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Localized Brain Volume and White Matter Integrity Alterations in
Adolescent Anorexia Nervosa

Guido K.W. Frank, M.D., Megan E. Shott, B.S., Jennifer O. Hagman, M.D., and Tony T. Yang,
Ph.D., M.D.
Dr. Frank, Ms. Shott, and Dr. Hagman are with the University of Colorado Anschutz Medical
Campus, School of Medicine. Dr. Yang is with the University of California San Francisco

Abstract

Objective—The neurobiological underpinnings of anorexia nervosa (AN) are poorly understood.

In this study we tested whether brain gray matter (GM) and white matter (WM) in adolescents

with AN would show alterations comparable to adults.

Method—We used magnetic resonance imaging to study GM and WM volume, and diffusion

tensor imaging to assess fractional anisotropy for WM integrity in 19 adolescents with AN and 22

controls.

Results—Individuals with AN showed greater left orbitofrontal, right insular, and bilateral

temporal cortex GM, as well as temporal lobe WM volumes compared to controls. WM integrity

in adolescents with AN was lower (lower fractional anisotropy) in fornix, posterior frontal, and

parietal areas, but higher in anterior frontal, orbitofrontal, and temporal lobes. In individuals with

AN, orbitofrontal GM volume correlated negatively with sweet taste pleasantness. An additional

comparison of this study cohort with adult individuals with AN and healthy controls supported

greater orbitofrontal cortex and insula volumes in AN across age groups.

Conclusions—This study indicates larger orbitofrontal and insular GM volumes, as well as

lower fornix WM integrity in adolescents with AN, similar to adults. The pattern of larger

anteroventral GM and WM volume as well as WM integrity, but lower WM integrity in posterior

frontal and parietal regions may indicate that developmental factors such as GM pruning and WM

growth could contribute to brain alterations in AN. The negative correlation between taste

pleasantness and orbitofrontal cortex volume in individuals with AN could contribute to food

avoidance in this disorder.
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Introduction

Anorexia nervosa (AN) is an eating disorder (ED) associated with intense fear of weight

gain, and perception of being overweight despite severe emaciation from self-driven food

refusal.1 It is the third most common chronic illness among adolescents2 with a mortality

rate 12 times higher than the death rate associated with all causes of death for females 15–24

years old.3 AN shows a difficult to disentangle interplay between neurobiological,

psychological and environmental factors4 and little is known about brain biomarkers in

children and adolescents with AN.

In the past, functional brain imaging studies implicated striatum, insula, anterior cingulate,

amygdala, and orbitofrontal cortex (OFC) in AN, brain regions that contribute to taste and

reward processing.5,6 The mechanisms for those alterations remain unclear, but brain gray

(GM) and white matter (WM) might underlie altered brain function and behavior.7

Most structural brain imaging studies in EDs come from adult samples and a recent meta-

analysis found the available data “inconclusive.”8 Early studies in youth and adults

suggested lower total GM and WM volume, 9–12 while studies after recovery in adults found

lower13,14 or normal15,16 total brain tissue volumes.8 Studies in adult AN assessing regional

volume differences indicated lower GM volumes in insula, frontal operculum, occipital,

medial temporal, and cingulate cortex, while one recent study found larger dorsolateral

prefrontal GM volume.17–21 After long-term recovery regional brain-tissue volumes in

adults with ED history were normal.15 Very few brain structure studies in adolescent AN

have been conducted8: One study in mostly adolescents found lower GM in frontal,

temporal, parietal, occipital, and cerebellar areas.22 A study in adolescent AN16 that found

greater total GM compared to controls, but lower temporal, parietal, frontal, and cingulate

cortex volumes, indicated that the rate of localized GM development could be different

between groups.

Only some studies corrected for age or total intracranial volume (TIV) and effects of

comorbid diagnoses or medication were often not taken into account. Not taking TIV into

account could miss group differences pertaining to the more static body size related cranial

vault, and comorbid anxiety and depression have been associated with GM alterations

independent from an AN diagnosis.23 Furthermore, nutritional status is associated with

quickly occurring GM and WM changes.24 After only 2–3 days of dehydration GM and

WM volumes are significantly lower, while hyperhydration is associated with higher GM

and WM volumes.24 All those factors may contribute to inconsistent results across studies.

