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Abstract

Spatially Quasi-Periodic Gravity-Capillary Waves

by

Xinyu Zhao

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jon Wilkening, Chair

In this thesis, we study the problem of two dimensional spatially quasi-periodic gravity-
capillary waves on the surface of an ideal fluid of infinite depth. We formulate the water
wave equations in a spatially quasi-periodic setting and present a numerical study of
solutions of both the initial value problem and the traveling wave problem. We propose
a Fourier pseudo-spectral discretization of the equations of motion in which one dimen-
sional quasi-periodic functions are represented by two dimensional periodic functions
on a torus. We adopt a conformal mapping formulation and employ a quasi-periodic
version of the Hilbert transform to determine the normal velocity of the free surface. Two
time-stepping schemes of the initial value problem are proposed, an explicit Runge-Kutta
(ERK) method and an exponential time-differencing (ETD) scheme. We present an exam-
ple of a periodic wave profile containing vertical tangent lines that is set in motion with a
quasi-periodic velocity potential. We formulate the traveling wave problem as a nonlinear
least squares problem that we solve using a variant of the Levenberg-Marquardt method.
Two types of quasi-periodic traveling solutions are computed: small-amplitude solutions
that bifurcate from the zero solution and large-amplitude solutions that bifurcate from
finite-amplitude periodic traveling solutions. Solutions of the first type are identified by
two bifurcation parameters. We also compute the leading terms of the asymptotic expan-
sion of the solution using these parameters. For solutions of the second type, we apply the
Fourier-Blochdecomposition to study the linearization aroundperiodic traveling solutions
and obtain a one-parameter family of quasi-periodic solutions bifurcating from the branch
of periodic solutions. As an example, we compute a branch of quasi-periodic overturning
traveling solutions that bifurcate from a periodic overturning traveling solution.
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Chapter 1

Introduction

In fluid dynamics, gravity-capillarywaves are surfacewaves generated by the restoring
effects of both gravity and surface tension [4]. The motion of these waves on a fluid
of arbitrary depth is described by the Euler equations. There have been many wave
models derived as approximations of Euler equations, such as the Korteweg-De-Vries
(KdV) equation and theKawahara equation in the shallowwater regime, and the nonlinear
Schrodinger equation in the deep water regime. These equations are usually studied
under the periodic boundary condition or the assumption that the solution decays to
zero at infinity [29, 54, 77]. However, in many situations, assuming the waves decay to
zero at infinity is not a realistic model. For example, a large body of water such as the
ocean is often covered in surface waves in every direction over vast distances. Similarly,
assuming spatial periodicity may limit one’s ability to observe interesting dynamics. The
goal of this thesis is to study free surface Euler equations under the assumption that
the solutions only satisfy spatially quasi-periodic boundary conditions. Particularly, we
introduce a conformal mapping formulation of the wave equations in this setting and
develop numerical methods to compute solutions of the initial value problem as well as
the traveling wave problem.

The Modulational Instability and Quasi-Periodic Dynamics of Water Waves

In 1847, Stokes [70] proposed the existence of periodic traveling gravity waves on
deep water and constructed asymptotic expansions of these waves. The convergence
of the Stokes expansion was first proved by Levi-Civita [55] in 1925 and extended by
Struik [71] to traveling waves on water of finite depth in 1926. Even though the existence
of Stokes waves was established, the instability of Stokes waves went unnoticed for a long
time. In 1967, Benjamin and Feir [14] first discovered that the Stokes waves are unstable
under long-wave perturbations; they observed that the nonlinear interactions between the
perturabation and the Stokes wave led to exponential growth of the wave perturbation.
This is called the modulational instability, or Benjamin-Feir instability, which is believed
to be a mechanism responsible for the formation of rogue waves [1, 66, 67]. Modulational
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instability has been proved by Bridges and Mielke [20] for the case of finite depth water
and Nguyen and Strauss [64] recently for the case of deep water.

Modulational instability is usually studied by examining the subharmonic stability of
periodic traveling waves, where the wavelength of the perturbation is longer than the
original traveling wave [31,57,73]. One can obtain the full spectrum of the stability prob-
lem using a Fourier-Bloch decomposition, where the eigenfunctions of the linearization
around a periodic traveling wave possess a spatial period different from the traveling
wave [72]. The time evolution of traveling waves under subharmonic perturbations leads
to spatially quasi-periodic dynamics, which is usually computed by linear approxima-
tion [31]. No method currently exists to compute the exact nonlinear motion, which
includes the complicated interactions between wave modes of different wavelengths. In
this thesis, we develop numerical methods to compute the exact solutions of the wave
equations under spatially quasi-periodic initial conditions. This methodmakes it possible
to study the dynamics of perturbed traveling waves in the fully nonlinear setting and
can also be used to improve the accuracy of wave forecasting, where the wave motion is
usually computed through weakly nonlinear models [52].

Recently, the quasi-periodic dynamics of water waves have drawn considerable atten-
tion. Berti and Montalto [17] and Baldi et. al. [13] used Nash-Moser theory to prove the
existence of small-amplitude temporally quasi-periodic gravity-capillary standing waves.
With different assumptions on the form of solutions, Berti et. al. [16] have proved the
existence of time quasi-periodic gravity-capillary waves with constant vorticity while Fe-
ola and Giuliani [41] have proved the existence of time quasi-periodic irrotational gravity
waves. New families of relative-periodic [80] and traveling-standing [81] water wave so-
lutions have been computed by Wilkening. As with [13, 16, 17, 41], these solutions are
quasi-periodic in time rather than space. For spatially quasi-periodic waves, there are
studies of the well-posedness of solutions of the KdV equation [30] and the Schrodinger
equation [32]; however, to our knowledge, the spatially quasi-periodic gravity-capillary
wave problem has not been studied previously in the fully nonlinear regime.

Spatially Quasi-Periodic Traveling Waves

The dispersion relation for linearized traveling gravity-capillary waves in deep water
reads

c2
� gk−1

+ τk. (1.1)

Here c is the phase speed, k is the wave number, g is the acceleration due to gravity and τ
is the coefficient of surface tension. Notice that c �

√(g/k) + τk has a positive minimum,
denoted by ccrit. For any fixed phase speed c > ccrit, there are two distinct positive wave
numbers satisfying the dispersion relation (1.1), denoted k1 and k2. Any traveling solution
of the linearized problem with this speed can be expressed as a superposition of waves
with these wave numbers. If k1 and k2 are rationally related, the motion is spatially
periodic and corresponds to the well-known Wilton ripples [2, 5, 73, 85]. However, if k1
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and k2 are irrationally related, the motion will be spatially quasi-periodic. Thus it is
natural to ask whether the solution of the linearized problem in this case can be perturbed
to quasi-periodic traveling solutions of the nonlinear problem.

Bridges and Dias [19] first studied quasi-periodic traveling gravity-capillary waves
as small-amplitude perturbations of the solution of the linearized problem; they used
a spatial Hamiltonian structure to construct weakly nonlinear approximations of these
waves for two special cases: deep water and shallow water. The existence of such waves
is still an open problem. In this thesis, we demonstrate their existence numerically and
explore their properties. Unlike [19], we use a conformal mapping formulation [26, 33,
34, 36, 37, 49, 56, 87] of the gravity-capillary wave problem. Particularly, we consider the
conformal mapping that maps the lower half plane to the fluid domain such that the real
line is mapped to the free surface. This makes it possible to compute the normal velocity
of the fluid from the velocity potential on the free surface via a quasi-periodic variant of
the Hilbert transform. Analogous to the periodic case, the Hilbert transform is a Fourier
multiplier operator that acts on functions defined on a higher-dimensional torus.

We first study the problem of quasi-periodic traveling waves in the setting of a bi-
furcation problem with a two-dimensional kernel, where the solutions are considered
as bifurcations from the zero solution. These solutions are close to the solution of the
linearized problem and are of relatively small amplitudes due to small divisors. Next
we proceed to compute large-amplitude quasi-periodic traveling waves by searching for
quasi-periodic bifurcations of finite-amplitude periodic travelingwaves. This ismotivated
by the study of periodic secondary bifurcations of Stokes waves. In [22], Buffoni, Dancer
and Toland showed that for each sufficiently large value of the integer n, there exists
a secondary bifurcation branch of solutions of period 2nπ bifurcating from a 2π peri-
odic solution. Chen and Saffman [24] computed subharmonic bifurcations corresponding
to n � 2, 3. Vanden-Broeck [76] further extended their results to n � 9 and provided
numerical evidence that the bifurcated solution approaches a non-periodic wave when
n approaches infinity; this limit configuration is no longer periodic. We further extend
their ideas to quasi-periodic secondary bifurcations and obtain quasi-periodic overturning
traveling waves that bifurcate from periodic traveling waves.

An Overview of The Thesis

In this thesis, we study the problem of two-dimensional spatially quasi-periodic
gravity-capillary waves on the surface of an ideal fluid of infinite depth, including the
initial value problem and the traveling wave problem. The thesis consists of three main
sections: equations of motion for spatially quasi-periodic waves, the problem of quasi-
periodic traveling waves and the corresponding numerical methods and results.

In Chapter 2, we introduce the definition of quasi-periodic functions and discuss the
equations of motion for spatially quasi-periodic gravity-capillary waves. Following the
definitions in [40,62], we represent a quasi-periodic function of d quasi-periods in terms of
a periodic function defined on the torus T d . Wepresent the usual graph-based formulation
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as well as the conformal mapping formulation of the governing equations in the spatially
quasi-periodic setting. We also derive the corresponding equations of motion on the
torus. We demonstrate that by using the conformal mapping method, one can reduce the
computation of theDirichlet-Neumannoperator to the computation of aHilbert transform,
which is essentially a Fouriermultiplier operator and easy to compute in Fourier space. We
show that similar to the periodic case, the equations of motion for spatially quasi-periodic
waves can be written as a canonical Hamiltonian system in physical variables and non
canonical Hamiltonian system in conformal variables; we also discuss the conserved
quantities such as energy, momentum and mass in both formulations.

In Chapter 3, we study the problem of quasi-periodic traveling waves using the con-
formal mapping formulation of governing equations and focus on solutions with two
quasi-periods. We examine the linearization of the governing equations around the zero
solution and construct asymptotic expansions of the quasi-periodic traveling solutions
that are small-amplitude perturbations of the linear solution. The computation of the
expansion inevitably leads to small divisor problems; as a consequence, the amplitudes of
the solutions have to be relatively small to overcome the unboundedness caused by small
divisors. The convergence of expansions is still an open problem as one would need to
overcome the small divisor problem in a proof. Besides small-amplitude solutions, we
also discuss how to obtain quasi-periodic traveling solutions of relatively large amplitudes.
The idea is to search for quasi-periodic bifurcations of finite-amplitude periodic travel-
ing solutions. We adopt a Fourier-Bloch decomposition to study the linearization. This
method has been used in the studies of the subharmonic stability of traveling waves [31].
These solutions are of relatively large amplitudes and far from the linear solution.

In Chapter 4, we develop numerical methods for both the initial value problem and
the traveling wave problem discussed in Chapters 2 and 3. The basic idea is to perform
the computations on the torus version of the quasi-periodic water wave equations using a
Fourier pseudo-spectral method and reconstruct quasi-periodic functions from periodic
functions on the torus. In the computations, we focus on quasi-periodic functions with
two quasi-periods. For the initial value problem, we present a high-order explicit Runge-
Kutta method and an exponential time-differencing (ETD) method. The former is suitable
for the case of zero or small surface tension while the latter makes use of the small-
scale decomposition [47, 48] to eliminate stiffness due to surface tension. The conformal
mappingmethodhasnot been implemented in anETDframeworkbefore, even forperiodic
boundary conditions. We present a convergence study of the methods as well as a large-
scale computation of a quasi-periodic wave in which some of the wave crests overturn.
Due to the torus representation of solutions, there are infinitely many wave crests and
no two of them evolve in exactly the same way. For the traveling wave problem, we
formulate the traveling wave computation as a nonlinear least-squares problem and use
the Levenberg-Marquardt method to search for solutions. This approach builds on the
overdetermined shooting methods developed by Wilkening and collaborators [8, 9, 43,
69, 82] to compute standing waves and other time-periodic solutions. We show that
the spatially quasi-periodic traveling waves that bifurcate from the zero-amplitude wave
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come in two-parameter families in which the amplitudes of the base modes with wave
numbers k1 and k2 satisfying (1.1) serve as bifurcation parameters. The wave speed and
surface tension depend nonlinearly on these parameters as well. We also compute a set
of periodic traveling solutions where there exist quasi-periodic bifurcations and obtain
large-amplitude quasi-periodic overturning traveling waves when surface tension effects
are stronger than gravitational effects.
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Chapter 2

Equations of Motion

2.1 Governing Equations in Physical Space

2.1.1 The Two Dimensional Free Surface Euler Equations
We study the problem of two-dimensional gravity-capillary waves on the surface of

an ideal fluid of infinite depth. An ideal fluid is a fluid that is incompressible, irrotational
and inviscid. We assume that the density of the fluid, denoted by ρ, is a fixed constant
that does not depend on time or space. We define the fluid domain by

Ωη :� {x � (x , y) : −∞ < y < η(x , t), x ∈ R}, (2.1)

where η(x , t) is the free surface elevation that changes with time. We denote the veloc-
ity field of the fluid as u � (u , v)T , which satisfies the following incompressible Euler
equations [27]




ut + u · ∇u + ∇(P
ρ + g y) � 0,

∇ · u � 0,
(2.2)

where ∇ � (∂x , ∂y)T , g is the acceleration of gravity and P : Ωη → R is the pressure.
We also assume that v → 0 when y → −∞, which is compatible with the impenetrable
condition for fluid of finite depth.

We pose two boundary conditions on the free surface. The first one is called the
kinematic boundary condition, which states that the fluid particles on the free surface
always remain on the free surface; this implies that the normal velocity of the fluid
particles and the free surface should be the same. Therefore we have

(0, ηt)T · n � U · n , U � (U,V)T � u |y�η , (2.3)

where
n �

1√
1 + η2

x

(−ηx , 1)T (2.4)
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is the outward unit norm on the free surface. The above equation can be simplified to

ηt �

√
1 + η2

xU · n. (2.5)

The second boundary condition is with regard to the force equilibrium at the free surface:
the force due to the surface tension balances the outward force due to the pressure differ-
ence between the fluid and air. If we assume that the air pressure is zero without loss of
generality, then we have

P |y�η � −ρτκ, (2.6)

where τ is the surface tension coefficient and

κ � ∂x
*..
,

ηx√
1 + η2

x

+//
-

(2.7)

is the mean curvature. This condition is called the dynamic boundary condition.
Since the fluid is irrotational, we have

curl u � uy − vx � 0. (2.8)

Using the fact that the fluid domain is simply connected, we know that there exists a
function Φ such that

u � ∇Φ. (2.9)

The function Φ is called the velocity potential. Substituting the above equation into the
incompressible Euler equations (2.2), we obtain




Φt +
1
2 |∇Φ|2 + g y +

P
ρ � C(t),

Φxx +Φy y � 0.
(2.10)

The first equation is called the Bernoulli’s equation and the function C(t) is an arbitrary
integration constant which is allowed to depend on time but not space. On the free
surface, the substitution of the dynamic boundary condition (2.6) into the Bernoulli’s
equation gives

Φt +
1
2
|∇Φ|2 + g y − τκ � C(t), y � η(x , t). (2.11)

The second equation of (2.10) shows that Φ is a harmonic function in the fluid domain.
We define

ϕ(x , t) � Φ(x , η(x , t)), (2.12)

which is the boundary value of the velocity potential on the free surface. The time
evolution of ϕ is given by (2.11). Knowing ϕ, one can obtain Φ by solving the following
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Dirichlet-Neumann boundary value problem




Φxx +Φy y � 0, −∞ < y < η(x , t),
Φ � ϕ, y � η(x , t),
Φy → 0, y → −∞.

(2.13)

The motion of the waves is also determined by the evolution of the free surface elevation
η, which is obtained by substituting (2.11) into the kinematic boundary condition (2.5)

ηt � Φy − ηxΦx , y � η(x , t). (2.14)

In summary, themotion of gravity-capillarywaves is governed by the two-dimensional
free-surface Euler equations [29, 86]

η(x , 0) � η0(x), ϕ(x , 0) � ϕ0(x), t � 0, x ∈ R, (2.15)

Φxx +Φy y � 0, −∞ < y < η(x , t),
Φ � ϕ, y � η(x , t),
Φy → 0, y → −∞,

(2.16)

ηt � Φy − ηxΦx , y � η(x , t), (2.17)

ϕt � Φyηt −
1
2
Φ2

x −
1
2
Φ2

y − gη + τκ + C(t), y � η(x , t). (2.18)

Following [29, 86], only the surface variables η and ϕ are evolved in time; the velocity
potentialΦ in the bulk fluid is reconstructed from η and ϕ by solving (2.16), which causes
the problem to be nonlocal. In [29], Craig and Sulem showed that one can write the whole
system in terms of η and ϕ only. To do so, they introduce the Dirichlet-Neumann operator

G(η)ϕ � Φy − ηxΦx |y�η. (2.19)

This operator relates the function ϕ, defined on the free surface, to the normal derivative
of its harmonic extension Φ on the free surface. The differentiation of (2.12) with respect
to x yields

ϕx � Φx +Φyηx , y � η(x , t). (2.20)
Combining the equation above with G(η)ϕ, one can obtain(

ϕx

G(η)ϕ
)
�

(
1 ηx

−ηx 1

) (
Φx

Φy

)
, y � η(x , t). (2.21)

Therefore the velocity of the fluid particles on the free surface can be expressed by

U � Φx �
1

1 + η2
x
(ϕx − ηxG(η)ϕ), V � Φy �

1
1 + η2

x
(ηxϕx + G(η)ϕ). (2.22)
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Substituting the above equations into (2.17) and (2.18), we obtain the time evolution
equations of ηt and ϕt

ηt � G(η)ϕ,

ϕt �
1
2

*
,

�
G(η)ϕ + ηxϕx

�2

1 + η2
x

− ϕ2
x

+
-
− gη + τκ + C(t). (2.23)

2.1.2 Governing Equations of Spatially Quasi-Periodic Waves
As defined in [40, 62], a quasi-periodic, real analytic function f (x) is a function of the

form
f (x) � f̃ (kx), f̃ (x) �

∑
j∈Zd

f̂ j e i〈j , x〉, x ∈ R, x , k ∈ Rd , (2.24)

where 〈·, ·〉 denotes the standard inner product in Rd and f̃ is a periodic, real analytic
function defined on the d-dimensional torus

T d :� Rd
/(2πZ)d , d ≥ 2. (2.25)

Entries of the vector k are called the basic wave numbers (or basic frequencies) of f and
are required to be linearly independent overZ to exclude periodic functions. If k is given,
one can reconstruct the Fourier coefficient f̂ j from f via

f̂ j � lim
a→∞

1
2a

∫ a

−a
f (α)e−i〈j ,k〉x dx , j ∈ Zd . (2.26)

A similar averaging formulaholds for functions in themoregeneral class of almost periodic
functions [10,18,42,45,62], which is the closure with respect to uniform convergence onR

of the set of trigonometric polynomials p(x) � ∑N
n�1 cn e iκn x . Before taking limits to obtain

the closure, this set includes polynomials of any degree and there is no restriction on the
real numbers κn . Within the framework of almost periodic functions, one obtains quasi-
periodic functions if one assumes the κn in the approximating polynomials are integer
linear combinations of a fixed, finite set of basic wave numbers k1, . . . , kd .

We have not attempted to formulate the water wave problem in the full generality of
almost periodic functions, and instead assume the basic wave numbers are given and the
torus representation (2.24) is available. Thus, the average overR on the right-hand side of
(2.26) can be replaced by the simpler Fourier coefficient formula

f̂ j �
1

(2π)d

∫
T d

f̃ (x)e−i〈j ,x〉 dx1 · · · dxd . (2.27)

Our assumption that f̃ (x) is real analytic is equivalent to the conditions that f̂− j � f̂ j for
j ∈ Zd and there exist positive numbers M and σ such that | f̂ j | ≤ Me−σ‖ j‖, i.e. the Fourier
modes f̂ j decay exponentially as ‖ j‖ →∞. This is proved e.g. in Lemma 5.6 of [21].
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For spatially quasi-periodicwaves,we assume that η andϕ are quasi-periodic functions
of the same quasi-periods

η(x , t) � η̃(kx , t), ϕ(x , t) � ϕ̃(kx , t). (2.28)

In correspondence, the velocity potential Φ is also quasi-periodic in x

Φ(x , y , t) � Φ̃(kx , y , t), (2.29)

where Φ̃(x , y , t) is periodic in x. In the case where η and ϕ are quasi-periodic, the domain
is unbounded and the functions do not decay to zero at infinity, which brings up both
analytical and computational difficulties. To circumvent this issue, instead of working on
the governing equations of η and ϕ directly, we study the equations of motion for η̃, ϕ̃,
which are posed on a bounded domain T d ; the motion of η, ϕ can be reconstructed from
η̃, ϕ̃ using (2.28).

