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ARTICLE

A mammalian methylation array for profiling
methylation levels at conserved sequences
Adriana Arneson1,2,17, Amin Haghani3,17, Michael J. Thompson 4, Matteo Pellegrini4, Soo Bin Kwon 1,2,

Ha Vu1,2, Emily Maciejewski2,5, Mingjia Yao6, Caesar Z. Li 6, Ake T. Lu3, Marco Morselli 4, Liudmilla Rubbi4,

Bret Barnes7, Kasper D. Hansen8,9, Wanding Zhou10, Charles E. Breeze 11, Jason Ernst 1,2,5,12,13,14,15,18✉ &

Steve Horvath 3,6,16,18✉

Infinium methylation arrays are not available for the vast majority of non-human mammals.

Moreover, even if species-specific arrays were available, probe differences between them

would confound cross-species comparisons. To address these challenges, we developed the

mammalian methylation array, a single custom array that measures up to 36k CpGs per

species that are well conserved across many mammalian species. We designed a set of

probes that can tolerate specific cross-species mutations. We annotate the array in over

200 species and report CpG island status and chromatin states in select species. Calibration

experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian

methylation array has several strengths: it applies to all mammalian species even those that

have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating

the development of epigenetic biomarkers, and it increases the probability that biological

insights gained in one species will translate to others.
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Methylation of DNA by the attachment of a methyl group
to cytosines is one of the most widely studied epigenetic
modifications in vertebrates, due to its implications in

regulating gene expression across many biological processes
including disease1. A variety of different assays have been pro-
posed for measuring DNA methylation including microarray-
based methylation arrays2,3 and sequencing-based assays such as
whole-genome bisulfite sequencing (WGBS), reduced repre-
sentation bisulfite sequencing (RRBS)4, and targeted bisulfite
sequencing5. Despite the availability of sequencing-based assays,
array-based technology remains widely used for measuring DNA
methylation due to its combination of low cost, ease of use, and
high reproducibility and reliability6.

The first human methylation array (Illumina Infinium 27K)
was introduced by Illumina Inc in 2009, which was followed by
the 450K2 and EPIC arrays with larger coverage6. More recently,
Illumina released a mouse methylation array (Infinium Mouse
Methylation BeadChip) that profiles over 285k markers across
diverse murine strains. It will probably not be economical to
develop similar methylation arrays for less frequently studied
mammalian species (e.g., elephants or marine mammals) due to
insufficient demand. Moreover, even if costs were no impedi-
ment, species-specific arrays would likely be sub-optimal in
comparative studies across different species as the measurement
platforms would be different.

To address these challenges, we developed a single mammalian
methylation array designed to be used to measure DNA methy-
lation across mammals. The array targets CpGs for which the CpG
and flanking sequence are highly conserved across many mam-
mals so that the methylation of many of these CpGs can be
measured in each mammal. A unique aspect of the array design is
that it repurposes the degenerate base technology (originally used
by Illumina Infinium probes to tolerate within-human variation)
to tolerate cross-species mutations across mammalian species. To
select the specific probe sequences including tolerated mutations
that appear on the array we developed the Conserved Methylation
Array Probe Selector (CMAPS). CMAPS takes as input a multiple
sequence alignment to a reference genome and a set of probe
design constraints, and selects a set of probe sequences including
tolerated mutations, which can be used to query methylation in
many species. We apply CMAPS to select over 35 thousand CpGs
for the mammalian methylation array, which we complemented
with close to two thousand known human biomarker CpGs. We
characterize the CpGs on the mammalian methylation array with
various genomic annotations. Further, we use calibration data to
evaluate the fidelity of individual probes in humans, mice, and
rats. CMAPS has led to the design of the mammalian methylation
array, which will facilitate the study of cytosine methylation at
conserved loci across all mammal species.

Results
Designing the mammalian methylation array. The CMAPS
algorithm is designed to select a set of Illumina Infinium array
probes such that for a target set of species many probes are
expected to work in each species (see “Methods” section). Array
probes are sequences of length 50 bp flanking a target CpG based
on the human reference genome. Selecting sequences present in the
human reference genome increases the likelihood that measure-
ments in other species will transfer to human. The mammalian
methylation array adapts the degenerate base technology for tol-
erating human SNPs so that probes can tolerate a limited number
of cross-species mutations. The CMAPS algorithm is provided as
input a multiple-species sequence alignment to a reference genome.
CMAPS uses these inputs to then select the CpGs to target on the
array. As part of selecting the CpGs, CMAPS also selects the probe

sequence design to target them including the specific set of
degenerate bases. For designing the mammalian methylation array,
CMAPS was applied to the subset of 62 mammals within a 100-
way alignment of 99 vertebrate genomes with the human genome7,
but we note the CMAPS method is general.

In designing a probe for a CpG, CMAPS considers multiple
different options. One option is the type of probe. Illumina’s
current methylation array technology allows up to two types of
probes: Infinium I and Infinium II. The latter is newer technology
requiring only one silica bead to query the methylation of a CpG,
while the former requires two beads. By only requiring one bead
Infinium II probes allow under fixed array capacity limits
interrogating more CpGs, though Infinium I probes are better
able to query CpGs in CpG rich regions3. Another option for each
of these two types of probes is whether the probe sequence is on
the forward or reverse genomic strand, giving four total
combinations of options for probe type and strand for each
CpG. In addition, CMAPS has options for the position and
nucleotide identity of tolerated mutations. The array degenerate
base technology allows for potentially up to three degenerate
bases per probe sequence, which are combinations of a position
and alternative nucleotide from the reference sequence that the
array detection can tolerate in the sequence being interrogated.
For some probes, fewer than three degenerate bases could be
designed, which was determined based on a design score
computed by Illumina for each probe and in the case of Infinium
II probes also the number of CpGs within the probe sequence.
CMAPS uses a greedy algorithm to select the tolerated mutations
for each combination of probe type and strand. The algorithm
aims to maximize the number of species in the alignment the
probe is expected to work in based on just local alignment
information that is without considering how uniquely mappable
the probe is across the genome. A probe for a CpG is expected to
work in a non-human species based on local alignment
information if there are no differences in the alignment between
the human genome sequence and the other species excluding
those accounted for by the probe’s degenerate bases (Fig. 1a and
see “Methods” section). For each CpG site in the human genome,
CMAPS retained for further consideration the Infinium I probe
out of the two options (forward or reverse of the CpG) which had
the greater number of species for which the probe was expected to
work, and likewise for Infinium II.

We next applied a series of rules to identify a reduced subset of
candidate probes. First, we included all 36,133 Infinium II probes
that were expected to work in mouse (based on the mm10
genome), which maximizes the expected array utility for one of
the most widely used model organisms. For the remaining set of
CpG sites not corresponding to probes selected in the previous
step, we sorted them in descending order of the number of species
for which an Infinium II probe was expected to work. We then
added the Infinium II probes for the top 16,867 CpG sites for a
total of 53,000 CpG sites. Next, we ranked the CpG sites targeted
on the Illumina EPIC array6 in descending order of the number
of species for which a probe targeting the CpG is expected to
work. For this, we required the probe to be of the same probe type
and strand as on the EPIC array, but used the degenerate bases
picked by the CMAPS algorithm. The probe was allowed to differ
in terms of degenerate base positions, as EPIC probes typically do
not account for degenerate bases across species. For this, we
selected the probes corresponding to the top 3000 ranked sites
that had not already been picked based on the earlier criteria.
CpGs that are present both on the EPIC and the mammalian
array is expected to facilitate data integration with existing EPIC
data from human epidemiological cohorts.

