut ∈ C∞(P ) is a geodesic in the sense of
Definition 4.42.

The only proofs that we could find in the literature make use of the energy functional
associated to H, which is not obviously always finite if M is non-compact. It is natural
enough to only work with paths of finite energy, considering this is how the equation (4.22)
is established in the first place. However, (4.22) makes perfect sense as a pointwise equation.
We give a local and entirely elementary proof of 4.43, thereby bypassing the need to restrict
attention to only finite-energy paths. We begin with a lemma that is useful in its own right.

Lemma 4.44. Let ωt be any path in P, and let φt be corresponding path of Kähler potentials
on the dense orbit, normalized so that ∇φt(t) = P . If ut = L(φt) is the path of symplectic
potentials, then the time derivatives satisfy

φ̇t = −u̇t.

Proof. We have

u̇t =
∂

∂t
ut(x) =

∂

∂t

(〈
∇ut, x

〉
− φt(∇ut)

)
=

〈
∂

∂t
∇ut, x

〉
− φ̇(∇ut)−

〈
∇φt,

∂

∂t
∇ut

〉
= −φ̇.

Proof of Proposition 4.43. Let ωt = ω + 2i∂∂̄ϕt be a path satisfying (4.22). On the dense
orbit, we can write ω = 2i∂∂̄φ for φ ∈ C∞(t) and indeed ωt = 2i∂∂̄φt for φt ∈ C∞(t),
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t ∈ [0, 1]. In particular, ωt = 2i∂∂̄(φ + ϕt). Since ϕt extends smoothly to all of M , the
gradient ∇(φ + ϕt) has the same image of that of ∇φ. Therefore, if we normalize that
∇φ(t) = ∇φt(t) = P , it follows that φt = φ+ϕt, and in particular φ̇t = ϕ̇t. Thus, the Kähler
potentials themselves satisfy

φ̈t −
1

2
|∇gtφ̇t|2gt = 0.

We now compute directly. The chain rule yields

∂

∂ξj
=
∂xi

∂tj
∂

∂ti
=

∂2φt
∂ξi∂ξj

∂

∂xi
= uij

∂

∂xi
.

It follows that

∂φ̇t
∂ξj

= −uijt
∂u̇t
∂xi

. (4.23)

Now compute

üt = − ∂

∂t
φ̇t(∇xut) = −φ̈t(∇xut)−

∑
m

∂φ̇t
∂ξm

∂u̇t
∂xm

= −φ̈t(∇xut) + ulmt
∂u̇t
∂xl

∂u̇t
∂xm

,

so that

φ̈t −
1

2
|∇tφ̇t|2t = φ̈t − φijt

∂φ̇t
∂ξi

∂φ̇t
∂ξj

= −üt + ulmt
∂u̇t
∂xl

∂u̇t
∂xm

− (ut)iju
il
t u

mj
t

∂u̇t
∂xl

∂u̇t
∂xm

= −üt = 0.

4.3.3 The Ding functional

Let f ′ ∈ C∞(M) be the Hamiltonian function for JX with respect to our background metric
ω′, normalized as always so that the image of the moment map is equal to P−KM . In the

compact setting, one can define the F̂ -functional on H by

F̂ (ϕ) = − 1

V

∫ 1

0

∫
M

ϕ̇s

(
e−f

′−X(ϕs)ωnϕs

)
∧ ds, (4.24)
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where ωϕs = ω+ 2i∂∂̄ϕs is any path in H, and V =
∫
M
e−f

′
ω′n. The Ding functional is then

defined by

D(ϕ) = F̂ (ϕ)− 1

2
log

(∫
M

ef
′−H−2ϕω′n

)
. (4.25)

The upshot is that one readily calculates the first variation

∂ϕD(ψ) = ∂ϕF̂ (ψ) +
1∫

M
ef ′−H−ϕω′n

∫
M

ψeH−f
′−2ϕω′n

=

∫
M

ψ

(
ef
′−H−2ϕω′n∫

M
ef ′−H−2ϕω′n

−
e−f

′−X(ϕ)ωnϕ
V

)
,

so that the critical points of D satisfy

0 = i∂∂̄

(
f ′ −H − 2ϕ+ f ′ +X(ϕ)− log

(
ω′n

ωnϕ

))
= Ricω − ω′ − 2i∂∂̄ϕ+

1

2
LX(ω′ + 2i∂∂̄ϕ)− Ricω′ + Ricωϕ

= Ricωϕ − ωϕ +
1

2
LXωϕ,

and thus define a shrinking Kähler-Ricci soliton with respect to X. When M is non-compact,
we cannot expect all of these integrals to be well-defined. However, we prove that this picture
does make sense when restricted to P .