We define the fluid domain for tilde functions as

Ωη̃ �
{(x , y) : −∞ < y < η̃(x , t), x ∈ T d

}
. (2.30)

The tilde velocity potential Φ̃ satisfies the following Dirichlet-Neumann boundary value
problem




�
∂̃x

�2
Φ̃ +

�
∂y

�2
Φ̃ � 0, −∞ < y < η̃(x , t),

∂yΦ̃ � 0, y → −∞,
Φ̃ � ϕ̃, y � η̃(x , t),

(2.31)

where the quasi-periodic partial derivative operator is defined by

∂̃x :� k · ∇x , ∇x � (∂x1 , ∂x2 , · · · , ∂xd )T . (2.32)

Similar to (2.23), we are able to write the governing equations of tilde functions in terms
of η̃ and ϕ̃; Φ̃ can be reconstructed from η̃ and ϕ̃ by solving the boundary value problem
(2.31). We define the quasi-periodic Dirichlet-Neumann operator

G̃(η̃)(ϕ̃) � ∂yΦ̃ −
�
∂̃x η̃

� �
∂̃xΦ̃

��
y�η̃ . (2.33)

Substituting (2.28) and (2.33) back into (2.23), we obtain the evolution equations of η̃ and
ϕ̃ as follows

η̃t � G̃(η̃)ϕ̃,

ϕ̃t �
1
2

*.
,

�
G̃(η̃)ϕ̃ +

�
∂̃x η̃

� �
∂̃xϕ

� �2

1 +
�
∂̃x η̃

�2 −
�
∂̃x ϕ̃

�2+/
-
− g η̃ + τκ̃ + C(t), (2.34)

where the quasi-periodic mean curvature κ̃ is given by

κ̃ � ∂̃x
*..
,

∂̃xη√
1 + (∂̃xη)2

+//
-
. (2.35)
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2.1.3 The Hamiltonian System of Spatially Quasi-Periodic Waves
The governing equations given by (2.34) can be formulated as a Hamiltonian system

[29,86] with energy

Ẽ �

∫
T d

1
2
ϕ̃G̃(η̃)ϕ̃ +

1
2

g η̃2
+ τ

(√
1 +

�
∂̃x η̃

�2
− 1

)
dx. (2.36)

The surface variables η̃ and ϕ̃ are canonical conjugate variables of the Hamiltonian system
and the evolution equations (2.34) can be rewritten as

η̃t �
δẼ
δϕ̃

, ϕ̃t � −
δẼ
δη̃
. (2.37)

We define the mass and momentum by

M̃ �

∫
T d
η̃ dy dx ,

P̃ �

∫
T d

∫ η̃

−∞

∂̃xΦ̃ dydx � −

∫
T d
Φ̃|y�η̃∂̃x η̃ dx.

(2.38)

One can check that these two quantities are conserved in the time evolution. We remark
that the definitions of H̃, M̃ and P̃ are similar to the ones in the periodic problem except
that the definitions of the partial derivative with respect to x and the Dirichlet-Neumann
operator [29] are different.

2.2 Governing Equations in Conformal Space

2.2.1 The Quasi-Periodic Hilbert Transform
We consider a bounded holomorphic function

z(w) � x(w) + i y(w), w � α + iβ, (2.39)

that is defined on the lower half plane

C− � {α + iβ : α ∈ R, β < 0}. (2.40)

We assume that z can be extended continuously to C− and the imaginary part of z on the
real line, denoted v(α), is a quasi-periodic function of the form (2.24)

v(α) � ṽ(kα), ṽ(α) �
∑
j∈Zd

v̂ je i〈j ,α〉. (2.41)
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One can check that the function z takes the following form

z(w) � û0 + i v̂0 +
∑

〈j ,k〉<0

2i v̂ j e i〈j ,k〉w , w � α + iβ , β ≤ 0, (2.42)

where û0 and v̂0 are integration constants. We denote the value of the real part of z on the
real line by u(α). According to (2.42), we know that u is determined by v up to an additive
constant

u(α) � û0 +
∑
j,0

(−i) sgn(〈 j , k〉)v̂ j e i〈j ,k〉α , (2.43)

where sgn(q) ∈ {1, 0,−1} depending on whether q > 0, q � 0 or q < 0, respectively. We
introduce a quasi-periodic Hilbert transform as follows.

Definition 2.2.1 The Hilbert transform of a quasi-periodic f (α) of the form (2.24) is defined to be

H[ f ](α) �
∑
j∈Zd

(−i) sgn(〈 j , k〉) f̂ j e i〈j , k〉α , (2.44)

The symbol of the Hilbert transform is denoted by Ĥ j � (−i) sgn(〈 j , k〉).
This agrees with the standard definition [38] of the Hilbert transform as a Cauchy

principal value integral:

H[u](α) � 1
π

PV
∫
∞

−∞

u(ξ)
α − ξ

dξ. (2.45)

Indeed, it is easy to show that for functions of the form u(α) � e iρα with ρ real, the integral
in (2.45) gives H[u](α) � −i sgn(ρ)e iρα. For extensions to the upper half-plane, the sum in
(2.42) is over 〈j , k〉 > 0, the last formula in (2.43) becomes û j � i sgn(〈 j , k〉)v̂ j .

Using the Hilbert transform, we can related u and v by

v � v̂0 − H[u], u � û0 + H[v], (2.46)

where the constant v̂0 � P0[v] or û0 � P0[u] is a free parameter when computing v or u,
respectively. H returns the “zero-mean” solution, i.e. P0H[u] � 0. Below is the definition
of the projection operator P0.

Definition 2.2.2 Let f (α) be a quasi-periodic of the form (2.24). The projection operators P and
P0 are defined by

P � id−P0, P0[ f ] � f̂0 � lim
a→∞

1
2a

∫ a

−a
f (α) dα. (2.47)

We can extend the definitions of the Hilbert transform and the projection operators of
quasi-periodic functions to periodic functions in L2(T d) as follows
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Definition 2.2.3 For a periodic function f̃ ∈ L2(T d), we define
P � id−P0, P0[ f̃ ] � f̂0 �

1
(2π)d

∫
T d

f̃ (α) dα,

H[ f̃ ](α) �
∑
j∈Zd

(−i) sgn(〈 j , k〉) f̂ j e i〈j , α〉.
(2.48)

Let f be a quasi-periodic function of the form (2.24) and f̃ be the corresponding tilde
function, the above two definitions of H, P and P0 are consistent in the sense that

P[ f ](α) � P[ f̃ ](kα), P0[ f ] � P0[ f̃ ], H[ f ](α) � H[ f̃ ](kα). (2.49)

In the end of this section, we would like to introduce some properties of the Hilbert
transform and the projection operator.

Lemma 2.2.4 Suppose that f and g are two quasi-periodic functions of the form (2.24), then the
following equalities are true

(1) P0
�

f (H g) + g(H f )� � 0;

(2) P0
�

f g − (H f )(H g)� � P0[ f ]P0[g];
(3) H

�
f g − (H f )(H g)� � f (H g) + g(H f );

(4) H
�
g(H f ) + f (H g)� � P

�(H f )(H g) − f g
�
.

Proof: The equality (1) and (2) canbeprovedusing the fact that Ĥ j � −Ĥ− j and Ĥ jĤ− j � 1
for 〈j , k〉 , 0. To show that the equality (3) is true, we consider the bounded holomorphic
extensions of H f + i f and H g + i g to the lower half plane, denoted z f and zg respectively.
The value of the product z f zg on the real line reads

z f zg |β�0 � (H f + i f )(H g + i g) � �(H f )(H g) − f g
�
+ i

�
g(H f ) + f (H g)� . (2.50)

Since z f zg is still a bounded holomorphic function in the lower half plane, we can relate
the real and imaginary part of z f zg |β�0 by the Hilbert transform as follows

(H f )(H g) − f g � H
�
g(H f ) + f (H g)� + C, g(H f ) + f (H g) � −H

�(H f )(H g) − f g
�
,

(2.51)
where C is an additive constant. We remark that there is no additive constant in the second
equality as a result of equality (1). �

The preceding lemma is also true in the periodic case with d � 1 and k � (1). In the
case where the fluid is of finite depth, equality (1) in the lemma still holds but (2) does not.
This is because the symbol of the finite-depth Hilbert transform is Ĥ j � −i tanh

�〈j , k〉h�

and Ĥ jĤ−j is no longer 1 for 〈j , k〉 , 0. Here h is the fluid depth in conformal space,
which evolves in time to maintain constant fluid depth in physical space [56, 74].

Lemma 2.2.5 Suppose that f̃ , g̃ ∈ L2(T d), the equalities (1) - (4) in Lemma 2.2.4 still hold.
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Proof: We are just going to prove the equality (3) as the rest are similar. It suffices to
show that this equality holds for functions in

Λ :� {e j � e i〈j ,α〉, j ∈ Zd}. (2.52)

For any e j1
, e j2
∈ Λ, we have

H
�
e j1

e j2
− (He j1

)(He j2
)� � (−i) sgn(〈 j1 + j2, k〉)(1 + sgn(〈 j1, k〉) sgn(〈 j2, k〉))e j1+ j2

, (2.53)

e j1
(He j2

) + e j2
(He j1

) � (−i)(sgn(〈 j1, k〉) + sgn(〈 j2, k〉))e j1+ j2
. (2.54)

If j1 + j2 � 0, the above two equalities are both equal to 0; otherwise, using the fact that
sgn(〈 j1 + j2, k〉)2 � 1, we have

H
�
e j1

e j2
− (He j1

)(He j2
)� − e j1

(He j2
) − e j2

(He j1
)

�(−i) sgn(〈 j1 + j2, k〉)(sgn(〈 j1 + j2, k〉) − sgn(〈 j1, k〉))(sgn(〈 j1 + j2, k〉) − sgn(〈 j2, k〉))
�0,

(2.55)
which proves the equality (3). �

2.2.2 The Conformal Mapping
We consider a time dependent conformal mapping

z(w , t) � x(w , t) + i y(w , t), w � α + iβ. (2.56)

that maps the lower half plane C− to the fluid domain Ωη and satisfies

zw(w , t)→ 1, β → −∞. (2.57)

We assume that z(w , t) can be extended continuously to C− and maps the real line β � 0
to the free surface

Γ(t) � {x + i y : y � η(x , t)}. (2.58)
We also introduce the notation ζ � z |β�0, ξ � x |β�0 and η � y |β�0 so that the free

surface is parametrized by

ζ(α, t) � ξ(α, t) + iη(α, t), α ∈ R. (2.59)

This allows us to denote a generic field point in the physical fluid by z � x + i y while
simultaneously discussing points ζ � ξ + iη on the free surface. To avoid ambiguity, we
will henceforth denote the free surface elevation function in physical space from Section
2.1.1 by ηphys(x , t). Thus,

η(α, t) � ηphys(ξ(α, t), t), ηα � η
phys
x ξα , ηt � η

phys
x ξt + η

phys
t . (2.60)
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Our goal is to investigate the case where the free surface is quasi-periodic in α. This
differs from conformal mappings discussed in [33,34,56,58,59,87], where the free surface
is assumed to be periodic. If η(α, t) is a quasi-periodic function of the form (2.24)

η(α, t) � η̃(kα, t), η̃(α, t) �
∑
j∈Zd

η̂ j(t)e i〈j , α〉, x ∈ R, α, k ∈ Rd , (2.61)

according to Section 2.2.1 and (2.57), we know that ξ can be expressed by η up to an
additive constant that possibly depends on time

ξ(α, t) � α + x0(t) + H[η](α, t). (2.62)

Differentiating the above equation with respect to x gives

ξα(α, t) � 1 + H[ηα](α, t). (2.63)

2.2.3 The Complex Velocity Potential
Let Φphys(x , y , t) denote the velocity potential in physical space from Section 2.1.1

and let Wphys(x + i y , t) � Φphys(x , y , t) + iΨphys(x , y , t) be the complex velocity potential,
where Ψphys is the stream function. Using the conformal mapping (2.56), we pull back
these functions to the lower half plane and define

W(w , t) � Φ(α, β, t) + iΨ(α, β, t) � Wphys(z(w , t), t), w � α + iβ. (2.64)

We also define ϕ � Φ|β�0 and ψ � Ψ|β�0 and use (2.16) and (2.60) to obtain

ϕ(α, t) � ϕphys(ξ(α, t), t), ψ(α, t) � ψphys(ξ(α, t), t), (2.65)

where ψphys(x , t) � Ψphys(x , ηphys(x , t), t). We assume ϕ is quasi-periodic with the same
quasi-periods as η

ϕ(α, t) � ϕ̃(kα, t), ϕ̃(α, t) �
∑
j∈Zd

ϕ̂ j(t)e i〈j , α〉, x ∈ R, α, k ∈ Rd . (2.66)

The fluid velocity ∇Φphys(x , y , t) is assumed to decay to zero as y → −∞ (since we work
in the lab frame). From Section 2.2.1 and the chain rule (see (2.68) below), dW/dw → 0 as
β → −∞. Thus, ψα � −H[ϕα]. Writing this as ∂α[ψ + Hϕ] � 0, we conclude that

ψ(α, t) � ψ̂0 − H[ϕ](α, t). (2.67)

Considering that adding Φ and Ψ by constants (or functions of time only) will not affect
the fluid motion, we set ψ̂0 � P0[ψ] � 0 and ϕ̂0 � P0[ϕ] � 0 in the scope of this thesis.
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2.2.4 Governing Equations in Conformal Space
Following [26, 34, 56, 74, 78, 87], we present a derivation of the equations of motion for

surface water waves in a conformal mapping formulation, modified as needed to handle
quasi-periodic solutions.

From the chain rule, we have

dW
dw

�
dWphys

dz
·

dz
dw

⇒ Φ
phys
x + iΨphys

x �
Φα + iΨα

xα + i yα
. (2.68)

Since Φphys
y � −Ψ

phys
x , we can express the velocity of the fluid, which is the gradient of

Φphys in terms of Φα andΨα

Φ
phys
x �

Φαxα +Ψαyα
x2
α + y2

α

, Φ
phys
y �

Φαyα −Ψαxα
x2
α + y2

α

. (2.69)

Evaluating (2.69) on the free surface gives

Φ
phys
x �

ϕαξα + ψαηα
J

, Φ
phys
y �

ϕαηα − ψαξα
J

, J � ξ2
α + η

2
α . (2.70)

Using (2.60) and (2.70) in (2.17) and multiplying by ξα, we obtain

ηtξα − ξtηα � −ψα . (2.71)

This states that the normal velocity of the free surface is equal to the normal velocity of
the fluid, (ξt , ηt)T · n � ∇Φphys

· n, where n � (−ηα , ξα)T/√J. This can also be obtained
by tracking a fluid particle xp(t) + i yp(t) � ζ(αp(t), t) on the free surface. We have
ẋp � ξα α̇p + ξt � Φ

phys
x and ẏp � ηα α̇p + ηt � Φ

phys
y , which leads to (2.71) after eliminating

α̇p . This argument does not assume the free surface is a graph, i.e. (2.71) is also valid for
overturning waves.

Next we consider zt/zw , which is a holomorphic function on C− as long as zw is
bounded away from zero. The real and imaginary part of zt/zw at the top boundary β � 0
are

Re
( zt

zw

) ����β�0
�
ξαξt + ηαηt

J
, Im

( zt

zw

) ����β�0
�
ξαηt − ηαξt

J
� −

ψα
J
, (2.72)

where the last equality comes from (2.71). According to Section 2.2.1, Re (zt/zw)|β�0 is
determined by Im (zt/zw)|β�0 up to a constant

ξtξα + ηtηα
J

� −H
[
ψα
J

]
+ C1, (2.73)
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where C1 is an arbitrary integration constant that may depend on time but not space. Let
s � (ξα , ηα)T/√J denote the unit tangent vector to the curve. Equation (2.73) prescribes
the tangential velocity (ξt , ηt)T · s of points on the curve in terms of the normal velocity in
order tomaintain a conformal parametrization. Note that the tangent velocity of the curve
differs from that of the underlying fluid particles. This is similar in spirit to a method of
Hou, Lowengrub and Shelley [47,48], who proposed a tangential velocity that maintains a
uniform parametrization of the curve (rather than a conformal one); see also [7,26,74,83].
Combining (2.71) and (2.73), we obtain the kinematic boundary conditions in conformal
space, (

ξt
ηt

)
�

(
ξα −ηα
ηα ξα

)
*
,

−H
[
ψα
J

]
+ C1

−
ψα
J

+
-
. (2.74)

Since ξt is related to ηt via the forward Hilbert transform (up to a constant). The constant
is determined by comparing (2.62) with (2.74), which gives

dx0

dt
� P0

[
ξα

(
−H

[
ψα
J

]
+ C1

)
+
ηαψα

J

]
. (2.75)

The three most natural choices of C1 are
(a) C1 � 0 : evolve x0(t) via (2.75),
(b) C1 � P0

�
ξαH[ψα/J] − ηαψα/J

�
: x0(t) � 0,

(c) C1 �
�
H[ψα/J] − ηαψα/(ξα J)�α�0 : ξ(0, t) � 0.

(2.76)

In options (b) and (c), the evolution equation ensures that dx0/dt � 0 and ξt(0, t) � 0,
respectively; we have assumed the initial conditions satisfy x0(0) � 0 or ξ(0, 0) � 0,
respectively. Option (c) amounts to setting x0(t) � −H[η](0, t) in (2.62). This arguably
leads to the most natural parametrization, but would have a problem if the vertical part
of an overturning wave crosses α � 0. Indeed, such a crossing would lead to ξα(0, t) � 0
at some time t in the denominator of (2.76c). We recommend option (b) in this scenario.
Using Remark 2.2.4, we can further simplify (2.76b) to C1 � 0 and (2.75) to dx0/dt � C1,
i.e. cases (a) and (b) in (2.76) coincide in the infinite depth case.

Next we evaluate the Bernoulli equation Φphys
t +

1
2

�
∇Φphys�2 + P

ρ + g y � C2 at the free
surface to obtain an evolution equation for ϕ(α, t). Here C2 is an arbitrary integration
constant that may depend on time but not space. The pressure at the free surface is
determined by the Laplace-Young condition, P � P0 − ρτκ, where κ is the curvature,
ρτ is the surface tension, and P0 is a constant that can be absorbed into C2 and set to
zero. From (2.68) or (2.70), we know

�
∇Φphys�2 � (ϕ2

α + ψ
2
α)/J on the free surface. Finally,

differentiating ϕ(α, t) � Φphys(ξ(α, t), η(α, t), t) and using (2.70) and (2.74), we obtain

ϕt �
�
Φ

phys
x , Φ

phys
y

� (
ξα −ηα
ηα ξα

)
︸                            ︷︷                            ︸�

ϕα , −ψα
�

(
−H

�
ψα/J

�
+ C1

−ψα/J

)
−
ϕ2
α + ψ

2
α

2J
− gη + τκ + C2, (2.77)
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where the mean curvature κ �
�
ξαηαα − ηαξαα

�
/J3/2. We choose C2 so that P0[ϕt] � 0.

In conclusion, we obtain the following governing equations for spatially quasi-periodic
gravity-capillary waves in conformal space

ξα � 1 + H[ηα], ψ � −H[ϕ], J � ξ2
α + η

2
α , χ �

ψα
J
,

choose C1, e.g. as in (2.76), compute dx0

dt
in (2.75) if necessary,

ηt � −ηαH[χ] − ξαχ + C1ηα , κ �
ξαηαα − ηαξαα

J3/2
,

ϕt � P
[ψ2

α − ϕ
2
α

2J
− ϕαH[χ] + C1ϕα − gη + τκ

]
.

(2.78)

Note that these equations govern the evolution of x0, η and ϕ, which determine the state
of the system. We emphasize that C1 can be chosen arbitrarily as long as dx0/dt satisfies
(2.75). The special cases (2.76b) and (2.76c) lead to nice formulas for x0(t)without having
to evolve (2.75) numerically. An alternative approach was proposed by Li et al. [56], who
set C1 � 0 (by not introducing it) and avoid writing down a differential equation for
x0(t) by instead solving both the ξt and ηt equations in (2.74). The governing equations
break down if J becomes zero somewhere on the curve. Such a singularity would arise,
for example, if the wave profile were to form a corner in finite time. To our knowledge,
it remains an open question whether the free-surface Euler equations can form such a
corner.

In practice, instead of solving (2.78) directly, we compute the time evolution of η̃ and
ϕ̃ on T d and reconstruct η, ϕ from η̃, ϕ̃ using (2.61) and (2.66), respectively. The evolution
equations of η̃ and ϕ̃ can be derived from (2.78) by replacing ∂α with ∂̃α :� k · ∇α

η̃t � −
�
∂̃α η̃

�
H[χ̃] − �

1 + ∂̃α ξ̃
�
χ̃ + C1

�
∂̃α η̃

�
,

ϕ̃t � P


�
∂̃αψ̃

�2
−

�
∂̃αϕ̃

�2

2 J̃
−

�
∂̃αϕ̃

�
H[χ̃] + C1∂̃αϕ̃ − g η̃ + τκ̃


,

∂̃α ξ̃ � H
�
∂̃α η̃

�
, J̃ �

�
1 + ∂̃α ξ̃

�2
+

�
∂̃α η̃

�2
, ψ̃ � −H[ϕ̃],

χ̃ �
∂̃αψ̃

J̃
, κ̃ �

(1 + ∂̃α ξ̃)∂̃2
α η̃ − (∂̃α η̃)∂̃2

α ξ̃

J̃3/2
,

(2.79)

For waves that are graphs, we usually choose C1 such that ξ̃(0, t) � 0

C1 �
�
H[∂̃αψ̃/ J̃] − ∂̃α η̃∂̃αψ̃/((1 + ∂̃α ξ̃) J̃)�α�0. (2.80)

For waves that are not graphs, such as overturning waves, we choose C1 � 0. The function
ξ̃(α, t) in (2.79) is related to η̃(α, t) by

ξ̃(α, t) � x0(t) + H[η̃](α, t), (2.81)
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where one can compute x0(t) using (2.75) with a replacement of ∂α by ∂̃α. The function ξ
can be reconstructed from ξ̃ through

ξ(α, t) � α + ξ̃(kα, t). (2.82)

2.2.5 The Non-Canonical Hamiltonian Structure
Following the derivations in [35, 87], we use a change of coordinates

x � α + kξ̃(α, t). (2.83)
to obtain the the formulas for Ẽ, M̃ and P̃ in conformal variables from their expressions
(2.36, 2.38) in physical space

Ẽ �

∫
T d

[ 1
2
ψ̃∂̃αϕ̃ +

1
2

g η̃2�
∂̃α ξ̃

�
+ τ

(√�
1 + ∂̃α ξ̃

�2
+

�
∂̃α η̃

�2
− 1

)]
dα,

M̃ �

∫
T d
η̃

�
1 + ∂̃α ξ̃

�
dα, P̃ �

∫
T d
−ϕ̃∂̃α η̃ dα.