Lastly, we sorted the CpG sites in descending order of number
of species for which an Infinium I probe is expected to work and
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picked the corresponding Infinium I probes for the top 4000
CpGs that had not already been included. We picked fewer
Infinium I probes than Infinium II probes so as to be able to
interrogate more CpGs at the same cost. However, we included
some Infinium I probes as they also have some distinct
advantages. First, type I probes allow enhanced querying of
CpG dense regions such as CpG islands, as CpGs do not count
towards the limited number of positions of variation as for
Infinium II probes. Second, type I probes are needed for the
normalization methods described below (see “Methods” section).

Overall, these selection criteria resulted in probes targeting
60,000 CpGs (Fig. 1b). For some of these 60,000 CpGs, the
sequence of the probe targeting it can map to multiple locations
in a genome, which could result in a confounded signal coming
from multiple CpG sites. This issue is compounded by individual
probes corresponding to multiple sequences reflecting different
possible combinations of the degenerate bases. To identify a
subset of probes less susceptible to such confounders, for 16 high-
quality genomes, we computed for each probe how many of its
versions map uniquely in that genome (see Methods). We
performed the mapping step only for our final set of candidate
probe sequences since it depends on the exact design of the probe
(choice of type I versus type II, forward versus reverse strand, and
position of degenerate bases). We then filtered CpGs down by
requiring all versions of a probe targeting it map uniquely in at
least 80% of the species they are expected to target out of the 16

high-quality genomes, unless the probe is expected to target at
least 40 mammals from the alignment, in which case the mapping
criterion was discarded. This reduced the set of candidate probes
to targeting 35,989 CpGs.

We selected an additional 2023 probes targeting cytosine
methylation array based on their utility for human biomarker
studies (Supplementary Data 1). These probes, which were
previously implemented in human Illumina Infinium arrays
(EPIC, 450K, 27K), were selected due to their utility for human
biomarker studies estimating age, blood cell counts, or the
proportion of neurons in brain tissue8–14. The final manufactured
mammalian methylation array measures cytosine levels of 37,449
unique cytosines: 37,445 of these cytosines are followed by a
guanine (CpGs), of which 43 were measured by two sets of
probes, and four are followed by another nucleotide (non-CpGs)
giving 37,492 total probe sets. The total number of CpGs included
on the array was constrained by cost considerations. The human
biomarker probes included on the array included the four
targeting non-CpGs and an additional 1982 targeting CpGs of
which 29 also had a separate set of probes based on conservation
criteria. In addition, the array contains a set of control probes
used for assessing bisulfite conversion efficiency and other quality
metrics. A detailed analysis of the Infinium probe context of the
mammalian array and relation to human and mouse arrays is
presented in Supplementary Fig. 1. The mammalian methylation
array’s focus on highly conserved regions led to an array that is

Select all variants 
for all probes 
targeting a human 
CpG

Compute number 
of species each 
probe can work in

Sort probes in 
descending order 
of number of 
species they work 
in

Select all Infinium 
II CpGs that work 

in mouse 
36,133

Select 
non-mouse top 

Infinium II 
CpGs 
16,867

Select from the 
remaining top 

CpGs those on 
EPIC array 

3000

Select from the 
remaining 

Infinium I CpGs 
4000

Filter based 
on 
mappability 
in 16 high 
quality 
genomes

2023
Human 

biomarkers

35,989 
CpGs

37,492 
probe sets 
produced

a

b

Fig. 1 Overview of mammalian methylation array design process. a Toy example of a multiple sequence alignment at a CpG site being considered by the
CMAPS algorithm. The orange coloring highlights the CpG being targeted. Positions, where other species have alignment that matches the human
sequence, are in dark blue; positions, where other species have alignment that does not match the human sequence, are in neon yellow; positions, where
other species have no alignment, are in gray. b Flowchart detailing the selection of probes on the array by the CMAPS algorithm. A small fraction of probes
designed were dropped during the manufacturing process. The number of selected CpGs in different sets were determined by biological considerations
(e.g., sufficient numbers of Type I probes to capture CpG rich regions), statistical considerations (sufficient numbers of Type I probes for normalization
methods), and costs of the resulting array (fewer than 40 K CpGs resulted in tolerable costs and Type II probes being more cost-effective than Type I
probes).
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distinct from other currently available Infinium arrays that focus
on specific species. For example, the mammalian array only
shares 3107 CpGs with the Illumina Mouse Methylation array
and only 7111 CpGs with the Illumina EPIC array.

Mappability analysis in mammals. All 37,488 probe sets tar-
geting CpGs profiled on the mammalian methylation array apply
to humans, but only a subset of these applies to other species.
When conducting analyses in a specific species it can thus be
desirable to restrict analyses to the subset of CpGs that apply to
that species. The alignment of the probes to the target genome
can identify the subset of CpGs that apply to a species. In addi-
tion, the detection p-value can further filter out the low-quality
probes. Furthermore, detection p-values filtering can be used even
if there is no genome assembly available for the species.

We have mapped the array CpGs to 159 mammalian species
based on the probe sequences targeting them, which provides a
candidate position from which a gene for the CpG can also be
associated. As expected, the closer a species is to humans, the
more CpGs map to the genome of this species. Around 30k CpGs
on the array map to most placental mammals (eutherians, Fig. 2a,

and Supplementary Data 2). Roughly 15K CpGs map to
most non-placental mammalian genomes (marsupial orders:
Didelphimorpha, Dasyuromorphia, Diprotodontia), such as
kangaroos or opossums. Only 14,283 CpGs map to platypus,
which is an egg-laying mammal (monotreme) (Fig. 2).

A CpG that is adjacent to a given gene in humans may not map
to a position adjacent to the corresponding (orthologous) gene in
another species. Between 15k to 22k CpGs (~70% mapped CpGs)
were assigned to human orthologous genes based on their
mapped position in most phylogenetic orders (rodents, bats,
carnivores, Fig. 2b, c and Supplementary Data 3).

These numbers surrounding orthologous genes are probably
overly conservative (i.e., lower than the true numbers) because we
found the majority of CpGs (about 58%) that do not map to
orthologous genes in the non-human species are located in
intergenic regions outside of promoters (see “Methods” section),
which suggests that frequently at least one of the gene assign-
ments was inaccurate.

