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 32 
Abstract 33 

Tropical forest degradation (e.g., anthropogenic disturbances such as selective logging and 34 

fires) alters forest structure and function and influences the forest’s carbon sink. In this study, we 35 

explored structure-function relationships across a variety of degradation levels in the southern 36 

Brazilian Amazon by 1) investigating how forest structural properties vary as a function of 37 

degradation history using airborne lidar data; 2) assessing the effects of degradation on solar-38 

induced chlorophyll fluorescence (SIF) seasonality using TROPOMI data; and 3) quantifying the 39 

contribution of structural variables to SIF using multiple regression models with stepwise selection 40 

of lidar metrics. Forest degradation history was obtained through Landsat time-series 41 

classification. We found that fire, logging, and time since disturbance were major determinants of 42 

forest structure, and that forests affected by fires experienced larger variability in leaf area index 43 

(LAI), canopy height and vertical structure relative to logged and intact forests. Moreover, only 44 

recently burned forests showed significantly depressed SIF during the dry season compared to 45 

intact forests. Canopy height and the vertical distribution of foliage were the best predictors of 46 

SIF. Unexpectedly, we found that wet-season SIF was higher in active regenerating forests (~ 4 47 

years after fires or logging) compared with intact forests, despite lower LAI. Our findings help to 48 

elucidate the mechanisms of carbon accumulation in anthropogenically disturbed tropical forests 49 

and indicate that they can capture large amounts of carbon while recovering. 50 

mailto:rangelpe@oregonstate.edu


Keywords: Amazon, forest degradation, selective logging, forest fires, forest 51 
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1. Introduction  53 

Forest degradation by selective logging, fires and fragmentation affects large regions of the 54 

tropics (Bullock et al. 2020; Souza Jr et al. 2013; Tyukavina et al. 2017). In the Amazon region, 55 

the drivers of forest degradation are part of a complex socio-economic system that includes forest 56 

clearing for pastures and crops, usually preceded by the selective extraction of marketable wood 57 

(Broadbent et al. 2008; Lima et al. 2012; Moran 1993). Fire is used extensively for forest clearing 58 

and the maintenance of pastures (Aragão et al. 2014; Cochrane 2003). Fires frequently penetrate 59 

managed and unmanaged forests so that within the Amazon annually region large areas of forest 60 

burn, especially during drought years (Morton et al. 2013). 61 

Forest degradation leads to changes in forest composition, carbon stocks, and forest 62 

functions. Logging, fragmentation, and fires promote crown damage and tree mortality resulting 63 

in persistent alterations to gap-phase dynamics, potentially leading to species composition shifts 64 

toward early-successional, light-demanding species over time (Ordway and Asner 2020). Carbon 65 

stocks in degraded forests are highly variable at the local scale, with lightly disturbed forests (e.g., 66 

reduced‐impact logging) storing as much carbon as intact forests, while forests impacted by 67 

multiple fires may lose most of their original carbon stocks (Berenguer et al. 2014; Longo et al. 68 

2016; Rappaport et al. 2018; Silva et al. 2018). Productivity may decline when forests are damaged 69 

but may even exceed old-growth forest productivity when forests do not experience further 70 

disturbances (Odum 1969). Shifts in degraded forest productivity are driven by changes to forest 71 

structure and species composition resulting from increased plant community turnover, disrupted 72 

seedling recruitment patterns, and altered nutrient cycling (Bomfim et al. 2020; Dantas de Paula 73 



et al. 2015; Prestes et al. 2020; Silva et al. 2018). Water cycling can also be affected by forest 74 

degradation. Brief disturbance in evapotranspiration (ET) has been measured in selectively logged 75 

forest (Miller et al., 2011). In contrast, ET declined significantly for 3 years after fires and took 7-76 

8 years to recover fully, according to flux tower estimates from the Southern Amazon (Brando et 77 

al. 2019).  78 

Forest degradation has also been recognized as a major driver of forest structure changes 79 

worldwide. In tropical forests, forest degradation affects live and dead biomass distribution (Longo 80 

et al. 2016; Rappaport et al. 2018; Scaranello et al. 2019), the vertical distribution of foliage 81 

(Brando et al. 2019; Rangel Pinagé et al. 2019), and canopy gap distribution (Rangel Pinagé et al. 82 

2019; Vaughn et al. 2015). Lidar data can capture both the vertical and horizontal dimensions of 83 

forest structure (Drake et al. 2002; Lefsky et al. 2002), hence, it offers an excellent tool to 84 

investigate structural changes from degradation processes such as selective logging and fires. 85 

Multilayered, heterogeneously arranged canopies contain a complement of sun and shade 86 

leaves functioning optimally under a range of light conditions (Gough et al. 2019). Within 87 

temperate intact forests, widespread positive relationships between canopy structural complexity 88 

and production were found, suggesting underlying mechanisms of improved canopy light 89 

absorption and light-use efficiency (Atkins et al. 2018; Gough et al. 2019; Hardiman et al. 2011). 90 

In the Amazon, recent studies have suggested an important role of canopy structural arrangement 91 

on phenology (Smith et al. 2019; Tang and Dubayah 2017), but how canopy structural complexity 92 

affects the functioning of tropical forests is still a largely uncharted territory. Forest degradation 93 

can both enhance or reduce structural complexity (e.g., gaps caused by the removal of large canopy 94 

trees increase canopy height variability, or on the other hand, intensive forest fires cause 95 

widespread tree mortality and stimulate the regrowth of a uniform understory). Further 96 



investigation is needed to clarify the structure-function linkages controlling forest productivity, 97 

especially considering the high diversity of species, functional and forest types, as well as 98 

disturbance and recovery pathways of tropical forests. 99 

Solar-induced chlorophyll fluorescence (SIF), the natural emission of photons from the light-100 

harvesting structures of plants (Zuromski et al. 2018), is a biophysical consequence of light 101 

absorption. SIF may show linear (Sun et al. 2018) or non-linear (Kim et al. 2021) correlation to 102 

photosynthesis, depending on many factors such as vegetation type, light regime, averaging period 103 

of observations, and plant physiological status. Empirical evidence suggests that SIF is sensitive 104 

to canopy properties such as chlorophyll content, leaf area index (LAI) and leaf angle distributions 105 

(Koffi et al. 2015; Verrelst et al. 2015). SIF also reflects dynamic photosynthetic responses to heat 106 

and water stress (Parazoo et al. 2014).  107 

Until recently, estimation of vegetation productivity from space depended on estimates based 108 

on vegetation near-infrared reflectance. SIF appears promising as a physiologically meaningful 109 

proxy to photosynthesis at the canopy scale and may be able to capture differences in 110 

photosynthesis between intact forests and forests regenerating from anthropogenic or natural 111 

disturbances. Another key advantage of SIF is that it is not as much affected by atmospheric 112 

scattering due to aerosols and cloud cover (Sun et al. 2018) as traditional vegetation indices such 113 

as the Normalized Difference Vegetation Index (NDVI, Rouse Jr et al. 1974) and Enhanced 114 

Vegetation Index (EVI, Huete et al. 2002), an aspect that gains even more relevance in the tropics. 115 

However, there are many complications of interpreting SIF in complex canopies and illumination 116 

conditions such as those found in tropical forests. Recent advances in SIF retrieval techniques and 117 

satellite sensors such as the Global Ozone Monitoring Experiment–2 (GOME-2), the Orbiting 118 

Carbon Observatory-2 (OCO-2) and the TROPOspheric Monitoring Instrument (TROPOMI) have 119 



enabled remote sensing of SIF in unprecedented spatial and temporal scales (Köhler et al. 2018a). 120 

