
UC Riverside
UC Riverside Previously Published Works

Title
popDMS infers mutation effects from deep mutational scanning data.

Permalink
https://escholarship.org/uc/item/413321zd

Journal
Computer applications in the biosciences : CABIOS, 40(8)

Authors
Hong, Zhenchen
Shimagaki, Kai
Barton, John

Publication Date
2024-08-02

DOI
10.1093/bioinformatics/btae499
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/413321zd
https://escholarship.org
http://www.cdlib.org/


Sequence analysis

popDMS infers mutation effects from deep mutational 
scanning data
Zhenchen Hong1,†, Kai S. Shimagaki 2,†, John P. Barton 1,2,3,�

1Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States 
2Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, PA 15260, United States 
3Department of Physics and Astronomy, University of Pittsburgh, PA 15260, United States
�Corresponding author. Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Bldg, 3420 Forbes Avenue, Pittsburgh, PA 
15260, United States. E-mail: jpbarton@pitt.edu (J.P.B)
†Equal contribution.
Associate Editor: Pier Luigi Martelli

Abstract
Summary: Deep mutational scanning (DMS) experiments provide a powerful method to measure the functional effects of genetic mutations at 
massive scales. However, the data generated from these experiments can be difficult to analyze, with significant variation between experimen-
tal replicates. To overcome this challenge, we developed popDMS, a computational method based on population genetics theory, to infer the 
functional effects of mutations from DMS data. Through extensive tests, we found that the functional effects of single mutations and epistasis 
inferred by popDMS are highly consistent across replicates, comparing favorably with existing methods. Our approach is flexible and can be 
widely applied to DMS data that includes multiple time points, multiple replicates, and different experimental conditions.
Availability and implementation: popDMS is implemented in Python and Julia, and is freely available on GitHub at https://github.com/barton 
lab/popDMS.

1 Introduction
Understanding the relationship between protein sequence and 
phenotype is a central question in evolution and protein engi-
neering. In recent years, a new family of experimental meth-
ods, commonly referred to as deep mutational scanning 
(DMS) or multiplexed assays for variant effects (MAVEs), 
have been developed to measure the functional effects of large 
numbers of mutations simultaneously (Fowler et al. 2010, 
Gasperini et al. 2016). DMS experiments typically work by 
generating a vast library of protein variants that are then 
passed through rounds of selection that favor functional var-
iants while eliminating deleterious ones (Fowler and Fields 
2014). One can then compare variant frequencies in the pre- 
and post-selection libraries to estimate the functional effects of 
mutations. This approach has been successfully applied in a 
wide variety of contexts, from studying the function of 
enzymes (Romero et al. 2015) and tRNAs (Li et al. 2016) to 
measuring the mutational tolerance of influenza (Thyagarajan 
and Bloom 2014, Doud et al. 2018, Lee et al. 2018) and hu-
man immunodeficiency virus (HIV-1) (Haddox et al. 2016, 
Dingens et al. 2017, Haddox et al. 2018) surface proteins.

Despite the success of DMS experiments, popular 
approaches for analyzing DMS data yield modest correla-
tions between the inferred functional effects of mutations in 
experimental replicates. Thus, a significant amount of vari-
ance in the data remains unexplained. Some methods use the 
ratios between post- and pre-selection variant frequencies, 

known as enrichment ratios, to estimate mutation effects 
(Fowler et al. 2011, Hietpas et al. 2011, Bloom 2015). Ratio- 
based methods may be sensitive to noise when variant counts 
are low, a common occurrence in DMS experiments. 
Methods based on regression (Araya et al. 2012, Starita et al. 
2015, Matuszewski et al. 2016, Rich et al. 2016, Rubin et al. 
2017) provide improved performance, but substantial uncer-
tainty in the inferred effects of different mutations persists.

2 Results
We developed a method, popDMS, to estimate the functional 
effects of mutations in DMS experiments using statistical 
methods from population genetics (Supplementary 
Information). In our approach, we view rounds of phenotypic 
selection in experiments as analogous to rounds of reproduc-
tion in natural populations. We quantify the effect of each 
mutation i by a selection coefficient si, which describes the 
relative advantage or disadvantage of the mutation for sur-
viving selection in the experiment. For simplicity, we assume 
that the total fitness of a sequence with multiple mutations is 
the sum of the corresponding selection coefficients. We then 
use the Wright-Fisher (WF) model, an evolutionary model 
from population genetics, to quantify the likelihood of the ex-
perimentally observed variant frequencies over time as a 
function of the selection coefficients, LððzðtkÞÞ

K
k¼0jsÞ (see 

Supplementary Information for details). The zðtkÞ represent 
vectors of variant frequencies z at different times tk. The WF 
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model defines the relationship between “fitness” and fre-
quency change, and allows us to model competition between 
variants. We then use sequence data to estimate the effects of 
mutations on fitness in experiments.