Chromosome and gene region coverage of array. We analyzed
the chromosome and gene region coverage of the mammalian
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Fig. 2 CpG and gene coverage of probes on the mammalian methylation array across different phylogenetic orders. a Probe localization based on the
QuasR package43. The rows correspond to different phylogenetic orders. The phylogenetic orders are ordered based on the phylogenetic tree and
increasing distance to human. The x axis reports the median number of mapped probes across species from the given phylogenetic order. The number to
the right of each boxplot reports the number of species per order, e.g., n= 22 primate species. b The number of probes mapped to human orthologous
genes for the subset of genomes in the Ensembl database (x axis). n= 17 genomes were used for primates. c Percentage of the probes associated with
human orthologous genes among mapped probes for the species in b. The boxplot visualizes the median (vertical line in box) and upper and lower quartiles
(25th and 75th percentile). The whiskers represent at most the 1.5*interquartile range of each order by extending to the most extreme data point that is no
more than 1.5 times the interquartile range from the box.
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methylation array for human and mouse. The mammalian
methylation has substantial coverage of all chromosomes
(235–3938 and 687–3179 probes per chromosome for human and
mouse, respectively), with the exception of the Y chromosome,
which only has two probes in both species (Supplementary
Fig. 2a). Around 80% of the probes are either in a gene body or its
promoter region (Supplementary Fig. 2b). The distribution of
gene region and the distances to transcriptional start sites (TSSs)
are comparable between human and mouse (Supplementary
Fig. 2c, d). CpGs on the mammalian array cover 6871 human and
5659 mouse genes when each CpGs is assigned uniquely to its
closest gene neighbor. The gene coverage is uneven: while on
average a gene is covered by 2 CpGs some genes are covered by as
many as 150 CpGs. In mouse, 73% of CpGs (21,664) were
assigned to a human orthologous genes (Supplementary Fig. 2e),
suggesting many CpG measurements from the array in mice will
be informative to humans (and vice versa).

Gene sets represented in mammalian array. We analyzed gene
set enrichments of all genes that are represented on the mam-
malian array using GREAT15. Significant gene sets are implicated
in development, growth, transcriptional regulation, metabolism,
cancer, mortality, aging, and survival (Supplementary Fig. 3). We
also used the TissueEnrich16 software to analyze gene expression
(see “Methods” section). The majority of mammalian methylation
array probes (~65%) are adjacent to genes that do not exhibit
clear tissue specificity in considered human and mouse tissues
(Supplementary Fig. 4a, b). However, the mammalian array also
contains CpGs that are adjacent to genes that are expressed in a
tissue-specific manner, notably testis and cerebral cortex (Sup-
plementary Fig. 4c).

CpG island and methylation status. We analyzed the CpG island
and DNA methylation properties of CpGs on the mammalian
array. An average of 5563 (19%) of probes in the mammalian
array are located in CpG islands per species based on an analysis
of 143 mammalian species (Fig. 3a). We used a CpG island
detection algorithm (gCluster software17) to determine CpG
island status (Supplementary Data 4). We also analyzed human
DNA methylation levels for fractional methylation called from
whole-genome bisulfite sequencing data across 37 human
tissues18 (Supplementary Fig. 5). This confirmed that the mam-
malian methylation array target CpGs across a wide range of
fractional methylation levels.

Chromatin and conservation state annotation. We annotated
the mammalian probes with a universal chromatin state anno-
tation, which provides a single annotation to the genome per
position based on epigenomic data from more than 100 human
cell and tissue types19 (Fig. 3b and Supplementary Fig. 6b). The
mammalian methylation array had the strongest enrichments
with CpGs for specific states that locate to TSSs, promoter
flanking regions, bivalent promoters, or polycomb repressed
regions (Fig. 3b). A separate analysis of 25 human chromatin
states for 127 cells and tissues20,21 showed that most per cell or
tissue type chromatin state annotations are represented on the
mammalian methylation array but at different degrees (Supple-
mentary Fig. 6a). Among enhancers, CpGs had greater overlap
with brain and neurosphere than other tissue groups.

While the mammalian methylation array was specifically
designed to profile CpGs in highly conserved stretches of DNA
based on sequence conservation, we assessed whether there was
also evidence of conservation at the functional genomics level
using human-mouse LECIF scores22. The human-mouse LECIF
scores quantify evidence of conservation between human and

mouse at the functional genomics level using chromatin state and
other functional genomic annotations from both species. In
general, probes on the array had higher LECIF scores than
regions that align between human and mouse in general (Fig. 3c).

As expected the CpGs on the mammalian array cover genomic
regions that are annotated to be highly conserved according to
four annotations based on constrained sequence elements23–26

(Supplementary Data 5). Compared to the background of all 28
million CpGs in the human genome, the 37K mammalian CpGs
had fold enrichments ranging from 10.2 to 16.4 fold for the
different constrained sequence element sets. We carried out
additional enrichment studies with respect to ConsHMM
conservation states, which are based on the combinatorial and
spatial patterns of which species align to and match the human
reference genome at each nucleotide27. We used ConsHMM
conservation state annotations of the human genome defined
based on a 100-way vertebrate alignment. Only six ConsHMM
conservation state annotations out of 100 states from the
vertebrate alignment showed any enrichment (Supplementary
Data 5). The four states which showed the strongest enrichment
(11.6–37.2 fold) were all previously associated with a high
frequency of mammalian and at least some non-mammalian
vertebrates aligning to and matching the human reference
genome27. These results demonstrate the large representation of
conserved CpGs on the array.

Mammalian array study of calibration data. To validate the
accuracy of the mammalian methylation array we applied it to
synthetic DNA methylation samples for three species: human
(n= 10 arrays), mouse (n= 20), and rat (n= 15), where the
methylation levels were known. The DNA samples from human,
mouse, and rat were engineered such that the fractional methy-
lation at all CpG sites in their genomes were ~0%, 25%, 50%,
75%, and 100% (see “Methods” section). The calibration data thus
allow us to define a benchmark annotation measure, Pro-
portionMethylated, with ordinal values 0, 0.25, 0.5, 0.75, 1. After
applying the SeSaMe normalization package28 and subsequently
removing the CpGs that were not designed to map to that species,
we find that the beta values of the probes are roughly centered
around the benchmark measure (ProportionMethylated) in
humans, mice, and rats (Fig. 4a–c).

For each species and each CpG, we computed the correlation of
DNA methylation levels with the benchmark variable Proportion-
Methylated across the arrays. High positive correlations would be
evidence for the accuracy of the array, which is indeed what we
observe. CpGs that map to the human, mouse, and rat genome
have a median Pearson correlation of r= 0.986 with an
interquartile range of [0.96,0.99], r= 0.959 with IQR= [0.92,0.98],
and r= 0.956 with IQR= [0.91,0.98] with the benchmark variable
ProportionMethylated in the respective species (Supplementary
Data 6). The numbers of CpGs on the mammalian array that pass
a given correlation threshold (irrespective of the mappability to a
given species) are reported in Table 1. A few severely outlying
CpGs were removed by discarding CpGs whose correlation with
the benchmark variable ProportionMethylated was below 0.8
(Fig. 4d–f). We are distributing the methylation data and results
from our calibration data analysis in three species (Supplementary
Data 6). These calibration results will allow users to focus on
cytosines whose methylation have a high correlation with the
benchmark data in human, mice, or rat.