TROPOMI SIF data in particular, despite having a coarse spatial resolution (~5.5 km) in relation 121 

to the scale of forest disturbances in the Amazon, have fine temporal resolution that allows tracking 122 

rapid vegetation changes.  123 

In this study, we use a novel combination of airborne lidar and spaceborne SIF data to 124 

investigate solar-induced fluorescence emissions and forest structure variability in intact and 125 

degraded forests, also taking into consideration the time since last disturbance events. We address 126 

the following questions: 1) How does forest structure change as a function of disturbance history? 127 

2) How does the disturbance history affect SIF emissions and their seasonal patterns? 3) How are 128 

forest structural attributes related to SIF across intact and degraded forests? 129 

2. Materials and methods 130 

2.1 Site description 131 

The study area covers approximately 100,000 km2 at the southern portion of closed-canopy 132 

Amazon forests in the Brazilian state of Mato Grosso (Figure 1) and includes a rectangle around 133 

the municipality of Feliz Natal. The area is fairly homogeneous in regard to topography, soil and 134 

vegetation (Figure S1 of the Supplemental Material) and is covered mostly by ecotonal broadleaf 135 

seasonal forests and agricultural/ pastoral managed lands originally covered by forests (IBGE 136 

2021; MapBiomas Project 2019). A five-month dry season (May to September) accounts for only 137 

6% of mean annual precipitation (Figure 1C), and contributes to the extent, duration, and severity 138 

of understory forest fires in the study region (Alencar et al. 2015; Morton et al. 2013). Decades of 139 

intense land use dynamics have left a mosaic of fragmented and degraded forests in the area, with 140 

the majority of intact forests remaining inside the indigenous reserves (Matricardi et al. 2010; 141 

Rappaport et al. 2018) (Figure 1B).  142 



  143 

Figure 1. Location (A), land cover (B, INPE 2020) and monthly precipitation (C) of the study area. Source of 144 

precipitation data: climate-data.org. 145 

2.2 Remote sensing data  146 

This study leveraged a unique combination of lidar data, TROPOMI observations and land-147 

use history information to investigate forest structure and SIF across a chronosequence of 148 

differently aged sites using a variety of remote sensing data.  Airborne lidar was used to 149 

characterize forest structure, TROPOMI SIF data was used to characterize SIF seasonality, and 150 

land use history was classified with a time-series of Landsat observations. Figure 2 provides a 151 

graphical overview of the major data sources and analysis steps, whereas each data type is 152 

described in a sub-section below. 153 



 154 

Figure 2. Overview of the major analysis steps and data sources. Blue boxes and arrows refer to forest structure, green 155 

boxes and arrows refer to SIF, black boxes and arrows refer to the disturbance history classification, and red boxes 156 

and arrows refer to the integrative analysis of structure and SIF.  157 

2.2.1 Airborne lidar data 158 

The airborne, small footprint lidar data employed in this study were drawn from two projects 159 

that provide lidar databases for research purposes: Sustainable Landscapes (SL) Brazil (dos-Santos 160 

et al. 2019) and Estimativa de Biomassa na Amazônia (EBA, “Biomass Estimates in the 161 

Amazon”). We combined these two complementary datasets to increase sample size over our study 162 

area: The SL sampling was designed to cover a range of degraded forests, whereas EBA adopted 163 

a randomized sampling design that included sampling over intact forests. The acquisition 164 

characteristics differ between the two datasets (Table 1), so we thinned SL data to achieve equal 165 

return density. Because EBA data were collected in 2016 and the SL data were collected in 2018, 166 

we only used intact forest transects from EBA, and assumed the structure of these forests did not 167 

change substantially between 2016 (EBA collection year) and 2018 (focal year of the study).  168 



Table 1. Characteristics of the lidar data acquisitions. 169 

Characteristic SL data EBA data 

Equipment Optech ORION M300 Riegl LMS Q680i 

Acquisition dates April, 2018 Feb/Apr/Jun, 2016 

Flight maximum height  850 m 494 m  

Maximum field of view 15° 15° 

Scanning frequency 40 KHz  300 KHz 

Mean return density per transect 24.89-41.51 points m-2 5.51-6.88 points m-2 

Mean first return density per transect 22.59- 33.02 points m-2 4.53-5.18 points m-2 

Return density after thinning  5 points m-2 5 points m-2 

Original transect size 5 km x 200 m 12.5 km x 300 m 

Percentage of flight line overlap 65% 0% 

 170 

The raw point clouds were pre-processed using the FUSION software (McGaughey 2015) 171 

with the following steps: ground points filtering; creation of the terrain surface model at 1-meter 172 

resolution from the ground points; point clouds normalization to remove terrain height and get 173 

actual height above the ground; standardization of the return density of the point clouds to 5 points 174 

per square meter (EBA data average density); creation of the canopy height models from the 175 

normalized point clouds; and clipping of the point clouds to the spatial extent of the lidar transects 176 

classified according to the disturbance classes.  177 

To estimate structural parameters across our disturbance classes (the disturbance history 178 

classification is described in section 2.2.3), we computed a set of lidar-derived metrics from the 179 

normalized, standardized point clouds. The first set of calculated metrics was the vertical 180 

distribution of Leaf Area Densities (LAD) and total Leaf Area Index (LAI). We estimated the 181 

average LAD by layers using the method proposed by MacArthur and Horn (1969) to estimate 182 

foliage-height profiles, following the equation:  183 



𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1,   𝑖𝑖 =  ln �
𝑆𝑆𝑒𝑒
𝑆𝑆𝑡𝑡
�

1
𝑘𝑘∆𝑧𝑧

  184 

where for each vertical column of voxels, 𝑖𝑖 is a voxel in a sequentially ordered vertical column of 185 

the canopy, 𝑆𝑆𝑒𝑒 is the number of pulses entering the given voxel, 𝑆𝑆𝑡𝑡 is the number of pulses exiting 186 

the same voxel, 𝑘𝑘 is an extinction coefficient, and 𝑧𝑧 represents the height of a voxel. The term 𝑘𝑘 187 

represents a Beer-Lambert Law extinction coefficient, which describes the attenuation of radiation 188 

by a medium or an object. When applied to forest canopies, this coefficient includes a correction 189 

for the non-random distribution and orientation of the foliage and the thickness of the leaf material 190 

and the forest canopy. We followed Stark et al. (2012) and used k = 0.5 (i.e., assumed no clumping 191 

and random orientation of leaves). The voxel’s horizontal resolution was defined as 30 meters and 192 

vertical resolution (or the canopy layer thickness), as 1 meter. Total LAI was calculated as the 193 

vertical integral of the LAD profile. LAD below 4.5 m height were excluded from LAI calculations 194 

because LAD estimates are unreliable at lower heights. As the canopy becomes denser and more 195 

leaves are encountered, the penetration of lidar pulses diminishes, causing sample sizes for 196 

estimating LAD to decrease and error to increase (Kamoske et al. 2019). LAD profiles and total 197 

LAI were estimated using the leafR package (Almeida et al. 2019). 198 

To model structure-SIF relationships, we calculated canopy height and other types of metrics 199 

to be included as predictors of SIF (Table 2). These metrics were calculated using all the points in 200 

the lidar point cloud (i.e., first, second, third and fourth returns were all considered) that are above 201 

the specified height cut-off value (1.5 m), at 100 m grid cell size, to fit within the maximum 200 202 

m width of the SL lidar transects. We examined 23 metrics and categorized them into four broad 203 

structural aspects: canopy height, foliar distribution, horizontal complexity and vertical complexity 204 

(Table 2). Canopy height metrics measure the distribution of lidar returns in the vertical dimension, 205 

with specific sensitivity to canopy openness and roughness at different heights of the forest vertical 206 



profile (Falkowski et al. 2009). Foliar distribution influences light transmittance and absorbance, 207 

and therefore, exerts large control on photosynthesis. Horizontal complexity metrics are based on 208 

the canopy height model (CHM), while vertical complexity is described using the vertical foliage 209 

profile (VFP). CHM-based metrics describe the heterogeneity of the canopy surface, including 210 

ground pixels, i.e., canopy gaps. VFP-based metrics describe the vertical layering of the 211 

reconstructed foliage profile, and weights profile parts in the lower heights to compensate for the 212 

occlusion by high trees (Knapp et al. 2020). It is important to note that this structural categorization 213 

was adopted for the construction of the models, but the metrics can be related to more than one 214 

structural aspect. The metrics used as SIF predictors were computed using the lidR package 215 

