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Psychedelics have shown promise as a novel therapeutic, providing clinical benefits for a 

variety of conditions. Emerging evidence provides a promising cognitive-behavioral account for 

their therapeutic efficacy, specifically that psychedelics increase cognitive flexibility. However, 

work to date has yielded inconsistent results. In this dissertation, I overview several experiments 

utilizing modern cognitive science and computational methodology which test predictions for 

specific behaviors symptomatic of increased cognitive flexibility. These behaviors are gleaned 



xiv 

from an unlikely source: children. In Chapter 2, I present a novel measure of problem solving 

under dynamic constraints which can be used to quantify search and sampling strategies. In 

Chapter 3, I present a pilot test of whether psychedelic treatment will result in (1) decreased 

influence of prior knowledge on inferences, (2) employment of broader, more exploratory, 

search strategies when sampling hypotheses, and (3) more diffuse exogenous attention. Finally, 

in Chapter 4, I examine whether these cognitive flexibility tasks are susceptible to practice 

effects. If differences in these behaviors can be identified between a control and psychedelic 

treated group, it would provide initial evidence for what the specific cognitive mechanisms 

underlying psychedelic therapy may be. With this, it would be possible to better identify who, 

and what clinical conditions, may be receptive to psychedelic therapy. 
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Chapter 1 General Introduction 

In recent years there has been a resurging interest in studying psychedelic drugs. Through 

both classic and this more recent work, psychedelics have shown promise as a novel therapeutic, 

providing clinical benefits for a variety of conditions. The question of how remains unanswered. 

What are the mechanisms underlying these clinical benefits? Emerging evidence from 

clinical interviews and survey studies provides a promising cognitive-behavioral account, 

specifically that psychedelics increase cognitive flexibility. However, experimental studies 

implementing cognitive tasks have yielded inconsistent results. In this dissertation, I overview 

several experiments applying recently developed cognitive tasks and computational methods to 

test predictions for specific behaviors known to be symptomatic of increased cognitive 

flexibility. These behaviors are gleaned from an unlikely source: children. If differences in these 

behaviors can be identified between a control and psychedelic treated group, it would provide 

initial evidence for what the specific cognitive mechanisms underlying psychedelic therapy may 

be. With this, it would be possible to better identify who, and what clinical conditions, may be 

receptive to psychedelic therapy. 

Introduction and History of Psychedelics 

The term “psychedelics” has conventionally been used to refer to a broad swath of 

psychoactive drugs characterized by their consciousness altering properties. Psychedelic 

compounds have been utilized for religious and medicinal purposes throughout history. Some 

posit that their use extends back as far as the Paleolithic era (Stamets, 1996), and have even 

suggested they were a contributing factor for the development of modern day humans (an 

evolutionary account known as the “Stoned Ape Theory”; McKenna, 1999). Wasson and 

Schultes were among the first Westerners to document current ceremonial use of psilocybin 



2 

mushrooms in indigenous Mesoamerican people and tie this ceremonial use to many artifacts 

with mushroom motifs excavated from Mayan and Aztec temples. Psilocybin was known to the 

Aztecs as teonanácatl, which is widely translated as, “flesh of the gods” (Schultes, 1940; 

Wasson, 1980). A less popular translation for teonanácatl is, “bread of the gods,” which have led 

some to postulate that the mana referenced in the Hebrew Bible was actually psilocybin 

mushrooms (Schultes et al., 2001; Strassman, 2014).  

Psilocybin, along with N,N-dimethyltryptamine (DMT), mescaline, and lysergic acid 

diethylamide (LSD), comprise the group of “classic psychedelics”, which have a similar primary 

mechanism of action as agonists at 5-HT2A receptors and elicit profound acute alterations in a 

variety of mental functions (Nichols, 2004; Vollenweider & Preller, 2020). These include 

changes in cognition, perception, emotional processing and empathy, sense of self and volition, 

as well as persisting psychological and behavioral changes. Acute effects include visual changes 

(e.g., brighter and more distinct color perception and complex kaleidoscopic visions), distorted 

perceptions of time and space, increased heart rate and blood pressure, feelings of fear or 

anxiety, and decreased psychomotor performance (e.g., Carbonaro et al., 2018; Griffiths et al., 

2011). A majority of psychedelic users endorse benefiting from their experiences, even when 

used in less controlled and supportive settings that result in challenging experiences, those 

characterized by high degrees of anxiety, fear, and difficulty (Carbonaro et al., 2016). This may 

be due to the mystical-type experiences (MTEs) that psychedelics have been shown to uniquely 

and reliably elicit (e.g., Griffiths et al., 2006; Ott, 1996; Smith, 1964). MTEs can also be 

naturally occurring and are characterized by a deeply felt positive mood (peace, joy, love, 

tranquility, etc.), noesis (attaining intuitive knowledge), sacredness, ineffability (a difficulty 

adequately describing experience in words), altered perception of time and space (feeling 
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“outside of” time and space), internal unity (pure awareness), and external unity (connection of 

all people and things) (Barrett et al., 2015; Hood, 1975; Hood, 2005; Pahnke, 1969).  

Psychedelics as Treatment 

Decreases in mood, well-being, quality of life, and social relations, are symptoms of 

many pathologies and associated with decreased treatment adherence (Arrieta et al., 2013). 

Considering most treatments require prolonged use to be effective, this results in a lack of 

symptom alleviation for patients. Since studies have shown that even single discrete experiences 

with psychedelics can elicit enduring positive outcomes, many researchers began to wonder 

whether psychedelics could be used as an effective treatment option. The lack of understanding 

about the powerful influence of set and setting (Johnson et al., 2008) resulted in high frequencies 

of adverse events in early clinical studies of psychedelics (Isbell, 1959; Malitz et al., 1960). 

Subsequent research involved preparation before, and support throughout, experiencing the acute 

effects of the drugs. This resulted in greater reports of positive experiences and decreases in 

psychological harm (Leary et al., 1963; Pahnke, 1969).  

Despite emerging evidence of safety and therapeutic potential, the Controlled Substances 

Act, effective as law on May 1st, 1971, classified psilocybin and other psychedelics as illegal 

Schedule I substances (Controlled Substances Act, 1971). As a result, clinical research with these 

substances was largely non-existent until the early 2000’s, first in Europe characterizing the 

acute psychological and physiological effects (Gouzoulis-Mayfrank et al., 1999; Vollenweider et 

al., 1998) and then in the US establishing basic safety (Griffiths et al., 2006; Johnson et al., 

2008). Since then, a so-called “psychedelic renaissance” has begun (Sessa, 2020), with clinical 

trials investigating the therapeutic potential of psychedelic therapy for a variety of conditions. 

The emphasis of this more recent research has focused largely on asking if psychedelics work for 
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some clinical indication, rather than how. However, the indications that psychedelic treatment 

has been shown effective in treating (outlined below), are almost all characterized by 

pathologically rigid cognition (e.g., Chamberlain et al., 2006; Lee & Orsillo, 2014; Palm & 

Follette, 2011; Todd et al., 2015), a point I will revisit later in this section.  

Depression and Anxiety Disorders 

The most extensive research on the clinical benefits of psychedelics has been on their 

capacity to elicit antidepressant and anxiolytic effects. First investigated in patients with 

advanced-stage cancer, LSD (Grof et al., 1973) and N,N-Dipropyltryptamine (Richards et al., 

1977) were both shown to significantly reduce existential depression and anxiety after treatment. 

Psilocybin was also shown to significantly reduce depression scores compared to baseline only at 

6 months post-treatment following 2 treatment sessions in an initial pilot study (Grob et al., 

2011). In two follow-up placebo controlled clinical trials, a single administration of psilocybin 

treatment resulted in significant increases in subjective quality-of-life and optimism ratings, as 

well as clinically significant reductions in anxiety and depression in about 80% of patients 

(Griffiths et al., 2016; Ross et al., 2016). These antidepressant and anxiolytic effects of a single 

administration of psilocybin, observed in two samples of patients, endured outwards of at least 6 

months. In light of these findings, the antidepressant and anxiolytic effects of psilocybin have 

also been investigated in more general depression populations, including in treatment-resistant 

depression (TRD) and major depressive disorder (MDD).  

In an open-label pilot study where participants received a fixed order of two doses of 

psilocybin (10mg then 25mg) 7 days apart, depression scores (as measured by the Quick 

Inventory of Depressive Symptoms [QIDS]) were significantly reduced compared to baseline 

after both treatment sessions. These effects remained consistent at all post-treatment time points 
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outwards of 3 months (Carhart-Harris et al., 2016). In a follow-up, randomized and double-blind 

study, psilocybin was directly compared to conventional depression treatment (the selective 

serotonin reuptake inhibitor [SSRI] escitalopram). At 6 weeks post-treatment, while both groups 

showed significant reductions from baseline on QIDS scores, there were no between-group 

differences when comparing the 2 doses of 25mg psilocybin group to the daily oral escitalopram 

group (Carhart-Harris et al., 2021). However, it is noteworthy that two administrations of 

psilocybin were equally effective in reducing depression compared to daily administrations of 

escitalopram, which can often have non-trivial negative side-effects. These effects were 

purported to be correlated with decreases in brain network modularity (Daws et al., 2022), 

though this account has been criticized for discrepancies in reports compared to the pre-

registered study designs and statistical flaws (including the use of one-tailed tests and 

interpreting nonsignificant interactions; Doss et al., 2022). When directly comparing a single 

treatment with low (10mg) vs high (25mg) doses of psilocybin and placebo (1mg psilocybin), 

both low and high doses significantly reduced depression scores (measured with the 

Montgomery–Åsberg Depression Rating Scale [MADRS]) one day following treatment 

compared to placebo. However, while there were no differences between the placebo and low 

dose psilocybin groups at one week following treatment, the high dose group had significantly 

lower MADRS scores at all post-treatment time points outwards of 12 weeks (Goodwin et al., 

2022). This same pattern of results was found for other measures of clinical efficacy, including 

anxiety, affect, and quality of life (Goodwin et al., 2023). 

In participants with MDD, after administration of 20mg and 30mg of psilocybin (one 

week apart), participant scores on the GRID Hamilton Depression Rating Scale (GRID-HAMD) 

were significantly reduced outwards of one month compared to a waitlist control group (Davis et 
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al., 2020). This clinically significant reduction in GRID-HAMD scores persisted at 3, 6, and 12 

months post-treatment (Gukasyan et al., 2022). Using the MADRS as the primary outcome 

measure, consistent with these findings above, participants treated with a single administration of 

25mg of psilocybin had significantly reduced depression the day following treatment and lasting 

outwards of 43 days. This reduction was significantly greater than that observed in the niacin 

control group (Raison et al., 2023). 

Since the effects of psilocybin are serotonergically mediated, the concomitant use of 

SSRIs is usually an exclusion criterion in most clinical trials. Participants taking SSRIs are 

usually required to taper off under the guidance of their prescribing healthcare provider, and 

remain abstinent for several months, before being eligible to participate. Though recent evidence 

suggests that there may not be any contraindications for concomitant SSRI use. In a double-blind 

placebo-controlled crossover study, participants were pretreated with 14 days of placebo or 

escitalopram prior to the administration of 25mg of psilocybin. The acute subjective effects of 

psilocybin were largely the same between both groups, with the main differences being 

escitalopram significantly reducing “bad drug effects” (including anxiety and cardiovascular 

changes). Further, there were no differences in blood concentrations of psilocybin metabolites 

between groups (Becker et al., 2022). Concomitant SSRI use also does not attenuate the 

antidepressant effects of psilocybin. In a sample of individuals with TRD taking concomitant 

SSRIs, a single administration of 25mg of psilocybin resulted in significant decreased post-

treatment MADRS depression scores at all time points outwards of 12 weeks (Goodwin et al., 

2023). When comparing the treatment effects of a single dose of 25mg psilocybin in patients 

with TRD and either taking or not taking concomitant SSRIs, the average reductions in MADRS 

scores from baseline to 12 weeks post-treatment were similar in both groups (-14.9 and -12.0 
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respectively). This suggests that the concomitant use of SSRIs does not attenuate the 

antidepressant effects of psilocybin treatment. 

While there is relative homogeneity among the antidepressant effects observed across 

these studies in various depressive populations, it is notable that some studies have found no 

treatment effects. For example, microdosing (consumption of sub-hallucinogenic doses of 

psychedelics – typically at 10% or less than a standard dose) psilocybin resulted in no 

antidepressant or anxiolytic effects (Marschall et al., 2022). More interestingly, a within-subjects 

placebo-controlled fixed-order (placebo then psilocybin) study found significant decreases in 

GRID-HAMD scores after both placebo and psilocybin. There were no significant differences in 

the degree of change between the two treatments (Sloshower et al., 2023), highlighting the 

potential impact of expectancy, therapy, and placebo effects in the results from previous studies. 

Addiction  

Addiction has also shown to be responsive to treatment with psychedelics. In an open-

label pilot study of individuals with alcohol dependence, the intensity of psilocybin effects 

during treatment sessions were strongly predictive of subsequent reductions in drinking behavior 

and cravings, as well as increases in abstinence self-efficacy (Bogenschutz et al., 2015). In a 

follow-up double-blind placebo-controlled study, the percentage of heavy drinking days and 

average drinks consumed per day was significantly decreased in both groups at all post-treatment 

assessments outwards of 36 weeks, but was lower for the psilocybin treated group (Bogenschutz 

et al., 2022; O’Donnell et al., 2022). Retrospective survey studies suggest that these effects on 

reducing or eliminating drinking behaviors are more pronounced for individuals with more 

severe a priori alcohol use disorder (Kervadec et al., 2023). 



8 

Psilocybin has also been shown to be highly effective in improving outcomes for long-

term smokers with multiple failed quit attempts. Following psilocybin treatment, 80% of these 

individuals successfully quit and were abstinent six months later. 67% were still abstinent a full 

year later (Johnson et al., 2017). Qualitative analysis of interviews with these participants 

revealed that their psilocybin sessions elicited vivid insights into their self-identity and 

motivations for smoking. Furthermore, that any short-term withdrawal symptoms were 

overshadowed by the acute and longitudinal effects of their psilocybin experiences (Noorani et 

al., 2018).  

Given the prevalence and impact of the opioid crisis in the US (Vadivelu et al., 2018) 

finding non-opioid pain management therapies and treatments for substance use disorder has 

been a recent funding priority (NIH Launches HEAL Initiative, Doubles Funding to Accelerate 

Scientific Solutions to Stem National Opioid Epidemic, 2018). Survey studies have found that 

lifetime psychedelic use was associated with lower odds of opioid use disorder (Jones et al., 

2022; Pisano et al., 2017). Naturalistic use of psychedelics was associated with significant 

decreases in substance use disorder (SUD) in general, with 96% meeting criteria for SUD before 

the experience, and 26% meeting criteria after (Garcia-Romeu et al., 2020). Clinical trials are 

currently underway to experimentally test the efficacy of psilocybin to treat opioid use disorder 

(University of Wisconsin, Madison, 2024).  

Pain  

Chronic pain and pain disorders are particularly difficult to treat given the complex 

nature of these indications. In addition to the pain itself, chronic pain often results in 

comorbidities including depression, anxiety, and adjustment disorders (Bryl et al., 2021). Early 

work demonstrated LSD engendering pronounced analgesia among individuals with metastatic 
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cancer. Pain relief was more effective than high potency opiates and endured past the acute 

subjective effects of the drug (Kast, 1966, 1967; Kast & Collins, 1964). Survey studies have 

found psilocybin and LSD may reduce the severity and frequency of cluster migraine headaches 

(Andersson et al., 2017; Schindler et al., 2015; Sewell et al., 2006). Randomized, double-blind, 

placebo-controlled studies have replicated these effects with psilocybin, showing that cluster 

headache attack frequency was significantly lower after 3 doses (5 days apart) of psilocybin than 

placebo (Schindler et al., 2021, 2022). While most clinical trials utilize moderate to high doses of 

psychedelics, which result in acute subjective effects, recent work has demonstrated analgesia in 

doses below the threshold to bring about such effects. Low doses of LSD decreased subjective 

levels of acute pain experience and unpleasantness in response to cold water exposure 

(Ramaekers et al., 2021).  

Psychedelics may effectively alleviate phantom limb pain as well, one of the most 

mysterious and intractable chronic pain conditions. Evidence for this began with pilot studies 

showing that low doses of LSD temporarily attenuated phantom limb pain. While pain returned 

at a diminished intensity, a second LSD administration cured pain in half of participants 

(Kuromaru et al., 1967). A follow-up further probed the effects of repeated doses of LSD and 

found reductions in pain intensity and reliance on analgesic medication in a majority of 

participants (Fanciullacci et al., 1977). A case report published recently by Ramachandran and 

colleagues provides additional evidence by presenting an instance of psilocybin, in combination 

with mirror visual feedback, resulting in elimination of chronic phantom limb pain 

(Ramachandran et al., 2018).  

Other Conditions and Considerations 



10 

Psychedelics have also recently shown clinical promise for several other conditions. 

While there is a high degree of variance in how specifically, psilocybin experiences are related to 

acute alterations in individuals’ self-perception in ways that are generally positive (Elias et al., 

2023). Consistent with this correlational finding, several pilot studies have demonstrated 

psilocybin’s efficacy in treating conditions related to self-perception. For example, at one month 

post-treatment, psilocybin reduced body weight and shape concerns, trait body image anxiety, 

and overall trait anxiety, compared to baseline scores. Body weight concerns remained reduced 

at three months post-treatment (Peck et al., 2023). In another study looking at body dysmorphic 

disorder, body dysmorphia-related obsessive compulsions were compared at baseline and various 

time points outwards of 12 weeks following treatment with psilocybin. Scores were significantly 

reduced at all follow-up time points (Schneier et al., 2023). Psilocybin may also be beneficial for 

conditions related to altered immune function and inflammation. While little research has been 

done to date, psilocybin, compared to placebo, was found to reduce the pro-inflammatory 

cytokine tumor necrosis factor-α acutely and reduce the inflammatory markers interleukin-6 and 

C-reactive protein at 7 days post-treatment (Mason et al., 2023). One case study has reported 

clinical benefits in microdosing psilocybin for the treatment of Lyme disease (Kinderlehrer, 

2023), with clinical trials currently underway to experimentally test this (Johns Hopkins 

University, 2023). 

Possible Mechanisms 

Despite mounting evidence of the therapeutic potential of psychedelic treatment for a 

variety of clinical indications, the mechanisms underlying these effects have received 

comparatively less investigation. While there have been few hypothesis-driven studies about 

possible causal mechanisms underlying the positive outcomes and clinical benefits documented 
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by the work reviewed above, post-hoc and exploratory follow-up analyses have offered possible 

neural and psychological accounts of these effects. These accounts seem to converge on the same 

conclusion: that psychedelic use results in increased flexibility, and this flexibility is associated 

with clinical benefits. Flexibility can be considered at different levels of analysis: neurally, 

cognitively, or psychologically. While each higher level is thought to afford changes in the 

lower, little research to date has attempted to empirically establish this link. Further, cognitive 

accounts of the effects of psychedelics have received comparatively less attention in general. 

Without this, it is difficult to make any causal claims for this theory. 

Psychological accounts 

Several psychological accounts for the clinical benefits of psychedelics have been 

proposed. One such idea relates to the experiences of “ego dissolution,” or loss of the sense of 

self, afforded by psychedelics (Carhart-Harris et al., 2018; Carhart-Harris et al., 2014; Lebedev 

et al., 2015; Nour & Carhart-Harris, 2017; Tagliazucchi et al., 2016). This ego-dissolution 

experience is positively correlated with improvements in well-being attributed to psychedelic use 

(Nour et al., 2016). Another is related to the MTEs that psychedelics reliably elicit. In their 

foundational study, Griffiths and colleagues (2006) found that psilocybin significantly increased 

scores on mysticism scales when administered in controlled settings. Over 60% of participants 

fulfilled criteria for having had a classically defined MTE. Participants reported their experiences 

as extremely impactful, with almost 75% rating it among the top 5 or single most personally 

meaningful and spiritually significant experience of their lives. Participants also attributed 

enduring positive changes in attitudes and behaviors to this experience, which were affirmed by 

3rd party ratings made by friends and family. Such changes included improved social 

relationships with family and others, as well as increased physical and psychological well-being 
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and care (Griffiths et al., 2006). These interpretations and enduring effects were found to be 

persistent up to 14 months after the experience (Griffiths et al., 2008). Psychedelic-induced 

MTEs have also been found to mediate their resulting positive outcomes and clinical efficacy 

(Griffiths et al., 2008, 2016).  

Another is related to the spontaneous experiences of insight that psilocybin has been 

found to dose-dependently elicit (Carbonaro et al., 2018, 2020; Davis et al., 2021). These insight 

experiences are correlated with improvements in depression symptoms after treatment (Roseman 

et al., 2018). Further evidence for their clinical relevance comes from interviews with patients 

who quit smoking after psilocybin treatment. Qualitative analyses of these interviews revealed 

patients attributed their smoking cessation to the vivid insights gained from their experiences 

with psilocybin (Noorani et al., 2018).  

While this seems to suggest a role of MTEs or insight experiences in the clinical benefits 

of psychedelics, these effects are mediated by survey measures of psychological flexibility 

(Davis et al., 2020, 2021). In other words, changes in psychological flexibility may afford these 

MTE and insight experiences which are correlated with subsequent clinical benefits. Further, the 

personality domain of openness, which psychedelics increase (MacLean et al., 2011), is 

associated with greater flexibility (Silvia et al., 2009). These psychological accounts, focusing on 

changes in the mind, thus seem to suggest the role of increased flexibility underlying the effects 

of psychedelic therapy. 

Neural Accounts 

 While the neural effects of psychedelic drugs are widespread, neural accounts of the 

mechanisms underlying their clinical benefits have largely focused on changes to the Default 

Mode Network (DMN) and Salience Network (SN). This focus on the DMN and SN are 
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informed by studies of MTEs elicited by other altered states of consciousness. For example, deep 

meditative practices can also elicit MTEs (d’Aquili & Newberg, 1998; Newberg & d’Aquili, 

2000), and the DMN and SN are altered acutely during meditation practices (Barrett & Griffiths, 

2018; Brewer et al., 2011).  

Both the DMN and SN are large connector hubs, comprising among the highest number 

of cortico-cortical connections in the brain (Hagmann et al., 2008). The DMN is comprised 

mainly of the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), 

parahippocampal cortex (PHC), and parts of the inferior parietal lobe (IPL) (Buckner et al., 

2008; Fox et al., 2005). These areas have dense expression of 5-HT2A receptors. Also known as 

the “task-negative network,” the DMN is associated with several cognitive processes including 

self-referential and ruminative processing, self-other distinctions, inner-speech, mentalizing, and 

theory of mind (Barrett & Griffiths, 2018). The SN, also known as part of the “task-positive 

network,” is primarily comprised of the anterior cingulate cortex (ACC) and anterior insula. 

These areas are associated with externally directed attention, detecting and maintaining goal-

relevant stimuli, and coordination between other brain networks (Bonnelle et al., 2012). 

 Both functional Magnetic Resonance Imaging (fMRI; e.g., blood oxygenation level 

dependent, or BOLD, response) and molecular imaging methods (e.g., Positron Emission 

Tomography) have demonstrated the impact of psychedelics on activity in the DMN and SN. 

Early work, utilizing molecular imaging techniques, indicated acute increases in mPFC glucose 

metabolism after administration of psilocybin (Gouzoulis-Mayfrank et al., 1999; Vollenweider et 

al., 1997). Conversely, more recent work has found that psilocybin acutely decreases BOLD 

activity in the mPFC, ACC, and PCC. These decreases in mPFC and ACC predicted the intensity 

of subjective drug effects (Carhart-Harris et al., 2012, 2017). Additionally, mescaline was found 
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to decrease IPL activity (Hermle et al., 1992). These discrepancies are likely due to 

methodological differences in both measurement of neural processes and experimental design 

(e.g., differences in drug metabolism and CNS absorption due to oral vs. intravenous 

administration; Barrett & Griffiths, 2018). As a result of such inconsistencies, across a small 

number of studies, the nature of neural activity changes is still somewhat ambiguous. Changes in 

insula activity are more variable, with psilocybin acutely increasing activity in right insula but 

decreasing in left insula (Lewis et al., 2017). 

 In contrast to neural activity, changes to neural connectivity have yielded more consistent 

results across different designs and methods. Psychedelics have been found to cause changes in 

structural connectivity by way of increased neural plasticity. Increases in neuritogenesis 

(formation of new neurites), spinogenesis (development of new dendritic spines), and 

synaptogenesis (formation of new synapses between neurons) have been reported after 

administration of serotonergic psychedelics both in vivo and in vitro (Ly et al., 2018). 

Psychedelics have also been shown to increase brain-derived neurotrophic factor expression, a 

protein integral in neurogenesis and synaptogenesis (Vaidya et al., 1997).  

In addition to these structural connectivity changes, the effects of psychedelics on 

functional connectivity changes have been more thoroughly investigated. Functional connectivity 

measures the change in linear coupling (the influence of one region on another by way of 

temporal correlations in activity) between brain regions. In other words, predicting activity in 

one brain area based on the activity in another (Carhart-Harris et al., 2012). fMRI scans during 

acute drug effects have shown that psilocybin decreases functional connectivity within the DMN, 

specifically between mPFC to PCC (Carhart-Harris et al., 2012; Tagliazucchi et al., 2014) and 

PCC to IPL (Carhart-Harris et al., 2012). Global Brain Connectivity analyses have shown 
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psilocybin decreases mPFC, ACC, and insula connectivity (Preller et al., 2020). Outside the 

DMN though, there are generally overall increases in functional connectivity, including between 

the DMN and SN (Roseman et al., 2014), and in sensory areas (Preller et al., 2020).  

Curiously, fMRI scans taken post-acutely reveal increases in within-network DMN 

functional connectivity. There are increases in PCC to ACC and ACC to IPL 24 hours after 

administration of the DMT containing brew ayahuasca (Sampedro et al., 2017). Increases in 

connectivity between mPFC to ACC are observed 24 hours after psilocybin administration 

(Carhart-Harris et al., 2017) and between mPFC to PCC 48 hours after administration 

(Smigielski et al., 2019). Within-network DMN connectivity increases, as well as global 

connectivity increases, have been found to persist at 1-week and 1-month post-psilocybin 

administration (Barrett et al., 2020). These overall increases in global connectivity, with acute 

decreases followed by post-acute increases in within-network DMN connectivity, have been 

likened to a ‘reset’ mechanism whereby acute disintegration affords post-acute re-integration 

leading to overall improvements in normal functioning (Carhart-Harris et al., 2017). 

Interestingly, these brain regions most affected by psychedelic use (mPFC, ACC, and 

IPL) are associated with behaviors symptomatic of increased flexibility (Filipowicz et al., 2016; 

Kerns et al., 2004; Kim et al., 2012). Further, increases in whole brain (global) connectivity are 

thought to be characteristic of increased neural flexibility, as there is increased “communication” 

between brain regions that are normally more distinct (Pang et al., 2016; Siegel et al., 2024). 

Like the psychological accounts outlined above, which focus on changes in the mind, these 

neural accounts focusing on changes in the brain strongly suggest the role of increased flexibility 

in the effects of psychedelics. 

Cognitive Flexibility 
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The neural accounts reviewed above provide a compelling descriptive, implementation 

level, account. Though by focusing on brain-specific changes they can provide little insight into 

how or in what ways one’s subjective experience is changed. This is particularly important as 

many of the clinical benefits of psychedelics have been documented in conditions that are 

primarily psychological and cognitive in nature. In contrast, by focusing on the mind rather than 

the brain, the psychological accounts can begin to address this. However, as these are assessed 

through correlational study designs, they cannot afford any causal explanations. Thus, while both 

the neural and psychological accounts reviewed above seem to implicate increases in flexibility 

as a potential mechanism underlying the effects of psychedelics, there exists a mind-brain gap in 

the evidence supporting this theory. To address this gap, help link the neural changes with 

psychological survey outcomes, and afford more definitive causal claims, it is imperative to 

more rigorously investigate flexibility at the cognitive level. 

Cognitive flexibility is a broad concept that was originally posited to characterize one’s 

ability to selectively change their concept systems in response to exogenous input. This was 

described in terms of switching behaviors, e.g., learning/adopting new rules in a task paradigm, 

simultaneously maintaining internal representations for multiple concepts and shifting attention 

between them, etc. (Scott, 1962). Early attempts to measure cognitive flexibility were done with 

task switching paradigms like the Dimensional Change Card Sorting Task (Zelazo, 2006), 

Multiple Classification Card Sorting Task (Bigler & Liben, 1992), and Wisconsin Card Sorting 

Task (Berg, 1948), which all require participants to learn and switch between rules when sorting 

or classifying test objects. For example, first matching objects by color and then by shape, 

quantity, or category. However, these behaviors are all related to executive function, which 

psychedelics have been found to impair (Barrett et al., 2018). 
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More recently, cognitive flexibility has been described more broadly in terms of one’s 

ability to adjust their thinking from old situations to new ones (Moore & Malinowski, 2009), 

adapt to new situations by overcoming habitual thought patterns or responses (Deák, 2004), or 

the simultaneous awareness of multiple possibilities in a given situation (Martin & Rubin, 1995). 