We also compared the SeSaMe normalization with the noob
normalization that is implemented in the minfi R package29,30.
SeSaMe slightly outperforms minfi when it comes to the number
of CpGs that exceed a given correlation threshold with
ProportionMethylated (Table 1).
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Comparison with the human EPIC methylation array study in
calibration data. We compared the mammalian methyla-
tion array to the human EPIC methylation array, which profiles
866k CpGs in the human genome. Some of the EPIC array probes
are expected to apply to the mouse and rat genomes as well31. To
facilitate a comparison between the mammalian methylation
array and the human EPIC array for non-human samples, we
applied the latter to calibration data from mouse (n= 15 arrays)

and rat (n= 10). The same engineered DNA methylation samples
were analyzed on the human EPIC array as on the mammalian
methylation array above. In particular, we were able to correlate
each CpG on the EPIC array with a benchmark measure (Pro-
portionMethylated) in mice and rats (Table 1). Only 2356 (out of
866k) CpGs on the human EPIC exceed a correlation of 0.90 with
ProportionMethylated in mice. By contrast, 24,050 CpGs on the
mammalian array exceed the same correlation threshold in mice.
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Fig. 3 CpG island and chromatin state analysis of mammalian methylation probes. We characterize the CpGs located on the mammalian methylation
array regarding a CpG island status in different phylogenetic orders, b chromatin state analysis, and c Learning Evidence of Conservation from Integrated
Functional genomic annotations (LECIF) score of evidence of human-mouse conservation at the functional genomics level26. a Each boxplot depicts the
median number of CpGs that map to CpG islands in mammalian species of a given phylogenetic order (x axis). The lower and upper bound of each box
visualizes the lower and upper quartile of the distribution. The notch around the median number of CpGs (horizontal line inside box) depicts the 95%
confidence interval. The whiskers extend to the most extreme data point, that is, no more than 1.5 times the interquartile range from the box. The numbers
above each box report the number of analyzed species in each order, e.g., n= 22 primate species. bMammalian methylation array enrichment for universal
chromatin state annotations. (Left) Distribution of probe overlap with a universal chromatin state annotation by the stacked modeling approach of
ChromHMM applied to data from more than 100 cell or tissue types19. Bars are colored based on their state corresponding state group as indicated by the
legend on right. (Right) The same as left, but showing the fold enrichments of the state relative to a uniform background. The strongest enrichment is seen
for some bivalent promoter states. A version of the figure with individual states labeled can be found in Supplementary Fig. 6. TSS, transcriptional start site;
DNase, DNase I hypersensitivity; znf, zinc finger genes; Het, heterochromatin. c Comparison of distribution of LECIF score for probes on the array (orange)
and aligning bases between human and mouse (blue). The LECIF score has been binned as shown on the x axis, and the fraction of probes or aligning bases
with scores in that bin are shown on the y axis.
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Similarly, the mammalian array outperforms the EPIC array in
rats: only 6159 CpGs on the EPIC array exceed a correlation of
0.90 with ProportionMethylated compared with 22,427 CpGs on
the mammalian array. The results are similar for the correlation
thresholds of 0.85 and 0.95 (Table 1).

The EPIC array contains 5574 CpGs that were also prioritized
by the CMAPS algorithm based on high levels of conservation,
excluding the 1986 CpGs from human biomarker studies. Out of
these 5574 shared CpGs, 4341 and 3948 CpGs map to the mouse
and rat genome, respectively. While human EPIC probes target
the same CpG, the corresponding mammalian probe is typically
different from the EPIC probe due to differences in probe type
(type I versus type II probe), DNA strand, or the handling of
mutations across species degenerate bases. In the following
comparison, we limited the analysis to the 4341 and 3948 probes
when analyzing calibration data from mice or rats, respectively.
We find that the mammalian array probes are better calibrated
than the corresponding EPIC array probes when applied to
mouse and rat calibration data according to two different analyses
that focus on shared CpGs between the two platforms. First, the
mammalian array outperforms the EPIC in terms of the
agreement between observed and expected mean methylation
levels across the shared CpGs (r= 0.96 for the mammalian array
and r= 0.79 for the EPIC array, Fig. 5). In a separate analysis, we

correlated each of the shared CpGs with the benchmark value
ProportionMethylated resulting in a median correlation of 0.72
for both mice and rat calibration data generated on the EPIC
array. For the same probes, we observe median correlations of
0.94 and 0.93 for mice and rat calibration data generated on the
mammalian array (SeSaMe normalization), respectively.

For human-to-mouse comparative DNA methylation studies, a
potential alternative approach is to use the EPIC array for human
samples and the mouse DNA methylation array for mouse
samples and then analyze homologous CpG sites between the
arrays. However, of the 286,640 CpG sites on the mouse array, we
found only 14,258 sites on the mouse array aligned to the human
genome and overlapped CpG sites on the EPIC array according to
a liftOver analysis. A similar liftOver analysis with the 450K array
instead of the EPIC array reveals only 8511 sites. In contrast,
29,637 human CpGs on the mammalian arrays also map to mouse
according to a more conservative QuasR analysis of probe
sequences. The mammalian array thus offers the advantages for
human-mouse studies of both greater CpG coverage as well as an
identical set of probe designs for the measurement.

Comparison with RRBS and WGBS data. To evaluate the
agreement of mammalian methylation array data with

Fig. 4 Distribution of beta values after SeSaMe normalization. a–c Distribution of beta values (relative intensity) of all probes on the array after SeSaMe
normalization for a human samples, b mouse samples, and c rat samples. These cytosines are based on the CMAPS design criteria, i.e., a n= 35,453
human cytosines, b n= 21,900 mouse cytosines, c n= 18,157 rat cytosines. d–f Analogous to a–c but based on mappable cytosines from QuasR and after
using calibration data to identify and remove severely outlying cytosines. Specifically, the lower panels use respective subsets of cytosines whose Pearson
correlation with Percent methylated exceeds 0.8, which was: n= 37,152 CpGs for human, n= 27,966 for mouse, and n= 25,669 for rat. Beta-valued
distributions are heteroscedastic in that distributions at a fractional methylation value close to 0.5 are expected to have a higher variance than those at
fractional value close to zero or 1. Based on the binomial distribution, one would expect that the variance and mean value across of the SeSaMe normalized
beta values across designed CpGs follow the following relationship: variance = constant*mean*(1 − mean). Indeed, in a separate analysis, we find that the
left-hand side (variance) is highly correlated with the mean*(1 − mean) in mice (Pearson correlation r= 0.92), rats (r= 0.95), and humans (r= 0.86). It
can be advisable to use statistical models and distributions that model the over-dispersion inherent in these data. Both array and sequencing methods that
use bisulfite conversion followed by amplification can lead to biases in the ratio of converted to unconverted strands (beta values)67, which could explain
the broad peaks we see in the estimate of calibration data. Each boxplot visualizes the median value and the upper and lower quartile. The whiskers extend
to the most extreme data point, that is, no more than 1.5 times the interquartile range from the box.
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sequencing-based data, we used mammalian methylation array
data from blood samples of horses32 and cattle33 to calculate
mean methylation levels for each CpG in the respective species.
Next, these mean values in blood were correlated to corre-
sponding mean values from reduced representation bisulfite
sequencing (RRBS) from horses34 and whole-genome bisulfite
sequencing data from cattle35,36. Even though these data sets
come from different animals, from different labs, and were gen-
erated on different genomic platforms, we observed high corre-
lations between the mean values in blood: Pearson r= 0.93
between horse RRBS and mammalian methylation array and
r= 0.85 between cattle WGBS and mammalian methylation array
data (Fig. 6). Overall, we find that data generated on the mam-
malian methylation array are highly correlated with those gen-
erated by RRBS and WGBS. These results are consistent with
what was found by a separate group when correlating mammalian
methylation array data with RRBS from the same 80 mouse
frontal cortex DNA samples, which found a correlation of 0.79
that increased up to 0.84 when imposing specific read depth
filters37.