(Roussel et al. 2020) in the R statistical environment (R Core Team 2019). 216 

Table 2. Lidar-derived metrics included as predictors of SIF. 217 

Metric Description Structural 
aspect Citation 

Mean Average of return heights mean within the grid cells Canopy 
height   

Sd Average standard deviation of return heights within 
the grid cells 

Canopy 
height   

Skew Average skewness of return heights within the grid 
cells 

Canopy 
height   

Kurt Average kurtosis of return heights within the grid 
cells 

Canopy 
height   

P10 Average 10th percentile of return heights within the 
grid cells 

Canopy 
height   

sdP10 Standard deviation of 10th percentile of return heights 
within the grid cells 

Canopy 
height   

P25 
Average 25th percentile of return heights within the 
grid cells; in the study area, it is an indicator of 
understory density. 

Canopy 
height   

sdP25 Standard deviation of 25th percentile of return heights 
within the grid cells 

Canopy 
height   



P50 Average 50th percentile of return heights within the 
grid cells 

Canopy 
height   

sdP50 Standard deviation of 50th percentile of return heights 
within the grid cells 

Canopy 
height   

P75 Average 75th percentile of return heights within the 
grid cells 

Canopy 
height   

sdP75 Standard deviation of 75th percentile of return heights 
within the grid cells 

Canopy 
height   

P95 
Average 95th percentile of return heights within the 
grid cells; it represents an unbiased measure of top of 
canopy height 

Canopy 
height   

sdP95 Standard deviation of 95th percentile of return heights 
within the grid cells 

Canopy 
height   

LAI Total leaf area index (LAI) above 4.5m Foliar 
distribution   

f_sun Fraction of sunlit leaves, estimated as exp (-k * LAI), 
where k is the coefficient of light extinction 

Foliar 
distribution 

Clark et al. 
(2011) 

sdVFP Standard deviation of vertical foliage profile  Foliar 
distribution 

 

cvVFP Coefficient of variation of vertical foliage profile Foliar 
distribution   

Rumple 
Rumple Index, which indicates the roughness of a 
surface. It is calculated as the ratio between its area 
and its projected area on the ground. 

Horizontal 
complexity 

(Kane et al. 
2010; Parker 

and Russ 
2004)  

CRR 
Canopy relief ratio, a quantitative descriptor of the 
relative shape of the canopy defined as (mean height–
min height) / (max height–min height) 

Horizontal 
complexity 

Parker and 
Russ (2004) 

Gini Gini coefficient of foliage structural diversity Vertical 
complexity 

Valbuena et 
al. (2017) 

Shannon 
Shannon index, applied to quantify the diversity and 
the evenness of the vertical distribution of return 
heights. 

Vertical 
complexity 

Stark et al. 
(2012) 

VCI A fixed normalization of the Shannon Index Vertical 
complexity 

van Ewijk et 
al. (2011) 



 218 

 219 

2.2.2 Solar-induced chlorophyll fluorescence (SIF) data 220 

We used ungridded TROPOMI instantaneous SIF data resampled to a 0.05° x 0.05° spatial 221 

resolution (Köhler et al. 2018a). This dataset is available from November/2017 until the present. 222 

TROPOMI has a wide swath of 2,600 km with daily, near-global coverage, with a 16-days revisit 223 

cycle. The phase angle (the angle between the axes from the sounding to the sun and to 224 

TROPOMI’s sensor) of each sounding varies along the swath. A study from Doughty et al. (2019) 225 

showed that, with a sufficient number of observations from different angles, the effect of phase 226 

angle of observations in SIF seasonal patterns in the Amazon is negligible, hence, we used all 227 

available SIF data, regardless of sun-sensor geometries. SIF retrievals from 18 months from March 228 

2018 to September 2019 were selected before the abnormally active fire season in 2019 (Brando 229 

et al. 2020). TROPOMI observations are pre-filtered to remove soundings that are affected by high 230 

radiance levels due to cloud albedo and that have > 80% of cloud fraction (Köhler et al. 2018a), 231 

as SIF cannot be detected with heavily thick clouds (Frankenberg et al. 2012). We acknowledge a 232 

potential effect of clouds on SIF seasonality, but since our focus is to compare SIF behaviour 233 

across disturbance classes, we adopted a less strict cloud filter to maximize the number of 234 

observations during the wet season. 235 

We employed a multi-step approach to extract SIF seasonal estimates for each disturbance 236 

class. As most of the forest degradation polygons were smaller than one TROPOMI footprint, we 237 

calculated the area proportion for each disturbance class in the resampled grid cell, and after 238 

examining the sample size resulting from a few thresholds (e.g., 100%, 90%, 80%), only included 239 

in the analysis those cells covered by at least 70% of any class. This approach aimed to minimize 240 



pixel mixtures and was adopted as a compromise between pursuing a pure spectral SIF signal and 241 

a sufficient sample size. Nonetheless, it resulted in an unbalanced sample size among classes (refer 242 

to last column of Table 4). Therefore, we took four steps to facilitate comparisons across classes: 243 

a) computation of daily median values across all cells of each disturbance class; b) interpolation 244 

of missing data using linear interpolation; c) smoothing the daily data using Savitzky-Golay (SG) 245 

filter (Savitzky and Golay 1964), to minimize noise in SIF data; and d) averaging daily data to 16 246 

days (TROPOMI’s revisit interval).  247 

2.2.3 Disturbance history classification 248 

To characterize the disturbance history of our study area (2000–2019), we masked out 249 

deforested areas using deforestation data until 2019 (INPE 2020). Subsequently, forest degradation 250 

(logging and fires) on the forest remnants was mapped based on a time-series of Landsat images. 251 

Intact, logged and burned areas were visually identified based on their spatial patterns (Figure S2) 252 

and classified into seven disturbance classes: intact forests (IN), 0-3 years (L1), 4-7 years (L2), 253 

and 8-14 (L3) years after logging, and 0-3 years (B1), 4-7 years (B2), and 8-14 (B3) years after 254 

burning. Details of the disturbance history classification are described in the section 2 of the 255 

Supplemental Material.  256 

Lidar transects were classified into one of the disturbance classes based on the Landsat 257 

disturbance history. To prevent mixed classes, original transects overlapping more than one class 258 

were split accordingly. Transects cut by established roads were also split to exclude the road 259 

portions (even if they covered the same class), and a 100 m buffer was applied in the transect area 260 

to minimize edge effects caused by roads in the lidar estimates. We used the Canopy Height Model 261 

(CHM) of each transect to visually confirm their degradation status in 2018 and adjusted when 262 

necessary. For instance, in the CHM of recently logged forests, one can see roads and canopy gaps, 263 



and in the CHM of burned forests, one can identify a lower and more homogeneous canopy. As 264 

shown in Table 3, every disturbance class considered in this study had at least 30 ha of forests 265 

surveyed by lidar.  266 

Table 3. Disturbance classes of the lidar samples. 267 

Disturbance class Number of transects Mean area (ha) 
Intact (IN) 22 162.1 
0-3 years after logging (L1) 6 34.49 
4-7 years after logging (L2) 14 71.20 
8-14 years after logging (L3) 16 72.97 
0-3 years after fires (B1) 8 45.95 
4-7 years after fires (B2) 9 74.28 
8-14 years after fires (B3) 10 58.41 
Total 85  

