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Abstract 

Efficient Modeling Strategies for Performance-based Building  
Design Supported by Daylight and Building Energy Simulations 

By 

Luis Filipe Batista Silveira Dos Santos 

Doctor of Philosophy in Architecture 

University of California, Berkeley 

Professor Luisa Caldas, Chair 

The resources involved in the construction and operation of buildings represent nearly 40% of 
the global emissions of greenhouse gases (GHG), making the building sector one of the primary 
contributors to global warming. This reality has led to the creation of many prescriptive 
regulatory and voluntary programs that aim to mitigate the environmental impact of the building 
sector while ensuring high standards for Indoor Environmental Quality (IEQ), particularly those 
regarding the thermal and visual comfort of building occupants. Thus, the design of high-
performance buildings, i.e., resource- and energy-efficient buildings that yield high levels of 
IEQ, is a pressing need. This scenario pushes architects to simulate their projects’ environmental 
performance to better support design tasks in a process referred to as performance-based design. 

This dissertation studies the integration of daylighting and Building Energy Simulation (BES) 
tools into performance-based design supported by computational design (CD) methods, 
particularly parametric design and Building Performance Optimization (BPO). The assumption 
is that the early integration of parametric, BES, and daylighting simulation tools can be highly 
effective in the design, analysis, and optimization of high-performance buildings. 

However, the research argues that the current daylighting and Building Energy Simulation 
(BES) tools pose critical challenges to that desirable integration, thus hindering the deployment 
of efficient exploratory design methods such as Parametric Design and Analysis (PDA) and 
BPO. These challenges arise from limitations regarding (i) tool interoperability, (ii) 
computationally expensive simulation processes, and (iii) problem and performance goal 
definition in BPO.  

The primary objective of the dissertation is to improve the use of daylighting and BES tools in 
PDA and BPO. To that end, the research proposes and validates five modeling strategies that 
directly tackle the limitations mentioned above. The strategies are the following: (i) Strategy A: 
Automatically generate valid building geometry for BES; (ii) Strategy B: Automatically simplify 
building geometry for BES; (iii) Strategy C: Abstract Complex Fenestration Systems (CFS) for 
BES; (iv) Strategy D: Assess glare potential of indoor spaces using a time and spatial sampling 
technique; and (v) Strategy E: Painting with Light - a novel method for spatially specifying 
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daylight goals in BPO. 

The research work shows that the strategies address the research problem and current limitations 
by (i) improving the interoperability between design and BES and daylighting simulation tools 
(Strategies A, B, and C); (ii) producing quick and adequate feedback on the daylight, thermal, 
and energy behavior of buildings (Strategies B, C, and D); and (iii) facilitating the spatial 
definition of performance goals in daylighting BPO workflows (Strategy E). These three 
important merits of the proposed strategies effectively contribute to improving the efficiency of 
using daylight and BES tools in the design, analysis, and optimization of high-performance 
buildings. 

Strategies A, B, and C enable the automatic generation of efficient Building Energy Models 
(BEMs). Strategy A uses advanced planarization techniques to parse any complex curved or 
double-curved building envelope for EnergyPlus, a state-of-the-art BES. In order to improve 
calculation times and thus performance feedback, Strategy B simplifies the models generated 
by Strategy A. The resulting simplified BEMs run significantly faster than equivalent standard 
BEMs without compromising the quality of simulation output. Strategy C combines co-
simulation and linear regression techniques to generate BEM surrogates of sophisticated façade 
systems, which are easily designed with parametric approaches. The resulting surrogates run 
quickly and are useful for year-based building energy analysis. 

Strategy D provides an alternative method to initial visual comfort studies by reducing the use 
of computationally expensive simulations required by some building standards (e.g., EN 170377 
– Daylight in Buildings). The strategy utilizes easier-to-compute daylight metrics to spatially
assess glare potential and identify worst-case scenarios in order to conduct detailed point-in-
time glare simulations.

Strategy E implements a painting-style interface that helps designers to spatially specify daylight 
goals in indoor spaces. Hence, the strategy (i) reduces the difficulty of defining the daylight 
optimization (or design) problem, (ii) expands the generative potential of goal-oriented design 
procedures for daylighting design, and (iii) mitigates the gap between standard optimization 
approaches used in inverse-design and common methods applied in architectural design.   

Finally, the dissertation discusses the merits and limitations of each strategy, provides useful 
guidelines and recommendations for their use in building design, and suggests future directions 
for further research. 
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Chapter 1:  
Introduction 
This dissertation studies the integration of whole-building energy and daylighting simulation into 
architectural design processes supported by computational design methods, particularly parametric 
design and building performance optimization. The research develops new modeling methods that 
improve the use of current simulation techniques in the design of resource- and energy-efficient 
buildings, thus contributing to a more sustainable built environment. This chapter introduces such 
research by presenting a general overview of the work, its context, objectives, approach, and 
structure.  

Section 1.1 presents the context, relevance, and challenges of designing energy-efficient buildings 
that are simultaneously thermally and visually comfortable (for a detailed overview of the state-
of-the-art, please refer to chapter 2). Section 1.2 then presents the general problem, which is further 
developed in chapter 3. The general intention, research question, and hypothesis are stated in 
section 1.3.  Section 1.4 presents the research objective. Section 1.5 summarizes the research 
methodology used in the dissertation. The research methodology and methods are further described 
in chapter 4. An overview of the contents of the dissertation is presented in section 1.6. Section 
1.7 defines key terms used throughout the dissertation. Section 1.8 describes the different means 
of research dissemination, including scientific contributions, lectures, and workshops based on the 
investigation conducted in this dissertation. Lastly, section 1.9 presents the awards given to the 
dissertation research. 

1.1 Context, relevance, and challenges  

Currently, the demand for energy-efficient, sustainable, green buildings is no longer a “trendy” 
topic but a civilizational necessity. As demonstrated in Abergel et al. (2018), the resources 
involved in the construction and operation of buildings represent nearly 40% of the global 
emissions of greenhouse gases (GHG). The emissions caused solely by operating buildings 
correspond to 28%. The GHG emissions caused by operation primarily consist of using energy in 
ventilating, cooling, heating, and lighting buildings to ensure a good indoor environmental quality 
(IEQ). 

The GHG emissions associated with the building sector make it a critical sector in energy and 
environmental policy. The last synthesis report of the Intergovernmental Panel on Climate Change 
(IPCC) clearly states that the building sector is strategic in mitigating GHG emissions (Pachauri 
et al., 2014). This finding led to the creation and reinforcement of many prescriptive regulatory 
and voluntary programs to mitigate the environmental impact of the building sector, including 
national or state building regulations (e.g., California’s Title 24), the Building Research 
Establishment Environment Assessment Methodology (BREEAM), the Living Building 
Challenge standard (Challenge, 2016), and the Leadership in Energy and Environmental Design 
(LEED) (USGBC, 2013) building rating system. These programs fostered not only the idea of 
energy efficiency but also the qualification of buildings in terms of IEQ.  

IEQ factors and energy use in a building are strongly correlated. Thermal comfort is one of the 
main drivers for active heating and cooling of buildings. The demand for mechanically assisted 
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ventilation in some buildings also requires the use of energy, and the need for adequately lit and 
visual comfortable spaces affects both shading and lighting in buildings, thus affecting thermal 
and electric building loads. Despite the interdependence between IEQ and energy use, the 
deployment of energy conservation measures (ECM) demonstrates that it is possible to 
simultaneously minimize energy consumption and improve IEQ. Ensuring high IEQ levels in 
buildings is also essential to generating healthy indoor environments, which, in the case of 
commercial buildings, are correlated with an increase of building occupant productivity. To that 
end, several additions to voluntary building rating systems (e.g., LEED), along with standards and 
norms have been implemented, including WELL building standard (Living LLC, 2013), and the 
European Norm (EN) 17037 – Daylight in Buildings (CEN, 2019). 

The need of designing and operating energy-efficient buildings that provide occupant comfort and 
a healthy indoor environment has never been more relevant. Early consideration of environmental 
factors in building design leads to benefits in energy use, GHG reduction, occupant health, and 
building occupant productivity (Huang and Niu, 2016). The design of resource- and energy-
efficient buildings is essential in the global effort to mitigate global warming and ensure a 
sustainable future for human societies.  

This context, driven by the current environmental crisis, is pushing architects to assess the 
environmental performance of their projects early in the design process as a way to steer the 
process towards comfortable and energy-efficient building designs. This method of evaluating 
building performance to support the design process is referred to as performance-based design 
(Oxman, 2008). When applied to environmental performance, performance-based design 
integrates factors in the following categories: (i) thermal, (ii) visual (light), (iii) air quality, and 
(iv) acoustics. This dissertation addresses the thermal and visual aspects because they directly
affect energy use and GHG emissions of buildings.

Building Performance Simulation (BPS) is essential to performance-based design. BPS is the 
process of predicting, quantifying, and assessing the performance of a building or a building 
design, usually through computer simulation. BPS of energy-related phenomena involves solar, 
thermal, daylight, and airflow modeling and concerns the form, materials, and building systems 
(e.g., Heating, Ventilation, and Air Conditioning machinery and controls) (Clarke, 2001). 

From the several computational tools used to predict thermal-related phenomena, energy use, and 
daylight in buildings, the dissertation uses EnergyPlus (Crawley et al., 2001) and Radiance (Ward, 
1994, 2004b). Radiance and EnergyPlus are state-of-the-art open-source tools for light and whole-
building energy simulation, respectively. Both tools are modular, thus often updated and extended, 
and their reliability has been tested and validated in several studies (Reinhart and Andersen, 2006; 
Crawley et al., 2008; Tabares-Velasco, Christensen and Bianchi, 2012; McNeil and Lee, 2013; 
Zhou, Hong and Yan, 2014).  

Computer applications such as OpenStudio (Guglielmetti, Macumber and Long, 2011), 
Ladybug+Honeybee (Roudsari, Pak and Smith, 2013; Mackey et al., 2015), DIVA + Archsim 
(Jakubiec and Reinhart, 2011) interface EnergyPlus and Radiance with digital design tools, 
particularly with Computer-based Aided Design (CAD), Building Information Modeling (BIM) 
programs, and some domain-specific languages that support algorithmic interaction with CAD and 
BIM programs (e.g., Grasshopper, GHPython, and Dynamo). Those interfaces between design 
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tools and simulation software largely contribute to the increasing use of daylighting and whole-
building energy simulation in building design processes. 

Despite the current progress in building standards, regulations, and analysis tools for sustainable 
design, the report of Abergel et al. (2019) demonstrates that the sector is not on track with the 
targets set by the Paris Agreement and the United Nations (UN) Sustainable Developments Goals. 
The report shows an unfavorable evolution of final energy use in buildings and associated GHG 
emissions: both are increasing instead of decreasing. Although the reasons for this are complex 
and multivariate, it is reasonable to question whether simulation-based approaches have been 
adequately used in the design of a more sustainable built environment. 

Even with the support of computer simulation, assessing the thermal and daylight performance of 
a building design is a non-trivial task. Typically, it involves a considerable number of variables 
with different parameters that often exert conflicting influences. This complexity hinders a direct 
approach in which the building designer or energy-analyst uses a model-simulate-evaluate loop to 
iteratively improve the performance of a design candidate. While of potentially significant value 
to project teams, this iterative process is prohibitively time-consuming, tiresome, and 
unproductive. The degree of effectiveness of using such a process depends heavily on the 
designer’s knowledge of the problem and expertise with the tools. Even highly qualified building 
performance analysts have problems using BPS for the following reasons: (i) setting simulations 
is a tiresome process that is prone to human error, (ii) simulation output is typically highly 
susceptible to input error, and (iii) specific simulations might be computationally expensive (i.e., 
slow to run). Considering that most architects and building designers use the standard generate-
and-evaluation iterative approach, it is possible to argue that the standard use of simulation as 
ancillary processes in building design is inefficient and often results in suboptimal designs. 

The automation of the generation and evaluation process can mitigate some of the challenges posed 
by the standard iterative use of simulation in the design of sustainable buildings. Two 
computational design processes facilitate such automation: Parametric Design and Analysis 
(PDA), and Building Performance Optimization (BPO). PDA automates the simulation of several 
building variations by manipulating a parametric description of a design that is able to generate a 
wide range of instances. In PDA workflows, the designer can assess and compare a plethora of 
different design instances and perform a sensitivity analysis to find the key design parameters of 
specific building performance problems. By facilitating feedback into design workflows, PDA 
better supports decision making in architectural processes. By automating the search procedure, 
BPO goes even further in supporting decisions in design. Typically, BPO workflows combine BPS 
tools, optimization algorithms, and parametric simulation models to automatically search for high 
performing candidates. The computational tools that combine BPS tools and optimization 
algorithms to implement BPO methods are called Performance-driven Generative Design Systems 
(PGDS) (Shea, Aish and Gourtovaia, 2005; Caldas, 2008; Oxman, 2008). PGDS supports a method 
called goal-oriented design, in which the design process is inverted: the design problem is defined 
along with performance goals, and then an optimization algorithm automatically searches the 
design space for solutions whose performance is close to the pre-defined, user-supplied goals 
(Monks, Oh and Dorsey, 2000). Chapter 2, section 2.3, provides more details about the integration 
of simulation tools in performance-based building design, particularly into workflows supported 
by PDA and BPO/PGDS approaches. 
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Although PGDS use optimization algorithms to search large design spaces more efficiently, in the 
case of multi-criteria optimization problems it is often difficult to ensure the finding of optimal 
solutions or trade-offs. This limitation is primarily caused by the nature of building optimization 
problems, which in most cases forces the use of optimization approaches supported by heuristic 
and stochastic processes (for more detail on optimization in performance-based design, please refer 
to chapter 2, section 2.3.2). Thus, this dissertation considers optimization as the process by which 
an automatic improvement in building performance is obtained, under certain assumptions and in 
comparison with an initial base-case.  

The BPO search approach is more effective than PDA since it requires both a detailed description 
of the building performance design problem and the definition of well-defined performance goals 
to steer the search. By limiting the user’s participation in the search process, PGDSs are less prone 
to bias but also less interactive. Although PDA exploratory processes are less efficient, they enable 
more user control than PGDS. 

Although PDA and BPO promise to effectively support architects in designing high-performance 
buildings in terms of energy use and IEQ, they are seldom used in practice (Attia et al., 2013; Shi 
et al., 2016; W. Tian et al., 2018). Thus, the contribution of such approaches in simultaneously 
reducing building energy use, and consequently GHG emissions, and ensuring high levels of IEQ 
is still limited. 

This dissertation discusses the application, use, and problems of daylighting and whole-building 
energy simulations in PDA and PGDS workflows. The dissertation argues that current simulation 
techniques pose critical challenges that hinder an effective deployment of parametric and 
optimization approaches in the design of energy-efficient, properly daylit, and comfortable 
buildings. The following section summarizes the general research problem addressed by the 
investigation. 

1.2 General problem 

Despite the benefits of using current daylight and Building Energy Simulation (BES) to support 
building design processes, several obstacles prevent their smooth integration into current PDA and 
BPO workflows. In order to facilitate the deployment of PDA and BPO approaches in 
performance-based design further research is needed to address such limitations. The general 
problem of integrating BES and daylight simulation in current computational building design 
practices can be articulated as follows: 

It is difficult to simultaneously use design, whole-building energy, and daylighting 
simulation tools to study crucial aspects related to the energy, thermal, and daylight 
performance of buildings. This limitation hampers their deployment and integration in the 
early phases of building design, analysis, and performance optimization. 