Mammalian array analysis of bats. The fact that the mammalian
array applies to species whose sequence is unknown is illustrated
by our large-scale study in bats that presented highly accurate
epigenetic age estimators (clocks) even for bat species whose
sequence is unknown38. Here we use the same data to illustrate
that mean methylation values are highly conserved across both
sequenced and non-sequenced bat species. First, we identified
21,555 CpGs that map to at least 9 different bat species according
to our mappability files. For those CpGs, we calculated mean
methylation levels in 16 bat species whose genome sequence was
known (species Carollia perspicillata, Desmodus rotundus, Epte-
sicus fuscus, Molossus molossus, Myotis brandtii, Myotis lucifugus,
Myotis myotis, Nyctalus noctula, Phyllostomus discolor, Pteropus
rodricensis, Pteropus vampyrus, Rhinolophus ferrumequinum,
Rhynchonycteris naso, Rousettus aegyptiacus, Saccopteryx

bilineata, and Tadarida brasiliensis). The median pairwise cor-
relation of mean methylation levels in these sequenced species
was 0.88 ranging from 0.81 to 0.99. Second, we calculated mean
methylation levels in 12 bat species whose genome sequence was
not available at the time of this study (Antrozous pallidus, Arti-
beus jamaicensis, Cynopterus brachyotis, Eidolon helvum, Lepto-
nycteris yerbabuenae, Myotis vivesi, Nycticeius humeralis,
Phyllostomus hastatus, Pteropus giganteus, Pteropus hypomelanus,
Pteropus poliocephalus, and Pteropus pumilus). In these non-
sequenced species, the median pairwise correlation of mean
methylation levels was 0.87 ranging from 0.79 to 0.99. Overall,
these results illustrate that mean methylation levels are well-
conserved between different bat species and that pairwise corre-
lations do not depend on the sequencing status of the underlying
bat species.

Annotation for non-mammalian vertebrates. While the design
of the mammalian methylation array was motivated by and only
considered mammalian species, we conducted bioinformatics
analysis to evaluate the expected coverage of CpGs in non-
mammalian vertebrates. Specifically, we mapped the array CpGs
to several non-mammalian vertebrates, including 2 fish, 3
amphibians, 45 birds, and 17 reptiles. The median number of
probes that map to these species are 857 CpGs in fish (e.g., 1188
in Zebrafish), 4122 in amphibians (e.g., 5386 in Axolotl), 10,654
in birds (e.g., 11,124 in Emu; 9525 in Wild Turkey), and 10,643 in
reptiles (e.g., 11,563 in Saltwater crocodile) (Supplementary
Data 2). Interestingly, over 60% of these probes were aligned
adjacent to human orthologous genes, which was comparable
with mammals and corroborated the conservation of these probes
in non-mammalian vertebrates. In contrast to mammals, only
2–14% of mappable probes (medians: 11% in fish, 2% in
amphibians, 7% in birds, and 6% in reptiles) were in CpG islands.
While future studies are needed to evaluate the performance of
the mammalian array in non-mammalian vertebrates, our
bioinformatics analysis suggests that thousands of CpGs apply to
amphibians, birds, and reptiles.

Discussion
The mammalian methylation array, which was enabled by the
CMAPS algorithm for selecting conserved probes, is applicable to
all mammals. Its focus on highly conserved CpGs increases the
chances that findings in one species will translate to those in
another species. Arrays are attractive since they facilitate high
throughput operations and cost-effective measurements due to
economies of scale. Our calibration data demonstrate that the
array leads to high-quality measurements in three species:
human, mouse, and rat. Further, the calibration data show that
the mammalian methylation array greatly outperforms the
human EPIC chip when it comes to high-fidelity measurements
in mice and rats. The mammalian array thus is preferable for
most non-human applications unless high-fidelity measurements
are not needed in which case the larger content of the EPIC array
may make the latter preferable.

We hypothesize that the high precision measurements of tar-
geted CpGs on the mammalian array are due to two main rea-
sons. First, the hybridization step of arrays enables selecting for
fully bisulfite-converted DNA strands. Second, arrays provide
high effective sequencing depth of specific cytosines, which is
desirable for developing robust epigenetic biomarkers. Infinium
arrays are widely used for DNA methylation-based biomarker
studies39. Many users of Infinium arrays appreciate their ease of
use. Many labs and core facilities already have the requisite
equipment (iScan machines). Further, a large and vibrant

Table 1 Correlating DNA methylation levels with
calibration data.

No. CpGs with
cor(CpG,PropMethylated) > threshold

Mammal EPIC

Species Threshold SeSaMe Minfi Minfi

Mouse 0.85 27,868 26,944 4550
0.90 24,050 22,207 2356
0.95 16,444 12,797 604

Rat 0.85 26,425 25,779 17,650
0.90 22,427 20,989 6159
0.95 15,101 12,848 819

Human 0.85 36,438 35,761 –
0.90 34,547 33,402 –
0.95 30,327 28,445 –

We evaluated the mammalian methylation array with two different software methods for
normalization: SeSaMe and Minfi (noob normalization). The EPIC array data were only
normalized with the noob normalization method in Minfi. As indicated in the first column, the
DNA samples came from three species: mouse (n= 20 mammalian arrays; n= 15 EPIC arrays),
rat (n= 15 mammalian arrays; n= 10 EPIC arrays), and human (n= 10 mammalian arrays). For
each species, the artificial chromosomes exhibited on average 0%, 25%, 50%, 75%, and 100%
methylation at each CpG location. Thus, the variable ProportionMethylated (with ordinal values
0, 0.25, 0.5, 0.75, 1) can be considered as a benchmark/gold standard. The table reports the
number of CpGs on the array for which the Pearson correlation with the ProportionMethylation
was greater than the correlation threshold (second column) based on SeSaMe (third column)
and Minfi (fourth column) for the mammalian methylation array and Minfi for the EPIC array
(fifth column). All CpGs on the respective array were considered, i.e., 37,942 CpGs for the
mammalian array and 866k CpGs on the EPIC array. The table does not report results for EPIC
combined with the Minfi/noob normalization in humans because the underlying sample size
(n= 3) was too low (“−” denotes not available).
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research community of bioinformaticians has developed software
pipelines for Infinium arrays.