Lemma 4.45. The F̂ -functional is well-defined on P.

Proof. Let ω be any element of P . Suppose that there exists a path ϕt ∈ C∞(M) of T n-
invariant smooth functions such that ωt = ω′ + i∂∂̄ϕt > 0 ∈ P , ϕ0 = 0, and ω1 = ω. Let
φt be the Kähler potential on the dense orbit for ωt normalized so that ∇φt = P , so that
ϕ̇t = φ̇t. Let ut = L(φt) be the corresponding path of symplectic potentials. Then, the
weighted volume

V =

∫
M

e−f
′
ω′n =

∫
t×Tn

e−〈∇φ
′,bX〉 det(φ′ij)dξdθ

= (2π)n
∫
P

e−〈x,bX〉dx = (2π)nVX .
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Then

F̂ (ω) = − 1

V

∫ 1

0

∫
M

ϕ̇s

(
e−f

′−X(ϕs)ωnϕs

)
∧ ds

= − 1

(2π)nVX

∫ 1

0

∫
t×Tn

φ̇se
−〈∇φs,bX〉 det(φs,ij)dξdθ

=
1

VX

∫ 1

0

u̇te
−〈x,bX〉dx =

1

VX

∫
P

(u1 − u0) e−〈x,bX〉dx.

Since
∫
P
uie
−〈x,bX〉dx <∞ by assumption, it is clear that F̂ (ω) is finite. Moreover, noting also

by assumptoin that u0 = u′ is the symplectic potential on P with respect to the background
metric ω′, we see that this is independent of the path ϕt chosen. Moreover, if no such path
ϕt exists, we can still choose any path ωt ∈ P such that ω0 = ω′ and ω1 = ω and define F̂
directly by

F̂ (φ1) = − 1

V

∫ 1

0

∫
t×Tn

φ̇se
−〈∇φs,bX〉 det(φs,ij)dξdθ

=
1

VX

∫
P

(u1 − u′) e−〈x,bX〉dx,
(4.26)

which again is clearly finite and independent of path. Such a path clearly exists, simply take
ωt determined by the geodesic ut = tu1 + (1− t)u′.

Lemma 4.46. The Ding functional D is well-defined on P.

Proof. As above, let ω be any element of P and suppose that there exists a ϕ ∈ C∞(M) such
that ω = ω0 + 2i∂∂̄ϕ, so that ω = 2i∂∂̄φ = 2i∂∂̄(φ′+ϕ) on the dense orbit U ∼= (C∗)n ⊂M .
As we saw in the proof of Lemma 4.37, when we restrict the function H to U , we get that
up to a constant

H = 2φ′ + log detφ′ij − 〈∇φ′, bX〉,
so that

ef
′−H−2ϕω′n = e−2(φ′+ϕ)−log det(φ′ij) detφ′ijdξdθ

= e−2φdξdθ

Therefore, if we change coordinates by ∇φ = ∇(φ′ + ϕ) : t → P , we get as in Lemma 4.21
that ∫

M

ef
′−H−2ϕω′n = (2π)n

∫
t

e−2φdξ = (2π)n
∫
P

e−ρudx,

where u = L(φ) is the Legendre transform. The Ding functional is then given by

D(ω) = F̂ (ω)− 1

2
log

(∫
M

ef
′−H−2ϕω′n

)
=

1

VX

∫
P

(u1 − u′) e−〈x,bX〉dx−
1

2
log

(
(2π)n

∫
P

e−ρudx

)
,

(4.27)
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which is well-defined by Lemma 4.21. As in the proof of Lemma 4.45, the formula (4.27)
makes perfect sense for all ω ∈ P , regardless of whether ω − ω′ is ∂∂̄-exact.

Remark 4.47. For convenience of notation, we will drop the additive factor of n log(2π), and
simply denote

D(ω) =
1

VX

∫
P

(u1 − u′) e−〈x,bX〉dx−
1

2
log

(∫
P

e−ρudx

)
.