Recently25 we found in adult AN in a nutritionally highly controlled environment and AN

after long term recovery, correcting for TIV, medication use and comorbidity, larger left

orbitofrontal cortex gyrus rectus GM volume that correlated with perceived taste

pleasantness, as well as larger right insula volume. Those results suggested that altered
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orbitofrontal and insula cortex volumes could be trait markers for AN related to altered

reward function.26–28

Another brain imaging method, diffusion tensor imaging (DTI),29 maps water diffusivity

along WM axons, expressed as fractional anisotropy (FA)30 and is considered a measure of

axon integrity related to myelination, and density. A second measure, the apparent diffusion

coefficient (ADC), measures water diffusivity at the voxel level and higher ADC indicates

dispersed water diffusion reflecting cell damage.30 Commonly, high ADC reflecting cell

disruption is associated with low axon integrity and FA. One study showed lower fimbria-

fornix WM integrity that was related to trait anxiety31 in adult AN compared to controls,

while a study in mixed ill and recovered adult AN found lower FA in the posterior thalamic

radiation.32

In this study we tested the following hypotheses: 1. Larger left orbitofrontal gyrus rectus as

well as right insula volumes, associated with adult AN, are present in adolescents with AN;

2. Orbitofrontal cortex volume predicts taste pleasantness perception in both individuals

with AN and control adolescents, and 3. Adolescents with AN have lower WM integrity in

the fimbria fornix similar to our previous study in adults, which could point to altered

reward processing pathways.33

Method

Subjects

Nineteen individuals with AN (17 restricting-type and 2 binge/purge-type) and 22 healthy

control adolescent girls who were similar in age participated in the study. Individuals with

AN were recruited from the Children’s Hospital Colorado Eating Disorders Program. The

study was approved by the Colorado Multiple Institutional Review Board. Individuals with

AN were within 1–2 weeks of inpatient hospital treatment, were closely supervised and

followed the program meal plan to avoid acute effects of starvation and dehydration. Control

adolescents were recruited through local advertisements. Participants were administered the

Computerized Diagnostic Interview Schedule for Children (C-DISC) for DSM-IV

diagnoses.34 All participants were right-handed, without history of head trauma,

neurological disease, or major medical illness.

In addition, we compared the adolescents of this study with the adult sample (AN: n=19,

age=23.1±5.8 years; control individuals: n=24, age=27.4±6.3 years) from our previous

study.25

Behavioral Measures

Study participants completed as described previously35: 1. Eating Disorder Inventory–3

(EDI-3) for Drive for Thinness (DT), Bulimia (B), and Body Dissatisfaction (BD). 2.

Temperament and Character Inventory (TCI) for Novelty Seeking (NS) and Harm

Avoidance (HA). 3. Spielberger State and Trait Anxiety Inventory (STAI). 4. Beck

Depression Inventory (BDI). 5. revised Sensitivity to Reward (SR) and Punishment (SP)

Questionnaire (SPSRQ). 6. Rating of 1 molar sucrose and a control solution (slightly salty
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resembling saliva) for sweetness and pleasantness on 9-point Likert scales (0, not sweet/

pleasant at all to 9, extremely sweet/pleasant).

MRI Acquisition for GM, WM

Structural brain images were acquired on a GE Signa 3T scanner, axial 3-dimensional T-1

weighted magnetization-prepared rapid acquisition gradient echo (spoiled gradient recall,

SPGR, field of view 22 cm, flip angle 10°, slice thickness 1.2 mm, scan matrix 256×256,

repetition time [TR] 10 ms, time to echo [TE] 3 ms, voxel size 1.2 mm3).

MRI Acquisition for DTI

For each participant, 26 diffusion-weighted images (DWIs) were acquired for DTI mapping

(25 DWI diffusion gradient images and one b0 baseline image). Each DWI included 29

slices acquired in axial anterior-posterior commissure orientation and in a 128×128 matrix,

TR=8500 ms, field of view=28 cm, and slice thickness 3.5 mm with 0.5 mm gap.

