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Abstract

Graph and tree visualization techniques enable interactive explo-
ration of complex relations while communicating topology. How-
ever, most existing techniques have not been designed for situa-
tions where visual information such as images is also present at
each node and must be displayed. This paper presents MoireGraphs
to address this need. MoireGraphs combine a new focus+context
radial graph layout with a suite of interaction techniques (focus
strength changing, radial rotation, level highlighting, secondary
foci, animated transitions and node information) to assist in the ex-
ploration of graphs with visual nodes. The method is scalable to
hundreds of displayed visual nodes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques

Keywords: information visualization, focus+context, radial graph
layout, graph drawing

1 Introduction

Graphs can be used to represent various types of data and infor-
mation. Nodes in such graphs often posses information in addition
to the topology. Numerous graph visualization methods have been
developed to communicate this information to users quickly and
effectively. While these methods have been successful, they have
neglected a subset of graphs—graphs that posses nodes with vi-
sual elements such as images or renderable geometry. Thesevisual
node graphsrequire visualization methods which simultaneously
display nodes and topology without losing the visual information at
the nodes.MoireGraphs, named after the circular moire-like pat-
terns formed from the layout algorithm, fulfill this purpose.

A MoireGraph displays a spanning tree induced upon a visual
node graph using a radial focus+context graph layout introduced
here. A focus+context method was chosen in order to provide a suf-
ficient overview of the visual node graph without significant occlu-
sion of the visual nodes or increase in required screen real-estate. In
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this case, the distortion applies to both the tree levels and the sizes
of the visual nodes—the center focus visual node has the largest
display area while outer levels and their contents have subsequently
smaller areas. MoireGraphs are interactive and care has been taken
to ensure this interactivity for visual node graphs of over a hun-
dred nodes. The interaction methods allow quick exploration of the
graph via highlighting of levels and secondary foci in addition to
animated graph navigation. The new layout and interaction meth-
ods contributed by this research are discussed in more detail after
previous work is examined.

2 Related Work

2.1 Focus+Context Graph Visualization

Graph visualization has been extensively studied in information vi-
sualization (see Herman [Herman et al. 2000] for a survey). Of in-
terest to this work are approaches which display both focus and con-
text for graphs. There have been three main approaches in this area.
The first approach distorts the graph after it has been laid out—
“fish-eye” techniques fall into this category [Bartram et al. 1995;
Carpendale et al. 1995b; Formella and Keller 1995; Keahey and
Robertson 1996; Sarkar and Brown 1994; Storey et al. 1999]. The
second method maps the graph onto a higher dimensional surface
and then re-projects onto two dimensions [Carpendale et al. 1995b;
Carpendale et al. 1995a; Kreuseler and Schumann 1999]. The final
approach uses non-Euclidean geometry (such as hyperbolic geom-
etry) during layout to “open up” the space [Lamping et al. 1995;
Lamping and Rao 1996; Munzner 1997; Munzner 1998a; Munzner
1998b]. More rare are methods that use Euclidean geometry but
have distortion effects in the layout of the graph or tree [Melançon
and Herman 1998; Munzner et al. 2003; Teoh and Ma 2002] or only
consider the topology of the graph to perform distortion during lay-
out [Noik 1993]. An in-depth analysis of the different properties
of these techniques can be found in Carpendale [Carpendale et al.
1997].

Each of the above approaches has its advantages and disadvan-
tages. Fish-eye techniques are a post-process, and thus can be easily
added to existing systems; unfortunately, rendering a full fish-eye
distortion of the nodesand edges can be costly. The higher di-
mensional and non-Euclidean projection approaches are effective
at the cost of implementation complexity. Distorted, Euclidean lay-
out techniques, however, offer focus+context effects with less com-
putational cost than fish-eye and lower implementation complexity
than non-Euclidean techniques. For this reason, the work presented
here explores a new radial layout technique with distortion. In ad-
dition, the focus+context technique is specifically tailored for dis-
playing visual node graphs unlike most previous approaches. For
example, though the Hyperbolic Browser [Lamping et al. 1995] can
allocate extra room for nodes in which a visual element can be dis-
played, the area allocated does not necessarily remain consistent for
nodes at the same tree level. This variation in size, coupled with the
fact that nodes at the same level are spread throughout the display,
makes comparison of visual elements at the same tree level diffi-
cult. This is not the case in a MoireGraph, since nodes at the same
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tree level share the same radial distance in the layout. The Hyper-
bolic Browser also does not support the wide range of navigation
techniques that MoireGraphs support.