 268 

The classification of disturbance classes for SIF data involved areas beyond the lidar 269 

transects, since SIF data is available for the entire study area. In addition to the deforested areas, 270 

we also masked out pioneer vegetation which occupies vast extensions of the Xingu River 271 

floodplains (RADAMBRASIL 1983), as these areas present spectral properties similar to burned 272 

forests. Subsequently, the remaining polygons were split when needed and classified into one of 273 

the disturbance classes, which included intact forests as the control, undisturbed class. Due to the 274 

large footprint of TROPOMI data, we eliminated isolated polygons with area smaller than 50 275 

hectares and merged contiguous polygons within this same area threshold to the largest 276 

neighboring polygon. Polygons that experienced multiple degradation events during the time-277 

series were classified according to the latest event, and polygons completely surrounded by 278 

deforested areas (i.e., in the edges of the study area) were not included in the samples. Some of the 279 

disturbance classes had very few polygons, resulting in uneven sample size among classes (Table 280 

4). 281 



Table 4. Characteristics of SIF samples. 282 

Disturbance class # of 
polygons 

Mean 
area (ha) 

# of TROPOMI 
cells (70%) 

# of TROPOMI 
cells (100%) 

Intact (IN) 85 28,343 611 366 
0-3 years after logging (L1) 118 1,481 7 1 
4-7 years after logging (L2) 94 1,377 4 0 
8-14 years after logging (L3) 145 107,759 250 32 
0-3 years after fires (B1) 162 3,844 81 13 
4-7 years after fires (B2) 74 1,845 9 0 
8-14 years after fires (B3) 270 2,124 51 4 
Total 934       

 283 

2.3 Modelling forest structure and SIF relationships  284 

To model forest structure-SIF relationships, we obtained paired lidar-SIF observations by 285 

analysing the land-use context of each lidar transect and surrounding areas and selecting 286 

homogeneous SIF grid cells overlapping lidar transects, based on the assumption that the selected 287 

transects are representative for the conditions of the entire SIF footprint. Because relatively few 288 

lidar transects are available, and land use mixtures within the SIF footprint are common, we could 289 

not find samples of every disturbance class (Table 4). Instead, we aggregated classes broadly into 290 

three groups (intact, logged and burned forests) discounting time since disturbance. Footprints with 291 

mixed logged and burned areas in their disturbance history were not included. The lidar coverage 292 

area in each SIF cell varied. Figure 3 shows examples of intact, logged and burned forest samples 293 

and the available sample size for each class. 294 



 295 

Figure 3. Example of SIF grid cell selection (intact at green, logged at blue and burned forests at orange inset) 296 

according to pixel mixture and availability of lidar transect. Background images are NBR annual composites from 297 

2019 (main map and intact forest inset), 2016 (logged forest inset) and 2010 (burned forest inset). Lighter areas in the 298 

NBR image represent dense canopy cover, while darker areas represent low or no canopy cover. Degradation by fire 299 

or logging appears in intermediate grey tones. 300 

The response of SIF varies on short time scales and seasonally, in contrast to forest structure 301 

measured by lidar that varies on multi-annual time scales. Therefore, we chose to aggregate SIF in 302 

our investigation of the relation of SIF to forest structure. Through our data exploration, we noticed 303 

that SIF retrievals during the dry season were more stable, likely due to the large number of 304 

available observations so that the average is more robust. We extracted the daily SIF values for 305 

each of the 37-cell samples and calculated the median of those values across the months of April 306 

2018 through June 2018. The SL lidar data was acquired nearly simultaneously in April 2018.  307 



2.4 Statistical analysis 308 

To test for differences in LAI among the disturbance classes, we tested the LAI data for the 309 

normality assumption using the Shapiro-Wilk test, which indicated that although the entire sample 310 

does not follow a normal distribution, the LAI for all the individual disturbance classes met the 311 

assumption (p-value > 0.05). Hence, we performed a multiple pairwise t-test to compare the means 312 

of disturbed classes against the mean of intact forests and reported statistical significance. To 313 

statistically compare the SIF seasonal profiles of intact and disturbed forests, we plotted the SIF 314 

spatio-temporal averages (spatial aggregation of the 0.05° x 0.05° grid cells covered with >70% 315 

by a given disturbance class over the 16-days window), along with their 95% confidence interval. 316 

In addition, we paired the 16-days averaged SIF data of intact and each degraded forest class (so 317 

that each pair represents SIF from the same time but different disturbance class/location) and ran 318 

linear regression models using these pairs for the wet and dry periods separately, to assess how 319 

SIF from degraded forests compared to SIF from intact forests seasonally.  320 

To estimate the contribution of lidar-derived structural variables to SIF variability, we 321 

developed a linear regression model for each structural aspect (e.g., canopy height, foliar 322 

distribution, horizontal complexity, and vertical complexity). We used stepwise selection to 323 

identify the simplest and yet most informative combination of variables (Miller 1984). This 324 

selection method performs multiple iterations by dropping one predictor variable at a time. 325 

The Akaike information criterion (AIC) of the models is computed and the model that yields the 326 

lowest AIC is retained for the next iteration. Given a collection of models for the data, AIC 327 

estimates the quality of each model relative to other possible models, and thus, it provides a means 328 

for model selection (Aho et al. 2014). To address multicollinearity, we excluded highly correlated 329 

variables (r ≥ 0.80) before model selection and confirmed that each predictor in the final models 330 



showed the variance inflation factor (VIF) less than 10. We also fitted regression models with the 331 

structural predictors as fixed effects and disturbance condition (intact, logged or burned) as 332 

conditional effects to test for the presence of interaction between disturbance condition and the 333 

lidar metrics while predicting SIF from structural attributes. Finally, we compared the two pairs of 334 

models (with and without interaction) using Analysis of Variance. Functions stepAIC, vif and 335 

anova from MASS (Venables and Ripley 2002), car (Fox and Weisberg 2019) and stats packages 336 

were used to perform these steps. All statistical tests, analysis and plotting were performed in the 337 

R statistical environment (R Core Team 2019). 338 

3. Results  339 

3.1 Structural properties of intact and degraded forests 340 

The structural properties of degraded forests, estimated using high-density airborne lidar 341 

data, demonstrated greater changes for burned versus logged areas, compared to intact forests (an 342 

example showing eight-hectare samples for each disturbance class is presented in Figure 4). The 343 

most obvious effect of disturbance on forest structure is the decrease of canopy heights of the 344 

disturbance classes, as depicted by the examples in Figure 4.  345 



   346 

Figure 4. Lidar-derived canopy height models and associated density plots of 8-ha sample plots for each disturbance 347 

class. 348 

Logging was associated with a greater frequency of canopy gaps (height < 7 m), but not 349 

overall shorter canopies (Figure 4). Burned areas, especially from B1 and B2 classes, showed 350 

significant decreases in canopy height (with height modes of ~5m, compared to ~20m of logged 351 

and intact forests) and changes in height distributions from unimodal to bimodal due to mortality 352 

of tall trees and subsequent understory development (Figure 4 and Figure 5). Additional height 353 

metrics that describe the vertical structure of the forests (such as height percentiles) were also 354 

affected by disturbance (Figure S3): time since disturbance had a negative effect on lower and 355 

mid-canopy (10th to 75th percentiles) of burned forests but not at the top-of-the canopy (95th 356 

percentile), where B2 class showed lower values than B1. Logged forests did not show consistency 357 

in height percentiles with time since disturbance. Overall, both logging and fire disturbances 358 

introduced more variability in the height metrics (Figure S3). 359 



Leaf area density of forests in Feliz Natal region decreased with height (Figure 5A). Overall, 360 

the vertical foliage profile of logged forests showed the same shape of intact forests’ profiles. 361 