These broadened conceptualizations of cognitive flexibility, which may in fact be afforded by 

less developed executive function (Gopnik, 2024), have led to more varied and nuanced 

predictions of behaviors reflective of being more cognitively flexible. For example, being less 

biased by prior knowledge (Gopnik et al., 2017), considering a wider range of possible solutions 

to a problem (Bonawitz et al., 2014), being more exploratory even when aware of the costs of 

doing so (Liquin & Gopnik, 2022), and having better memory for information outside the scope 

of one’s goal in directed attention (Deng & Sloutsky, 2016). Here, I refer to this broader framing 

of cognitive flexibility that is afforded by less developed executive function (Gopnik, 2024). 

As cognitive flexibility is a broad cognitive process which encompasses several cognitive 

functions (Miyake et al., 2000), it is instantiated through distributed brain areas and networks. 

For example, switching behaviors generally involve prefrontal cortex (PFC) activity, with 

specific types of switching recruiting different areas of the PFC (Kim et al., 2012). The IPL is 

associated with the determination of saliency of information relative to prior beliefs, i.e., when 

new information is consistent with expectations of an existing mental model or new models 

should be considered (Filipowicz et al., 2016). And the ACC is associated with conflict 

monitoring and cognitive control (Kerns et al., 2004). These regions are among those with the 

greatest changes in activity and functional connectivity resulting from the use of psychedelics. 

Notably, they are associated with decreased activity, which may afford increases in flexibility. 
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Cognitive flexibility has historically been associated with creativity and creative problem 

solving, and early work investigating the effects of psychedelics reported improved creative 

problem-solving after use (Harman et al., 1966; Spitzer et al., 1996). As noted above, 

psychedelics also increase the personality domain of openness, which is associated with both 

creativity and cognitive flexibility (Silvia et al., 2009). Additionally, the DMN has been found to 

play a central role in flexible thinking (Beaty et al., 2016, 2020). Consistent with these earlier 

findings, evidence from both animal models (Torrado Pacheco et al., 2023) and humans (Doss et 

al., 2021) suggests psilocybin therapy increases cognitive flexibility and these changes persist 

outwards of one month post-treatment, and formal models of cognitive flexibility have been 

proposed to underly the effects of psychedelics (Carhart-Harris & Friston, 2019; Kuypers, 2018). 

In line with these models, a few studies have tested whether psychedelics alter scores on 

tasks measuring divergent thinking (DT), an instantiation of cognitive flexibility. DT is a method 

of exploring possible solutions to generate creative ideas. It is contrasted with convergent 

thinking (CT), which refers to the ability to quickly produce a single correct response (Guilford, 

1950). However, the results from studies on the effects of psychedelics on DT are inconsistent. 

Kuypers and colleagues (2016) found that while CT was decreased, DT was increased during the 

acute effects of ayahuasca. However, DT increases were found in only one of two DT tasks 

administered (Kuypers et al., 2016). On this same task, the Picture Concept Task (PCT), Mason 

and colleagues (2019) observed DT score increases the day after psilocybin administration. 

Scores returned to baseline at 7 days post administration. In contrast, CT scores were unaffected 

the day after and significantly increased 7 days post administration (Mason et al., 2019). In a 

follow-up study, Mason and colleagues (2021) found that both DT and CT scores (as assessed by 

the PCT and alternative use task) decreased during the acute effects of psilocybin. At 7 days post 
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psilocybin administration, there were no differences in DT. However, CT was decreased 

compared to placebo and was no different from baseline (Mason et al., 2021). Further, the 

placebo group showed evidence of practice effects, making the effects from the psilocybin group 

difficult to interpret and raising questions about the results from previous studies. 

The inconsistencies between Kuypers et al., (2016) and Mason et al., (2019, 2021) may 

be due to the way in which DT was operationalized. Specifically, both employed summary score 

metrics like fluency (number of responses generated) and originality (overall frequency of 

generated responses). This approach quantifies responses, rather than the processes underlying 

their production, and has been criticized for its inability to provide information about the 

cognitive processes underlying DT (Hass, 2017). While data from both psychological and 

neuroimaging research seems to implicate increased cognitive flexibility as a potential 

mechanism underlying the clinical benefits of psychedelics, a hypothesis-driven approach that 

moves beyond summary score metrics is needed in order to make conclusive statements. 

Specifically, predictions for specific behaviors that would be symptomatic of more flexible 

cognition must be tested directly. 

Cognitive Development as a Model 

 How could such behaviors be identified? One approach is to look to populations known 

to be more cognitively flexible than baseline adults. If such a population could be identified, it 

would allow for the generation of testable predictions for the specific ways in which 

psychedelics may impact cognition that would result in increased flexibility. Fortunately, such a 

population exists, is widespread, and (relatively) easy to access. Those people are children. As 

described above, the most salient neural changes that psychedelics engender are overall increases 

in global functional connectivity, with specific local decreases within the DMN and SN, 



20 

increases in neural plasticity, and decreased activity in DMN and prefrontal regions. Children 

(ages 7-9) have lower within-network DMN functional connectivity and fiber density between 

the mPFC and PCC than adults, as well as decreased gray matter volume (Supekar et al., 2010). 

Across a number of studies, these mPFC and PCC connectivity differences show a distinct linear 

trend such that connectivity increases with age between ages 7 to 35 (Fair et al., 2007; Sherman 

et al., 2014; Uddin et al., 2011). Infancy and early childhood are periods of development 

characterized by high degrees of neuroplasticity, including increased synaptogenesis and 

spinogenesis, which plateaus around 12 months and steadily declines across development 

(Huttenlocher, 1990). These plasticity changes are heterogeneous, with sensory cortices reaching 

peak shortly after birth but the PFC taking much longer (Huttenlocher & Dabholkar, 1997). 

Thus, children also have less developed frontal regions and corresponding executive function 

(Thompson-Schill et al., 2009), which may lead to their increased cognitive flexibility. 

In addition to these neural similarities between children and psychedelic treated adults, 

behavioral research also reports similarities in performance on creativity tasks. While DT 

performance decreases into middle to older adulthood (Jaquish & Ripple, 1985), adults with PFC 

damage exhibit increased performance compared to controls (Reverberi et al., 2005). Further, 

adults who receive transcranial direct current stimulation over their PFC also exhibit increased 

performance (Chrysikou et al., 2013). Thus, in instances where the adult brain is made more 

child-like, through injury or temporary change, they perform better on tasks requiring cognitive 

flexibility. 

It is worth noting that one of the consistent findings reported in cognitive development 

work is that children’s responses tend to be “noisier” than adults. Children have immature PFCs 

which results in less developed executive function, inhibition, and constraint. The variability in 
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their behavior has traditionally been viewed as sub-optimal, irrational, or even inflexible. 

Critically, however, these conclusions are only reasonable if children have the same goals and 

utilities as adults. Recent work suggests this is not the case. Whereas adults tend to prioritize 

reward maximization (Sumner et al., 2019), children tend to prioritize learning and exploration 

(Sumner et al., 2019). This protracted period of learning and exploration may facilitate humans’ 

unique cognitive capabilities (Gopnik, 2020), as converging evidence from animal research 

suggests that a species’ length of immaturity is correlated with their intelligence and relative 

brain size (Bennett & Harvey, 1985; Snell-Rood, 2013; Weisbecker & Goswami, 2010). As a 

result, children have been shown to outperform adults on tasks requiring flexible thinking (e.g., 

Gopnik et al., 2017; Plebanek & Sloutsky, 2017; Sumner et al., 2019). The variability observed 

between children and adults may therefore be reconstrued as both systematic and rational given 

differences in exploratory strategies and cognitive flexibility more broadly, afforded by these  

differences in executive function (Denison et al., 2013; Gopnik, 2020; Gelpi, 2021). 

In sum, both neural and behavioral data suggest that, when compared to baseline adults, 

adults treated with psychedelics and children exhibit some of the same differences. Indeed, I am 

not the first to draw this comparison between childhood and psychedelic experiences (Gopnik, 

2018). In this dissertation, I therefore treat children as a proxy psychedelic group. In doing so, 

leveraging what is known about the cognitive differences between children and adults to guide 

predictions for the specific ways psychedelics could be impacting cognition that would result in 

increased flexibility. What, then, are the specific cognitive features that allow children to be 

more flexible and exploratory? Much of what is known about these features comes from 

computational approaches to cognition, specifically those utilizing probabilistic models. 

Probabilistic Models of Cognition 
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It has been proposed that our causal knowledge of the world shares the same structure 

and function as scientific theories (e.g., Gerstenberg & Tenenbaum, 2017). Like scientific 

theories, our “intuitive theories” are structured representations of abstract causal relationships 

which can be used to explain and interpret events, and also support predictions and 

counterfactual inferences. Further, both scientific and intuitive theories are dynamic and 

consistently revised in light of new information (Gopnik & Wellman, 2012). This account, 

known as the rational constructivist account, views the process of cognitive development and 

learning as analogous to scientific theory change, where beliefs and information are analogous to 

hypotheses and evidence (e.g., Gopnik, 1996; Gopnik & Wellman, 2012).  

From birth humans are equipped with a powerful domain general learning mechanism 

which allows us to be remarkably prolific learners, using probabilistic information to infer the 

abstract causal structure of the world from observed events. We generate and revise our causal 

theories by selecting hypotheses to test from the space of all possibilities and inferring which 

provides the best explanation for some observed evidence. While several hypotheses could 

generate the observed evidence, some will be more probable than others. Thus, instead of having 

right and wrong answers, our theories are formed probabilistically by assessing the probability 

that a candidate hypothesis is true, compared to other alternatives, and identifying which has the 

highest probability. Probabilistic models of cognition use the principles of probability theory to 

formally model this process. The statistical relationship between some observed evidence to be 

explained and a candidate explanatory hypothesis can then be computed via Bayesian inference. 

In Bayesian inference, prior knowledge is formalized as a probability distribution over possible 

hypotheses. These “priors” represent the probability that a given hypothesis (h) is true prior to 



23 

observing any evidence. The posterior probability of a hypothesis, the probability of the 

hypotheses being true given the observed evidence (d), can thus be computed using Bayes’ Rule: 

𝑝(ℎ|𝑑) ≈ 𝑝(𝑑|ℎ) ∗ 𝑝(ℎ) 

Specifically, the posterior is proportional to the probability of seeing the observed evidence if a 

given hypothesis were true (the likelihood) weighted by the prior probability of that hypothesis 

(Perfors et al., 2011). 

With this mathematical formalization, these models can make specific quantitative 

predictions about which hypothesis best explains some evidence. Across a variety of learning 

paradigms, both adults and children choose the hypothesis that is most probable according to 

Bayesian inference (e.g., Bonawitz et al., 2014; Denison et al., 2013; Gopnik & Wellman, 2012; 

Tenenbaum et al., 2011). Through this computational account which characterizes theory 

formation and revision (i.e., learning) across development, three key cognitive features which are 

consistent with the recent broadened conceptualizations of cognitive flexibility have been 

proposed to afford children relatively greater flexibility in forming and revising their theories. 

Cognitive Features Affording Flexibility 

 First, children and adults differ in how much their prior knowledge guides their 

inferences. Theories must simultaneously be flexible enough for belief revision to occur, but 

conservative enough to prevent strong beliefs from being too easily overturned. These inferences 

are therefore based on the integration of current evidence with one’s prior knowledge. Since 

children have comparatively less prior knowledge than adults, this results in more weakly held 

beliefs. As a consequence, children’s inferences are more sensitive to the current evidence, often 

leading to more flexible belief revision (Gopnik et al., 2017; Lucas et al., 2014; Seiver et al., 

2013). 
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Second, children and adults differ in how they choose from the space of possible 

hypotheses. The process of Bayesian inference comes with computational cost, and the space of 

possible hypotheses to evaluate is intractably large (Gittins & Jones, 1979; Griffiths et al., 2012; 

Sanborn et al., 2010). Much empirical work suggests that people across development instead 

approximate Bayesian inference by sampling a subset of hypotheses to evaluate (e.g., Denison et 

al., 2013; Sanborn, 2017; Sanborn & Chater, 2016; Thomas et al., 2008; Vul et al., 2014; Vul & 

Pashler, 2008). This process of searching and sampling from hypothesis space can unfold in 

different ways. It has been proposed that while adults tend to search narrowly, only sampling 

hypotheses that incrementally differ, children tend to search broadly, allowing them to arrive at 

solutions that may ultimately be better than local alternatives (Gopnik, 2020). 

Third, children and adults differ in how they search their exogenous environment 

for evidence. Given their lack of inhibition and executive control, children have less selective 

attention, allocating exogenous attentional resources more diffusely and exploring their 

environments more broadly than adults. This broader exploration allows them to pick up on 

various relevant cues in their environment that adults may potentially miss (e.g., Blanco & 

Sloutsky, 2020; Plebanek & Sloutsky, 2017; Rich & Gureckis, 2015). 

 In this dissertation, I hypothesize that these three key features which discriminate adult 

and child cognition, allowing children to be more flexible, will also discriminate between adults 

in psychedelic-treated and control groups. In Chapter 2, I present a novel measure of problem 

solving under dynamic constraints which can be used to quantify search and sampling strategies. 

In Chapter 3, I present a pilot test of whether psychedelic treatment will result in (1) decreased 

influence of prior knowledge on inferences, (2) employment of broader, more exploratory, 

search strategies when sampling hypotheses, and (3) more diffuse exogenous attention. Finally, 
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in Chapter 4, I examine whether these cognitive flexibility tasks are susceptible to practice 

effects. Collectively, this work aims to provide initial support for a more holistic and 

comprehensive account of the benefits of psychedelic therapy, improving the research on 

cognitive flexibility in psychedelic studies and more generally.  
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Chapter 2 Contexto: A Novel Measure of Flexible Reasoning Under Dynamic Constraints 

Human reasoners are routinely faced with situations where they must think flexibly and 

creatively under dynamic constraints, and seem to enjoy doing so (e.g., in the case of many 

strategy and word games). Longstanding empirical interest in these capabilities have spurred an 

entire field of research on creativity and cognitive flexibility. However, to date, the tools 

available to quantify and better understand this behavior are limited. Below, I review the existing 

research from this field, paying special attention to the limitations of existing methods for 

measuring flexible thinking, before proposing a novel approach. 

Creativity is typically studied using one of four approaches based on Rhodes’ 4P’s model of 

creativity (Rhodes, 1961), each of which focuses on a different dimension of creativity: 1. Person 

– the contributions of individual traits and characteristics (Do successful artists share unique 

personality traits?), 2. Process – how one generates, develops, and refines creative ideas (How 

does the process of idea generation vs evaluation differ?), 3. Place/Press – the effect of 

environmental factors and contexts (Do people generate different ideas in laboratory settings vs 

in the real world?), 4. Product – evaluating the results and outcomes of the creative process (How 

“good” is a particular creative solution?). The Person, Place, and Product approaches are all 

contingent on first having a creative output: One needs an output to evaluate its goodness, 

identify creative individuals to investigate their individual characteristics, and compare outputs 

generated in different contexts. Thus, much of the creativity literature has focused on Process 

approaches, and the primary method to assess creativity is through measures which quantify 

Process (Long, 2014). 

Torrance (1966) characterized the creative process as first requiring the development of 

hypotheses or proposed solutions, then testing and evaluating these candidate hypotheses, and 
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ultimately sharing the created product. Guilford’s Structure-of-Intellect model (1956), which 

Torrance expanded, frames the creative process as a form of problem solving which recruits two 

distinct operations: divergent and convergent thinking. Divergent thinking (DT) characterizes the 

process of broadly searching for and generating candidate solutions, whereas convergent 

thinking (CT) characterizes the selection of the best option among candidates. DT has 

conventionally been viewed as more relevant to the success of creative problem solving 

(Guilford, 1956), and as a result is the most widely used operational definition of creativity 

(Hocevar, 1981).  

Despite the widespread use of DT tasks, it has been a challenge for researchers to find 

appropriate measures to quantify this construct. Guilford (1957) proposed several scoring 

measures of DT, including fluency (number of responses produced), flexibility (category 

variation amongst responses), originality (uniqueness or novelty of responses), and elaboration 

(depth or detail included in responses), and applied these scoring measures to the data produced 

by the Alternative Use Task. In this task participants must generate as many “creative and 

unusual” uses as possible for a common household object in a specific timeframe (Guilford, 

1967). Torrance (1966) built on Guilford’s DT framework and developed the Torrance Test for 

Creative Thinking (TTCT), operationalizing these same DT scoring measures across several 

tasks (Torrance, 1966). These tasks are amongst the earliest, and still the most widely used 

measures of creativity (see. for example, Said-Metwaly et al., 2017). However, both have 

received widespread criticism.  

 The most common criticisms of DT tasks, and creativity measures more generally, regard 

their psychometric shortcomings. The validity of DT tasks has been routinely questioned (Baer, 

2016; Cropley, 2000; Hennessey & Amabile, 2010; Lemons, 2011; Said-Metwaly et al., 2017), 
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and indeed, empirical evidence suggests their validity varies depending on the conditions in 

which the test is administered (Harrington, 1975; Katz & Poag, 1979; McCrae, 1987; Wallach & 

Kogan, 1965). Even more troubling is the extensive evidence of a lack of convergent validity 

between DT and other creativity tasks (Taylor, et al., 1963, Davis & Belcher 1971, Getzels & 

Csikszentlmihalyi, 1973; Ellison, 1973, Andrews, 1975; Barron, 1969; Beittel, 1964; Brittain and 

Beittel, 1961; Dillehunt, 1973; Goolsby & Helwig, 1975; Gough, 1976; Hadden & Lytton, 1971; 

Jordan, 1975; Karlins et al., 1969; Kogan & Pankove, 1974; Popperova, 1972; Roweton et al., 

1975; Skager et al., 1967; Hoecevar, 1983). Strikingly, several researchers have found that 

performance on creativity tasks does not correlate with actual creative ability, as measured by an 

individual’s success in various creative fields (Feldhusen & Goh 1995; Kanter, 1984; Martin et 

al., 1981). 

While concerning, these inconsistencies should not necessarily come as a surprise, as 

creativity is a broad construct. It is reasonable to think that the skills and characteristics that 

afford one to be a prized chef may differ from those of a musician, painter, or writer. 

Nevertheless, creativity is largely treated as a single unitary construct, without appreciation for 

its different dimensions (Hocevar, 1981). This is perhaps the most salient issue with DT tasks, 

they neglect an entire component of creativity: convergent thinking.  

To account for this, Mednick (1962) developed an alternative measure of creativity called 

the Remote Associates Task (RAT). In each task trial, participants are given three target cue 

words and must generate a fourth word which individually pairs with all three cues. For example, 

for the cue words “Comb, Dew, Moon,” the correct answer is “Honey.” To solve RAT trials, 

participants must generate candidate answers, evaluate their fit with each of the target cue words, 

and then select which of their candidate answers is best. This process is thought to involve an 
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initial stage of DT, followed by a subsequent stage of CT, thereby recruiting both operations 

involved in the creative process (Smith et al., 2013). Further, unlike many other measures of 

creativity, it enforces constraints on the generated ideas, which is more akin to real-world 

creative scenarios in which situational demands or goals must be met. As a result of its 

improvements over pure DT tasks and other measures, the RAT has become a commonly used 

measure of creativity (Wu et al., 2020). However, the RAT has also received its own criticisms. 

Despite recruiting both DT and CT processes, scores on the RAT are generally not correlated 

with scores on other measures of DT or creativity (Lee Bae et al., 2014). Studies which have 

found correlations are generally weak, with correlation coefficients usually around r = 0.10 (Taft 

& Rossiter, 1966, Akbari Chermahini et al., 2012, Lee Bae et al. 2014). On the other hand, RAT 

scores have been found to have stronger correlations with CT tasks (Akbari Chermahini et al., 

2012; Laughlin et al., 1968; Taft & Rossiter, 1966), particularly on insight problem solving tasks 

(Huang et al., 2012; Chang et al., 2016). While insight problem solving (overcoming mental 

blocks to see problems in a new way) requires creative and flexible thinking, it is also a measure 

of intelligence. Indeed, the strongest correlations between RAT scores and other constructs has 

been to general measures of intelligence (Lee & Therriault, 2013; Lee Bae et al., 2014). 

 Beyond the issues raised above, the RAT has two other significant limitations. First, 

though it does purport to capture the DT process, it does not provide concrete data on this portion 

of the process. Conventionally, only participant’s proposed answer on each trial is recorded and 

scored. Recently, researchers have taken a more computational approach, asking participants to 

record all the responses that came to mind while trying to arrive at their answer. This allows the 

semantic distance between responses to be computed as a more direct quantification of DT 
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(Smith et al., 2013). Despite being asked to report everything that comes to mind, participants 

usually give only a few responses per trial, substantially undermining the rigor of the analyses. 

Second, while the RAT strives for more realistic problem solving by imposing 

constraints, these constraints are static. In many cases of real-world problem-solving, people get 

some form of feedback on their proposed solutions, which serves to further constrain the 

generation of subsequent solutions. In this way, they face problem-solving scenarios with 

dynamic constraints. For example, in the scientific research process, one has some initial 

hypothesis, tests it, and observes the results. Using this feedback, one then re-evaluates their 

hypothesis, revises it, and then tests the revised hypothesis, steadily making incremental changes 

as this process is repeated. A similar process also occurs in many strategy and word games. 

When one is playing a crossword puzzle, the clues stay the same, but the quality of proposed 

solutions (the words that answer the clues) is modified as the player fills out other words on the 

game board. The RAT falls short of capturing this continual updating inherent in many problem-

solving scenarios. 

Creative foraging models have come closest to assessing problem solving under dynamic 

constraints (Hart et al., 2017). However, it is unclear if this framework, which was initially 

designed to characterize animal foraging behavior via navigation of physical spaces, could 

appropriately capture hypothesis search in semantic space. The present work proposes to address 

this gap by developing a novel task, based on the popular internet game Contexto, to measure 

how people search over a hypothesis space with dynamically updating constraints. While in the 

original game participants have access to one trial per day and can make an unlimited number of 

guesses, here they complete multiple trials in which they attempt to guess a secret target word 

within a finite number of guesses. When they submit a guess, participants receive feedback about 
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how similar (in semantic distance) their guess is to the target. To be successful, participants must 

utilize this feedback to continuously update the constraints on their subsequent guesses. Across 

two experiments, we first assess whether this novel task can be used to measure creative problem 

solving. Further, whether performance is susceptible to practice effects to assess its suitability for 

use in pre- and post-test designs (for intervention studies, tracking cognitive decline, etc.). 

Broadly speaking, we hypothesized that participants will be sensitive to the semantic distance 

feedback and use it to inform their subsequent guesses. Although intuitively plausible, this is an 

aspect of the process of creative thinking that prior tasks have thus far been unable to capture.  

Experiment 1 

In Experiment 1, we assess whether participants are sensitive to the feedback they 

receive. If people are indeed sensitive to feedback and use it to inform their subsequent guesses, 

they should behave differently depending on the proximity of their previous guess to the trial’s 

target word. However, since this process is contingent on the particular guesses a participant 

produces, we provide them with a start word on each trial. This design allows us to anchor 

participants at various distances from the target word.  

We hypothesized that: (1) The average similarity between sequentially generated 

responses, and between responses and the target word, will be higher when the starting word is 

closer to the target. (2) Participants should produce better guesses (i.e., a subsequent guess closer 

to the target word) when the starting word is closer to the target. (3) Participants should 

successfully guess the target word more often when the starting word is closer to the target. 

Method 

Participants. 61 participants were recruited from the University of California, San 

Diego, undergraduate research pool. Participants answered basic demographic questions 



32 

including age (M = 21.50 years, SD = 3.67, 13.11% declined to answer), gender identity (72.1% 

female, 16.4% male, 3.3% other gender identity, 8.2% declined to answer), and race (24.6% East 

Asian, 19.7% Hispanic, 16.4% White, 11.5% multiracial, 4.92% South Asian, 4.92% Black, 

1.64% Native Hawaiian or Pacific Islander, 1.64% Middle Eastern, 1.59% other racial identity, 

13.1% declined to answer). 

Materials. The target words were chosen based on a pilot study. We selected target 

words that were correctly identified by a majority of participants, but took an average of about 

twenty guesses. To generate the rankings of potential guesses to the target words, a dictionary of 

approximately 80,000 words was rank-ordered by their similarity to the target word for every 

trial. Similarity was computed using the Global Vectors for Word Representation (GloVe; 

Pennington et al., 2014). GloVe is an unsupervised learning algorithm that produces vector 

representations for words. A set of pre-trained word vectors was used which contained 840 

billion tokens gathered via Common Crawl. The original set of word vectors was filtered to 

include only a subset of words originally used by Contexto, then further filtered to remove words 

with two or fewer letters, all stop words, words flagged as inappropriate (e.g., curse words and 

slurs), words containing numbers or punctuation, and words with multiple accepted spellings 

(e.g., keeping barbecue and removing barbeque). Finally, all words were lemmatized and any 

resulting duplicates were removed. This process resulted in a final dictionary containing 80,224 

words. Similarity was defined by the cosine between any two word vectors. Compared to Latent 

Semantic Analysis (LSA), which captures semantic structure by focusing on singular value 

decomposition (SVD) to reduce the dimensionality of a term-document matrix, GloVe uses 

global word co-occurrence to capture meaning from the entire corpus. This approach has been 

shown to produce higher-quality word embeddings and perform better on semantic measures like 
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word analogy tasks (Pennington et al., 2014). After computing the cosine similarity between 

each word in the dictionary and the target word for a given trial, the dictionary was arranged by 

the resulting values in descending order. A given word’s rank was defined by its numerical 

position in the arranged dictionary (where the first word was the target), and that ranking was 

given to participants as feedback for their guesses in a given trial. To account for idiosyncrasies 

that occurred when creating a sorted dictionary for a word in its singular vs plural form (i.e., 

differences between the ranked dictionary for the target word “frog” vs. “frogs”), the associated 

cosine similarities for each word in the dictionaries were averaged and then rank-ordered. The 

resulting “denoised” dictionary was used in all applicable cases. 

Procedure. Participants first saw an instructions screen that gave them the rules of the 

game. They were informed that each trial contains a randomly selected secret target word, and 

they had to figure out what that word was. They were also told that the secret word will always 

be a noun, that they have a maximum of ten guesses per trial, and that they will receive a 

randomly chosen word to start with at the beginning of each trial (see Appendix A for full 

instructions text). The start word on each trial varied in closeness to the target words. The 

proximity of the start words to the target were either close (approximately rank 10), medium 

(approximately rank 100), or far (approximately rank 1000). Each participant saw three trials 

from each start word proximity condition, for a total of nine trials. The same nine target words 

(cookie, flower, barbecue, tree, moose, pancake, camera, car, and pencil) were used for all 

participants, but each target word was randomly assigned to one of the start word proximity 

conditions. Thus, while all participants had a trial where, for example, “cookie” was the target 

word, some received a start word on this trial that was close and others receive a start word that 

was medium or far (see Appendix A for the full list of start words per start proximity condition 
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for each target word). Participants submitted their guesses one at a time and were shown the 

guess’ rank after submission. If the target word was correctly guessed, a congratulatory screen 

was displayed, and the participant moved on to the next trial. If a participant exhausted all ten 

guesses without ultimately guessing the trial’s target word, they were shown what the target 

word was and then began their next trial. 

Results 

We first assessed the difference between the average similarity of sequentially generated 

responses in different start word proximity conditions. We fit a linear mixed-effects model 

including start word proximity (Close, Medium, and Far) as a fixed effect. Participant, target 

word, trial, and the interaction of participant and start word proximity, were included as random 

effects. The resulting full model was as follows: similarity ~ start_word_proximity + (1 | 

participant_id) + (1 | target_word) + (1 | trial) + (1 | participant_id:start_word_proximity). 