2.2 Radial Graph Visualization

Radial graph layouts were introduced by Eades [Eades 1992]; di
Battista et al. [di Battista et al. 1999] also detail radial graph lay-
outs. Graphs using a radial layout have two features: The focus
node is at the center of the layout and nodes connected to the fo-
cus node radiate outward on uniformly separated rings—one ring
for each level in the tree. The distance of a node from the focus
determines the ring to which that node belongs. Construction of
the layout proceeds from the center node in a breadth-first man-
ner. In the traditional algorithm, each node is assigned a sector of
its ring depending on the node’s angular size and the size of all
of its children. Children with larger subtrees are given more area
than children with smaller subtrees. Though the original layout al-
gorithm ensures the placement of children is concave, more recent
applications for graph visualization (including this one) relax this
constraint [Herman et al. 1999b; Wills 1999]. Variable size nodes
and animation in dynamically changing radial graphs has also been
discussed [Yee et al. 2001].

The layout algorithm described here extends previous radial
graph work by including a deformation of the levels. Unlike pre-
vious approaches, the spacing between the levels is no longer uni-
form. Like Yee’s work, graph nodes can have varying size. In this
case, both radial spacing and node size decrease as the distance
from the focus node increases. Using this technique, the focused
element is highlighted while the rest of the graph remains in con-
text.

2.3 Image and Document Browsing

Though the main focus of this work is not on image or docu-
ment browsing, it is illuminating to compare MoireGraphs with
these applications. Most document or image visualization sys-
tems either do not display a graph of the space, or do not dis-
play the documents/images when they do use a graph. For doc-
ument browsing, the Document Lens [Robertson and Mackinlay
1993] is of interest because it uses a focus+context technique to
display the document of interest in detail while compressing the
rest of the document space. Image browsing systems also dis-
play the entire space of images either without hierarchies (the de-
fault for most file managers) or with some structural information
provided by annotations ([Kang and Shneiderman 2000; Shnei-
derman and Kang 2000]). PhotoMesa [Bederson 2001] utilizes
novel treemap algorithms within a zoomable user interface to pro-
vide similar structural browsing of photographs. All of these
systems are well suited to document or image navigation based
upon browsing the document/image space with perhaps some doc-
ument/image relational information. This relational information,
however, is not as apparent as in a MoireGraph—the links between
visual nodes explicitly encodes connectivity. In conclusion, the pur-
pose of the MoireGraph and these browsing systems can be seen
as complimentary. The browsers give an overview of the entire
document/image space while MoireGraphs highlight the relations
among documents/images.

3 Radial Focus+Context Graph Layout

Given a visual node graph, a MoireGraph is constructed in three
steps (Figure 1 depicts the structure of a MoireGraph). First, a fo-
cus is chosen. This focus will become the root of a spanning tree
created from the visual node graph. Next, this tree is positioned us-
ing the new radial focus+context layout technique discussed below.

Finally, the tree and its visual node elements are rendered. This last
feature is vital—without it, a user would have difficulty building
their mental map of the graph since it would require extra effort
to associate the visual element of the node (e.g., an image) with a
vertex in the graph (a position on the screen).

The radial layout deforms the level radii and node sizes depend-
ing on two factors: The depth of the spanning tree and a user con-
trolled focus strength. Initially, the focus strength allocates a quar-
ter of the display radius (half the size of the display area) to the
focus node; this becomes the radius of a circle in which the focus
node’s visual element will be inscribed. The remaining length along
the display radius is split among the spanning tree levels geometri-
cally (see Figure 2a). Thus for all the nodes at leveli, wherei > 0
(level 0 is the root of the spanning tree), its corresponding radius
rni is:

rni = (1− f)rd/2i

wherei is the level in the spanning tree,rd is the display radius,
andf is the focus strength (a value between 0 and 1). A geometric
progression was chosen because it does not decrease the size the
of the visible node too quickly. After all the node radii have been
calculated, they are normalized in order to fit within the display
radius (this is the source ofκ in Figure 2a). For non-circular visual
node elements,ni is used as a bound for the size of the nodes at
level i. For simplicity, node sizes smaller than a given threshold are
clamped to that threshold. After the node sizes are calculated, the
radius of each level is determined (see Figure 2b). The radius of the
first level is the sum of the focus node’s size and the node size for
the first level. Subsequent level radii are the previous level’s radius
plus the node sizes for the current and previous levels. This radius
determines the radial distance from the focus for all nodes on the
given level.