GM, WM Analysis

Images were manually aligned to the anterior-posterior commissure line. T1-weighted

images were preprocessed using SPM8 voxel-based morphometry (VBM) toolbox (http://

dbm.neuro.uni-jena.de/vbm/download/) in Matlab R2009b, 7.9.0 (MathWorks, Natick, MA,

USA). Images were normalized to MNI space using high-dimensional diffeomorphic

anatomical registration through exponentiated lie algebra (DARTEL) segmented into GM,

WM, and cerebrospinal fluid (CSF). A custom age-specific tissue probability map (TPM)

and T1 reference template was created using the Template-O-Matic Toolbox (http://

dbm.neuro.uni-jena.de/software/tom/). This toolbox uses data from a large sample of

children and adolescents to create age-specific TPMs and T1 images based on the average

age of the sample.36 Segmentation procedures in VBM8 automatically removed non-brain

tissues including scalp, skull, and dural venous sinus (http://www.fil.ion.ucl.ac.uk/spm/doc/

biblio/) and were based on maximum a posteriori probability (MAP) estimation techniques

that do not require a priori information about tissue probabilities (variability of head shape

and size) of control subjects that may not accurately represent the analyzed sample. After

initial segmentation of TIV into GM, WM, and CSF, 2 mixed tissue classes (GM-WM and

GM-CSF) were estimated using partial volume estimation.37 The results are an estimation of

pure tissue type present in every voxel, and superior to previous SPM methods.38,39 In

addition, optimized block-wise nonlocal means (NLM) and classical Markov Random Field

(MRF) denoising methods were applied. Nonlinear modulated data (corrected for TIV) were

used in the analyses. Images were smoothed to an 8-mm full-width at half maximum

Gaussian kernel.

DTI Image Analysis

DTI datasets were processed using NordicICE (http://www.nordicneurolab.com) for 3-

dimensionalfiber tracking of axonal projections using “Fiber Assignment by Continuous

Tacking” (FACT).40 Fibers are tracked continuously based on water diffusion from a voxel

center proceeding according to the vector direction. Where the tract leaves the voxel and

enters the next, the direction is changed to that of the neighboring voxel. An exhaustive
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search tracking method was implemented and a principal eigenvector angle stopping

threshold of 41° was used, minimum fiber length was 5 mm an d only fractional anisotropy

values greater than 0.2 were included.40,41

Whole brain FA and ADC maps were further analyzed using SPM8. FA and ADC images

for each participant were normalized to the average age-specific T1 template, and carefully

visually inspected for correct normalization. FA and ADC images were smoothed with a 6-

mm FWHM filter and masked with a WM mask. The location of WM FA identified as

significantly different across groups was identified by visual inspection and ‘Dissecting the

White Matter Tracts: Interactive Diffusion Tensor Imaging Teaching Atlas’ by Hutchins et

al.(http://www.asnr2.org/neurographics).

Statistical Analysis

GM/WM analysis—A general linear model (GLM) whole-brain analysis was used

(SPM8), a factorial design modeled with diagnosis as 2-level factor (control and AN

adolescents) and age and total intracranial volume (TIV) as covariates, as well as use of

antipsychotic medication, use of selective serotonin reuptake inhibitor (SSRI) medication

and comorbid depression or anxiety, with each assigned a 0 or 1 coding presence or absence.

TIV for correction of differences in head size (“global normalization”) was obtained by

adding GM, WM, and cerebral spinal fluid (CSF) volumes from tissue-class images in

native space using VBM8 (GM+WM+CSF=TIV).

Initially, a voxel-wise F-test was performed, p < 0.001 uncorrected, extent threshold > 50

voxels (suggested for study of orbitofrontal cortex42 and insula43). Results were corrected

using SPM8 anatomical automatic labeling (AAL) atlas derived a priori defined anatomical

regions (orbitofrontal cortex, insula, caudate, putamen, amygdala), family-wise error (FWE)

corrected at p < 0.05, and regional volumes that reached significance were extracted.

All imaging procedures were similar in adolescents and adults, including MRI scanner,

sequence, preprocessing, and statistical analyses including covariates. Adolescents and

adults with AN were similar on clinical variables as in this study (see Supplement 1).