Forests logged 0 to 7 years prior to lidar acquisition showed greater leaf area density (LAD) in the 362 

understory (up to ~ 7m) and lower LAD in the mid-canopy (up to ~ 20 m). The older logging class 363 

overlapped intact forests in much of the vertical profile, with slightly higher leaf area density at 364 

heights above 20 meters. Transects of intact and older logged forests also presented similar LAI 365 

distributions (Figure 5B). 366 

 367 

Figure 5. Panel A: Vertical foliage profile for the disturbance classes. Intact forest's LAD is plotted over logged and 368 

burned forests' plots as a reference. Bands along the lines represent the standard error. Panel B: Distribution of leaf 369 

area index (LAI) above 4.5m for the disturbance classes. The violin plots summarize LAI distributions as a function 370 

of disturbance class and show the kernel probability density of the data at different values. All violins have the same 371 

area. The median of each group is indicated by the white dots. The symbols on the top indicate statistical significance 372 

(p-values, ns = p > 0.05; * = p ≤ 0.05; ** p ≤ 0.01) as computed from the multiple pairwise test against a reference 373 

group (IN, intact forests).  374 



Burned forests showed large vertical variation according to the time since disturbance, and 375 

none of the burned profiles resembled intact forests’ profile (Figure 5A). Forest burned in the last 376 

7 years showed the foliage peaks in the understory (0.75 and 0.6 m2 m-3 at 3 and 7 m for B1 and 377 

B2 classes, respectively), and even the oldest burned class (B3) showed lower foliage density (0.12 378 

m2 m-3) in the mid- to upper canopy layers (> 15m) than intact forests (0.25 m2 m-3). The profiles 379 

of burned forests clearly showed the canopy increasing in height over time. Patterns of light 380 

transmission and absorption through the forest canopy, which are strongly influenced by vertical 381 

leaf area distribution, were also impacted by fires and logging: light transmittance was similar 382 

among intact and logged classes, except for higher levels of light reaching the understory of the 383 

more recent classes, whereas burned forests exhibited different patterns of light transmittance 384 

according to times since disturbance, attaining greater levels of light at lower depths in the canopy 385 

(Figure S4A). Absorption of light had a strong peak around 18m height for intact and logged 386 

forests, whereas areas B1 peaked at ~4m height, B2 peaked at ~8m, and B3 peaked at ~10m height 387 

(Figure S4B).  388 

The total LAI varied dramatically among disturbance classes (Figure 5B), ranging from 0.5 389 

to 6.5 m2 m-2. Burned transects demonstrated consistent LAI recovery with time since disturbance, 390 

with differences between burned and intact forests diminishing with time since fire. On the other 391 

hand, logged areas showed higher LAI than burned forests with L1 and L3 not differing 392 

significantly from intact forests. Even though not significant, L1 still tended to have lower LAI 393 

than intact forests. Taken along with the results for L2, this implies a small but consistent reduction 394 

in LAI with logging even after 7 years of recovery. 395 

3.2 SIF at intact and degraded forests 396 



Seasonal SIF as estimated by TROPOMI observations revealed limited SIF differences 397 

among disturbance classes. The time-series of SIF data showed seasonality, with SIF increasing 398 

towards the end of the dry season (months with precipitation < 100mm) and peaking in the early 399 

wet season, with a two-fold increase in intact forests signal. Regarding the disturbance classes, B1 400 

markedly differed from intact forests, with lower values in the end of the dry season (Figure 6A), 401 

whereas B2 showed higher averages than intact forests after the SIF peak, despite overlapping 402 

confidence intervals (Figure 6B). The other classes seemed to follow the same seasonal pattern 403 

(Figure 6C-F) as intact forests, however, the latter showed a more stable signal, while L1, L2 and 404 

B2 classes showed large variability in the estimates of the 16-days SIF averages, likely due to the 405 

low sample size.  406 

 407 

Figure 6. SIF time-series (daily data averaged to 16-days) for the disturbed classes with intact forests time-series as 408 

reference. The included period is March 1st, 2018, to September 30th, 2019. Beige shades indicate the dry season 409 

(months with <100mm precipitation) in the study area. Lines represent the median value of the 16-days average. The 410 

bands represent the 95% confidence interval for the median and provide an indication of whether the estimates of SIF 411 



for intact and disturbed forests overlap. Disturbance classes are intact forests (IN), 0-3 years (B1), 4-7 years (B2), and 412 

8-14 (B3) years after fires, and 0-3 years (L1), 4-7 years (L2), and 8-14 (L3) years after logging. 413 

Given the notable seasonality of SIF, we also compared SIF values for the dry  and the wet 414 

season months, by pairing 16-day averages of disturbed classes to intact forests’ 16-day averages 415 

(Figure 7). A general pattern is that in the wet period, SIF from disturbed classes was more 416 

correlated with and usually higher than intact forest’s SIF. In the dry season, intact forests have 417 

mostly higher SIF than disturbed forests, with the most severely disturbed classes (e.g., B1 and 418 

B2) showing much lower SIF. Across all classes and seasons, the older disturbance classes (L3 419 

and B3) showed the best agreement with intact forests (R2 of 0.93 and 0.90, respectively). We also 420 

found a consistent pattern of SIF from disturbed classes being slightly lower than intact forest SIF 421 

during the dry season and a reversed trend in the wet season, except for B1, that is lower than intact 422 

forest in both seasons (Figure 7). Moreover, the regression lines get closer to the 1:1 line with time 423 

since disturbance, indicating SIF recovery.  424 



 425 

Figure 7. Comparison of averaged SIF values between intact and disturbed forests across wet and dry seasons. 426 

Coloured lines represent the best fit, black dashed lines indicate the 1:1 line, and grey bands represent 95% confidence 427 

intervals. Disturbance classes are intact forests (IN), 0-3 years (B1), 4-7 years (B2), and 8-14 (B3) years after fires, 428 

and 0-3 years (L1), 4-7 years (L2), and 8-14 (L3) years after logging. 429 

3.3 Structural predictors of SIF 430 

Structural variables partially explained SIF variability. The best lidar-based model of SIF 431 

included canopy height descriptors (Table 5, Figure 8), with adjusted R2 of 0.44, p-value <0.05, 432 

and RMSE = 0.067 mW m2 sr-1 nm-1. The mean and standard deviation of height, as well as 433 

standard deviation of 25th and 95th percentiles were the most important predictors of SIF according 434 

to this model. The model based on foliar distribution predictors showed the second-best 435 

performance (p-value <0.05, adjusted R2 of 0.30, RMSE = 0.076). We note that the metric sdVFP, 436 

the standard deviation of the vertical foliage profile, was the strongest single predictor variable of 437 

SIF, accounting for approximately 22% of SIF variability (model results not shown). The models 438 

for horizontal and vertical complexity showed poor performance and non-significant coefficients. 439 



The variance inflation factor (VIF) of the predictors of all models were less than 10, indicating 440 

that they provide independent information for SIF predictions.  441 

Table 5. Equations, adjusted R2 (Adj. R2), absolute root mean square error (RMSE), and F-statistic p-value of the 442 

tested models. The selected metrics are: mean (average of return heights mean within the grid cells); sd (average 443 

standard deviation of return heights within the grid cells); sdP25 (standard deviation of 25th percentile of return heights 444 

within the grid cells); sdP95 (standard deviation of 95th percentile of return heights within the grid cells); sdVFP 445 

(standard deviation of vertical foliage profile); cvVFP (coefficient of variation of vertical foliage profile); LAI: (total 446 

leaf area index above 4.5m); Rumple (Rumple index); CRR (canopy relief ratio); Gini: (Gini coefficient of foliage 447 

structural diversity); Shannon (Shannon index); VCI (a fixed normalization of the Shannon index). For more details 448 

about the metrics, refer to Table 2. 449 

Model Equation Adj. R2 RMSE Relative  
RMSE (%) p-value 

Canopy 
height 

SIF = 1.507 + 0.207 * mean - 
0.039 * sd - 0.169 * sdP25 - 0.058 
* sdP95 

0.44 0.067 20.6 0.0001 

Foliar 
distribution 

SIF = 0.4609 + 1.1289 * sdVFP + 
0.0012 * cvVFP + 0.0538 * LAI 0.3 0.076 31.9 0.0019 