Daylight and whole-building energy simulation feedback is essential in the early phases of building 
design. The data produced by such simulations supports the design team to examine the following  
critical aspects: (i) orientation and solar exposure, (ii) overall building form, which determines the 
building heat loss form-factor (i.e., the ratio between the building’s envelope are and its net floor 
area), (iii) glazing area per orientation, (iv) shading factor and shading types per orientation, (v) 
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the effectiveness of natural ventilation, (vi) the benefits of a lightweight construction versus a 
heavyweight construction that provides thermal mass, and most important (vii) the interplay of all 
of these factors in the environmental performance of buildings. Typically, decisions regarding 
these aspects occur early in the design process and have a critical impact on the daylight and energy 
performance of buildings. A poor decision in any of those building parameters is difficult to 
remedy at later phases and results in additional costs to all stakeholders involved in the process. 
Moreover, the different building design phases are not “isolated” from each other and admit some 
overlap. It is common for architects to study specific building details at early design stages, mainly 
if such details contribute to the overall aesthetic quality of the building. For example, early 
analyses can help determining the level of permeability of a sophisticated building skin according 
to solar exposure and self-shading (see chapter 5, section 5.5). 

Additionally, early assessments also provide useful information for later design phases (see chapter 
6). For example, the early mapping of glare potential in a room can help determine the position, 
shape, and size of windows in early design phases and the layout of furniture at later ones. Thus, 
the early integration of daylight and building energy simulation tools in the design process is 
desirable. 

Nevertheless, three types of limitations hinder an efficient use of daylight and BES tools in 
computational building design practices. The following briefly summarizes them. For more detail 
about the research problem, related obstacles, causes, and repercussions, please refer to chapter 3, 
particularly to section 3.3.  

Interoperability and data exchange problems between the different tools used in the design and 
analysis of sustainable buildings constitute the first primary limitation type (Attia et al., 2013; 
Jones et al., 2013; Negendahl, 2015; Choi and Park, 2016; Dogan, Reinhart and Michalatos, 2016). 
Fundamental differences in modeling capabilities between design, BES, and daylight simulation 
programs create a tool “gap” that frustrates architects in the design and optimization of energy-
efficient and comfortable buildings. The required mastery of all the tools and modeling procedures 
involved in the design process demands a high degree of modeling expertise. Moreover, the 
difference between analysis and design tools also forces architects to switch between different 
modeling environments or “modes,” which often entails redundant tasks that are prone to error 
(Bazjanac et al., 2011; Attia et al., 2013; Picco, Lollini and Marengo, 2014). The current limitations 
in integrating simulation and design tools at early design stages are particularly evident in the 
analysis of complex building forms, particularly those that entail either curved or double-curved 
surfaces, e.g., free-form buildings (Kovacic et al., 2013; Picco, Lollini and Marengo, 2014; 
Cemesova, Hopfe and Mcleod, 2015; Chatzivasileiadi, Lila, et al., 2018).  

The second kind of obstacle includes limitations related to thermal, energy, and daylight simulation 
of buildings. These limitations hinder current simulation-based workflows from providing helpful 
feedback to design processes in useful time (Chatzivasileiadi, Lila, et al., 2018; Jones, Greenberg 
and Pratt, 2012; Nathaniel L Jones and Reinhart, 2015; Picco and Marengo, 2015; Zuo and Chen, 
2010). Simplifying complex simulation models and efficiently using available analysis resources 
are essential tasks for developing effective simulation workflows that provide quick analyses and 
adequate building performance information. However, there are few guidelines that help designers 
to conduct such tasks. Even when specific standards (e.g., EN 17037 – Daylight in Buildings) 
define modeling recommendations, such guidelines often entail the use of advanced simulations 
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that not only require a considerable degree of expertise but are also computationally expensive. 
The lack of guidelines for simplifying simulation workflow hinders the desirable utilization of 
useful analysis (e.g., glare) at the early stage of building design, thus limiting the potential benefits 
of using them in design processes. 

The third main obstacle consists of adequately defining building performance goals in BPO 
workflows. Current methods of defining feasible objectives in BPO are non-trivial, particularly to 
non-experts in optimization such as architects. Planning and defining decision variables, constraint 
violation, and particularly performance objective arrangement requires a set of unfamiliar 
techniques to designers (Attia et al., 2013; Shi et al., 2016; W. Tian et al., 2018; Si et al., 2019). 
The gap between standard design approaches and PGDS has often led designers to poorly define 
the optimization problem, thus affecting PGDS outcomes. This scenario leads to an unfounded 
skepticism among designers about optimization results and the usefulness of using PGDS 
approaches. Additionally, common methods used to define performance goals in BPO fail to 
adequately capture spatial performance variation, a relevant aspect in daylighting design.  

1.3 General intention, research question, and hypothesis 

The overall intention of the dissertation is to contribute to the improvement of the design process 
of high-performance buildings that simultaneously are energy-efficient and yield high IEQ 
standards, particularly in terms of thermal and visual comfort. Thus, the dissertation aims to answer 
the following general research question: 

How can we improve the design process of high-performance buildings using current digital 
design and analysis tools?  

The dissertation assumes that the early assessment of the thermal and daylight performance of 
building designs contributes positively to the deployment of energy-efficient and sustainable 
architecture. In the Architectural, Engineering, and Construction (AEC) community, it is widely 
accepted that the use of whole-building energy simulation tools in design is effective in providing 
support to decision-making processes. The use of simulation has a high potential to successfully 
inform and steer design processes, thus reducing the likelihood of making poor early decisions in 
design that are harder or even impossible to correct later (Picco, Lollini and Marengo, 2014).     

The dissertation hypothesizes that a better integration of validated BES and daylight analysis tools 
in PDA and PGDS is critical to improving the use of simulation-driven processes at early-design 
phases. Facilitating the early use of BES and daylight simulations enables architects to better 
decide over critical building environmental performance aspects that are difficult (or even 
impossible) to correct at later stages. As mentioned in section 1.2, design teams can use simulation 
to examine aspects related to building orientation, form and envelope, materiality, and the 
articulation of different passive design strategies (e.g., shading, natural ventilation, thermal mass). 
The early use of simulation also produces useful information for later stages of the design process, 
thus promoting a smoother transition between the different phases of performance-based building 
design supported by PDA and PGDS approaches. 
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The desirable integration of daylighting and BES tools in PDA and PGDS should facilitate 
modeling tasks, handle all building forms, and provide quick performance feedback either in 
parametric-based studies or in BPO workflows. The research hypothesis is as follows:  

The early integration of parametric, thermal, and daylight simulation tools is highly effective 
in the design, analysis, and optimization of high-performance buildings if it promotes model 
interoperability and provides performance feedback in useful time, regardless of the formal 
complexity of the design. 

1.4 Research objective  

The overarching objective of this work is to improve current computational design methods used 
in the digital design of high-performance buildings, particularly in the early analysis and 
optimization of their daylight, thermal, and energy performance. The research aims to develop 
novel approaches that facilitate the use of simulation-driven processes supported by available 
software in parametric and generative design workflows. Thus, the purpose is neither to develop 
nor rewrite existing software. The primary goal is to propose and develop new approaches that 
both extend and improve the use of state-of-the-art, validated, and research-grade daylight and 
whole-energy simulation tools by architects and other building designers in current digital building 
design practices.  

To achieve the general objective and to be able to investigate the research hypothesis, the 
dissertation first identifies and discusses the current limitations of using daylight and whole-
building energy simulation in the design and optimization of high-performance buildings. It then 
introduces modeling strategies that aim to overcome the identified limitations and improve the 
integration of building energy and daylight models in goal-oriented and parametric building design 
workflows. The following summarizes the research objective:  

To devise a set of alternative modeling strategies that improve the use of current thermal 
and daylight simulation tools in early-stage design workflows based on parametric and 
building optimization approaches.  

To accomplish this objective, test the research hypothesis, answer the general research question, 
and address the current gaps and needs found in the literature, the investigation sets three general 
objectives for the new modeling strategies proposed in this dissertation. These objectives follow:  

• Enable better interoperability between design and simulations. 
• Generate quick and adequate feedback regarding the energy and daylight performance of 

buildings at early design stages. 
• Help architects and other non-experts in BPO to adequately formulate inverse design 

problems. 

Chapter 3, section 3.4, – Refining and reframing the main research question and objective – 
subdivides the main research question into specific questions that directly address the current 
limitations found in the literature regarding modeling and analysis processes based on thermal and 
daylight simulations (see chapter 2 and chapter 3). The resulting research questions support the 
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refinement of the general objectives set here for the strategies into specific goals and tasks that the 
proposed modeling approaches must attain. Such concrete goals and research tasks are set in 
chapter 4, section 4.4, Modeling Strategies: tackling the main problem and its causes. 

This dissertation presents five modeling strategies for achieving the research goals, labeled from 
A to E. Strategy A, B, and C focus on improving interoperability between design and BES tools 
in parametric- and optimization-driven workflows. Strategy B, C, and D aim to generate quick and 
adequate feedback in design processes based on daylight and whole-building energy simulations. 
Finally, Strategy E illustrates how to define performance goals in different areas within a spatial 
structure for inverse-design problems. 

In sum, the research entailed in this dissertation aims to formalize new building design analysis 
methods that contribute to the advancement of the field. As such, the proposed modeling strategies 
address the research problem and current limitations of using BES and daylight simulation tools 
in parametric and generative design workflows. Finally, the strategies are open-ended, thus 
allowing further extension and refinement. The open-ended nature of the work also promotes a 
broader discussion on challenging current daylight and BES modeling methods in building design. 

1.5 General research approach 

As discussed in chapter 4 (sections 4.2 and 4.3), the research approach used in this dissertation is 
based on the framing methodology of Design Inclusive Research (DIR) (Horváth, 2007). As such, 
the investigative tasks performed in this work support multidisciplinary research, integrate 
knowledge from different disciplines, and aim to generate additional knowledge and methods for 
problem-solving in building design processes. The adopted methodology used throughout the 
dissertation is a top-down approach that recursively decomposes the different research challenges 
into simpler problems that can be tackled by well-defined research tasks. DIR frames the different 
top-down methodological steps into three phases:  

1) Pre-study: this phase defines the research problem and its context and hypothesizes a 
solution for it. The pre-study phase entails the collection of information about the problem 
in the form of a literature review, the formulation of a critique that defines current gaps in 
needs, the specification of focused research questions and objectives, and develops a 
hypothesis that addresses the gaps that are at the root of the research problem. 

2) Design-study: this stage focuses on devising methods and procedures that concretize the 
hypothesis formulated in the previous phase. It consists of developing and implementing 
testable prototypes, i.e., the modeling strategies. 

3) Post-study: the last phase comprises the testing and validation of the modeling strategy 
developed and implemented in the design-study step. This phase includes the development 
of a design-of-experiments (DoE), the production of results, and their analysis and 
validation. The goal is to discuss the effectiveness of the proposed strategy and identify 
advantages and limitations.  

These methodological steps are applied not only to the entire thesis but to each proposed modeling 
strategy. Hence, every chapter that presents the modeling strategies has a dedicated literature 
review section (Related Work), and every strategy has its own set of methods and DoE. 
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1.6 Outline of the dissertation 

The dissertation consists of 8 chapters arranged in three groups: (i) the introductory chapters, (ii) 
the development and implementation chapters, and (iii) the conclusion chapter. This clustering 
closely follows the methodological phases described in the previous section. 

Chapter 1, 2, 3, and 4 comprise the introductory chapters. Chapter 1, introduces the dissertation by 
providing an overview of the background of the research, presenting the main research intention, 
general question, hypothesis, objective, approach, and dissertation structure.  

Chapter 2 presents a literature review that provides a detailed background of the topics addressed 
in this research. The chapter entails two parts. The first focuses on methods and tools used by 
designers to predict whole-building energy use, thermal performance, and daylighting in indoor 
spaces. The second gives an overview of the different computational design methods that use BES 
and daylighting simulations to improve the predicted performance of building designs.  

Chapter 3 further develops, contextualizes, and details the current challenges and problems 
addressed in the dissertation. Based on the information collected and structured in chapter 2, the 
chapter formulates a critique of the current use of BES and daylighting simulation in PDA and 
BPO. The discussion entailed in this chapter also refines the primary research question and 
objective into specific questions and goals that will steer the development and implementation of 
the proposed modeling strategies.   

Chapter 4 discusses in detail the overall research methodology and methods applied in the 
development of the proposed modeling strategies. The chapter first frames the research methods 
in the broader context of design research methodologies and then presents the overall structure of 
the followed methodology and how it relates to the research goals. Finally, it introduces the 
concept of modeling strategies as methods that address the limitations discussed in chapter 3. The 
summary of the modeling strategies provided in chapter 4 also relates them to the refined research 
questions and goals defined in chapter 3. 

The development and implementation chapters include chapters 5, 6, and 7. These chapters 
introduce the five proposed modeling strategies and group them by application type.  

Chapter 5 assembles the three modeling strategies that focuses on improving the use of BES in 
performance-driven building design. They include Strategy A: Automatically generate valid 
building geometry for BES, Strategy B: Automatically simplify building geometry for BES, and 
Strategy C: Abstract Complex Fenestration Systems (CFS) for BES. These strategies aim to 
improve the interoperability between design and analysis tools and feedback in design processes 
by proposing alternative methods that result in quicker simulations without impairing the quality 
of simulation output. Because the three strategies are interdependent, the dissertation presents them 
together and provides a common background.  

Chapter 6 presents and discusses Strategy D – Assess glare potential of indoor spaces using a time 
and spatial sampling technique. This strategy aims to better handle advanced daylight simulations 
that are recently being adopted by norms and daylight standards used in visual comfort assessments 
(CEN, 2019). Thus, the strategy follows the objective of improving feedback in design by 
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proposing new analysis methods that help designers to better manage complex simulation 
techniques at early design phases. 

Chapter 7 introduces Strategy E: Painting with Light – a novel method for spatially specifying 
daylight goals in Building Performance Optimization (BPO). This strategy illustrates the potential 
for using methods commonly employed by designers to facilitate the definition of BPO problems. 
The modeling approach also seeks to help designers defining complex building performance 
targets that comprise temporal and spatial variation, such as daylighting goals.  

Finally, chapter 8 constitutes the conclusion chapter of the dissertation. The chapter summarizes 
the merits and limitations of the proposed strategies, includes guidelines for their use both in 
practice and in academic research, and presents recommendations for future work.  

1.7 Terminology 

This section presents a list of essential terms used throughout the dissertation. The purpose is to 
clearly define and frame them in the scope of this work, facilitate the reading, and promote a better 
understanding of the several field domain-specific concepts involved in this investigation. The 
following defines each selected term in alphabetic order. 

Building design process: 
This term refers to the process of creating a plan that describes a building. Early-stage building 
design processes refer to the initial parts of the process. After determining the primary building 
program (i.e., function) in early design stages, the architect spatially arranges its program 
according to specific spatial requirements. At the initial phases of the building design process, the 
design team develops several alternatives that also deal with factors other than functional ones, 
particularly those related to building form and envelope.  These factors include orientation, solar 
incidence, views, daylight, and ventilation, among others.   