Significance of the main effect was assessed using a Type III Analysis of Variance with 

Satterthwaite's method. This revealed a significant main effect of start proximity, F(2, 114.2) = 

15.09, p < 0.001. Post-hoc pairwise comparisons using the Tukey method for multiple 

comparisons indicated that the mean similarity score for sequentially generated responses in the 

Close condition (M = 0.435) was significantly higher than in the Medium (M = 0.410), t(153) = 

3.25, p = 0.004, d = 0.16, 95% CI [0.06, 0.27]. The mean similarity score in the Close condition 

was significantly higher than in the Far (M = 0.393), t(146) = 5.46, p < 0.001, d = 0.27, 95% CI 

[0.16, 0.37]. Also, the mean similarity score in the Medium condition was significantly higher 

than in the Far, t(93) = 2.49, p = 0.038, d = 0.11, 95% CI [0.02, 0.20]. 
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Figure 2.1 Comparison of similarity between sequentially generated responses across trials with different start word 
proximities. 
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(M = 0.373), t(135) = 13.00, p < 0.001, d = 0.81, 95% CI [0.67, 0.96]. The mean similarity score 

in the Close condition was also significantly higher than in the Far (M = 0.283), t(131) = 22.70, p 

< 0.001, d = 1.42, 95% CI [1.27, 1.56]. Further, the mean similarity score in the Medium 

condition was significantly higher than in the Far, t(104) = 10.22, p < 0.001, d = 0.60, 95% CI 
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Figure 2.2 Comparison of similarity between responses and target word across trials with different start word 
proximities. 
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4.24, p = 0.12. Participants were equally likely to make better guesses regardless of start word 

proximity to the target. 

Finally, to assess whether participants ultimately guessed the target word correctly more 

often when they received a starting word that was closer, we compared the average number of 

correctly guessed words between start proximity conditions. Trials where the target word was 

correctly guessed were coded 1, and those where the target word was not guessed were coded 0. 

We then fit a mixed-effects logistic regression to examine the effect of start word proximity 

(Close, Medium, Far) on the likelihood of correctly guessing the target word. Participant, target 

word, and trial were included as random effects. Including the interaction of participant and start 

word proximity resulted in a singular fit model, but this term did not result in an improved model 

fit (p > 0.05). The resulting full model was as follows: correct ~ start_word_proximity + (1 | 

participant_id) + (1 | target_word) + (1 | trial). Significance of the main effect was assessed with 

nested model comparisons. Results revealed a significant main effect of start word proximity, 

𝜒2(2) = 179.7, p < 0.001. Post-hoc pairwise comparisons using the Tukey method for multiple 

comparisons indicated that participants guessed the word correctly more often in the Close 

condition (M = 0.61) than in the Medium (M = 0.22), z = 7.77, p < 0.001, d = 2.96, 95% CI 

[2.21, 3.71]. They also did so more often in the Close condition compared to the Far (M = 0.08), 

z = 9.01, p < 0.001, d = 4.55, 95% CI [3.54, 5.55], and the Medium condition compared to the 

Far, z = 3.84, p < 0.001, d = 1.58, 95% CI [0.77, 2.40]. 

Discussion 

 The results from Experiment 1 provide initial evidence that participants do in fact engage 

with this task in a meaningful way. They integrate the feedback they receive from each guess to 

constrain their subsequent guesses. Further, they exhibit different search behaviors depending on 



38 

how close to the target word their guesses were. (1) They guessed more similarly to other 

guesses and the target when close and less similarly when further away, and (2) they were more 

likely to correctly guess the target when closer. Additionally, the task yielded more data per 

participant than comparable tasks. Across all trials, participants guessed an average of 8.11 

words out of a maximum of 10. 

Experiment 2 

People often develop strategies when engaging in this type of reasoning. In fact, several 

academic papers (Anderson & Meyer, 2022) and online resources (Benveniste & Frere, 2022) 

have been dedicated to investigating optimal strategies when playing similar games. The ability 

to administer a task multiple times provides several advantages, including being able to assess 

for pre- and post-intervention changes in experimental studies. In Experiment 2, we tested 

whether participants’ performance exhibited any practice effects across multiple administrations. 

Method 

Participants. 41 participants were recruited from the University of California, San 

Diego, undergraduate research pool. 19 were excluded due to providing nonsense answers which 

compromised the similarity measure between responses, resulting in a final dataset of 22 people. 

Participants answered basic demographic questions including age (M = 21.45 years, SD = 2.84), 

gender identity (77.3% female, 18.2% male, 4.55% other gender identity), and race (50.0% East 

Asian, 27.3% White, 13.6% multiracial, 4.55% Black, 4.55% Native American). 

Procedure. The procedure for Experiment 2 was identical to Experiment 1, with the 

following exceptions. First, participants were not given a start word at the beginning of each 

trial, and this was removed from the instructions text. Second, participants completed the task 

three separate times, each one week apart. The sets of target words were randomized between 
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time points (Appendix A). That is, while the same five target words were always used at a given 

time point, which time point they occurred in varied between participants. Finally, participants 

had 20 guesses max per trial instead of 10. 

Results 

We first assessed the difference between the average similarity of sequentially generated 

responses at different time points. We fit a linear mixed-effects model with time point (1, 2, and 

3) as a fixed effect. Time point was dummy coded and mean-centered. Random effects were 

included for participant, target word, and the interaction of participant and time point. The 

resulting full model was as follows: similarity ~ time_point + (1 | participant_id) + (1 | 

target_word) + (1 | participant_id: time_point). Significance of the main effect was assessed with 

nested model comparisons. This revealed no significant main effect of time point, c2(1) = 1.35, p 

= 0.24. Participants’ sampling strategies did not change at different time points (Figure 2.3). 

 
Figure 2.3 Comparison of similarity between sequentially generated responses across time points. 
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We next assessed whether there were any differences in the extent to which participants 

ultimately guessed the target word correctly between time points. To do so, we compared the 

average number of correctly guessed words between time points. Trials where the target word 

was correctly guessed were coded 1, and those where the target word was not guessed were 

coded 0. We then conducted a mixed-effects logistic regression to examine the effect of time 

point on the likelihood of correctly guessing the target word, including participant, target word, 

and the interaction of participant and time point as random effects. The full model fit was: 

correct ~ time_point + (1 | participant_id) + (1 | target_word) + (1 | participant_id:time_point. 

Significance of the main effect was assessed with nested model comparisons. This revealed a 

significant main effect of time point, 	𝜒2(1) = 5.55, p = 0.019. Post-hoc pairwise comparisons 

using the Tukey method for multiple comparisons indicated participants were more likely to 

correctly guess the secret word at time point 1 (M = 0.13%) than at time point 3 (M = 0.03%), z 

= 2.54, p = 0.03, OR = 4.4. They were also more likely to correctly guess the secret word at time 

point 2 (M = 0.19%) than at time point 3, z = 3.41, p = 0.0019, OR = 6.84. However, there was 

no difference between time point 1 and 2, z = -1.20, p = 0.45, OR = 0.64. This suggests that 

participant performance did not improve with repeated administrations of the task. 

Discussion 

 In Experiment 2, we found no evidence for practice effects on this task. If participants 

were improving on the task or developing effective strategies, we would expect them to (1) 

change their search strategies such that sequentially generated responses would be more or less 

similar at different time points, and (2) correctly guess the target word more often in later time 

points. Despite completing the task on three separate occasions, participants’ overall strategies 

did not seem to change. There were no differences in the similarity of sequentially generated 
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responses across time points. Moreover, their performance did not improve. They did not 

correctly identify the target words more often in subsequent time points. In fact, they performed 

worse at time point 3 than the first two. This suggests that the trials at time point 3 were more 

difficult than the first two, rather than participants exhibiting practice effects. Overall, we found 

no evidence of practice effects for this task, suggesting it is amenable to being administered 

multiple times in a particular study. 

General Discussion 

 Humans routinely face a unique problem-solving challenge where they must think 

flexibly and conduct a hypothesis search under dynamic constraints. This occurs in many 

professional contexts, for example when engaging in the scientific process. It is also something 

we enjoy and seek out, in the case of strategy and word games. To date, the tools available to 

quantify and better understand this behavior are limited. As noted above, both general creativity 

measures and DT tasks focus on this idea of the search problem, but do not explicitly capture the 

filtering and constraint satisfaction aspects of these problems, and have been long criticized for 

psychometric shortcomings. The RAT, a measure that involves both DT and CT, is an 

improvement, but only incorporates static constraints and typically yields smaller amounts of 

data. Here, we introduce a novel task based on the popular internet game Contexto that better 

captures how people solve this problem and yields more repeated observations per subject. Thus, 

this novel task addresses several shortcomings of extant measures and allows us to more robustly 

quantify how people approach the search problem. 

 In Experiment 1, we tested several intuitive hypotheses about the ways in which people 

engage in this type of problem solving. We found that people are sensitive to the feedback they 

receive and use it to constrain their hypothesis search. They produced guesses more similar to 
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each other and to the target when it is close and less similar when it is further away. They were 

also more likely to correctly guess the target when they were closer to it. In Experiment 2, we 

observed no practice effects from repeated administrations of this task. Participants’ performance 

did not improve, and their search strategies did not differ, even after completing the task multiple 

times. Together, the results of these initial experiments provide support for the use of this task as 

a novel measure of reasoning under dynamic constraints. 

 One additional feature of this task is its inherent flexibility. There are many parameters 

that researchers can modify to fit the needs of a particular experimental paradigm, making it 

potentially useful in a variety of contexts: Participants can be given start words to artificially 

situate them at different distances from the target word to assess their behaviors at these different 

points. The number of trials and guess limit per trial (should one want to include them) can vary. 

Different success criteria can be set – for example a requirement that they must guess the target 

correctly, or end within the top N words. The semantic content of the target words can also vary 

to assess whether participants have specific lexical biases (e.g., more likely to generate nouns). 

Further, the data generated by this task can be analyzed in different ways to examine different 

aspects of this reasoning process: One can look at the number of words correctly guessed, the 

proportion of responses that were better than previous ones, average similarity between 

sequentially generated responses, average similarity between responses and the target, maximum 

pairwise similarity between any two responses, etc.  

 Finally, this task addresses recent calls for increasing the use of games as experimental 

paradigms in psychology research (Allen et al., 2023). Many, if not most, experiments involve 

tedious and onerous procedures requiring researchers to incentivize participation. Playing games 

has been an activity enjoyed by people across different cultures (Suchow et al., 2020), ages 
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(Brändle et al., 2021), and throughout human history (Depaulis, 2020). Tasks that are 

intrinsically rewarding can result in increased quality and quantity of data (Hartshorne et al., 

2019), and the results from the current work are consistent with this.  

The results from Experiments 1 and 2 demonstrate that this task successfully quantifies 

this unique form of reasoning under dynamic constraints, presenting an improvement over the 

currently available methods for assessing this and affording researchers sufficient flexibility to 

be applied across contexts. Future research can apply computational approaches to better 

characterize the specific search and sampling strategies people employ. For example, 

performance can be compared to creative foraging tasks (e.g., Hart et al., 2017) and the 

predictions from different foraging algorithms can assess the extent to which people deviate from 

optimal search. We can additionally test whether and how people’s performance and search 

strategies change in different clinical conditions, or in response to different clinical treatments 

(see Chapter 3). Finally, given that there is no evidence for practice effects on this task, it can be 

used to validate interventions intended to affect cognitive flexibility. Our results provide initial 

support for intuitive hypotheses about how people engage in reasoning under dynamic 

constraints and provide a paradigm for future research to quantify the specific search and 

sampling strategies employed by humans in a variety of contexts and clinical conditions. This 

work will collectively help us better understand a unique and ubiquitous form of reasoning. 
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Chapter 3 The Effects of Psilocybin on Cognitive Flexibility: A Pilot Study 

As described in Chapter 1, psilocybin therapy has recently shown promise as an effective 

treatment option for a variety of clinical indications (Andersen et al., 2020; Johnson & Griffiths, 

2017; Van Amsterdam & Van Den Brink, 2022), but its mechanism of action remains unclear. 

The current work proposes a novel explanation for these therapeutic benefits: increasing 

cognitive flexibility. The conditions most responsive to psychedelic treatment are all 

characterized by pathologically rigid cognition (e.g., Chamberlain et al., 2006; Lee & Orsillo, 

2014; Palm & Follette, 2011; Todd et al., 2015). For example, high trait anxious individuals 

display an increased usage of their priors, failing to update predictions in response to changes in 

evidence (Browning et al., 2015; Kraus et al., 2021). Individuals with depression and anxiety 

exhibit exogenous attentional biases, such that they tend to narrowly fixate on negative or 

seemingly threatening stimuli (Abend et al., 2018; Mennen et al., 2019). They also exhibit 

increased negative and decreased positive interpretation biases, which are resistant to 

disconfirming information (Everaert et al., 2018). These attentional and interpretation biases 

often create negative feedback loops whereby people inappropriately generalize from negative 

experiences and interpret novel stimuli as negative or threatening. This results in increased 

attention to them at the cost of other things in their environment. In this way, people limit their 

ability to be exposed to new evidence that might otherwise result in theory revision.  

These so called “learning traps” (Rich & Gureckis, 2015) are thought to underly many 

pathologies. In fact, cognitive behavioral therapy and exposure therapy, the conventional non-

pharmacological treatments for depression and anxiety, specifically target cognitive rigidity and 

learning traps by forcing people to revise their theories by exposing them to evidence they 

otherwise would not get themselves. Further, aberrant DMN connectivity has routinely been 
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found among individuals with major depressive disorder (e.g., Leibenluft & Pine, 2013; 

Seminowicz et al., 2004; Sheline et al., 2009). 

Chronic pain patients also display similar hallmarks of cognitive rigidity (Ellis, 1987; 

Heapy et al., 2006). Pain is a complex experience. There is both a sensory and an affective 

component to pain. It is felt in terms of intensity as well as unpleasantness (Price et al., 1987). 

How one evaluates the context surrounding their pain impacts their experience of that pain 

(Grant & Zeidan, 2019). By affording theory revision, possibly through functional connectivity 

and plasticity changes (Castellanos et al., 2020), psychedelics may not only alleviate the anxiety 

and depression that are often chronic pain comorbidities but provide analgesia directly through 

changing a patient’s relationship with their pain. Specifically, changing the contextual evaluation 

of their pain which may attenuate affective-driven pain. Such perspective shifts were reported as 

crucial to the phantom limb pain relief that psilocybin engendered (Ramachandran et al., 2018). 

The work outlined below seeks to clarify whether and how psilocybin may result in 

changes to cognitive flexibility. Specifically, three key features symptomatic of more flexible 

cognition are tested. These features are inspired by developmental differences from the proposed 

cognitive development model in Chapter 1. Specifically, that children and adults differ in how 

much their prior knowledge guides their inferences, how they sample from the space of possible 

hypotheses and interpretations, and how they search their exogenous environment for evidence. 

They are also inspired by reported differences in clinical populations that psychedelics are 

effective in treating. The interpretation biases expressed in individuals with anxiety and 

depression could result from hyper local sampling of some high prior negative hypotheses. Their 

deficits in theory revision could result from not sampling any disconfirming hypotheses or 

restricting their attention and not exposing themselves to disconfirming evidence. Together the 
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results of these experiments represent an important step toward understanding how this novel 

and unprecedently effective therapeutic treatment affords its clinical benefit.  

Study Design 

Data for the cognitive tasks outlined below were collected from a much larger double-

blind placebo-controlled study examining the therapeutic efficacy of psilocybin as a treatment 

for chronic phantom limb pain. Importantly, the Results sections below present preliminary data 

from the pilot phase of this study and the reported analyses serve to communicate the analysis 

plan for the follow-up work with a larger sample size. Thus, the statistical analyses here are 

solely to preview what they look like in the current sample and are not intended to be taken as 

representative of the final sample. In this pilot study, nine total participants with chronic 

phantom limb pain were enrolled and randomized to receive either psilocybin (25 mg p.o.; n = 5) 

or a niacin control (100mg p.o.; n = 4). Due to limb amputation, finding weight-adjusted drug 

doses is complex. Considering that recent evidence suggests there are no differences in the 

subjective effects of psilocybin as a result of weight (Garcia-Romeu et al., 2021), fixed doses 

were administered. fMRI scans were conducted at baseline and the day after the experimental 

drug session. Clinical outcomes (e.g., pain, depression, anxiety, etc.) were collected at multiple 

intervals throughout the study and longitudinally (1-, 2-, and 4-weeks following the experimental 

session). All cognitive tasks were conducted the day following the experimental drug session. 

For the purposes of this dissertation, only data from the cognitive tasks will be reported. 

Participants 

Participants with a single extremity amputation were recruited through flyers, the 

internet, physician referral, and direct contact (if they had a MyChart account and record of 

amputation). Of the 159 individuals who completed the initial telephone screening, nine were 
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randomized and completed the study protocol. Demographics for all participants are shown in 

Table 3.1. All participants reported experiencing phantom limb pain with an average pain rating 

of at least 3/10 and occurring at least once per week. All participants in this sample had either a 

leg (seven) or finger (two) amputated. The side of the amputated extremity varied, with four 

having a right-side amputation, and five having a left-side amputation. This study was approved 

by the UC San Diego IRB, and written informed consent was obtained from all participants. 

Table 3.1 Participant Demographics 
Measure Placebo 

(n=4) 
Psilocybin 
(n=5) 

All Participants 
(n=9) 

Gender (% female) 50% 40% 44% 
Age in years (mean, SEM) 31.2 (4.33) 41.0 (6.55) 36.7 (4.24) 
Race / Ethnicity    
      White 100% 60% 77.8% 
      Non-White 0% 40% 22.2% 
Years since Amputation 
(mean, SEM) 

9.22 (5.38) 3.82 (0.69) 6.22 (2.42) 

Phantom Limb Pain Duration 
in years (mean, SEM) 

1.22 (0.61) 6.94 (3.10) 4.40 (1.47) 

Lifetime Use of Psychedelics    
      Percent reporting any past 
use 

75% 80% 77.8% 

    
 
Procedure 

Participants were first interviewed via a preliminary phone screening to assess for study 

eligibility by checking whether they met all inclusion criteria and did not meet any exclusion 

criteria. Eligible participants were invited for an in-person screening visit at the UCSD Altman 

Clinical and Translational Research Institute (ACTRI) which consisted of five components: 1. 

Informed Consent, 2. Questionnaires and pain testing, 3. A physical examination, 4. A 

psychological examination, and 5. A blood draw and urine testing. The physical and 

psychological examinations were to verify the information collected during the phone screening 

to assess for study eligibility. The blood test was to confirm study inclusion/exclusion criteria 

that could not be assessed during the phone screening. During the course of their study 
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participation, participants were required to refrain from using illicit drugs. Additionally, 

individuals who were pregnant or nursing were ineligible for the study. Thus, the urinalysis 

consisted of a drug test and a pregnancy test (for participants of child-bearing potential). 

Participants who remained eligible after the in-person screening next attended a baseline 

assessment visit at the UCSD Keck Center for fMRI where they completed several survey 

measures1, psychophysical testing, and an fMRI scan. The data collected at this visit served as 

the baseline, pre-intervention, time point for which all post-intervention and longitudinal data 

were compared. After this visit, participants were randomized to either the psilocybin or niacin 

condition and began their preparation for the experimental drug sessions. 

 In line with the established protocols and guidelines implemented in clinical research 

with psilocybin to reduce anxiety, fear, and other adverse reactions (Johnson et al., 2008), each 

study participant was assigned two monitors (or guides) who supervised the experimental drug 

sessions. Prior to the experimental drug sessions, the participants had three preparatory meetings 

with their monitors. The purpose of these preparatory meetings is three-fold (Cosimano, 2021). 

First, to establish trust and rapport between the participant and their monitors. Second, so that the 

monitors have all relevant points of reference to provide therapeutic support as needed during the 

experimental drug sessions. In service of these first two aims, the monitors would review the 

participant’s life history, major life events including those leading up to and immediately 

following the amputation, social and familial relations, etc. They also discussed the participant’s 

expectations and intentions for their study participation. The third and final aim is to directly 

prepare the participants for the experimental session day. This is accomplished by undergoing a 

“mock” session conducted in the session room, establishing participant preferences regarding 

assisting with navigation and physical movement during the session, reviewing the range of 
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possible experiences elicited by psilocybin and niacin, as well as how to handle any potential 

disappointment that may arise if participants suspect they did not receive psilocybin. 

 Following the preparatory visits, within approximately one week, participants underwent 

their experimental drug session. They arrived at the ACTRI around 8:30am, completed 

presession questionnaires assessing their expectations and noting what they ate for breakfast, 

provided a urine sample for drug and (if relevant) pregnancy tests, and had a baseline set of vitals 

(heart rate and blood pressure) taken. While the sessions took place in an overnight room at the 

ACTRI clinic (a spacious room with two beds positioned adjacently and an adjoined bathroom), 

the room itself was furnished to be “living room-like”, adorned with hung tapestries, salt lamps, 

blackout curtains, and other miscellaneous items. Since many of the participants experienced 

medical-related trauma or PTSD as a result of their amputations, great care was taken to 

minimize as best as possible the hospital aesthetic of the room. For example, all medical and 

research equipment were either removed or covered. Once the urinalysis and all preparation was 

completed, participants were administered an opaque gelatin capsule containing either 25mg 

psilocybin or 100mg niacin. After administration of the blinded study drug, participants were 

instructed to lay on the bed with eyeshades and headphones on and were encouraged to “go into 

the experience.” A standardized playlist implemented in many clinical trials administering 

psilocybin (Strickland et al., 2021) was played through the headphones and synchronously 

throughout the room through speakers, so as to not “break” the experience if the participant 

needed to use the restroom. The playlist consisted mostly of classical music and exclusively 

songs without English words, to prevent the linguistic content of the music from influencing the 

participants’ experiences. At regular intervals throughout the day, the monitors took 

measurements of the participant’s vitals and completed assessments noting participant behaviors 
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and their inferred intensity of drug effects. Support would be provided as needed and requested 

by the participant, but otherwise the monitors played and ancillary role, intervening only if 

deemed appropriate in their clinical judgement. A variety of “rescue” medications were on 

standby in the event that the participant experienced a significant adverse event. The 

administration of such rescue medication is very rare, and was not implemented in any 

participants in this study. A study team physician and ACTRI nursing staff remained on call for 

the duration of expected drug effects (approximately 7 hours), at which point the participants 

completed a battery of post-session questionnaires1 assessing their subjective drug effects before 

being allowed to depart the ACTRI. 

 The day after their experimental session, participants returned to the Keck Center for 

fMRI for their first follow-up visit. This visit largely mirrored the baseline visit, completing the 

same battery of questionnaires, psychophysical testing, and fMRI protocol. However, 

participants additionally completed a battery of cognitive flexibility tests. Upon completion of all 

data collection, participants met with at least one of their study monitors for an integration 

meeting. In this meeting, participants would discuss a narrative description of their experiences 

the previous day, their reflections and feelings about the drug session, and any difficulties that 

arose during the day or evening. The purpose of this meeting is to help participants safely 

integrate their experiences into their lives, and has been shown to help reduce incidences of post-

acute anxiety, depression, or ontological shock (Cosimano, 2021). While for most participants 

this integration meeting took place the day after their experimental drug session, for some 

participants this meeting took place within 1-3 days after due to scheduling constraints. 

Participants subsequently and remotely completed the same battery of questionnaires1 at 1-, 2-, 

 
1Because these participants were involved in this larger study, several additional measures were given but are 
outside of the scope of this dissertation. The full list of assessments can be found in Appendix B.  



51 

and 4-weeks following their experimental drug session, at which point their study participation 

concluded.  

Experiment 1: Does Psychedelic Treatment Change the Influence of Prior Knowledge on 
Inferences? 
 
 According to Bayes’ Rule, the stronger one’s priors, the more their inferences are guided 

by prior knowledge and the less sensitive they become to current evidence, even if it contrasts 

with their existing theories. As noted in Chapter 1, we observe differences in children and adults’ 

prior knowledge. Adults have strong priors about many things. As we grow and learn, our 

confidence in our theories strengthens, and we become less likely to change them. Several 

studies have shown that while adults tend to rely on their stronger priors and update their theories 

much less, children readily and flexibly update their theories in response to counterevidence 

(e.g., Gopnik et al., 2015; Kimura et al. in prep; Lucas et al., 2014; Seiver et al., 2013). Here, I 

explore whether these differences are also observed when looking at adults after taking 

psilocybin. Changes in the strength of priors underlies a prominent theory for the effects of 

psychedelics known as the Relaxed Beliefs Under Psychedelics (REBUS) account (Carhart-

Harris & Friston, 2019). However, the REBUS account is founded almost exclusively on 

neuroimaging data with no direct behavioral evidence.  

To formally test this, as well as the predictions of the REBUS account, I adapted an 

experimental paradigm originally developed by Lucas and colleagues (2014) and replicated in a 

variety of follow up studies (Gopnik et al., 2015, 2017; Lucas et al., 2014; Walker et al., 2020). 

Participants were first introduced to a novel machine and told that is activated only by objects 

that are ‘blickets’. To determine whether an object is a blicket or not, participants must observe 

whether the machine activates (lights up) when the object is placed on top of it. After being 

oriented to the machine, participants were shown some unambiguous training data which implied 
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that the machine operated according to a general rule. The causal reasoning literature suggests 

that disjunction (in which individual objects are causal) is the default assumption for adults, 

associated with the highest prior (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005). Lucas et al. 

(2014) originally tested three conditions. In one (disjunctive condition), the training data 

indicated that the machine operated by such a disjunctive rule: each object either does or does 

not activate the machine. The hypothesis implied by this evidence is therefore consistent with 

their high prior. In the second (conjunctive condition), the training data indicated that the 

machine instead operated by a conjunctive rule: two objects must be placed on the machine at the 

same time to make it activate. The hypothesis implied by this evidence therefore contrasts with 

their high prior. In the third (baseline condition), no training data was presented, and participants 

could only rely on their prior beliefs. After seeing the unambiguous training data (or no data in 

the baseline condition), participants were shown some ambiguous test data with new objects that 

was consistent with both their default high prior disjunctive theory that only one object was 

needed to activate the machine and the less likely conjunctive theory (see Figure 3.1).  

Participants were then asked to identify which objects from their test data were blickets. 

For one critical object, it is ambiguous from the test data alone as to whether or not it is a blicket. 

This judgement is thus informed by the rule participants infer for how the machine operates. 

They were also asked to try to activate the machine themselves using the available objects. This 

second test question is needed to disambiguate whether the results would be solely a 

consequence of linguistic nuance, i.e., whether participants had a general reluctance to ascribe an 

object the “blicket” label. Thus, rather than being explicitly reported, participant behavior and 

responses to follow-up test items demonstrates which conclusion they drew. The use of this 
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experimental paradigm allows the likelihood of the evidence to be kept constant, and any 

observed differences can be attributed to changes in the weight of the priors. 

Across several experiments, the authors found that in the conjunctive condition, the 

proportion of participants who correctly labeled the critical object as a blicket and chose multiple 

objects when prompted to activate the machine themselves generally decreased with age. 

Importantly, there were no differences between children and adults in the baseline condition: 

They both inferred that the machine operated according to a disjunctive rule. This implies that 

the developmental differences are not the result of differences in prior beliefs, but rather the 

relative strength of those prior beliefs: Children are more willing to switch to an initially unlikely 

hypothesis when presented with counterevidence (Lucas et al., 2014). 

In the current work, only the conjunctive condition is tested. This is because it is the 

critical condition that assesses whether there are changes to the strength of one’s priors, our 

sample size would not allow for additional conditions, and, importantly, previous work has 

demonstrated the robustness of adults’ priors for disjunction (Lucas et al., 2014; Gopnik et al., 

2015; Gopnik et al., 2017). If psilocybin indeed decreases the strength of adults’ priors, then 

participants in the psilocybin condition should be more sensitive to the observed evidence and 

perform similarly to children in previous work. Specifically, they should correctly label the 

critical object as a blicket and select multiple objects when asked to activate the machine. In 

contrast, participants in the control condition should remain biased by their priors and be more 

likely to ignore the counterevidence, performing like adults in previous work. Specifically, they 

should fail to label the critical object as a blicket and select a single object when asked to activate 

the machine. Alternatively, if psilocybin does not lower the strength of people’s priors, the 
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proportions between the two conditions should be similar and in line with results from adults in 

previous studies. 

Method 

Materials. This experiment was conducted electronically, but several physical stimuli 

were constructed and implemented in the creation of the images and videos used in the task. A 

“blicket machine” was constructed with a small wooden box painted black that had a frosted 

glass window on all sides. Inside the box was a light bulb that was activated via a hidden remote 

control. The objects were eleven different shapes made of standard grey clay. Clear plastic 

containers with masking tape labels were used in the instructions video to organize the shapes 

(See Appendix C for all stimuli). The videos were recorded in front of a plain white background 

and all objects (shapes and the machine) were placed on a brown mat on top of a white table. 