Horizontal 
complexity 

SIF = 1.213 - 0.005 * Rumple - 
0.227 * CRR -0.03 0.094 134.1 0.6207 

Vertical 
complexity 

SIF = 1.39 + 0.35 * Gini - 0.14 * 
Shannon - 0.24 * VCI 0.01 0.09 56.7 0.3604 

 450 

The scatterplots of observed versus predicted values of the selected models confirmed the 451 

different performance of the tested models (Figure 8). The correlation between observed and fitted 452 

values ranged from 0.71 (best model) to 0.17 (poorest model). An interesting pattern emerged from 453 

the visualization of models’ results: SIF values of burned forests’ samples were usually the highest, 454 

while SIF values from intact and logged forests mixed at lower ranges of SIF.  455 



 456 

Figure 8. Observed versus predicted values of SIF as estimated by the models. Each dot represents the median value 457 

of SIF observations across the months of April-June 2018 and the SIF value predicted from lidar metrics for a given 458 

‘pure SIF pixel’. Dashed line is the 1:1 line, and r values represent the Pearson correlation coefficient between 459 

observed and predicted values.  460 

We tested for the presence of interaction between disturbance condition and the lidar metrics 461 

(in the canopy height and foliar distribution models only) and found that the inclusion of 462 

disturbance condition on the models led to improvements in SIF predictions (Table 6), increasing 463 

the adjusted R2 of the canopy height model from 0.44 to 0.47 and of the foliar distribution from 464 

0.30 to 0.33. RMSE from both models also decreased slightly.  465 

Table 6. Equations, adjusted R2 (Adj. R2), absolute root mean square error (RMSE), and F-statistic p-value of canopy 466 

height and foliar distribution including interactions. 467 

Model Equation Adj. 
R2 RMSE Relative 

RMSE (%) p-value 

Canopy 
height with 
interaction 

SIF = 1.418 + 0.152 * mean - 0.037 * 
sd - 0.120 * sdP25 - 0.037 * sdP95 + 
0.059 * bdcatLogged + 0.211 * 
bdcatBurned - 0.016 * 
sdP95:bdcatLogged - 0.042 * 
sdP95:bdcatBurned 

0.47 0.061 16.6 0.0007 

Foliar 
distribution 

with 
interaction 

SIF = 0.6623 + 0.3569 * sdVFP + 
0.0014 * cvVFP + 0.0326 * LAI - 
0.0119 * bdcatLogged - 0.0142 * 
bdcatBurned + 0.0066 * 

0.33 0.07 28.2 0.0075 



LAI:bdcatLogged + 0.0268 * 
LAI:bdcatBurned 

 468 

When we compared the two pairs of models (with and without interaction) using Analysis 469 

of Variance, the results did not indicate a significant improvement when accounting for the 470 

interaction (p-value > 0.2 for both comparisons). These results do not support the inclusion of 471 

disturbance class as an independent variable (i.e., disturbance impacts as mediated by structure 472 

alone). 473 

4. Discussion 474 

In this study, we used multi-source remote sensing data to assess the effects of tropical forest 475 

degradation (fires and selective logging) on canopy structural attributes and SIF. Moreover, we 476 

modelled the contribution of lidar-derived structural variables to SIF variability. Our results 477 

highlighted disturbance type and recovery time as important drivers of forest structure and SIF. 478 

We also showed that forest regeneration can result in higher SIF, presumably due to structural, 479 

compositional and physiological changes. Canopy structural properties predicted about 44% of 480 

SIF variability, suggesting that canopy structure plays a significant role in mediating 481 

photosynthesis in degraded Amazon forests.  482 

4.1  Distinct responses of structure and SIF to disturbance  483 

Despite remarkable differences of structural attributes among intact forests and forests 484 

regenerating from degradation (Figure 4, Figure 5, and Figure S3), their SIF seasonal cycles were 485 

unexpectedly similar, except for the recently-burned, B1 class. These findings likely indicate 486 

optimized resource use by post-disturbance growing (which might include grasses) and fire-487 

resistant vegetation (Berenguer et al. 2018; Brando et al. 2019). However, the rapid (3-6 years) 488 



restoration of SIF to pre-disturbance values was not accompanied by restoration of the original 489 

forest structure (Figure 5). Spatial and temporal scales should be taken into consideration when 490 

interpreting these results. SIF coarse grain size differs substantially from the lidar small footprint, 491 

but also does the temporal and spatial variability of forest structural properties and productivity. 492 

While forest structure changes slowly and at small scales, forest productivity may change sub-493 

daily and over larger extents. 494 

The absolute height above ground for a given height percentile metric was generally 495 

significantly lower in disturbed classes than in intact forests (Figure S3), with burned forests 496 

showing larger differences. Forest degradation rearranged the vertical distribution of foliage, and 497 

the resulting related patterns of light transmittance were remarkably different in some cases (e.g., 498 

in the older burned areas, Figure 5 and Figure S4). Meanwhile, SIF differences among the classes, 499 

when analysed at the landscape scale, were minimal and associated with seasonality. We raised 500 

some hypotheses to explain SIF seasonal patterns being similar across degradation classes except 501 

for the recently burned sites despite the forests being structurally different. First, species turnover 502 

is higher in regenerating forests (Villa et al. 2018; Zhang et al. 2008), which would delay recovery 503 

of vertical and horizontal structures. Second, SIF signal may saturate rather quickly and may not 504 

be able to detect more subtle differences. The SIF signal saturation may be related to canopy 505 

structure, shadowing and re-absorption of the SIF radiation in complex canopies, as discussed in 506 

the next section. Further research is needed to fully elucidate SIF interactions in complex tropical 507 

forest canopies and how canopy structure affects the subtle SIF signal that is sensed by orbital 508 

platforms. 509 

 510 

 511 



4.2 SIF variability related to disturbance 512 

SIF time-series showed a clear seasonal signal (Figure 6), with a peak of photosynthetic 513 

activity in the early wet season, a trend similar to that found by Doughty et al. (2019) and Köhler 514 

et al. (2018b) for the entire Amazon. This phenomenon, related to the dry-season green-up in the 515 

Amazon, has been widely observed and debated (Huete et al. 2006; Köhler et al. 2018b; Tang and 516 

Dubayah 2017; Wu et al. 2016). We did not observe specific phenological shifts (e.g., changes in 517 

the timing of peak SIF) with disturbance. Instead, we found depressed SIF values on the most 518 

recent burned class starting early in the dry season and lasting until the peak at the start of the wet 519 

season. The confidence intervals of the recently burned areas mostly did not overlap with those 520 

from intact forests during this period, indicating significant SIF differences, likely due to the loss 521 

of photosynthetically active material (e.g., reduced LAI, Figure 5).  522 

There was a consistent pattern of SIF from disturbed classes being slightly lower than intact 523 

forest SIF during the dry season and a reversed trend in the wet season (Figure 7). This pattern 524 

may be due to the highly productive species, typical of early- and mid-stages succession, that must 525 

transpire substantially more to support rapid productivity but lack the deep root systems to sustain 526 

high ET levels in the dry season (Brum et al. 2019; Nepstad et al. 1994). These results are 527 

consistent with model simulations from Longo et al. (2020) which predicted that severely degraded 528 

forests (as is the case of our B1 class) experience increased water stress with declines in ET and 529 

gross primary productivity during the dry months. 530 

In addition to the mechanisms we proposed to explain the SIF seasonal patterns at degraded 531 

forests, other factors could be influencing our results. The complex photosynthetic energy balance 532 

is also regulated by air temperature and water availability (Porcar-Castell 2011), thus the higher 533 

temperatures and lower water availability in the heavily degraded forests such as our B1 class 534 



during the dry season (Longo et al. 2020) may be inducing heat release via non-photochemical 535 