Proposition 4.48. The critical points of the functional D on P are precisely the solutions
to the real Monge-Ampère equation (4.9).

Proof. Let u = uP + v ∈ P be a symplectic potential, and suppose that w ∈ C∞(P ) is
compactly supported on Rn, so that ut = u + tw ∈ P for sufficiently small t. Set ρt = ρut .
We first compute that

∂

∂t

∫
P

e−ρtdx

∣∣∣∣
t=0

=
∂

∂t

∫
t

e−2φtdξ = −2

∫
t

φ̇e−2φdξ

= 2

∫
P

u̇e−ρudx = 2

∫
P

we−ρudx.

Hence

∂

∂t
D(ut)

∣∣∣∣
t=0

=
∂

∂t

1

VX

∫
P

(ut − u′) e−〈x,bX〉dx−
1

2

∂
∂t

∫
P
e−ρtdx∫

P
e−ρudx

=
∂

∂t

1

VX

∫
P

(tw + (u− u′)) e−〈x,bX〉dx−
∫
P
we−ρudx∫
P
e−ρudx

=

∫
P

w

(
e−〈x,bX〉

VX
− e−ρu∫

P
e−ρudx

)
dx,

so that u ∈ P is a critical point of D if and only if ρu = 〈x, bX〉.

Remark 4.49. Strictly speaking, D and F̂ here are defined on potentials φ, or equivalently
symplectic potentials u. Nonetheless, we have written D(ω) or F̂ (ω) in some instances in
order to illustrate the analogy with the compact setting. We will see in Proposition 4.50
below that in fact the Ding functional D is well-defined at the metric level. The F̂ functional
is truly a functional on potentials, for example notice that F̂ (φ+ a) = F̂ (φ)− a.

4.3.4 Convexity

As we have seen, there assignment u 7→ ω of a Kähler metric on (M,J) associated to a
symplectic potential u is not injective. Namely, if a(x) is any affine-linear function on P ,
then u + a defines the same Kähler metric as u. Indeed, addition of the affine functions
induces a free action of Rn × R on P . We prove a strong convexity statement for D on the
space P from [15], which adapts some of the ideas of Berman-Berndtsson [8] to the AK-toric
setting.
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Proposition 4.50 (c.f. [8, Proposition 2.15]). The Ding functional D is convex on P. It
is invariant under the action of Rn × R given by addition of affine-linear functions, and
it is strictly convex modulo this action. That is, if u0, u1 ∈ P and D(ut) is affine, i.e.
D(tu1 + (1− t)u0) = tD(u1) + (1− t)D(u0), then there exists an affine-linear function a(x)
on P such that u1 = u0 + a.

Proof. If u0, u1 ∈ P satisfy u1 = u0 + 〈x, b〉+ c with c ∈ R, it is straightforward to see that
ρu1 = ρu0 − 2c. Using the fact that

∫
P
〈x, b〉e−〈x,bX〉dx = 0, we see

D(u1) =
1

VX

∫
P

(u0 + 〈x, b〉+ c− u′) e−〈x,bX〉dx− 1

2
log

(∫
P

e−ρu0+2cdx

)
=

1

VX

∫
P

(u0 − u′) e−〈x,bX〉dx+ c− 1

2

(
2c+ log

(∫
P

e−ρu0dx

))
= D(u0).

We prove convexity directly, and show that

D(ut) ≤ tD(u1) + (1− t)D(u0),

where ut = tu1 + (1− t)u0 for any u0, u1 ∈ P . Let ρt = ρut and φt = L(ut) be the Legendre
transform of ut. To see the inequality, first notice that the functional u 7→

∫
P
ue−〈x,bX〉dx is

clearly affine on P and in fact vanishes identically on P0. Therefore it suffices to show that
the function

t 7→ − log

∫
P

e−ρtdx

is convex in t. This follows from the fact that the Legendre transform u 7→ L(u) itself is, i.e.

φt(ξ) ≤ tφ1(ξ) + (1− t)φ0(ξ), (4.28)

which follows from Lemma 3.37. Fixing t, we see by changing coordinates that

− log

∫
P

e−ρtdx = − log

∫
Rn
e−φtdξ.