The mammalian methylation array has several limitations.
First, relatively few CpGs in a species are present on the array
(tens of thousands CpGs as opposed to millions of CpGs in a
given genome) and only a fraction of genes in a given species are
represented by that CpGs. We briefly mention that a new
expanded version of the mammalian array (denoted mammal
array 320) partly addresses this limitation in mice because it
combines the content of the mammalian array with that of the
mouse Illumina 285K array. Second, the mammalian array
focuses on CpGs in highly conserved stretches of DNA and hence
does not cover parts that are specific to a given species. Third, it
covers fewer CpGs in more distal species, particularly in marsu-
pials than in placental mammals (eutherians). Finally, the cali-
bration data suggests there are some shifts in the absolute
methylation levels detected for intermediate methylation levels,
but the relative order is preserved. The correct relative ordering of
beta values is of primary importance in most statistical tests and
analyses. Future studies should evaluate the extent the beta values
measured on the mammalian array correlate with quantitative
measurements from pyrosequencing, amplicon sequencing, or
other measurement platforms across different species40. In the
long run, bisulfite-free methods (e.g., EM-seq, TAPS) and other
sequencing-based approaches are expected to become attractive

especially as the costs of sequencing decrease and/or the
robustness of these assays improve5,36,41.

Several software tools have been adapted for use with the
mammalian methylation array that range from normalization to
higher-level gene enrichment analysis. Software tools for gen-
erating normalized data adapted for use with the mammalian
methylation array include SeSaMe and the minfi R package28,29.
We expect that other normalization methods for Infinium arrays
can be easily adapted for the use with the mammalian array39,42.
The eFORGE software, which has been adapted for use with the
mammalian array, facilitates chromatin state analysis and tran-
scription factor-binding site analysis43. Many researchers will be
interested in genome coordinates of the mammalian CpGs in
different species. Toward this end, we provide genome coordi-
nates in 159 mammalian species and 67 non-mammalian verte-
brates (birds, fish, reptiles, amphibians). This list of species will
increase as more high-quality genomes become available. Detailed
gene annotations for CpGs in many species are available
including details on gene region (e.g., exon, promoter, 5 prime
untranslated region (UTR) and CpG island status (Supplemen-
tary Data 3 and Supplementary Data 7)). For human and mice,
we also provide chromatin state annotations18–20,44 and the
LECIF score on evidence of conservation at the functional
genomics level between human and mouse22 among other
annotations on our Github page45.

Fig. 5 Calibration data: mean methylation across probes shared between the human EPIC array and the mammalian array. The mammalian methylation
array contained 5574 probes targeting the same CpG that can also be found on the human EPIC array that was not included based on being human
biomarkers. However, the mammalian array probes were engineered differently than EPIC probes so that they would more likely work across mammals. By
applying both array types to calibration data, we are able to compare the calibration of the overlapping probes in mice (a, c) and rats (b, d). Upper panels
(a, b) and lower panels (c, d) present the results for the mammalian array and the EPIC array, respectively. The benchmark measure (ProportionMethylated,
x axis) versus the mean methylation value (y axis) across 4341 CpGs that map to mice (a, c) and 3948 CpGs that map to rats (b, d). The CpGs used to
compute the mean (i) are present on the human EPIC array, (ii) present on the mammalian array, and (iii) apply to the respective species according to the
mappability analysis genome coordinate file. Sample sizes: n= 20 arrays for mice (a, c) and n= 15 arrays for rats (b, d). The title reports the Pearson
correlation coefficients and two-sided p-values calculated using a Student’s t-test.
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In other articles, we describe the application of the mammalian
methylation array to many different mammalian
species32,38,46–52. These studies already demonstrate that the
mammalian array facilitates the development of multi-species
epigenetic age estimators, which we refer to as third-generation
epigenetic clocks32,38,46–52. The mammalian methylation array
also lends itself to correlation network studies across species53.
Overall, these applications demonstrate that the mammalian
methylation array is useful for many applications.

Methods
Conserved Methylation Array Probe Selector (CMAPS). Given a multi-species
sequence alignment and reference genome, for each CpG site and each of the four
different possible probe designs, CMAPS computes an estimate of the number of
species from the alignment that could be targeted if the use of degenerate base
technology is optimized for tolerated mutations. The four-probe designs involve
each combination of probe type (Infinium I vs. Infinium II), and whether the probe
sequence is on the forward or reverse DNA strand. For each probe option, CMAPS
conducts a greedy search to select tolerated mutations, including position and
allele, that maximize species coverage for the probe. The maximum number of
degenerate bases that can be included in a probe is a function of a design score
provided by Illumina Inc. For Infinium II probes only, CpGs present in the probe
sequence count as if they are a degenerate base. More specifically, the algorithm for
determining the number of species and selecting the mutations to handle performs
the following steps for each probe design:

1. Let M be the maximum number of degenerate bases that can be designed
into a specific probe, based on the design score, probe type, and CpG
content.

2. For each species s in the alignment, let Ms be the number of mismatches in
the alignment between that species and the human reference sequence of the
probe

a. If Ms >M or the species does not have the target CpG, continue to next
species.

b. If Ms ≤M,

i. For each mismatch in species s, add each degenerate position to a
multiset P.

ii. Add the species to a set F of feasible species to target with this probe.

3. For all |P| choose M combinations of degenerate positions of size M selected
from P:

a. For each unique position in a combination S

i. For each possible alternate nucleotide, count the number of species in
F that contain that alternate nucleotide.

ii. Pick the top k alternate nucleotides based on the count in i., where k
is the number of occurrences of the current position in S.

b. Compute the number of species that match the human reference when
accounting for the degenerate substitutions handled in a.

4. Select a combination of positions in S that maximizes 3b.

Our procedure for selecting the specific targeted CpGs and probe designs are
described in the results section. We note that 29 of the CpGs selected for the
mammalian methylation array based on the conservation criteria (using the
sequence alignment) overlap with the human biomarker CpGs. The design of the
probes targeting them could differ, however. The probe names of different probes
targeting the same CpG are distinguished by extensions ‘.1’ and ‘.2’. For example,
cg00350702.1 and cg00350702.2 target the same cytosine but use different probe
chemistry. Probe sets targeting an additional 13 non-human biomarker CpGs and
one human biomarker (cg10054641) also appeared twice on the array. The array
contains four probes that measure cytosines that are not followed by a guanine,
selected by human biomarkers, which are indicated with a ‘ch’ instead of a ‘cg’.

The CMAPS algorithm was applied with human hg19 as the reference genome
and using the Multiz alignment of 99 vertebrates with the hg19 human genome
downloaded from the UCSC Genome Browser7,54. For the purpose of designing the
mammalian array, only the 62 mammalian species in this alignment were
considered and 16 for the mappability analysis described below. However, the
current version of the mappability analysis provides genome coordinates for 159
mammalian species along with 67 non-mammalian species.