FA/ADC analysis—GLM was used for group comparison similar to GM/WM. Thresholds

based on previous studies of p < 0.005 uncorrected, 50 voxel contiguity, were used to create

the result maps.31 For the resulting clusters, mean FA/ADC values were extracted using the

SPM marsbar toolbox.

Demographic and extracted regional brain data were analyzed using SPSS (IBM-SPSS,

Chicago, IL) and independent samples t-test. We applied linear regression analyses to test

behavior-brain relationships and results were false discovery rate corrected.

Results

Demographic and Behavioral Data

Adolescents with AN and controls (Table 1) were similar in age. Individuals with AN

showed the expected lower body mass index (BMI), lower novelty seeking, but higher harm
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avoidance, depression, drive for thinness, body dissatisfaction, as well as state and trait

anxiety, compared to controls. Sensitivity to punishment was significantly higher in those

with AN vs. controls, together with a trend to higher sensitivity to reward. Sucrose

sweetness-perception was similar between groups, but pleasantness rating was lower in the

AN group.

Brain Volume Results

Brain total GM, WM, CSF, and total intracranial volumes were similar between groups

(Table 2).

GM volume was greater in individuals with AN compared to control adolescents in left

orbitofrontal gyrus rectus, bilateral fusiform gyrus, bilateral hippocampus, right insula, and

bilateral parahippocampal gyrus and WM volume was greater in individuals with AN

compared to control adolescents in right hippocampus and parahippocampal gyrus, right

middle temporal gyrus, and left superior temporal gyrus (Figure 1).

The 4-group GM GLM between adolescent and adult groups indicated significant

differences (FWE p < 0.05) (Figure 2): right prefrontal cortex (x=11, y=32, z=26,

adolescents and adults with AN > adult controls), right Insula (x=41, y=5, z=6, adolescents

with AN > adolescent and adult controls, adults with AN > adult controls), right putamen

(x=29, y=6, z=10, adolescents, adults with AN > adult controls), left orbitofrontal gyrus

rectus (x=−6, y=30, z=−26, adolescents with AN > adolescent, adult controls, adults with

AN > adult controls; x=−8, y=47, z=−26, adolescents with AN > adolescent and adult

controls), right gyrus rectus (x=6, y=33, z=−26, adolescents and adults with AN > adult

controls).

We carefully considered whether to include the 2 binge eating/purging type individuals with

AN in the study. Detailed analyses indicated that both ED behavior scores as well as brain

imaging results (see Supplement 1) were comparable to the restricting type AN individuals

and did not confound the results and were therefore included.

DTI Results

DTI FA (Figure 1, Table 3) was greater in controls compared to AN in left fornix, bilateral

cingulum, right forceps major, right superior and left posterior corona radiata. DTI FA was

greater in AN compared to controls in left superior longitudinal fasciculus, bilateral anterior

corona radiata, and bilateral inferior fronto-occipital fasciculus.

DTI ADC was higher in AN compared to controls in left fornix, right corpus callosum, right

corticospinal tract, right posterior corona radiata, bilateral corticopontine tract, and bilateral

superior longitudinal fasciculus.

Correlation Results

Control adolescents—GM volume significantly negatively correlated with age in the left

gyrus rectus (x=−6 y=53 z=−24, r=−0.652, p < 0.009).
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Adolescents with AN—Orbitofrontal cortex volume negatively correlated with sweet

taste-pleasantness (Figure 2).

Discussion

This study replicates now in adolescents previous findings in adults that AN is associated

with larger orbitofrontal and insula cortex, and adolescents with AN show lower WM

integrity in the fornix similarly to adults with the disorder.

Greater GM, WM Volume and FA in Individuals With AN

Most previous studies reported lower brain volumes in AN, while we found higher localized

GM and WM in adolescents and adults with AN. The use of analysis software that is more

accurate in GM/WM separation and CSF calculation could have contributed these

results,38,39 as well as the fact that AN individuals’ food intake was highly supervised,

reducing acute effects of malnutrition. Little research on this topic exists in eating disorders,

but one study did find increase in GM and WM volume with short-term weight restoration,

supporting the potential benefit of our approach.44 The inclusion of age, depression and

anxiety diagnoses, and medication use as covariates, may also have contributed to these

novel findings.