It then follows immediately from the Prekopa-Leindler inequality [30] that this is convex
in t. This says precisely that any family φt of convex functions satisfying (4.28) has the
property that the function of one variable

∫
Rn e

−φtdξ is log-concave (i.e. t 7→ − log
∫
Rn e

−φtdξ
is convex). The strict convexity follows from the equality case of the Prekopa-Leindler
inequality, which was also studied in [30]. If the function

∫
Rn e

−φtdξ is affine in t, then by
[30, Theorem 12] there exists m ∈ R and a ∈ Rn such that

φ1(ξ) = φ0(mξ + a)− n log(m)− log

(∫
Rn e

−φ1dξ∫
Rn e

−φ0dξ

)
.
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Firstly, we see that m must be equal to 1 since u0, u1 ∈ P . Indeed L(φ0(mξ)) = u0(m−1x).
If u0 ∈ P , then u0(m−1x) − uP (x) ∈ C∞(P ) if and only if m = 1. Then we have that
φ1(ξ) = φ0(ξ + a)− C for some C. Again passing to the Legendre transform, we have that

u1(x) = L(φ1(ξ)) = L(φ0(ξ + a)− C) = u0(x) + `a(x) + C.

As an immediate consequence, we have uniqueness for the real Monge-Ampère equation
(4.9) on P .

Theorem 4.51. If u0 and u1 both solve (4.9), then there exists an affine-linear function
a(x) such that u1 = u0 + a.

Proof. Suppose u0 and u1 are two such solutions and set ut = tu1+(1−t)u0. Since t 7→ D(ut)
is convex and ∂

∂t
D(ut)

∣∣
t=0

= ∂
∂t
D(ut)

∣∣
t=1

= 0, it follows that D(ut) is constant, and in
particular affine. Proposition 4.50 immediately yields the existence of such an a(x).

Using this, we can prove one of our main theorems.

Theorem 4.52 ([15, Theorem A]). Let (M,J) be a complex toric manifold with finite fixed
point set. Up to automorphisms, there is at most one complete T n-invariant shrinking gra-
dient Kähler-Ricci soliton on (M,J).

Proof. We begin by recalling where we are so far. Suppose that ω is the Kähler form of
a complete T n-invariant shrinking gradient Kähler-Ricci soliton on (M,J). By Proposition
4.11, the triple (M,J, ω) is automatically AK-toric, and since ω ∈ 2πc1(M) the image of the
moment map is a translate of the anticanonical polyhedron P = P−KM . Then by Proposition
4.18, we know that there exists a Kähler potential ω = 2i∂∂̄φ on the dense orbit such that
φ satisfies the real Monge-Ampère equation (4.8), in which case the image of the moment
map µ = ∇φ is precisely equal to P . The corresponding symplectic potential u = L(φ) then
satisfies

ρu = 〈x, bX〉. (4.29)

By Theorem 4.34, the soliton vector field JX and thereby the linear function 〈x, bX〉 is the
unique critical point of the weighted volume functional F . Therefore, suppose we have two
such metrics ω0 and ω1. Then, repeating the description above, we have two symplectic
potentials u0, u1 for ω0, ω1 respectively which both satisfy the same equation (4.29). By
Theorem 4.51, there exists an affine-linear function a(x) = 〈x, ba〉+ ca such that u1 = u0 +a.
Let φs = L(us) ∈ C∞(t) be the Legendre transform, so that ω0 = 2i∂∂̄φ0 and ω1 = 2i∂∂̄φ1

on the dense orbit. As we saw in Chapter 3 (see Lemma 3.39, Lemma 3.43), the Kähler
potentials are related by φ1(ξ) = φ0(ξ − ba) − ca, and so 2i∂∂̄φ2(ξ) = 2i∂∂̄φ1(ξ − ba). Let
α : M →M denote the automorphism determined by the action of e−ba ∈ (C∗)n. Then it is
clear that φ0(ξ − ba) = φ0 ◦ α(ξ), and therefore that ω1 = α∗ω0.
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Together with Theorem 4.4, this also completes the proof of our other main uniqueness
theorem 1.3.

Theorem 4.53 ([15, Theorem B]). Let (M,J) be a n-dimensional complex manifold ad-
mitting an effective, holomorphic action of the real torus T n. Up to automorphisms, there
is at most one shrinking gradient Kähler-Ricci soliton (ω,X) on (M,J) with bounded Ricci
curvature and JX ∈ t.