Building design solution: 
A design alternative that is a feasible solution to a specific design brief or problem. 

Building Performance Optimization (BPO): 
A process that consists of searching for building design solutions with near-optimal performance 
in a design space (see design space definition below). Since the search process is often heuristic-
based, it is difficult to ensure that applying BPO will always result in finding optimal solutions. 
Thus, as previously mentioned, the term optimal solution refers to the design solution of improved 
performance that results from BPO processes under specific boundary conditions. Chapter 2, 
section 2.3, provides more detail about BPO and its application in the design of high-performance 
buildings.  

Computational Design (CD): 
CD is a building design process that takes advantage of the computational capabilities of digital 
computers (Cagan et al., 2005; Peters, 2013; Humppi, 2015; Oxman, 2017). Thus, it is distinct 
from digital design (DD) since DD also includes processes that use computers for drafting or other 
representational issues. Caetano, Santos, and Leitão (2020) specify that CD uses the computational 
capabilities in design by doing the following:  
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1) Automating design procedures based on (i) a deduction, i.e., applying a transformation to an 
element while knowing its outcome (Chokhachian, 2014); (ii) an induction, i.e., extrapolating 
the required design process to obtain a specific result (Chokhachian, 2014); and (iii) an 
abstraction, i.e., understanding the essential design features by removing the irrelevant 
information. 

2) Parallelizing design tasks and efficiently managing large amounts of information.  
3) Incorporating and propagating changes in a quick and flexible way.  
4) Assisting designers in form-finding processes through automated feedback, e.g., mapping 

simulation results. 
For further details about the CD definition the author refers the reader to the ancillary work by 
Caetano, Santos, and Leitão (2020). 

Design space: 
The set of all possible feasible building design solutions for a given design brief or problem. 
Typically, in BPO or parametric building design (see parametric design below), the solutions that 
constitute the design space are the result of the combinatorial interaction of the design variables 
and input parameters that describe a parametric building model. The dissertation also uses solution 
space as an equivalent term.       

High-performance Building: 
A high-performance building that simultaneously integrates and optimizes Energy Conservation 
Measures (ECM) with IEQ critical aspects such as thermal and visual comfort. ECM consists 
primarily of passive design strategies that aim daylight harvesting and the reduction of heating and 
cooling loads in a building.  

Parametric Design (PD): 
PD is a process that describes a design symbolically using parameters and, in some cases, rules 
that constrain and interrelate those parameters (Kolarevic, 2004; Woodbury, 2010; Kensek and 
Noble, 2014; Marin, Blanchi and Janda, 2015; Yu et al., 2015; Caetano, Santos and Leitão, 2020). 
The application of PD to building design always entails the modeling of a parametric building 
model that, through different combinations of its input parameters, is able to generate several 
instances and variations of the same design. For a complete definition and discussion about PD the 
author refers the reader to Caetano, Santos, and Leitão (2020). 

Performance-based Design: 
As defined by Oxman (2008), performance-based design is an approach in which building 
performance steers the design process. In architecture, performance-based design uses information 
produced by building simulation to modify architectural form and other design features with the 
express purpose of improving the performance of a candidate design. In this dissertation, the 
building performance considerations used to inform design processes result from the thermal, 
energy, and daylight simulation of buildings. 

Performance-based Generative Design Systems (PGDS): 
PGDS are computational tools that implement BPO principles. They combine in a single workflow 
a generative model (e.g., a parametric description of a building), a building simulation program, 
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and an optimization algorithm to invert typical design workflow in a process called goal-oriented 
design (Monks, Oh and Dorsey, 2000). The inversion of the design workflow consists of first 
describing the design problem, establishing performance targets, and running the optimization 
algorithm to search for a solution or solutions that better match the desired performance goals. 
Chapter 2, section 2.3, further details and describes PGDS. 

Strategy:  
A set of heuristic modeling procedures developed to facilitate the use and integration of daylight 
and BES in computational building design workflows. The implementation of a modeling strategy 
is always a computational tool or workflow.  

1.8 Scientific contributions and research dissemination 

During the dissertation research project, parts of the work have been published in peer-reviewed 
scientific journals and the proceedings of international conferences. The author was also invited 
to present the research work in several public presentations and workshops in architecture and 
sustainable design consultancy offices. This section summarizes such contributions. Table 1-1 
presents the primary list of publications related to the chapters of this dissertation and the modeling 
strategies proposed in them. 

Table 1-1. Relationship between primary scientific contributions, the dissertation chapters, and the proposed 
modeling strategies. The name of the author is highlighted in bold. 

Chapter Strategy Publication 

5 

A 

Santos, L., Schleicher, S., Caldas, L. (2017) ‘Automation of CAD models 
to BEM models for performance based goal-oriented design methods,’ 
Building and Environment, 112, pp. 144–158. 
https://doi.org/10.1016/j.buildenv.2016.10.015 

B 

Santos, L., Schleicher, S., Caldas, L. (2019) ‘Automatic Simplification of 
Complex Building Geometry for Whole-building Energy Simulations,’ in 
Proceedings of Building Simulation 2019: 16th Conference of IBPSA. 
Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, pp. 
2691–2697. https://doi.org/10.26868/25222708.2019.210991 

C 

Schleicher, S., Santos, L., Caldas, L. (2018) ‘Data-driven shading 
systems - Application for freeform glass facades,’ in SKINS on Campus. 
Bridging Industry and Academia in Pursuit of Better Buildings and Urban 
Habitat. Facades Tectonics 2018 World Congress, Tectonic Press, Los 
Angeles, pp. 3–14. 

Table continues in the following page 
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Table 1-1. Relationship between primary scientific contributions, the dissertation chapters, and the proposed 
modeling strategies. The name of the author is highlighted in bold (continued). 

Chapter Strategy Publication 

6 D 

Santos, L., Caldas, L. (2020) ‘Assessing the glare potential of side-lit 
indoor spaces: a simulation-based approach,’ Architectural Science 
Review. Taylor & Francis, pp. 1–14. 
https://doi.org/10.1080/00038628.2020.1758622 

Santos, L., Caldas, L. (2018) ‘Assessing the Glare Potential of Complex 
Fenestration Systems: A Heuristic Approach Based on Spatial and Time 
Sampling,’ in Passive Low Energy Architecture (PLEA) 2018: Smart and 
Healthy within the 2-Degree Limit. PLEA 2018, Hong Kong, pp. 446–
451. 

7 E 

Caldas, L., Santos, L. (2016) ‘Painting with light: An interactive 
evolutionary system for daylighting design,’ Building and Environment, 
109, pp. 154–174. https://doi.org/10.1016/j.buildenv.2016.07.023 

Caldas, L., Santos, L. (2016) ‘Painting with Light: A Generative Design 
System for Daylighting Design,’ in Passive Low Energy Architecture 
(PLEA) 2016: Cities, Buildings, People: Towards Regenerative 
Environments. PLEA 2016: 32th International Conference on Passive 
and Low Energy Architecture, Los Angeles, CA, pp. 643–639. 

 
Two additional journal papers provided some indirect contributions to this work. Since the main 
research focus of such publications is tangential to the main research problem addressed by the 
dissertation, they are not considered primary publications. Table 1-2 presents those papers and 
contextualizes their contribution to this research work. 

Table 1-2. Contributions of ancillary publications to this dissertation. The name of the author is highlighted in bold.  

Publication Contribution 
Caetano, I., Santos, L., Leitão, A. (2020) ‘Computational 
design in architecture: Defining parametric, generative, 
and algorithmic design,’ Frontiers of Architectural 
Research, 9, pp. 287–300. 
https://doi.org/10.1016/j.foar.2019.12.008 

The work developed in this 
article frame the definition of 
some important domain-specific 
concepts used in this 
investigation. 

Santos, L., Leitão, A., Caldas, L. (2018) ‘A comparison of 
two light-redirecting fenestration systems using a modified 
modeling technique for Radiance 3-phase method 
simulations,’ Solar Energy, 161, pp. 47–63. 
https://doi.org/10.1016/j.solener.2017.12.020 

Part of the experimental setting 
of this research and results 
supported some research tasks 
performed in chapter 6. 

 

https://doi.org/10.1080/00038628.2020.1758622
https://doi.org/10.1016/j.buildenv.2016.07.023
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.1016/j.solener.2017.12.020
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Additionally, the author was invited to present different parts of the work in public lectures in 
several institutions and offices, and conduct a workshop in an architectural office about certain 
methods proposed in this work. The following lists such presentations and workshops. 

20/6/2019 Improving the use of building energy simulation in architectural design 
practice, in Aarhus University, School of Architecture, Denmark. 

3/5/2019 Parametric Modeling for Sustainable Design Optimization, in Syracuse 
University, School of Architecture, NY. 

2/25/2019 Building Modeling for Sustainable Design Practice and Teaching, in Kent 
State University, College of Architecture and Environmental Design, OH. 

2/11/2019 Building Modeling for Indoor Environmental Quality, in University of North 
Carolina at Charlotte, School of Architecture, NC. 

10/18/2018 Assessing visual comfort. A simulation-based approach for early to 
intermediary design phases, in Center for the Built Environment, Industry 
Advisory Board Meeting, UC Berkeley, Berkeley, CA. 

3/ to 5/2018 Workshop series: Daylight and energy modeling for early design stages, in 
ELS architecture + urban design. Berkeley, CA. 

2/26/2018 Modeling for performance-based design based on thermal and daylight 
simulations, in ELS architecture + urban design, Berkeley, CA. 

9/26/2017 Improving thermal and daylight modeling for goal-oriented design methods, in 
Atelier 10, San Francisco, CA. 

 
1.9 Awards 

The work comprised in this dissertation obtain the following awards: 

2018 PLEA 2018: 34th International Conference on Passive and Low Energy 
Architecture - Merit Award for the paper entitled “Assessing the Glare Potential 
of Complex Fenestration Systems: A Heuristic Approach Based on Spatial and 
Time Sampling.” 
The research presented in this paper is part of the work presented in chapter 6. 

Best doctoral research presentation in Building Science, Technology, and 
Sustainability at UC Berkeley College of Environmental Design (CED) Circus 
Award given by CED to the presentation that summarize the dissertation progress 
at the end of Spring 2018 term. 

2017 ASHRAE Golden Gate Chapter Eric Thor Andresen Memorial Scholarship 
Award given by ASHRAE Golden Gate Chapter to initial research endeavors and 
prospectus. 
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Chapter 2:  
State-of-the-Art 
2.1 Introduction 
This chapter provides an overview of past and ongoing research on the design of high-performance 
buildings essential to the research presented in this dissertation. Cross (2006) advanced the 
following three main types of (building) design research: (i) design epistemology, which focuses 
on the actors that execute building design processes; (ii) design praxeology, which studies the 
practices and procedures of designing; and (iii) design phenomenology, which concentrates on the 
design process outcome. Considering that the dissertation's general scope is the architectural 
design of high-performance buildings supported by computational design methods, the focus is 
on design praxeology in the context of performance-based design of sustainable buildings. Hence, 
the chapter discusses the thermal, energy, and daylighting simulation of buildings and their 
subsequent integration in the design process. The main goal is to provide a solid and detailed 
background for the chapters that follow.    

This state-of-the-art report is two parts. The first part gives an overview of the methods and tools 
that designers use to predict whole-building energy use, thermal performance, and daylighting in 
indoor spaces. The second part consists of a literature review of the different computational design 
methods that use computer building simulations to support the design of high-performance 
buildings. The purpose of this review is to lay down the fundamental concepts and techniques 
behind daylight, thermal, and building energy simulations and map the different computational 
approaches to design that attempt to integrate them. 

Building energy modeling (BEM) and computer daylight simulations support architectural 
workflows by calculating several building performance metrics. However, rather than focuses on 
performance metrics used in sustainable building design, this chapter concentrates on mapping the 
methods that enable their use in design. For detailed information about the building performance 
metrics used in this dissertation and commonly applied in the environmental assessment of high-
performance buildings, the author refers the reader to Appendix A. 

2.2 Predicting energy use and daylighting in buildings using computational 
methods 

This section discusses the current simulation approaches used to predict whole-building energy 
use and the thermal and daylight behavior of buildings. First, it presents and summarizes the 
different groups of simulation methods. Then, it reviews the several approaches that 
computationally describe the physical principles behind heat transfer phenomena and daylighting 
simulation in buildings. The computational implementation of such physical principles is the core 
of the simulation tools commonly used by architects and other building designers in the design of 
high-performance buildings. 
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2.2.1 Modeling methods for thermal and daylight simulations  

The use of computers to predict the thermal, energy, and daylight behavior of buildings is not new. 
Since the early 1980s, countless Building Energy Simulation (BES) approaches and programs have 
been developed, improved, and used by designers and researchers within the Architecture, 
Engineering, and Construction (AEC) community (Crawley et al., 2008). The problem of 
predicting whole-building energy performance and daylighting involves several factors, including 
ambient weather conditions, sky conditions, building physical structure, the operation of building 
systems like lighting and Heating, Ventilation, and Air Conditioning (HVAC) systems, and 
building occupancy and occupants behavior (Zhao and Magoulès, 2012). Three types of modeling 
approaches address the challenge of simulating the thermal, energy, and daylight performance of 
buildings: 

Physical modeling methods. Also known as white-box models, these methods predict the thermal 
and daylight behavior of buildings by following and modeling physical principles and laws. In the 
case of building energy simulation, they model such physical principles through equations that 
describe heat transfer in a building. Such equations derive from the energy conservation law 
expressed in equation (2-1):  

𝛷𝛷𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛷𝛷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛷𝛷𝑜𝑜𝑜𝑜𝑜𝑜 +  𝛷𝛷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2-1) 

where, Φint is the heat flux entering the system, Φsource the heat flux originated by an eventual heat 
source, Φout the heat flux leaving the system, and Φstored the heat flow stored in the system. Three 
heat transfer mechanisms modulate the fluxes in the system: conduction, convection, and radiation. 

Daylighting simulation also follows the principle of energy conservation by balancing light flows 
from one point of a surface to another. Thus, the amount of visible radiant energy that is 
transmitted, absorbed, and reflected at a particular point in a surface is equal to the incident visible 
radiant energy that arrives at that point. The physical simulation of daylighting attempts to solve 
the rendering equation advanced by Kajiya (1986) and its subsequent extensions, including the 
ones proposed by Wallace et al. (1987), Ward et al. (1988), Kajiya and Kay (1989), Lange (1994), 
Smith et al. (2008), and several others.  

Statistical modeling methods. These methods are also termed as black-box models since they are 
agnostic to any physical principle, law, or even information. These models use Machine Learning 
(ML) techniques to deduce a prediction function from samples of measured data. Hence, their 
application is more common to the modeling of existing buildings since they are well adapted 
either to cases where the building’s physical features are unknown or to post-occupancy studies 
where it is possible to collect a large number of measurements. The advantage of these methods is 
that they can accurately predict the building’s physical behavior with little or no information about 
building geometry, materiality, or detailed physical phenomena. Their disadvantage is that they 
require large amounts of measured data, limiting their use in cases where it is difficult to collect 
data. Thus, the exclusive use of statistical modeling methods in designing new buildings is 
impractical. The most common techniques include Linear and Multiple Linear Regression 
(LR/MLR), Artificial Neural Networks (ANN), and Support Vector Machines (SVM). It is 
possible to combine these methods with stochastic optimization metaheuristics such as Genetic 
Algorithms (GA). The most common use of GAs in this context is whether to find weighting 
factors in MLR regressions or ANN or the regularization (C) and deviation (ε) constants in SVM. 
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Foucquier et al. (2013) summarizes the principles of each statistical modeling method and their 
applications in the domain of building energy performance prediction. 