Procedure. Participants first watched an instructions video where they were introduced 

to a novel machine and told that is activated only by objects that are ‘blickets’, which cannot be 

readily identified by any visual properties. Thus, to determine whether an object is a blicket or 

not, participants must observe whether the machine activates (lights up) when the object is 

placed on top of it. They are told their task is to figure out which objects are blickets. Though 

blickets should be a novel concept for which participants do not have any specific prior beliefs, 

the following was done in an attempt to control for any potential differences in beliefs about the 

prevalence of blickets that participants may have held. First, the experimenter states that only a 

few of the objects are blickets and most are not. Second, the experimenter pulls out two clear 

containers with the labels “Blickets” and “Not Blickets”. The “Blickets” container had a single 

object in it, whereas the “Not Blickets” container had 4 objects. None of these objects were used 

again in the experiment. The experimenter then pulled out and counted the number of objects 
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from each container, and reiterated that only a few objects are blickets. The instructions video 

ends by noting that the participant will next be shown unsorted objects, for which it is unclear 

whether they are a blicket or not. 

 The training trials video begins with the experimenter seated at the location with the 

blicket machine and 3 objects next to it. The experimenter begins by picking up each object 

individually and verbally labeling them by their shape. Then, the experimenter goes through a 

series of training events where a single object or a combination of objects were picked up and 

placed on the machine, which either does or does not activate. Specifically, the experimenter 

states, “Let’s see what happens when we put X (and Y) onto the machine,” places the single 

object or combination of objects onto the machine, and then verbally communicates the result 

(“It did not turn on” / “It turned on!”). There are six training events in total, where each of the 

three objects are placed on the machine alone and all pairwise combinations of two objects are 

placed on the machine. Importantly, the evidence provided by these training events is 

unambiguous, and indicates that the machine operates according to a conjunctive rule. The only 

instances where the machine activates occurs when multiple objects are placed on the machine in 

conjunction. The full list of training events is displayed in Figure 3.1. When the training video 

ends, the participant is shown a series of follow-up questions where a picture of each object is 

shown individually and they are asked a two-alternative forced choice question denoting whether 

they think that object is a blicket or not. Unlike in previous work, we also ask them to rate how 

confident they are in their assessment about whether the object is a blicket or not (on a scale of 0 

= Not Confident at All to 100 = Extremely Confident). These questions are repeated for each of 

the three objects shown in the training trials video. Upon completion, participants are then told 

they will next see three new objects and try to determine whether they are blickets or not. 



56 

 The test trials video follows a similar format to the training trials video. Three novel 

objects are shown and the experimenter starts by picking them up individually and verbally 

labeling them according to their shape. The experimenter then proceeds to go through a series of 

test events where a single object or a combination of objects will be picked up and placed on the 

machine, which either does or does not activate. During these test events, one critical object is 

placed on the machine alone, which does not activate, but the machine does activate each time it 

is placed with another object. Critically, in all events where multiple objects are used, the 

combinations include one object that is never placed on the machine independently. Thus, these 

test events are ambiguous: either multiple objects are needed to activate the machine, or the 

machine is activated by the single object that was never tested individually. The full list of test 

events is displayed in Figure 3.1. Participants are then shown the same follow-up questions about 

each object individually. However, upon completing these questions, they are then prompted to 

try to activate the machine themselves by selecting only the objects necessary to activate it. They 

are shown a screen with pictures of each of the three objects and select which single or 

combination of objects they would use. They are then asked to rate how confident they are about 

whether their choice will activate the machine. Full video scripts and question text are displayed 

in Appendix C. 
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Figure 3.1 Unambiguous training data implying the machine operates according to a conjunctive rule (top row), and 
ambiguous test data that can be explained by conjunction or disjunction (bottom row). 
 
Results 

Blicket Judgements. Of particular interest is whether participants labeled the critical test 

object as a blicket, as this informs whether they were sensitive to the evidence shown in the 

training events and revised their prior belief that the machine would operate according to a 

disjunctive rule. If psilocybin treatment reduces the strength of one’s priors and makes them 

more sensitive to current evidence and likely to update their beliefs, participants in the psilocybin 

condition should be more likely to identify the critical object as a blicket than those in the niacin 

condition. Given the small sample size in the current work, a Fisher’s Exact Test was used to test 

for differences in the rate of labeling the critical object as a blicket between conditions. This 

revealed that, although participants in the psilocybin condition (2 / 5) were more likely to label 

the critical object as a blicket than those in the niacin condition (0 / 4), this difference was not 

significant (p = 0.44). Effect sizes could not be computed given that one cell had a count of 0 

(resulting in an odds-ratio of infinity). A one-way ANOVA was conducted to compare the 

difference in confidence ratings for this judgement between conditions. Likewise, this revealed 

that although participants in the psilocybin condition (M = 60.8) tended to be more confident in 

Training Trials

Test Trials
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their judgements than those in the niacin condition (M = 51.8), this difference was not 

significant, F(1, 7) = 0.08, p = 0.79, d = 0.19, BF = 0.52. 

Intervention Choices. As mentioned above, there may be some linguistic nuance driving 

participants’ responses, whereby they have a general reluctance to ascribe an object the unusual 

and abstract “blicket” label. Thus, participants were also asked to intervene on the machine and 

try to activate it themselves. The critical test here is whether they chose a single object 

(regardless of which) or multiple objects to try and activate the machine themselves. If 

psilocybin treatment reduces the strength of one’s priors and makes them more sensitive to 

current evidence and likely to update their beliefs, participants in the psilocybin condition should 

be more likely to choose multiple objects than those in the niacin condition. Given the small 

sample size in the current work, a Fisher’s Exact Test was used to test for differences in the rate 

of choosing multiple objects when prompted to try and activate the machine between conditions. 

This revealed that participants in the psilocybin condition (5 / 5) were more likely to choose 

multiple objects than those in the niacin condition (1 / 4), and despite the small sample size, this 

difference was significant (p = 0.048). Effect sizes again could not be computed given that one 

cell had a count of 0 (resulting in an odds-ratio of infinity). A one-way ANOVA was conducted 

to compare the difference in confidence ratings that this choice would activate the machine 

between conditions. Participants in both the psilocybin (M = 85.8) and niacin (M = 88.2) 

conditions had similar ratings of confidence, F(1, 7) = 0.04, p = 0.84, d = 0.14, BF = 0.52. 

Exploratory Analyses. Given that Fisher’s Exact Tests provide very conservative 

estimates (Fisher, 1935), the intervention choice data was also modeled using a logistic 

regression, the approach one would take with a larger sample size. This revealed a significant 

main effect of condition, c2(1) = 6.96, p = 0.008. In considering the hypothesized linguistic 
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nuance that may impact participants’ likelihood of labeling an object as a blicket in general, we 

compared the confidence ratings across all participants on their blicket judgements and 

intervention choices using a one-way ANOVA predicting confidence rating by trial type (blicket 

judgement vs intervention). While not a significant difference with the current sample size, F(1, 

16) = 3.43, p = 0.08, d = 0.87, BF = 1.26, participants overall were more confident in their 

intervention choices (M = 86.9) than their blicket judgements (M = 56.8). 

Discussion 

In this experiment, we tested whether psilocybin treatment affects the strength of 

people’s priors. We hypothesized that, compared to niacin, psilocybin would reduce the strength 

of people’s priors, making them more sensitive to current evidence and consequently more likely 

to revise their beliefs. The results from this pilot data provide initial support for this hypothesis. 

While the difference was not significant, participants in the psilocybin condition were more 

likely to label the critical object as a blicket than participants in the niacin condition. 

Additionally, while also not a significant difference, participants in the psilocybin condition were 

more confident in their judgements than those in the niacin condition, though both were only 

moderately confident. When asked to intervene and try to activate the machine themselves, all 

participants in psilocybin condition choose multiple objects compared to one in the niacin 

condition, and both were similarly highly confident. While this difference just crossed the 

threshold for significance, it is likely that this would be a more significant effect with a larger 

sample size, as was shown in the exploratory logistic regression analysis of the same data. While 

participants’ confidence in their blicket judgements and intervention choices did not differ 

between conditions, surprisingly, their collective confidence ratings were numerically much 

higher for the intervention choice than the blicket judgement. This suggests the hypothesized 
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linguistic nuance may have impacted participants’ blicket judgements, making them more 

reluctant to label an object as a blicket. Future research might consider weighting intervention 

choices more heavily than blicket judgements when using this paradigm to test adults. 

Together, these results provide initial behavioral evidence in favor of the REBUS model 

(Carhart-Harris et al., 2014; Carhart-Harris & Friston, 2019). They also provide a mechanism 

which could underlie previous findings that psychedelic use is associated with increased 

suggestibility (Carhart-Harris et al., 2015; Lebedev et al., 2023; McGovern et al., 2023), which 

has long a storied history dating back to the CIA’s MKULTRA project (Linville, 2016). It is 

unclear how long the period of decreased priors lasts. Recent work has likened the effects of 

psychedelics to a ‘reset’ mechanism, whereby acute disintegration of psychological processes 

affords a post-acute re-integration which leads to overall improvements in normal functioning 

(Carhart-Harris et al., 2017). The decreased strength of prior beliefs may thus characterize a 

therapeutic window of opportunity during which critical therapy can be administered and lead to 

the widespread benefits psilocybin has demonstrated eliciting. 

Experiment 2: Does Psychedelic Treatment Change Hypothesis Search Strategy? 

 As noted in Chapter 1, people are thought to approximate Bayesian inference by 

stochastically sampling candidate hypotheses to evaluate from a probability distribution over 

possible hypotheses (e.g., Sanborn, 2017; Sanborn & Chater, 2016; Thomas et al., 2008; Vul & 

Pashler, 2008). This sampling process is not done randomly, hypotheses are instead sampled 

with frequencies proportional to their probability. After sampling and evaluating a hypothesis, its 

probability will be updated, the probability distribution over all hypotheses is adjusted, and a 

new hypothesis is sampled from this updated distribution. Given that this process is costly, there 

is a tradeoff between exploration for new hypotheses and exploiting current ones, known as the 
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exploration-exploitation dilemma (Mehlhorn et al., 2015). The tension produced by this dilemma 

is driven by opposing goals: 1. Gaining useful information by exploring unfamiliar 

options/hypotheses despite the potential for poorer immediate rewards, and 2. Maximizing 

rewards by exploiting options/hypotheses with high reward expectations.  

This exploration-exploitation dilemma has been thoroughly investigated in the context of 

reinforcement learning paradigms (Sutton & Barto, 1998). Here, there is some unknown reward 

structure, and agents (human or computer models / algorithms), through their chosen actions, 

must learn which are most rewarding and which are less so or even costly. Critically, only 

chosen actions will provide feedback to help agents learn. These paradigms thus force the agents 

to resolve an explore-exploit dilemma by balancing exploration to learn the underlying reward 

structure with exploitation to maximize reward. Computational approaches to better 

understanding how this dilemma is resolved have proposed several potential algorithmic 

accounts, and despite their differences most have a property in common: Effective exploitation 

of an environment’s reward structure requires first understanding that reward structure. Thus, in 

these algorithms, exploration is prioritized initially and then its use fades over time as 

information is accumulated, a process referred to as simulated annealing. Simulated annealing is 

used analogously, referencing how a piece of metal is maximally flexible initially when it is very 

hot and becomes less malleable as it cools over time, but more formally is a stochastic 

optimization algorithm. These algorithms are maximally likely to arrive at the optimal solution in 

a given environment (Kirkpatrick et al., 1983). Developmental differences in search strategies 

have been posited to be analogous to simulated annealing (Gopnik, 2020; 2024) and resemble a 

process of stochastic optimization, framing development as a process of parameter optimization 

(Giron et al., 2023). 
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Adults tend to privilege efficiency and seek to maximize their utility (Dennett, 1989; 

Gergely et al., 1995; Jara-Ettinger et al., 2016). As a consequence, they are very exploitive and 

employ local, “low-temperature,” search strategies when sampling hypotheses (e.g., Herbst et al., 

2017; Smith et al., 2013). Guided by all the information they have accumulated throughout their 

life, a high prior hypothesis is initially sampled and strategically incremented such that 

successive samples are close in hypothesis space. Adults thus tend to base their decisions on just 

a few samples (Goodman et al., 2008), and often times taking a single sample is the optimal 

strategy (Vul et al., 2014). These exploitive strategies lead to quick, “good enough” solutions. 

However, they leave one susceptible to being stuck in a local optima, whereby their current 

hypothesis may be better than all local alternatives but much worse than alternatives that are 

further away (Gopnik, 2020).  

Children, on the other hand, engage in directed and systematic exploration (Schulz et al., 

2019), even when this is associated with a greater cost (Liquin & Gopnik, 2022). This behavioral 

pattern of adults being more exploitative and children being more exploratory has been 

documented in causal inference tasks (e.g., Gopnik, 1996, 2012; Lapidow & Walker, 2020) and 

in general reinforcement learning paradigms where they freely act in an environment and choose 

whether to continue exploring or exploit known rewards (Blanco & Sloutsky, 2020, 2021; Liquin 

& Gopnik, 2020; Schulz et al., 2018; Sumner et al., 2019; Sumner et al., 2019). Thus, these 

differences in explore-exploit behaviors may reflect a developmental change in the process of 

theory revision via changes in search strategies, rather than in the strength of their priors alone. 

Here, I test whether these differences are also observed when looking at adults after 

psilocybin treatment. Exploiting and exploring map onto more rigid and flexible cognitive 

strategies, respectively. To test for possible changes in search strategy when sampling, two 
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different types of paradigms were implemented: serial production tasks (SPTs; both single and 

multiple cue) and general exploration paradigms. 

Serial Production Tasks (SPTs) 

In SPTs participants are prompted to generate candidate solutions based on a single or 

multiple cues. These cues serve to constrain the responses that are generated. Search strategies 

can then be quantified in several ways, for example by the average similarity between 

sequentially generated responses. If the average sequential response similarity is high, then local 

search strategies are being employed, as each response is close to each other in hypothesis space 

(low distance). If the average sequential response similarity is low, then more global strategies 

are being employed, as responses are further away in hypothesis space (high distance).  

Exploration Paradigms 

 While SPTs produce data amenable to investigating hypothesis search and sampling 

strategies, they have several limitations compared to other more general exploration and search 

paradigms. When generating responses in an SPT, individuals explore word or concept 

associations one at a time, characterizing sequential exploration rather than the simultaneous 

exploration that is more representative of what people do in the real world. SPTs often do not 

provide feedback, and when they do it is usually after a trial has concluded. Participants are thus 

unable to update their strategies based on this feedback, again unlike in the real world. Further, 

and critically, given that responses are generated by the participant rather than chosen amongst a 

set of provided options, there is not the option for participants to be exploitive. In this way, they 

cannot provide insight into how respondents are resolving the exploration-exploitation dilemma, 

because it does not exist. In contrast, general exploration paradigms do require participants to 

choose among a provided set of options, and thus create an exploration-exploitation dilemma. 
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 A common general exploration paradigm is the multi-armed bandit task, a specific type 

of reinforcement learning paradigm. In these, participants choose between a fixed number of 

options which have varying but initially unknown reward amounts. Participants complete several 

rounds but have a limit on the number of actions they can take in each, and are free to explore 

options which may potentially be more rewarding or exploit the options with a known reward. 

Through this controlled environment, various factors such as the limit on number of actions, 

number of available options, reward distribution, and fixed vs dynamic nature of that 

distribution, can be manipulated. They therefore present more direct assessments of how agents 

resolve an exploration-exploitation dilemma. 

Experiment 2.1: Single Cue SPT 

 To assess search strategies with a single cue SPT, I adapted an experimental paradigm 

used by Bonawitz and colleagues (in prep). In this task, participants were introduced to a novel 

machine that is activated by a particular member of a category and generated 5 hypotheses about 

what they thought would activate it, without receiving feedback. Using a novel machine with no 

information or feedback regarding what would be a likely cause controlled for any potential 

differences in priors between participants, helping to disambiguate changes in search strategy 

from changes in priors. After providing their responses, participants completed a conceptual 

sorting task where they organized their guesses with proximity corresponding to their similarity. 

They found that adults had a significantly lower average distance between their sequentially 

generated responses than children. That is, their sequentially generated responses were more 

similar. Additionally, of the total responses provided by both age groups, children provided a 

significantly greater proportion of unique responses than adults. Though adults had greater 

knowledge of possible responses to generate, they still generated a less diverse set. Further, there 
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was a general correspondence between children and adults’ responses such that the average 

distance between pairs of items was correlated between age groups, suggesting that adults and 

children agreed on the similarity between pairs of specific items.  

It was hypothesized that psilocybin will change people’s search strategies, making them 

more global. Thus, participants in the psilocybin condition should perform like children in 

previous work, having greater average sequential response distance (less similarity) and covering 

more hypothesis space with their guesses. Participants in the niacin condition should employ 

local search strategies, performing like adults in previous work, having less average sequential 

responses distance (greater similarity) and covering less hypothesis space. Alternatively, if 

psilocybin does not change people’s search strategies, the average sequential response distance 

and amount of hypothesis space covered between the two conditions should be similar and in 

line with results from adults in previous studies.  

Method.  

Materials. The original task was completed in person, which used a 36-inch x 36-inch 

cardboard sheet broken into 10 x 10 grids. Guess items were recorded on 2-inch x 2-inch cards 

and placed along the grid by participants. Here, the task was adapted to be completed 

electronically, and thus there were no physical materials. 

Procedure. Participants were told there was a novel machine that is activated by a 

particular member of a category (animals). They were given no information about which animal 

was likely to activate the machine and were asked to generate five successive guesses 

(hypotheses) about which animal they thought would activate it, receiving no feedback between 

responses. Specifically, they were asked, “What animal do you think made the machine light 

up?” After providing their responses, participants completed a conceptual sorting task. They 
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were told they were looking at the plans for a new zoo that is under construction, which has the 

exhibits planned but not their location, and asked to help the designers arrange the layout of the 

exhibits such that animals that are most similar are close together and animals that are dissimilar 

are further apart. The page following these instructions displayed an orange square outline with 

12 items along the edges. These 12 items contained their five responses along with seven 

additional items selected from a predetermined anchor set (Appendix D). Specifically, items not 

present in the participant’s set of guesses would be included. This provided an individualized 

measure of subjective item similarity, as measured by the Euclidian distance between any two 

items on the sorting grid. Once all twelve items were arranged inside the sorting grid, the square 

would turn green and a “continue” button would appear, which ended the experiment upon 

clicking. 

Results. We first examined for differences between the average sequential response 

similarity between conditions. If participants were employing local search strategies, they might 

generate candidate response chains like, “Dog, Cat, Bunny.” These responses are all common 

house pets and would be grouped relatively closely (less distance between). If they were 

employing more global search strategies, they might generate candidate response chains like, 

“Beetle, Horse, Owl.” These responses have less readily apparent connections and would be 

grouped further apart (more distances between). The average Euclidian distance between all 

sequentially generated response pairs within each participant was calculated. Since participants 

may use the sorting space differently, these distances were normalized by dividing by the 

average similarity between all pairwise responses, or the overall distance expected if participants 

were sampling randomly. Differences in normalized sequential response distance between 

conditions (psilocybin vs niacin) were compared using independent samples t-tests. Participants 
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in the niacin condition (M = 0.92) tended to have less similarity than those in the psilocybin 

condition (M = 0.78), but this difference was not significant, t(7) = 1.48, p = 0.18, d = 0.99, BF = 

0.92. This suggests participants in both conditions sampled with similar search strategies. 

 We next examined the overall amount of space covered by participants’ guesses, defined 

by the number of unique responses generated. Participants’ guess lists were collated between 

conditions, and repeat responses were removed, to generate the total number of unique guesses 

reported by each condition. The proportion of unique responses between conditions was 

compared using a Chi-Squared test. Following a similar pattern, while participants in the niacin 

condition (18/20) generated a greater proportion of unique responses than those in the psilocybin 

condition (17/25), this difference was not significant, c2(1) = 3.11, p = 0.15. 

Discussion. In this experiment a single-constrained serial production task was used to 

investigate whether psilocybin treatment will impact search and sampling behaviors. It was 

hypothesized that participants treated with psilocybin will exhibit more global, exploratory, 

search and sampling behaviors. We found that, participants in both conditions produced 

sequential responses that were similarly distanced. Additionally, they did not differ in their 

proportion of unique responses. Together, these suggest that participants were employing similar 

search and sampling strategies, and that psilocybin did not affect these behaviors. 

Experiment 2.2: Multiple Cue SPT 

In single cue SPTs, close associates of a response also tend to satisfy the constraints of 

the problem. For example, when generating responses for what animal may activate a machine, 

both “cat” and “dog” satisfy the constraints of the problem. However, “cat” and “shark,” equally 

satisfy these constraints, despite being very dissimilar. Further, in the real world there are often 

multiple constraints on an inference. Responses, and their close associates, that satisfy one 
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constraint might not satisfy the others. Multiple cue SPTs thus provide a more robust 

examination of search strategies.  

The Remote Associates Task (RAT) is among the most commonly used SPT (Mednick, 

1962). In each trial of the RAT, participants are given 3 target cue words and their task is to 

generate a 4th word which pairs with all three. For example, in the cue set “Comb, Dew, Moon,” 

the correct answer is “Honey.” The RAT is conventionally used to assess creativity and problem 

solving abilities by summing the number of correctly answered trials (Mednick, 1962), but the 

data it provides affords much richer analysis. Smith and colleagues demonstrated that the data 

generated by the RAT can be used to assess search strategies (Smith et al., 2013). They did so by 

using a 300-factor Latent Semantic Analysis (LSA) model to compute similarity metrics between 

responses. How similar or dissimilar the responses are in a given trial reflects what type of 

search strategy participants are exhibiting. If responses are similar, then local search strategies 

are being employed. If responses are less similar, then global search strategies are being 

employed. 

However, as outlined in Chapter 2, the RAT has two major limitations. First, participants 

often produce a small number of responses. This may be because they are able to both sample a 

candidate solution and evaluate its quality internally, prior to actually reporting the response. 

Following the example above, a participant may come up with the candidate solution “hair”, 

which at first might appear to match with the cues “dew” and “comb”. They might then realize 

that it does not match with the cue “moon”, and that “hairdo” is a single word and not associated 

with the word “dew”. In this case, they may discard “hair” as a candidate response and not 

actually report it, despite being encouraged to do so by the experiment’s instructions. Through a 

pilot experiment, this was found to be the case even in a modified version of the RAT where 
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participants’ audio responses were recorded and they were encouraged to “just think out loud” 

without needing to directly write down their candidate responses. Second, while the RAT does 

impose constraints, making it more like the real-world problem-solving humans face, the 

constraints are static. In many cases, people get some form of feedback on their proposed 

solutions, and this feedback serves to further constrain the generation of proposed solutions. 

Thus, the RAT additionally falls short in capturing this continual updating inherent in many 

problem-solving scenarios. 

To account for these issues, a novel experimental paradigm was used based on the 

popular internet game “Contexto” (see Chapter 2). In this task, participants complete multiple 

trials where they have to guess a secret target word. They are initially given no information as to 

what the target word might be and must simply generate a series of guesses to try and identify it. 

Participants receive feedback after submitting each guess on how similar it was to the secret 

target word, and thus must continuously update the constraints (imposed by their own previously 

generated guesses) on their subsequent guesses. It was hypothesized that psilocybin will change 

people’s search strategies, making them more global. Thus, participants in the psilocybin 

condition should have lower average sequential response similarity and cover more hypothesis 

space in their response sets. Participants in the niacin condition should continue to employ local 

search strategies, performing like adults in previous work and have greater average sequential 

responses similarity and cover less hypothesis space in their response sets. Alternatively, if 

psilocybin does not change people’s search strategies, the two groups should be similar and in 

line with results from adults in previous studies on all outcomes. 

Method. 
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Materials. The target words implemented here were chosen based on a pilot study, where 

they were correctly identified by a majority of participants but took an average of about twenty 

guesses. Thus, these words were thought to yield sufficient data. To generate the rankings of 

potential guesses to the target words, a dictionary of approximately 80,000 words was rank-

ordered by their similarity to the target word for every trial. Similarity was computed using the 

Global Vectors for Word Representation (GloVe; Pennington et al., 2014). GloVe is an 

unsupervised learning algorithm that produces vector representations for words. A set of pre-

trained word vectors was used which contained 840 billion tokens gathered via Common Crawl. 

The original set of word vectors was filtered to include only a subset of words originally used by 

Contexto, then further filtered to remove words with two or less letters, all stop words, words 

flagged as inappropriate (e.g., curse words and slurs), words containing numbers or punctuation, 

and words with multiple accepted spellings (e.g., keeping barbecue and removing barbeque). 

Finally, all words were lemmatized and any resulting duplicates were removed. This process 

resulted in a final dictionary containing 80,224 words. Similarity was defined by the cosine 

between any two word vectors. Compared to Latent Semantic Analysis (LSA), which captures 

semantic structure by focusing on singular value decomposition (SVD) to reduce the 

dimensionality of a term-document matrix, GloVe uses global word co-occurrence to capture 

meaning from the entire corpus. This approach has been shown to produce higher-quality word 

embeddings and perform better on semantic measures like word analogy tasks (Pennington et al., 

2014). After computing the cosine similarity between each word in the dictionary and the target 

word for a given trial, the dictionary was arranged by the resulting values in descending order. A 

given word’s rank was defined by its numerical position in the arranged dictionary (where the 

first word was the target), and that ranking is what was given to participants as feedback for their 



71 

guesses in a given trial. To account for idiosyncrasies that occurred when creating a sorted 

dictionary for a word in its singular vs plural form (i.e., differences between the ranked 

dictionary for the target word “frog” vs “frogs”), the associated cosine similarities for each word 

in the dictionaries were averaged and then rank-ordered. The resulting “denoised” dictionary was 

used in all applicable cases. 

Procedure. Participants first saw an instructions screen that gave them the rules of the 

game. They were informed that each trial contains a randomly selected secret target word, and 

they had to figure out what that word was. They were also told that the secret word will always 

be a noun, and they have a maximum of thirty guesses per trial (see Appendix A for full 

instructions text). Participants submitted their guesses one at a time and were shown the guess’ 

rank after submission. If the target word was correctly guessed, a congratulatory screen was 

displayed and the participant moved on to the next trial. If all thirty guesses were exhausted 

without identifying the trial’s target word, the participant was shown what the target word was 

and then began their next trial. Each participant saw five trials. The same five target words 

(“moose”, “cookie”, “pencil”, “flower”, “car”) were used for all participants, and the order of the 

trials was randomized. 

Results. We first assessed for differences in the average similarity of sequentially 

generated responses between conditions. A linear mixed-effects model was fit with condition 

(psilocybin vs niacin) as a fixed effect. Participant and target word were included as random 

effects. The resulting full model was as follows: similarity ~ condition + (1 | participant_id) + (1 

| target_word). Significance of the main effect was assessed with nested model comparisons. If 

participants were exhibiting local, exploitive, search strategies, their sequentially generated 

responses would be more similar. If they were exhibiting global, exploratory, search strategies, 
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their sequentially generated responses would be less similar. This analysis revealed a significant 

main effect of condition, c2(1) = 4.0, p = 0.046. Participants in the niacin condition (M = 0.44) 

had a higher average sequential response similarity than those in the psilocybin condition (M = 

0.40; Figure 3.2). This suggests that participants who received psilocybin treatment were 

exhibiting more global and exploratory search behaviors. 

 
Figure 3.2 Comparison of similarity between sequentially generated responses across conditions. 

We next examined whether this increase in exploration by participants in the psilocybin 

condition led to increased performance. Specifically, whether they guessed the target word 

correct more often than participants in the niacin condition. No random effects could be fit due to 

model singularity and convergence issues. Alternatively, to account for the repeated 

measurements from each subject, we computed the total amount of correctly guessed words (out 

of 5) for each participant. Because this measure is bounded (between 0 and 5), we fit a binomial 

logistic regression. Significance of the main effect was assessed with nested model comparisons. 
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Results showed that while participants in the niacin condition were more likely to correctly guess 

the target word (M = 3) than those in the psilocybin condition (M = 2), this difference was not 

significant, c2(1) = 1.51, p = 0.22. Thus, while participants in the psilocybin condition engaged 

in broader search, this did result in increased performance. 