4.3.5 Coercivity

The strict convexity of the Ding functional D suggests that there might be some absolute
sense in which “D goes to infinity as u goes to infinity.” As such, there is need for an
infinite-dimensional version of the Euclidean norm in (4.14). This fits into a broad series
of conjectures of Tian (see for example[23]), especially in the compact setting, relating to
the existence of special metrics (in this case Kähler-Ricci solitons). Following Berman-
Berndtsson [8], we show that the Ding functional is proper, using the F̂ functional to measure
distance in P . In order to make sense of this, we need to work with the potentials u ∈ P
directly rather than the equivalence classes under the Rn × R-action. To this end, we make
the following normalization.

Definition 4.54. The space P1 ⊂ P of C1-normalized symplectic potentials is defined to
be the space of all u ∈ P such that ∇u(0) = 0, u(0) = 0.

Since the symplectic potentials u ∈ P are strictly convex, any u ∈ P1 attains the min-
imum value of 0 at the origin in P . In particular, any u ∈ P1 is nonnegative. Since the
F̂ functional (4.26) on P is given essentially by the weighted integral

∫
P
ue−〈x,bX〉dx, this

becomes a reasonable notion of “distance” in P . Now any u ∈ P clearly admits a unique
representative in P1 via the addition of a unique affine-linear function a(x) with the property
that ∇a = −∇u(0) and a(0) = −u(0). In this way, we have simultaneously normalized for
the constants as well as fixed gauge for the action of (C∗)n on M .

Lemma 4.55. There exists a constant C such that for any u ∈ P1 we have

log

(∫
P

e−ρudx

)
≤ C

∫
P

ue−〈x,bX〉dx− C (4.30)

Proof. Recall from (4.21) that our reference metric ω′ admits a symplectic potential u′ ∈ P
with

|ρu′ − 〈x, bX〉| < C. (4.31)

Now there exists a unique affine function a′(x) such that u′+a′ ∈ P1. Since adding an affine
function only modifies ρ by a constant, it suffices to assume that u′ ∈ P1. For simplicity of
notation, set ρ′ = ρu′ . The bound (4.31) gives in particular

e−ρ
′ ≤ Ce−〈x,bX〉. (4.32)
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Denote by C0 the constant such that

C0VX =

∫
P

e−ρ
′
dx

Now let u ∈ P1 be any potential and ut = u′ + tv be the geodesic connecting u′ and u, so
that v = u− u′. Differentiating,

∂

∂t
D(ut)

∣∣∣∣
t=0

=
1

VX

∫
P

ve−〈x,bX〉dx− 1

C0VX

∫
P

ve−ρ
′
dx

=
1

VX

∫
P

ue−〈x,bX〉dx− 1

C0VX

∫
P

ue−ρ
′
dx+ C1

≥ 1

VX

(
1− C

C0

)∫
P

ue−〈x,bX〉dx+ C1

Where the last step follows since u ≥ 0. Explicitly C1 =
∫
P
u′
(

1
C0VX

e−ρ
′ − 1

VX
e−〈x,bX〉

)
dx.

Now by the convexity of D(ut) and the above that

D(u) ≥ ∂

∂t
D(ut)

∣∣∣∣
t=0

+D(u′)

≥ −C(u′)

VX

∫
P

ue−〈x,bX〉dx+ C(u′),

and therefore

log

(∫
P

e−ρudx

)
≤ (1 + C)

∫
P

ue−〈x,bX〉dx− C,

where C > 0 is a constant depending only on u′.

Theorem 4.56 ([8, Theorem 2.16]). For any δ < 1, there exists a Cδ > 0 such that

D(ω) ≥ (1− δ)F̂ (u)− Cδ (4.33)

For all ω ∈ P1.

Proof. Let u ∈ P1 and let φ = L(u) be the Legendre transform. From the definition of the
Legendre transform (3.22) directly it follows that φ too attains the minimum value of 0 at
the origin, and is therefore positive. For s ∈ (0, 1), denote by us = su and let φs = L(us).
Since φs(ξ) = sφ

(
ξ
s

)
, we have that both us and φs are still positive proper convex functions

on P which are minimized at zero. Let ρs = ρus . It is also not hard to see that the inequality
(4.55) still holds for us. Computing directly we see

ρs = − log det(uij) + 2s
(
uix

i − u
)

+ n log s,
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and therefore

e−ρsdx = sne−2s(uix
i−u)(det(uij))dx

= sne−2sφdξ.