quenching, resulting in lower SIF. Besides canopy structure, the microclimate within these forests 536 

may also be exerting influence on SIF. We showed that LAI and foliage vertical distribution varies 537 

substantially across our disturbance classes (Figure 5), which leads to the creation of differential 538 

vertical microclimates. SIF and the absorbed photosynthetically active radiation (APAR) 539 

contributions from the lower and middle part of the canopy are likely higher in burned forests with 540 

a denser understory (Figure S4), and it remains elusive how they interact with the upper canopy 541 

and escape to be observed by sensors in space. Lastly, due to the complex interactions of SIF with 542 

the forest canopy, degradation status and SIF relationships across forest successional stages could 543 

be inconsistent. All those factors deserve further investigation. 544 

We showed that the impact of fires on structure and SIF is much larger than impacts of 545 

selective logging. After the initial impact of fires and start of plant development, forests 546 

regenerating from fires maintain a high light-use efficiency (LUE, carbon fixed per unit light 547 

absorbed). One possible explanation for this phenomenon is that early-succession species (many 548 

of which are shrubs) are abundant in forests regenerating from fires, and have an ‘acquisitive 549 

resource capture strategy’, that grow fast and require high light levels (Poorter et al. 2004). These 550 

species develop cheap, short-lived leaves with high specific leaf area and photosynthetic rates to 551 

achieve fast growth (Bazzaz and Pickett 1980), investing more of the absorbed PAR to fix carbon 552 

through growth and photosynthesis (Both et al. 2019). Overall, the results of this study support the 553 

hypothesis that both logged and burned forests can rapidly (~ 4-7 years) recover productivity (e.g., 554 

Brando et al. 2019).  555 

 556 

 557 



4.3 SIF and canopy structural complexity 558 

We examined structural drivers of SIF in degraded and intact forests, focusing on four 559 

canopy structural aspects: canopy height, foliar distribution, and vertical and horizontal 560 

complexity. Although the existing SIF literature has highlighted the influence of canopy structural 561 

attributes, especially LAI, leaf angle distribution and fraction of sunlit leaves in SIF emissions 562 

during photosynthesis (Frankenberg and Berry 2018), this is the first time that the contribution of 563 

structural variables to tropical forests SIF variability is quantified explicitly.  564 

The results of our modelling approach showed that the canopy height metrics (mean and 565 

standard deviation of returns, and standard deviation of 25th and 95th height percentiles) were the 566 

best set of explanatory variables of SIF (adjusted R2 = 0.44). Lefsky et al. (2005) found that a 567 

combination of mean height of lidar returns, standard deviation of lidar returns, and degree of 568 

canopy closure were sufficient to accurately describe canopy structure of temperate needleleaf 569 

forests with strong correlation to coincident field measurements of forest functioning, such as LAI 570 

and aboveground biomass. d'Oliveira et al. (2012) found, for a logged tropical forest site in the 571 

Western Amazon, that the variance of lidar returns is related to both the variability of the canopy 572 

height and openness to passage of lidar pulses through foliage and branches. Thus, in this type of 573 

forest with highly variable canopy height, amplified by the canopy disturbances caused by forest 574 

degradation and subsequent regeneration, the standard deviation of lidar returns not only 575 

characterizes canopy surface variability and permeability, but to a large extent, canopy dominant 576 

height. These attributes are generic descriptors of canopy arrangement, and the inclusion of similar 577 

metrics in our best model suggests that they may perform as simplified proxies for more complex 578 

process controlling light harvesting in tropical forests. 579 



The inclusion of sdP25 (negatively correlated to SIF, r = -0.35) and sdP95 (positively 580 

correlated to SIF, r = 0.25) metrics in the best canopy height model is an indication of the role of 581 

disturbance in SIF-structure relationships in our study area. These metrics are especially distinctive 582 

in areas affected by fires: sdP25 is low because the understory in these areas is homogeneously 583 

developing and constitute the greatest potential of light absorption (Figure 9, Figure S4). P95 is a 584 

descriptor of top-of-canopy height, and its standard deviation (sdP95) was greater in burned areas 585 

of different ages (Figure 9, Figure S3). Although slightly improving model performance, 586 

disturbance category was not a significant interaction term in the regression model. The 587 

disturbance category is not independent from the lidar metrics because most of the metrics 588 

contribute information about structural changes caused by disturbance. 589 

 590 

Figure 9. Relationship between SIF and sdP25, sdP95 and sdVFP lidar-derived metrics. The black line represents the 591 

best fit line. 592 

Our findings showed that logging and fires induced heterogeneity in the canopy layering, 593 

and that this additional heterogeneity is also reflected in the variability of SIF, even though in an 594 



ambiguous manner. The inclusion of standard deviation metrics in the best explanatory models, 595 

and the facts that the standard deviation of the vertical foliage profile (sdVFP) was the best single 596 

predictor of SIF and that burned areas showed high sdVFP (Figure 9) with reduced LAI in some 597 

classes (e.g., B2, Figure 5) support this hypothesis.  598 

Some mechanisms may be contributing to increased SIF in older burned areas during the wet 599 

season: first, recently burned areas may create niche opportunities for a grass flush (D'Antonio et 600 

al. 2001), and grass LAI is likely undetected or underestimated by airborne lidar. Second, SIF is 601 

primarily controlled by incoming PAR and, therefore, also quite sensitive to shadows (Mohammed 602 

et al. 2019). Third, the canopy structure of young forests is less complex and, therefore, the escape 603 

probability of SIF photons is higher. Köhler et al. (2018) argue that increased SIF and the canopy 604 

scattering coefficient of cropland and grassland areas might be explained by the rather less 605 

complex vegetation structure associated with an enhanced escape probability for scattered and 606 

emitted photons. By analogy, this mechanism also applies to the canopy of regenerating forests. 607 

We showed empirical evidence that burned areas in advanced regeneration have a more 608 

homogeneous canopy (Figure 5A), and hence, they are expected to have less shadow. Estimates 609 

of the sunlit and shaded leaves distribution at the time of SIF observations, can be estimated with 610 

models such as Discrete Anisotropic Radiative Transfer (DART), which could enhance the 611 

interpretation of these results (Gastellu-Etchegorry et al. 2015; Morton et al. 2016).          612 

Disturbance does not only change the physical arrangement of canopy elements, but it also 613 

alters tree functional composition as successional processes take place (Cochrane and Schulze 614 

1999; Ferry Slik et al. 2002; Rüger et al. 2020), and these species have higher photosynthetic 615 

capacity compared to late-successional species (Dusenge et al. 2015; Nogueira et al. 2004). In 616 

summary, there is a large amount of SIF variability (~56%) not explained by the structural metrics 617 



employed in this study that might be explained by plant physiology variables, as well as 618 

community and demographic dynamics following disturbances and their associated changes in 619 

structure. A recent model-based study by Rüger et al. (2020) suggested that tree functional 620 

composition change over succession (in terms of differentiation on growth–survival and stature–621 

recruitment trade-offs) can explain forest structural change, highlighting the likely importance of 622 

community and demographic dynamics in forest transitions. In addition to leaf and wood traits, 623 

early-, mid- and late-successional trees are also distinguished by differences in canopy and whole 624 

plant architecture, features associated with light interception, tree growth rates, and vertical 625 

position within the forest canopy (Sterck and Bongers 2001). The assessment of canopy functional 626 

traits related to plant function (photosynthesis, respiration, evapotranspiration) via image 627 

spectroscopy could help to clarify these questions (Asner et al. 2017; Schimel and Schneider 628 

2019). 629 

We expect that regeneration following forest degradation will lead to increases in canopy 630 

complexity and SIF through time as observed in intact or second-growth forests (Gough et al. 631 