(2.84)

Since we are able to compute overturning waves using the conformal mapping formu-
lation, which is beyond the reach of the graph-based formulation in physical space, it
is necessary to show that the above three quantities are conserved using the evolution
equations (2.79) in conformal space for the self-consistency of the theory. Computing the
time derivative of M̃, we have

dM̃
dt

�

∫
T d
η̃t(1 + ∂̃α ξ̃) − ξ̃t(∂̃α η̃) dα � −

∫
T d
∂̃αψ̃ dα � 0, (2.85)

where we use the torus version of the kinematic boundary condition (2.71) in the second
equality. The time derivative of P̃ is give by

dP̃
dt

�

∫
T d
−ϕ̃t(∂̃α η̃) + η̃t(∂̃αϕ̃) dα

�

∫
T d
−(∂̃αϕ̃)(1 + ∂̃α ξ̃) ∂̃αψ̃

J̃
− (∂̃α η̃)(∂̃αψ̃)

2

2 J̃
+ (∂̃α η̃)(∂̃αφ̃)

2

2 J̃︸                                                                ︷︷                                                                ︸
I2

+ g η̃(∂̃α η̃) − τκ̃(∂̃α η̃) dα.

(2.86)

In the second equality, we plug in the evolution equations of η̃ and ϕ̃. The integral of the
last two terms in (2.86) is zero because∫

T d
g η̃(∂̃α η̃) dα �

∫
T d

1
2

g∂̃α η̃2 dα � 0.∫
T d
τκ̃∂̃α η̃ dα � −

∫
T d
τ∂̃α

(
1 + ∂̃α ξ̃

J̃1/2

)
dα � 0.

(2.87)
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To show that P̃ is a conserved quantity, we just need to verify that the integral of I2
vanishes. We rearrange the terms in I2 to obtain∫

T d
I2 dα � −

1
2

∫
T d
(∂̃αϕ̃) *

,

(1 + ∂̃α ξ̃)(∂̃αψ̃) − (∂̃α η̃)(∂̃αϕ̃)
J̃

+
-︸                                    ︷︷                                    ︸

B

+ (∂̃αψ̃) *
,

(1 + ∂̃α ξ̃)(∂̃αϕ̃) + (∂̃α η̃)(∂̃αψ̃)
J̃

+
-

dα,

(2.88)

Computing the value of the following holomorphic function on the real line

Ww

zw

����β�0
�
Φα + iΨα

xα + i yα

�����β�0
�
ξαϕα + ηαψα

J
+ i
−ηαϕα + ξαψα

J
, (2.89)

we have
ξαϕα + ηαψα

J
� H

[
−ηαϕα + ξαψα

J

]
+ C. (2.90)

Therefore the corresponding tilde functions in (2.88) can also be related by the Hilbert
transform, which yields∫

T d
I2 dα � −

1
2

∫
T d
∂̃αϕB + ∂̃αψ̃H[B] dα � 0, (2.91)

where we use Lemma 2.2.5 in the last equality. Hence we conclude that P̃ is conserved in
the motion.

To demonstrate that Ẽ is a constant of motion, we are going to exhibit that (2.79) can be
written as a non-canonical Hamiltonian system and Ẽ is the corresponding Hamiltonian,
thus a conserved quantity for the system. According to (2.79), we can express ψ̃ and ∂̃α ξ̃
in terms of ϕ̃ and ∂̃α η̃ as follows

ψ̃ � −H[ϕ̃], ∂̃α ξ̃ � H
�
∂̃α η̃

�
, (2.92)

hence we can rewrite Ẽ as a functional of only η̃ and ϕ̃ as follows

Ẽ �

∫
T d

[
−

1
2

H[ϕ̃]∂̃αϕ̃ +
1
2

g η̃2H
�
∂̃α η̃

�
+ τ

(√�
1 + H

�
∂̃α η̃

��2
+

�
∂̃α η̃

�2
− 1

)]
dα. (2.93)

In [35], Dyachenko, Lushnikov and Zakharov proposed that the equations of motion
for gravity-capillary waves in conformal variables can be formulated as a non-canonical
Hamiltonian system with η and ξ being the conjugate variables. We next show that their
results can be extended to the problem of spatially quasi-periodic waves.
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In physical space, the Hamiltonian equations (2.37) can be obtained byminimizing the
following action functional

S̃ �

∫
L̃ dt , (2.94)

where the Lagrangian L̃ is given by

L̃ �

∫
T d
ϕ̃physη̃

phys
t dx − Ẽ. (2.95)

Using the coordinate transform (2.83), we can express L̃ in terms of conformal variables

L̃ �

∫
T d
ϕ̃

�
η̃t(1 + ∂̃α ξ̃) − ξ̃t ∂̃α η̃

�
dα − Ẽ, (2.96)

As shown in (2.82), ξ̃ is determined by η̃ up to an additive constant x0, which is introduced
by the conformal mapping. To fix the mapping, we set x0 � 0, which also leads to C1 � 0
in (2.73). We introduce a Lagrangian multiplier f̃ to impose the relation between ξ̃ and η̃,
and modify the definition of L̃, S̃ accordingly

L̃conf
� L̃ +

∫
T d

f̃ (ξ̃ − H[η̃]) dα − Ẽ, S̃conf
�

∫
L̃conf dt . (2.97)

The vanishing of the variation δS̃conf � 0 with respect to ϕ̃ yields

η̃t(1 + ∂̃α ξ̃) − ξ̃t ∂̃α η̃ �
δẼ
δϕ̃

� H[∂̃αϕ̃], (2.98)

which is the dynamic boundary condition (2.71). We use δS̃ � 0 with respect to ξ̃ and η̃
to obtain

(a) −η̃t ∂̃αϕ̃ + ϕ̃t ∂̃α η̃ � − f̃ ,

(b) ξ̃t ∂̃αϕ̃ − ϕ̃t(1 + ∂̃α ξ̃) − δẼ
δη̃

� −H[ f̃ ]. (2.99)

One can notice that the left hand side of (a) and (b) can be related by the Hilbert transform

ξ̃t ∂̃αϕ̃ − ϕ̃t(1 + ∂̃α ξ̃) − δẼ
δη̃

� H
�
−η̃t ∂̃αϕ̃ + ϕ̃t ∂̃α η̃

�
. (2.100)

Substituting ξ̃t � H[η̃t] into (2.98) and (2.100), we obtain(
Ω̃11 Ω̃12

Ω̃21 0

) (
η̃t

ϕ̃t

)
�

*.
,

δẼ
δη̃

δẼ
δϕ̃

+/
-
. (2.101)
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We denote the matrix on the left hand side of the equation by Ω̃; for a function p̃ in L2(T d),
the entries of Ω are given by

Ω̃11p̃ � H[p̃∂̃αϕ̃] + ∂̃αϕ̃H[p̃],
Ω̃12p̃ � −H[p̃∂̃α η̃] − (1 + ∂̃α ξ̃)p̃ � −H[p̃∂̃α η̃] − (1 + H[∂̃α η̃])p̃ ,
Ω̃21p̃ � (1 + ∂̃α ξ̃)p̃ − ∂̃α η̃H[p̃] � (1 + H[∂̃α η̃])p̃ − ∂̃α η̃H[p̃].

(2.102)

For any p̃ , q̃ ∈ L2(T d), one can use Lemma 2.2.5 to obtain∫
T d

�
Ω̃11p̃

�
q̃ dα �

∫
T d

H[p̃∂̃αϕ̃]q̃ + ∂̃αϕ̃H[p̃]q̃ dα

�

∫
T d
−p̃∂̃αϕ̃H[q̃] − p̃H[q̃∂̃αϕ̃] dα

� −

∫
T d

p̃Ω̃11 q̃ dα.

(2.103)

∫
T d

�
Ω̃12p̃

�
q̃ dα �

∫
T d
−H[p̃∂̃α η̃]q̃ − (1 + H[∂̃α η̃])p̃ q̃ dα

�

∫
T d

p̃∂̃α η̃H[q̃] − (1 + H[∂̃α η̃])p̃ q̃ dα

� −

∫
T d

p̃Ω̃21 q̃ dα.

(2.104)

Therefore Ω̃ is skew-symmetric with respect to the L2 inner product. We can find the
inverse of Ω̃ explicitly and write the evolution equations of η̃ and ϕ̃ into the form of a
non-canonical Hamiltonian system. To do so, we first cancel the term ϕ̃t in (2.99) by
computing (a) · (1 + ∂̃α ξ̃) + (b) · ∂̃α η̃

∂̃αϕ̃
�
η̃t(1 + ∂̃α ξ̃) − ξ̃t ∂̃α η̃

�
+ ∂̃α η̃

δẼ
δη̃

� ∂̃α η̃H[ f̃ ] + (1 + ∂̃α ξ̃) f̃ . (2.105)

Substituting (2.98) into the above equation, we obtain

∂̃αϕ̃
δẼ
δϕ̃

+ ∂̃α η̃
δẼ
δη̃

� ∂̃α η̃H[ f̃ ] + (1 + ∂̃α ξ̃) f̃ . (2.106)

Next we compute (a) · ∂̃α η̃ − (b) · (1 + ∂̃α ξ̃) and replace (∂̃α η̃)2 + (1 + ∂̃α ξ̃)2 by J̃

J̃ϕ̃t −
�
η̃t ∂̃αη + ξ̃t(1 + ∂̃α ξ̃)� ∂̃αϕ̃ + (1 + ∂̃α ξ̃)δẼ

δη̃
� − f̃ ∂̃α η̃ + (1 + ∂̃α ξ̃)H[ f̃ ]. (2.107)

According to Lemma 2.2.5, we know that the right hand side of (2.106) and (2.107) can be
related by the Hilbert transform, therefore we have

J̃ϕ̃t −
�
η̃t ∂̃αη + ξ̃t(1 + ∂̃α ξ̃)� ∂̃αϕ̃ + (1 + ∂̃α ξ̃)δẼ

δη̃
� H

[
∂̃αϕ̃

δẼ
δϕ̃

+ ∂̃α η̃
δẼ
δη̃

]
. (2.108)
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The substitution of (2.73) into the above equation gives

ϕ̃t � ∂̃αϕ̃H
[

1
J̃
∂̃αψ̃

]
−

1
J̃
(1 + ∂̃α ξ̃)δẼ

δη̃
+

1
J̃

H
[
∂̃αϕ̃

δẼ
δϕ̃

+ ∂̃α η̃
δẼ
δη̃

]
. (2.109)

We replace ∂̃αψ̃ by δẼ
δϕ̃ using (2.98) in the above equation and rewrite the equation as

ϕ̃t � ∂̃αϕ̃H
[

1
J̃
δẼ
δϕ̃

]
−

1
J̃
(1 + ∂̃α ξ̃)δẼ

δη̃
+

1
J̃

H
[
∂̃αϕ̃

δẼ
δϕ̃

+ ∂̃α η̃
δẼ
δη̃

]
. (2.110)

In summary, we can rewrite the evolution equation of η̃ and ϕ̃, given in (2.79) and (2.110)
by (

η̃t

ϕ̃t

)
�

(
0 R̃12

R̃21 R̃22

)
*.
,

δẼ
δη̃

δẼ
δϕ̃

+/
-
, (2.111)

which is a non-canonical Hamiltonian system. We denote the matrix on the right hand
side by R̃; for p̃ ∈ L2(T d), the entries of R̃ are given by

R̃12p̃ �
1 + ∂̃α ξ̃

J̃
p̃ + ∂̃α η̃H

[
p̃

J̃

]
,

R̃21p̃ � −
1 + ∂̃α ξ̃

J̃
p̃ +

1
J̃

H[p̃∂̃α η̃],

R̃22p̃ � ∂̃αϕ̃H
[

p̃

J̃

]
+

1
J̃

H[p̃∂̃αϕ̃].

(2.112)

Similar to (2.103) and (2.104), one can verify that R̃ is a skew-symmetric matrix: for
p̃ , q̃ ∈ L2(T d), we have

〈R̃12p̃ , q̃〉 � −〈p̃ , R̃21 q̃〉, 〈R̃22p̃ , q̃〉 � −〈p̃ , R̃22 q̃〉, (2.113)

where 〈·, ·〉 denotes the usual L2 inner product on T d . We compare (2.111) and (2.112) to
conclude that

Ω̃R̃ � R̃Ω̃ � I , (2.114)
which can also be verified through direct computation.

We define the following Poisson bracket for functionals F̃, G̃ of η̃, ϕ̃ using (2.112)

{F̃, G̃} �

∫
T d

δF̃
δη̃

R̃12
δG̃
δϕ̃

+
δF̃
δϕ̃

R̃21
δG̃
δη̃

+
δF̃
δϕ̃

R̃22
δG̃
δϕ̃

dα. (2.115)

One can check that the Poisson bracket satisfies the Jacobi identity

{F̃, {G̃, L̃}} + {G̃, {L̃, F̃}} + {L̃, {F̃, G̃}} � 0, (2.116)
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where F̃, G̃ and L̃ are functionals of η̃ and ϕ̃.
Using the Poisson bracket, the time evolution of a functional F̃ of η̃ and ϕ̃ can bewritten

as
F̃t � {F̃, Ẽ}. (2.117)

Therefore F̃ is a constant of motion if {F̃, Ẽ} � 0. As a result of the skew-symmetry of R̃,
we know that Ẽt � {Ẽ, Ẽ} � 0, hence Ẽ is conserved in the motion.
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Chapter 3

Quasi-Periodic Traveling Waves

3.1 Governing Equations of Quasi-Periodic Traveling
Waves in Conformal Space

We specialize to the case of quasi-periodic traveling waves and derive the equations of
motion in a conformal mapping framework. One approach (see e.g. [59] for the periodic
case) is to write down the equations of motion in a graph-based representation of the
surface variables ηphys(x , t) and ϕphys(x , t) � Φphys(x , η(x , t), t) and substitute ηphyst �

−cηphysx , ϕphys
t � −cϕphys

x to solve for the initial condition of a solution of the form

ηphys(x , t) � ηphys0 (x − ct), ϕphys(x , t) � ϕphys
0 (x − ct). (3.1)

We present below an alternative derivation of the equations in [59] that is more direct and
does not assume the wave profile is single-valued. Other systems of equations have also
been derived to describe traveling water waves, e.g. by Nekrasov [61, 63] and Dyachenko
et. al. [38].

Recall the kinematic condition (2.71) that the normal velocity of the curve is given by
ζt · n � −ψα/

√
J, where J � ξ2

α + η
2
α. Since the wave travels at constant speed c in physical

space, there is a reparametrization β(α, t) such that ζ(α, t) � ζ(β(α, t), 0) + ct. Since ζα is
tangent to the curve, the normal velocity is simply ζt · n � (c , 0)T · n � −cηα/

√
J, where

we used n � (−ηα , ξα)T/√J. We conclude that

ψα � cηα , ϕα � H[ψα] � cH[ηα] � c(ξα − 1). (3.2)

This expresses ψ and ϕ (up to additive constants) in terms of η and ξ � α + x0 + H[η],
leaving only η to be determined. As in the graph-based approach of (3.1) above, it suffices
to compute the initial wave profile at t � 0 to know the full evolution of the traveling wave
under (2.78); however, the wave generally travels at a non-uniform speed in conformal
space in order to travel at constant speed in physical space.
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The two-dimensional velocity potential Φphys(x , y , t) may be assumed to exist even if
the traveling wave possesses overhanging regions that cause the graph-based representa-
tion via ηphys(x , t) and ϕphys(x , t) to break down. In a moving frame traveling at constant
speed c along with the wave, the free surface will be a streamline. Let z̆ � z − ct denote
position in themoving frame and note that the complex velocity potential picks up a back-
ground flow term, W̆phys(z̆ , t) � Wphys(z̆ + ct , t)− cz̆, and becomes time-independent. We
drop t in the notation and define W̆(w) � W̆phys(z̆(w)), where z̆(w) � z(w , 0) conformally
maps the lower half-plane onto the fluid region of this stationary problem. We assume
Wphys(z̆(α), 0) is quasi-periodic with exponentially decaying mode amplitudes, so

|W̆(w) + cw | ≤ |Wphys(z̆(w), 0)| + c |z̆(w) − w | (3.3)

is bounded in the lower half-plane. Since the stream function Im{W̆phys(z̆)} is constant on
the free surface, we may assume Im{W̆(α)} � 0 for α ∈ R. The function Im{W̆(w)+ cw} is
then bounded and harmonic in the lower half-plane and satisfies homogeneous Dirichlet
boundary conditions on the real line, so it is zero [12]. Up to an additive real constant,

W̆(w) � −cw. (3.4)

Thus, |∇̆Φ̆phys |2 � |W̆′(w)/z̆′(w)|2 � c2/J. Since the free surface is a streamline in the
moving frame, the steady Bernoulli equation (1/2)|∇̆Φ̆phys |2 + gη + P/ρ � C together with
the Laplace-Young condition P � P0 − ρτκ on the pressure gives

P
[

c2

2J
+ gη − τκ

]
� 0,

ξα � 1 + H[ηα], J � ξ2
α + η

2
α , κ �

ξαηαα − ηαξαα
J3/2

,

(3.5)

which is the desired system of equations for η. The solution of the above equations can
be considered as the initial condition for a traveling wave. Due to the projection operator,
modifying η by a constant will not influence the governing equation, hence we always
assume that P0[η] � 0. Furthermore, by the symmetry of the above governing equation, if
η(α) is a traveling solution, then η(−α) is also a traveling solution, therefore we focus our
study on solutions with even symmetry

η(α) � η(−α). (3.6)

We reconstruct ξ from η by
ξ � α + H[η], (3.7)

where we choose x0 � 0 in (2.82), therefore ξ is an odd function.
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3.2 Governing Equations of Quasi-Periodic Traveling
Waves on the Torus

Using (3.5), we derive the governing equations of quasi-periodic traveling waves on
the torus

R[τ, b , η̃] � P
[

b
2 J̃

+ g η̃ − τκ̃
]
� 0, (3.8)

where b � c2 and J̃, κ̃ are defined in (2.79). Linearizing (3.8) around the zero solution
η̃ � 0, we obtain

bH[∂̃αδη̃] − gδη̃ + τ∂̃2
αδη̃ � 0, (3.9)

where δη̃ denotes the variation of η̃. Substituting (2.61) into the linearized equation, we
obtain the dispersion relation for the linearized problem

b
�〈j , k〉� − g − τ(〈 j , k〉)2 � 0. (3.10)

Since the entries of k are linearly independent over Z, given b and τ, there exist at most
four different vectors ± j1, ± j2 ∈ Z

d that satisfy the dispersion relation [19]. For simplicity,
we restrict our discussion to the case where d � 2 and assume that η is a quasi-periodic
function with two quasi-periods, thus η̃ is defined on T2. Without loss of generality, we
also assume that j1 � (1, 0)T , j2 � (0, 1)T and k � (1, k)T , where k is a positive irrational
number. Therefore the quasi-periodic function η is of the following form

η(α) � η̃(α, kα), η̃(α1, α2) �
∑

j1 , j2∈Z

η̂ j1 , j2 e i( j1α1+ j2α2). (3.11)

Since we assume that P0[η] � 0 and η is even, here η̃ is an even function with zero mean
on T2, thus the Fourier coefficients of η̃ satisfy

η̂0,0 � 0, η̂ j1 , j2 � η̂− j1 ,− j2 ∈ R. (3.12)

According to (3.7), ξ̃ � H[η̃] is an odd function. Under the above assumptions, one can
study the problem of quasi-periodic travelingwaves in the setting of a bifurcation problem
with a two-dimensional kernel, where the solutions can be considered as bifurcations of
the zero-amplitude solution. In our study, we choose the two Fourier coefficients η̂1,0 and
η̂0,1 as bifurcation parameters and fix them at nonzero values to ensure that the solutions
we obtain are quasi-periodic. We say that these two Fourier coefficients are base Fourier
coefficients and the corresponding Fourier modes e±iα1 , e±iα2 are base Fourier modes.
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Remark 3.2.1 One can check that if η̃(α1, α2) � ∑
j1 , j2∈Z η̂ j1 , j2 e i( j1α1+ j2α2) is a solution of (3.8),

then the following three functions are also solutions

η̃(α1 + π, α2)
∑

j1 , j2∈Z

(−1) j1 η̂ j1 , j2 e i( j1α1+ j2α2),

η̃(α1, α2 + π) �
∑

j1 , j2∈Z

(−1) j2 η̂ j1 , j2 e i( j1α1+ j2α2),

η̃(α1 + π, α2 + π) �
∑

j1 , j2∈Z

(−1) j1+ j2 η̂ j1 , j2 e i( j1α1+ j2α2).