The location of peak orbitofrontal cortex gyrus rectus group differences in the current study

(x=−5, y=30, z=−26) was almost similar to findings in our adult study (x=−6, y=29, z=−26),

and this overlap was supported by the 4-group analysis with data in adults that were

described previously.25 The medial orbitofrontal cortex is an important higher order brain

region for processing of reward expectation and value,27,28 aids in controlling how much we

eat of a certain food (sensory specific satiety),45 and has been associated with food

avoidance.46 The factors contributing to higher orbitofrontal gyrus rectus volume is unclear.

One potential explanation is that the trajectory of orbitofrontal GM development in AN may

be delayed, reaching peak volumes later than in controls and thus resulting in greater cortical

thickness and volume.47 Another possibility could be effects of repeated food restriction in

AN, but this will need to be tested longitudinally. As in previous studies, sweet pleasantness

was lower in individuals with AN compared to controls,48 and gyrus rectus volume in

adolescents with AN was negatively related to sweet pleasantness rating, suggesting that

enlarged orbitofrontal cortex could directly be involved in food avoidance in adolescent AN.

Interestingly, WM FA was also greater in the orbitofrontal gyrus (corona radiata) and

superiorly in the adjacent prefrontal WM (superior longitudinal fasciculus) and this could

point further to a larger developmental alteration in this region.

Also similarly to adults,25 adolescents with AN had higher right insula GM volume, with

peak coordinates (x=41, y=5, z=7) very close to the adult group (x=42, y=9, z=4) in the

middle insula, and also supported by the 4-group contrast. The middle insula has been

associated with gustation, but even more so with interoception.49 The fixed perception of

being fat while severely underweight in anorexia nervosa50 could thus be related to larger

right sided insula volume.
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Differing from adult AN were larger GM and WM volumes in the temporal lobe fusiform

gyrus, hippocampus and parahippocampal gyrus, as well as greater FA in the connecting

middle and superior temporal lobe structures (fronto-occipital fasciculus in our adolescent

AN sample. The fusiform gyrus is an important structure in external body recognition51 and

body size perception.52 Importantly, previous research found GM and WM in this area

related to body weight changes,53 and this region is consistently activated when viewing

food images.54 Furthermore, hippocampus and parahippocampus show decreased activation

during satiety states.55,56 Thus higher volume and FA in those areas could contribute to

altered body perception and thus core symptoms of AN.

Lower FA in Individuals With AN

Lower fornix FA in adolescents with AN is consistent with studies in adults, as is lower

cingulum FA, although the adult sample had more posteriorly located lower cingulum FA.31

The fornix projects from the hippocampus as fimbria-fornix57 superior-anteriorly toward the

midline, forming the body of the fornix. It winds around and between the lateral ventricles

and projects inferiorly to the anterior commissure, and from there to hypothalamus and

mammillary bodies, thalamus and cingulate cortex, and bilateral nucleus accumbens.58

Fornix lesions in rodents result in altered feeding and drinking patterns,59 reward

processing,33 and resistance to behavior extinction60 but the fornix is also an important

limbic structure, supporting emotion regulation by frontal cortical brain regions.61 Thus,

abnormal fornix integrity could lead to altered feedback between limbic and higher order

brain structures including hippocampus, amygdala, ventral striatum, cingulate, and

orbitofrontal cortex.62 In contrast to our study in adult AN 31 we did not find correlations

between harm avoidance or state or trait anxiety with fornix FA. Whether this is a

relationship that develops later during development will need further exploration.

In addition, FA in the corona radiata and forceps major, the occipital part of the corpus

callosum, was lower in adolescents with AN. The corona radiata fiber bundles connect the

wide spread cerebral cortex63 with the basal ganglia and spinal cord, and corona radiata

lesions have been found in central taste disorders.64 The corpus callosum facilitates

communication between left and right-sided brain structures, and an increasing number of

studies now implicate the corpus callosum in taste processing.65–67 The functional

significance of the corona radiata and corpus callosum FA alterations require further study

but could be related to altered taste and reward processing in AN. As expected, ADC was

higher in areas of lower FA and we therefore do not separately discuss regional ADC

alterations.