The mammalian methylation array includes an additional 62 human SNP
markers (whose probe names start with ‘rs’ for human studies), which can be used
to detect plate map errors when dealing with multiple tissue samples collected from
the same human individual. In addition, the mammalian array inherits control
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Fig. 6 Comparison with RRBS data from horse blood and WGBS from cattle blood. Each dot corresponds to a cytosine. Mean methylation level in blood
according to the mammalian array (x axis) versus corresponding mean values according to a reduced representation bisulfite sequencing and b whole-
genome bisulfite sequencing in blood from horse and cattle, respectively. The mammalian methylation array data come from horse blood32 and cattle
blood33. a The y axis reports the mean methylation levels in RRBS data from n= 18 whole blood samples from horses34. The RRBS sequence reads were
downloaded from the SRA database under bioproject No. PRJNA517684 (processing described in methods). The analysis was restricted to 786 CpGs that
could be mapped to both platforms. b mean methylation levels in WGBS data (y axis) from n= 2 blood samples from Holstein cattle35,36. The WGBS data
are available from Gene Expression Omnibus (GSE147087). Only CpGs with sufficient read count (at least 3) were considered. The analysis was restricted
to the 11,954 CpGs that could be mapped in both platforms. The blue text reports Pearson correlation coefficients and two-sided p-values calculated using a
Student’s t-test. The two-sided p-values are at the numerical limitation of the correlation test function in R, thus capped at p < 2.2e−16. The blue line and
shaded area correspond to a regression line and the 95% confidence interval, respectively, as determined by the default values of the R function
geom_smooth.
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probes from the human EPIC array. They were composed of bisulfite conversion
control, extension control, normalization, negative control, color control probes2.
Neither control probes nor SNP markers are expected to work in non-human
species.

Mapping probes to genomic coordinates. We used two different approaches for
mapping probes to genomes. The first approach (BSbolt software) was primarily
used in designing the array. Subsequently, we adopted a second mappability
approach (QuasR software) that allowed us to map more probes.

Mappability approach 1: BSBolt. For version 1 of our mappability analysis (i.e.,
for designing the array), we applied the BSBolt mapping approach to 16 high
quality genomes from: Baboon (papHam1), Cat (felCat5), Chimp (panTro4), Cow
(bosTau7), Dog(canFam3), Gibbon(nomLeu3), Green Monkey (chlSab1), Horse
(equCab2), Human (hg19), Macacque (macFas5), Marmoset(calJac3), Mouse
(mm10), Rabbit (oryCun2), Rat (rn5), Rhesus Monkey (rheMac3), Sheep (oviAri3).

We utilized the BSBolt software55 package from https://github.com/NuttyLogic/
BSBolt to perform the alignments. For each species’ genome sequence, BSBolt
creates an in silico bisulfite-treated version of the genome. The set of nucleotide
sequences of the designed probes, which includes degenerate base positions, was
explicitly expanded into a larger set of nucleotide sequences representing every
possible combination of those degenerate bases. For Infinium I probes, which have
both a methylated and an unmethylated version of the probe sequence, only the
methylated version was used as BSBolt’s version of the genome treats all CpG sites
as methylated. The initial 37 K probe sequences resulted in a set of
184,352 sequences to be aligned against the various species genomes. We then ran
BSBolt with parameters Align -M 0 –DB [path to bisulfite-treated
genome] -BT2 bowtie2 -BT2-p 4 -BT2-k 8 -BT2-L 20 -F1 [Probe
Sequence File] –O [Alignment Output File] –S to align the enlarged
set of probe sequences to each prepared genome.

As we were not interested in the final BSBolt style output, we made a small
modification to the code to retain its temporary output of alignment results in sam
format. From these files, we collected only alignments where the entire length of
the probe perfectly matched to the genome sequence (i.e., the CIGAR string 50M
and flag XM= 0). Then, for each genome we collapsed all the sequence variant
alignments for each probeID down to a list of loci for that genome and for
that probe.

Mappability approach 2: QuasR. For version 2 of our mappability analysis, we
aligned the probe sequences to all available mammalian genomes and 67 available
non-mammalian vertebrates in ENSEMBL and NCBI Refseq databases using the
QuasR package56. The Axolotl genome was downloaded from https://www.axolotl-
omics.org website57,58. The fasta sequence files for each genome were downloaded
from those public databases. The alignment assumed that the DNA has been
subjected to a bisulfite conversion treatment. For each species’ genome sequence,
QuasR creates an in silico-bisulfite-treated version of the genome. The probes were
aligned to these bisulfite-treated genome sequences, which does not consider C-T
as a mismatch. The alignment was ran with QuasR (a wrapper for Bowtie2) with
parameters -k 2–strata–best -v 3 and bisulfite= "undir" to align the
enlarged set of probe sequences to each prepared genome. From these files, we
collected the best candidate unique alignment to the genome. Additionally, the
estimated CpG coordinates at the end of each probe was used to extract the
sequence from each genome fasta files and exclude any probes with mismatches in
the target CpG location.

Genomic loci annotations. Gene annotations (gff3) for each genome considered
were also downloaded from the same sources as the genome. Following the
alignment, the CpGs were annotated to genes based on the distance to the closest
TSS using the Chipseeker package59. Genomic location of each CpG was cate-
gorized as either intergenic region, 3′ UTR, 5′ UTR, promoter (minus 10 kb to plus
100 bp from the nearest TSS), exon, or intron. The unique region assignment is
prioritized as follows: exons, promoters, introns, 5′ UTR, 3′ UTR, and intergenic.

Additional genomic annotations, including human ortholog ENSEMBL IDs, were
extracted for a subset of genomes with annotations available from the BioMart
ENSEMBL database60. We compared the similarity of a candidate gene for each probe
in each non-human species with human using human ortholog ENSEMBL IDs. For
each probe, we examined if the assigned species ENSEMBL ID is identical to human-
to-other-species-orthologous ENSEMBL ID in the human mappability (annotation)
file. Orthologous comparison with human was done for genomes that could be
matched to human genome by targetSpecies_homolog_associated_gene_name in
Biomart using the getLDS() function.

Cell and tissue-specific chromatin state annotations were based on the 25-state
ChromHMM model based on imputed data for 12-marks in human18,21. The
universal ChromHMM chromatin state annotations that were not specific to a
single human cell or tissue type were from ref. 19. The human-mouse LECIF score
was from ref. 22.

To assess the coverage and enrichment of the array for a given constrained
sequence element set annotation or ConsHMM conservation state, we used
bedtools intersect61 to first determine for each CpG base if the base overlaps with

the constrained element or state and if the base is included in the array. We then
aggregated the results to compute the number of annotated CpG bases and the
number of annotated CpG bases on the array. GERP++26 element annotations
were downloaded from http://mendel.stanford.edu/SidowLab/downloads/gerp,
PhastCons element23 annotations were downloaded from UCSC Table Genome
Browser, and SiPhy-pi and SiPhy-omega element annotations25 were obtained
from https://www.broadinstitute.org/mammals-models/29-mammals-project-
supplementary-info. ConsHMM conservation state annotations27 were obtained
from https://github.com/ernstlab/ConsHMM/.

CpG island annotation. We called CpG islands using the gCluster algorithm62

with the default parameters. This algorithm uses clustering methods to identify the
sequences that have high G+ C content and CpG density. Besides CpG island
status, this algorithm calculated several other attributes including length, GC
content, and CpG density for each defined island. The outcome of this algorithm
was a BED file that was used to annotate the probes using the annotatr package in
R by checking the overlap of the aligned probes and CpG island genomic
coordinates.