(3.13)

Remark 3.2.2 Even though we derive the governing equations (3.5) in the spatially quasi-periodic
setting, it is still true in the periodic setting, where we have

η(α) �
∑
j∈Z

η̂ je i jα , H[η](α) �
∑
j∈Z

(−i) sgn( j)η̂ j e i jα . (3.14)

In correspondence, the equation (3.8) can also extend to the periodic setting if we let

η̃(α1, α2) � η̃(α1). (3.15)

3.3 Weakly Nonlinear Approximation of Quasi-Periodic
Traveling Waves

In this section,wewill constructweaklynonlinear approximationsof thequasi-periodic
traveling solutions of the form (3.11). As discussed in Section 3.2, the traveling solutions
are inditifiedby twobifurcationparameters η̂1,0 and η̂0,1, which arefixedat nonzerovalues.
In correspondence, these two Fourier coefficients are fixed parameters for the asymptotic
solution and our goal is to express b, τ and the other Fourier coefficients of η̃ in terms of
these two Fourier coefficients. We consider the following asymptotic expansions of b, τ
and η̃

b �b(0) + εb(1) + ε2b(2) + ε3b(3) + O(ε4),
τ �τ(0) + ετ(1) + ε2τ(2) + ε3τ(3) + O(ε4),
η̃ �εη̃(1) + ε2η̃(2) + ε3η̃(3) + O(ε4),

(3.16)
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where ε is a sufficiently small number. Substituting the above expressions into (3.8) and
eliminating the coefficients of εn for n � 0, 1, 2, we establish

O(1) : P
[ 1
2

b(0)
]
� 0,

O(ε) : P
[ 1
2

b(1) + g η̃(1) − b(0)H[∂̃α η̃(1)] − τ(0)∂̃2
α η̃

(1)
]
� 0,

O(ε2) : P
[ 1
2

b(2) + g η̃(2) − b(0)H[∂̃α η̃(2)] − τ(0)∂̃2
α η̃

(2)

− b(1)H[∂̃α η̃(1)] − τ(1)∂̃2
α η̃

(1)

+ b(0)
(3

2

(
H[∂̃α η̃(1)]

)2
−

1
2
(∂̃α η̃(1))2

)
+ τ(0)

(
2H[∂̃α η̃(1)]∂̃2

α η̃
(1)

+ H[∂̃2
α η̃

(1)]∂̃α η̃(1)
) ]

� 0.

(3.17)

Since the constant term will vanish under the projection, we rewrite the equation at order
ε as

P
[
b(0)H[∂̃α η̃(1)] − g η̃(1) + τ(0)∂̃2

α η̃
(1)]

� 0. (3.18)

As discussed in Section 3.11, η̃(1) takes the form

η̃(1) � η̂1,0e iα1 + η̂0,1e iα2 + c.c., η̂1,0, η̂0,1 , 0. (3.19)

where c.c means the complex conjugate of the preceding terms.
Substituting the expression of η̃(1) back into (3.18), we obtain

b(0) � g +
g
k
, τ(0) �

g
k
. (3.20)

Using the property of the projection operator and the assumption that P0[η̃] � 0, we
rewrite the equation at order ε2 as

g η̃(2) − b(0)H[∂̃α η̃(2)] − τ(0)∂̃2
α η̃

(2)︸                                     ︷︷                                     ︸
A(2)

−b(1)H[∂̃α η̃(1)] − τ(1)∂̃2
α η̃

(1)︸                             ︷︷                             ︸
B(2)

�P
[
b(0)

(
−

3
2

(
H[∂̃α η̃(1)]

)2
+

1
2
(∂̃α η̃(1))2

)
− τ(0)

(
2H[∂̃α η̃(1)]∂̃2

α η̃
(1)

+ H[∂̃2
α η̃

(1)]∂̃α η̃(1)
)]

︸                                                                                                           ︷︷                                                                                                           ︸
C(2)

.

(3.21)
Substituting (3.19) and (3.20) into C(2), we have

C(2)
� Ĉ(2)

2,0e i(2α1) + Ĉ(2)
0,2e i(2α2) + Ĉ(2)

1,1e i(α1+α2) + Ĉ(2)
1,−1e i(α1−α2) + c.c., (3.22)
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where the Fourier coefficients are given by

Ĉ(2)
2,0 � −η̂2

1,0 g
2k − 1

k
, Ĉ(2)

0,2 � η̂2
0,1 gk(k − 2),

Ĉ(2)
1,1 � −η̂1,0η̂0,1 g(k + 1), Ĉ(2)

1,−1 � −η̂1,0η̂0,1 g(k + 1).
(3.23)

One can see that A(2) is linear with respect to η̃(2) and the Fourier coefficients of A(2) are

Â(2)
j1 , j2

� Ŝ j1 , j2 η̂
(2)
j1 , j2

, (3.24)

where the symbol Ŝ j1 , j2 is defined as

Ŝ j1 , j2 � g − b(0) | j1 + k j2 | + τ(0)( j1 + k j2)2 �
g
k
(| j1 + k j2 | − k)(| j1 + k j2 | − 1). (3.25)

Since Ŝ±1,0 and Ŝ0,±1 are both zero according to the definition, we know that Â(2)
±1,0 �

Â(2)
0,±1 � 0.
The term B(2) in (3.21) is linear with respect to η̃(1)

B̂(2)
j1 , j2

� Q̂(1)
j1 , j2

η̂(1)j1 , j2
, Q̂(1)

j1 , j2
� −b(1) | j1 + k j2 | + τ(1)( j1 + k j2)2, (3.26)

where ( j1, j2) � (±1, 0), (0,±1) according to (3.19). Combining (3.22, 3.24 – 3.26), we obtain
that

b(1) � τ(1) � 0, η̂(2)j1 , j2
�




C(2)
j1 , j2

Ŝ j1 , j2
, | j1 | + | j2 | � 2,

0, | j1 | + | j2 | , 2.
(3.27)

By induction, at order εn , the equation of asymptotic expansions reads

g η̃(n) − b(0)H[∂̃α η̃(n)] − τ(0)∂̃2
α η̃

(n)
− b(n−1)H[∂̃α η̃(1)] − τ(n−1)∂̃2

α η̃
(1)

� f
((

b( j))
0≤ j≤n−1

,
(
τ( j))

0≤ j≤n−1
,
(
η̃( j))

0≤ j≤n−1

)
︸                                                       ︷︷                                                       ︸

C(n)

. (3.28)

By comparing the Fourier coefficients of both sides of the above equation, we obtain

Ŝ j1 , j2 η̂
(n)
j1 , j2

+ Q̂(n−1)
J1 , j2

η̂(1)j1 , j2
� Ĉ(n)

j1 , j2
. (3.29)

Hence we have

η̂(n)j1 , j2
�

Ĉ(n)
j1 , j2

Ŝ j1 , j2
, ( j1, j2) , (±1, 0), (0,±1),

b(n−1)
�

Ĉ(n)
0,1
η̂0,1
− k2 Ĉ(n)

1,0
η̂1,0

k2 − k
, τ(n−1)

�

Ĉ(n)
0,1
η̂0,1
− k

Ĉ(n)
1,0
η̂1,0

k2 − k
.

(3.30)
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As is shown above, the Fourier coefficients of η̃(n) are obtained through a division of
Ŝ j1 , j2 for ( j1, j2) , (±1, 0), (0,±1). Recalling that

Ŝ j1 , j2 �
g
k
(| j1 + k j2 | − k)(| j1 + k j2 | − 1), (3.31)

one can notice that Ŝ j1 , j2 may get arbitrarily close to zero as | j1 |, | j2 | approach infinity;
this will lead to the unboundedness of η̂(n)j1 , j2

, which is also known as the small divisor
problem. As a consequence, to ensure the existence of quasi-periodic traveling solutions,
one generally assume that k is irrational enough; in other words, k should satisfy the
following diophantine condition [62]

|k − j1/ j2 | > C | j2 |−ν , j1 ∈ Z, j2 ∈ Z\{0}, (3.32)

where C is a positive constant and ν > 2. The appearance of small divisors also indicates
that the amplitudes of these solutions are rather small [62].

Remark 3.3.1 If the asymptotic expansion of the surface elevation in physical space reads

η̃phys � εη̃phys
(1)
+ ε2η̃phys

(2)
+ ε3η̃phys

(3)
+ O(ε4), (3.33)

the quasi-periodic surface elevations in physical space and conformal space are given by

η̃phys(α + kξ̃(α)) � η̃(α) (3.34)

and
η̃phys � εη̃phys

(1)
+ ε2

(
∂̃α η̃

phys(1)H[η̃(1)] + η̃phys(2)
)
+ O(ε3), (3.35)

comparing (3.33) and (3.35) , we conclude that

η̃phys
(1)(x1, x2) � η̂1,0e ix1 + η̂0,1e ix2 + c.c.,

η̃phys
(2)(x1, x2) � k + 1

k − 2
η̂2

1,0e i(2x1) + (k + 1)k
1 − 2k

η̂2
0,1e i(2x2)

− 2(k + 1)η̂1,0η̂0,1e i(x1+x2) + 2(k2
− 1)

k − 2
η̂1,0η̂0,1e i(x1−x2) + c.c.,

(3.36)

which are the same as the results in [19].

3.4 Quasi-Periodic Traveling Waves That Bifurcate From
Periodic Traveling Waves

In the preceding section, we discuss traveling solutions that bifurcate from the zero-
amplitude solution, which are identified by two bifurcation parameters η̂1,0 and η̂0,1. In
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this section, we are going to study a different family of quasi-periodic traveling solutions
- solutions that bifurcate from finite-amplitude periodic traveling solutions. As discussed
in Remark 3.2.2, the governing equation (3.8) still holds in the periodic case, wherewe have
η̃(α1, α2) � η̃(α1) and the periodic function η can be reconstructed from η̃ using (3.11).
To tell apart periodic solutions and quasi-periodic solutions, we introduce the following
definition.

Definition 3.4.1 Let f̃ ∈ L2(T) be a real function. The function f̃ is said to be periodic if
f̃ (α1, α2) � f̃ (α1), for α1, α2 ∈ T , which is equivalent to f̂ j1 , j2 � 0 for j2 , 0. When f̃ is periodic,
we drop the dependence of f̃ on α2 and represent it as f̃ per(α1). The function f̃ is said to be
quasi-periodic if it is not periodic, denoted f̃ qua. If f̃ qua further satisfies f̂ j1 ,0 � 0 for j1 ∈ Z, we
call it purely quasi-periodic and denote it as f̃ p-qua.

To avoid the confusion of different definitions of "periodic", we refer periodic functions
defined on T2 as tilde functions.

We introduce a new variable q and write the governing equation (3.8) as

R[q] � P
[

b
2 J̃

+ g η̃ − τκ̃
]
� 0, q � (τ, b , η̃). (3.37)

One can compute the Frechet derivative of R, denoted DqR � (DτR ,DbR ,Dη̃R) through
the linearization of (3.37)

δR � P
[

1
2 J̃
δb −

1
2 J̃2

bδ J̃ + gδη̃ − τδκ̃ − κ̃δτ
]
,

δξ̃ � H[δη̃], δ J̃ � 2
�(1 + ∂̃α ξ̃)(∂̃α ξ̃) + (∂̃α η̃)(∂̃αδη̃)	 ,

δκ̃ � −
3
2 J̃
κ̃δ J̃ +

1
J̃3/2

�(∂̃2
α η̃)(∂̃αδξ̃) + (1 + ∂̃α ξ̃)(∂̃2

αδη̃)

−(∂̃2
α ξ̃)(∂̃αδη̃) − (∂̃α η̃)(∂̃2

αδξ̃)
	
.

(3.38)

We denote the point q where η̃ is periodic by qper, the point of form q � (0, 0, η̃qua) by qqua

and the point of form q � (0, 0, η̃p-qua) by qp-qua. One can check that at qper, the Frechet
derivative DqR satisfies the following properties.

(1) For δq �
�
δτ, δb , e i(l1α1)�, where l1 ∈ Z, δb , δτ ∈ R, we have

DqR
�
qper

�
δq �

∑
j∈Z

ĝ(l1)
j e i jα1 . (3.39)

(2) For δq �
�
0, 0, e i(l1α1+l2α2)�, where l1 ∈ Z, l2 ∈ Z\{0}, we have

DqR
�
qper

�
δq � e il2α2

∑
j∈Z

ĝ(l1)
j e i jα1 . (3.40)
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In computation, we always represent η̃ and R by their truncated Fourier series thus
(3.37) is a finite-dimensional problem and our following discussion will be based on this
context. Due to the symmetry of (3.8), we restrict our discussion to tilde functions that
satisfy the assumption (3.12). We also assume that the functions involved in (3.37) are
smooth enough. Following [6, 23, 24], we parametrize the solution curve of R � 0 by
an arc-length parameter s, denoted q(s). A solution curve is said to be periodic if it
only passes through points with periodic η̃, denoted qper(s); otherwise we call it quasi-
periodic, denoted qqua(s). In the scope of this paper, we only study simple quasi-periodic
bifurcation points on qper(s); a point is said to be a simple quasi-periodic bifurcation point
if a quasi-periodic solution curve intersects qper(s) non-tangentially at this point.

We introduce the definition of a simple quasi-periodic bifurcation point as follows,
which is analogous to the definition of a simple bifurcation point in [6].

Definition 3.4.2 Supposing that qbif � (τbif, bbif, η̃bif) with η̃bif periodic satisfies R[qbif] � 0. We
say that qbif is a simple quasi-periodic bifurcation point if the following conditions hold:

(1) ker DqR[qbif] � span{δqper, δqp-qua}, where δqper � (δτper, δbper, δη̃per) and δqp-qua �

(0, 0, δη̃p-qua).
(2) coker DqR[qbif] � span{w̃p-qua}.
(3) ρ :� 〈w̃p-qua,D2

qR[qbif](δqper, δqp-qua)〉 , 0, where 〈·, ·〉 denotes the usual L2 inner product.

Remark 3.4.3 In [6], the solution q0 is called a simple bifurcation point if

(1) dim ker DqR[q0] � 2,

(2) dim coker DqR[q0] � 1,

(3) det H < 0, where H is a two-by-two matrix with entries

H j1 , j2 � 〈w ,D2
qR[q0](δq( j1), δq( j2))〉, j1, j2 � 1, 2, (3.41)

where ker DqR[q0] � span{δq(1), δq(2)}, coker DqR[q0] � span{w}.
Due to the structure of DqR[q0], we are able to further assume that δq(1) � δqper, δq(2) � δqp-qua

and w � w̃p-qua in Definition 3.4.2. Since we know that 〈wp-qua,D2
qR[qbif](δqper, δqper)〉 � 0

from (3.39), the condition (3) in Definition 3.4.2 is equivalent to the condition that det H < 0.

As shown in [6], one can use Lyapunov-Schmidt decomposition and the implicit func-
tion theorem to prove that if qbif is bifurcation point for the quasi-periodic branch, then
there exists qper(s), qqua(s) such that qbif � qper(0) � qqua(0) and
q̇per(0) � a1δqper, q̇qua(0) � a2δqper + a3δqp-qua, a1 , 0, a3 , 0. (3.42)
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We consider qper(s) as the primary branch and qqua(s) as a secondary quasi-periodic
bifurcation branch from qper(s). We obtain qper(s) by fixing either τ or η̂1,0 and choosing
the other one as the continuation parameter. In order to compute the curve qqua(s), we first
detect the bifurcation point qbif on qper(s), then compute the bifurcation direction q̇qua(0)
and eventually use qbif + εq̇qua(0) as an initial guess to switch from qper(s) to qqua(s).

Wedetect the bifurcation point qbif on the primary branch by examining the behavior of
DqR along this branch. Let

�
δη̃(l)

	
1≤l≤n denote a basis of purely quasi-periodic functions

and denote
δq( j)

� (0, 0, δη̃( j)), j � 1, 2, . . . , n. (3.43)
We assume that δq(1) ∈ ker DqR[qbif] without loss of generality. Let

�
w̃(l)	

1≤l≤n denote a
basis for purely quasi-periodic functions and assume that

w̃(1)
∈ coker DqR[qbif]. (3.44)

We consider the n-by-n matrix M along qper(s) where the entries of M are given by

M j1 , j2[qper(s)] � 〈w̃( j1),DxR[qper(s)]δq( j2)〉, j1, j2 � 1, 2, . . . n. (3.45)

Since qper(0) � qbif, near s � 0, we have

M j1 , j2[qper(s)] � 〈w̃( j1),DqR[qbif]δq( j2)〉 + 〈w̃( j1),D2
qR[qbif](q̇per(0), δq( j2))〉s + O(s2). (3.46)

Hence we obtain
M[qper(s)] �

(
ρs + O(s2) O(s)

O(s) Msub[qper(s)]
)
, (3.47)

where the (n−1)-by-(n−1)matrix Msub[qper(s)] is invertible at s � 0 because of Definition
3.4.2. The Taylor expansion of the determinant of M around s � 0 reads

det M[qper(s)] � ρs det Msub[qbif] + O(s2). (3.48)

One can observe that det M[qper(s)] changes sign at the bifurcation point qper(0) � qbif. The
above equation also demonstrates that s � 0 is a simple zero of M[qper(s)]. In practice, we
locate the bifurcation points by tracking the sign of det M[qper(s)] [23, 24, 76].

Suppose that we have found the bifurcation point qbif on qper(s), we now are going to
compute the bifurcation direction q̇qua(0) at qbif, which is equivalent to finding the relation
between a2 and a3 in (3.42). Computing the second derivative of R[qqua(s)] with respect
to s at s � 0, we have

D2
qR[qbif](q̇qua(0), q̇qua(0)) + DqR[qbif]q̈qua(0) � 0. (3.49)

Substituting (3.42) into the above equation and taking the inner product with w̃p-qua
∈

coker DqR[qbif] both sides, we obtain

2a2ρ + a3〈w̃p-qua,D2
qR[qbif](δqp-qua, δqp-qua)〉 � 0. (3.50)
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Since ρ , 0 by Definition 3.4.2, we have

a2 � −
1

2ρ
a3〈w̃p-qua,D2

qR[qbif](δqp-qua, δqp-qua)〉, (3.51)

thus we obtain the quasi-periodic bifurcation direction q̇qua(0). Once we obtain q̇qua(0),
we use qbif + εq̇qua(0) as an initial guess to compute the quasi-periodic traveling solution
to jump from the periodic branch to the quasi-periodic branch. The details of computing
the quasi-periodic branch will be discussed in Section 4.1.2.

Remark 3.4.4 According to the property (3.40), it is reasonable to assume that δη̃p-qua and w̃p-qua

in Definition 3.4.2 take the form

δη̃p-qua � e il2α2
∑
j∈Z

δη̂ je i jα1 + c.c., w̃p-qua
� e il2α2

∑
j∈Z

ŵ je i jα1 + c.c., l2 ∈ N\{0}, (3.52)

where the Fourier coefficients of δη̃p-qua, w̃p-qua are real. In general, we are interested in quasi-
periodic solutions of which the Fourier modes e i( j1α1+ j2α2) with | j2 | ≤ 1 are dominant, hence we
usually let l2 � 1 in the formulas above. In this case, one can check that

〈w̃p-qua,D2
qR[qbif](δqp-qua, δqp-qua)〉 � 0, (3.53)

thus
q̇qua(0) � a2δqp-qua � a2(0, 0, δη̃p-qua). (3.54)
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Chapter 4

Numerical Methods and Results

4.1 Traveling Quasi-Periodic Waves

4.1.1 Solutions That Bifurcate From the Zero Solution
4.1.1.1 Numerical Methods

Let f (α) denote a quasi-periodic function with two quasi-periods, and let f̃ denote the
corresponding periodic function on the torus,

f (α) � f̃ (α, kα), f̃ (α1, α2) �
∑

j1 , j2∈Z

f̂ j1 , j2 e i( j1α1+ j2α2), (α1, α2) ∈ T2. (4.1)

Each f̃ that arises is represented by its values on a uniform M1 ×M2 grid on the torus T2,

f̃m1 ,m2 � f̃ (2πm1/M1 , 2πm2/M2), 0 ≤ m1 < M1 , 0 ≤ m2 < M2. (4.2)

Products, powers and quotients in (3.5) are evaluated pointwise on the grid while deriva-
tives and the Hilbert transform are computed in Fourier space via

∂̃α f̃ (α1, α2) �
∑

j1 , j2∈Z

i( j1 + j2k) f̂ j1 , j2 e i( j1α1+ j2α2),

H[ f̃ ](α1, α2) �
∑

j1 , j2∈Z

(−i)sgn( j1 + j2k) f̂ j1 , j2 e i( j1α1+ j2α2).
(4.3)

We use the ‘r2c’ version of the 2d FFTW library to rapidly compute the forward and inverse
transform given by

f̂ j1 , j2 �
1

M2

M2−1∑
m2�0

*.
,

1
M1

M1−1∑
m1�0

f̃m1 ,m2 e−2πi j1m1/M1+/
-

e−2πi j2m2/M2 ,

(
0 ≤ j1 ≤ M1/2

−M2/2 < j2 ≤ M2/2

)
.

(4.4)
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The FFTW library actually returns the index range 0 ≤ j2 < M2, but we use f̂ j1 , j2−M2 � f̂ j1 , j2
to de-alias the Fourier modes and map the indices j2 > M2/2 to their correct negative
values. The missing entries with −M1/2 < j1 < 0 are determined implicitly by

f̂− j1 ,− j2 � f̂ j1 , j2 . (4.5)

When computing ∂̃α f and H[ f ] via (4.3), the Nyquist modes with j1 � M1/2 or j2 �

M2/2 are set to zero, which ensures that the ‘c2r’ transform reconstructs real-valued
functions ∂̃α f̃ and H[ f̃ ] from their Fourier modes. Further details on this pseudo-spectral
representation are given in [84] in the context of timestepping the dynamic equations
(2.78).