Hybrid modeling methods. Also called grey-box models, these approaches combine white- and 
black-box models. Grey-box models aim to overcome some of the limitations of both white- and 
black-box models. White-box models require a description of all building characteristics. 
Additionally, although heat exchange phenomena are well known, it is difficult to computationally 
implement them in an efficient manner (e.g., wind flow in a building). Thus, in white-box 
modeling, it is common to use some modeling assumptions to approximate the physical 
phenomena for computational convenience. Black-box models have two main limitations: (i) they 
require large amounts of data, and (ii) their results are difficult to interpret in physical terms. Grey 
box-models are able to retain part of the physical meaning, therefore facilitating interpretability, 
and do not require a full description of physical and geometrical input parameters. There are three 
main applications of hybrid modeling methods: (i) estimating white-box models’ physical 
parameters; (ii) building surrogate models, which are models that learn from data sets, either 
produced by white-box models or that combine simulated data with measurements, to describe the 
behavior of a building; (iii) calibrating white-box models, which typically consists of fine-tuning 
a simulation model to known data. The improvement of white-box modeling approaches 
commonly involves the use of optimization metaheuristics such as GAs. Typically, GAs search 
for the simulation parameters that minimize the error of the simulation model output. The work 
presented by Lauret et al. (2005), Znouda et al.(2007), Yang et al. (2011), and Wang et al. (2016) 
are good examples of the use of metaheuristic-based search procedures to improve simulation 
parameters. Regarding simulation calibration, Coakley et al. (2014) and Fabrizio and Monetti 
(2015) provide a comprehensive review of BES calibration methods. The review includes a 
summary of the application of ML techniques to automate BEM calibration. Surrogate models, 
also known as meta-models, find their use in performance-based building design in sensitivity 
analysis, uncertainty analysis, and in the optimization of predicted building performance. 
Westermann and Evins (2019) present a thorough literature review on surrogate modeling for 
sustainable building design. ML techniques used both in simulation calibration and in surrogate 
modeling include Bayesian techniques, LR/MLR, Multivariate Adaptive Regression Splines 
(MARS), kriging regression models (KRM), Radial Basis Function (RBF) networks, SVM, and 
ANNs, such as Sigmoidal Neural Networks (SNN). 

Since this dissertation focuses on early-stage building design, the investigation will not discuss the 
isolated use of statistical techniques prediction metrics. The subsequent discussion focuses on 
physical modeling methods for the following reasons: (i) white-box modeling is the most used 
approach in the design of new buildings; (ii) the dissertation aims to improve current modeling 
methods towards efficient use of whole-building energy and daylight simulations at the early stage 
of building design; (iii) hybrid modeling approaches for initial stages of building design heavily 
depends on the data produced by white-box simulations. The following part of this chapter 
discusses the thermal and daylight physical principles in buildings and their computational 
implementation in simulation tools. 
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2.2.2 Physical modeling methods 

Given well-defined boundary inputs, white-box models can accurately estimate the daylight and 
the energy performance of buildings. Since predicting daylight and energy use of buildings using 
white-box models is a non-trivial task, this section discusses them separately. 

Thermal modeling and whole-building energy simulation in the white-box paradigm 

BES requires the description of several simulation input boundaries, namely ambient weather, 
contextual shading geometry, thermal, solar, and optical properties of the building envelope, 
occupancy patterns, building systems, and system operation protocols. With such information,  
physical modeling methods can accurately estimate the energy performance of an entire building 
and of its several components, e.g., physical building components such as walls, slabs, glazing, or 
of building systems such as lighting and HVAC systems (Clarke, 2001).  

When applied to whole-building energy predictions, white-box models use the zone or nodal 
approach, which divides the building into different thermal zones. Each thermal zone is a 
homogeneous enclosed volume characterized by uniform state variables (Clarke, 2001; Foucquier 
et al., 2013; Harish and Kumar, 2016; Hensen and Lamberts, 2019; Spitler, 2019). The 
assumptions involved in this modeling strategy allow us to describe the thermal zone in terms of 
a network of nodes. To better visualize such a network and the heat flow paths within the system, 
Clark (2001) traces a parallel with an electrical system of resistances and capacitances dependent 
on transient potential differences. The “electrical currents” that flow in such a “circuit” are 
equivalent to the heat flows between thermal zones and their constituent parts. Thus, a thermal 
zone, its constructional elements, its contents (e.g., furniture), equipment gains, glazing 
components, occupants, HVAC system and its components, are nodes characterized by 
capacitance and the energy flows or connections between them are described by conductance. Each 
node possesses state variables such as temperature, which is analogous to voltage. Since the state 
of the nodes is dynamic, the entire system is transient. This means that several nodes respond to 
different systems inputs (e.g., hourly meteorological conditions, and occupancy or other loads 
schedules) at different rates as they compete to capture, store, and release energy. Figure 2-1 
illustrates the conceptualization of the thermal and energy model as a node network. 

The electrical circuit analogy depicts the complexity of the dynamic and transient behavior of heat 
transfer and energy flow in a building. The resolution of a whole Building Energy Model (BEM) 
depends heavily on the complexity of the nodal network. Thus, BEM complexity increases with 
the number of nodes; this includes nodes that represent different thermal zones or nodes that 
characterize elements that compose each thermal zone. As Clarke (2001) and Spitler (2019) so 
well demonstrate, the simulation of such systems is far from being a trivial task since it entails the 
mathematical description and solving of several complex equations types. Additionally, since these 
equations express interdependent heat transfer processes, it is necessary to apply simultaneous 
calculation techniques (Clarke, 2001). The modeling of the heat transfer phenomena in BES 
demands adequate computational implementations of the three heat transfer processes: conduction, 
convection, and radiation. 
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Figure 2-1. A thermal zone described in terms of a network of nodes and flows. Image source: Clarke (2001). 

State-of-the-art BES programs such as TRNSYS, Esp-r, EnergyPlus, and IES-VES, accurately 
model the three heat transfer processes and their interdependencies in the thermal nodal network 
by using the following main heat and mass transfer mechanisms: 

1) Transient conduction describes how heat flows in a construction element or layer to another 
building element or construction layer. The thermal resistance and inertia diminish and shift 
this process in time (Clarke, 2001; Chen, Zhou and Spitler, 2006; Spitler, 2019). Transient 
conduction is a function of the temperature differential between exposed surfaces. External 
fluctuations in temperature are the main drivers of this heat transfer mechanism. The 
thermophysical properties of the materials that modulate the heat transfer by conduction 
include conductivity, k (W m-1˚ C-1), density, ρ (kg m-3), and specific heat capacity, C (J kg-

1 ˚C-1). 
2) Surface convection expresses the heat exchange between the building surface and the 

adjacent air layer. Typically, wind triggers external surface convection, whereas natural air 
movement, caused either by pressure or temperature difference, and forced air movement, 
originating in a mechanical system, induces internal surface convection. Convection 
calculations require the computation of the convection coefficient, hc (W m-2 ˚C-1), which 
is time-dependent and surface-averaged (Fisher, 1995; Awbi and Hatton, 1999; Clarke, 
2001). 

3) Surface longwave radiation describes the radiative heat exchange between different 
surfaces. In the case of internal surfaces, longwave radiation exchange depends on surface 
temperatures, emissivities, view factors, and reflection type, i.e., diffuse, specular, or mixed. 
The zeroth law of thermodynamics determines the heat exchange between surfaces of 
different temperatures to achieve equilibrium. The modeling of longwave radiation is non-
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linear, which poses some computational challenges (Clarke, 2001). External surface 
longwave radiation models the radiative exchange between the building envelope surfaces, 
and the sky, surrounding buildings, and ground. Longwave radiation is calculated by 
considering the following contributing factors: (i) effective sky temperature, (ii) ground 
temperature, (iii) ambient air temperature, (iv) surrounding building surfaces temperature, 
(iv) the warming effect caused by incident shortwave radiation, and (v) view factor of each 
surface of the building envelope with the three parts that compose the immediate outdoor 
environment – sky, ground, and surrounding buildings (Clarke, 2001). 

4) Shortwave radiation characterizes the impact of solar gains both in the building envelope 
and in the thermal zone. For that reason, its accurate calculation is paramount in determining 
cooling loads. The shortwave radiation that arrives at any external surface is partially 
reflected, absorbed, and transmitted or re-emitted depending on the participating media. In 
the case of the opaque part of the building envelope, shortwave radiation affects both 
transient conduction, internal longwave radiation, and convection by increasing the 
temperature of the inside surface through time (Hussain and Oosthuizen, 2012; Le Dréau 
and Heiselberg, 2014). Shortwave radiation is responsible for significant temperature 
differences between exposed surfaces and outdoor dry-bulb air temperature, which in some 
cases can be as much as 15 to 20˚C (Clarke, 2001). In the case of transparent elements such 
as glazing, shortwave radiation is partially transmitted and absorbed. The absorption of 
shortwave radiation raises the glazing assembly temperature, thus affecting transient 
conduction. This temperature increase will also affect the temperature of the glazed 
surfaces, thereby affecting convection and longwave radiation heat exchange. The 
transmitted portion of shortwave radiation quasi-instantaneously impinges internal surfaces 
in the thermal zone. The internal opaque surfaces that are affected will absorb, reflect, and 
transmit that energy as an external surface element. Thus, direct shortwave radiation 
changes the transient conduction, longwave radiation, and convection flows of the affected 
internal surfaces. 

Other factors participate in the heat flow mechanisms described above, including: (i) shading and 
insolation, (ii) airflow caused by infiltration, natural or mechanical ventilation, (iii) equipment heat 
gains, (iv) passive solar elements, (v) HVAC systems, (vi) lighting systems, (vii) and the control 
of any building system that contributes to heat exchange, e.g., dynamic shading, ventilation, 
equipment, HVAC, and lighting. 

There are two main modeling paradigms to numerically model the heat flow in BEM: the Transfer 
Function Methods (TFM) or the Finite Difference or Volume Methods (FDM/FVM) (Foucquier et 
al., 2013; Wang and Zhai, 2016).  

TFM models the BEM nodal network as systems of linear differential equations with time-
invariant parameters (Clarke, 2001; Foucquier et al., 2013; Wang and Zhai, 2016). Such methods 
involve either the calculation of Response Factors (RF) or Conduction Transfer Functions (CTF) 
and their coefficients. RFs are a convenient way of presenting dynamic transient time series data 
in a time-invariant system (Gouda, Danaher and Underwood, 2002; Barrios, Huelsz and Rojas, 
2012). The RF primary equation relates the heat flux at one surface of a building element or 
component to a series of temperature histories at both sides of the component (DOE, 2018). For 
simplification reasons, the method assumes constant coefficients, although in the real world they 
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change with temperature fluctuations. While this assumption makes RF methods computationally 
efficient, it also limits their ability to tackle the so-called building stiff systems.  

Building stiff systems consists of several differential equations to which certain solving methods, 
such as RFs, are numerically unstable, unless the step size used in the time series is very small. 
Building envelope, HVAC systems, fluid flow dynamics, and systems control models are stiff 
systems (Clarke, 2001). One RF limitation that emerges from its inability to handle stiff equations 
is adequately model radiant heat transfer (Wang and Zhai, 2016). For example, one of the main 
limitations of DOE-2 (Winkelmann et al., 1993), a BES program that uses the RF method, is its 
inability to estimate inner surface long wave radiation heat transfer.  

CTF handles stiff systems by replacing the time series terms with flux history terms (DOE, 2018). 
Despite their computationally efficiency, CTF approaches are able to model any type of heat flow 
in the building thermal network. Al-Rabghi and Al-Johani (1997) demonstrated that CTF methods 
can accurately predict conductive heat transfer of different types of building elements such as 
walls, floors, roofs, and fenestrations. The CTF is the most adopted modeling approach in BES 
programs because of its robustness and efficiency.  

Spitler et al. (1997) advanced the Radiant Time Series (RTS), an additional time-invariant heat 
transfer method for cooling loads calculation, particularly those caused by radiation. RTS uses 
radiant time-based coefficients to estimate the hourly cooling loads from hourly heat gains. The 
method uses the heat balance method, a simplified approach to determine thermal loads. Thus, it 
is less accurate than CTF methods but presents an interesting alternative in cases that prioritize 
computationally efficiency (Wang and Zhai, 2016). 

Unlike TFM, finite difference and volume methods (FDM/FVM) are time-variant and can handle 
non-linear equation systems. Thus, FDM/FVM avoid approximations of decoupled systems of 
linear equations (Clarke, 2001). By being non-linear and time-variant, the modeling approaches of 
these systems are closer to the real-world physics of heat transfer in buildings. Thus, FDM/FVM 
handle better complex heat flow path interactions of building stiff systems and accommodate time-
varying system parameters. Additionally, they are generalizable, making their numerical approach 
universally applicable to model the thermal interactions and flows in buildings (Clarke, 2001). 
Despite their accuracy, FDM/FVM approaches are very computationally intensive. Computational 
Fluid Dynamics (CFD) methods are an example of the application of FVM. CFD is a highly 
comprehensive thermal transfer modeling technique that allows the detailing of the field flow 
inside buildings by solving the Navier-Stokes equation (Foucquier et al., 2013). Nevertheless, CFD 
methods’ main disadvantage is their huge computation time (Chronis et al., 2017; W. Tian et al., 
2018; Phillips and Soligo, 2019). For that reason, it is uncommon to use CFD methods in early 
building design phases. In whole-building energy simulations, CFD approaches are usually 
coupled with standard BES programs in order to improve the accuracy of TFM-based BES tools 
in cooling and heating calculations (Pan et al., 2010; Zeng et al., 2012; Ascione, Bellia and 
Capozzoli, 2013; Dols et al., 2015; Alnusairat, Hou and Jones, 2017; Allegrini and Carmeliet, 
2018).   

The great computationally advantage of using TFM over FDM/FMV is that transfer functions only 
need a single calculation at simulation initialization. Although TFM does not enable a FVM 
detailed analysis of flow paths and fields, their predictions are fairly accurate. For that reason, 
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several BES programs are TFM-based. Popular and validated whole-building energy software such 
as BLAST (Hittle, 1981), TRNSYS (Trnsys, 2000), EnergyPlus (Crawley et al., 2001), and IES-
VE (IES, 2008) use TFM approaches. Different BES comparative studies (Crawley et al., 2008; 
Wang and Zhai, 2016) show that such programs can fully model all heat transfer processes. Several 
studies indicate EnergyPlus as one of the most accurate programs in solving heating and cooling 
loads (Strand et al., 1999; Crawley et al., 2001, 2008).  