To regularize our estimates, we introduce a Gaussian prior 
distribution PpriorðsÞ for the selection coefficients. Leveraging 
recently developed computational methods (Sohail et al. 
2021, 2022, Lee et al. 2022), we can identify the selection 
coefficients that represent the best compromise between fit-
ting the data and minimizing the prior distribution, 

ŝ ¼ argmax
s

L
�

sjðzðtkÞÞ
K
k¼0

�
PpriorðsÞ: (1) 

Typically, we adjust the width of the prior distribution based 
on the data, but a fixed value can also be specified 
(Supplementary Information). The Gaussian prior is equiva-
lent to an L2-norm penalty on the selection coefficients, or 
ridge regression.

popDMS has several computational strengths. First, the 
use of regularization for the selection coefficients curbs the 
inference of strong functional effects in the absence of strong 
statistical evidence. Our likelihood framework further allows 
us to derive joint estimates of selection coefficients across 

replicates that are guided by levels of evidence in the data, 
rather than simply averaging the inferred functional effects of 
mutations across replicates. When information about se-
quencing error rates is available, we can perform error cor-
rection for variant frequencies.

In simulations, we found that popDMS was robust to sam-
pling noise and provided stronger correlations between in-
ferred variant effects across replicates than common methods 
based on enrichment ratios or regression (Supplementary Fig. 
S1). The variant effects inferred by popDMS were also more 
similar to true, underlying ones than alternative approaches, 
even with the addition of negative binomial sampling noise 
(Supplementary Fig. S2, see Supplementary Information).

Next, we analyzed a collection of 28 DMS datasets with 
popDMS (Araya et al. 2012, Starita et al. 2013, Findlay et al. 
2014, Doud et al. 2015, Starita et al. 2015, Li et al. 2016, 
Ashenberg et al. 2017, Dingens et al. 2018, Haddox et al. 
2018, Hom et al. 2019, Soh et al. 2019, Bridgford et al. 
2020, Roop et al. 2020, Starr et al. 2020, Lei et al. 2023). 
These datasets were generated and analyzed using a variety 
of experimental techniques and analytical methods (see 
Supplementary Table S1). Like the functional metrics intro-
duced by previous methods, selection coefficients provide an 
intuitive visualization of the functional effects of mutations 

Figure 1. popDMS overview. (a) Example of the effects of mutations inferred by popDMS for the Ube4b protein (Starita et al. 2013). (b) Across 28 
datasets, popDMS infers more consistent mutational effects than previous ratio/regression-based methods. To illustrate consistency between replicates, 
we show (c) selection coefficients inferred across replicates for the HIV-1 envelop BF520 dataset (Haddox et al. 2018), compared with (d) enrichment 
ratios for the same data. (e) popDMS gains in consistency across replicates are often substantial, improving R2 by an average of 0.34
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(Fig. 1a). To quantify the consistency of different analytical 
methods, we computed the Pearson correlation R between 
mutation effects inferred from replicates of the same experi-
ment. We found that mutation effects inferred by popDMS 
had higher correlations between replicates than those inferred 
by prior methods for all the datasets that we considered 
(Fig. 1b). The rank correlations between replicates were also 
typically higher for popDMS than for other approaches, 
showing that the consistency of the inferred mutational 
effects is not simply due to rescaling (Supplementary Fig. S3). 
Furthermore, our selection coefficients compared favorably 
with the frequencies of amino acid variants in influenza vi-
ruses in a natural population (Thyagarajan and Bloom 2014) 
(see Supplementary Information).

To illustrate performance in a typical case, we show selec-
tion coefficients inferred for mutations in the HIV-1 envelope 
protein BF520 (Fig. 1c) compared with enrichment ratios 
(Fig. 1d) for the same data (Haddox et al. 2018). 
Improvements in consistency across replicates with popDMS 
were often substantial. The mean improvement in R2 for vari-
ant effects was 0.35, with 6 out of 28 datasets showing an im-
provement in R2 of >0.50 (Fig. 1e).