This pseudo-spectral representation of quasi-periodic functions can be generalized to
functions with quasi-periods larger than two. In this case, one could still use the ’r2c’ and
’c2r’ routines in the FFTW library where the function is represented by a d-dimensional
array of Fourier coefficients:

f̃m1 ,m2 ,··· ,md �

M1−1∑
j1�0

· · ·

Md−1∑
jd�0

f̂ j1 , j2 ,··· , jd e2πi jd md/Md · · · e2πi j1m1/M1 , (4.6)

where f̃m1 ,m2 ,··· ,md � f̃ (2πm1/M1, . . . , 2πmd/Md) is the value of f̃ evaluated on a uniform
M1 ×M2 × · · · ×Md grid on T d .

In [82], an overdetermined shooting algorithm based on the Levenberg-Marquardt
method [65] was proposed for computing standing water waves accurately and efficiently.
Here we adapt this method to compute quasi-periodic traveling waves instead of standing
waves. We first formulate the problem in a nonlinear least-squares framework. Recall
that we introduce the function R in (3.8), which depends on τ, c2 (which we denote as
b), η̃ and formulate the governing of quasi-periodic traveling waves as R[τ, b , η̃] � 0. In
computation, we refer to R as the residue function and consider τ, b and the Fourier
modes of η̃ as unknowns. We also define the objective function in terms of R

F [τ, b , η̂] :�
1

8π2

∫
T2
R

2[τ, b , η̂] dα1 dα2. (4.7)

Note that solving (3.5) is equivalent to finding a zero of the objective function F [τ, b , η̂].
The parameter k in (4.1) is taken to be a fixed, irrational number when searching for zeros
of F .

In the numerical computation, we truncate the problem to finite dimensions by varying
only the leading Fouriermodes η̂ j1 , j2 with | j1 | ≤ N1 and | j2 | ≤ N2. We evaluate the residual
R (and compute the Fourier transforms) on an M1 ×M2 grid, where Mi ≥ 2Ni + 2. The
resulting nonlinear least squares problem is overdetermined because we zero-pad the
Fourier modes η̂ j1 , j2 when | j1 | or | j2 | is larger than N1 or N2, respectively. Assuming the
η̂ j1 , j2 are real (i.e. that η is even) also reduces the number of unknowns relative to the
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number of equations, which are enumerated by the M1M2 gridpoints without exploiting
symmetry. Guided by the linear theory of Section 3.3, we fix the two base Fourier modes
η̂1,0 and η̂0,1 at nonzero amplitudes, chosen independently, and minimize F over the
remaining unknowns via the Levenberg-Marquardt algorithm.

It might seem more natural to prescribe τ and η̂1,0 and solve for η̂0,1 along with
b � c2 and the other unknown Fourier modes of η. However, since τ � τlin � g/k is
a constant within the linear approximation, deviation of τ from τlin is a higher-order
nonlinear effect. This will be confirmed in Figure 4.4 of Section 4.1.1.2 below. As a
result, τ is a poor choice for a continuation parameter near the trivial solution in the same
way that solving x2

− y2 � (τ − τlin) for x(τ, y) or y(τ, x) leads to problems of existence,
uniqueness, and sensitive dependence on τ near τlin. Beyond the linear regime, one can
choose any two parameters among τ, b and the Fourier modes η̂ j1 , j2 to use as continuation
parameters. How well they work will depend on the invertibility and condition number
of the Fréchet derivative of R with respect to the remaining variables, using the implicit
function theorem. We also note that the existence of time quasi-periodic water waves
has only been established rigorously when τ belongs to a Cantor-like set [13, 16, 17]. It
is possible that small divisors [17, 51, 68] and “near resonances” in the quasi-periodic
traveling wave problem will prevent these solutions from existing in smooth families.

The Levenberg-Marquardt solver requires a linear ordering of the unknowns. We
enumerate the η̂ j1 , j2 so that lower-frequency modes appear first. As the “shell index” s
ranges from1 tomax(N1,N2), we enumerate all the indexpairs ( j1, j2)withmax(| j1 |, | j2 |) � s
before increasing s. Within shell s, we proceed clockwise, along straight lines through the
lattice, from (0, s) to (s , s) to (s ,−s) to (1,−s). The other Fourier modes are known from
(3.12). If N1 , N2, we omit ( j1, j2) in the enumeration if j1 > N1 or j2 > N2. The total
number of modes η̂ j1 , j2 indexed in this way is

Ntot � N1(2N2 + 1) + N2. (4.8)

We replace η̂1,0 by τ and η̂0,1 by b in the list of unknowns to avoid additional shuffling of
the variables when the prescribed base modes are removed from the list. Eventually there
are Ntot parameters to compute, shown here for the case that N2 ≥ N1 ≥ 2:

p1 � τ, p2 � η̂1,1, p3 � b , p4 � η̂1,−1, p5 � η̂0,2 , . . . , pNtot � η̂1,−N2 . (4.9)

Re-ordering the arguments of R and F , our goal is to find p given η̂1,0 and η̂0,1 such
that R[p; η̂1,0, η̂0,1] � 0 and F [p; η̂1,0, η̂0,1] � 0. The objective function F is evaluated
numerically by the trapezoidal rule approximation over T2, which is spectrally accurate:

f (p) � 1
2

r(p)T r(p) ≈ F �
p; η̂1,0, η̂0,1

�
,

rm(p) � R
�
p; η̂1,0, η̂0,1

� (αm1 , αm2)
√

M1M2
,

(
m � 1 + m1 + M1m2

αmi � 2πmi/Mi

)
, 0 ≤ mi < Mi . (4.10)
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The parameters p j are chosen to minimize f (p) using the Levenberg-Marquardt method
[65, 82]. The method requires a Jacobian matrix ∂rm/∂p j , which we compute by solving
the variational equations given in (3.38). We then have ∂rm

∂p j
� δR(αm1 , αm2)/

√
M1M2,

where m � 1 + m1 + M1m2 and the jth column of the Jacobian corresponds to setting the
perturbation δτ, δb or δη̂ j1 , j2 corresponding to p j in (4.32) to 1 and the others to 0.

Like Newton’s method, the Levenberg-Marquardt method generates a sequence of
approximate solutions p(0), p(1), etc., which terminate when the residual drops below the
desired tolerance or fails to decrease sufficiently. If max(|η̂1,0 |, |η̂0,1 |) ≤ 0.01, we find that
the solution of the linearized problem serves as a good initial guess:

η̃(0)(α1, α2) � η̂1,0(e iα1 + e−iα1) + η̂0,1(e iα2 + e−iα2),
τ(0) � τlin � g/k , b(0) � c2

lin � g + g/k.
(4.11)

We compute larger-amplitude solutions beyond the applicability of linear theory using
numerical continuation to explore one-dimensional slices (or paths) through the two-
dimensional family of quasi-periodic traveling waves holding either the ratio γ � η̂1,0/η̂0,1
fixed or one of the modes η̂1,0, η̂0,1 fixed. We find that linear extrapolation from the
previous two solutions on a path works well as the starting guess for the next Levenberg-
Marquardt solve. Details of our Levenberg-Marquardt implementation, including stop-
ping criteria and a strategy for delaying the re-computation of the Jacobian, are given
in [82].

4.1.1.2 Numerical Results

We now present a detailed numerical study of solutions of (3.5) with k � 1/
√

2 and
g � 1 on three continuation paths corresponding to γ ∈ {5, 1, 0.2}, where γ � η̂1,0/η̂0,1
is the amplitude ratio of the prescribed base modes. In each case, we vary the larger of
η̂1,0 and η̂0,1 from 0.001 to 0.01 in increments of 0.001. The initial guess for the first two
solutions on each path are obtained using the linear approximation (4.11), which by (4.32)
corresponds to

p(0)
1 � τ(0) �

√

2, p(0)
3 � b(0) � 1 +

√

2, p(0)
j � 0, j < {1, 3}. (4.12)

As noted already, the amplitudes η̂1,0 and η̂0,1 are prescribed — they are not included
among the unknowns. The initial guess for the remaining 8 solutions on each continuation
path are obtained from linear extrapolation from the previous two computed solutions.
In all cases, we use M � 60 for the grid size and N � 24 for the Fourier cutoff in each
dimension, where we drop the subscripts when M1 � M2 and N1 � N2. The nonlinear
least-squares problem involves M2 � 3600 equations in Ntot � 1200 unknowns.

Figure 4.1 shows the initial conditions η andϕ for the last solution on each continuation
path (with max{η̂1,0 , η̂0,1} � 0.01). Panels (a), (b) and (c) correspond to γ � 5, 1, and 0.2,
respectively. The solution in all three cases is quasi-periodic, i.e. η and ϕ never exactly
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Figure 4.1: Spatially quasi-periodic traveling solutions in the lab frame at t � 0. The
wave height η(α) (solid red line) and velocity potential ϕ(α) (dashed blue line) are plotted
parametrically against ξ(α) to show the wave in physical space.
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repeat themselves; we plot the solution from x � 0 to x � 36π as a representative snapshot.
For these three solutions, the objective function f in (4.10), which is a squared error, was
minimized to 6.05×10−28, 9.28×10−28 and 4.25×10−28, respectively, with similar or smaller
values for lower-amplitude solutions on each path. For each of the 30 solutions computed
on these paths, only one Jacobian evaluation and 3–5 f evaluationswere needed to achieve
roundoff-error accuracy. In our computations, η and ϕ are represented by η̃(α1, α2) and
ϕ̃(α1, α2), which are defined on the torus T2. In Figure 4.2, we show contour plots of
η̃(α1, α2) and ϕ̃(α1, α2) corresponding to the final solution on each path. Following the
dashed lines through T2 in Figure 4.2 leads to the plots in Figure 4.1. By construction in
(3.12), η̃(−α) � η̃(α) while ϕ̃(−α) � −ϕ̃(α).

The amplitude ratio, γ :� η̂1,0/η̂0,1, determines the bulk shape of the solution. If γ � 1,
the componentwavewithwave number 1will be dominant; if γ � 1, the componentwave
with wave number k � 1/

√
2 will be dominant; and if γ is close to 1, both waves together

will be dominant over higher-frequency Fourier modes (at least in the regime we study
here). This is demonstrated with γ � 5, 1 and 0.2 in panels (a), (b) and (c) of Figure 4.1.
Panels (a) and (c) show a clear dominant mode with visible variations in the amplitude.
The oscillations are faster in panel (a) than in (c) since 1 > k ≈ 0.707. By contrast, in panel
(b), there is no single dominant wavelength.

This can also be understood from the contour plots of Figure 4.2. In case (a), γ � 1
and the contour lines of η̃ and ϕ̃ are perturbations of sinusoidal waves depending only
on α1. The unperturbed waves would have vertical contour lines. The α2-dependence of
the perturbation causes local extrema to form at the crest and trough. As a result, the
contour lines join to form closed curves that are elongated vertically since the dominant
variation is in the α1 direction. Case (c) is similar, but the contour lines are elongated
horizontally since the dominant variation is in the α2 direction. Following the dashed
lines in Figure 4.2, a cycle of α1 is completed before a cycle of α2 (since k < 1). In case (a),
a cycle of α1 traverses the dominant variation of η̃ and ϕ̃ on the torus, whereas in case (c),
this is true of α2. So the waves in Figure 4.1 appear to oscillate faster in case (a) than case
(c). In the intermediate case (b) with γ � 1, the contour lines of the crests and troughs
are nearly circular, but not perfectly round. The amplitude of the waves in Figure 4.1 are
largest when the dashed lines in Figure 4.2 pass near the extrema of η̃ and ϕ̃, and are
smallest when the dashed lines pass near the zero level sets of η̃ and ϕ̃.

Next we examine the behavior of the Fourier modes that make up these solutions.
Figure 4.3 shows two-dimensional plots of the Fourier modes η̂ j1 , j2 for the 3 cases above,
with γ ∈ {5, 1, 0.2} and max{η̂1,0, η̂0,1} � 0.01. Only the prescribed modes and the modes
that were optimized by the solver (see (4.32)) are plotted, which have indices in the range
0 ≤ j1 ≤ N and −N ≤ j2 ≤ N , excluding j2 ≤ 0 when j1 � 0. The other modes are
determined by the symmetry of (3.12) and by zero-padding η̂ j1 , j2 � 0 if N < j1 ≤ M/2 or
N < | j2 | ≤ M/2. We used N � 24 and M � 60 in all 3 calculations. One can see that the
fixed Fouriermodes η̂1,0 and η̂0,1 are the twohighest-amplitudemodes in all three cases. In
this sense, our solutions of the nonlinear problem (3.5) are small-amplitude perturbations
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Figure 4.2: Contour plots of η̃ and ϕ̃ on T2. The dashed lines show (α, kα) and its periodic
images with 0 ≤ α ≤ 10π and k � 1/

√
2. Evaluating η̃ and ϕ̃ at these points gives η and ϕ

in (3.11) and (2.65), which were plotted in Figure 4.1.
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(a) (b)

(c) (d)

Figure 4.3: Two-dimensional Fourier modes of η̃ for the k � 1/
√

2 solutions plotted in
Figures 4.1 and 4.2. (a) γ � 5. (b,d) γ � 1. (c) γ � 0.2. In all three cases, the modes
decay visibly slower along the line j1 + j2k � 0, indicating the presence of resonant mode
interactions.

of the solutions (4.11) of the linearized problem. However, in the plots of Figure 4.3, there
are many active Fourier modes other than the four modes e±iα1 , e±iα2 from linear theory.
In this sense, these solutions have left the linear regime. Carrying out a weakly nonlinear
Stokes expansion to high enough order to accurately predict all these modes would be
difficult due to the two-dimensional array of unknown Fourier modes, which would
complicate the analysis of the periodic Wilton ripple problem [2, 5, 73, 75]. Overturning
waves that are well outside of the linear regime will be computed in Section 4.1.2.

In panels (a), (b) and (c) of Figure 4.3, the modes appear to decay more slowly in
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one direction than in other directions. This is seen more clearly when viewed from
above, as shown in panel (d) for the case of γ � 1. (The other two cases are similar).
The direction along which the modes decay less rapidly appears to coincide with the
line {( j1, j2) : j1 + j2k � 0}, which is plotted in red. A partial explanation is that
when j1 + j2k is close to zero, the corresponding modes e i( j1+ j2k)α in the expansion of
η(α) in (3.11) have very long wavelengths. Slowly varying perturbations lead to small
changes in the residual of the water wave equations, so these modes are not strongly
controlled by the governing equations (3.5). We believe this would lead to a small divisor
problem that would complicate a rigorous proof of existence of quasi-periodic traveling
water waves. Similar small divisor problems arise in proving the existence of standing
water waves [51,68], 3D traveling gravity waves [50], and 2D time quasi-periodic gravity-
capillary waves [13,16,17], where small divisors are tackled using a Nash-Moser iterative
scheme.

Next we show that τ and c depend nonlinearly on the amplitude of the Fourier modes
η̂1,0 and η̂0,1. Panels (a) and (b) of Figure 4.4 show plots of τ and c versus η̂max :�
max(η̂1,0, η̂0,1) for 9 values of γ � η̂1,0/η̂0,1, namely γ � 0.1, 0.2, 0.5, 0.8, 1, 1.25, 2, 5, 10. On
each curve, η̂max varies from 0 to 0.01 in increments of 0.001. At small amplitudes, linear
theory predicts τ � g/k � 1.41421 and c �

√
g(1 + 1/k) � 1.55377. This is represented by

the black marker at η̂max � 0 in each plot. For each value of γ, the curves τ and c are seen
to have zero slope at η̂max � 0, and can be concave up or concave down depending on γ.
This can be understood from the contour plots of panels (e) and (f). Both τ and c appear
to be even functions of η̂1,0 and η̂0,1 when the other is held constant. Both plots have a
saddle point at the origin, are concave down in the η̂1,0 direction holding η̂0,1 fixed, and
are concave up in the η̂0,1 direction holding η̂1,0 fixed. The solid lines in the first quadrant
of these plots are the slices corresponding to the values of γ plotted in panels (a) and (b).
The concavity of the 1d plots depends on how these lines intersect the saddle in the 2d
plots.

The contour plots of panels (e) and (f) of Figure 4.4 were made by solving (3.5) with
(η̂1,0, η̂0,1) ranging over a uniform 26 × 26 grid on the square [−0.01, 0.01] × [−0.01, 0.01].
Using an even number of gridpoints avoids the degenerate case where η̂1,0 or η̂0,1 is zero.
At those values, the two-dimensional family of quasi-periodic solutions meets a sheet of
periodic solutions where τ or c becomes a free parameter. Alternative techniques would
be needed in these degenerate cases to determine the value of τ or c fromwhich a periodic
traveling wave in the nonlinear regime bifurcates to a quasi-periodic wave. In panel (g),
we plot the magnitude of the Chebyshev coefficients in the expansion

c(η̂1,0, η̂0,1) �
15∑

m�0

15∑
n�0

ĉmnTm(100η̂1,0)Tn(100η̂0,1), −0.01 ≤ η̂1,0, η̂0,1 ≤ 0.01. (4.13)

This was done by evaluating c on a cartesian product of two 16-point Chebyshev-Lobatto
grids over [−0.01, 0.01] and using the one-dimensional Fast Fourier Transform in each
direction to compute the Chebyshev modes. We see that the modes decay to machine
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Figure 4.4: Surface tension, wave speed, energy and momentum of small-amplitude
quasi-periodic water waves with k � 1/

√
2. (a,b,c,d) Plots of τ, c, E and Px versus

η̂max � max{η̂1,0, η̂0,1} holding γ � η̂1,0/η̂0,1 fixed. The black arrow in each plot shows
how the curves change as γ increases from 0.1 to 10. (e,f) Contour plots of τ and c and
the rays of constant γ corresponding to (a,b). (g) Mode amplitudes of a 2d Chebyshev
expansion of c(η̂1,0, η̂0,1) over the rectangle −0.01 ≤ η̂1,0, η̂0,1 ≤ 0.01.
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precision by the time m + n ≥ 10 or so, and only even modes m and n are active. The plot
for |τ̂mn | is very similar, so we omit it. These plots confirm the visual observation from
the contour plots that τ and c are even functions of η̂1,0 and η̂0,1 when the other is held
constant. These properties of τ and c make them unsuitable as continuation parameters
near the trivial solution, as discussed in Section 4.1.1.1.

In panels (c) and (d) of Figure 4.4, we show the energy Ẽ andmomentum P̃ of waves in
the above two-parameter family of quasi-periodic solutions. We see in Figure 4.4 that the
energy andmomentumof the quasi-periodicwaves are positively correlated. In particular,
the quasi-periodic wave family with γ � 1 possesses the largest energy and momentum
when η̂max is fixed, even though it does not have the highest wave speed. Energy and
momentum can both be regarded as measures of the amplitude of the wave. Unlike the
wave speed, they are both zero at the flat rest state. We note that γ � 1 corresponds
to maximizing both |η̂1,0 | and |η̂0,1 | to have the value η̂max, and also leads to the largest
amplitude oscillations in Figure 4.1. TheHamiltonian structure of the equations ofmotion
could be useful e.g. in generalizing the time quasi-periodic results of Berti et. al. [16] to
the spatially quasi-periodic setting.

4.1.2 Solutions That Bifurcate From Periodic Traveling Solutions
4.1.2.1 Numerical Methods

As a first step in computing bifurcated quasi-periodic traveling solutions, we discuss
how to compute finite amplitude periodic traveling solutions. For periodic traveling
solutions, since η̃per does not depend on α2, it suffices to solve the governing equation
(3.8) on T instead of T2. Similar to the numerical methods discussed in Section 4.1.1.1, we
adopt a pseudo-spectrum method [83, 84] and represent a periodic function f̃ per in the
following two ways

(1) The values of f̃ per on M equidistant points on T

f̃m � f̃ per(2πm/M), 0 ≤ m ≤ M, M is even. (4.14)

(2) The truncated Fourier series of f̃ per

f̃ per(α1) �
M/2∑

j1�−M/2+1

f̂ j1 ,0e i j1α1 . (4.15)

We apply one-dimensional real-to-complex, complex-to-real fast Fourier transforms to
transform between the two representations. The derivation and the Hilbert transform
of a function are performed in Fourier space; the corresponding Fourier multipliers are
(i j1) and (−i) sgn( j1) for j1 , M/2. We formulate (3.8) as an overdetermined nonlinear
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least-squares problem [83] and define the objective function in the periodic case as

F [τ, b , η̃per] � 1
4π2

∫
T

R
2[τ, b , η̃per]dα1. (4.16)

Note that solving (3.8) is equivalent to finding solutions of F � 0. In computation, we
set η̂0,0 � 0 and fix the values of τ and η̂1,0; the unknowns are b and the other Fourier
coefficients of η̃per, which are represented by a vector p

p1 � b , p2 � η̂2,0, . . . , pN � η̂N,0, N < M/2. (4.17)

We also set the Fourier coefficients η̂ j1 ,0 to be zero for | j1 | ≥ N thus the problem is overde-
termined. To demonstrate the dependence of the objective function on the unknowns, we
express it as F [p; τ, η̂1,0]. We evaluate F numerically by the trapezoidal rule approxima-
tion over T , which is spectrally accurate

f (p) � 1
2

r(p)T r(p) ≈ F [p; τ, η̂1,0],
rm(p) � 1

√
M
R[p; τ, η̂1,0](αm),

(0 ≤ m ≤ M − 1) . (4.18)

We apply the Levenberg-Marquardt method [65, 82] to search for the minimizer of f (p).
The method requires a Jacabian matrix ∂rm/∂p j , which is computed by the variational
equations (3.38). To obtain the branch of periodic traveling gravity-capillary waves, we
fix τ or η̂1,0 alternatively and use the other one as the continuation parameter to compute
the periodic branch, denoted qper(s).