EnergyPlus is a modular, open-source whole-building energy simulator that uses text-based 
input/output files. Its modularity supports incremental development. There are several third-party 
modules and interfaces for EnergyPlus, including Simergy, OpenStudio (Guglielmetti, Macumber 
and Long, 2011), Design Builder, Archsim (Dogan, Reinhart and Michalatos, 2014), Honeybee 
(Mackey et al., 2015), Autodesk Insight (Autodesk, 2019). From those interface programs to 
EnergyPlus, four directly interact either with Computer Aided Design (CAD) or Building 
Information Modeling (BIM) building design tools. OpenStudio interacts with the CAD platform 
SketchUp, Archsim and Honeybee with the Non-Uniform Ratio Basis Spline (NURBS) 3D 
modeling CAD program Rhinoceros, and Autodesk Insight and Honeybee with Revit, a popular 
BIM application. 

ESP-r (Clarke and McLean, 1988) is also an open-source validated whole-building energy 
simulation software, but unlike EnergyPlus, TRNSY, and IES-VE, it uses the FDM approach to 
accurately calculate heat flow related phenomena in a building. The FDM approach allows 
parameter adjustments that are responsive to dynamic boundary conditions and control system 
signals. ESP-r supports on-demand CFD analysis to detail the flow field of thermal zones in 
thermal comfort and air quality studies. Nevertheless, ESP-r is primarily targeted at highly skilled 
building analysts and researchers who have a good understanding of building physics. The 
program was compiled only for the Linux operating system. Because it is a highly detailed 
program, does not support different operating systems, and because its use requires a high level of 
expertise, designers and building energy modelers seldom use ESP-r. 

Other alternative methods to the FDM and TFM are the reduced-order Lumped Parameter Models 
(LPM). LPMs can simulate the hourly energy behavior of buildings with a smaller computational 
cost compared with FDM and TFM (Rumianowski, Brau and Roux, 1989). They implement the 
“analogous circuit” concept used above to explain BEM nodal models (Foucquier et al., 2013; 
Wang and Zhai, 2016). First-order LPM fell short in accurately expressing heat transfer flows. 
However, higher models have been proposed that have improved accuracy without compromising 
their simplicity or speed (Fraisse et al., 2002; Gouda, Danaher and Underwood, 2002). It is possible 
to combine LPM with BES programs based on TFM approaches (Martin et al., 2015; Wang and 
Zhai, 2016). However, LPMs still require a considerable amount of expertise since the user needs 
to use advanced modular-graphical modeling tools such as Simulink (MathWorks, 2002), or 
domain-specific programming languages such as Modelica (Fritzson and Engelson, 1998). Thus, 
building designers, particularly architects, seldom use them. 

Regarding the use of a whole-building energy simulation in building design, Clarke (2001) argues 
that it is more efficient to use a single simulation program throughout the entire design process 
than to use a progression of tools, from simplified to detailed. Clarke maintains that using a 
disparity of analysis tools, particularly to simulate similar physical processes, is a problematic 
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approach since it inevitably entails theoretical and modeling discontinuities as well as pernicious 
assumptions.  

The author of this dissertation agrees with Clarke but adds that BES should be selected as long as 
the following conditions are met: (i) the tool should be able to model all heat transfer modes 
accurately, including radiative heat transfer since thermal mass is a critical factor in passive design; 
(ii) it should support co-simulation as a relevant ancillary process that complements the eventual 
modeling shortcomings of the used BES program; (iii) the tool needs to, at least partially, interface 
with design tools such as CAD or BIM programs; and (iv) it should be flexible and, therefore, 
adaptable to the requirements different design phases, i.e., it should support both simplified and 
detailed calculations. Such requirements promote the efficient use and integration of BES tools.  

Considering the requirements specified for BES selection, this dissertation uses EnergyPlus as the 
main BES program. Despite some hurdles (see chapter 3 and 5), EnergyPlus fulfills all conditions: 
(i) it is capable of modeling all heat transfer modes accurately, (ii) there are several modern and 
well-designed interfaces that support its use through design tools such as CAD and BIM programs 
(e.g., OpenStudio, Archsim, Honeybee), (iii) detailed simulations such as CFD and daylighting 
simulation generated by other software can complement EnergyPlus analysis, (iv) several works 
in early-stage design use this software to predict the thermal and energy behavior of buildings, 
e.g., the investigations of Anton and Tănase (2016), Konis, Gamas, and Kensek (2016), Qingsong 
and Fukuda (2016), Negendahl (2015), Asl et al. (2014), and Caldas and Santos (2012). 

Daylight simulation in buildings using physical (unbiased) approaches 

The daylight simulation of buildings requires the description of a scene that includes the following 
essential elements: (i) the three-dimensional building geometry of the area to simulate, (ii) the 
optical material descriptions for all the surfaces in the scene, (iii) and a sky model that quantifies 
the contribution of direct and diffuse components of daylight emitted by the celestial hemisphere.  

Depending on the type of analysis, the user needs to provide additional information. In the case of 
High Dynamic Range- (HDR) based simulations such as luminance and illuminance point-in-time 
render or glare analysis, the user needs to specify a point-of-view, also known as a camera. For 
grid-based simulations, such as point-in-time illuminance, solar irradiance, and annual dynamic 
daylight analysis, the user needs to specify a grid or an array of sensors. In the case of annual 
dynamic daylight analysis, also known as climate-based simulations, the analysis requires the 
following information: (i) annual hourly Typical Meteorological Year (TMY) data to build an 
annual sky using the all-weather Perez sky model (Perez, Seals and Michalsky, 1993), (ii) an 
occupancy schedule, the control protocol of eventual dynamic shading systems, and (iii) a lighting 
level threshold (typically an illuminance threshold) (Reinhart, 2019).   

Using the input data that describes the scene, physically-based daylighting simulation software is 
able to predict illuminance- or luminance-related phenomena. Several computational approaches 
implement different types of light transport models to perform such predictions. This section will 
discuss the methods currently in use in the digital daylight analysis of buildings, namely the split 
flux method, the several raytracing methods, and some hybrid approaches that combine raytracing 
with other techniques. Other methods like rasterization (scanline) (Pineda, 1988), and radiosity 
(Greenberg, Cohen and Torrance, 1986; Immel, Cohen and Greenberg, 1986; Cohen and Wallace, 
2012) will not be discussed. Rasterization techniques are commonly used in the animation and 
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gaming industry and the use of Radiosity in lighting simulation of architectural spaces is in decline 
(Jakica, 2018).   

The split flux method is the simplest physically-based light transport algorithm. The approach 
computationally implements a manual calculation method established by the British Building 
Research Establishment (BRE) (Jakica, 2018; Reinhart, 2019). The method divides daylight into 
three components: (i) the direct Sky Component (SC), (ii) the Externally Reflected Light 
component (ERC), and (iii) the Internally Reflected Light component (IRC). The approach 
calculates each component separately and combines them to compute illumination levels. 
Introduced by Hopkinson, Longmore and Petherbridge (1954), Modest (1982) extends the split 
flux method and implements it in the SUPERLITE program. Despite being a simplified approach, 
therefore incapable of fully capturing the daylight phenomena, it computes quickly. For that 
reason, whole-building energy programs, which do not focus on performing detailed daylight 
calculations, still use this method. For example, eQUEST-DOE-2 (Hirsch, 2006) and EnergyPlus 
(Crawley et al., 2001) implement the split flux method to calculate Daylight Factor (DF) in 
specified light sensors located in thermal zones. Those programs use the DF data to estimate the 
hourly illuminance levels necessary to compute the thermal zone lighting energy use. Winkelmann 
and Selkowitz (1984) describe the implementation of the method used in DOE-2. EnergyPlus 
extends the method implemented in DOE-2 by using a more diverse range of sky models (DOE, 
2018). Figure 2-2 depicts the different components of the split flux method. 

 

Figure 2-2. The split-flux method calculation components. Image adapted from Reinhart (2019). 

Using a technique called Path Tracing (PT), Raytracing methods follow the physical principles 
that determine visible light phenomena (Shirley, 1992). Raytracing calculates light transport by 
tracing a large number of optic light rays in a scene. Raytracing techniques extend the ray casting 
algorithm, originally developed to solve intersections of rays within an arbitrary geometry by 
tracing a ray per pixel. First proposed by Whitted (1979), raytracing later adopted recursive point-
sampling techniques to trace the additional rays necessary to calculate global illumination and 
solve the general rendering equation (Kajiya, 1986). The physical model implemented by 
raytracing follows energy conservation principles (Pharr, Jakob and Humphreys, 2016), which 
determine that every recursive light bounce splits a ray into reflected, absorbed, and transmitted 
components. Light transmission through a material could occur either through refraction, emission, 
or a combination of both, depending on the participating media. The sum of the components must 
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be equal to the incident radiosity. Typically, stochastic methods control the ray splitting. However, 
to avoid expensive computations, current methods use deterministic ancillary approaches to guide 
stochastic Monte Carlo sampling algorithms (Jakica, 2018). Algorithms that follow this hybrid 
approach, like the Multiple Importance Sampling (MIS) (Veach and Guibas, 1995) and its 
extensions (Burke, Ghosh and Heidrich, 2005; Clarberg et al., 2005), have made physically-based 
rendering computationally feasible nowadays.  

There are three main raytracing approaches used in predicting daylight in buildings: forward, 
backward, and bidirectional raytracing. In forward raytracing the rays start from the light source. 
Currently, this method is the most accurate and detailed light transport model since it exactly 
follows the physical behavior of light. Nevertheless, forward raytracing is computationally 
expensive since it requires the tracing of millions of ray recursions to achieve smooth and realistic 
results (Jakica, 2018). For that reason, designers, analysts, and researchers use this method in later 
design phases and in cases that include optically Complex Fenestration Systems (CFS) that are 
challenging to simulate (Santos, Leitão and Caldas, 2018). TracePro (Lambda, 1994) is a well-
known forward raytracing tool that recently implemented the sun as a light source. However, it is 
still challenging to use TracePro and other forward raytracing programs as daylighting tools for 
whole-building analysis (Kolås, 2013). Nevertheless, it is common to use such tools to produce 
high quality Bidirectional Scattering Distribution Functions (BSDF) that can be used by other 
simulation techniques. 

Backward raytracing techniques trace rays from a point in the scene. In the case of rendering 
calculations, this point characterizes a camera viewpoint, whereas in grid-based illuminance 
simulations, this point represents a light sensor (Jakica, 2018). The process begins to emit rays 
from the point of interest (i.e., a view or light sensor) until the rays either hit a physical object or 
a light source such as the sun, sky, or a luminaire. The backward tracing process considers all 
physical interactions caused by reflection and refraction. For example, if a ray hits a surface other 
than a light source, the luminance of that surface depends on the secondary rays that either bounce 
back or are partially absorbed and re-emitted from the surface. The optical properties of the 
surface, typically encoded in material shaders, determine how the ray radiance is absorbed, 
reflected, refracted, or re-emitted (Reinhart, 2019). Figure 2-3 illustrates the backwards raytracing 
process.  

 

Figure 2-3. The backward raytracing method. Image source: Reinhart (2019). 
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This light transport model is faster to compute than forward raytracing as it calculates only the 
rays reaching the view or sensor point.  

Radiance (Ward and Rubinstein, 1988; Ward, 1994, 2004b; Ward and Shakespeare, 1998) was one 
of the first backward raytracing programs, and is the most used daylight simulation engine in 
research and building analysis (Ochoa, Aries and Hensen, 2012). Radiance outperformed other 
available lighting simulation programs in several validation and evaluation studies that compared 
simulation output against measured data (Ubbelohde and Humann, 1998; Crawley et al., 2008; 
Acosta, Navarro and Sendra, 2011). Ruppertsberg and Bloj (2006) claimed that no widely used 
rendering software is better than Radiance. The same authors combine spectral rendering methods 
with Radiance to achieve physically accurate results for visual psychophysicist study. The 
incremental improvement and extension of Radiance’s capabilities led to its being widely regarded 
as the “golden standard” for lighting simulation (Santos, Leitão and Caldas, 2018). Several authors 
use this simulation engine as the benchmark program in the validation of other daylighting 
simulation tools (Reinhart and Breton, 2009; Bellia, Pedace and Fragliasso, 2015; Jones and 
Reinhart, 2017; Reinhart, 2019). The following discussion focuses on Radiance and Radiance-
based tools. 

The early applications of Radiance’s backward raytracing in predicting daylight in buildings were 
static, i.e., they reflected a specific sky condition in a scene. Therefore, they mainly consisted of 
DF and point-in-time calculations such as the calculation of illuminance in a grid of sensor points 
or luminance-based synthetic HDR images. Such approaches are unable to fully depict the annual 
variation of daylighting conditions of a specific location. To that end, several authors advanced 
new methods called Climate-based Daylight Modeling (CBDM). CBDMs are annual, dynamic, 
and climate-based analysis methods that calculate illuminance and luminance times series that 
result from different daylight conditions derived from TMY data (Nabil and Mardaljevic, 2006; 
Reinhart, Mardaljevic and Rogers, 2006; Reinhart, 2019). CBDMs enable the calculation of 
climate-based daylight metrics, including Daylight Autonomy (DA), Useful Daylight Illuminance 
(UDI), Annual Sun Exposure (ASE), and annual Daylight Glare Probability (aDGP). 

Initially, CBDM simulation resulted from the automated repetition of a static simulation under 
varying sky conditions. However, that process is highly inefficient since it requires extremely long 
computation times (Reinhart and Herkel, 2000). The Daylight Coefficient (DC) method is a 
numeric method that speeds up the simulation of annual dynamic light levels. Also known as the 
two-phase method, DC was originally proposed by Tregenza and Watters (1983). Bourgeois, 
Reinhart, and Ward (2008) advanced a standard for using DC to run CBDM. 

The DC method first discretizes the sky model hemisphere into 145 patches (also called sky 
segments or Tregenza patches). Then, it computes the contribution of each sky patch to the total 
illuminance in any arbitrary point inside the building. Figure 2-4 depicts the illuminance (Eα) 
contributions of a sky patch (Sα) at a specific point and view direction (x) normalized by the 
luminance (L) and the sky patch angular size (ΔSα). This normalization result is a daylight 
coefficient (DC) for that specific sensor point x related to the sky segment Sα. For an annual 
calculation, the illuminance of a particular sensor node in each time step results from summing up 
all the 145 multiplications between each sky division luminance and the respective calculated DC.  
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It is possible to extend the DC concept to luminance, thus allowing the generation of time-series 
visualizations (Wienold and others, 2007; McNeil and Lee, 2013) essential to annual visual 
comfort studies. As mentioned in Reinhart (2019) several studies show that Radiance’s two-phase 
method is able to predict annual indoor light levels accurately (Mardaljevic, 2000; Reinhart and 
Walkenhorst, 2001; Reinhart and Andersen, 2006; Reinhart and Breton, 2009; Sudan, Mistrick 
and Tiwari, 2017; Brembilla and Mardaljevic, 2019). 

 

Figure 2-4. Visual definition of the two-phase method showing the several components necessary to compute a 
daylight coefficient for an indoor point x and a sky patch or segment Sα. Image adapted from Bourgeois et al. (2008).  

DAYSIM (Reinhart and Walkenhorst, 2001) and SPOT (Rogers, 2006) are Radiance-based tools 
that implement the two-phase method for CBDM. An alternative implementation of the two phase 
method consists of concatenating several Radiance subroutines, a non-trivial task for non-expert 
Radiance users. 