2019; Hardiman et al. 2011).  However, the pathways of regeneration and the resulting canopy 632 

structures in degraded tropical forests are more diverse and mostly poorly understood (Longo et 633 

al. 2020; Norden et al. 2015).  634 

4.4 Limitations and prospects of the study 635 

This study combined orbital and airborne remote sensing data to assess the relationship 636 

between forest structure and SIF. Despite substantial differences in the spatial resolution of the 637 

SIF (~ 5.5 km resolution) and small footprint airborne data (~ 30 cm footprint) and differences in 638 

the total area surveyed by the lidar transects compared to the TROPOMI footprint, we made a 639 

fundamental assumption that the lidar transects are representative of the vegetation captured in the 640 



SIF data, and we took steps to minimize SIF pixel mixture. However, some significant differences 641 

in forest structure were not translated into differences in SIF, for instance, significantly lower LAI 642 

in the L2 class compared to intact forests did not show corresponding differences in the SIF data. 643 

There is a possibility of omission errors if selective logging is causing a change in SIF that we 644 

cannot detect because of both the subtle signal and the pixel purity issue. However, ground based 645 

studies (e.g., Miller et al. 2011) show that low intensity logging has a small effect on productivity 646 

and hence it probably has a small effect on SIF as well. Overall, we found that SIF alone was not 647 

sufficient to distinguish between intact and most of the anthropogenically disturbed forests, but 648 

the use of SIF data in conjunction with another dataset leveraged its potential. The advent of new 649 

SIF products with finer spatial resolution in the future and larger availability of lidar data such as 650 

the ongoing Global Ecosystem Dynamics Investigation (GEDI) orbital mission (Dubayah et al. 651 

2020) or more extensive airborne lidar data acquisitions could bridge the gaps between those scales 652 

and further advance or refute our findings. 653 

The sample size was also affected by the availability of lidar data and by the scale mismatch 654 

between SIF footprint and degradation polygons, especially logging. The most recent disturbance 655 

classes (L1 and L2, B1 and B2) comprise only four years each, leading to a smaller sample size 656 

compared to the L3 and B3 classes (Table 4) and consequently, larger uncertainty in structure and 657 

SIF estimates (Figure 5B, Figure 6). The adoption of the 70%-pixel purity threshold for each class 658 

was an attempt to tackle this issue, but we were still able to run comparative SIF analysis of 659 

degraded areas versus non-degraded areas and detected some differences. The mixing just diluted 660 

the signal contrast between the degraded versus non-degraded conditions. 661 

An interesting aspect that arose from the lidar metrics was that top-of-canopy height and 662 

total LAI were in some cases lower in L2/B2 than in L1/B1. At this point, it is uncertain whether 663 



the low sample size or the LAD height threshold that we adopted (4.5m, that may increase LAD 664 

uncertainty at areas with high understory density) are driving this effect. Other plausible causes 665 

could be the increased mortality of large trees in the post-disturbance period, a well-documented 666 

phenomenon that occurs in degraded Amazon forests (Brando et al. 2019; Schulze and Zweede 667 

2006). The occurrence of multiple disturbance events, severity of burns, and intensity of logging, 668 

aspects that have not been addressed in this study, could also be confounding our results.  669 

An additional potential driver of uncertainty of this study is the temporal mismatch between 670 

remote sensing data acquisition dates and time of disturbances. Lidar collections follow contract 671 

schedules, while fire season and logging activities are usually related to the dry season in the 672 

Amazon. For instance, a lidar acquisition in April will not include most of the logging and fires 673 

disturbances for that year. Although we visually confirmed the degradation status of lidar transects 674 

based on the CHM, our disturbance classification still holds some degree of subjectivity, as we do 675 

not have a measure of classification accuracy. Moreover, for each pixel and band, the LandTrendr-676 

based disturbance history classification selects the median value of all images considered in a year 677 

(Kennedy et al. 2010). Annual composite images based on such approach will likely fail to detect 678 

degradation events that happen late in the dry season of a given year, detecting them in the 679 

following year only. 680 

5. Conclusion 681 

Our study employed a combination of airborne lidar and SIF data and highlighted differences 682 

in ecosystem structure and function in a broad array of degraded sites. SIF showed positive or 683 

negative changes in degraded forests based on recent degradation and recovery history. By using 684 

spaceborne assets of forest function, our results show that combined observations improve our 685 



ability to detect the regional effects of forest degradation and indicate that anthropogenically 686 

disturbed forests can capture large amounts of carbon while recovering.   687 
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List of Figure Captions 988 

Figure 1. Location (A), land cover (B, INPE 2020) and monthly precipitation (C) of the study area. 989 

Source of precipitation data: climate-data.org. 990 

Figure 2. Overview of the major analysis steps and data sources. Blue boxes and arrows refer to 991 

forest structure, green boxes and arrows refer to SIF, black boxes and arrows refer to the 992 

disturbance history classification, and red boxes and arrows refer to the integrative analysis of 993 

structure and SIF.  994 

Figure 3. Example of SIF grid cell selection (intact at green, logged at blue and burned forests at 995 

orange inset) according to pixel mixture and availability of lidar transect. Background images are 996 

NBR annual composites from 2019 (main map and intact forest inset), 2016 (logged forest inset) 997 

and 2010 (burned forest inset). Lighter areas in the NBR image represent dense canopy cover, 998 

while darker areas represent low or no canopy cover. Degradation by fire or logging appears in 999 

intermediate grey tones.  1000 

Figure 4. Lidar-derived canopy height models and associated density plots of 8-ha sample plots 1001 

for each disturbance class. 1002 

Figure 5. Panel A: Vertical foliage profile for the disturbance classes. Intact forest's LAD is plotted 1003 

over logged and burned forests' plots as a reference. Bands along the lines represent the standard 1004 

error. Panel B: Distribution of leaf area index (LAI) above 4.5m for the disturbance classes. The 1005 

violin plots summarize LAI distributions as a function of disturbance class and show the kernel 1006 

probability density of the data at different values. All violins have the same area. The median of 1007 

each group is indicated by the white dots. The symbols on the top indicate statistical significance 1008 

(p-values, ns = p > 0.05; * = p ≤ 0.05; ** p ≤ 0.01) as computed from the multiple pairwise test 1009 

against a reference group (IN, intact forests).  1010 



Figure 6. SIF time-series (daily data averaged to 16-days) for the disturbed classes with intact 1011 

forests time-series as reference. The included period is March 1st, 2018, to September 30th, 2019. 1012 

Beige shades indicate the dry season (months with <100mm precipitation) in the study area. Lines 1013 

represent the median value of the 16-days average. The bands represent the 95% confidence 1014 

interval for the median and provide an indication of whether the estimates of SIF for intact and 1015 

disturbed forests overlap. Disturbance classes are intact forests (IN), 0-3 years (B1), 4-7 years 1016 

(B2), and 8-14 (B3) years after fires, and 0-3 years (L1), 4-7 years (L2), and 8-14 (L3) years after 1017 

logging. 1018 

Figure 7. Comparison of averaged SIF values between intact and disturbed forests across wet and 1019 

dry seasons. Coloured lines represent the best fit, black dashed lines indicate the 1:1 line, and grey 1020 

bands represent 95% confidence intervals. Disturbance classes are intact forests (IN), 0-3 years 1021 

(B1), 4-7 years (B2), and 8-14 (B3) years after fires, and 0-3 years (L1), 4-7 years (L2), and 8-14 1022 

(L3) years after logging. 1023 

Figure 8. Observed versus predicted values of SIF as estimated by the models. Each dot represents 1024 

the median value of SIF observations across the months of April-June 2018 and the SIF value 1025 

predicted from lidar metrics for a given ‘pure SIF pixel’. Dashed line is the 1:1 line, and r values 1026 

represent the Pearson correlation coefficient between observed and predicted values.  1027 

Figure 9. Relationship between SIF and sdP25, sdP95 and sdVFP lidar-derived metrics. The black 1028 

line represents the best fit line. 1029 
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