Once the node and level radii have been calculated, the layout
proceeds according to a radial layout algorithm. The angular po-
sition of a node is determined by four factors: The sector of the
layout allocated to its parent (itsangular spread), the node’s angu-
lar spread, the total angular spread of its children, and the angular
spread of its siblings (see Figure 2c). The larger of the node’s an-
gular spread (which is2 arctan (rn/rln) wherern is the node’s
radius andrln is the level radius of the node) and the total angu-
lar spread of its children is used as the node’s effective angular
spread. The angular spread of the parent is then divided propor-
tionally among its children’s effective angular spreads. For exam-
ple, in Figure 2c, nodenk has more children thanni andnj and
is thus given a larger share of its parent’s angular spread. As de-
scribed, the angular spread calculation occurs in two phases: First,
the spreads are calculated bottom-up from the leaf of the spanning
tree to the focus. Secondary, The sector division then occurs top
down, starting with a360◦ angular spread for the focus node. This
layout is a relaxed version of the original radial layout proposed by
Eades—it does not force child nodes to be within a concave area
bounded by its parent’s angular spread.

After the two stages of the radial focus+context layout, each
node possesses a polar coordinate with respect to the focus node.
The final rendering of the visual node graph then proceeds in level-
order along the induced spanning tree. The focus node is always
drawn on-top of other nodes (except secondary foci, see next sec-
tion). If time-critical rendering is desired, such as during interac-
tion or animation, the rendering can be halted during the level-order
traversal. This is similar to the approach taken by Munzner [Mun-
zner 1998b], and has the effect of eliding the nodes at the deeper
(and less focused) levels of the spanning tree. Even though this
may cause “popping” as some visual node elements are drawn, hid-
den, and drawn again, its effect is only temporary. In addition, the
topological information (the edges) remain to provide continuity in
the user’s mental map of the graph.
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Figure 1: The structure of two MoireGraphs displaying web-site reachability. A MoireGraph radiates outward from the focus node, with
each level in the underlying tree corresponding to a circular level in the display (left image). Each node in the tree has corresponding visual
element (a rendering of the node’s web page). As a user interacts with a MoireGraph, different levels or nodes in the display are focused
upon, causing more screen space to be allocated to them (right image). If a user highlights a node for a long enough time, a node information
tip is displayed (right image). Bold edges represent spanning tree edges.
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(a) Node radii (b) Level radii (c) Angular spread

Figure 2: Layout calculations. To calculate the focus node’s radius and thus its size, the focus strength (f ), the display’s radius (rd), and a
normalization factor (κ) is used (left image). Each subsequent node has half that radius. For level radii, which determine the radial distance
from the focus of nodes on the level, the node radii from the previous and current levels are summed (center image). Finally, the angular
positions of a node is determined by weighted division of its parent’s angular spread (right image). The weight is determined by the nodes
angular spread and the total angular spread of its children—nodes with more children receive more area than those with fewer.

4 Navigation and Interaction

The radial focus+context layout of a MoireGraph provides a static
picture of the underlying visual node graph. To facilitate explo-
ration of the graph, a set of interaction methods has been imple-
mented. These range from highlighting methods for level or nodes
to animated graph navigation. These methods are designed to sup-
port quick navigation of the graph, drill-down to specific nodes
in the graph, and comparisons between nodes in the graph. The
navigation techniques fulfill the same purpose as the navigational
methods used by radial space-filling hierarchies [Stasko and Zhang
2000; Yang et al. 2003].