Although backwards raytracing is computationally more efficient than forward raytracing, it is 
unable to handle complex reflections and refractions of specular surfaces or to properly simulate 
caustic scattering in transparent materials and participation media (e.g., translucent materials). This 
shortcoming limits the application of Radiance and Radiance-based tools such as SPOT and 
DAYSIM to adequately simulate specular light redirecting systems and other types of CFS. The 
stochastic and probabilistic sampling techniques used in backwards raytracing to find specular 
reflections of the sun are the reason for this limitation. The probability of using such sampling 
techniques to find the sun is low when its relative size is small in the overall scene, a situation that 
often occurs in the study of CFS (McNeil and Lee, 2013). 

The introduction to Radiance of bidirectional light transport models extended the program to 
include some forward raytracing capabilities, thus enabling its use in the simulation of CFS. One 
of the bidirectional models is photon mapping. Schregle (Schregle, 2002, 2003, 2004) 
implemented a photon map extension to Radiance by pre-processing a photon map using a forward 
ray tracing technique. Forward raytracing using photon mapping poses a challenge in daylighting 
simulation since a large number of the photons emitted by the sky and sun do not interact with the 
interior scene. Schregle (2002, 2003) solved this by using photon ports that mapped the visible 
sky and sun luminance distribution on windows. Using the information stored in the photon ports, 
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the technique traces photons and stores them in a process called forward pass (Figure 2-5). The 
information produced by the forward pass is then used by the backward raytracing to calculate 
global illumination (Schregle, 2002; McNeil and Lee, 2013; Jakica, 2018). Initially, this technique 
did not support annual simulations, and the proposed photon ports could not calculate external 
inter-reflections. However, the development of progressive photon mapping in Radiance 
overcomes its initial limitations (Schregle et al., 2015; Schregle, Grobe and Wittkopf, 2015, 2016; 
Lars O. Grobe, 2019b). EvalDRC (Schregle et al., 2015) is a python-based tool that automates the 
progressive version of Radiance’s photon mapping to fully support CBMDs that include specular 
CFS (Bauer and Wittkopf, 2015; Kazanasmaz et al., 2016; Grobe, Wittkopf and Kazanasmaz, 
2017; Lars O. Grobe, 2019a).  

 

Figure 2-5. Global photon distribution in Radiance’s Photon Map approach. Left: individual photon path in the 
diffuse Cornell box. Dots indicate stored photons. Right: stored photons after the completion of the forward pass. 

Image source: Schregle (2002). 

Another type of approach that addresses Radiance’s backward raytracing limitations is the addition 
of the tool genBSDF (Ward, 2010). genBSDF enables the generation of bidirectional models of 
light transport and scattering under the form of BSDF data. This tool overcomes the Radiance’s 
limitation in modeling specular CFS by flipping the convention of source and receiver in 
Radiance’s backwards raytracing architecture, thus operating Radiance as a forward raytracing 
program (McNeil and Lee, 2013; Geisler-Moroder, Lee and Ward, 2016; Eleanor S. Lee, Geisler-
Moroder and Ward, 2018). It is possible to use genBSDF output directly with rtrace (Ward, 1997) 
or rpict (Ward, 1999) Radiance subroutines to compute illuminance levels in digital light sensors 
or luminance-based images, respectively. The BSDF data produced by genBSDF replaces standard 
material descriptions of fenestrations like common transparent or participation media materials. 
However, this use of BSDF data supports only point-in-time calculations. Several modeling 
methods for Radiance have been developed to use this bidirectional light transport model in annual 
dynamic daylight calculations. Such modeling approaches use matrix algebra to compute either 
annual and point-in-time illuminance- and luminance-based metrics. Ward et al. (2011) proposed 
the 3-phase method and validated it using an inter-modeling approach. The validation consisted of 
comparing the 3-phase method results against previously validated simulation results generated by 
Radiance’s backwards raytracing method. Later, McNeil and Lee (2013) empirically validated the 
3-phase method. The empirical validation consisted of modeling and simulating the LightLouver 
CFS, a commercially available optical light-redirecting system, and comparing the simulation 
results against measured data collected over a one-year period outdoor test facility in Berkeley, 
California.  
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The 3-phase method extends the DC approach. The modeling approach breaks the luminous energy 
transport between the sky patches and the interior sensor nodes into three distinct phases, each one 
simulated independently and stored in a matrix of coefficients: (i) the Daylight matrix (D), which 
describes the way that energy from each Tregenza sky patch arrives into each of the directional 
Klems patches that subdivide the fenestration (Klems, 1994b, 1994a); (ii) the Transmission matrix 
(T) expressed in the BSDF matrix, which describes the specular and non-specular transmission of 
the fenestration; (iii) the View matrix (V), which characterizes how light that exits the fenestration 
arrives at the camera or at a grid of sensor nodes. By multiplying the three matrices (VTD), a DC 
is calculated. The annual illuminance (E[annual]) or luminance (L[annual]) on V results from the 
multiplication of DC by a sky matrix (S) that contains the sky patches average luminance for all 
the hours of the year and correspondent sky conditions (VTDS). The calculation of E or L depends 
on the Radiance routine that processes the result of the 3-phase method. Equation (2-2) formulates 
the 3-phase method as follows: 

𝐸𝐸 𝑜𝑜𝑜𝑜 𝐿𝐿 = 𝑉𝑉 × 𝑇𝑇 × 𝐷𝐷 × 𝑆𝑆  (2-2) 

The 5-phase method extends the 3-phase method to closely follow the standard DC modeling 
approach proposed by Bourgeois, Reinhart, and Ward (2008). Geisler-Moroder et al. (2016) 
validate the 5-phase method. The validation also showed that this approach outperforms the 3-
phase method, particularly in predicting the distribution of direct sunlight (Geisler-Moroder, Lee 
and Ward, 2016). The approach consists of decoupling the direct solar component from the sky 
and inter-reflected components of the 3-phase method by adding the following two steps:  

1) Computing the direct component (d) of the 3-phase method (VdTDdSds) and subtracting it 
from the already computed 3-phase method process.  

2) Calculating the direct sun (ds) contribution by generating a coefficient matrix for direct sun 
(Cds) and a sun matrix (Ssun) that maps all sun positions and energy in the sky. The final 
direct sun contribution matrix (CdsSsun) results from multiplying Cds and Ssun. Finally, the 
direct sun contribution is added to the previous step. 

Figure 2-6 and equation (2-3) summarizes the extension introduced by the 5-phase method to the 
3-phase method. 

𝐸𝐸 𝑜𝑜𝑜𝑜 𝐿𝐿 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 −  𝑉𝑉𝑑𝑑𝑇𝑇𝑇𝑇𝑑𝑑𝑆𝑆𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠    (2-3) 

 
Figure 2-6. Extending the 3-phase to the 5-phase method. Image adapted from Subramaniam (2017).  
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Photon mapping and the 3- and 5-phase methods require a high degree of expertise. Although they 
support any kind of daylight simulation, designers need to have programming skills to use them. 
For that reason, architects default to the two-phase method's front-end applications supported by 
easy-to-use modern Graphical User Interfaces (GUI), e.g., DIVA for Rhino (Jakubiec and 
Reinhart, 2011). Typically, designers and building performance analysts limit the use of the 3- or 
5-phase and photon mapping methods to cases that demand their application, such as in the study 
of optical CFS. Additionally, such simulation modeling methods still entail slow run times. For 
example, parametrically generating custom BSDF data for the 3- or 5-phase methods is still 
computationally expensive. Nevertheless, if such data is already available, whether through 
physical measurements or pre-computed BSDF files, the calculations of the 3- or 5-phase methods 
are reasonably fast to run in current Central Processing Units (CPU) architecture (Zuo et al., 2014).  

The use of such powerful simulation techniques would greatly help designers in the early design 
of sophisticated building skins and architectural screens. Currently, there is still a considerable gap 
between the ease with which a designer generates a highly complex building skin using modern 
Visual Programming Languages (VPL), like Grasshopper for Rhino (McNeel and others, 2017), 
and the difficulty and amount of expertise required to simulate it.  

In sum, although Radiance is primarily a backward raytracing engine, it is the benchmark lighting 
and daylighting simulation tool. This light simulation engine is the most used by architects and 
building designers to simulate daylight in buildings (Reinhart and Fitz, 2006; Kota and Haberl, 
2009; Ochoa, Aries and Hensen, 2012; Jakica, 2018). Daylighting methods based on DC enable 
Radiance and other Radiance-based tools to perform annual dynamic daylight simulations based 
on typical meteorological data. Bidirectional ray tracing extensions to Radiance enhanced the 
software with the necessary forward raytracing capabilities to simulate specular CFS. Additionally, 
EnergyPlus can use Radiance textual simulation output to improve its ability to determine lighting 
and thermal loads. For those reasons, the research conducted in this dissertation will use Radiance 
or Radiance-based tools (e.g., DAYSIM) as the primary support for the development of alternative 
daylighting analysis and modeling techniques. 

2.3 Computational building design supported by daylighting and whole-
building energy simulations 

As argued in chapter 1, section 1.7, digital computational design consists of using computer 
algorithmic capabilities to support and develop design. Thus, the use of thermal and daylighting 
simulations performed by computer programs in the design of high-performance buildings is, in a 
sense, a computational expression of performance-based design (Oxman, 2008; Zhao and de 
Angelis, 2019; BuHamdan, Alwisy and Bouferguene, 2020). The information generated by those 
types of computer simulations provide useful feedback to different building design workflows. 
The following sections discuss the integration of thermal, whole-building energy, and daylight 
simulations of buildings in computational design processes. They analyze and debate different 
workflows, computational methods, and correspondent applications. 
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2.3.1 Integrating daylighting and building energy simulations in computational building 
design workflows 

The primary goal in using daylight and thermal computer simulations in building design is to assess 
the current performance status of a design (i.e., evaluate whether the solution complies with pre-
established criteria) and move the design process towards a high-performance solution. In other 
words, architects and other building designers use such simulations to progressively improve the 
design’s thermal, energy, and daylight performance and if possible or desirable, move towards an 
optimal solution. Building design supported by daylight and whole-building energy simulations 
can assume three forms: (i) iterative design and analysis (IDA), (ii) parametric design and analysis 
(PDA), and (iii) performance-based generative design (PGD). 

A manual IDA workflow consists of a cycle in which a designer iteratively executes the following 
tasks: (i) model a building solution, (ii) simulate its thermal, energy, and daylight performance, 
(iii) analyze the simulation results, and, based on the analysis, (iv) decide whether to confirm the 
design solution or to refine it by repeating the same process. Although IDA provides useful 
feedback to the design process, its modeling-simulation-analysis-remodeling cycles are tedious, 
inefficient, and time-consuming (Zhao and de Angelis, 2019). Moreover, the success of this 
approach in finding high-performance solutions depends heavily on the designer's knowledge in 
both using the computational tools involved in the process and processing the simulation output 
into meaningful information. Figure 2-7 illustrates the IDA process. 

 

Figure 2-7. The iterative design process of performance-based building design supported by whole-building energy 
and daylighting simulations. The user needs to manually intervene in every step of the process. 

PDA expands the iterative process by automating the modeling and simulation tasks. These types 
of design workflows combine a parametric model, which describes a design symbolically using 
parameters (Caetano, Santos and Leitão, 2020), with simulation programs. In this type of modeling 
process, the parametric model receives parameter inputs, provided either by the user or 
automatically generated by a script, produces a design instance, and then sends it to the simulation 
engine, which in turn evaluates it. This enables the prompt generation and evaluation of a plethora 
of design alternatives (BuHamdan, Alwisy and Bouferguene, 2020) that are part of the design 
solution space – i.e., the set that encompasses all combinatorial solutions that the parametric model 
is able to produce. Consequently, PDA increases the probability of finding design solutions that 
yield acceptable daylight, thermal, and building energy performance.  

PDA also supports sensitivity analysis. For a successful sensitivity analysis, the parameters 
encoded in the parametric model need to express relevant aspects to the thermal and daylighting 
performance of buildings, e.g., building form and orientation, fenestration geometry, building 
materials. Sensitivity analyses are essential to understanding the design performance domain and 
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identifying key design parameters in the overall building performance. They are also beneficial in 
isolating the model parameters that have a negligible impact on building performance (Menberg, 
Heo and Choudhary, 2016). Sensitivity analyses are also powerful methods to detect modeling 
errors, identify poorly modeled components, and improve our understanding of the relationship 
between model inputs and predicted outputs (Mara and Tarantola, 2008).   

PDA sensitivity analysis entails the following steps: (i) determine input parameters variations; (ii) 
use a parametric model to generate simulation models, (iii) simulate the models, (iv) run sensitivity 
analysis, and (v) analyze sensitivity analysis methods (Tian, 2013). There are two types of 
sensitivity analysis, local and global. The local approach studies the effects of uncertain inputs 
around a base case, whereas global methods measure the influence of the uncertain inputs over the 
whole design solution space. Although global methods are preferred, local methods are more 
common since they are faster to perform, do not require specific expertise to use, and produce 
outputs that are easier to understand by non-experts in building performance analysis (Menberg, 
Heo and Choudhary, 2016). Global sensitivity analyses include meta-modeling approaches 
supported by regression-, variance-, and screening-based methods. For detailed information about 
these methods in energy-efficient building design, the reader can refer to the work of Tian (2013), 
Nguyen and Reiter (2015), Menberg, Heao, and Chodhary (2016), and Kristensen and Petersen 
(2016). 

PDA approaches are more efficient than IDA workflows in the design of high-performance 
buildings. They help designers explore the design solution space better and faster, and 
consequently expand their understanding of key factors to building performance. Nevertheless, PD 
presents two main limitations. One is that PD does not fully support the search for near-optimal 
design solutions since it depends on sampling procedures that are either manually defined by the 
user or supported by an algorithm that randomly samples the solution space. The lack of a guiding 
principle or a well-defined goal to steer the search makes PDA ill-equipped to efficiently improve 
a design’s predicted performance. Even the automated sampling commonly used in global 
sensitivities analysis are methods that aim to enhance our knowledge about the design problem, 
not to search for high performing solutions. The other limitation relates to PD’s greatest benefit – 
promptly generating design variations. It is well-known that human beings have limitations when 
making decisions about large amounts of information. This limitation is particularly evident if the 
data available includes several competing factors and conflicting objectives, which is often the 
case in performance-based building design (March and Simon, 1958; Daru and Snijder, 1997; Zhao 
and de Angelis, 2019). March and Simon (1958) showed in their economic studies that people can 
only consider a few decision factors at a time and tend to stop gathering or analyzing information 
as soon as they feel they have enough to make some sort of decision. Moreover, people are biased 
in their analysis and decision-making processes. Designers’ tendency to stop analysis and search 
tasks using parametric approaches as soon they hit an acceptable solution leads to a suboptimal 
use of PDA approaches in performance-based design (Daru and Snijder, 1997).  