Developmental Aspects of Brain Structure

Childhood and adolescence are times of intense morphologic brain development. The medial

orbitofrontal cortex peaks around age 9, while insula cortical thickness peaks at age 18

years, and the middle and inferior temporal cortex around age 11.47 More GM volume in

adolescents with AN in those areas may suggest either higher growth or delayed pruning and

cortical thinning. This does not solve the questions though, what may cause such alterations,

whether they contribute to illness onset or whether illness food restriction itself affects this

process of brain development. FA usually increases with greater myelination and age during
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childhood and adolescence,68 however the relationship to cognitive-emotional functioning is

still obscure, and higher FA does not necessarily mean better function.69

The results are in contrast to various studies that found lower brain volumes in AN. The

brain analysis method we used shows improved accuracy from other analysis methods 38,39

and we do not believe that there is a methodological systematic error. Older VBM versions

used Bayesian statistics tissue priors of control subjects that may not accurately represent the

analyzed sample, which may be particularly important for AN brains that may not conform

to standard templates. This approach improves tissue segmentation accuracy because it does

not depend on standard template assumptions and normalizes images to a custom template

created from the specific study population. Furthermore, similar orbitofrontal and insula

results in adolescents with anorexia as well as adults25 point toward consistent brain

alterations. While we made every effort to reduce effects of acute malnutrition, past or more

recent effects of underfeeding may also have contributed to the differences across groups.

Comorbidity and use of medication are a concern and potential confound in brain imaging

studies. We accounted for those factors by using them as covariates in the brain imaging

analysis. Two of the youth with AN were of the binge eating/purging subtype. The

behavioral and brain imaging measures in the 2 binge eating/purging individuals fell well

within the range of the restricting type individuals, and we therefore did not exclude those

individuals from the study. However, it could be possible that the neurologic underpinnings

or developmental trajectories may differ between restricting and binge eating/purging

subtypes, which could be a confound. The 4-group GM analysis showed also group

differences other than our a priori hypotheses for orbitofrontal cortex and insula. However, a

detailed and sufficient discussion of those results would go beyond the space limitations of

this manuscript.

The neurobiology of AN is poorly understood. The results from this study provide new

insights into brain structure alterations in youth and how this could be related to

pathophysiology and behavior. The results further identify AN as a brain disorder, and may

help patients and their families understand better this complex disorder. The similarity in

results compared to adults further strengthens this argument. Furthermore, future

interventions may be able to stimulate or reduce activity in altered brain regions, which may

facilitate the treatment process.

In summary, this novel study comparing adolescents with AN and healthy controls,

replicates and supports findings in adult AN of greater left orbitofrontal cortex gyrus rectus

and right insula volumes and that these regions are associated with the pathophysiology of

AN. Those alterations could be trait markers that may contribute to illness onset, or an effect

of AN that may hinder recovery. The additional findings in adolescents with AN of negative

relationship between gyrus rectus GM volume and taste pleasantness could indicate that

structural alterations in those areas are directly involved in core symptoms of adolescent

AN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Group differences in brain volumes and white matter integrity. Note: A. Red indicates

anorexia nervosa (AN) > Controls (CW) for gray matter; blue indicates AN > Controls for

white matter. B. Greater left orbitofrontal gyrus rectus volume in adolescent AN is

negatively correlated with 1M sucrose taste pleasantness. C. White matter integrity

(fractional anisotropy). Green indicates Controls > AN in superior frontal, parietal and

temporal lobes; blue indicates AN > CW in frontal, orbitofrontal, and temporal lobes.

Frank et al. Page 14

J Am Acad Child Adolesc Psychiatry. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Results from the 4-group analysis, contrasting adolescent and adults with anorexia nervosa

(AN) and control individuals (CW). Note: Red indicates areas of group difference, which are

rendered on a semitransparent standard brain with displayed results both on the outside as

well as within deeper brain structures including the insula. L=left; R=right.
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