Next we are going to discuss how to detect quasi-periodic bifurcation points on qper(s)
and compute the corresponding bifurcation directions numerically. As discussed in Re-
mark 3.4.4, we are interested in bifurcation points where the kernel of Dη̃R possesses
functions of the following form

δηqua(α1, α2) � e iα2
∑
j∈Z

δη̂ je i jα1 + c.c., (4.19)

where the coefficient δη̂ j is real for j ∈ Z. We introduce a Fourier basis

e iα2 + c.c., e i(α2+ jα1) + c.c., e i(α2− jα1) + c.c., j � 1, 2, . . . ,Nqua, (4.20)

where 0 < Nqua ≤ N . Let qper � (τ, b , η̃per) be an arbitrary point on qper(s), according
to (3.40), we have

Dη̃R[qper](e il(α1+α2)) � e iα2 u(l)(α1), u(l)
�

∑
j∈Z

û(l)
j e i jα1 , l � 0,±1,±2, . . . ,±Nqua.

(4.21)
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One can check that the Fourier coefficients of u(l) are real using equations (3.38), therefore

Dη̃R[qper](e il(α1+α2) + c.c.) �
∑
j∈Z

û(l)
j (e i(α2+ jα1) + c.c.), l � 0,±1,±2, . . . ,±Nqua. (4.22)

We denote Dη̃R[qper] under the Fourier basis (4.20) by the matrix Jqua[qper]; according to
(4.22), we have

J
qua[qper] �

*.................
,

û(0)
0 û(1)

0 û(−1)
0 · · · û

(Nqua)
0 û

(−Nqua)
0

û(0)
1 û(1)

1 û(−1)
1 · · · û

(Nqua)
1 û

(−Nqua)
1

û(0)
−1 û(1)

−1 û(−1)
−1 · · · û

(Nqua)
−1 û

(−Nqua)
−1

...
...

...
...

...

û(0)
Nqua

û(1)
Nqua

û(−1)
Nqua

· · · û
(Nqua)
Nqua

û
(−Nqua)
Nqua

û(0)
−Nqua

û(1)
−Nqua

û(−1)
−Nqua

· · · û
(Nqua)
−Nqua

û
(−Nqua)
−Nqua

+/////////////////
-

. (4.23)

The computation ofJqua involves computing u(l) by (4.21) . Since each term in (4.21) can be
written in the form e iα2 f̃ per(α1), we employ the idea of Fourier-Bloch decomposition [31]
and compute u(l) by

u(l)
� −

1
2( J̃per)2 b J(l) + gη(l) − τκ(l),

η(l) � e ilα1 , J(l) � 2
{
∂α1 ξ̃

per(|1 + l |η(l)) + ∂α1 η̃
per(i(1 + l)η(l))} ,

κ(l) � − 3
2 J̃per

κ̃per J(l) + 1
( J̃per)3/2

{(∂2
α1
η̃per)(|1 + l |η(l)) + ∂α1 ξ̃

per(−(1 + l)2η(l))
−(∂2

α1
ξ̃per)(i(1 + l)η(l)) − (∂α1 η̃

per)((i) sgn(1 + l)(1 + l)2η(l))} .

(4.24)

Different from (4.21), the above equations are posed on T instead of T2. To obtain the l-th
column of Jqua, we compute the Fourier series of u(l) using a one-dimensional complex-
to-complex fast Fourier transform since u(l) is a complex-valued function in general.

As discussed in Section 3.4, we detect the quasi-periodic bifurcation point on qper(s)
by tracking the sign of detJqua[qper(s)]; the determinant of J is computed through QR
factorization with column pivoting in the LAPACK routine

J
qua

� QRPT , (4.25)

where Q is an orthogonal matrix, R is an upper triangular matrix and P is a permutation
matrix, which is chosen so that

|R11 | ≥ |R22 | ≥ . . . ≥ |Rnn |, n � 2Nqua + 1. (4.26)
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The sign of detJqua is

sgn(detJqua) � sgn(det Q) sgn(det P)Π2Nqua+1
j�1 sgn(R j j). (4.27)

In practice, instead of a point, we obtain an interval [s1, s2] such that

detJqua[qper(s1)] detJqua[qper(s2)] ≤ 0. (4.28)

The bifurcation point lies between qper(s1) and qper(s2) on the curve qper(s). We apply
a bisection method to compute such intervals and terminate when the length of the
interval is around 10−15; any point inside of this interval can be chosen as a bifurcation
point within round-off errors. To better demonstrate the rank deficiency of Jqua at the
bifurcation point, we compute the following function simultaneously when we compute
the sign of detJqua along qper(s)

χ[qper(s)] � sgn(detJqua[qper(s)])|Rnn[qper(s)]|, n � 2Nqua + 1. (4.29)

After we obtain the bifurcation point, we use the singular value decomposition to
compute the null vector of Jqua, which is the bifurcation direction. We denote the
quasi-periodic bifurcation point as qbif � (τbif, bbif, η̃bif) and the bifurcation direction as
δqbif � (0, 0, δη̃bif); according to (4.19), we have

δη̃bif �

Nqua∑
j1�−Nqua

δη̂bifj1 ,1
e i( j1α1+α2) + c.c.. (4.30)

We also define δη̂bifjmax ,1
by

|δη̂bifjmax ,1
| � max
−Nqua≤ j1≤Nqua

|δη̂bifj1 ,1
|. (4.31)

We adopt the numerical methods discussed in Section 4.1.1.1 to compute quasi-periodic
traveling solutions. To switch from the periodic branch to the quasi-periodic branch, we
use qbif + εδqbif (or qbif − εδqbif) as an initial guess to compute the first quasi-periodic
solution on the branch, where ε is usually chosen to be 10−5 or 10−4. In the minimization
of the objective function F , we fix τ � τbif and η̂ jmax ,1 � εδη̂bifjmax ,1

. Hence the unknowns of
the problem are b and the leading Fourier coefficients of η̃: η̂ j1 , j2 for | j1 | ≤ N1, | j2 | ≤ N2,
except η̂0,0 and η̂ jmax ,1. The unknowns are stored in a vector p; for example, if jmax � 0, the
entries of p are

p1 � b , p2 � η̂1,1, p3 � η̂1,0, p4 � η̂1,−1, p5 � η̂0,2 , . . . , pNtot � η̂1,−N2 , (4.32)

where Ntot � N1(2N2 + 1) + N2. We also require that N1 > N to ensure that we do not
lose any accuracy in the α1 direction when we switch from the periodic branch to the
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quasi-periodic branch. In summary, our goal is to find p given τbif and η̂ jmax ,1 such that
F [p; τbif, η̂ jmax ,1] � 0. When computing the whole bifurcation branch, we fix τ � τbif

and use η̂ jmax ,1 as a continuation parameter, hence we obtain a one-parameter family of
solutions. We remark that this is different from Section 4.1.1.1, where we use η̂1,0 and
η̂0,1 as bifurcation parameters to compute quasi-periodic traveling solutions that bifurcate
from the zero solution.

4.1.2.2 Numerical Results

In this section, we present numerical results of bifurcated quasi-periodic gravity-
capillary waves corresponding to k � 1/

√
2. In particular, we find overturning quasi-

periodic waves that bifurcate from periodic overturning waves. In computation, g is
normalized to be 1.

For periodic gravity-capillary waves, we fix the Fourier coefficient η̂1,0 and use τ as the
continuation parameter to compute the periodic branch qper(s); we choose N � 50,M �

150,Nqua � 45 in computation thus the size of the matrix Jqua is 91 × 91. We start by
examining the periodic solutions of small amplitudes to search for bifurcation points. We
first fix η̂1,0 � 0.001 and increase the value of τ from 0.1 to 10 with an increment ∆τ � 0.1
to compute the periodic path; we detect the bifurcation point by tracking the sign change
of detJqua along the path. The method produces a bifurcation point when τ belongs to
intervals [0.2, 0.3], [0.5, 0.6], [0.7, 0.8], [1.4, 1.5] and [3.4, 3.5]. Note that the linearization
of (3.8) around the zero solution possesses the solution

η̃lin(α1, α2) � 2η̂1,0 cos(α1) + 2η̂0,1 cos(α2),
τlin � g/k �

√

2 ≈ 1.414, blin � g + g/k � 1 +
√

2 ≈ 2.414,
(4.33)

where τlin ∈ [1.4, 1.5]. However, our goal is to find large-amplitude quasi-periodic over-
turning waves, which are far beyond small perturbations of the above linear solution,
hence the interval [1.4, 1.5] is not applicable for us. In [3], Akers, Ambrose and Wright
proved the existence of gravity perturbed Crapper waves and computed large-amplitude
self-intersecting overturning waves when τ ≥ 5; accordingly, a larger value of τ is of
our interest. We apply the bisection method described in Section 4.1.2.1 to the interval
[3.4, 3.5] and find a bifurcation point with η̂bif1,0 � 0.001, τbif ≈ 3.4142; at this bifurcation
point, the objective function f is minimized to 3.39 × 10−30 and the function χ is equal to
3.25 × 10−13. To compute bifurcation points where the periodic solution η̃bif is of higher
amplitude, we increase η̂1,0 from 0.001 to 0.791 with an increment ∆η̂1,0 � 0.001; we stop
at η̂1,0 � 0.791 because the solution is self-intersecting when η̂1,0 � 0.792. We search for
bifurcation points by varying the value of τ at each step; the bifurcation point obtained at
the previous step is used as an initial guess to compute the bifurcation point at the next
step. The panel (a) of Figure 4.5 plots the bifurcation points we obtain; as is shown in the
picture, the bifurcation point with a larger η̂bif1,0 also has a larger τ.
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Figure 4.5: In panel (a), we plot the Fourier coefficient η̂bif1,0 and τbif of the bifurcation
point qbif � (τbif, bbif, η̃bif). For point A, η̂bif1,0 � 0.3, τbif ≈ 4.1248; For point B, η̂bif1,0 � 0.5,
τbif ≈ 4.9580; For point C, η̂bif1,0 � 0.7, τbif ≈ 5.9000; For point D, η̂bif1,0 � 0.791, τbif ≈ 6.2947.
In panel (b), we plot the Fourier coefficient η̂1,0 and η̂0,1 of the quasi-periodic solutions that
bifurcate from the periodic solution at point D. In panel (c), we plot the surface elevation
η of two traveling solutions: the black dashed line corresponds to the periodic solution at
point D; the red line corresponds to the quasi-periodic solution that bifurcates from this
periodic solution, which is represented by the red point in panel (b).

We obtain a quasi-periodic bifurcation point qbif � (τbif, bbif, η̃bif)with η̂bif1,0 � 0.791, τ ≈
6.2986; as shown in the panel (a) of Figure 4.5, the corresponding periodic solution η̃bif
is a large-amplitude overturning wave. At this bifurcation point, the objective function
is minimized to 4.24 × 10−27 and χ is equal to 1.43 × 10−15. We compute the singular
value decomposition of Jqua at this point and obtain its zero eigenvector, which is also
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the bifurcation direction, denoted δηbif. In computation, we choose N1 � N2 � 80,
M1 � M2 � 180 anduse qbif+10−5(0, 0, δη̃bif) to jump from the periodic branch to the quasi-
periodic branch. We find out that for δηbif, the Fourier coefficient with the largest norm
is δη̂bif0,1. Hence we use η̂0,1 as a continuation parameter and compute the quasi-periodic
branch by increasing its norm; τ is fixed to be τbif in computation. We are able to compute
the quasi-periodic continuation path until η̂1,0 reaches 0.11. The corresponding solution
is represented by the red point in the panel (b) of Figure 4.5; for this solution, η̂1,0 ≈ 0.7486
and the objective function f is minimized to 2.18× 10−26. In the panel (b) of Figure 4.5, we
plot the Fourier coefficients η̂1,0 and η̂0,1 of the solutions on the quasi-periodic bifurcation
branch. One can observe that η̂1,0 decreases as η̂0,1 increases. We remark thatwe only need
to compute the quasi-periodic solutions for which η̂0,1 is positive because the solutions
with negative η̂0,1 can be obtained by a spatial shift (α1, α2) 7→ (α1, α2 + π) as discussed
in Remark 3.2.1.

In the panel (c) of Figure 4.5, we compare the surface elevation η of the periodic
solutionwith η̂bif1,0 � 0.791 and the quasi-periodic solution that bifurcates from this periodic
solution, of which η̂0,1 � 0.11. As is shown in the picture, the peaks and troughs of
the quasi-periodic solution appear in a non-periodic pattern: the peaks of the quasi-
periodic solution are above the periodic solution’s near ξ � 0, 6π and are below near
ξ � 2π, 4π, 10π; the troughs of the quasi-periodic solution are on the left of the periodic
solutions’ near ξ � 5π, 11π and are on the right near ξ � 3π, 7π, 9π. We zoom into
the troughs of the two solutions near ξ � 5π and observe that the trough of the quasi-
periodic solution is asymmetrical. The two zoomed in pictures show that both solutions
are not self-intersecting. Moreover, the quasi-periodic solution is further from the self-
intersectingwave than the periodic solution; this is because for the quasi-periodic solution,
the Fourier coefficient η̂1,0 is approximately 0.7286, which is smaller than the one of the
periodic solution.

4.2 Time Evolution of Spatially Quasi-Periodic Waves

4.2.1 Numerical Methods
We compute the time evolution of η̃ and ϕ̃ based on (2.79) and reconstruct the values

of η and ϕ from corresponding tilde functions using (2.79). We adopt the same pseudo-
spectral method described in Section 4.1.1.1 and represent a tilde function by its values
at M1 × M2 equidistant points on T2 as well as its two dimensional Fourier series. The
nonlinear operations in (2.79) consist of production and division; they are computed
pointwise on the grid points. The derivative and Hilbert transform are computed in
Fourier space with symbols i( j1 + k j2) and (−i) sgn( j1 + k j2) for ( j1, j2) ∈ Z2. To plot the
solution, we also need to compute the antiderivative of f̃ � ∂̃α ξ̃ to obtain ξ̃. This involves
dividing f̂ j1 , j2 by i( j1 + j2k) for ( j1, j2) , (0, 0) and adjusting the (0, 0) mode to enforce
ξ(0, t) � 0 � ξ̃(0, 0, t).
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The evolution equations (2.78) are not stiff when the surface tension parameter is small
or vanishes, but become moderately stiff for larger values of τ. We find that the 5th
and 8th order explicit Runge-Kutta methods of Dormand and Prince [44] work well for
smaller values of τ, and exponential time-differencing (ETD) methods [15, 25, 28, 53, 79]
work well generally. This will be demonstrated in Sections 4.2.2 and 4.2.3 below. In the
ETD framework, we follow the basic idea of the small-scale decomposition for removing
stiffness from interfacial flows [47,48] and write the evolution equations (2.78) in the form(

η̃t

ϕ̃t

)
� L

(
η̃

ϕ̃

)
+N , L � *

,

0 H ∂̃α
−(gP − τ(∂̃α)2) 0

+
-
, (4.34)

where the projection P and the Hilbert transform H are defined in Definition 2.2.3, and

N �
*.
,

−∂̃αηH[χ̃] − �
∂̃α ξ̃ − ∂̃αψ̃

�
+ C1∂̃α η̃

P
[ (∂̃α)2ψ̃−(∂̃α ϕ̃)2

2 J̃
− ∂̃αϕ̃H[χ̃] + C1∂̃αϕ̃ + τ(κ − (∂̃α)2η)

]+/
-
. (4.35)

Note that N is obtained by subtracting the terms included in L from (2.78). In particular,
∂̃αψ̃ in (4.35) is−H ∂̃αϕ̃ from(4.34). The eigenvaluesof L are ±i

√
| j1 + j2k |�g + τ( j1 + j2k)2�

,
so the leading source of stiffness is dispersive. This 3/2 power growth rate of the eigen-
values of the leading dispersive term with respect to wave number is typical of interfacial
fluid flows with surface tension [47, 48]. For stiffer problems such as the Benjamin-Ono
and KdV equations, the growth rate is faster (quadratic and cubic, respectively) and it
becomes essential to use a semi-implicit or exponential time-differencing scheme to avoid
severe time-stepping restrictions. Here it is less critical, but still useful. Further details
on how to implement (4.34) and (4.35) in the ETD framework are given in the appendix
of [84].

In both the explicit Runge-Kutta and ETD methods, as explained above, the functions
evolved in time are η̃(α1, α2, t) and ϕ̃(α1, α2, t), sampled on the uniform M1 × M2 grid
covering T2. At the end of each time step, we apply a 36th order filter [46,47] with Fourier
multiplier

ρ( j1, j2) �
{

0, j1 � M1/2 or | j2 | � M2/2,
exp

�
− 36

�(2 j1/M1)36 + (2 j2/M2)36
��
, otherwise.

(4.36)

In all the computations reported below, we used the same number of gridpoints in the α1
and α2-directions, M1 � M2 � M. It is easy to check a-posteriori that the Fourier modes
decay sufficiently (e.g. to machine precision) by the time the filter deviates appreciably
from 1. If they do not, the calculation can be repeated with a larger value of M. This will
be demonstrated in Section 4.2.3 below.
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4.2.2 Traveling Waves
In this section, we confirm that the quasi-periodic solutions we obtain by minimizing

the objective function (4.10) are indeed traveling waves under the evolution equations
(2.78). This allows us to measure the accuracy of our independent codes for solving
these two problems by comparing the numerical results. An interesting feature of the
conformal mapping formulation arises in this comparison, namely that for most choices
of C1 in (2.78), traveling waves move at a non-uniform speed through conformal space in
order to travel at constant speed in physical space. This is discussed in this section and
proved in Appendix A.2.

In Figure 4.6, we plot the time evolution of ζ(α, t) � ξ(α, t) + iη(α, t) in the lab frame
from t � 0 to t � 3. The initial conditions, plotted with thick blue lines, are those of
the traveling waves computed in Figures 4.1 and 4.2 above by minimizing the objective
function (4.10). The grey curves give snapshots of the solution at uniformly sampled times
with ∆t � 0.1. They were computed using the 5th order explicit Runge-Kutta method
described in Section 4.2.1 with a stepsize of 1/300, so there are 30 Runge-Kutta steps
between snapshots in the figure. The solutions are plotted over the representative interval
0 ≤ x ≤ 12π, though they extend in both directions to ±∞without exactly repeating. The
initial condition and time evolution were computed on the torus and then sampled along
the (1, k) direction to extract the data for these 1D plots.

For quantitative comparison, let η̃0(α)denote the initial condition on the torus, which is
computed numerically by minimizing (4.10). We then compute ξ̃0 � H[η̃0] and ϕ̃0 � cξ̃0,
which are odd functions of α � (α1, α2) ∈ T2 since η̃ is even. From Corollary A.2.5 of
Appendix A.2, we define the “exact solution” of the time evolution of the traveling wave
under (2.79) and (2.80) with these initial conditions as

η̃exact(α, t) � η̃0
�
α − kα0(t)�,

ϕ̃exact(α, t) � ϕ̃0
�
α − kα0(t)�, (4.37)

where k � (1, k), α0(t) � ct − A0(−kct) and A0(x1, x2) is a periodic function on T2

defined implicitly by (A.28) below. We see in (4.37) that the waves do not change shape as
they move through the torus along the characteristic direction k, but the traveling speed
α′0(t) in conformal space varies in time in order to maintain ξ̃(0, 0, t) � 0 via (2.80). By
Corollary A.2.5, the exact reconstruction of ξ̃exact from η̃exact is

ξ̃exact(α, t) � ξ̃0
�
α − kα0(t)� + δ0(t), (4.38)

where δ0(t) � ct − α0(t) � A0(−kct) measures the deviation in position from traveling
at the constant speed ct in conformal space. The defining property (A.28) of A0(x1, x2)
ensures that ξ̃exact(0, 0, t) � 0.

The significance of A0 is that the inverse of the mapping x � α + kξ̃0(α) on T2,
assuming it is single-valued, is

α � x + kA0(x). (4.39)
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Figure 4.6: Time evolution of the traveling wave profiles, ζ(α, t), from t � 0 to t � 3 in
the lab frame. The thick blue lines correspond to the initial conditions.
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As shown in Section 4.2.1, this allows us to express quasi-periodic solutions of the initial
value problem in conformal space as quasi-periodic functions in physical space. In the
traveling case considered here, the exact solutions on the torus in physical space are
η̃
phys
0 (x − kct) and ϕ̃phys

0 (x − kct), where e.g. η̃phys0 (x) � η̃0(x + kA0(x)). We know this
already on physical grounds, but it also follows from (4.37) and (4.38) using

η̃
phys
exact(x , t) � η̃exact(x + kA(x , t) , t), ϕ̃

phys
exact(x , t) � ϕ̃exact(x + kA(x , t) , t), (4.40)

whereA(x , t) � A0(x − kct) −A0(−kct) satisfies the time-dependent analog of (A.28).
Figure 4.7 shows contour plots of the torus version of the γ � 0.2, 1, 5 solutions shown

in Figure 4.6 at the final time computed, T � 3. The dashed lines show the trajectory
from t � 0 to t � T of the wave crest that begins at (0, 0) and continues along the
path α1 � α0(t), α2 � kα0(t) through the torus in (4.37). The following table gives the
phase speed, c, surface tension, τ, translational shift in conformal space at the final time
computed, α0(T), and deviation from steady motion in conformal space, δ0(T), for these
three finite-amplitude solutions (recall that max{η̂1,0, η̂0,1} � 0.01 and η̂1,0/η̂0,1 � γ) as
well as for the zero-amplitude limit:

γ � 5 γ � 1 γ � 0.2 linear theory
c 1.552 175 1.552 197 1.553 743 clin � 1.553 774
τ 1.409 665 1.410 902 1.415 342 τlin � 1.414 214

α0(T) 4.677 416 4.681 174 4.668 757 clinT � 4.661 322
δ0(T) −0.020 890 −0.024 583 −0.007 527 0

(T � 3)
(4.41)

In Figure 4.8, we plot δ0(t) for 0 ≤ t ≤ T (solid lines) along with (c − clin)t (dashed
and dotted lines) for the three finite-amplitude solutions in this table. Writing α0(t) �

clint + [(c − clin)t − δ0(t)], we see that the deviation of α0(t) from linear theory over this
time interval is due mostly to fluctuations in δ0(t) rather than the steady drift (c − clin)t
due to the change in phase speed c of the finite-amplitude wave.