PGD approaches support more efficient design exploration methods. They integrate optimization 
techniques, commonly used in the field of Operations Research (OR) to automate and steer the 
search procedure in the design-analysis workflow. Typically, the computational implementation 
of PGD methods are tools called Performance-based Generative Design Systems (PGDS). PGDS 
invert the performance-driven design workflow, based on iterative trial-and-error cycles, in a 
process named inverse-design or goal-oriented design (Monks, Oh and Dorsey, 2000). The 
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inversion of the design workflow consists of first describing the design problem (e.g., geometry, 
materials, variable parameters, and their possible domains and constraints), and then establishing 
the desired building performance goals. Based on that information, the system will search for a 
solution that best matches the desired performance criteria in the feasible solution space.  

The general search protocol entails the following steps: (i) the PGDS generation module, which 
typically consists of a parametric building model, produces an initial design solution; (ii) the 
solution is evaluated by the PGDS evaluation module supported by a simulation software; (iii) an 
objective function is generated that describes the desired building performance through its 
minimization or maximization processes the simulation results and returns its output to the PGDS 
optimization module, typically an optimization metaheuristic (Nguyen, Reiter and Rigo, 2014); 
(iv) based on the objective function value, the optimization algorithm generates a new design 
solution using the PGSD generation module, triggering a new cycle. The system repeats this 
protocol until the optimization process converges. The convergence term indicates that the 
optimization algorithm has reached a final solution. However, because most building optimization 
processes use heuristic and metaheuristic procedures, convergence does not necessarily mean that 
the algorithm has found the optimal point (Wetter and Polak, 2004; Nguyen, Reiter and Rigo, 
2014). Typically, convergence means that the search hit certain pre-established criteria. For 
example, a PGDS converges when it executes a fixed number of iterations or, in the case of 
population-based PGDS (see section 2.3.2 – Metaheuristics), all the solutions generated in a 
population hit a similarity threshold.  

The specific means of generation, evaluation, and selection of design alternatives depends on the 
optimization algorithm used in the PGDS. Figure 2-8 illustrates the PGDS method applied to the 
multi-criteria optimization of daylighting and thermal/energy performance of buildings. 

 

Figure 2-8. Example of a PGDS method supported by daylighting and whole-building energy simulations. The tasks 
performed by the designer are marked in magenta and consists of the following: (i) defining the parametric 
geometric and simulation models, (ii) formulating the problem by describing the performance goals and the 

objective function, (iii) and analyzing and deciding over the results of the automated search. Note that the objective 
function uses the information provided by different metrics calculated by the simulators – Energy Use Intensity 
(EUI), spatial Daylight Autonomy (sDA), Percentage of People Dissatisfied (P.P.D) – for illustrative reasons. 
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Several authors use the term Building Performance Optimization (BPO) to describe PGDS 
workflows. For that reason, this dissertation considers both terms equivalent and uses them 
interchangeably. Since PGDS are the most advanced and efficient computational design methods 
in performance-based design, the following sections will briefly summarize optimization 
techniques and their application in the design of high-performance buildings.   

2.3.2 Optimization in performance-based building design 

The integration of optimization techniques in goal-oriented building design processes requires the 
definition of the optimization problem and search algorithm. The modeling of the optimization 
problem includes the definition of the decision variables, a set of objective or fitness functions to 
be maximized or minimized, and, depending on the problem, constraints (Wetter and Wright, 
2004; Nocedal and Wright, 2006; Belém, 2019). 

Equations (2-4) through (2-6) express the generalized mathematical formulation of an optimization 
problem that either minimizes or maximizes a set of objective functions: 

max/min:
𝑥𝑥𝑛𝑛 ∈ 𝑆𝑆𝑛𝑛 

 𝑓𝑓𝑖𝑖(𝑥𝑥) = 𝑓𝑓𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), 𝑖𝑖 = 1, 2, … , 𝐼𝐼  (2-4) 

s. t.: 𝑔𝑔𝑗𝑗(𝑥𝑥) = 𝑔𝑔𝑗𝑗(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 0, 𝑗𝑗 = 1, 2, … , 𝐽𝐽  (2-5) 

 ℎ𝑘𝑘(𝑥𝑥) =  ℎ𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)   ≤ 0 ⋁ ≥ 0, 𝑘𝑘 = 1, 2, … , 𝐾𝐾  (2-6) 

where 𝑓𝑓𝑖𝑖(𝑥𝑥) is the ith objective function of a set of objective functions to be either minimized or 
maximized. The functions 𝑔𝑔𝑗𝑗(𝑥𝑥) and ℎ𝑘𝑘(𝑥𝑥) represent the sets of equality and inequality constraint 
functions, respectively. The set 𝑆𝑆𝑛𝑛 defines the domain of each design variable, 𝑥𝑥𝑛𝑛, which can either 
be discrete, continuous, or both. When the set of decision variables 𝑥𝑥 contains both discrete and 
continuous variables, the problem is referred to as mixed-integer (Nguyen, Reiter and Rigo, 2014). 
Objectives and constraints may be interchanged depending on how the problem is defined. If the 
𝑓𝑓(𝑥𝑥) set contains only a single objective function, the optimization problem is called single-
objective and always returns a solution. If the set 𝑓𝑓(𝑥𝑥) contains more than one objective function 
the problem is then called multi-objective. If the set of constraint functions 𝑔𝑔(𝑥𝑥) and ℎ(𝑥𝑥) is empty, 
the optimization problem is unconstrained. Otherwise, the optimization problem is constrained 
(Koziel and Yang, 2011).  

Continuous optimization problems are easier to solve since they often imply smooth objective 
functions, a situation which facilitates the prediction of the behavior of the functions around a 
certain point. In contrast, optimization problems with either discrete or mixed-integer decision 
variables are more challenging to solve since their objective functions often present irregularities 
and discontinuities that are difficult to predict (Nguyen, Reiter and Rigo, 2014; Belém, 2019).  

In constrained optimization, finding points that satisfy all the constraints is often an ill-defined 
problem. Since unconstrained optimization does not impose restrictions on the values of the 
variable, it often poses problems that are easier to solve than constrained ones (Nguyen, Reiter and 
Rigo, 2014).  
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Because Single-Objective Optimization (SOO) processes evaluate only a single objective function 
and consequently do not calculate the trade-off front, they are faster and easier to solve than Multi-
Objective Optimization (MOO) procedures.      

Typically, the optimization of energy and daylight simulated performance of buildings is a 
complex and challenging task since the optimization problems are often mixed-integer, 
constrained, and multi-objective.  

To reduce the complexity of a constrained optimization problem, it is common to transform it into 
a penalized unconstrained problem, in which values of the penalties values will vary according to 
the violation degree of the constraints (Coello, 2006; Ehrgott, 2006). The penalty approach to 
simplifying presents two main drawbacks. The first is that sometimes it is difficult to estimate an 
adequate penalty value. The second is that the use of penalties might introduce bias to specific 
optimization algorithms (e.g., evolutionary-based population algorithms), therefore affecting their 
search process.  

Goal-programming (Coello, 2006), also known as the linear scalarization method (Coello, 2006; 
Nguyen, Reiter and Rigo, 2014; Wortmann, 2017; Belém, 2019) is a common technique to reduce 
a MOO problem to a SOO one. The technique weighs the different objectives and combines them 
into a single objective function, usually through a summation. A SOO algorithm then optimizes 
the resulting single-objective function. Despite the complexity reduction, the goal-programming 
approach can include all the performance aspects involved in the problem. Equation (2-7) 
illustrates how the goal-programming approach reduces several objective functions into one using 
weighting factors and a summation. The weight factors (𝑤𝑤𝑖𝑖) assigned to each objective function 
(𝑓𝑓𝑖𝑖) represent their relative importance to the designer and must be set during the formulation of 
the optimization problem.  

max/min
𝑥𝑥𝑛𝑛∈ 𝑆𝑆𝑛𝑛

� 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛),
𝑛𝑛

𝑖𝑖=1

 (2-7) 

Although goal-programing is more computationally efficient than MOO methods, it presents 
several limitations to the search and optimization outcome. Determining an adequate distribution 
of weighting factors is a non-trivial task. It usually depends on the designer’s expertise and often 
it is done ad hoc. The problem is more challenging when the different objective functions do not 
have the same metric or significance (Nguyen, Reiter and Rigo, 2014). Hence, weighting factors 
inevitably introduce bias in the search process (Coello, 2006; Nguyen, Reiter and Rigo, 2014). 
Additionally, when dealing with multi-criteria problems with competing factors such as those that 
involve the thermal and daylight performance of buildings, it is wise to think about the solution’s 
performance in terms of trade-offs.  

An approach that adequately addresses the multi-criteria of MOO is Pareto optimization. This 
method uses the concept of Pareto optimality to examine all possible trade-offs to determine the 
set of non-dominated solutions, also called a Pareto-front. A solution is a non-dominated one if 
there is none of the objective functions left that can be improved without worsening the others 
(Coello, 1999; Caldas and Norford, 2003b). Multi-criteria decision-making is the process of 
selecting a solution from the Pareto-front. This process is non-trivial, as it depends on several 
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aspects related to the specificity of the problem, such as the significance of objective functions to 
designers and building investors (Nguyen, Reiter and Rigo, 2014). In cases where the objectives 
are equally relevant, a common method consists of finding the closest Pareto-front point to 
the utopia point. The utopia point is a fictitious point whose position corresponds to the 
coordinates of the best solutions in each individual objective. Figure 2-9 presents the selection 
process based on calculating the Euclidean distance to the utopia point in a minimization dual-
objective optimization. 

 

 Figure 2-9. The selection of the solution from the Pareto front that is closest to the utopia point. Image source: 
Nguyen, Reiter, and Rigo (2014). 

The efficient handling of mixed-integer or discrete optimization problems depends heavily on the 
optimization algorithm. Because BPO usually uses simulated data performed by a third-party 
program (simulator), it is difficult to establish a mathematical relationship between objective 
function behavior and decision variables or design parameters. The lack of a clear mathematical 
relationship hampers the collection of essential information about the gradient of the objective 
function that would greatly facilitate optimization. For this reason, BPO typically uses derivative-
free optimization algorithms (Wortmann et al., 2017), also known as global black-box optimization 
algorithms since they do not require any information about the objective function gradient. There 
are three main types of derivative-free optimization algorithms: (i) direct search, (ii) 
metaheuristics, and (iii) model-based algorithms. The following paragraphs provide a summary of 
the different types of derivative-free optimization algorithms. 

Direct search  

Direct search methods, also known as trajectory search, seek to approach the optimal point by 
iteratively replacing the current point location (i.e., design solution) in the design space based on 
rules that determine where the optimization procedure will execute the next trial. The goal is to 
find a feasible point for which performance cannot be further increased (maximization problem) 
or decreased (minimization problem). The main difference between the different direct search 
algorithms is the method used to search for neighboring points, which determines the step-size of 
the search. The most common search algorithms applied in BPO include Simplex-based methods, 
such as the Nelder-Mead algorithm, and (ii) Pattern search algorithms such as coordinate search 
and the Hooke-Jeeves algorithm. For detailed information about the Nelder-Mead, the coordinate 
search, and the Hooke-Jeeves algorithm, the reader should refer to Nelder and Mead (1965) and 
Polak and Wetter (2003), respectively.  
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Metaheuristics 

In optimization, a metaheuristic is a high-level procedure designed to find a heuristic that is able 
to deliver a good solution to an optimization problem. Mostly used in combinatorial optimization, 
they are problem agnostic and non-deterministic. Thus, it is possible to use a metaheuristic to any 
search problem. However, they do not guarantee that the search process will find a global optimum. 
The goal of using metaheuristics is to efficiently sample and steer the search of large design 
solution spaces towards near-optimal solutions (Blum and Roli, 2003). Optimization 
metaheuristics are the most prevalent in BPO and include a large number of algorithms. They can 
be grouped in the trajectory search, stochastic population-based, and hybrid algorithms families 
(Nguyen, Reiter and Rigo, 2014).  

Trajectory search metaheuristics aim to provide sampling methods that prevent the search process 
from becoming stuck at local optima. These types of algorithms are best suited to handle discrete 
optimization problems. Simulated Annealing (SA) and Tabu Search (TS) are the most common 
trajectory search algorithms used in BPO. If the reader is interested in knowing about these 
algorithms in detail, the author recommends the reading of Brooks and Morgan's (1995) work on 
SA and Glover and Laguna (2013) on TS. 

Natural processes directly inspire stochastic population-based algorithms. Such algorithms are 
usually based on a rolling population of individuals or agents. There are two main groups of 
algorithms: population-based metaheuristics based on social or cultural processes, and 
Evolutionary Algorithms (EA).  

Population-based metaheuristics based on social or cultural processes take inspiration from social 
behavior or production (culture) of animals, insects, and humans. Particle Swarm Optimization 
(PSO), Ant Colony Optimization (ACO), and Harmony Search (HS) are the most common 
algorithms in BPO.  

Eberhart and Kennedy (1995) modelled PSO after the social behavior of birds flocking or fish 
schooling. A solution is called a “particle,” and a set of particles is called a “swarm.” PSO begins 
with a group of random particles and then searches for the optimal point by generating and 
updating swarms. The algorithm collects the objective function evaluation done by the particles 
and uses it to update existing swarms and generate new ones. Wetter and Wright (2004) provides 
a full description of the PSO search process.  

ACO (Dorigo, Maniezzo and Colorni, 1996) traces a direct analogy to the process by which ants 
deposit pheromones on paths to encourage other ants to follow. Similarly to PSO, ACO begins to 
create agents “nests” (“ants”) in random positions in the design space. The “ants” depart from the 
“nest” searching for a position in the solution space that yields better fitness values. For each 
position, they leave a “pheromone” representing a probability value calculated using the objective 
function. Such marks bias the selection of future nests. For more details about the ACO algorithm 
the reader should refer to Dorigo, Maniezzo, and Colorni (1996). ACO handles discrete 
optimization problems well, but it presents some difficulties in continuous search spaces (Song, 
Chou and Stonham, 1999). 

HS (Geem, Kim and Loganathan, 2001) is inspired by the working principles of harmony 
improvisation in music. Depending on the evaluation of the objective function, HS measures 
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design solutions in terms of “harmony.” It involves the following steps: (i) Initialize a Harmony 
Memory (HM), i.e., a set of random “harmonies” (design solution performance) produced by a set 
of “instruments” (decision variables); (ii) Improvise a new harmony from HM by recombining the 
sounds that each “instrument” produces; (iii) if the new harmony is better than the best harmony 
in HM, the process replaces the old harmony in HM with the new one; (iv) if the process did not 
converge, it repeats the cycle from step (ii) (Geem, Kim and Loganathan, 2001). The algorithm 
maintains a rolling population of best solutions through the several iterations (Evins, 2013). 
Comprehensive literature reviews by Geem et al. (2001) and Evins (2013) on optimization 
methods applied to sustainable design provide more details about HS algorithms. 

Evolutionary algorithms (EA) are metaheuristics directly inspired by Darwinian concepts. EA 
methods select high-performance individuals to reproduce new individuals based on their 
performance fitness. Since EAs are the most prominent approaches in BPO, it is worth presenting 
a more detailed summary of the EA general search process.  