4.1 Changing Focus Strength

The default focus strength of a MoireGraph is suitable for a shallow
spanning tree. As the number of levels increase, the width of each
level proportionally decreases, shrinking the available space for
each level’s visual nodes. To offset this effect, the focus strength,
the amount of the initial display area the focus receives, can be
changed (see Figure 3). As the focus strength increases, the rest
of the graph (the context) is pushed to the periphery of the layout.
Decreasing the focus strength allows more detail to be given to the
levels as the node size increases. It is possible at extreme ranges to
either hide the focus’ children completely or to effectively remove
the focus node if so desired.
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Figure 3: Changing the focus strength. As the focus strength increases, the rest of the graph is pushed to the periphery (left image). Conversely,
as the focus strength decreases, more room is allocated to the focus’ children (right image).

(a) Initial (b) Level 1 Focused (c) Level 2 Focused

Figure 4: Level highlighting. By highlighting a level in a MoireGraph, the space allocated to the level is increased to provide a more detailed
look at the level’s visual content.

(a) Initial (b) During animation (c) After transition

Figure 5: Animated Navigation. Selecting a node in a MoireGraph changes the focus. The angular coordinates of a node and the node’s size
are interpolated during the animation.
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(a) Grouped by stellar hierarchy (b) Grouped by mission of origin

Figure 6: Image databases such as the NASA Planetary Photojournal posses several metadata attributes that group the same images differently
depending on the metadata used. A MoireGraph can animate between displays of the different visual node graphs. In this image, only spanning
tree edges are shown.

4.2 Radial Rotation

Besides controlling the focus strength, the user can also change the
orientation of the graph by rotating the levels about the focus. This
has the effect of offsetting the angular portion of each node’s polar
coordinates. This capability is useful in applications where the di-
rection of an edge has significance. For example, in a visual node
graph representing temporal information, the nodes could be ro-
tated so that nodes to the left of the focus were from a previous
time while those on the right were from a later time.

4.3 Level Highlighting

As the level depth of the MoireGraph increases, the corresponding
available space for visual node rendering decreases. To facilitate the
comparison of the focus node with nodes at different levels, levels
can be highlighted during visualization (Figure 4). Highlighting oc-
curs when the mouse pointer moves over a level other than the focus
level; the level is then allocated twice the space it possessed orig-
inally. Consequently, the visual nodes of that level are displayed
larger while those at other levels become smaller. As a visual cue,
the highlighted level is also colored differently than the other levels.
To avoid abrupt transitions, transitions from the non-highlighted to
highlighted states (and vice-versa) are animated.

4.4 Secondary Foci

Level highlighting provides one method of comparison within an
interactive MoireGraph. In addition, secondary foci can be cho-
sen. A secondary focus is a visual node that has been selected
for emphasis. For example, a secondary focus could be the result
of a drill-down process searching for a specific node to examine.
Another use of secondary focusing is to unocclude a specific vi-
sual node which has many siblings—secondary foci are considered

“top-most” on any given level. Secondary foci are emphasized by
increasing their size relative to their siblings on the same level (see
Figure 5a for an example). Unlike level highlighting, choosing a
secondary focus does not change the graph layout—the size of the
node increases “in-place.” Thus, secondary foci may temporarily
occlude non-focused siblings; in our experience, this is acceptable
for comparisons between the main focus and the secondary focus.
In a MoireGraph, a secondary focus is chosen by moving the mouse
over the visual node. Like level highlighting, transitions between
different secondary foci is animated.

4.5 Animated Graph Navigation

Visual node graphs may contain numerous nodes. Thus, it is nec-
essary to support graph navigation. Navigation is supported by the
ability to choose new focus nodes. When a new focus is chosen, the
display animates the transition between the old layout and the new
layout. The animation uses the radial graph animation method sug-
gested by Yee [Yee et al. 2001] (Figure 5): The polar coordinate of
each node is interpolated between the starting and ending positions
during animation. Like Yee’s method, the orientation between the
new focus and its parent is preserved to maintain the user’s mental
map of the graph. Since visual nodes change size during the transi-
tion if they change levels, the node size transition is also animated.