In addition to the modified form of our estimator for vari-
ant effects, regularization also contributes to the improved 
correlation between replicates by shrinking effects with little 
support in the data toward zero (see Supplementary Fig. S4). 
As we discuss below, we also treat wild-type (WT) amino 
acids differently than most ratio- or regression-based 
approaches. Because WT residues are typically among the fit-
test at each site, changes to these terms can have particularly 
large effects on consistency between replicates.

We then asked how similar the selection coefficients in-
ferred by popDMS are to mutation effects inferred by previ-
ous methods. Across the experimental datasets that we 
tested, popDMS results were broadly consistent with existing 
metrics (average Pearson’s R¼0.74). This correlation is simi-
lar to the average correlation between replicates of the same 
dataset using current ratio- or regression-based methods (av-
erage Pearson’s R¼0.70). Figure 2a shows a typical example, 

comparing selection coefficients inferred by popDMS with 
enrichment ratios for the HIV-1 Env BG505 dataset (Dingens 
et al. 2018).

While the inferred mutation effects agreed for most sites, 
some showed qualitative differences (Supplementary Fig. S5). 
One factor underlying this result is that popDMS models var-
iants with high initial frequencies, such as WT or reference 
amino acids, in the same way as other, low-frequency var-
iants (see Supplementary Information). In alternative meth-
ods, the statistical treatment for WT amino acids is often 
different than for other variants.

Beyond inferring the effects of individual mutations, we 
can apply popDMS to estimate pairwise epistatic interactions 
between variants at different sites. We inferred epistatic inter-
actions in an hYAP65 WW domain dataset using popDMS, 
which we also compared with previous results (Araya et al. 
2012). Due to different conventions in defining epistasis, we 
transformed the functional measurements defined in ref. 
(Araya et al. 2012) to more directly compare with our results 
(Supplementary Information). To more clearly identify 
strongly interacting pairs of sites, we computed the sum of 
squared epistatic interactions between all pairs of amino 
acids at each pair of sites in the WW domain, using both 
popDMS and the previous regression-based approach. Our 
results showed good agreement with the pairs of sites that 
were previously inferred to have the strongest epistatic inter-
actions (Fig. 2b). However, epistatic interactions inferred by 
popDMS were substantially sparser than those that had been 
inferred before (Fig. 2c). Given the enormous number of pos-
sible epistatic interactions between amino acid variants at dif-
ferent sites, sparsity is an attractive statistical feature that can 
facilitate focus on a smaller number of biologically important 
interactions.

3 Discussion
In summary, popDMS is an efficient, reliable approach for in-
ferring mutation effects from DMS data, which is grounded 
in evolutionary theory. Across simulations and a wide array 

Figure 2. Mutation effects inferred by popDMS are broadly consistent with alternative methods. (a) For the HIV-1 Env BG505 dataset, selection 
coefficients inferred by popDMS are congruent with enrichment ratios computed using dms_tools2 (Spearman’s ρ¼ 0.84). At some sites, significant 
differences are observed (see Supplementary Fig. S5). (b) In the hYAP65 WW domain dataset, similar sites are inferred to have strong epistatic 
interactions using popDMS and log ratio regression (Araya et al. 2012). Interactions inferred in ref. (Araya et al. 2012) have been transformed to compare 
more directly with interactions inferred by popDMS, and both sets of interactions are normalized to scale between zero and one (Supplementary 
Information). (c) Epistatic interactions inferred by popDMS are substantially sparser than those inferred with the regression-based approach (Araya 
et al. 2012)
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of datasets, we found that popDMS infers more consistent 
mutation effects than the popular alternatives used here. Our 
approach allows us to combine statistical power across multi-
ple replicates, and it is also capable of inferring epistatic 
interactions given appropriate data. popDMS is written in 
Python3 and Cþþ, and uses codon counts in dms_tools for-
mat (Bloom 2015) or sequence counts in MaveDB format 
(Esposito et al. 2019) as input, with code and example visual-
izations freely available on GitHub (https://github.com/bar 
tonlab/popDMS, Supplementary Information).

Here, we have focused on the correlations of inferred mu-
tational effects between experimental replicates to quantify 
the consistency of different inference methods. By this statisti-
cal measure, popDMS is more consistent on average than cur-
rent ratio- and regression-based methods, including both 
correlations between values (Pearson correlations) and the 
ranks of mutational effects (Spearman correlations). We also 
found that selection coefficients inferred by popDMS more 
closely matched with underlying fitness parameters in simula-
tions. However, greater biological relevance could only be 
established through experiments. Future studies that experi-
mentally test the predictions of different inference methods 
would be of great interest.
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