Discussion. In this experiment a novel task assessing reasoning under dynamic 

constraints was used to investigate whether psilocybin treatment will impact search and sampling 

behaviors. It was hypothesized that participants treated with psilocybin will exhibit more global, 

exploratory, search and sampling behaviors. We found that, compared to the niacin condition, 

participants in the psilocybin condition engaged in more global sampling, having less average 

similarity between sequentially generated responses. This did not, however, lead to increased 

task performance, as there were no differences in how many words participants guessed correctly 

between the two conditions. An important consideration here is the model singularity and 

convergence issues that were encountered. While it is a recommended practice to fit the most 

complete random effect structure possible without encountering such issues (Muradoglu et al., 

2023), it is ideal to fit the full model. One possible reason this may have occurred, outside of the 

smaller sample size, is the limited number of trials that participants completed. If some 

participants happened to correctly identify the target word after only a few guesses, there may be 

insufficient variability in their data to correctly model. To account for this in the future, when 

time constraints are a limiting factor, a lower guess limit but increased number of trials can be 

implemented. This would provide greater variance in the trial and target word estimations, and 

likely resolve any singularity or convergence issues. Though increasing the sample size may 

alone be sufficient. Overall, these results suggest that psilocybin treatment results in changes to 

people’s search and sampling strategies, making them broader and more exploratory. 
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Experiment 2.3: Spatially Correlated Multi-Armed Bandit 

While exploration is a complex behavior, three central components have been identified 

that may underly the developmental differences outlined above. The first concerns random 

exploration, through which a noisy random sampling process is employed when an agent is 

learning about a novel environment. This random exploration is most consistent with the analogy 

of development as a process of simulated annealing, whereby children employ a higher 

temperature search, sampling broadly and randomly, and this process “cools off” throughout 

their lifespan (Gopnik, 2020). The second concerns directed exploration. In contrast to a random 

sampling strategy, exploration can also be systematic and directed, where options with greater 

uncertainty are preferentially sampled to gain more information about the environment. In this 

way, information itself is viewed as intrinsically rewarding. Directed exploration has been 

formalized by incorporating an uncertainty bonus in reward estimation, where a choice’s reward 

is weighted by its estimated uncertainty (Auer, 2002), and is thus more sophisticated and 

nuanced than random exploration. The third and final is distinct from exploration altogether, 

instead concerning generalization. Search strategies require the ability to make inferences about 

unobserved outcomes and are thus guided by inductive beliefs formed from observed outcomes. 

Structured knowledge about one’s environment has been shown to guide exploration (Acuna & 

Schrater, 2008; Schulz, et al., 2018), so it is possible that search behavior could be impacted by 

this knowledge’s quality or how it is utilized for generalizing across experiences.  

Schulz and colleagues (2019) developed a novel paradigm to test whether and how these 

three components are related to the observed developmental differences in exploration behaviors. 

Specifically, they used a modified multi-armed bandit task where rewards were spatially 

correlated on a grid, and searching behaviors involved selecting tiles along that grid with known 
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or unknown reward values. The tiles’ reward values followed a randomized continuous gradient, 

where similar values were clustered together on the grid. Having the rewards be spatially 

correlated provides participants with information they can use to generalize the reward values 

from observed to unobserved options. Through both behavioral outcomes and computational 

modeling approaches, this paradigm affords the ability to characterize the relative contributions 

of each component of exploration into a unified formal model (for full modeling details, see 

(Giron et al., 2023; Schulz et al., 2019). Overall, this paradigm provides a much more robust, 

comprehensive, and quantitative investigation of exploration behaviors. 

The consensus of their results was that children engage in more directed exploration than 

adults, generalize less, and there were no differences in random exploration. In considering the 

behavioral results, adults sampled more locally and less unique options than children. Learning 

curves were also generated by averaging earned rewards over trials and showed that adults 

learned faster while children engaged in more exploratory sampling. Regarding the 

computational modeling, first the fit of predictions from two models were assessed to all 

participant data: one model that afforded generalization across options and another that did not. 

The model that did afford generalization fit all participant data better than the alternative model. 

This better fitting model included parameter estimates for all three components of exploration 

behaviors. The average generalization parameter value was higher for adults than children, 

indicating that adults generalized more. The average uncertainty bonus parameter value was 

higher for children than for adults, indicating that children valued uncertainty more than adults. 

The extent to which uncertainty is valued informs whether options with higher uncertainty will 

be sampled, and therefore corresponds to directed exploration (individuals seek out the options 

with more uncertainty). Finally, and importantly, there were no differences in the average search 
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temperature parameter value, indicating that there were no developmental differences in the 

amount of random exploration. Overall, both behavioral and computational modeling approaches 

converged on the same conclusion: children explore more than adults, and in particular engage in 

directed exploration where options with higher uncertainty are privileged rather than sampling 

more randomly.  

This same experimental paradigm and analysis plan was adapted to test for the 

differences in exploration behaviors between adults after receiving psilocybin or niacin. It was 

hypothesized that participants who receive psilocybin treatment will perform more like children, 

engaging in more directed exploration and less generalization. Participants who receive niacin 

will perform similarly to adults in previous work, exhibiting less directed exploration and more 

generalization. Thus, compared to the niacin condition, participants in the psilocybin condition 

should earn lower rewards overall, sample more unique options and have increased distance 

between their sampled options, have higher average values for the best fitting exploration 

parameter, and lower average values for the best fitting generalization parameter.  

Method. 

Materials. Participants were presented with a series of 8x8 2D grids (64 tiles total), with 

one randomly selected tile’s reward value shown at the start. One of 40 underlying reward 

environments, defining a bivariate function on the grid which mapped tiles to expected reward 

values, was randomly selected without replacement for each round. The reward values of the 

tiles in all environments were spatially correlated: tiles closer together had more similar reward 

values (Appendix E). Each round had a maximum reward value randomly sampled from a 

uniform distribution 𝑈(30, 40), and all tiles on the grid for that round had their values scaled to 

this maximum to obfuscate the value of the round-specific global optima. To prevent reward 
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values less than 0, each rescaled value was shifted by +5. Further, the tiles on the 8x8 grid also 

incorporated normally distributed noise e ~ N(0, 1). 

Procedure. Participants completed 10 rounds total, each with a unique randomly 

generated 8x8 grid, and were instructed to try to gain as many points as possible. Points were 

earned by clicking on the tiles, where the tile’s reward value would be added to the running total 

of points accumulated in a given round. Participants had the opportunity to make 25 selections 

per round and were free to choose between observed tiles (re-selecting a previously revealed tile 

with known reward value) or unobserved tiles (those which had not been revealed and whose 

reward value remains unknown). Upon clicking on a previously unobserved tile, that tile’s 

reward value would be revealed and displayed numerically within the tile in addition to a color 

corresponding to that value (darker colors for higher values). Because of the incorporated noise, 

tiles that were re-clicked could show some variation in reward value. Only the most recent value 

was numerically displayed. 

The first round served as a tutorial, where participants were introduced to the grids and 

provided with instructions about how the task worked. Three comprehension questions were 

presented upon completion which needed to be answered correctly to proceed. Specifically, these 

questions asked about the goal of the task, how points are earned, and how the point values were 

distributed. Following the tutorial, participants were presented with eight test rounds. The tenth 

and final round was a special bonus round. Here, participants first made 15 selections as in 

previous rounds before the round paused. At this point, participants had to make predictions for 

the reward value of 5 randomly selected unobserved tiles and certainty ratings for those 

predictions (rated from 0 to 10). After making the reward predictions and certainty ratings, they 

were prompted to select one of those 5 tiles to be revealed, and then proceeded to make the rest 
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of their selections for that round as normal (that is, they were not required to select the other 4 

tiles they made predictions about). Full instruction and question texts are listed in Appendix E. 

Computational Models. 

Model Definitions. Here I provide only a brief overview of the models implemented in 

this work (For full details, see: Giron et al., 2023; Schulz, et al., 2019; Wu et al., 2018). To 

assess the relative contributions of each component of exploration, I utilized models previously 

outlined by Giron et al. (2023) and Schulz et al. (2019). These models were constructed by 

combining a model of learning, to account for generalization, with a sampling strategy, to 

account for both random and directed exploration. Together, these models are able to use the 

history of previous observations to make predictions about participants’ subsequent search 

behaviors. A Gaussian Process (GP) regression is used as the learning model to characterize 

generalization, or the extent to which the presumed reward value of a novel choice is influenced 

by previously observed reward values. The level of reward similarity between options 

exponentially changes with their distance on the grid, such that the closer two options are, the 

more similar their reward will be. In other words, the reward similarity between two tiles is 

correlated with their distance. The degree of spatial generalization among tiles is defined by the 

l parameter. Specifically, l determines the degree to which the correlation between distance and 

reward decays, with slower decay (stronger correlations and more generalization) for larger l 

values. In the extreme case of l = 0, each reward value is thought to be completely independent 

– there is no generalization from one observation to another. 

 To map the beliefs of the GP onto specific reward estimations for each tile, an Upper 

Confidence Bound (UCB) sampling function is used. UCB has been routinely used in studies of 

explore-exploit dilemmas (Srinivas et al., 2012) by explicitly incorporating uncertainty in its 
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reward calculations. The reward value of a given option is defined by the weighted sum of its 

uncertainty and expected reward. The degree to which resolving uncertainty is valued is 

determined by the b parameter. b thus corresponds to directed exploration, because when the b 

value is high, options with greater uncertainty are preferentially sampled.  

 Finally, while this GP-UCB model can provide value estimates of the different options, 

for the model to make specific predictions it must convert these values into a probability 

distribution over the options. A softmax decision policy is implemented here to transform values 

into choice probabilities, assigning higher probabilities to higher-valued options but still 

allowing for some probability of selecting lower-valued options. The t parameter determines the 

amount of random exploration. Specifically, t controls amount of stochasticity in sampling 

behavior. As t increases, the decision policy becomes increasingly more random. 

 To summarize, the GP-UCB model combines a GP learning model with a UCB sampling 

function to model participant choice behaviors. The l parameter characterizes the extent of 

generalization between options, where higher values correspond to greater assumed similarity 

between option distance and reward value. The b parameter characterizes directed exploration, 

where higher values correspond to greater value of resolving uncertainty. The t parameter 

characterizes random exploration. Higher t values result in higher temperature search, where 

sampling will be more random. Lower t values result in lower temperature search, where higher 

value options are preferentially sampled. 

Lesioned Models. In order to assess whether all three components are needed to 

adequately characterize participant behavior, the performance of the GP-UCB model was 

compared to several competing models which each lesioned a different parameter. The t-

lesioned model uses an epsilon-greedy policy in place of the softmax policy. With the epsilon-
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greedy policy, the probability of sampling a random option is p(e) and the probability of 

selecting the option with the highest expected value is p(1 - e). Thus, the softmax policy allows 

for graded exploration by providing a smooth probability distribution over all options based on 

their value, while the epsilon-greedy policy is binary (either the highest value option is selected 

or a random option is selected). The b-lesioned model sets the value of b to 0, preventing 

directed exploration by entirely removing the value of resolving uncertainty. The l-lesioned 

model replaces the GP learning model with a Bayesian reinforcement learning model. This 

alternative, the Bayesian Mean Tracker (BMT), models the options’ reward values as 

independent distributions. Generalization is inherently removed as each option is considered 

entirely independent from the others.  

Model Parameters. Model parameter estimates were computed via a leave-one-out cross-

validation. Training sets were created for each participant by omitting one of the 8 test rounds 

and a Maximum Likelihood Estimate (MLE) was computed for each training set. The MLE 

quantifies the parameter values that maximize the likelihood of the observed data (a participant’s 

choice behavior). The model then uses the MLE-derived best-fitting parameters to make out-of-

sample predictions for the left-out round. This process of computing MLE and generating 

predictions on the left-out round was conducted on all combinations of test and training sets, 

such that each round serves as the test set once. The parameter estimates were constrained to 

positive values only, and one set was generated per round per participant. 

Results.  

Behavioral Results. All behavioral results were analyzed using independent sample t-

tests (unless otherwise specified). We first looked at overall participant performance, defined by 

the average reward earned by each condition (Figure 3.3A). Participants in the niacin condition 
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(M = 43.0) and psilocybin condition (M = 42.3) earned similar rewards on average, t(7) = 0.75, p 

= 0.48, d = 0.50, BF = 0.60. The average maximum reward was also analyzed as a measure of 

exploration efficiency (i.e., improved exploration outcomes in terms of increased maximum 

reward). Kendall rank correlation tests revealed no significant differences between the niacin and 

psilocybin conditions, rτ = 0.00, p > 0.05, BF = 0.25. We also considered participants’ averaged 

reward over trials (learning curves), to assess whether they learned more quickly in one 

condition vs the other (Figure 3.3B). For each participant, the relationship between trials and 

earned reward was quantified by Spearman’s rho. There were no differences in learning rate over 

trials between conditions, t(7) = -0.65, p = 0.54, suggesting that participants in both conditions 

learned at similar rates. 

We next looked at participants’ sampling behaviors. When considering the distance 

between consecutive choices, participants in the niacin condition sampled an average of 1.62 

options apart and those in the psilocybin condition sampled an average of 1.55 options apart. 

This difference was not significant, t(7) = 0.18, p = 0.86, d = 0.12, BF = 0.51. Choices were also 

classified into three distance types: Far (distance > 1), Near (distance = 1), and Repeat (distance 

= 0; the same choice as the previous trial was repeated). To test whether there were differences in 

the probability of choice distance selection between conditions, we used a two-way ANOVA 

(Figure 3.3C). A linear mixed-effects model including the random effect of participant resulted 

in a singular model fit. However, the inclusion of this term did not result in model improvement 

(p > 0.05). The main effect of condition was omitted because it cannot be sensibly interpreted, 

thus the full model included the main effect of choice type and its interaction with condition. 

This revealed no significant interaction of condition and choice type, F(3, 20) = 0.10, p = 0.96, 

but the main effect of choice type was significant, F(2, 20) = 11.52, p < 0.001, BF > 100. 
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Post-hoc pairwise comparisons using the Tukey method for multiple comparisons 

indicated participants were more likely to select a Repeat option (M = 0.52) than a Near option 

(M = 0.22), t(20) = 4.45, p < 0.001, d = 2.27, BF = 77.18. They were also more likely to select a 

Repeat option than a Far option (M = 0.29), t(20) = 3.59, p = 0.005, d = 1.73, BF = 17.12. 

However, there was no difference in the likelihood of selecting a Near vs Far option, t(20) = 

0.96, p = 0.61. This suggests that participants in both conditions tended to exploit previously 

selected high reward options.  

Considering the number of unique options sampled, another indicator of exploration, 

participants in the niacin condition sampled an average of 10.41 unique options and those in the 

psilocybin condition sampled an average of 10.78. This difference was not significant, t(7) = 

0.17, p = 0.87, suggesting that by this measure there were no differences in exploration between 

conditions. 

Finally, a Bayesian hierarchical regression was used to examine how participants’ choice 

distances were affected by the reward value of previous choices (Figure 3.3D). In this model, 

previous reward value, condition, and their interaction, were used to predict search distance, with 

participant included as a random effect. Significance of the main effects and interaction were 

assessed with nested model comparisons. Results revealed a significant main effect of previous 

reward on distance, 𝛽 = −8.13, 95% CI [-11.02, -5.26], BF > 100. This suggests that a higher 

previous reward resulted in a decrease in distance to the subsequent choice. The main effect of 

condition was not significant, 𝛽 = −0.15, 95% CI [-3.77, 3.57]. There was no difference in search 

distance between the niacin and psilocybin conditions. Additionally, the interaction between 

previous reward and condition was not significant, 𝛽 = 0.03, 95% CI [-3.71, 3.77]. The effect of 

previous reward on search distance did not differ between conditions. However, the model that 
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included the interaction of condition and previous reward was favored over a lesioned model 

without the interaction (BF = 7.96). This discrepancy is likely a result of the small sample size, 

as Bayesian analyses explicitly account for uncertainty in the parameter estimates. 

 
Figure 3.3 Main Behavioral Results. Red dashed line in all graphs represents the expected results from a fully 
random model. A: Normalized mean reward between conditions. Box plots represent the median and IQR 
(interquartile range), white diamonds represent group means, and each point is an individual participant’s score. B: 
Learning curves displaying the normalized mean reward across trials for each condition. Lines represent group 
means and the shaded ribbon represents the 95% CI. C: Proportion of choices based on distance for each condition. 
Points represent group means with 95% CIs. D: Distance between sequential choices as a function of the reward 
value of the previous option. Points represent means of the raw data, lines correspond to fixed effects from a 
hierarchical Bayesian regression with 95% CI shaded regions. 
 

Bonus Round. For predictions made in the bonus round, we first looked at participants’ 

prediction error, defined by the mean absolute difference between actual reward values and 

participants’ predictions (Figure 3.4A). Participants in both the niacin (M = 5.0) and psilocybin 

(M = 5.3) conditions had similar and relatively low error in their predictions, t(7) = -0.10, p = 

0.92. Next, we considered how certain participants were about their reward value predictions 

(Figure 3.4B). Participants in the niacin condition (M = 5.45) were more confident in their 

predictions than those in the psilocybin condition (M = 4.88), but this difference was not 

significant, t(7) = 0.29, p = 0.78. Finally, we investigated how a participant’s choice among the 
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five unknown options was influenced by their reward value predictions and certainty judgements 

(Figure 3.4C). To do so, judgements of reward value and certainty for chosen options were 

standardized within-subjects: the chosen option’s predicted reward and certainty were divided by 

them sum of all a participant’s predictions and certainty judgements. One participant rated all of 

their certainty judgements as 0, which resulted in an error in computing their standardized 

certainty rating (from dividing by 0). Zero (0) was thus used as their standardized certainty 

rating. Participants in the niacin (M = 0.27) and psilocybin (M = 0.25) conditions did not differ 

in terms of their choices’ predicted values, t(7) = 0.57, p = 0.58. Participants in the niacin 

condition (M = 0.22) and psilocybin condition (M = 0.19) chose options for which they were 

similarly certain of the reward value, t(7) = 0.47, p = 0.65. 

 
Figure 3.4 Bonus Round Results. In all graphs, box plots represent the median and IQR, white diamonds represent 
group means, and points represent individual participant responses. A: Absolute error of predictions about the 
reward value of unobserved choices. B: Participant ratings of certainty about their predicted reward values. C: 
Standardized reward value predictions (left) and certainty judgements (right) about chosen unobserved options. 
 

Condition Placebo Psilocybin

0
2.5

5
7.5
10

12.5
15

Placebo Psilocybin

Condition

A
bs

ol
ut

e 
Er

ro
r

A

0.0

2.5

5.0

7.5

10.0

Placebo Psilocybin

Condition

C
er

ta
in

ty

B

Estimate Certainty

Placebo Psilocybin Placebo Psilocybin
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Condition

St
an

da
rd

iz
ed

 E
st

im
at

e

C



85 

Modeling Results.  

Model Comparisons. Comparative model fit was assessed in two ways. First, we 

simulated learning curves for each model by using the median participant parameter estimates. 

Specifically, each model produced outputs given the same environments that participants saw. 

Both the full GP-UCB model and 𝛽 lesioned models produced responses similar to participants’, 

with the full model being slightly more similar (Figure 3.5A). Next, we computed the protected 

exceedance probability (PXP) using hierarchical Bayesian model selection. In general, PXP 

measures the probability that a particular model or hypothesis is best among a set of alternatives, 

accounting for the possibility of differences being due to chance. Here, a higher PXP indicates 

greater certainty that a given model is superior to the alternatives, and thus characterizes which 

model is most likely in the population. This analysis revealed that the full GP-UCB model was 

best across all participants (PXP = 0.92) and both the niacin (PXP = 0.63) and psilocybin (PXP = 

0.75) conditions individually (Figure 3.5B). 

 
Figure 3.5 Model Fit Results. A: Simulated learning curves for each model compared to participants’ responses in 
both conditions. B: Exceedance probability of different models for each condition and the data overall, reflecting the 
probability of that model being most common in the population. 
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 Parameter Estimates. Mean parameter estimates of the GP-UCB model for each 

participant were compared to assess whether participants in each condition exhibited differences 

in the three components of exploration behavior outlined above. Given the sample size of the 

current work, Mann-Whitney-U tests were conducted to test for differences between conditions 

and Kendall’s 𝑟! is used as a measure of effect size. These analyses (Figure 3.6) revealed that 

participants in the niacin condition (M = 1.13) had a larger l parameter estimate than those in the 

psilocybin condition (M = 0.83), indicating that they tended to generalize more. However, this 

difference was not significant, W = 14, p = 0.41. Participants in the niacin condition (M = 0.18) 

had a smaller b parameter estimate than those in the psilocybin condition (M = 0.22), indicating 

that they tended to engage in less directed exploration. Again, this difference was not significant, 

W = 8, p = 0.73. Finally, participants in the niacin (M = 0.04) and psilocybin (M = 0.03) 

conditions had similar t parameter estimates, engaging in similar amounts of random 

exploration, W = 15, p = 0.29. 

 
Figure 3.6 Cross-validated parameter estimates for the GP-UCB model. Each point represents an individual 
participant’s median parameter estimate. White diamonds represent condition means, and box plots represent 
condition medians and IQRs. 
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Discussion. In this experiment a spatially correlated multi-armed bandit task was used to 

investigate whether psilocybin treatment will lead to more childlike search and sampling 

strategies. Specifically, three components of exploration were assessed: random exploration, 

directed exploration, and generalization. Previous work has shown that, compared to adults, 

children engage in more directed exploration, sampling more broadly and generalizing less, 

leading to lower overall rewards earned. However, both adults and children engage in similarly 

low levels of random exploration. It was hypothesized that participants treated with psilocybin 

will exhibit similar differences from baseline adults. Participants in both the psilocybin and 

niacin conditions earned similar amounts of reward overall, exploited known high reward 

options by sampling locally, generalized from previous options such that higher reward values 

lead to less distance in subsequent samples, and learned at similar rates across trials. In the bonus 

round, participants in both groups made similarly accurate reward predictions and moderate 

certainty judgements. They also tended to pick options with similar reward predictions and 

certainty judgements. A computational model was also fit with parameters to instantiate each of 

these three components. Differences in the average parameter estimates between conditions 

suggest that participants in the niacin condition tend to generalize more and engage in less 

directed exploration compared to those in the psilocybin condition, though these differences 

were not significant. 

Overall, these results largely suggest that there are no differences in search and sampling 

strategies between conditions. However, given the sample size limitations, the results from 

formal statistical analyses must be interpreted with caution. In considering the trends in the raw 

data and parameter estimates from the computational models, there are some indications that 

participants treated with psilocybin may be behaving more like children. Beyond the parameter 
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estimates outlined above, the learning curves show that participants in the psilocybin condition 

start to earn less reward between trials 10 to 15. One interpretation of this is that after they 

perform an initial search to locate the high reward value area of the grid, they engage in a brief 

additional period of exploration before beginning to exploit the discovered high reward options. 

This would represent a different pattern of directed exploration compared to children, whose 

learning curves decay across trials, and should be investigated further in future work. 

Experiment 2.4: Approach-Avoid Decision Making Task 

 While much research has provided evidence for the developmental changes in how 

people resolve the exploration-exploitation dilemma, this has been conducted almost exclusively 

using multiarmed bandit tasks (like that in Experiment 2.3 above). Critically, in this context, 

even “bad” options are still rewarding – just less so than other options. Thus, there is no actual 

cost to exploration, just the opportunity cost of less overall reward. Real-world contexts are more 

complex, where individuals are tasked not only with differing rewards but also real costs which 

may be non-trivial (e.g., getting food poisoning from eating spoiled food). Results from these 

multiarmed bandit tasks are less ecological valid, and the developmental differences in search 

behaviors in environments with costly options are less clear. However, there exists an alternative 

paradigm that more closely resembles the complex situations found in the real world where 

options have varying reward structures, some of which are costly. 

 In “approach-avoid” decision making tasks, participants are shown a stimulus on each 

trial that is associated with an initially unknown reward or cost and must decide whether to 

approach or avoid it. By approaching the stimulus, the participant will receive any reward or 

incur any cost associated with that stimulus. By avoiding the stimulus, the participant will avoid 

incurring any costs associated with it, but also forgo any rewards. Thus, the only way 



89 

participants can receive any information and learn about the underlying reward structure is by 

approaching the stimuli and risking any incurred costs of doing so. Previous research has 

demonstrated that adults tend to overgeneralize from negative outcomes, whereby a single 

negative experience results in them inferring a general rule about other associated stimuli (Rich 

& Gureckis, 2018). As a result, they fail to approach other related stimuli, get disconfirming 

evidence for their initially inferred generalization, and learn the true complex reward structure of 

their environment, a phenomenon known as a “learning trap” (Rich & Gureckis, 2015). 

 Approach-avoid decision making task paradigms represent a more ecologically valid way 

of examining the developmental differences in explore/exploit behaviors. Liquin and Gopnik 

(2022) adopted a child-friendly version of Rich and Gureckis’ (2018) learning trap experiment. 

They showed that: 1. Even in a child-friendly task, adults still fell into learning traps. 2. 

Compared to adults, children are both more exploratory and resistant to learning traps. 3.  

Children and adults do not make different initial inferences, and both expect uncertain actions 

will be costly if similar to previously costly actions. However, despite predicting an incurred cost 

of doing so, children are more likely than adults to risk exploring an uncertain action and thus 

acquire more relevant information and overall learn more. Together, their findings suggest that 

children are more exploratory than adults in an unknown but ecologically valid environment, this 

greater exploration allows them to avoid learning traps and learn more effectively than adults, 

and importantly this difference in exploration is not the result of differences in prior beliefs.  

To complement and extend the findings from the spatially correlated multi-armed bandit 

task above, I adapted this approach-avoid decision making task from Liquin and Gopnik (2022) 

and tested whether adults treated with psilocybin will likewise be more exploratory and avoid 

learning traps compared to baseline adults. Specifically, it was hypothesized that participants in 
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the psilocybin condition would approach costly options more often than those in the niacin 

condition. This increased exploration should lead them to avoiding learning traps and learning 

the rule governing the reward structure. However, they should not have different initial 

expectations than those in the niacin condition.  

Method.  

Materials. This experiment was conducted electronically using the Qualtrics survey 

platform. However, several physical stimuli were constructed and implemented in the creation of 

the images and videos used in the task (Appendix F). A “zaff machine” was constructed using an 

Apple Macbook Pro laptop with a silver painted shoebox lid on top covering the keyboard. This 

computer was controlled with a hidden remote to activate the machine with the appropriate 

response based on which object was placed on top of it. The blocks placed on top of the machine 

were sixteen yellow painted wooden blocks. These blocks varied along two dimensions: design 

color (black vs white) and design pattern (striped vs spotted), for a total of 4 different block 

types. Block types were ascribed to the “zaff” or “non-zaff” category based on a two-

dimensional category rule. For example, blocks with a black spotted design are non-zaffs and all 

other blocks are zaffs. Thus, of the four block types, one was always a non-zaff and the other 

three were zaffs. The specific rule, i.e., which block type was the non-zaff, was counter-balanced 

across participants. Four additional blocks were constructed using the same block types outlined 

above, but were designed on blue blocks rather than yellow. 

Procedure. Participants first watched an introductory video where they were introduced 

to a set of stimuli and a machine. The stimuli set consisted of 4 different types of yellow wooden 

blocks which varied along two dimensions: design pattern (striped vs spotted) and design color 

(white vs black). There were 4 of each type of block, for 16 stimuli total, which were all laid out 
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on a table. On the table was also a “special machine” (laptop with a shoebox covering the 

keyboard). The experimenter in the video explained that some of the blocks were “zaffs” and 

some of the blocks were not zaffs, and that the machine was activated only by zaffs. Specifically, 

when a zaff is put on the machine it would light up with a green smiley face. When a non-zaff is 

put on the machine, it would light up with a red frowning face. Participants were then told that 

they would be shown each block one at a time and decide whether or not to put that block on the 

machine. Participants would have 4 stars when the game begins. Whenever they chose to put a 

block that was a zaff on the machine they would gain a one star reward. Whenever they chose to 

put a block that was a non-zaff on the machine, they would incur a two star loss. If they chose 

not to put a block on the machine, their score would remain unchanged, neither gaining nor 

losing any stars. Upon the completion of the instructions video, 3 attention check questions were 

presented which asked what would happen in each of the 3 options participants had per trial 

(putting a block on the machine when it was a zaff, when it was not a zaff, and not putting it on 

the machine). All 3 questions needed to be correctly answered before proceeding. If a participant 

answered any incorrectly, they would be shown the instructions video again.  