Since φ ≥ 0 we have that e−2φ ≤ e−2sφ, and therefore∫
P

e−ρudx =

∫
Rn
e−φdξ ≤

∫
Rn
e−sφdξ

= s−n
∫
P

e−ρsdx.

Then we have by (4.55)

log

(∫
e−ρdx

)
≤ log

(∫
e−ρsdx

)
+ n log(s−1)

≤ C

∫
P

use
−〈x,bX〉dx+ n log(s−1)− C

= sC

∫
P

ue−〈x,bX〉dx+ n log(s−1)− C,

and therefore

D(u) =
1

VX

∫
P

(u− u′)e−〈x,bX〉dx− 1

2
log

(∫
P

e−ρudx

)
≥
(

1− sC

2

)
1

VX

∫
P

(u− u′)e−〈x,bX〉dx− n log(s−1) + C1,

for some constant C1 depending only on u′. This finishes the proof, taking s = 2δ/C and
Cδ = n log(s−1)− C.
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[18] Tristan C. Collins and Gábor Székelyhidi. “K-semistability for irregular Sasakian man-
ifolds”. In: J. Differential Geom. 109.1 (2018), pp. 81–109. issn: 0022-040X. doi:
10.4310/jdg/1525399217. url: https://doi.org/10.4310/jdg/1525399217.

[19] Ronan J. Conlon, Alix Deruelle, and Song Sun. “Classification results for expanding
and shrinking gradient Kähler-Ricci solitons”. In: arXiv:1904.00147 (2019).

[20] David A. Cox. “The homogeneous coordinate ring of a toric variety”. In: J. Algebraic
Geom. 4.1 (1995), pp. 17–50. issn: 1056-3911.

[21] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties. Vol. 124. Grad-
uate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011,
pp. xxiv+841. isbn: 978-0-8218-4819-7. doi: 10.1090/gsm/124. url: https://doi.
org/10.1090/gsm/124.



BIBLIOGRAPHY 79

[22] Tamás Darvas. “Morse theory and geodesics in the space of Kähler metrics”. In: Proc.
Amer. Math. Soc. 142.8 (2014), pp. 2775–2782. issn: 0002-9939. doi: 10.1090/S0002-
9939-2014-12105-8. url: https://doi.org/10.1090/S0002-9939-2014-12105-8.

[23] Tamás Darvas and Yanir A. Rubinstein. “Tian’s properness conjectures and Finsler
geometry of the space of Kähler metrics”. In: J. Amer. Math. Soc. 30.2 (2017), pp. 347–
387. issn: 0894-0347. doi: 10.1090/jams/873. url: https://doi.org/10.1090/
jams/873.

[24] Thomas Delzant. “Hamiltoniens périodiques et images convexes de l’application mo-
ment”. In: Bull. Soc. Math. France 116.3 (1988), pp. 315–339. issn: 0037-9484. url:
http://www.numdam.org/item?id=BSMF_1988__116_3_315_0.

[25] Wei Yue Ding. “Remarks on the existence problem of positive Kähler-Einstein metrics”.
In: Math. Ann. 282.3 (1988), pp. 463–471. issn: 0025-5831. doi: 10.1007/BF01460045.
url: https://doi.org/10.1007/BF01460045.

[26] S. K. Donaldson. “Interior estimates for solutions of Abreu’s equation”. In: Collect.
Math. 56.2 (2005), pp. 103–142. issn: 0010-0757.

[27] S. K. Donaldson. “Scalar curvature and stability of toric varieties”. In: J. Differential
Geom. 62.2 (2002), pp. 289–349. issn: 0022-040X. url: http://projecteuclid.org/
euclid.jdg/1090950195.

[28] S. K. Donaldson. “Symmetric spaces, Kähler geometry and Hamiltonian dynamics”.
In: Northern California Symplectic Geometry Seminar. Vol. 196. Amer. Math. Soc.
Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 1999, pp. 13–33. doi: 10.1090/
trans2/196/02. url: https://doi.org/10.1090/trans2/196/02.

[29] Simon K. Donaldson. “Kähler geometry on toric manifolds, and some other manifolds
with large symmetry”. In: Handbook of geometric analysis. No. 1. Vol. 7. Adv. Lect.
Math. (ALM). Int. Press, Somerville, MA, 2008, pp. 29–75.
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