Computing the exact solution (4.37) requires evaluating δ0(t) � A0(−ct ,−kct). We
use Newton’s method to solve the implicit equation (A.28) for A0(x1, x2) at each point of
a uniform M ×M grid, with M1 � M2 � M in the notation of Section 4.1.1.1. We then use
FFTW to compute the 2d Fourier representation of A0(x1, x2), which is used to quickly
evaluate the function at any point. It would also have been easy to computeA0(−ct ,−kct)
directly by Newton’s method, but the Fourier approach is also very fast and gives more
information about the function A0(x1, x2). In particular, the modes decay to machine
roundoff on the grid, corroborating the assertion in TheoremA.1.2 thatA0 is real analytic.
We use the exact solution to compute the error in timestepping (2.78) and (2.80) from t � 0
to t � T,

err �
√
‖η̃ − η̃exact‖2 + ‖ϕ̃ − ϕ̃exact‖2, ‖η̃‖2

�
1

M1M2

∑
m1 ,m2

η̃
(2πm1

M1
,

2πm2

M2
, T

)2
. (4.42)
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Figure 4.7: Panel (a)-(c) are contour plots of the numerical solution η̃(α1, α2, T) on the
torus corresponding to the quasi-periodic solutions η(α, t) in Figure 4.6 at the final time
shown, t � T � 3. The dashed lines show the trajectory of the wave crest from t � 0
to t � T. Panel (d) compares the accuracy and efficiency of the proposed time-stepping
schemes in computing the time evolution of the solution in panel (c).
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Figure 4.8: Plots of δ0(t) � ct −α0(t) in (4.37) and (c− clin)t for the solutions of Figure 4.6.

We report the errors for all three waves plotted in Figure 4.6

γ � 5 γ � 1 γ � 0.2
err 1.04 × 10−16 1.16 × 10−16 7.38 × 10−17 (4.43)

using the simplest timestepping method proposed in [84] to solve (2.78), namely a 5th
order explicit Runge-Kutta method using 900 uniform steps from t � 0 to t � 3. These
errors appear to mostly be due to roundoff error in floating-point arithmetic, validating
the accuracy of both the timestepping algorithm of [84] and the traveling wave solver of
Section 4.1.1.1, which was taken as the exact solution. Evolving the solutions to compute
these errors took less than a second on a laptop (with M2 � 3600 gridpoints and 900
timesteps), while computing the traveling waves via the Levenberg-Marquardt method
took 7 seconds on a laptop and only 0.9 seconds on a server (Intel Xeon Gold 6136, 3GHz)
running on 12 threads (with M2 � 3600 gridpoints and Ntot � 1200 unknowns).

We use the γ � 1 traveling solution above as a test case and compare the accuracy
and efficiency of the Runge-Kutta and exponential time differencing schemes proposed
in Section 4.2.1. In the panel (d) of Figure 4.7, we demonstrate the error in time-stepping
this traveling wave solution from t � 0 to t � 3 using the 5th and 8th order explicit
Runge-Kutta methods of Dormand and Prince [44], the 4th order ETD scheme of Cox
and Matthews [28, 53], and the 5th order ETD scheme of Whalen, Brio and Moloney [79].
The surface tension in this example (τ � 1.410902) is high enough that once the stepsize
is sufficiently small for the Runge-Kutta methods to be stable, roundoff error dominates
truncation error. So the errors suddenly drop from very large values (1020 or more) to
machine precision. By contrast, the error in the ETD methods decreases steadily as the
stepsize is reduced, indicating that the small-scale decomposition introduced in (4.34) is
successful in removing stiffness from the equations of motion [47, 48].
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4.2.3 Overturning Waves
Next we present a spatially quasi-periodic water wave computation in which some of

thewave peaks overturn as they evolvewhile others do not. Conformalmappingmethods
have been used previously to compute overturning waves. For example, Dyachenko
and Newell [39] use this approach to study whitecapping in the ocean and Wang et
al. [60] use it to compute solitary and periodic overturning traveling flexural-gravity
waves. The novelty of our work is the computation of a spatially quasi-periodic water
wave inwhich everywave peak evolves differently, and only some of them overturn. Since
torus functions are involved, the number of degrees of freedom is squared, leading to a
large-scale computation. For simplicity, we set the surface tension parameter, τ, to zero.

We first seek spatially periodic dynamics in which the initial wave profile has a vertical
tangent line that overturns when evolved forward in time and flattens out when evolved
backward in time. Through trial and error, we selected the following parametric curves
for the initial wave profile and velocity potential of this auxiliary periodic problem:

ξ1(σ) � σ +
3
5

sin σ −
1
5

sin 2σ,
η1(σ) � −(1/2) cos(σ + π/2.5),
ϕ1(σ) � −(1/2) cos(σ + π/4). (4.44)

Note that ξ′1(σ) � 0 when σ ∈ π + 2πZ, and otherwise ξ′1(σ) > 0. Thus, vertical tangent
lines occur where ξ1(σ) ∈ π + 2πZ and η1(σ) � −0.5 cos(1.4π) � 0.154508; see Figure 4.9.

To convert (4.44) to a conformal parametrization, we search for 2π-periodic functions
η2(α) and B2(α) and a number x2 such that

α + x2 + H
�
η2

� (α) � ξ1(α + B2(α)), η2(α) � η1(α + B2(α)), B2(0) � 0. (4.45)

First we solve a simpler variant in which x2 is absent and B2(0) is unspecified. Specifically,
we solve α + H

�
η3

� (α) � ξ1(α + B3(α)), η3(α) � η1(α + B3(α)) for η3(α) and B3(α) on a
uniform grid with M � 4096 gridpoints on [0, 2π) using Newton’s method. The Hilbert
transform is computed with spectral accuracy in Fourier space. We then define x2 as the
solution of x2 + B3(x2) � 0 that is smallest in magnitude. We solve this equation by a
combination of root bracketing and Newton’s method; the result is x2 � 0.393458. Finally,
we define B2(α) � x2 + B3(α + x2) and η2(α) � η3(α + x2), which satisfy (4.45).

As shown in Figure 4.9, the initial conditions η2(α) and
ϕ2(α) � ϕ1(α + B2(α)) (4.46)

have the desired property that the wave overturns when evolved forward in time and
flattens out when evolved backward in time. In other words, the wave becomes less steep
in the neighborhood of the initial vertical tangent line when time is reversed. However,
it does not evolve backward to a flat state. Instead, a secondary wave crest forms to the
right of the initial wave crest and grows in amplitude as t decreases. This secondary wave
crest resembles the early stages of the fluid jets that were observed by Aurther et al. [11] to
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Figure 4.9: Time evolution of a spatially periodic water wave initialized via (4.44) and
evolved forward and backward in time to t � ±0.45. Panels (a) and (b) show snapshots of
the wave in physical space; panel (c) shows snapshots of η(α, t) in conformal space; and
panel (d) shows snapshots of |η̂ j(t)| in Fourier space. The initial condition (t � 0) is shown
in blue in each plot.

form in the wave troughs when the initial condition η0(x) � � 1
3 sin x +

1
6 sin 2x +

1
3 sin 3x) is

evolved from rest in the graph-based formulation (2.15).
The blue markers in panels (a) and (b) of Figure 4.9 show the location of the vertical

tangent line in physical space at t � 0. The blue marker in panel (c) shows the corre-
sponding point in conformal space. When the wave overturns for t > 0 in physical space,
it is because α 7→ ξ(α, t) no longer increases monotonically. Indeed, we see in panel (c)
that η(α, t) remains single-valued as a function of the conformal variable α but becomes
very steep. This causes the Fourier mode amplitudes in panel (d) to decay more slowly
as t increases. We used different mesh sizes and timesteps in the regions 0 ≤ t ≤ 0.3,
0.3 ≤ t ≤ 0.45 and 0 ≥ t ≥ −0.45 to maintain spectral accuracy; details are given below
when discussing the quasi-periodic calculation. The drop-off in |η̂ j | from 10−14 to 10−18 as
j approaches the Nyquist frequency M/2 is due to the 1D version of the filter (4.36), which
is applied after each timestep. Floating point errors of size 10−14 occur in the discretiza-



CHAPTER 4. NUMERICAL METHODS AND RESULTS 61

tion of the equations of motion while errors of size 10−18 are due to having computed the
inverse FFT of the filtered data to get back to real space before taking the FFT again to plot
the Fourier data.

We turn the solution of this auxiliary periodic problem into a spatially quasi-periodic
solution by defining initial conditions on the torus of the form

η̃0(α1, α2) � η2(α1), ϕ̃0(α1, α2) � ϕ2(α1) cos(α2 − q), (4.47)

where q is a free parameter that we choose heuristically to be q � 0.6kπ � 1.3329 in order
to make the first wave crest to the right of the origin behave similarly to the periodic 1D
solution of Figure 4.9. (This will be explained below).

The results of the quasi-periodic calculation are summarized in Figures 4.10 and 4.11.
Panel (a) of Figure 4.10 shows snapshots of the solution at t � (`/6)T for 0 ≤ ` ≤ 6 over the
range 0 ≤ ξ(α) ≤ 16π, where T � 0.225. The initial wave profile, ζ0(α) � ξ0(α) + iη0(α)
with η0(α) � η̃0(α, kα), is plotted with a thick blue line. The wave profile is plotted with
a thick black line at t � T and with thin grey lines at intermediate times. Panel (b) zooms
in on the first wave in panel (a), which overturns as the wave crest moves up and right
while the wave trough moves down and left, as indicated by the blue arrows. This is very
similar (by design) to the forward evolution of the auxiliary periodic wave of Figure 4.9,
with initial conditions η2(α), ϕ2(α). Panels (c) and (d) zoom in on two other wave crests
from panel (a) that flatten out (rather than overturn) as t advances from 0 to T. Panel
(e) shows another type of behavior in which the wave overturns due to the wave trough
moving down and left faster than the wave crest moves down and left. Panel (f) shows the
evolution of the velocity potential ϕ(α, t) over 0 ≤ t ≤ T. Unlike η0(α), the initial velocity
potential ϕ0(α) � ϕ̃0(α, kα) is not 2π-periodic due to the factor of cos(α2 − q) in (4.47).

Panels (a) and (d) of Figure 4.11 show surface plots of η̃(α1, α2, T) and ϕ̃(α1, α2, T)
at the final time computed, T � 0.225. The corresponding contour plots are shown in
panels (b) and (c). Initially, η̃(α1, α2, 0) depends only on α1; however, by t � T, the
dependence on α2 is clearly visible. Although the waves overturn in some places when
η(α, t) � η̃(α, kα, t) is plotted parametrically versus ξ(α, t) with t > 0 held fixed, both η̃
and ϕ̃ are single-valued functions of α1 and α2 at all times. Nevertheless, throughout the
evolution, η̃(α1, α2, t) has a steep dropoff over a narrow range of values of α1. Initially,
η̃0(α1, α2) � η2(α1) � η1(α1 +B2(α1)) and the rapid dropoff occurs for α1 near the solution
of α1+B2(α1) � π (since the vertical tangent line occurs at ξ1(σ)+iη1(σ)with σ � π). Using
Newton’s method, we find that this occurs at α1 � 0.634185π. The blue curve in panel (c)
of Figure 4.9 gives η2(α). If one zooms in on this plot, one finds that η2(α)decreases rapidly
by more than half its crest-to-trough height over the narrow range 0.6π ≤ α ≤ 0.667π. At
later times, η̃(α1, α2, t) continues to drop off rapidly when α1 traverses this narrow range
in spite of the dependence on α2. This can be seen in panel (b) of Figure 4.11, where there is
a high clustering of nearly vertical contour lines separating the yellow-orange region from
the blue region. Over this narrow window, ϕ̃(α1, α2, t) also varies rapidly with respect to
α1.
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Figure 4.10: Snapshots in time of a spatially quasi-periodic water wave with a periodic
initial wave profile with vertical tangent lines at ξ � π + 2πn, n ∈ Z. A quasi-periodic
initial velocity potential causes some of the peaks to overturn for t > 0 while others do
not. Panels (a) and (f) show η(α, t) and ϕ(α, t) versus ξ(α, t) over 0 ≤ x ≤ 16π and
0 ≤ t ≤ T � 0.225. Panels (b)–(e) show the results of panel (a) in more detail. The blue
arrows show the direction of travel of the wave at various locations.
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Figure 4.11: Surface and contour plots of the torus version of the solution plotted in
Figure 4.10 at the final time T � 0.225. The rapid dropoff in η̃(α1, α2, t) over the window
0.6π ≤ α1 ≤ 0.667π persists from the initial state in which η̃0(α1, α2) does not depend on
α2. Panel (e) shows the exponential decay of Fourier modes with respect to the shell index
s at different times.

Many gridpoints are needed to resolve these rapid variations with spectral accuracy.
Although ξ1(σ), η1(σ) and ϕ1(σ) involve only a few nonzero Fourier modes, conformal
reparametrization via (4.45) vastly increases the Fourier content of the initial condition.
We used M � 6144 gridpoints to evolve the periodic auxiliary problem of Figure 4.9 from
t � 0 to t � 0.3 using the 8th order Runge-Kutta method of Dormand and Prince [44]
with stepsize ∆t � 2.08333 × 10−5. We then switched to M � 12288 gridpoints to evolve
from t � 0.3 to t � 0.45 with ∆t � 7.5 × 10−6. In the reverse direction, we used M � 4096
gridpoints to evolve from t � 0 to t � −0.45with∆t � −4.6875×10−5. Studying the Fourier
modes in panel (d) of Figure 4.9, it appears that 4096 gridpoints (2048modes) are sufficient
to maintain double-precision accuracy forward or backward in time to t � ±0.225. Using
this as a guideline for the quasi-periodic calculation, we evolved (2.78) on a 4096 × 4096
spatial grid using the 8th order explicit Runge-Kutta method described in Section 4.1.1.1.
The calculation involved 5400 time steps from t � 0 to t � T � 0.225, which took 2.5 days
on 12 threads running on a server with two 3.0 GHz Intel Xeon Gold 6136 processors.
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Additional threads had little effect on the running time as the FFT calculations require a
lot of data movement relative to the number of floating point operations involved.

Panel (e) of Figure 4.11 shows the `2 average of the Fourier mode amplitudes |η̂ j1 , j2 | in
each shell of indices satisfying max(| j1 |, | j2 |) � s for 1 ≤ s ≤ 2048. Since η̂− j1 ,− j2 � η̂ j1 , j2 , we
can discard half the modes and sweep through the lattice along straight lines from (0, s)
to (s , s) to (s ,−s) to (1,−s), which sweeps out 4s index pairs. (The same ordering is used
to enumerate the unknowns in the nonlinear least squares method proposed in [83] to
compute quasi-periodic traveling water waves.) We see in panel (e) that as time increases,
the modes continue to decay at an exponential rate with respect to s, but the decay rate
is slower at later times. The rapid dropoff in the mode amplitudes for s ≥ 1536 is due to
the Fourier filter. At the final time t � T � 0.225, the modes still decay by 12 orders of
magnitude from s � 1 to s � 1536, so we believe the solution is correct to 10–12 digits. A
finer grid would be required to maintain this accuracy over longer times. As in Figure 4.9,
the additional drop-off in the amplitude of Fourier modes from s � 1536 to s � 2048 in
panel (e) is due applying the filter (4.36) to the solution after every timestep.

Beyond monitoring the decay of Fourier modes, as an additional check of accuracy,
we compute the average energy, mass and momentum of the solution of Figure 4.11 as a
function of time. The results are shown in Table 4.1. The formulas for Ẽ, M̃ and P̃ are
given in Section 2.2.5. In the table below, we report the values of the above three quantities
divided by (2π)2; this scaling has the advantage that Ẽ, M̃ and P̃ do not suddenly jump by
a factor of 2πwhen periodic functions are viewed as quasi-periodic functions that depend
on α1 only.

The numerical results in Table 4.1 show that energy is conserved to a relative error of
1.5×10−13/0.0975 � 1.5×10−12; mass is conserved to a relative error of 3.3×10−13/0.0464 �

7.1×10−12; and momentum is conserved to an absolute error of 4.6×10−15 over the course
of the numerical computation of Figure 4.11. This gives further evidence that η̃ and ϕ̃ are
accurate to 10–12 digits. The mass being negative is an artifact of the choice of ξ1(σ) and
η1(σ) in (4.44). While η1(σ) has zeromean as a function of σ, its average value with respect
to x is (2π)−1

∫ 2π
0 η1(σ)ξ′1(σ) dσ � −(3π/40)(√5 − 1) � −0.04635254915624. If we had

added a constant to η̃ to make M zero initially, it would have remained zero up numerical
errors, similar to Px , which is initially zero since η̃ and ϕ̃ in (4.47) are independent of α2
except for the factor of cos(α2 − q). The constant value of the energy would also change if
a constant were added to η̃.

The rationale for setting q � 0.6kπ in (4.47) is that cos(α2−q) ≈ 1where the characteristic
line (α, kα) crosses the dropoff in the torus near α1 � 0.6π for the first time. Locally,
ϕ0(α) � ϕ̃0(α, kα) is close to ϕ2(α), the initial condition of the auxiliary periodic problem,
so we expect the quasi-periodic wave to evolve similarly to the periodic wave near x � π
for a short time. (Here z � x + i y describes physical space). This is indeed what happens,
which may be seen by comparing panel (b) of Figure 4.9 to panel (b) of Figure 4.10,
keeping in mind that t ∈ [−0.45, 0.45] in the former plot and t ∈ [0, 0.225] in the latter
plot. Advancing α from 0.6π to 10.6π causes the characteristic line (α, kα) to cross a
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t Ẽ/(2π)2 M̃/(2π)2 P̃/(2π)2
0.000 0.09750133157054 −0.04635254915643 1.19 × 10−15

0.025 0.09750133157057 −0.04635254915623 −2.98 × 10−15

0.050 0.09750133157058 −0.04635254915621 −1.24 × 10−15

0.075 0.09750133157057 −0.04635254915619 1.15 × 10−15

0.100 0.09750133157059 −0.04635254915617 0.43 × 10−15

0.125 0.09750133157060 −0.04635254915616 0.34 × 10−15

0.150 0.09750133157062 −0.04635254915614 4.59 × 10−15

0.175 0.09750133157063 −0.04635254915613 1.35 × 10−15

0.200 0.09750133157064 −0.04635254915611 −2.18 × 10−15

0.225 0.09750133157069 −0.04635254915610 −2.10 × 10−15

Table 4.1: Average energy, mass and momentum of the overturning wave example of
Figure 4.11 at the times indicated.

periodic image of the dropoff at α2 � 10.6kπ, where cos(α2 − q) � −0.9752 ≈ −1. Locally,
ϕ0(α) is close to −ϕ2(α), the initial condition of the time-reversed auxiliary periodic
problem. Thus, we expect the quasi-periodic wave to evolve similarly to the time-reversed
periodic wave near x � 11π. (Recall that ξ0(0.634185π) � π, so ξ0(10.634185π) � 11π).
Comparing panel (b) of Figure 4.9 to panel (d) of Figure 4.10 confirms that this does indeed
happen. At most wave peaks, the velocity potential of the quasi-periodic solution is not
closely related to that of the periodic auxiliary problem since the cosine factor is not near
a relative maximum or minimum, where it is flat. As a result, the wave peaks of the
quasi-periodic solution evolve in many different ways as α varies over the real line.
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Chapter 5

Conclusion

In this thesis, we have formulated the two-dimensional, infinite depth gravity-capillary
wave problem in a spatially quasi-periodic, conformal mapping framework. We have
developed numerical methods for solving the quasi-periodic initial value problem as well
as the traveling wave problem and presented a numerical study of the solutions that are
of two quasi-periods.

We developed two time-stepping strategies for solving the quasi-periodic initial value
problem, an explicit Runge-Kutta method and an exponential time differencing scheme.
We numerically verified a result in [83] that quasi-periodic traveling waves evolve in
time on the torus T2 in the direction (1, k) without changing form, though their speed
is non-uniform in conformal space if the condition ξ̃(0, 0, t) � 0 is imposed via (2.80).
We then performed a convergence study to demonstrate the effectiveness of the small-
scale decomposition at removing stiffness from the evolution equations when the surface
tension is large. Finally, we presented the results of a large-scale computation of a spatially
quasi-periodic overturning water wave for which the wave peaks exhibit a wide array of
dynamic behavior.