 Following the instructions video, the participants were presented with the approach-avoid 

phase. There were 16 trials total, one for each of the blocks, and in each trial participants decided 

whether to approach the block (put it on the machine and risk either the reward or cost associated 

with it) or avoid the block (put it away and eschew any potential risk or reward). If the 

participant decided to approach the block, a brief video of the experimenter placing the block on 

the machine and the resulting machine action (contingent on whether the block was a zaff or 

non-zaff) would be shown. The experimenter would also narrate the outcome, stating whether or 

not the block was a zaff and the resulting reward/cost from having approached it. If the 
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participant decided to avoid the block, the text, “Okay, we’ll put that block away” was displayed 

on the screen. The 16 trials were organized into 4 trial sets, and within each set one of each block 

type was shown in a randomized order. In the first trial set, the first trial always contained the 

zaff that deviated from the non-zaff along both dimensions. For example, if the non-zaff was the 

block with white stripes, the first trial would contain the black spotted block. The second trial in 

the first trial set would always contain the non-zaff. The third and fourth trials always contained 

a zaff that matched the first block shown along only one dimension. This ensured that 

participants would have the opportunity to see a positive and negative example in the first two 

trials. This also encouraged them to explore the non-zaff early, be exposed to a negative outcome 

that they could generalize from, and put them in a position to fall into a learning trap. 

Additionally, in the first trial set, after making their approach/avoid decision for each block but 

before being shown the outcome, participants were asked to guess whether or not the block was a 

zaff. This was included to assess whether participants in each condition made different initial 

inferences for which objects were zaffs. In other words, to determine whether they may be more 

exploratory because they do not anticipate a cost for approaching, or if they still approach an 

object despite inferring a cost for doing so. To summarize, in the first trial set, participants A. 

saw one of the four block types, B. made an approach/avoid decision, C. made an inference for 

whether or not that block was a zaff, and D. were shown the outcome of that block if they chose 

to approach it. For following three trial sets, the four block types were presented in a random 

order and participants only made approach/avoid decisions. Throughout the approach-avoid 

phase, participants saw their cumulative total score and number of remaining trials. 

 After the approach-avoid phase, there were two final phases. First, in the test phase, 

participants were shown pictures of each type of block one-by-one in a randomized order and 
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were asked to decide whether each was a zaff or non-zaff. The test phase was used to assess 

participant learning. Following the test phase, in the generalization phase, participants were 

shown pictures of novel objects. While the design patterns and colors were identical, the blocks 

themselves were blue rather than yellow. The pictures were shown one-by-one in a randomized 

order, and for each the participants were asked whether to indicate whether they thought it was a 

zaff or non-zaff. All video scripts and question text can be found in Appendix F. 

Results.  

Exploration. To start, we tested for differences in exploration behaviors between 

conditions (psilocybin vs niacin), following the analysis plan in the original work (Liquin & 

Gopnik, 2022). As participants are first ignorant to which objects were zaffs, they should begin 

by approaching the first objects. After incurring a costly outcome, they should fall into a learning 

trap, whereby they generalize to a one-dimensional rule based on either the color or pattern 

match to the costly object (i.e., seeing a white striped non-zaff and inferring that zaffs are black 

or spotted). If a participant fell into a learning trap, they should be increasingly less likely 

throughout the task to approach non-zaffs (p(approach | non-zaff) across trial sets). Further, they 

should persist in avoiding several blocks which were in fact zaffs (i.e., avoiding a white spotted 

block or black striped block after seeing a white striped non-zaff), never approaching them 

throughout the entirety of the task (p(approach | zaff) across trial sets). 

 To test for condition differences in approach behaviors of non-zaff trials across trial sets 

(Figure 3.7), we fit a mixed-effects logistic regression. Condition (psilocybin vs niacin), trial set 

(1, 2, 3, and 4), and their interaction were included as fixed effects. Condition was dummy coded 

and all fixed effects were mean centered. Random intercepts for participant and random slopes 

for trial set were also included in the model. The resulting full model was as follows: approach ~ 
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condition * Trial_Set + (1+ Trial_Set | participant_id). Significance of the main effects and 

interaction were assessed with nested model comparison. Results showed that there was no 

significant interaction, c2(1) = 0.15, p = 0.70, OR = 0.77, 95% CI [0.21, 2.84]. The difference in 

probability of approaching non-zaffs across trial sets did not differ between conditions. There 

was also no main effect of trial set, c2(1) = 0.008, p = 0.93, OR = 0.94, 95% CI [0.21, 4.08]. 

Unlike in previous work, across all participants there was not a decrease in the probability of 

approaching non-zaffs across trial sets. Finally, there was no main effect of condition, c2(1) = 

0.14, p = 0.71, OR = 2.04, 95% CI [0.05, 92.9]. The overall probability of approaching non-zaffs 

did not differ between conditions. 

 To test for differences in approach behaviors of zaff trials across trial sets (Figure 3.7), 

we first calculated the proportion of zaffs approached within trial sets for each participant. We 

then fit a linear mixed-effects model. Condition (psilocybin vs niacin), trial set (1, 2, 3, and 4), 

and their interaction were included as fixed effects. Condition was dummy coded and all fixed 

effects were mean centered. Random intercepts for participant and random slopes for trial set 

were also included in the model. The resulting full model was as follows: approach ~ condition * 

Trial_Set + (1+ Trial_Set | participant_id). Significance of the main effects and interaction were 

assessed with nested model comparisons. Results showed that there was no significant 

interaction of condition and trial set, c2(1) = 0.07, p = 0.79. The probability of approaching zaffs 

across trial sets did not differ between conditions. Consistent with previous work, there was no 

significant main effect of trial set, c2(1) = 0.07, p = 0.79. There was no change in the probability 

of approach zaffs across trial sets. The identical test statistic values and p-values between the 

main effect of trial set and its interaction with condition are likely due to the fact that the slope 

for trial set in the niacin condition was zero, but non-zero in the psilocybin condition. Any effect 
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of trial set only occurred in the psilocybin condition. Thus, the effect of trial set is identical to its 

interaction with condition. Finally, there was no significant main effect of condition, c2(1) = 

0.06, p = 0.80. The overall probability of approaching zaffs did not differ between conditions.  

 
Figure 3.7 Participants’ approach-avoid decisions across each of the 4 trial sets. Each trial set contained one zaff and 
three non-zaffs. Points correspond to individual participants’ responses. Box plots represent means and bootstrapped 
95% CIs. 
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previous categories. We compared the difference in proportion of participant responses that 

Placebo Psilocybin

N
on−Zaff

Zaff

1 2 3 4 1 2 3 4

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Trial Set

Pr
op

or
tio

n 
A

pp
ro

ac
he

d



96 

followed each rule category between conditions at both test and generalization (Table 3.2). 

Interestingly and unlike previous work, their responses at generalization did not follow a similar 

pattern as at test. 

Table 3.2 Number of participants from each condition at Test and Generalization who responded 
according to each rule.  

 One-Dimensional 

Color Rule 

One-Dimensional 

Pattern Rule 

Two-Dimensional 

Rule 

No Discernable 

Rule 

Condition Test Gen. Test Gen. Test Gen. Test Gen. 

Placebo 2 0 1 0 0 1 1 3 

Psilocybin 1 0 0 1 1 1 3 3 

 
 To explicitly investigate participants’ susceptibility to learning traps and whether this 

differed between conditions, we looked at their likelihood of responding according to a one-

dimensional rule vs two-dimensional rule. To do so, we fit logistic regression models predicting 

the learned rule by condition (psilocybin vs niacin) for both generalization and test. In both 

models, condition was dummy coded and mean centered. Significance of the main was assessed 

with nested model comparison. At both test, c2(1) = 2.23, p = 0.14, and generalization, c2(1) = 

1.05, p = 0.31, there were no differences between conditions. 

 As a final test of learning, we compared the overall reward earned between conditions. If 

participants had correctly learned the two-dimensional rule, they should approach more zaffs and 

avoid more non-zaffs, resulting in a higher total earned reward. A one-way analysis of variance 

compared the average reward earned between the two conditions, and revealed a non-significant 

main effect of condition, F(1, 7) = 0.05, p = 0.83, d = 0.15, BF = 0.52. Participants in the niacin 

(M = 11) and psilocybin (M = 11.2) conditions earned similar rewards. 

Expectations. In trial one of the first trial set, participants always saw an object that was a 

zaff. In trial two of the first trial set, participants always saw the non-zaff object. To assess 
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whether participants in the niacin and psilocybin conditions formed different initial expectations 

(predictions for whether or not the object was a zaff), we tested for differences in their 

predictions made on trials three and four of the first trial set (Figure 3.8). At this point, 

participants had been exposed to both one zaff and the non-zaff, so initial predictions they make 

on the trials which immediately follow may have influenced their behavior in subsequent trials. 

We fit a logistic regression to assess the effect of condition (psilocybin vs niacin) on predictions 

on the third and fourth trial. The mixed-effects logistic regression including a random effect for 

participant resulted in a singular fit model. However, the inclusion of this random effect did not 

significantly improve model fit (p > 0.05), and the results from both models were identical. Thus, 

we report the results from the logistic regression. Condition was dummy coded and mean 

centered, and significance of the main was assessed with nested model comparison. There was 

no significant main effect of condition, c2(1) = 0.75, p = 0.39, OR = 1.53, 95% CI [0.59, 4.24]. 

Participants in both conditions formed similar predictions on these trials. 

 
Figure 3.8 Participant predictions on trials three and four of the first trial set. Trials one, three, and four, always 
contained zaffs, and trial two always contained a non-zaff. 
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(Figure 3.9). Mixed-effects logistic regressions resulted in singularity issues with all 

optimization algorithms attempted. Thus, to account for the repeated measures from each 

subject, a Bayesian mixed-effect logistic regression was fit with condition (psilocybin vs niacin), 

prediction (zaff vs non-zaff), and their interaction, as a fixed effects, and a random effect for 

participant. The full model fit was: approach ~ condition*prediction + (1 | participant_id). As the 

credible interval included 0, this indicates that there was no significant main effect of condition, 

b = 4.56, 95% CI [-33.28, 57.53]. Participants in both conditions always approached objects they 

expected to be zaffs. However, while participants in the niacin condition (M = 14.3%) 

approached objects they expected to be non-zaffs less than those in the psilocybin condition (M 

= 22%), this was not a significant difference.  

 
Figure 3.9 Participant approach decisions as a function of their predictions. Individual points represent participants’ 
choices (each represented four times, representing the four trials in which predictions were made), Box plots 
represent means with boot strapped 95% CIs. Note: all participants approached all objects they predicted were zaffs, 
thus the box plot is represented by a single horizontal line. 
 

Discussion. In this experiment we investigated whether psilocybin treatment changes 
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exploratory than adults, even when they expect to incur costs for doing so, and this increased 

exploration leads them to more effective learning. It was hypothesized that participants treated 

with psilocybin will exhibit similar differences from baseline adults, exploring more, 

acknowledging costs for doing so, and learning more effectively. However, we found no 

differences in any measure of exploration or learning between participants treated with niacin or 

psilocybin. Given that there were no differences between conditions, we would expect that 

participants as a whole should replicate the findings from adults in prior work (Liquin & Gopnik, 

2022), especially as the same stimuli were implemented here. Importantly, this was not the case. 

In prior studies, adults were found to only approach 59% of true zaffs and 17.9% of non-

zaffs on average, approach non-zaffs less across trial sets, and consistently avoid objects they 

expected to be zaffs (approaching only 6.3% on average). The majority of adults demonstrating 

one of the one-dimensional rules at both test (69%) and generalization (62%), and were more 

likely to learn the correct two-dimensional rule as the number of objects they approached 

increased. Participants in this study did not exhibit any of these behaviors. They explored much 

more overall, approaching 75.9% of true zaffs and 25% of non-zaffs on average. This increased 

amount of exploration and approaching of both zaffs and non-zaffs should indicate that 

participants would correctly learn the underlying two-dimensional rule, but this was not the case 

as only one participant at test and two participants at generalization exhibited behavior consistent 

with this rule. Additionally, they approached non-zaffs at similar rates across trial sets and there 

was no association between the number of objects approached and exhibiting behavior consistent 

with the two-dimensional rule, further demonstrating a lack of learning. Finally, participants here 

approached objects they expected to be non-zaffs 18.3% of the time, more than adults (6.3%) in 

prior work but less than children (4-5 y/o = 75.7%, 6-7 y/o = 28.5%).  
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These differences are likely due in part to the limited sample size employed in the pilot 

data presented here, but may also be due to motivational differences between the samples. In the 

original work, participants were recruited from Amazon Mechanical Turk (mTurk) and received 

monetary compensation proportional to their performance. In addition to this, poor performance 

on an mTurk task could result in a participant getting a bad review. This would lower their 

“worker rating” and potentially prevent them from participating in other studies, and thus earning 

income from that participation. Together, this would lead to these participants being highly 

motivated to perform well, and in this context that corresponds to learning the rules governing 

reward. Due to IRB and budgetary constraints, in the present work we were unable to implement 

a similar monetary compensation based on performance. Psilocybin has been shown to elicit 

increases in gratitude and prosocial behaviors (Griffiths et al., 2018; Noorani et al., 2018), and it 

was hypothesized that these increases in participants who received psilocybin, or expected to in a 

compassionate crossover once the study was complete, would provide sufficient motivation to 

perform well. This may not have been the case and resulted in the behaviors we observed. Future 

work should incorporate performance-based monetary compensation to provide similar 

motivation to the original studies. At present, the current work provides no indication that 

psilocybin changes search and exploration when choices have associated costs. 

Experiment 3: Does Psychedelic Treatment Change Exogenous Attention? 

Prior work has provided evidence for differences in children and adults’ exogenous 

attention, as outlined in Chapter 1. Adult attention is guided by a top-down process known as 

selective attention, which narrowly concentrates attentional resources on goal relevant aspects of 

a task. As a consequence, goal irrelevant aspects of tasks are learned to be ignored, a 

phenomenon known as learned inattention (Heckler et al., 2006). Learned inattention is thought 
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to be an indicator of learning, as people optimize the allocation of their attentional resources to 

what they believe will facilitate learning and success (Yim, 2011). This learned inattention can 

be costly in the event of goal switching or if one has misinterpreted what are goal-relevant 

features. Children, on the other hand, have a much more diffuse allocation of attentional 

resources (Gopnik, 2009), and exhibit less learned inattention. Despite being cued to particular 

stimuli, children often remember non-cued stimuli equally as well, and better than adults (Deng 

& Sloutsky, 2016). They also are better at detecting changes to non-cued stimuli (Plebanek & 

Sloutsky, 2017). This difference in the allocation of attentional resources could be the result of 

stronger priors or more local perceptual sampling (Gelpi, 2021), whereby this shift between local 

and global strategies pervades both high-level conceptual inference as well as low-level 

perceptual processing. Alternatively, it could solely be related to the differences in inhibition and 

control afforded by prefrontal cortex development (Thompson-Schill et al., 2009). 

To formally test whether psilocybin treatment results in changes to one’s allocation of 

attentional resources, I adapted an experimental paradigm used by Plebanek and Sloutsky (2017). 

In this work, participants were shown a series of overlapping images as target stimuli, one of 

which was cued, followed by a mask and then a test item. In the test item, either the cued image 

changed, the un-cued image changed, or neither changed. Participants made familiarity 

judgements for the cued shapes and change detection judgements for the test images, where they 

were asked whether or not the test item was identical to the target stimulus. They found an 

interaction between age and trial type. While adults had greater change detection accuracy for 

trials where the cued image changed, children had greater change detection accuracy for trials 

where the un-cued image changed. That children outperformed adults on trials where the un-cued 



102 

image changed indicates that they were allocating their attentional resources more broadly than 

adults.  

It was hypothesized that psilocybin will change people’s allocation of attentional 

resources, making them more broadly distributed. Thus, participants in the psilocybin condition 

should perform like children in previous work and have high change detection accuracy on trials 

where the un-cued image changes. However, unlike children, they should still have similarly 

high accuracy on trials where the cued image changes. Participants in the niacin condition should 

have a narrower allocation of attentional resources and have lower change detection accuracy on 

trials where the un-cued image changes, performing like adults in previous work. Alternatively, 

if psilocybin does not change people’s allocation of attentional resources, the changed detection 

accuracy on trials where the un-cued image changes should be similar between the two 

conditions and in line with results from adults in previous studies. 

Method 

Materials. The image stimuli utilized throughout the trials were 26 pairs of overlapping 

shapes, one red and one green (see Appendix G). The mask image was a large black square, and 

the fixation point was a 60px crosshair (“+” sign). 

Procedure. Participants first saw an instructions page which explained the details of the 

task. They were told that they would see images made up of a green shape and a red shape, and 

that they should pay very close attention to only the red shape. In this way, the red shape served 

as the cued shape, and the green shape served as the un-cued shape. They were also told that they 

would be asked whether or not the red shapes were something they had seen before, and whether 

the images they saw in each trial changed. After verifying that they read and understood the 

instructions, they moved to the cuing phase, which was implemented to facilitate their attention 
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to the cued (red) shape. Here, participants saw five trials which all took a similar form. Each trial 

began with a fixation point shown in the middle of the screen for 1000ms and then the target 

shape for an another 1000ms. Following the target shape, a masking image was shown for 500ms 

before the test shape for a final 1000ms (Appendix G). After all images for a trial had been 

shown, participants made a two-alternative forced choice familiarity judgement for the cued 

image (familiar vs new), which served to further direct their attention towards it. They also made 

a change detection judgement where they were asked whether or not the test item was identical 

to the target stimulus (yes vs no). As the purpose of the cuing phase was to further direct 

attention to the cued shapes, in all trials in the cuing phase, the red shape changed from the target 

to the test stimuli while the green shape remained the same. 

 Immediately upon completing the cuing phase, participants began the test phase. The test 

phase contained three different trial types. In Cued Change trials, the cued shape (red) changed 

from the target to test stimuli. In Un-cued Change trials, the un-cued shape (green) changed from 

target to test. In the No Change trials, neither shapes change, and the test stimuli was identical to 

the target (Appendix G). There were five total trials of each trial type, for a total of fifteen trials 

overall in the test phase. Trials were presented in a fully randomized order. 

Results 

Change detection accuracy was measured using 𝐴′, the non-parametric equivalent of the 

signal detection statistic 𝑑′. 𝐴′ was computed individually for both Cued Change trials and Un-

cued Change trials. For both Cued Change and Un-cued Change trials, hits were defined as 

“change” responses to the change detection question. False alarms were defined as “change” 

responses on No Change trials. Thus, the false alarm rate was the same for both. The No Change 

trials had no changes to be detected, and they are thus omitted from the present analyses. 
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To assess whether change detection accuracy differed across conditions (psilocybin vs 

niacin) and trial type (cued shape changed vs un-cued shape changed), we fit a linear mixed-

effects model. Condition, trial type, and their interaction, were included as fixed effects. 

Condition and trial type were dummy coded and mean centered. Participant was included in the 

model as a random effect. The resulting full model was as follows: a_prime ~ 

condition*trial_type + (1 | participant_id). Significance of the main effects and interaction were 

assessed using a Type III Analysis of Variance with Satterthwaite's method. Results revealed no 

significant interaction of condition and trial type, F(1,7) = 0.23, p = 0.65, and no significant main 

effect of condition, F(1, 7) = 0.002, p = 0.97. This indicates that participants in the psilocybin 

and niacin conditions did not differ in their change detection accuracy. There was, however, a 

significant main effect of trial type, such that change detection accuracy was higher on trials 

where the cued shape changed (𝐴′ = 0.94) than trials where the un-cued shape changed (𝐴′ = 

0.70), F(1, 7) = 6.73, p = 0.036, d = 1.23, BF = 3.44 (Figure 3.10). This is consistent with 

previous work showing that adults have better change detection accuracy for the cued shapes. 

 
Figure 3.10 Participants’ change detection accuracy (𝐴′) between conditions and trial types. Bars represent means 
and error bars represent ±1 Standard Error of the Mean (SEM). 
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Discussion 

In this experiment a change detection task was used to investigate whether psilocybin 

treatment affects one’s allocation of attentional resources. Previous work has shown that, 

compared to adults, children have higher change detection accuracy for un-cued images. It was 

hypothesized that participants treated with psilocybin will exhibit similar differences from 

baseline adults. However, participants in both the psilocybin and niacin conditions had similar 

change detection accuracy across both cued and un-cued trial types. Interestingly, participants in 

both conditions had higher change detection accuracy on un-cued trials than adults in previous 

work. Plebanek and Sloutsky (2017) report an average 𝐴′ of 0.634 for the adults in their 

experiment. Here, the psilocybin condition had an average of 0.68 and the niacin condition had 

an average of 0.73. It is possible that participants here may have been less focused to the cued 

image. In the original work, participants earned course credit for their participation, which may 

have led to increased motivation to closely follow the instructions. Future studies can consider 

offering similar extrinsic motivation to increase fidelity to the instructions.  

Given that the perceptual effects of psychedelics occur during the acute drug effects, it is 

not necessarily surprising that there are no post-hoc attentional shifts. It is therefore also possible 

that any effects on exogenous attention may occur solely during the acute drug effects (Gopnik, 

2018). Further supporting this notion, previous work has demonstrated that impairments in 

working and episodic memory and visual perception following the administration of psilocybin 

occur during this time (Barrett et al., 2018). Thus, future studies should consider administering 

this task while participants are experiencing the acute drug effects. Overall, these results suggest 

that there are no changes to exogenous attention following the administration of psilocybin. 
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General Discussion 

 Across six experiments, the present work sought to unpack the mechanisms underlying 

the clinical benefits of psilocybin therapy. Following the proposed developmental model in 

Chapter 1, we investigated whether and how psilocybin affects cognitive flexibility. Three 

specific features of cognition, symptomatic of being more cognitively flexible, were tested which 

have previously shown developmental differences. The overall prediction across all experiments 

was that, after receiving psilocybin treatment, adults will perform more like children on these 

tasks compared to those who received niacin. 

We found initial evidence that psilocybin reduces the strength of people’s prior beliefs, 

making them more sensitive to current evidence. Specifically, participants in the psilocybin 

condition, like children, were more likely to revise a high prior belief when shown 

counterevidence. Mixed evidence was found for changes to search and sampling behaviors. In a 

novel semantic search task with multiple dynamic constraints, participants who received 

psilocybin were more exploratory, having less similarity between sequentially generated 

samples. While not statistically significant, model parameter estimates from a spatially correlated 

multi-armed bandit task indicated that, like children, psilocybin resulted in more exploration and 

less generalization. However, in a single-constraint serial production task and an approach-avoid 

task, no differences in exploration and search strategies were observed between conditions. 

Finally, in a change detection task, psilocybin did not result in increased exogenous attention. 

 While individual discussion sections highlight limitations specific to the individual task 

paradigms, several features of this pilot work may have impacted the observed results. Most 

salient among these is the sample size. While most studies of psilocybin and other psychedelic 

drugs do not have sample sizes that rival other psychology and drug research, the cognitive tasks 
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implemented in this work are typically completed with more participants (M = 46.8, SD = 19.5). 

The results from the formal statistical analyses should thus not be viewed as definitive, but rather 

a preliminary indication of which avenues may be most promising for future research. Several of 

the analyses encountered model fitting issues, including singular fits and convergence issues. 

Though in all cases these were able to be circumvented through the use of different optimization 

algorithms or Bayesian models, caution should be exercised in interpreting these results until a 

larger sample from Phase 2 of the broader study is completed. 

 It is also worth considering the timeframe relative to drug administration that these tasks 

were completed. Previous work implementing more coarse measures of cognitive flexibility have 

found different effects depending on when the tasks were administered. For example, some 

studies have reported increases during the acute effects of ayahuasca (Kuypers et al., 2016) and 

the day after administering psilocybin, stabilizing one week later (Mason et al., 2019). While 

others have found decreases during the acute effects (Mason et al., 2021). Others still have found 

increases that persist outwards of one-month (Doss et al., 2021). Additionally, there are distinct 

differences in the neural effects of psilocybin, with decreases in within-network DMN 

connectivity followed by post-acute increases. Psilocybin therapy has thus been likened to a 

‘reset’ mechanism, where acute disintegration affords post-acute re-integration leading to overall 

improvements in normal functioning (Carhart-Harris et al., 2017). It is thus unclear how the 

present results may have changed if the tasks were administered during the acute effects of 

psilocybin, or even one week later. Further, these tasks were only administered a single time. 

This was in large part due to a lack of previous research to demonstrate whether these tasks were 

susceptible to practice effects (see Chapter 4). Any potential baseline or demographic differences 

between participants would be mitigated through effective random condition assignment. 
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However, collecting data pre- and post-intervention would afford more statistical power, 

something particularly useful in these contexts. 

 Finally, there may have been motivational differences between participants in the original 

studies and those in the present work. In most cases, participants in the original studies were 

recruited from platforms like mTurk, which provide performance-based monetary compensation 

for their participation. They also experience pressure to maintain a high user rating so that 

participants do not get barred from other potentially high paying tasks. While we anticipated that 

participants here would be more diligent than undergraduate subjects from university research 

pools often are, there still may have been important differences in extrinsic motivation which 

may have affected the results. 

It is critical to contextualize the findings from the literature on psychedelics overviewed 

throughout this dissertation thus far in terms of the demographics of their participant samples, 

and the limitations that may impose on generalizability. Most clinical trials investigating the 

therapeutic potential of psychedelics are conducted almost exclusively using white, educated, 

industrialized, rich, and democratic (WEIRD) populations (Michaels et al., 2018), as was the 

case in the work presented here. However, the therapeutic benefits of psychotropic drugs can be 

influenced by ethnoracial- and sociocultural-factors (Ninnemann, 2012). For example, culturally-

informed interpretations of experiences and epigenetics. There is particular emphasis placed on 

“set” (the participant’s psychology state and motivations) and “setting” (the environment in 

which the treatment takes place) in psychedelic studies, and it is thought that these components 

may contribute to the safety and clinical efficacy of psychedelic treatment (Johnson et al., 2008). 

Survey studies have shown that set and setting are correlated with the outcomes of psychedelic 

use (Borkel et al., 2023), and most clinical trials implement some variation of the same model 
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which has been “optimized” to prioritize participant safety and reduce the likelihood of negative 

or harmful experiences (Johnson et al., 2008). However, both set and setting are particularly 

influenced by cultural factors (Hartogsohn, 2016). The currently widespread paradigm may not 

only be optimized just for WEIRD populations but could be implementing aspects that reduce 

safety or increase risk for non-WEIRD participants. Further, the pharmacokinetic and 

pharmacodynamic properties of psychotropic drugs are influenced by many factors, several of 

which are ethnoracially- or socioculturally-influenced (Mark von Zastrow, 2018). Thus, when 

considering the literature on the clinical benefits of psychedelic drug treatment, it is critical to be 

mindful of the demographics of the participant populations utilized in these studies. For a more 

comprehensive account, see the review by Fogg and colleagues (2021). 

 Though there are several legitimate caveats to acknowledge, the present work represents 

an important step forward for future research by highlighting the most promising targets for 

investigating changes in cognitive flexibility. If future studies with larger sample sizes are able to 

replicate the results reported here, or discover differences which were not significant, the 

increased knowledge about how psilocybin therapy imparts its widely observed therapeutic 

benefits could be used to either predict who may be most responsive to it and/or develop 

alternative treatments targeting an identical mechanism for individuals who cannot safely or 

practically receive this treatment. 
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Chapter 4 How Flexible is Flexible? Exploring Practice Effects in Cognitive Flexibility Tasks 

As highlighted throughout this dissertation, behavioral measures are critical to 

neuropsychological and cognitive assessment in both clinical and research settings. Rather than 

relying on an individual’s ability to accurately tell you about their own characteristics through 

self-report, behavioral measures require them to demonstrate these characteristics. Thus, 

behavioral measures are thought to provide more objective assessments which are less 

susceptible to measurement artifacts such as socially desirable responding and demand 

characteristics (Baumeister et al., 2007; Eisenberg & Fabes, 1990; Schwarz, 1999). However, 

behavioral measures also have a significant limitation: repeated administrations can result in 

practice effects, changes in scores across task completions in the absence of an intervention 

(Bartels et al., 2010).  

Practice effects result from the development of strategies, memory for test items, and 

increased comfort with the task; which, critically, can occur independently of change in the 

measured construct (Calamia et al., 2012). As a result, practice effects seriously undermine the 

accuracy of conclusions drawn from an individual’s performance. Practice may lead to ceiling or 

floor effects, potentially obscuring the effects of an intervention (Bartels et al., 2010), or result in 

misattribution of performance increases to an intervention (Calamia et al., 2012). They may also 

be difficult to identify, as the extent of practice effects has been found to vary both between 

different domains and even between different tasks within the same domain (Calamia et al., 

2012). Perhaps most alarmingly, meta-analyses have shown that practice effects across a wide 

variety of cognitive domains reach about a quarter of a standard deviation, a common magnitude 

of effect size for many interventions themselves (Calamia et al., 2012). 
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Of course, in some cases, practice effects do not pose an issue: if researchers administer 

their task at a single time point after an intervention, as in the studies outlined in Chapter 3. 