Bisulfite sequencing data from the Roadmap Epigenomics Consortium. We
downloaded the fraction methylated values based on whole-genome bisulfite
sequencing data from 37 different cells and tissues types from the Roadmap Epi-
genomics Consortium (http://egg2.wustl.edu/roadmap/data/byDataType/
dnamethylation/WGBS/FractionalMethylation.tar.gz)18. For each CpG, we aver-
aged the fractional methylation values across the Roadmap samples.

Reduced representation bisulfite sequencing data for horses. The raw RRBS
sequence FASTA files were downloaded from the SRA database under bioproject
No. PRJNA517684. However, since the processed data were not available, we
realigned and processed data based on EquCab3.0.100 genome assembly. The
alignment and processing of the data were done in Galaxy server with the default
settings of bwa-meth63 and MethylDackel packages (https://github.com/dpryan79/
MethylDackel). Next, we limited the analysis to the CpGs with the exact coordi-
nates matching the horse annotations in mammalian methylation array.

Whole-genome bisulfite sequencing data for cattle. The Bismark generated
CpG reports were downloaded from the NCBI Gene Expression Omnibus under
accession number GSE147087. The read mapping and DNA methylation calling
were based on ARS-UCD1.2 assembly, same as the mammalian methylation array.
We calculated the percent methylation at each chromosomal coordinate based on
the methylated and unmethylated counts and limited the analysis to the CpGs with
at least a read count of 3 and the exact coordinates matching the cattle annotations
in the mammalian methylation array.

GREAT analysis. We applied the GREAT analysis software tool15 to conduct gene
set enrichment analysis for genes near CpGs on the array in human and mouse.
The GREAT software performs both a binomial test (over genomic regions) and a
hypergeometric test over genes when using a whole-genome background. We
performed the enrichment based on default settings (Proximal: 5.0 kb upstream,
1.0 kb downstream, plus Distal: up to 1000 kb) for gene sets associated with GO
terms, MSigDB, PANTHER, and KEGG pathway. To avoid large numbers of
multiple comparisons, we restricted the analysis to the gene sets with between 10
and 3000 genes. We report nominal p-values and two adjustments for multiple
comparisons: Bonferroni correction and the Benjamini–Hochberg false discovery
rate (Supplementary Table S6).

Tissue enrichment analysis. The enrichment of tissue-specific genes was done
with the teEnrichment function in the TissueEnrich R package16 limited to genes
and tissues in the human protein atlas64 and the mouse ENCODE65 database.

Normalization methods. Two software scripts are currently available for
extracting beta values from raw signal intensities, based on Minfi29 and SeSaMe28,
respectively. Both methods use the noob method66 for background subtraction. For
SeSaMe, the probe’s hybridization and extension performance was evaluated using
Infinium-I probe out-of-band measurements (the pOOBAH method)28. Users can
use the detection p-values for each CpG to filter out non-significant methylation
readouts from probes unlikely to work in the target species.

Calibration data. We generated methylation data on two different platforms: the
mammalian methylation array and the human EPIC methylation array. The DNA
samples from each species were enzymatically manipulated so that they would
exhibit 0%, 25%, 50%, 75%, and 100% percent methylation at each CpG location,
respectively. We purchased premixed DNA standards from EpigenDx Inc (pro-
ducts 80-8060H-PreMixHuman, 80-8060M-PreMixMouse, and Standard80-
8060R-PreMixRat Premixed Calibration Standard). The variable Pro-
portionMethylated (with ordinal values 0, 0.25, 0.5, 0.75, 1) can be interpreted as a
benchmark for each CpG that maps to the respective genome. Thus, the DNA
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methylation levels of each CpG are expected to have a high positive correlation
with ProportionMethylated across the arrays measurement from a given species.
The mammalian array was applied to synthetic DNA data from 3 species: human
(n= 10 mammalian arrays, 2 per methylation level), mouse (n= 20, 4 per
methylation level), and rat (n= 15, 3 per methylation level). Similarly, the human
EPIC array was applied to calibration data from mouse (n= 15 EPIC arrays, 3 per
methylation level) and rat (n= 10, 2 per methylation level). The EPIC array data
were normalized using the noob method (R function preprocessNoob in minfi).

Overlap of human and mouse arrays. We aligned mouse DNA methylation array
sites to the human genome (build hg19, via the UCSC liftOver tool available at
https://genome.ucsc.edu/cgi-bin/hgLiftOver with minMatch = 0.1), revealing
alignment for 201,461 sites. We then overlapped these aligned sites with human
EPIC DNA methylation array positions and separately 450K DNA methylation
array positions.

Bat methylation analysis. For the bat methylation analysis, we used methylation
data from a recent large-scale study of bat species38.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. The chip manifest file and genome annotations of the CpGs can be
found on Github45 at https://github.com/shorvath/MammalianMethylationConsortium/
tree/v1.0.0. The calibration data generated in this study have been deposited in the Gene
Expression Omnibus database under accession codes GSE174567 and GSE174568. The
bat methylation data are available under accession code GSE164127. The horse array
data32 are available under accession code GSE174767. The reduced representation
bisulfite sequencing from horses34 can be downloaded from the SRA database under
bioproject No. PRJNA517684. The whole-genome bisulfite sequencing data from
cattle35,36 can be downloaded under accession code GSE147087. The whole-genome
bisulfite sequencing data from 37 different tissue types can be downloaded from the
Roadmap Epigenomics Consortium18 at http://egg2.wustl.edu/roadmap/data/
byDataType/dnamethylation/WGBS/FractionalMethylation.tar.gz. We used genome
annotations from ENSEMBL [https://www.ensembl.org/index.html]. The human-mouse
LECIF score22 can be downloaded from https://github.com/ernstlab/LECIF/. The
universal ChromHMM chromatin state annotations can be downloaded from https://
github.com/ernstlab/full_stack_ChromHMM_annotations. The per cell or tissue type
specific chromatin state annotations in human can be downloaded from https://
egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/
imputed12marks/jointModel/final/18,21. The ConsHMM conservation state annotations
can be downloaded from https://github.com/ernstlab/ConsHMM/27. The constrained
element annotations can be downloaded from http://mendel.stanford.edu/SidowLab/
downloads/gerp (GERP++)26, https://www.broadinstitute.org/mammals-models/29-
mammals-project-supplementary-info (SiPhy-omega and SiPhy-omega)25, and https://
genome.ucsc.edu/cgi-bin/hgTables (PhastCons)23. The cattle data generated on the
mammalian array were not generated for this study. These data are presented in another
article33 and can be requested from SH. The mammalian methylation array
(HorvathMammalMethylChip40) is registered at the NCBI Gene Expression Omnibus
(GEO) as platform GPL28271. The mammalian methylation array can be purchased
from the non-profit Epigenetic Clock Development Foundation (https://
clockfoundation.org/). A subset of annotations of the array can also be found in
Supplementary Data 7. Source data are provided with this paper.

Code availability
The CMAPS source code v1.0.0 is available from https://github.com/shorvath/
MammalianMethylationConsortium/tree/v1.0.0. A vignette on using the mammalian
methylation array with SeSaMe is available from https://bioconductor.org/packages/
release/bioc/vignettes/sesame/inst/doc/mammal.html.
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