We have formulated the quasi-periodic traveling wave problem as a nonlinear least
squares problem and adapted a variant of the Levenberg-Marquardt method introduced
in [82] to compute the solutions. We have numerically demonstrated the existence of
quasi-periodic traveling solutions of two types: solutions that bifurcate from the zero
solution and solutions that bifurcate from finite-amplitude periodic traveling solutions.
For the first type, the solutions are parametrized by two bifurcation parameters η̂1,0 and
η̂0,1, which are fixed while τ, c and the other Fourier coefficients η̂ j1 , j2 are varied to search
for solutions. We computed the asymptotic expansions of these solutions; the convergence
of these expansions is still unknown. For the second type, we applied a Fourier-Bloch
decomposition to study the linearization of (3.8) around periodic traveling solutions. We
used the zero eigenvector of the linearization as the bifurcation direction to jump from
the primary branch of periodic solutions to the quasi-periodic bifurcation branch. As
an example, we computed large-amplitude overturning quasi-periodic traveling solutions
that bifurcate from a overturning periodic solution.
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Appendix A

Properties of Spatially Quasi-Periodic
Solutions

A.1 Quasi-Periodic Families of Solutions
In this appendix we explore the effect of introducing phases in the reconstruction of

one-dimensional quasi-periodic solutions of (2.78) from solutions of the torus version of
these equations. This ultimately makes it possible to show that if all the solutions in the
family are single-valued and have no vertical tangent lines, the corresponding solutions
of the original graph-based formulation (2.15)–(2.18) of the Euler equations are quasi-
periodic in physical space.

Theorem A.1.1 The solution pair (ζ̃, ϕ̃) on the torus represents an infinite family of quasi-periodic
solutions on R given by

ζ(α, t ; θ1, θ2, δ) � α + δ + ζ̃(θ1 + α, θ2 + kα, t),
ϕ(α, t ; θ1, θ2) � ϕ̃(θ1 + α, θ2 + kα, t),

(
α ∈ R, t ≥ 0
θ1, θ2, δ ∈ R

)
. (A.1)

Proof: We claim that by solving (2.78) throughout T2, any one-dimensional (1D) slice of
the form (A.1) will satisfy the kinematic condition (2.71) and the Bernoulli equation (2.77).
Let us freeze θ1, θ2 and δ and drop them from the notation on the left-hand side of (A.1).
Consider substituting η � Im ζ andϕ from (A.1) into (2.78), and let u(α) � ũ(θ1+α, θ2+kα)
represent the input of any α-derivative orHilbert transform in an intermediate calculation.
Both η and ϕ are of this form. By Definition 2.2.3, H[u](α) � H[ũ](θ1 + α, θ2 + kα), and
clearly u′(α) � [(∂α1 + k∂α2)ũ](θ1 + α, θ2 + kα), so the output retains this form. We
conclude that computing (2.78) on the torus gives the same results for η̃t and ϕ̃t when
evaluated at (θ1 + α, θ2 + kα) as the 1D calculations of ηt and ϕt when evaluated at α.
Since ξ̃(·, t) � x0(t) + H[η̃(·, t)] on T2,

ξ(α, t) � α + δ + x0(t) + H[η(·, t)](α), (A.2)
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which follows from (A.1) and H[η(·, t)](α) � H[η̃(·, t)](θ1 + α, θ2 + kα). Thus, computing
ξα � 1+H[ηα] in (2.78) gives the same result as just differentiating ξ from (A.1) and (A.2).
In the 1D problem, the right-hand side of (2.74) represents complex multiplication of zα
with a bounded analytic function (namely zt/zα) whose imaginary part equals −χ on the
real axis; thus, in (2.74), ξt differs from H[ηt] by a constant. This constant is determined by
comparing ξt in (2.74)with ξt from (A.2), which leads to the same formula (2.75) for dx0/dt
that is used in the torus calculation. Here we note that a phase shift does not affect the
mean of a periodic function on the torus, i.e. P0[Sθ ũ] � P0[ũ]where Sθ[ũ](α) � ũ(α + θ).
We have assumed that in the 1D calculation, C1 is chosen to agree with that of the torus
calculation. Since C1 only affects the tangential velocity of the interface parametrization, it
can be specified arbitrarily. Left-multiplying (2.74) by (−ηα , ξα) eliminates C1 and yields
the kinematic condition (2.71). Since the Bernoulli equation (2.77) holds on the torus, it
also holds in the 1D calculation, as claimed. �

For each solution in the family (A.1), there are many others that represent identical
dynamics up to a spatial phase shift or α-reparametrization. Changing δmerely shifts the
solution in physical space. In fact, δ does not appear in the equations of motion (2.74) —
it is only used to reconstruct the curve via (A.2). The relations

ζ(α + α0, t ; θ1, θ2, δ) � ζ(α, t ; θ1 + α0, θ2 + kα0, δ + α0),
ϕ(α + α0, t ; θ1, θ2) � ϕ(α, t ; θ1 + α0, θ2 + kα0), (A.3)

show that shifting α by α0 leads to another solution already in the family. This shift
reparametrizes the curve but has no effect on its evolution in physical space. If we
identify two solutions that differ only by a spatial phase shift or α-reparametrization, the
parameters (θ1, θ2, δ) become identified with (0, θ2 − kθ1, 0). Every solution is therefore
equivalent to one of the form

ζ(α, t ; 0, θ, 0) � α + ζ̃(α, θ + kα, t),
ϕ(α, t ; 0, θ) � ϕ̃(α, θ + kα, t) α ∈ R , t ≥ 0 , θ ∈ [0, 2π). (A.4)

Within this smaller family, two values of θ lead to equivalent solutions if they differ by
2π(n1k + n2) for some integers n1 and n2. This equivalence is due to solutions “wrapping
around” the torus with a spatial shift,

ζ(α+ 2πn1, t ; 0, θ, 0) � ζ(α, t ; 0, θ+ 2π(n1k + n2), 2πn1), �
α ∈ [0, 2π), n1 ∈ Z

�
. (A.5)

Here n2 is chosen so that 0 ≤
�
θ + 2π(n1k + n2)� < 2π and we used periodicity of

ζ(α, t ; θ1, θ2, δ) with respect to θ1 and θ2. It usually suffices to restrict attention to
α ∈ [0, 2π) by making use of (A.5). One exception is determining whether the curve
self-intersects. In that case it is more natural to tile the plane with periodic copies of the
torus and consider the straight line parametrization of (A.4). Indeed, it is conceivable that

ζ(α, t; 0, θ, 0) � ζ(β, t; 0, θ, 0) (A.6)
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with |α − β| as large as 2M, where M is a bound on |ζ̃| over T2, and the condition (A.6)
becomes hard to understand if (A.5) is used to map α and β back to [0, 2π) with different
choices of n1 or n2.

We now show that ηphys(x , t ; θ1, θ2, δ) and ϕphys(x , t ; θ1, θ2, δ) can be defined and
computed easily from ζ(α, t ; θ1, θ2, δ) and ϕ(α, t ; θ1, θ2) if all of the waves in the family
(A.4) are single-valued and have no vertical tangent lines, and that ηphys and ϕphys are
quasi-periodic functions of x. To simplify notation, let α � (α1, α2), x � (x1, x2) and
k � (1, k).
Theorem A.1.2 Fix t ≥ 0 and suppose ξα(α, t ; 0, θ, 0) > 0 for all (α, θ) ∈ [0, 2π) × [0, 2π).
Then the equation

A(x , t) + ξ̃�
x + kA(x , t) , t

�
� 0, (A.7)

defines a unique function A(x1, x2, t) on T2 that is periodic and real analytic in x1 and x2. The
inverse of the change of variables x � α + kξ̃(α, t) on T2 is given by

α � x + kA(x , t). (A.8)

Proof: First we check that if A satisfies (A.7), then (A.8) is the inverse of the change of
variables x � α + kξ̃(α, t). Given x ∈ T2, define α by (A.8). Then

α + kξ̃(α, t) � �
x + kA(x , t)� − kA(x , t) � x , (A.9)

as required. Next we show existence and uniqueness of a solution A of (A.7) under the
assumed hypotheses. Given α � (α1, α2) ∈ T2, the definition (A.1) gives

ξα(α1, t ; 0, α2 − kα1, 0) � 1 + [∂α1 + k∂α2]ξ̃(α1, α2, t), (A.10)

where the left-hand side means (d/dα)�α�α1
ξ(α, t ; 0, α2 − kα1, 0). We know the right-

hand side is periodic and continuous on T2 while the left-hand is positive on the primitive
cell {(α1, α2) : 0 ≤ α1 < 2π , kα1 ≤ α2 < kα1 + 2π}. Therefore, both sides of (A.10)
are bounded below by some ε(t) > 0 that does not depend on α ∈ T2. Let M(t) be
a bound on |ξ̃(α, t)| over T2. Then for fixed x ∈ R2 (with t also fixed), the function
g(α) � g(α; x , t) � α+ξ̃(x+kα, t) is strictlymonotonically increasing onR (as g′(α) ≥ ε(t))
and satisfies g(−M(t)) ≤ 0 and g(M(t)) ≥ 0. Thus, we can define A(x , t) as the unique
solution of g(α) � 0. It follows that |A(x , t)| ≤ M(t). If n1 and n2 are integers, replacing
x in (A.7) by y � (y1, y2) � (x1 + 2πn1, x2 + 2πn2) and using periodicity of ξ̃(α, t) gives

A(y , t) + ξ̃�
x + kA(y , t), t�

� 0. (A.11)

Since the solution of this equation is unique, A(y , t) � A(x , t). This shows that A(x , t)
is periodic in x, and hence well-defined on T2. It is also real analytic, which follows from
the implicit function theorem, noting that g(α; x1, x2, t) is real analytic in α, x1 and x2 for
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fixed t and ∂g/∂α is never zero. For the same reason,A(x , t)will depend as smoothly on
t as ξ̃(α, t) does. �

The change of variables (A.8) allows us transform the torus functions ξ̃, η̃ and ϕ̃ in
conformal space to physical space

η̃phys(x , t) � η̃(x + kA(x , t), t),
ϕ̃phys(x , t) � ϕ̃(x + kA(x , t), t),

η̃(α, t) � η̃phys(α + kξ̃(α, t), t),
ϕ̃(α, t) � ϕ̃phys(α + kξ̃(α, t), t). (A.12)

We then write θ � (θ1, θ2) and define the quasi-periodic slices

ηphys(x , t ; θ, δ) � η̃phys�θ + k(x − δ) , t
�
,

ϕphys(x , t ; θ, δ) � ϕ̃phys�θ + k(x − δ) , t
�
,

(A.13)

which express ζ(α, t ; θ, δ) as a graph and ϕ(α, t ; θ) as a function of x:

η(α, t ; θ, δ) � η̃(θ + kα, t)
� η̃phys

�
θ + kα + kξ̃(θ + kα, t), t

�
(A.14)

� η̃phys
�
θ + k(ξ(α) − δ), t

�
� ηphys

�
ξ(α), t ; θ, δ

�
,

ϕ(α, t ; θ) � ϕ̃phys(θ + k(ξ(α) − δ), t) � ϕphys�ξ(α), t ; θ, δ
�
, (A.15)

where ξ(α) � ξ(α, t ; θ, δ) � α + δ + ξ̃(θ + kα, t). These equations confirm (2.60) and
(2.65), which are the assumptions connecting solutions of (2.15) to those of (2.78). Thus,
ηphys(x , t ; θ, δ) and ϕphys(x , t ; θ, δ) are solutions of (2.15), the graph-based formulation
of the water wave equations. In the right-hand sides of (A.14) and (A.15), we can compute
the α such that ξ(α) � x as follows:

ξ(α, t ; θ, δ) � x ⇔ α + δ + ξ̃(θ + kα, t) � x

⇔ (θ + kα) + kξ̃(θ + kα, t) � [θ + k(x − δ)]
⇔ (θ + kα) � [θ + k(x − δ)] + kA

�
θ + k(x − δ), t�

⇔ α � (x − δ) +A(θ + k(x − δ), t),
(A.16)

where we used (A.8) with α � θ + kα and x � θ + k(x − δ) to obtain the third line from
the second.

A.2 Dynamics of Traveling Waves in Conformal Space
In this section we study the dynamics of quasi-periodic traveling waves under the

evolution equations (2.78) for various choices of C1. We show that the waves maintain
a permanent form but generally travel at a non-uniform speed in conformal space. We
start by showing that there is a choice of C1 for which η and ϕ remain stationary in time.
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We then show how C1 changes when the waves are phase shifted by α0(t), and how to
determine α0(t) so that C1 takes the value in (2.80). The evolution of the torus version of
(3.5) under (2.78) is also worked out.

We will need the following theorem and corollary, proved in [84]:

Theorem A.2.1 Suppose ε > 0 and z(w) is analytic on the half-plane C−ε � {w : Im w < ε}.
Suppose there is a constant M > 0 such that |z(w) − w | ≤ M for w ∈ C−ε , and that the restriction
ζ � z |R is injective. Then the curve ζ(α) separates the complex plane into two regions, and z(w)
is an analytic isomorphism of the lower half-plane onto the region below the curve ζ(α).
Corollary A.2.2 Suppose k > 0 is irrational, η̃(α1, α2) � ∑

( j1 , j2)∈Z2 η̂ j1 , j2 e i( j1α1+ j2α2), and there
exist constants C and ε > 0 such that

η̂− j1 ,− j2 � η̂ j1 , j2 ,
�
η̂ j1 , j2

�
≤ Ce−3εK max(| j1 |,| j2 |), ( j1, j2) ∈ Z2, (A.17)

where K � max(k , 1). Let x0 be real and define ξ̃ � x0 + H[η̃], ζ̃ � ξ̃ + i η̃ and

z̃(α1, α2, β) � x0 + i η̂0,0 +
∑

j1+ j2k<0

2i η̂ j1 , j2 e−( j1+ j2k)βe i( j1α1+ j2α2), (β < ε), (A.18)

where the sum is over all integer pairs ( j1, j2) satisfying the inequality. Suppose also that for each
fixed θ ∈ [0, 2π), the function α 7→ ζ(α; θ) � α + ζ̃(α, θ + kα) is injective from R to C and
ζα(α; θ) , 0 for α ∈ R. Then for each θ ∈ R, the curve ζ(α; θ) separates the complex plane into
two regions and

z(α + iβ; θ) � (α + iβ) + z̃(α, θ + kα, β), (β < ε) (A.19)

is an analytic isomorphism of the lower half-plane onto the region below ζ(α; θ). Moreover, there
is a constant δ > 0 such that |zw(w; θ)| ≥ δ for Im w ≤ 0 and θ ∈ R.

We now prove a theorem and two corollaries that describe the dynamics of traveling
waves in conformal space under the evolution equations (2.78) for various choices of C1.

Theorem A.2.3 Suppose η̃0(α1, α2) satisfies the torus version of (3.5) as well as the assumptions
inCorollaryA.2.2. Define ξ̃0 � H[η̃0], ζ̃0 � ξ̃0+i η̃0 and ϕ̃0 � cξ̃0. Let η0(α; θ) � η̃0(α, θ+kα),
ϕ0(α; θ) � ϕ̃0(α, θ+ kα), ξ0(α; θ) � α+ ξ̃0(α, θ+ kα) and ζ0 � ξ0+ iη0. Suppose that for each
θ ∈ [0, 2π), α 7→ ζ0(α; θ) is injective, i.e. none of the curves in the family (A.1) self-intersect.
Then for each θ ∈ R,

ζ(α, t; θ) � ζ0(α; θ) + ct , ϕ(α, t; θ) � ϕ0(α; θ) (A.20)

satisfy (2.78) with C1 � cP0[ξα/J].
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Proof: Wehave assumed the initial reconstruction of ξ from η yields ξ(α, 0; θ) � ξ0(α; θ),
so x0(0) � 0 in (2.62). We need to show that ηt � 0, ϕt � 0 and dx0/dt � c in (2.78), from
which it follows that ξ(α, t; θ) � ξ0(α; θ) + ct. Since ξ̃0 � H[η̃0] and none of the curves
in the family (A.3) self-intersect, Theorem A.2.1 and Corollary A.2.2 above show that the
holomorphic extension from ζ0(α; θ) to z0(w; θ) is an analytic isomorphism of the lower
half-plane to the fluid region, and 1/|z0,w | is uniformly bounded. In (2.78), we define
ξα � 1 + H[ηα], ψ � −H[ϕ], J � ξ2

α + η2
α and χ � ψα/J. This formula for ξα gives

the same result as differentiating ξ(α, t; θ) in (A.20) with respect to α. From ϕ̃0 � cξ̃0
and η̂0,0 � 0, we have χ � cηα/J. The extension of ζ(α, t; θ) to the lower half-plane is
z(w , t; θ) � [z0(w; θ)+ ct]. We have not yet established that ζ(α, t; θ) solves (2.78), but we
know zt/zw is bounded in the lower half-plane, so there is a C1 such that(

−Hχ + C1
−χ

)
�

1
J

(
ξα ηα
−ηα ξα

) (
c
0

)
, (A.21)

where the right-hand side represents complex division of zt by zα. Since P0Hχ � 0, we
learn from (A.21) that C1 � cP0[ξα/J]. But ξt and ηt in (2.74) are obtained by multiplying
(A.21) by [ξα ,−ηα; ηα , ξα], which gives ξt � c, ηt � 0. Equation (2.75) is then dx0/dt �

P0[ξt] � c. Finally, using χ � cηα/J, Hχ � C1 − cξα/J, ϕα � c(ξα − 1) and ψα � cηα in
(2.78) gives

ϕt � P
[ψ2

α − ϕ
2
α

2J
− ϕαH[χ] + C1ϕα − gη + τκ

]

� P
[ c2η2

α − c2(ξ2
α − 2ξα + 1)

2J
+ c

c(ξα − 1)ξα
J

− gη + τκ
]

� P
[ c2

2J

(
J − 1

)
− gη + τκ

]
� P

[
−

c2

2J
− gη + τκ

]
� 0,

(A.22)

where we used (3.5) in the last step. �

Corollary A.2.4 Suppose ζ̃0(α1, α2), ϕ̃0(α1, α2), ζ0(α; θ) and ϕ0(α; θ) satisfy the hypotheses
of Theorem A.2.3 and α0(t) is any continuously differentiable, real-valued function. Then

ζ(α, t; θ) � ζ0(α − α0(t); θ) + ct , ϕ(α, t; θ) � ϕ0(α − α0(t); θ) (A.23)

are solutions of (2.78) with C1 � cP0[ξα/J] − α′0(t). The corresponding solutions of the torus
version of (2.78) for this choice of C1 are

ζ̃(α1, α2, t) � ζ̃0
�
α1 − α0(t), α2 − kα0(t)� + ct − α0(t),

ϕ̃(α1, α2, t) � ϕ̃0
�
α1 − α0(t), α2 − kα0(t)�. (A.24)
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Proof: Since ∂α and H commute with α-translations, substitution of η0(α − α0(t); θ) and
ϕ0(α − α0(t); θ) in the right-hand sides of (2.78) without changing C1 would still lead to
ηt � 0, ϕt � 0 and dx0/dt � c, and (2.74) would still give ξt � c. Including −α′0(t) in C1
leads instead to ηt � −α′0(t)ηα and ϕt � −α′0(t)ϕα in (2.78) and ξt � c − α′0(t)ξα in (2.74),
which are satisfied by (A.23). It also leads to dx0/dt � [c − α′0(t)] in (2.75), which keeps
the reconstruction of ξ from η via (2.62) consistent with the evolution equation for ξt .

The functions in (A.23) and (A.24) are related by

ζ(α, t; θ) � α + ζ̃(α, θ + kα, t), ϕ(α, t; θ) � ϕ̃(α, θ + kα, t). (A.25)

Applying the 1d version of (2.78) to (A.25) is equivalent to applying the torus version of
(2.78) to (A.24) and evaluating at (α, θ + kα, t). Since (A.23) satisfies the 1d version of
(2.78) and every point (α1, α2) ∈ T2 can be written as (α, θ + kα) for some α and θ, (A.24)
satisfies the torus version of (2.78). �

Corollary A.2.5 Suppose ζ̃0(α1, α2), ϕ̃0(α1, α2), ζ0(α; θ) and ϕ0(α; θ) satisfy the hypotheses
of Theorem A.2.3 and ξ0,α(α; θ) > 0 for α ∈ [0, 2π) and θ ∈ [0, 2π). Then if C1 is chosen as in
(2.80) to maintain ξ̃(0, 0, t) � 0, the solution of the torus version of (2.78) with initial conditions

ζ̃(α1, α2, 0) � ζ̃0(α1, α2), ϕ̃(α1, α2, 0) � ϕ̃0(α1, α2) (A.26)

has the form (A.24) with
α0(t) � ct −A0(−ct ,−kct), (A.27)

whereA0(x1, x2) is defined implicitly by

A0(x1, x2) + ξ̃0
�
x1 +A0(x1, x2) , x2 + kA0(x1, x2)� � 0, (x1, x2) ∈ T2. (A.28)

Proof: The assumption that ξ0,α(α; θ) > 0 ensures that all thewaves in the family ζ0(α; θ)
are single-valued and have no vertical tangent lines. Under these hypotheses, it is proved
in Theorem A.1.2 that there is a unique functionA0(x1, x2) satisfying (A.28) and that it is
real analytic and periodic. We seek a solution of the form (A.24) satisfying ξ̃(0, 0, t) � 0,

ξ̃(0, 0, t) � ξ̃0(−α0(t),−kα0(t)) + ct − α0(t)
� [ct − α0(t)] + ξ̃0

�
− ct + [ct − α0(t)],−kct + k[ct − α0(t)]� � 0.

(A.29)

Comparing with (A.28), we find that [ct − α0(t)] � A0(−ct ,−kct), which is (A.27). Since
η̃0(α1, α2) is even, ξ̃0 � H[η̃0] is odd and A0(0, 0) � 0. Thus, α0(0) � 0 and the initial
conditions (A.26) are satisfied. Since ξ(0, 0, t) � 0, C1 satisfies (2.80). �
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