However, this requires relying on random condition assignment, which is sometimes not possible 

in clinical contexts. In most cases it is optimal, if not necessary, to collect clinical data within-

subjects, either to achieve statistical power when working with populations that are small and 

difficult to recruit or to account for critical individual differences impacting the measured 

construct. For example, in neuropsychiatric research and clinical neuropsychology, subtle 

differences in a patient’s condition can lead to different prognoses, and these can be further 

impacted by other cultural, demographic, or behavioral differences between patients. Thus, both 

fields have long prioritized accounting for practice effects in their assessments (McCaffrey & 

Westervelt, 1995). 

The current study extends the examination of practice effects to cognitive flexibility 

tasks. Cognitive flexibility is impaired in many mood disorders (Abend et al., 2018; Everaert et 

al., 2018; Kraus et al., 2021; Mennen et al., 2019), and neuropsychiatric conditions (Milders et 

al., 2008; Whiting et al., 2017). Leveraging recent advances in modern computing power, 

cognitive flexibility tasks applying computational methodology have been able to more 

quantitatively characterize aspects of human cognition (e.g., Bonawitz et al., 2014; Dasgupta et 

al., 2017; Lake et al., 2017; Lucas & Griffiths, 2010; Tenenbaum et al., 2011). Applying these 

tasks to clinical studies, especially those implementing therapeutic interventions, would allow for 

a more comprehensive appreciation of the condition’s underlying mechanisms and the 

intervention’s clinical efficacy. However, no work to date has investigated how performance on 

these tasks changes with repeated administrations. It is thus unclear whether these tasks are 

susceptible to practice effects and suitable for such applications. The present work aimed to 
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address this gap by testing whether three different cognitive flexibility tasks are susceptible to 

practice effects. Each task assesses a different dimension along which someone can be more 

cognitively flexible. Specifically, we investigated (1) A change detection task where previous 

work has shown that greater flexibility corresponds to more diffuse exogenous attention and 

greater change detection accuracy for un-cued images (Plebanek & Sloutsky, 2017). (2) A 

spatially correlated multi-armed bandit task where previous work has shown that greater 

flexibility corresponds to broader search and sampling strategies and less generalization (Giron 

et al., 2023; Schulz, et al., 2019). (3) An approach-avoid decision making task where previous 

work has shown that greater flexibility corresponds to better learning and resistance to learning 

traps (Liquin & Gopnik, 2022). Our results offer the first documentation of the varying degrees 

of practice effects in these tasks and provide suggestions for the future implementation of 

measures of cognitive flexibility in the assessment of clinical interventions. 

Method 

Participants 

All participants were recruited from the University of California, San Diego, 

undergraduate research pool. Participants signed up for one of three different versions of the 

study, each containing a different counterbalanced order of stimuli sets per time point. Each time 

point was spaced one-week apart. To account for expected attrition, up to 60 participants from 

each version were originally recruited with the aim of having 30 completing each. 142 

participants originally signed up to participate in this study. 2 participants failed to complete all 

tasks at the first time point. Of the remaining 140 participants, 42 dropped out after the first time 

point (failing to complete the second and third), and 2 additional participants failed to complete 

all the tasks at time point 2. Of the remaining 96, 20 dropped out after the second time point 
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(failing to complete the third), and an additional participant failed to complete all the tasks at 

time point 3. Of the 75 individuals who completed all tasks at all time points, 7 individuals were 

excluded for completing at least one task at a specific time point multiple times, and another 5 

were excluded for reporting technical difficulties that impacted their data (i.e., stimuli videos not 

loading or playing). The final dataset utilized for analysis included 63 individuals: 16 

participants in the first order, 20 participants in the second order, and 27 participants in the third 

order. Participants answered basic demographic questions including age (M = 21.33 years, SD = 

2.92, 17.46% declined to answer), gender identity (84.1% female, 4.76% male, 1.59% other 

gender identity, 9.52% declined to answer), and race (23.8% Hispanic, 22.2% East Asian, 15.9% 

White, 11.1% Multiracial, 7.94% South Asian, 3.17% Black, 1.59% Native Hawaiian or Pacific 

Islander, 1.59% other racial identity, 12.7% declined to answer). 

Materials and Procedure 

Change Detection. In the original task, 26 pairs of overlapping shapes were utilized, one 

red and one green. Two new sets of stimuli were created to have three total unique sets (the 

original and two new sets). Each new set of overlapping shape pairs was constructed by creating 

different combinations of the existing shapes from the original stimuli set. Equivalently different 

colors were selected for each set of overlapping shapes (purple vs yellow and orange vs blue). 

See Appendix G for example stimuli. To verify that these new stimuli sets replicated the findings 

of the original, each were piloted with a unique set of 35 participants and there were no 

significant differences between any set (p > 0.05). 

Participants first saw an instructions page which explained the details of the task. They 

were told that they would see images made up of a green/purple/orange shape and a 

red/yellow/blue shape (depending on the task version), and that they should pay very close 
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attention to only the red/yellow/blue shape. In this way, the red/yellow/blue shapes served as the 

cued shape, and the green/purple/orange shapes served as the un-cued shape. They were also told 

that they would be asked whether or not the red/yellow/blue shapes were something they had 

seen before, and whether the images they saw in each trial changed. After verifying that they 

read and understood the instructions, they moved to the cuing phase, which was implemented to 

facilitate their attention to the cued shape. Here, participants saw five trials which all took a 

similar form. Each trial began with a fixation point shown in the middle of the screen for 1000ms 

and then the target shape for an another 1000ms. Following the target shape, a masking image 

was shown for 500ms before the test shape for a final 1000ms (Appendix G). After all images for 

a trial had been shown, participants made a two-alternative forced choice familiarity judgement 

for the cued image (familiar vs new), which served to further direct their attention towards it. 

They also made a change detection judgement where they were asked whether or not the test 

item was identical to the target stimulus (yes vs no). As the purpose of the cuing phase was to 

further direct attention to the cued shapes, in all trials in the cuing phase, the red shape changed 

from the target to the test stimuli while the green shape remained the same. 

 Immediately upon completing the cuing phase, participants began the test phase. The test 

phase contained three different trial types. In Cued Change trials, the cued shape changed from 

the target to test stimuli. In Un-cued Change trials, the un-cued shape changed from target to test. 

In the No Change trials, neither shapes changed, and the test stimuli was identical to the target 

(Appendix G). There were five total trials of each trial type, for a total of fifteen trials overall in 

the test phase. Trials were presented in a fully randomized order. Full instructions and question 

text can be found in Appendix G. 
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Spatially Correlated Multi-Armed Bandit. Participants were presented with a series of 

8x8 2D grids (64 tiles total), with one randomly selected tile’s reward value shown at the start 

(Appendix E). One of 40 underlying reward environments, defining a bivariate function on the 

grid which mapped tiles to expected reward values, was randomly selected without replacement 

for each round. However, the reward values of the tiles in all environments were spatially 

correlated: tiles closer together had more similar reward values. Each round had a maximum 

reward value randomly sampled from a uniform distribution 𝑈(30, 40), and all tiles on the grid 

for that round had their values scaled to this maximum. This was to obfuscate the value of the 

round-specific global optima. To prevent reward values less than 0, each rescaled value was 

shifted by +5. Tiles on the 8x8 grid also incorporated normally distributed noise e ~ N(0, 1). 

Given the variability incorporated when generating grids, the likelihood of repeating the same 

grid twice was low. As a result, the same materials were used at each time point. 

Participants completed 10 rounds total, each with a unique randomly generated 8x8 grid, 

and were instructed to try to gain as many points as possible. Points were earned by clicking on 

the tiles, where the tile’s reward value would be added to the running total of points accumulated 

in a given round. Participants had the opportunity to make 25 selections per round and were free 

to choose between observed tiles (re-selecting a previously revealed tile with known reward 

value) or unobserved tiles (those which had not been revealed and whose reward value remains 

unknown). Upon clicking on a previously unobserved tile, that tile’s reward value would be 

revealed and displayed numerically within the tile in addition to a color corresponding to that 

value (darker colors for higher values). Because of the incorporated noise, tiles that were re-

clicked could show some variation in reward value. Only the most recent value was numerically 

displayed. 
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The first round served as a tutorial, where participants were introduced to the grids and 

provided with instructions. Three comprehension questions were presented upon completion 

which needed to be answered correctly to proceed. Specifically, these questions asked about the 

goal of the task, how points are earned, and how the point values were distributed. Following the 

tutorial, participants were presented with eight test rounds. The tenth and final round was a 

special bonus round. Here, participants first made 15 selections as in previous rounds before the 

round paused. At this point, participants had to make predictions for the reward value of 5 

randomly selected unobserved tiles and certainty ratings for those predictions (rated from 0 to 

10). After making the reward predictions and certainty ratings, they were prompted to select one 

of those 5 tiles to be revealed, and then proceeded to make the rest of their selections for that 

round as normal (that is, they were not required to select the other 4 tiles they made predictions 

about). Full instructions and question text can be found in Appendix E. 

Approach-Avoid Decision Task. The approach-avoid decision making task was 

conducted electronically using the Qualtrics survey platform. However, several physical stimuli 

were constructed and implemented in the creation of the images and videos used in the task. A 

“zaff machine” was constructed using an Apple Macbook Pro laptop with a silver painted 

shoebox lid on top covering the keyboard. This computer was controlled with a hidden remote to 

activate the machine with the appropriate response based on which object was placed on top of it 

(see below). In the original task, the blocks placed on top of the machine were sixteen yellow 

painted wooden blocks. These blocks varied along two dimensions: design color (black vs white) 

and design pattern (striped vs spotted), for a total of 4 different block types. Block types were 

ascribed to the “zaff” or “non-zaff” category based on a two-dimensional category rule. For 

example, blocks with a black spotted design are non-zaffs and all other blocks are zaffs. Thus, of 
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the four block types, one was always a non-zaff and the other three were zaffs. The specific rule, 

i.e., which block type was the non-zaff, was counter-balanced across participants. Four 

additional blocks were constructed using the same block types outlined above, but were designed 

on blue blocks rather than yellow.  

While the same zaff machine was used in each stimuli set, two new sets of blocks were 

created to have three total unique sets (the original and two new sets). Each new set utilized 

different patterns and colors. In one new set, the blocks were painted teal with yellow vs purple 

design colors and heart vs checkerboard design patterns. Four additional blocks were constructed 

using these same block types but were designed on green blocks rather than teal. In the other new 

set, the blocks were painted navy with orange vs green design colors and triangle vs honeycomb 

design patterns. Four additional blocks were constructed using these same block types but were 

designed on maroon blocks rather than navy. See Appendix F for full stimuli sets. To verify that 

these new stimuli sets replicated the findings of the original, each were piloted with a unique set 

of 20 participants and there were no significant differences between any set (p > 0.05). 

Participants first watched an introductory video where they were introduced to a set of 

stimuli and a machine. The stimuli set consisted of 4 different types of yellow wooden blocks 

which varied along two dimensions: design pattern (striped vs spotted) and design color (white 

vs black). There were 4 of each type of block, for 16 stimuli total, which were all laid out on a 

table. On the table was also a “special machine” (laptop with a shoebox covering the keyboard). 

The experimenter in the video explained that some of the blocks were “zaffs” and some of the 

blocks were not zaffs, and that the machine was activated only by zaffs. Specifically, when a zaff 

is put on the machine it would light up with a green smiley face. When a non-zaff is put on the 

machine, it would light up with a red frowning face. Participants were then told that they would 
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be shown each block one at a time and decide whether or not to put that block on the machine. 

Participants would have 4 stars when the game begins. Whenever they chose to put a block that 

was a zaff on the machine they would gain a one star reward. Whenever they chose to put a 

block that was a non-zaff on the machine, they would incur a two star loss. If they chose not to 

put a block on the machine, their score would remain unchanged, neither gaining nor losing any 

stars. Upon the completion of the instructions video, 3 attention check questions were presented 

which asked what would happen in each of the 3 options participants had per trial (putting a 

block on the machine when it was a zaff, when it was not a zaff, and not putting it on the 

machine). All 3 questions needed to be correctly answered before proceeding. If a participant 

answered any incorrectly, they would be shown the instructions video again.  

 Following the instructions video, the participants were presented with the approach-avoid 

phase. There were 16 trials total, one for each of the blocks, and in each trial participants decided 

whether to approach the block (put it on the machine and risk either the reward or cost associated 

with it) or avoid the block (put it away and eschew any potential risk or reward). If the 

participant decided to approach the block, a brief video of the experimenter placing the block on 

the machine and the resulting machine action (contingent on whether the block was a zaff or 

non-zaff) would be shown. The experimenter would also narrate the outcome, stating whether or 

not the block was a zaff and the resulting reward/cost from having approached it. If the 

participant decided to avoid the block, the text, “Okay, we’ll put that block away” was displayed 

on the screen. The 16 trials were organized into 4 trial sets, and within each set one of each block 

type was shown in a randomized order. In the first trial set, the first trial always contained the 

zaff that deviated from the non-zaff along both dimensions. For example, if the non-zaff was the 

block with white stripes, the first trial would contain the black spotted block. The second trial in 
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the first trial set would always contain the non-zaff. The third and fourth trials always contained 

a zaff that matched the first block shown along only one dimension. This ensured that 

participants would have the opportunity to see a positive and negative example in the first two 

trials. This also encouraged them to explore the non-zaff early, be exposed to a negative outcome 

that they could generalize from, and put them in a position to fall into a learning trap. 

Additionally, in the first trial set, after making their approach/avoid decision for each block but 

before being shown the outcome, participants were asked to guess whether or not the block was a 

zaff. This was included to assess whether participants in each condition made different initial 

inferences for which objects were zaffs. In other words, to determine whether they may be more 

exploratory because they do not anticipate a cost for approaching, or if they still approach an 

object despite inferring a cost for doing so. To summarize, in the first trial set, participants A. 

saw one of the four block types, B. made an approach/avoid decision, C. made an inference for 

whether or not that block was a zaff, and D. were shown the outcome of that block if they chose 

to approach it. For following three trial sets, the four block types were presented in a random 

order and participants only made approach/avoid decisions. Throughout the approach-avoid 

phase, participants saw their cumulative total score and number of remaining trials. 

 After the approach-avoid phase, there were two final phases. First, in the test phase, 

participants were shown pictures of each type of block one-by-one in a randomized order and 

were asked to decide whether each was a zaff or non-zaff. The test phase was used to assess 

participant learning. Following the test phase, in the generalization phase, participants were 

shown pictures of novel objects. While the design patterns and colors were identical, the blocks 

themselves were blue rather than yellow. The pictures were shown one-by-one in a randomized 
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order, and for each the participants were asked whether to indicate whether they thought it was a 

zaff or non-zaff. Full instructions and question text can be found in Appendix F. 

Results 

Change Detection 

Change detection accuracy was measured using 𝐴′, the non-parametric equivalent of the 

signal detection statistic 𝑑′. 𝐴′ was computed individually for both Cued Change trials and Un-

cued Change trials. For both Cued Change and Un-cued Change trials, hits were defined as 

“change” responses to the change detection question. False alarms were defined as “change” 

responses on No Change trials. Thus, the false alarm rate was the same for both. The No Change 

trials had no changes to be detected, and they are thus omitted from the present analyses. 

To assess whether change detection accuracy differed across time points (1, 2, and 3) and 

conditions (cued shape changed vs un-cued shape changed), we fit a linear mixed-effects model. 

Time point (1, 2, and 3), trial type (cued shape changed vs un-cued shape changed), and their 

interaction, were included as fixed effects. Time point and trial type were dummy coded and 

mean centered. Participant was included in the model as a random effect. The resulting full 

model was as follows: a_prime ~ time_point*trial_type + (1 | participant_id). Significance of the 

main effects and interaction were assessed using nested model comparisons. Results revealed no 

significant interaction of trial type and time point, c2(1) = 0.44, p = 0.51, or main effect of time 

point, c2(1) = 2.09, p = 0.15. Participants’ accuracy did not change across time points. As 

expected, there was a significant main effect of trial type, such that change detection accuracy 

was higher for trials where the cued shape changed (𝐴′ = 0.89) than trials where the un-cued 

shape changed (𝐴′ = 0.62), c2(1) = 136.55, p < 0.001. 
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Figure 4.1 Participants’ change detection accuracy (𝐴′) between time points and trial types. Bars represent means 
and error bars represent ±1 SEM. 
 
Spatially Correlated Multi-Armed Bandit 

Behavioral Results. All behavioral results were analyzed in a similar manner: fitting a 

linear mixed-effects model including a fixed effect for time point (1, 2, and 3). Time point was 

dummy coded and mean centered. The models also included random effects for participant and 

time point (for outcomes that included multiple measurements per subject at each time point) or 

only participant (for outcomes that included a single measurement per subject at each time 

point). The significance of the main effects and interactions were assessed with nested model 

comparisons. Post-hoc pairwise comparisons of the estimated marginal means were performed 

using the emmeans package with the Tukey method for adjustment. We first looked at overall 

participant performance, defined as the average reward earned at each time point (Figure 4.2A). 

There was a significant main effect of time point, c2(1) = 20.41, p < 0.001. Post-hoc analyses 

revealed that participants earned 1.63 more points (95% CI=[0.59, 2.67]) at time point 2 than 

time point 1, t(62) = 3.78, p = 0.001, d = 0.36, BF = 1.73, and 2.22 more points (95% CI=[1.12, 
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3.31]) at time point 3 than time point 1, t(62) = 4.87, p < 0.001, d = 0.54, BF = 24.92, but 

similarly at time points 2 and 3, t(62) = 1.47, p = 0.26. We also examined at the averaged reward 

over trials (learning curves), to assess whether participants learned more quickly at subsequent 

time points (Figure 4.2B). Importantly, there was no significant main effect of time point, c2(1)= 

3.47, p = 0.063. 

We next looked at sampling behaviors (Figure 4.2C). When considering the distance 

between consecutive choices, there was a significant main effect of time point, c2(1)= 20.73, p < 

0.001. Post-hoc analyses revealed that participants sampled with smaller distances (more locally) 

at time point 2 (M = 1.62) than time point 1 (M = 1.89), t(62) = 4.47, p < 0.001, d = 0.39, BF = 

2.27. They also sampled more locally at time point 3 (M = 1.53) than time point 1, t(62) = 4.92, 

p < 0.001, d = 0.53, BF = 20.42, but similarly at time points 2 and 3, t(62) = 2.14, p = 0.09. 

When considering the number of unique options sampled, there was a significant main effect of 

time point, c2(1)= 17.78, p < 0.001. Post-hoc analyses revealed that participants sampled 2.16 

more unique options (95% CI=[0.87, 3.44]) at time point 1 than time point 2, t(62) = 4.04, p = 

0.0004, d = 0.27, BF > 100, 3.08 more unique options (95% CI=[1.44, 4.73]) at time point 1 than 

time point 3, t(62) = 4.50, p = 0.0001, d = 0.37, BF > 100, and 0.93 more unique options (95% 

CI [0.04, 1.81] at timepoint 2 than 3, t(62) = 2.51, p = 0.039, d = 0.10, BF = 0.27. 

Finally, a Bayesian hierarchical regression was used to examine how participants’ choice 

distances were affected by the reward value of previous choices (Figure 4.2D). In this model, 

previous reward value, time point, and their interaction, were used to predict search distance, 

with participant included as a random effect. Significance of the main effects and interaction 

were assessed with nested model comparisons. Results revealed a significant interaction between 

previous reward and time point was significant, 𝛽 = -0.45, 95% CI [-0.54, -0.36], BF > 100. As 
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the previous reward increased, participants were more likely to sample with smaller distances in 

subsequent time points. However, the effect size is relatively small. The main effect of previous 

reward on distance was also significant, 𝛽 = −5.30, 95% CI [-5.77, -4.81], BF > 100, suggesting 

that a higher previous reward resulted in a decrease in distance to the subsequent choice. Finally, 

the main effect of time point was also significant, 𝛽 = 0.30, 95% CI [0.20, 0.39], BF > 100, 

suggesting that in subsequent time points participants tended to sample slightly further away. As 

with the significant interaction, this is effect size is relatively small. 

 
Figure 4.2 Main Behavioral Results. Red dashed line in all graphs represents the expected results from a fully 
random model. A: Normalized mean reward between time points. Box plots represent the median and IQR 
(interquartile range), white diamonds represent group means, and each point is an individual participant’s score. B: 
Learning curves displaying the normalized mean reward across trials for each time point. Lines represent group 
means and the shaded ribbon represents the 95% CI. C: Proportion of choices based on distance for each time point. 
Points represent group means with 95% CIs. D: Distance between sequential choices as a function of the reward 
value of the previous option. Points represent means of the raw data, lines correspond to fixed effects from a 
hierarchical Bayesian regression with 95% CI shaded regions. 
 

Bonus Round. For predictions made in the bonus round, we first looked at participants’ 
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0.63. Participants’ predicted reward values of unobserved options had errors of similar 

magnitude at time points 1 (M = 5.4, SE = 0.38), 2 (M = 5.54, SE = 0.35), and 3 (M = 5.14, SE = 

0.36). We next considered how certain participants were about their reward value predictions. 

There was no significant main effect of time point, c2(1) = 0.002, p = 0.97. Participants were 

similarly certain about their reward value predictions at time points 1 (M = 5.87, SE = 0.18), 2 

(M = 5.87, SE = 0.18), and 3 (M = 5.88, SE = 0.19). Finally, we investigated how a participant’s 

choice among the 5 unknown options was influenced by their reward value predictions and 

certainty judgements. To do so, judgements of reward value and certainty for chosen options 

were standardized within-subjects at each time point: the chosen option’s predicted reward value 

and certainty were divided by them sum of all a participant’s reward value predictions and 

certainty judgements at that time point. There was no significant main effect of time point for 

predicted reward value, c2(1) = 1.50, p = 0.22. Participants chose options with similar predicted 

reward values at time points 1 (M = 0.25, SE = 0.001), 2 (M = 0.26, SE = 0.001), and 3 (M = 

0.27, SE = 0.001). There was also no main effect of time point for certainty judgements, c2(1) = 

0.61, p = 0.47. Participants chose options with similar certainty of predicted rewards at time 

points 1 (M = 0.21, SE = 0.007), 2 (M = 0.22, SE = 0. 007), and 3 (M = 0.22, SE = 0. 007). 

Approach Avoid Decision Making Task 

Exploration. To start, we tested for differences in exploration behaviors between time 

points (1, 2, and 3). As participants are first ignorant to which objects were zaffs, they should 

begin by approaching the first objects. After incurring a costly outcome, they should fall into a 

learning trap, whereby they generalize to a one-dimensional rule based on either the color or 

pattern match to the costly object (i.e., seeing a white striped non-zaff and inferring that zaffs are 

black or spotted). If a participant fell into a learning trap, they should be increasingly less likely 
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throughout the task to approach non-zaffs (p(approach | non-zaff) across trial sets). Further, they 

should persist in avoiding several blocks which were in fact zaffs (i.e., avoiding a white spotted 

block or black striped block after seeing a white striped non-zaff), never approaching them 

throughout the entirety of the task (p(approach | zaff) across trial sets). If participants learned 

strategies that they implemented when repeating the task, we should see differences in these 

approach rates across time points. 

 To test for differences in approach behaviors of non-zaff trials across trial sets (Figure 

4.3), we fit a mixed-effects logistic regression. Time point (1, 2, and 3), trial set (1, 2, 3, and 4), 

and their interaction were included as fixed effects. All fixed effects were mean centered. 

Random intercepts for participant and random slopes for trial set and time point were also 

included in the model. The model specifying the full nesting structure of trial set within time 

point resulted in a singular fit, so this was dropped. The resulting full model was as follows: 

approach ~ Time_Point * Trial_Set + (1+ Time_Point + Trial_Set | participant_id). Significance 

of the main effects and interaction were assessed with nested model comparisons. Results 

showed that there was no significant interaction, c2(1) = 0.65, p = 0.42. The difference in 

probability of approaching non-zaffs across trial sets did not differ across time points. There was 

no main effect of time point, c2(1) = 0.42, p = 0.52. The overall probability of approaching non-

zaffs did not differ between conditions. However, there was a main effect of trial set, b = -0.33, 

c2(1) = 14.6, p < 0.001, OR = 0.72, 95% CI [0.61, 0.85]. Consistent with previous work, across 

all time points there was a decrease in the probability of approaching non-zaffs across trial sets. 

 To test for differences in approach behaviors of zaff trials across trial sets (Figure 4.3), 

we first calculated the proportion of zaffs approached within trial sets for each participant at each 

timepoint. We then fit a linear mixed-effects model. Time point (1, 2, and 3), trial set (1, 2, 3, 
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and 4), and their interaction included as fixed effects, and all fixed effects were mean centered. 

Random intercepts for participant and random slopes for time point and trial set were also 

included in the model. The resulting full model was as follows: approach ~ Time_Point * 

Trial_Set + (1+ Time_Point/Trial_Set | participant_id). Significance of the main effects and 

interaction were assessed using nested model comparisons. Results showed that there was no 

significant interaction of time point and trial set, c2(1) = 0.62, p = 0.43. The probability of 

approaching zaffs across trial sets did not differ between time points. There was no significant 

main effect of time point, c2(1) = 0.12, p = 0.73. The overall probability of approaching zaffs did 

not differ between time points. Further, unlike in previous work, there was a significant main 

effect of trial set, b = -0.015, c2(1) = 6.78, p = 0.009. Post-hoc pairwise comparisons using the 

Tukey method for multiple comparisons indicated that participants were more likely to approach 

zaffs in trial set 1 (M = 0.70) than in trial set 2 (M = 0.65), t(438) = 2.72, p = 0.034. Participants 

were also more likely to approach zaffs in trial set 1 than in trial set 4 (M = 0.65), t(438) = 3.11, 

p = 0.011. No other pairwise comparisons were significant (p > 0.05). 
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Figure 4.3 Participants’ approach-avoid decisions across each of the 4 trial sets. Each trial set contained one zaff and 
three non-zaffs. Points correspond to individual participants’ responses. Box plots represent means and bootstrapped 
95% CIs. 
 

Learning. Participants’ responses to each object type were used to categorize their 

learning at test and generalization. Specifically, these responses were coded according to one of 

four categories: 1. A one-dimension color rule, where zaffs were defined by their color (either 

white or black), 2. A one-dimensional pattern rule, where zaffs were defined by their pattern 

(either striped or spotted), 3. A two-dimensional rule, where zaffs were a single object type and 

all other types were non-zaffs, 4. All other response patterns that do not fit in one of the three 

previous categories. We compared the difference in proportion of participant responses that 

followed each rule category between time points at both test and generalization (Table 4.1). 

Unlike in previous work, at all time points, the majority of participants during generalization and 

slightly less than half at test responded in ways inconsistent with having learned any rule. 
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Table 4.1 Proportion of participants from each time point at Test and Generalization who 
responded according to each rule. 

 One-Dimensional 

Color Rule 

One-Dimensional 

Pattern Rule 

Two-Dimensional 

Rule 

No Discernable 

Rule 

Time Point Test Gen. Test Gen. Test Gen. Test Gen. 

1 4.7% 7.8% 28.1% 9.4% 23.4% 14.1% 43.7% 68.8% 

2 4.7% 9.4% 29.7% 6.3% 17.2% 4.7% 48.4% 79.7% 

3 4.7% 9.4% 35.9% 7.8% 17.2% 3.1% 42.2% 79.7% 

  
 To explicitly investigate participants’ susceptibility to learning traps and whether this 

differed between time points, we looked at their likelihood of responding according to a one-

dimensional rule vs two-dimensional rule. To do so, we fit logistic regression models predicting 

rule by time point for both generalization and test. Time point was mean centered and included 

as a fixed effect, and participant was included as a random effect. Significance of the main 

effects were assessed using nested model comparisons. At both test, c2(1) = 0.47, p = 0.49, and 

generalization, c2(2) = 0.59, p = 0.75, there were no differences between time points. 

As a final test of learning, we compared the overall reward earned between time points. If 

participants had correctly learned the two-dimensional rule, they should approach more zaffs and 

avoid more non-zaffs, resulting in a higher total earned reward. To do so, we fit a linear mixed-

effects model with time point (1, 2, and 3) included as a fixed effect and participant as a random 

effect. The resulting full model was: reward ~ time_point + (1 | participant_id). Significance of 

the main effect was assessed using nested model comparisons. This revealed a significant main 

effect of time point, c2(1) = 4.70, p = 0.030. Post-hoc pairwise comparisons using the Tukey 

method for multiple comparisons indicated that participants earned higher rewards at time point 

3 (M = 11.03) than at time point 2 (M = 9.84), t(124) = 2.96, p = 0.01, d = 0.41. Neither the 
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average reward between time point 1 (M = 10.14) and time point 2, t(124) = 0.75, p = 0.73, or 

between time point 1 and time point 3, t(124) = -2.21, p = 0.07, differed significantly. 