In some applications, there may be several visual node graphs
associated with the same collection of visual nodes (Figure 6).
For example, in the NASA Planetary Photojournal image database
[NASA/JPL 2003], images may be associated by the place of their
target in the galaxy (e.g., images of Jupiter would be children of
images of the Sun) or images may be linked via what mission gen-
erated the image (e.g., images from the Hubble Space Telescope
would be clustered together). A MoireGraph can animate between
these two visual graphs using the same method for changing the
focus node. In this case, the focus node would remain the same
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while the configuration of the rest of the visual node graph changes.
In some cases, new nodes could be introduced or removed during
graph changes. This is handled by introducing “phantom nodes”
that are faded in or out as appropriate.

4.6 Node Information Tips

A visual node often contains more information than just the visual
element associated with the node. Image databases with metadata
attributes are a good example. To extract this information, node tips
are supported in a MoireGraph. A node tip is a pop-up window that
appears over a visual node that has been highlighted for a given pe-
riod of time—they are essentially “tool-tips” for graph nodes. The
node tip displays node metadata in a manner consistent with the
given application. Thus, node tips act as a type of magic-lens for
the visual nodes.

4.7 Display Properties

Currently, non-spanning tree edges in the visual node graph are not
displayed by default; they may be drawn upon user request. To
distinguish them from tree edges, non-tree edges are drawn thinner
than other edges. In the future, it may be interesting to look at
changing the rendering of the edges depending on the visual node
graph’s metadata or providing edge tips for edge information that
are analogous to node tips for nodes.

5 Performance Considerations

To be effective, a visualization system must be responsive to user
interaction. Thus, performance must be considered. Three factors
affect the responsiveness of interactive MoireGraphs: The size of
the original visual node elements, the quality of rendering, and the
depth of the spanning tree during rendering. In the current imple-
mentation, no hardware acceleration is used in order to accurately
gauge the performance impact of each factor.

The original size of the visual elements can have serious perfor-
mance consequences. Without hardware accelerated mipmapping,
large images can cause a performance hit during initialization (due
to load times) and during interaction (due to the large amount of
scaling being performed). Currently, thumbnail images are used in
the display; high-resolution images can then be accessed in a sepa-
rate window at the user’s request.

Related to the size of the visual node elements is the quality of
the visual element rendering, especially during interaction. While
an animation is active, images do not have to be displayed at their
full fidelity to ensure system responsiveness. This approach is stan-
dard in interactive scientific visualization systems. Currently, visual
node elements are rendered using quick algorithms during anima-
tion. When the animation ceases, high quality rendering is used.

As the number of nodes in the spanning tree increases, so does
the rendering time for that spanning tree. As previously mentioned,
rendering occurs in level order in the spanning tree. To maintain
responsiveness, this traversal is interrupted in an attempt to guaran-
tee 10 frames-per-second performance during animation. In a more
aggressive setting, the spanning tree calculation can also be termi-
nated prematurely at a given depth or number of discovered nodes.

With the current implementation, a MoireGraph remains rea-
sonably interactive for visual node graphs with a few hundred
displayed nodes. For example, for the protein folding example
with almost 300 nodes discussed later, performance ranged from
11 frames-per-second during animation with few nodes elided at
500x500 pixels to 7 frames-per-second with nodes in the outer two
levels elided at 1024x1024 pixels (measurements were performed
on a 2.65 GHz Pentium 4 with 1GB of RAM using no 3D-hardware

acceleration). Though larger graphs are interesting to consider,
there is a point where the size of the visual elements displayed be-
comes too small to show any detail. At this point, the node could
be rendered traditionally (without the visual element) to provide a
user with feedback on the structure of the graph without taxing the
rendering system with pixel or sub-pixel sized visual elements.

6 Applications

The MoireGraph was developed to address the need for the visual-
ization of graphs with visual elements. There are a wide class of
graphs which posses this property. For the sake of demonstration,
three are presented: web-site reachability, an image database, and
results from a biochemistry optimization process.

6.1 Web-site Reachability

Figures 3-5 are examples from a web-site reachability visualization.
In this case, the data consists of a subset of the first three levels of
the UCDavis Visualization and Graphics Research Group’s web-
site (http://graphics.cs.ucdavis.edu/). An edge indicates a link from
one page to another in the graph. The visual nodes in the example
consist of renderings of the corresponding web page. This demon-
stration shows that many existing graph datasets such as web-site
structure or file systems can also be displayed via a MoireGraph.
For example, file structure could be displayed in a MoireGraph with
the visual elements being the contents of the given file: Text files
would contain the first few lines of text while binary documents
would be rendered using an appropriate viewer.