Expectations. In trial one of the first trial set, participants always saw an object that was 

a zaff. In trial two of the first trial set, participants always saw the non-zaff object. To assess 

whether formed different initial expectations (predictions for whether or not the object was a 

zaff) at different time points, we tested for differences in their predictions made on trials three 

and four of the first trial set. At this point, participants had been exposed to both one zaff and the 

non-zaff, so initial predictions they make on the trials which immediately follow may have 

influenced their behavior in subsequent trials. We fit a logistic regression to model the 

relationship between participant’s initial predictions by time point (1, 2, and 3). Time point was 

mean centered and included as a fixed effect. A mixed-effects logistic regression including a 

random effect for participant resulted in a singular fit model. However, the inclusion of this 

random effect did not significantly improve model fit (p > 0.05), and the results from both 

models were otherwise identical. Thus, following the approach from the original work, we report 

the results from the logistic regression. Significance of the main was assessed with nested model 

comparisons. There was no significant main effect of time point, c2(1) = 0.02, p = 0.90. 

Participants formed similar predictions on these trials at all time points (Figure 4.4). 
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Figure 4.4 Participant predictions on trials three and four of the first trial set. Trials one, three, and four, always 
contained zaffs, and trial two always contained a non-zaff. 
 

We next looked at whether participants’ decisions to approach or avoid a block were 

influenced by their predictions about that block, and whether this differed across time points 

(Figure 4.5). A mixed-effects logistic regressions was fit predicting approach by time point (1, 2, 

and 3), prediction (zaff vs non-zaff), and their interaction as fixed effects. Time point and 

prediction were dummy coded and mean centered. Participant was included as a random effect. 

The resulting full model was as follows: Approach ~ Time_Point * Prediction + (1 | 

participant_id). Significance of the main effects and interaction were assessed using nested 

model comparisons. There was no significant interaction between time point and prediction, 

c2(1) < 0.001, p = 0.99, or significant main effect of time point, c2(1) < 0.001, p = 0.90. There 

was, however, a main effect of prediction, c2(1) = 207.27, p < 0.001, OR = 0.12, 95% CI [0.09, 

0.17]. Participants at all time points approached nearly every block they predicted was a zaff 

(time point 1 = 95.2%, time point 2 = 96.0%, time point 3 = 95.4%), and approached 
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approximately one quarter of blocks they predicted were non-zaffs (time point 1 = 25.0%, time 

point 2 = 23.6%, time point 3 = 23.6%). Notably, this extent of approaching objects predicted to 

be non-zaffs is higher than adults in previous studies.  

 
Figure 4.5 Participant approach decisions as a function of their predictions. Individual points represent participants’ 
choices (each represented four times, representing the four trials in which predictions were made), Box plots 
represent means with boot strapped 95% CIs. 
 
Discussion 

Previous research has shown that cognitive flexibility changes across development (Giron 

et al., 2023; Liquin & Gopnik, 2022; Plebanek & Sloutsky, 2017; Schulz, et al., 2019) and is 

impaired in many clinical conditions (Abend et al., 2018; Everaert et al., 2018; Kraus et al., 

2021; Mennen et al., 2019). As such, there is great interest in using behavioral measures to track 

individuals’ cognitive flexibility over time. However, when an individual completes the same 

task multiple times, they may develop practice effects in the form of strategies, memory for test 

items, and increased comfort with the task. Practice effects can occur independent of changes in 
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the measured construct (Calamia et al., 2012), and as a result, can seriously undermine the 

accuracy of conclusions drawn from an individual’s performance. The present work investigated 

whether cognitive flexibility tasks are susceptible to practice effects by having participants 

complete three tasks which each assessed a different dimension of flexibility at three time points 

spaced one-week apart. Specifically, participants completed a spatially correlated multi-armed 

bandit task, an approach-avoid decision making task, and a change detection task. Results 

suggest that these behavioral measures of cognitive flexibility are resistant to all but the most 

minor practice effects, with similar performance across time points.  

Two of the three tasks showed no evidence for practice effects of any kind. In the 

approach-avoid decision making task, there was no change in either search strategy or learning: 

participants approached rewarding and costly objects with similar frequency, learned the true 

rule at similar rates, and formed similar predictions at all time points. Likewise, in the change 

detection task, participants’ accuracy was similar at each time point for both cued and un-cued 

images. Only in the spatially correlated multi-armed bandit task was there any evidence of minor 

practice effects. Specifically, participants sampled more locally and earned higher rewards at 

time points 2 and 3 compared to time point 1. While statistically significant, three key points 

raise questions about the practical significance and extent of concern warranted of these findings. 

First, these differences were of low relative magnitude and may not represent meaningful 

learning or differences in search and sampling strategies. The largest difference in average 

reward earned between time points was only 2.22 more points. In most rounds of the task, where 

participants choose 25 tiles to earn their score, the minimum possible reward value for a tile was 

~5 and the maximum was ~50. If participants were truly applying different strategies across time 

points, it is reasonable to expect that the average point differences would be larger than ~2, 
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especially as this small difference could be explained by the normally distributed noise added to 

reward values on each trial. This is additionally supported when considering the differences in 

sampling distance, which characterizes participant search strategies. The maximum possible 

distance between tiles on the game boards is 14 units. However, the largest difference in average 

sampling distance was 0.37 units. Given the spatial correlation of tiles’ reward values, smaller 

distances do not equate to large differences in reward values, and average distance differences of 

less than one unit suggests participants are not exhibiting much learning or change in sampling 

strategy. Second, despite these changes, participants were no more accurate in predicting the 

reward values of unobserved choices nor were they more certain in their predictions, suggesting 

that they were not learning and applying any information about the task between time points. 

Third, these practice effects were only observed between the first time point to the second and 

third. That is, after completing the task once, participants’ scores stabilized across subsequent 

time points. Thus, even these minor practice effects which are seemingly not practically 

significant might be controlled for by having participants complete a practice time point before 

their baseline scores are recorded. 

The current results offer important insights and implications for researchers investigating 

clinical interventions aimed at changing cognition or cognitive abilities. They offer strong 

evidence for the test-retest and parallel forms reliability of these three tasks, indicating that they 

can successfully be administered at multiple time points to assess changes to cognitive flexibility 

over time and treatment. These more computational approaches may thus be confidently 

employed in the place of unreliable self-reports or coarser behavioral measures, allowing specific 

cognitive processes and changes to be more accurately characterized and studied. By 

administering these tasks at multiple time points, particularly pre- and post-intervention, 



134 

researchers can better assess changes in one’s cognitive functioning over time and the efficacy of 

different treatment options.  

 These results also further our understanding of cognition in general. Repeated exposure 

to information, or opportunities to get information, does not appear to be helpful in facilitating 

learning. This has important implications for educational settings by highlighting the need for 

diverse and adaptive learning strategies. Additionally, that people’s strategies did not change 

over time in these tasks shows they may be used to help better understand strategic adaption. For 

example, participant performance can be assessed after providing them more elaborative 

feedback (Van der Kleij et al., 2015), or perhaps by increasing metacognitive awareness by 

prompting them to list the strategies they employed (Siegler & Jenkins, 2014). Both strategies 

have been shown to improve learning outcomes in classroom settings (e.g., Guo, 202l; Schute, 

2007). Finally, that participants repeatedly succumbed to the same learning trap demonstrates 

how deeply ingrained learning traps may be. This may be particularly important for treating 

certain clinical conditions. For example, learned helplessness, a characteristic feature of 

depression (Klein et al., 1976; Miller & Seligman, 1975), has been framed as a particular type of 

learning trap (Erev, 2014; Rich, 2018). By better understanding how these maladaptive cognitive 

patterns are formed, clinicians can develop more effective treatments and therapies to help 

patients unlearn these behaviors and improve their general functioning. 

 Overall, this work demonstrates, for the first time, the enhanced psychometric properties 

of these cognitive flexibility tasks, highlighting their suitability for a variety of research purposes 

beyond the original work. While much research to date has shown the rigidity of baseline adult 

cognition in general, this work demonstrates a different dimension of rigidity: the stability of 
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strategies employed over time. When paired with interventions designed to change people’s 

strategies, these tasks may be used to better understand the mechanisms underlying cognition. 
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Chapter 5 General Discussion 
 

In recent years there has been a resurging interest in studying psychedelic drugs and their 

potential to both shed light on consciousness and be used as a novel therapeutic. While 

compelling evidence has been amassed for their potential to treat a variety of clinical conditions, 

there is comparatively little evidence to indicate the mechanisms underlying the observed clinical 

benefits. Although some theories derived from neuroimaging data have been proposed, such as 

increased neural plasticity, they can provide little insight into how or in what ways subjective 

experience is changed and do not afford causal claims. A promising cognitive-behavioral 

account has also been proposed—that psychedelics increase cognitive flexibility—but has 

largely used coarse behavioral measures and yielded inconsistent results. Thus, the question of 

how psychedelics engender their clinical benefits largely remains unclear. The work in this 

dissertation addresses this gap by applying modern cognitive science and computational 

methodology to test whether psilocybin results in changes to specific behaviors symptomatic of 

increased cognitive flexibility. These behaviors are gleaned from an unlikely source: children, a 

population known to be more cognitively flexible than adults in general.  

First, Chapter 2 introduces a novel serial production task which successfully measures 

cognitive flexibility by characterizing reasoning under dynamic constraints. The extant tools 

available to quantify and better understand this behavior are limited, failing to explicitly capture 

the filtering and constraint satisfaction aspects of these problems, incorporating only static 

constraints (if any), and have been long criticized for psychometric shortcomings. Based on the 

popular internet game Contexto, in this novel task, participants must try to guess a secret target 

word on each trial. After submitting a guess, they are shown that word’s semantic similarity rank 

to the target word. In this way, participants’ own guesses provide feedback which should serve to 
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constrain their subsequent guesses. We demonstrate that people are indeed sensitive to this 

feedback, producing sequential guesses that are more similar to each other and to the target word 

the closer in semantic distance the guess was. With several design parameters that can vary, such 

as the guess limit per trial, success criteria, or semantic content of target words, this task can be 

used by researchers to better characterize different dimensions of cognitive flexibility. For 

example, researchers can investigate whether participants have specific lexical biases by 

assessing the types of guesses they produce and how this may be affected by the types of target 

words presented (i.e., would participants produce more adjective guesses after seeing a target 

word that was an adjective?), or how participant search strategies may be affected by the goal on 

each trial (i.e., guessing the exact target word vs. guessing a word that is “close enough”). 

Researchers can also apply computational models with this task to better characterize the specific 

search and sampling strategies people employ. For example, performance can be compared to 

creative foraging tasks and the predictions from different foraging algorithms to assess the extent 

to which people deviate from optimal search. Further, given that this task is in the form of a 

game, it yields both more and higher quality data than comparative non-game task-based 

measures (Allen et al., 2023; Hartshorne et al., 2019). Finally, by demonstrating that this task is 

not susceptible to practice effects, it can be used in clinical contexts to validate interventions 

intended to affect cognitive flexibility or track changes to cognitive flexibility over time in 

patients with cognitive deficits. 

Chapter 3 presents pilot data from six experiments to assess whether and how psilocybin 

affects cognitive flexibility. As research in the field of cognitive development has routinely 

demonstrated, children exhibit greater cognitive flexibility than adults. Here, we test three 

specific dimensions which have previously shown developmental differences. We first tested 
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whether psilocybin reduces the strength of people’s prior beliefs, making them more sensitive to 

current evidence, through a causal reasoning task. Leveraging the high prior that adults have on 

disjunctive causes of action, we demonstrate that 100% of adults who received psilocybin, 

compared to 25% of those who received niacin, correctly inferred a conjunctive rule when shown 

evidence consistent with this rule. We next tested whether psilocybin changes people’s 

hypothesis search and sampling strategies, making them more board, exploratory, and resistant to 

learning traps. Utilizing the Contexto task from Chapter 2, we demonstrate that participants who 

received psilocybin engaged in broader search compared to those who received niacin. Further, 

the model parameter estimates from a spatially correlated multi-armed bandit task suggest that 

participants who received psilocybin engaged in more exploration and less generalization than 

those who received niacin. However, in a single cue SPT and an approach-avoid decision making 

task, no differences were found between conditions. Finally, we tested whether psilocybin 

changes people’s exogenous attention, making it more diffuse, through a change detection task. 

We found that there were no differences in change detection accuracy for cued or un-cued 

images between participants who received psilocybin or niacin.  

Given the small sample sizes of the psilocybin (n=5) and placebo (n=4) groups from this 

pilot study, the results from the formal statistical analyses should not be viewed as definitive. 

However, the results across these six experiments provide a preliminary indication of the specific 

ways in which psilocybin may affect cognitive flexibility. Previous experiments investigating the 

effects of psilocybin on cognitive flexibility have relied on paradigms employing summary score 

metrics, which quantify responses rather than the cognitive processes underlying their production 

(Hass, 2017). Instead, the current work employed paradigms which specifically assessed 

behaviors symptomatic of different cognitive processes. Consistent with prior proposals of 
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developmental models developmental models of psychedelics (Gopnik, 2018), the pilot data 

outlined here suggests that psilocybin decreases the strength of prior beliefs and changes search 

and sampling strategies to be broader and more exploratory. This could explain the previous 

research demonstrating that psilocybin elicits mystical-type and insight experiences, which are 

correlated with their clinical benefit (Griffiths et al., 2008, 2016; Noorani et al., 2018; Roseman 

et al., 2018). Reducing the strength of people’s priors and changing their hypothesis search 

strategies may result in perspective-shifting breaks from the maladaptive and ruminative thought 

patterns endemic to conditions like depression and anxiety. It will also be informative to examine 

whether the observed differences in performance on these assessments are related to functional 

and structural changes in neural activity. Given that the brain regions showing the greatest 

changes in activity in response to psilocybin are those that are related to cognitive flexibility, 

demonstrating a relationship between these neural effects and cognitive performance would help 

address the mind-brain gap that characterizes the literature on the effects of psilocybin. Further, 

testing whether scores on these assessments are correlated with clinical outcomes would help 

elucidate how psychedelics impart their clinical benefit. Together, the pilot results from this 

battery of cognitive assessments provide a promising direction to guide future research into the 

mechanisms underlying the clinical benefits of psychedelics. 

Finally, Chapter 4 provides evidence for the test-retest and parallel forms reliability of a 

subset of these experimental paradigms: the change detection task, spatially correlated multi-

armed bandit task, and approach-avoid decision making task. New stimuli sets were created for 

the latter two tasks, and initial pilot studies demonstrated they produce results identical to the 

original paradigms. Then, a new set of participants completed each task at three time points 

spaced one-week apart. The results showed that there were no practice effects on the approach-
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avoid decision making task or change detection task. While the spatially correlated multi-armed 

bandit task did demonstrate some minor practice effects, these did not appear to indicate a 

practical change in search or sampling strategy, and performance stabilized between all 

administrations after the first time point.  

These findings have important implications for future clinical research. In place of 

unreliable self-reports or coarser behavioral measures, these tasks may be confidently employed 

in clinical populations, allowing specific cognitive changes to be more accurately characterized 

over time. By administering these tasks at multiple time points, particularly pre- and post-

intervention, researchers can also better assess the efficacy of different treatment options in 

increasing cognitive flexibility. Further, a major criticism of the extant research on psilocybin 

and cognitive flexibility is that participants in those studies exhibited practice effects, obscuring 

the interpretation of the changes in task performance pre- and post-intervention (Mason et al., 

2021). Beyond clinical applications, these findings also have important implications for research 

on cognition in general. Given that people’s strategies are consistent over time, the development 

of these strategies can be more clearly investigated. Further, how these strategies can be changed 

in the absence of an intervention as powerful as administering a psychedelic drug. For example, 

perhaps raising an individual’s metacognitive awareness by prompting them to list the strategies 

they employed, and whether that impacts performance during subsequent task administrations. 

Overall, the present work provides a novel tool and further validates existing tools to 

assess changes in cognitive flexibility, and presents preliminary pilot data suggesting that 

psilocybin increases cognitive flexibility. Collectively, these findings position the field of 

psychedelic science to identify the specific cognitive mechanisms underlying psychedelic 

therapy. Future fully powered experiments can utilize the same methods outlined here, 
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administered at multiple time points, to identify the specific dimensions of cognitive flexibility 

that psilocybin may increase. With this, it would be possible to better identify who, and what 

clinical conditions, may be receptive to psychedelic therapy. It would also be possible to develop 

alternative treatments targeting these same mechanisms for individuals who are not suited for 

psychedelic treatment. Overall, this work represents an important step forward toward our 

understanding of psychedelic treatment and cognitions as a whole. 
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Appendix A 
 
Contexto instruction: 
 
“How to play: 
On each trial, there is a randomly selected secret word. 
Your goal is to try and figure out that secret word. 
 
The secret word will always be a noun. You have a maximum of 30 guesses per trial. 
 
The words were sorted by an artificial intelligence algorithm according to how similar they were 
to the secret word. 
 
After submitting a word, you will see its position. The secret word is number 1. 
 
You will earn points based on the closest word you can get on each trial. 
If you get the secret word, you will earn a bonus for that trial. 
 
*At the start of each trial you will be given one word to get you started. This word is randomly 
selected, so it may be close to the target or far away.” 
 
* Only included in the version that provided a start word. 
 
Contexto Word Lists 
 
Experiment 1: 
 

Target Close Medium Far 
cookie dessert yogurt penny 
flower orchid girl spider 
barbecue propane pasta boat 
tree vine natural hunt 
moose reindeer frog sculpture 
pancake oatmeal tortilla queen 
camera video microscope machine 
car taxi toy summer 
pencil ink clay latte 

 
Experiment 2: 
Set 1 -- 'flower', 'moose', 'cookie', 'pencil', ‘car’ 
Set 2 -- 'barbecue', 'pancake', 'camera', ‘banana’, ‘tuna’ 
Set 3 -- "pumpkin", "mushroom", "aquarium", "frog", ‘clock’ 
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Appendix B 
 
Phantom Limb Pain Study Measures: 
 
Pain ratings – Visual Analogue Scale and Numerical Rating Scale for pain intensity, 
unpleasantness, and overall pain rating, for phantom limb pain, residual limb pain, and other 
pain, in last week, 24 hours, and currently. Frequency of pain occurrences and average duration 
for all 3 in last week and 24 hours. 
 
Brief Pain Inventory (BPI) 
Short-Form McGill Pain Questionnaire (SF-MPQ) 
Trinity Amputation and Prosthesis Scale (TAPES-R) 
Beck Depression Inventory (BDI) 
Post-Traumatic Stress Disorder Check List (PCL-8) 
Interpersonal Reactivity Index (IRI) 
Compassion Scale (CS) 
Self-Compassion Scale (SCS) 
 
Mystical Experience Questionnaire (MEQ) 
Challenging Experience Questionnaire (CEQ) 
5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC) 
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Appendix C 

 
Experiment 2.1 Stimuli 
 
Blicket Machine: 

 
Blicket Containers (instructions video): 

 
 
Training Trial Blickets: 
 

 
 
Test Trial Blickets: 
 

 
 
Experiment 2.1 Video Scripts and Question Text 
 
Intro video: 
 
“In this study, we are going to figure out what things are blickets. You can’t tell what a blicket is 
just by looking at it. But, they do have something called blicketness inside of them. *Pulls out 
machine* -- here I have a machine. Blicketness will make this machine light up. I want to know 
which of my things are blickets. Only a few of them are blickets and most of them are not 
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blickets. It is important to know which are which. Now, *Pulls out containers of blickets and 
non-blickets*, look at these baskets. People have put things that are blickets into one and things 
that are not blickets into the other. There are many more things that are not blickets than things 
that are blickets. Let’s count them. ‘One, two, three, four.’ *pulls objects out and places in front 
of basket while counting* There are four things that are not blickets *puts non-blickets back into 
container*. ‘One’. There is one thing that is a blicket. *Puts blicket back into container. Almost 
all the things we counted are not blickets, and only one thing was a blicket. Okay, now let’s see 
the ones that are not sorted.” 
 
Training Trials: 
 
*Video starts with the machine and 3 objects on the table in front of the experimenter.* Let’s try 
these 3 things. Here are 3 things. It is very important to know which are blickets. Let’s call this 
one *picks up first object from the left* trapezoid. Let’s call this one *picks up second object 
from the left* oval. And let’s call this one *picks up third object from the left* diamond. Let’s 
see what happens when we put trapezoid onto the machine. *Puts trapezoid on the machine* It 
did not turn on. *removes trapezoid and places back down.* Let’s see what happens when we put 
oval onto the machine. *puts oval on the machine*. It did not turn on *removes oval and places 
back down*. Let’s see what happens when we put diamond onto the machine *puts diamond on 
the machine*. It did not turn on *removes diamond and places back down*. Let’s see what 
happens when we put trapezoid and oval onto the machine *places both trapezoid and oval on 
the machine*. It did not turn on *removes both objects and places back down*. Let’s see what 
happens when we put trapezoid and diamond onto the machine *places both trapezoid and 
diamond on the machine*. It turned on! *removes both objects and places back down.* Let’s see 
what happens when we put oval and diamond onto the machine *places both oval and diamond 
on the machine*. It did not turn on *puts both objects back down*.  
 
Test Trials: 
 
*Video starts with the machine and 3 objects on the table in front of the experimenter.* Here are 
3 things. It is very important to know which are blickets. Let’s call this one *picks up first object 
from the left* pentagon. Let’s call this one *picks up second object from the left* rectangle. And 
let’s call this one *picks up third object from the left* triangle. *picks up pentagon* Let’s see 
what happens when we put pentagon onto the machine *places on the machine*. It did not turn 
on *removes object and places it back*. Let’s see what happens when *picks up rectangle* we 
put rectangle onto the machine. *places rectangle on the machine* it did not turn on *removes 
object and places back down*. Let’s see what happens when *picks up pentagon* we put 
pentagon *picks up triangle* and triangle onto the machine *places both objects on the 
machine*. It turned on! *removes objects and places them back*. Let’s see what happens when 
we put pentagon *points to pentagon*, rectangle *points to rectangle*, and triangle *points to 
triangle* onto the machine. *picks up all 3 and places on the machine*. It turned on! *removes 
all 3 objects and places back down*. Let’s see what happens when *picks up pentagon* we put 
pentagon *picks up triangle* and triangle onto the machine *places both objects on the 
machine*. It turned on! *removes objects and places them back*. 
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Question Text: 
Judgement Questions 
“Now that you've seen these objects on the machine, do you think that (Object Shape) is a 
blicket?” 

- Yes, it is a blicket, No, it is not a blicket 
“How confident are you about whether (Object Shape) is a blicket?” 

- 0-100 slider scale with the following labels at 25 point increments: 
o Not confident at all, Not very confident, Kind of confident, Confident, Extremely 

confident 
 
Intervention Questions 
“Now it's your turn. Which of these would you use to turn on the machine yourself? Use only 
what you need to activate the machine.” 
 
“How confident are you about whether your choice will activate the machine?” 

- 0-100 slider scale with the following labels at 25 point increments: 
o Not confident at all, Not very confident, Kind of confident, Confident, Extremely 

confident 
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Appendix D 

 
Single Cue Serial Production Task Predetermined Anchor Words 
 
Bunny, cat, dog, bird, dolphin, turtle, fish, cow, elephant, zebra, giraffe 
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Appendix E 

 
Spatially Correlated Multi-Armed Bandit Task Stimuli, Instructions Text, and Question Text 
 
Grid Environments: 
Example Starting State: 

 
Example Full Environment: 

 
 
Instructions Text: 
 
“In each round of this game you will see a game board like the one you see here. At the 
beginning of each round, one box on the game board is already revealed. Clicking on a box will 
reveal its score. In each round you have 25 clicks and your goal is to collect as many points as 
possible!” 
 
“Now you can practice on this game board. Before each click you have to decide whether to 
reveal a new box or click again on a box that already has its score revealed. When you choose to 
reveal a new box, you don’t know how many points you’ll get, but it could be worth many 
points! If you click a box that is already revealed, the score may change slightly, but will stay 
about the same. Heres an additional tip: On the game boards, high scores often appear next to 
other high scores, and low scores often appear next to other low scores! So a box’s score depends 
on where it is located on the board!” 
 
“Great job! In the next rounds you can collect up to 5 stars on each game board. The more points 
you collect in a round, the more stars you get for that round. The goal is to earn as many stars as 
possible!” 
 
Round Completion Message: 
“You have finished this round and have collected X stars. You have X rounds remaining!” 
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Bonus Round Instructions Text: 
 
“This last round is a special bonus round. Here, you can initially only reveal 15 boxes. After 
clicking 15 times, you’ll see five boxes that haven’t been revealed yet. For each of these boxes 
you will estimate how many points you would get if you clicked on it. See if you can get them all 
correct! After that, you’ll answer a few questions and then you can continue playing as usual 
until all 25 clicks are used up.” 
 
After making their initial 15 choices: 
"I'm going to ask you questions about five different boxes that you haven't revealed yet. For each 
box, you will estimate how many points you would get if you clicked on it. After that, you will 
pick one of the five boxes to reveal and then the game will continue normally. You will continue 
playing as usual until all 25 clicks are used up.” 
 
Question Text: 
 
Attention Check: 
“What is your task?” 

- Learn Colors, Collect as many points as possible, Find the boxes with the most points, I 
have no idea 

“How can you earn points?” 
- By clicking only on hidden boxes, By clicking only on revealed boxes, By clicking on 

hidden or revealed boxes 
“How are points distributed?” 

- Randomly, High scores are never next to each other, High scores are always in the same 
area, High scores are often in the same area 

 
Bonus Round: 
“How many points will you get if you click here? What do you think?” 
 
“How sure are you?” 
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Appendix F 

 
Approach-Avoid Decision Making Task Stimuli, Scripts, and Question Text 
 
Stimuli 
Zaff Machine: 

 
 
Set 1 
Training and Test Blocks: 
 

 
 
Generalization Blocks: 
 

 
 
Set 2 (Used in Chapter 4) 
Training and Test Blocks: 
 

 
 
Generalization Blocks: 
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Set 3 (Used in Chapter 4) 
Training and Test Blocks: 
 

 
 
Generalization Blocks: 
 

 
 
Scripts: 
 
Intro Video: 
 
“See all these blocks? Some of these blocks are zaffs but some of these blocks are not zaffs. And 
this is a zaff machine. How my zaff machine works is that if we put a block that is a zaff on the 
machine, the screen lights up green and a happy face comes up. But if we put a block that’s not a 
zaff on the machine, the screen lights up red and a sad face comes up. So that’s how my zaff 
machine works and we’re going to play a game with my zaff machine. In this game, you get to 
start with 4 stars. There are ways to get more stars, but there are also ways to lose stars. I’m 
going to take one block at a time, and you get to decide whether or not to put the block on the 
machine. If you put the block on the machine and it is a zaff, you get one more star. But if you 
put the block on the machine and it’s not a zaff, we’ll take two stars away. But you can also 
decide not to put a block on the machine and then we’ll just put the block away and nothing 
happens. You don’t get any stars and you don’t lose any stars. So that’s how this game works.” 
 
Zaff Video: 
 
“It’s a zaff, so you get one more star!” 
 
Non-Zaff Video: 
 
“It’s not a zaff, so we’ll take two stars away.” 
 
Questions 
 
Training Phase: 
“Would you like to put this block on the machine?” 
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Prediction Question (first trial set only): 
“Do you think this block is a zaff or not a zaff?” 
 
Test and Generalization: 
“Is this block a zaff or not a zaff?” 
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Appendix G 

 
Change Detection Task Stimuli, Instructions Text, and Question Text 
 
Example Stimuli: 
 
Set 1: 
 
Cue Change Trial 
 

     
 
Un-Cue Change Trial 
 

  
 
Set 2 (Used in Chapter 4): 
 
Cue Change Trial 

  
 
Un-Cue Change Trial 
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Set 3 (Used in Chapter 4): 
 
Cue Change Trial 
 

 
 
Un-Cue Change Trial 
 

 
 
Instructions Text 
 
“In this task you will be shown a series of trials that contain images made up of a (un-cued color) 
part and a (cued color) part. Pay very close attention to only the (CUED COLOR) part. You 
will be asked whether the (CUED COLOR) part is new or has been shown on a previous trial. 
You will also be asked if the picture within each trial changes.” 
 
Question Text 
 
Familiarity Judgement 
“Press S if the (CUED COLOR) image is familiar and K if the (CUED COLOR) image is 
new.” 
 
Change Judgement 
“Did the image change? Press S if yes and K if no.” 