6.2 Image Databases

Image databases are a natural application for MoireGraph visual-
izations. As an example, Figure 6 displays two MoireGraphs for
47 images from the NASA Planetary Photojournal. Each image has
five pieces of metadata associated with it: The image’s target, which
stellar body is it orbits (if any), the mission which generated the im-
age, the image’s creation date, and the image credits. Two graphs,
one for stellar structure and the other for source mission, were cre-
ated from this data. Node tips in this graph display all the relevant
image metadata. This MoireGraph balances the display of the im-
ages with the connectivity of the images. A real image database
application could combine a MoireGraph with a traditional image
browsing approach by animating between the two displays. This
would combine the strengths of both approaches.

6.3 Protein Optimizer Steering

In a computational steering environment, a running simulation can
be viewed and controlled from a remote workstation. ProtoShop
[Crivelli et al. 2002] is an example of a CSE for biochemistry. Pro-
toShop provides a front end to visualize and manipulate proteins.
These proteins are then submitted to an optimizing code running on
a remote server. The optimizer tries to minimize the energy of the
protein configuration by iteratively modifying the protein. At any
stage in the process, a protein configuration may be waiting to be
considered, being actively considered, retired after consideration,
or culled if its energy is determined to be too high. Since new con-
figurations are generated from old configurations, there is a natural
tree structure of configurations. This structure can be visualized via
a MoireGraph to gain insight into the process (Figure 7).

The simulation run profiled contains 284 configurations for the
given protein. Initially, the optimizer started considering several
configurations in parallel; their children formed a forest of config-
urations. To create a tree, a “dummy” node without any image was
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Figure 7: MoireGraphs for 284 configurations of proteins from an optimization process; the node without an image is a dummy node
connecting the forest of configuration trees. As the optimizer progresses, more configurations are generated from a candidate configuration
forming the configuration tree on the left. The right tree partitions the proteins into the current optimization status which is also encoded by
their colored outline (right image): waiting (green), active (red), retired (blue), or culled (black).

inserted to connect these initial configurations. To indicate their
status in the optimization process, nodes are outlined in green if
waiting, red if active, blue if retired, and black if culled. If de-
sired, the graph can also be clustered according to status. When
highlighted, the node tip displays a configuration’s unique identi-
fier, its energy, and its status. This identifier can then be used in the
CSE front end to access and manipulate that configuration. This
example demonstrates how a MoireGraph can be used to augment
another system, in this case by providing feedback on the progress
of the optimization.

7 Conclusions

Graph visualization systems benefit from displaying visual nodes
where appropriate—it lessens the user’s cognitive load in associat-
ing the topology with the node’s visual content. Applications using
visual nodes graphs run the gamut from traditional file and web hi-
erarchies to image databases. MoireGraphs provides an effective
means of visualizing and exploring these kinds of graphs.

This work has made several research contributions. A new fo-
cus+context method for radial graphs has been presented. Though
designed for visual node graphs, it could be applied in other do-
mains. Several interaction techniques with radial graphs have also
been described. These techniques could be extended to other graph
visualization systems, be they focus+context or not. For example,
secondary foci could be implemented in other focus+context sys-
tems for improved graph exploration.

7.1 Future Work

Extending previous focus+context graphs to perform layouts in the
presence of visual nodes is one avenue of potential research. Tra-
ditional graph layout algorithms could also be extended to include

space for visual nodes. Once complete, a user study would be useful
in determining which layouts are better suited for different tasks.

Two modifications to the MoireGraph being considered are lay-
out modifications and topology schematization. The layout cur-
rently uses a geometric progression of the levels. Others schemes,
such as a Gaussian progression, could be interesting to implement
and compare. Finally, as the graph size increases, the density of
edges becomes very thick. Thus, it may be beneficial to add topol-
ogy schematization in order to reduce visual clutter (such as in
[Herman et al. 1999a]). The schematization would be introduced
when edge density passes a threshold and would be removed when
the density drops (such as during level highlighting). Similarly,
instead of rendering a visual node element the same way as the dis-
tance from the focus increases, different representations could be
used in a manner similar to semantic zooming [Bederson and Hol-
lan 1994].
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