In EA, a chromosome, i.e., a finite length vector of genes that encode the decision variables, 
represents an “individual,” i.e., a design solution. Alleles – i.e., the possible values of a gene –
encode each gene (Goldenberg, 1989). A typical evolutionary algorithm generates a new 
population by using three operators: selection, crossover, and mutation. First, the algorithm 
randomly generates a series of “individuals” as the initial population. Then the algorithm evaluates 
their fitness by using the information provided by the objective function for each “individual.” The 
selection of “individuals” for breeding and mutation is executed according to their fitness, meaning 
that individuals with higher fitness have a higher probability of being selected. The selected 
“individuals” are then used for inbreeding or mutating to reproduce new individuals that will form 
the next generation. Inbreeding is performed by the cross-over operator, which randomly selects 
two parts of the “parents” chromosomes and swaps them. Mutation randomly changes part of an 
“individual” to generate a new chromosome (Caldas and Norford, 1999). The new population then 
goes through a new round of selection. The algorithm repeats the process until it converges, which 
usually occurs when all the individuals of the same population yield the same fitness value or if a 
limit of generations is reached (Huang and Niu, 2016).  

The most popular EA are Genetic Algorithms (GA). GAs use a linear binary data structure, which 
is usually an array of bits, but other types and structures can be used in the same way. The binary 
representation facilitates the cross-over operation because the different parts of the chromosome 
are aligned according to their fixed size. There are several types of GAs, but the most common in 
BPO are the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) and the 
Strength Pareto Evolutionary Algorithm 2 (SPEA-2) (Ziztler, Laumanns and Thiele, 2002), both 
multi-objective GAs. 

Several literature surveys show that GAs, and their modifications, are the most-used search 
algorithms in BPO. In Evins (2013), 50% of the works cited used GA. Nguyen et al. (2014) 
reported that in more than 200 BPO studies, 40 used GA followed by 13 PSO studies. Huang and 
Niu (2016) highlight that slightly more than 60% of the studies included in their review are GA-
based. The causes for this popularity are directly related to the nature of the environmental building 
performance optimization problem based in computer simulations. 
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The problem of building optimization problems supported by building performance simulation 
software is discontinuous and multimodal, i.e., with multiple local optima (Wetter and Polak, 
2004; 2004). This is for two reasons: (i) when describing the problem, the designer or analyst must 
sometimes assign discrete values to design parameters (e.g., a list of building materials), which 
may lead to a disordered and discontinuous output, (ii) the nature of the algorithms used in detailed 
building simulation engines. For example, discontinuity in EnergyPlus outputs is likely caused by 
empirically assigned inputs (e.g., wind pressure coefficients) in adaptive solvers with loose 
precision settings or in iterative solvers that use a convergence criterion, e.g., Warmup 
Convergence algorithm (EnergyPlus, 2017). In daylight simulations, the discontinuities in the 
solution space problem can be introduced in the case of small variations of highly specular shading 
or light redirecting systems. A small deviation of the normal direction of the reflective surfaces 
affects light bouncing and, therefore, the position of reflected rays of light. 

Building energy or daylight simulation programs are also black-box functions in BPO, which 
makes gradient or derivable information unavailable for several direct search methods based on 
gradients (Nielsen and Svendsen, 2002), such as gradient-descent or the Discrete Armijo Gradient 
algorithm available in the GenOpt optimization library (Nguyen, Reiter and Rigo, 2014). The 
presence of iterative or heuristic solvers or other types of numerical methods typically produces 
noise in simulation outputs, which also contributes to the presence of discontinuities and many 
local optima in a BPO problem (Coley and Schukat, 2002). 

The discontinuity of the optimization problem makes gradient-free methods less efficient and 
prone to getting trapped in local minima. Running multiple searches starting at different points is 
one way to address this. However, due to time limitations, such a process might not be viable in 
design workflows and yields a high degree of uncertainty: it is hard to determine the number of 
starting points and their locations that ensure a good search.  

The limitations that trajectory search algorithms have in tackling multimodal and discontinuous 
optimization problems related to building energy and daylight simulation led to the adoption of 
stochastic population-based optimization algorithms. From those, GAs are the most attractive for 
several reasons. First, a GA can handle both continuous and discrete variables. BPO typically has 
both, which hinders, for example, the use of ACO. ACO does not cope well with continuous 
spaces, which forces the user to discretize continuous variables for a more efficient search, such 
as in Song et al. (1999). Second, several comparative studies show that GAs are consistently able 
to find near-optimum solutions to complex problems and do so faster than other metaheuristic 
methods, i.e., they require less cost function evaluations (Wetter and Wright, 2004; Tuhus-Dubrow 
and Krarti, 2010; Bichiou and Krarti, 2011). Third, GAs also proved to be robust and capable of 
delivering different design alternatives with similar performance, such as in the work of Wright 
and Mourshed (2009), Caldas and Santos (2012), and Wright and Alajmi (2016). Fourth, GAs are 
becoming more popular among building designers because of the emergence of several interfaces 
that allow their use in design. For example, MATLAB provides a GA toolbox and is popular 
among engineers. Architects and designers are beginning to use more goal-oriented design 
approaches mainly because a popular 3D CAD software, Rhinoceros, allows the use of an SGA, 
the multi-objective SPEA-2 and NSGA-II through several libraries available in the Grasshopper 
Visual Programming Language (VPL). 
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Despite these advantages, GAs, like other population metaheuristics, have some limitations. 
Although GAs are considered the fastest of all population-based metaheuristics, they still require 
a considerable number of evaluations to find a high-performance solution. When the process is 
based on simulations, namely thermal and daylight evaluations, the search typically takes many 
hours, thus creating an interruption in which the architect/analyst waits for the result. During a 
design process, which is heavily based on interactive feedback, it is desirable to minimize this 
intermission. Additionally, despite GAs being rather effective in finding the region of the global 
optimum they are often unable to conduct a granular search on that area. Hybrid algorithms are 
more effective in finding the best candidate on the global optimal region (Polak and Wetter, 2003; 
Wetter and Polak, 2004; Wetter and Wright, 2004).  

Hybrid algorithms typically result from the combination of a stochastic population-based 
algorithm and a gradient-free direct search algorithm. First, the former executes an initial global 
search; the latter then performs a refined local search around the solution found by the global 
search. The most used hybrid algorithm is available in the GenOpt software (Wetter, 2000) and 
combines the PSO global search algorithm with the Hooke-Jeeves pattern search algorithm (PSO-
HJ).  

Model-based algorithms 

The use of model-based algorithms is relatively recent in the field of BPO. These types of search 
procedures evaluate design candidates in order to build a mathematical approximation of the 
unknown black-box objective function. The resulting surrogate model guides the search process 
towards near-optimal solutions (Simpson et al., 2001; Koziel, Ciaurri and Leifsson, 2011; 
Wortmann, 2018). The purpose of using surrogate models is to speed up the optimization process 
by avoiding the need to run computationally expensive simulations every time the optimization 
algorithm queries the objective function or functions. The development of the model-based 
approaches to BPO directly addresses the search time problem posed by the common use of 
population-based metaheuristics, particularly GAs.  

There are two ways to use surrogate modeling approaches in BPO. The first is to train a model and 
then replace the original time-intensive simulation with it. Since the surrogate is quicker to 
evaluate objective function, it supports faster and more extensive searches. The disadvantage of 
this approach is that its accuracy depends heavily on the number of pre-simulated points necessary 
to build the surrogate. A large number of samples imply accurate surrogates but negate the speed 
advantage, whereas smaller samples result in faster but less accurate surrogates whose inaccurate 
predictions might compromise the optimization outcome (Wortmann, 2018). To overcome this 
limitation, several researchers employed different strategies to iteratively improve the accuracy of 
the surrogate model by evaluating and updating it during the optimization process (Hemker et al., 
2008; Zhang et al., 2011; Koziel and Leifsson, 2013; Wortmann et al., 2015). Figure 2-10 shows 
the difference between a standard optimization process (a) that directly uses a simulation program 
to obtain information about the objective function, a search procedure that first builds a surrogate 
that replaces the “accurate” simulation (b), and the progressive approach that refines and improves 
the surrogate during the optimization process (c). 
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Figure 2-10. Difference between a standard optimization procedure that directly uses the information produced by a 
simulation engine (a), another that builds a priori a surrogate model that replaces the simulation engine in the 

optimization process (b), and a method that iteratively refines the surrogate model during the optimization process. 
Image from: Wortmann (2018). 

Recent work (Wortmann et al., 2015, 2017; Wortmann, 2018) indicates that model-based methods 
supported by Radial-basis Functions (RBF) could be better approaches to derivative-free SOO and 
goal-programming optimization than trajectory search and metaheuristic methods. However, the 
applications of such model-based methods need to be consistently tested in the solving of multi-
criteria BPO problems.  

2.3.3 Application of Performance-based Generative Design Systems in sustainable design 
supported by daylighting and whole-building energy simulations 

This section traces an overview of PGDS and BPO application in sustainable building design 
workflows. Although BPO approaches apply to any discipline involved in the design of high-
performance buildings, this section focuses on PGDS fully or partially supported by whole-
building energy and daylighting simulations. The literature presents several general reviews of the 
field (Attia et al., 2013; Nguyen, Reiter and Rigo, 2014; Asadi and Geem, 2015; Huang and Niu, 
2016; Shi et al., 2016; Eltaweel and Su, 2017; Longo, Montana and Riva Sanseverino, 2019; Zhao 
and de Angelis, 2019), demonstrating its increasing scientific relevance to the design research 
community. The goal of this review is not to provide an extensive and detailed discussion of all 
the work in BPO and parametric-driven approaches to sustainable design, but to illustrate the 
evolution of the field and demonstrate its current relevance. To achieve that goal, this chapter 
entails two parts. The first part discusses the foundational work on BPO approaches to sustainable 
design. It presents the cutting-edge research conducted at the turning of the twenty-first century 
that established the field. The second part summarizes the relevant PGDS applications close to and 
in the present decade, illustrating the field relevance, current approaches, and diversity of 
applications. 

The early years 

The adoption of goal-oriented design approaches in energy efficient design is not new. The first 
attempts date from 1983, when Gero et al. (1983) discussed a simple multi-criteria model to 
minimize the predicted energy performance of a building. The approach used a mathematical 
model based on very simplified assumptions to estimate building energy consumption.  

However, despite those initial attempts, it was at the turning of the twenty-first century, research 
related to BPO started to gain more relevance. The development and establishment of sophisticated 
thermal and lighting simulators such as DOE 2.1, EnergyPlus, and Radiance contributed heavily 
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to it since they allow the modeling and simulation of a wide range of designs. From those early 
years, two works on goal-oriented design approaches for sustainable design standout: GenOpt 
(Wetter, 2000, 2001; Polak and Wetter, 2003; Wetter and Polak, 2004; Wetter and Wright, 2004) 
and GENE_ARCH (Caldas and Norford, 1999, 2002; Caldas, 2008).  

GenOpt is a generic BPO program that can handle any text-based energy simulation software, such 
as EnergyPlus and Radiance. Wetter (2001) uses GenOpt with EnergyPlus in an optimization 
experiment that aimed to reduce building energy consumption. GenOpt enables designers to use 
different optimization algorithms, including GA, direct-search algorithms (e.g., HJ), PSO, and a 
hybrid optimization technique that combines PSO with HJ. Wetter and Wright (2004) used GenOpt 
to compare different optimization techniques. The authors reached the conclusion that GA-based 
approaches are faster in finding high-performing global solutions, but the hybrid PSO-HJ method 
is more efficient in finding the best performance design.      

While the work on GenOpt focused on developing and comparing different search strategies, 
GENE_ARCH explored the generative potential of PGDS in sustainable architecture. 
GENE_ARCH is a PGDS for energy-efficient building design that supports SOO and MOO by 
combining a single-objective GA and a multiple-criteria GA of the Pareto type with DOE2.1 and 
EnergyPlus (Caldas, 2008). The PGDS was applied to several building energy optimization cases. 
Caldas and Norford (1999) tested the GENE_ARCH concept in the placing and sizing of windows 
in an office building. The system aimed to improve the building’s thermal and lighting behavior 
in order to reduce its predicted energy consumption. The same authors also used the system to 
simultaneously optimize building envelopes and the design and control of HVAC systems (Caldas 
and Norford, 2003a). The introduction of Pareto-based approaches allowed GENE_ARCH to 
tackle MOO problems. In Caldas and Norford (2003b), the authors applied the PGDS to the 
generation of energy-efficient architectural form. The two objectives considered in this work were 
maximizing daylighting use and minimizing building energy consumption used for conditioning 
the building. Caldas (2008) fully demonstrated GENE_ARCH capabilities in capturing and 
manipulating architectural from by applying the generative design system to improve the thermal 
and daylight performance of a pre-existing building – the O’Porto School of Architecture in 
Portugal, designed by Pritzker recipient Álvaro Siza Vieira. Caldas and Santos (2012) extended 
the generative capabilities of GENE_ARCH by combining shape grammars (Stiny, 1980) and GAs 
linked to energy simulations to the design of energy-efficient Moroccan traditional patio houses. 
The PGDS was also applied to the optimization of building components. Wang et al. (2016) used 
GENE_ARCH to select glazing types that promote an energy efficient balance between 
thermal and daylighting performance, based on a database of the National Fenestration Rating 
Council (NFRC). 

Audioptimization, (Monks, Oh and Dorsey, 2000), and eifForm, (Shea and Cagan, 1997, 1999; 
Shea, 2000; Shea, Aish and Gourtovaia, 2005) are other PGDS that appeared around the same time 
as GenOpt and GENE_ARCH. Audioptimization is a PGDS for acoustic-based design and eifForm 
is a generative design system for structural building design. Although Audioptimization, and 
eifForm are PGDS applications to building design disciplines that are outside the scope of this 
dissertation, along with GenOpt and GENE_ARCH they represent the first wave of PGDS, laid 
down the foundations for subsequent research, and attracted the interest of several researchers in 
BPO. From those early PGDS, GenOpt and GENE_ARCH are the ones that continue to be further 
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developed and use, demonstrating the relevance of using generative design approaches to the 
complex problem of balancing daylighting and energy consumption in buildings.    

Recent approaches and applications 

Since the early 2000’s, several algorithms and methods have been developed, particularly in 
academia, for building design workflows that are based on daylight, thermal, and energy predicted 
performance. Nowadays, new programming tools for architectural parametric design (Leitão and 
Santos, 2011; Celani and Vaz, 2012; Leitão, Santos and Lopes, 2012) are facilitating the 
integration of BES and daylighting simulation software interfaces (Jakubiec and Reinhart, 2011; 
Roudsari, Pak and Smith, 2013; Mackey et al., 2015), with optimization algorithms in CAD and 
BIM environments – e.g., Rhinoceros/Grasshopper (McNeel and others, 2015), Digital Project 
(Gehry Technologies and others, 2015), and Revit/Dynamo (Keough, 2011; Autodesk, 2020). 
Thus, the question of using PGDS in the architectural design of sustainable buildings becomes 
even more relevant.  

The current relevance of using computational methods in sustainable building design is also 
evident in the several general reviews on BPO and PGDS. Attia et al. (2013) review current trends 
in BPO, and assess the gaps and needs for integrating optimization tools in Net-Zero Energy 
Buildings (NZEB) design. Asadi and Geem (2014), summarize relevant research applying 
simulation-based optimization methods to sustainable building design, including a summary of the 
application of common metaheuristic approaches to different fields of energy-efficient building 
design. Machairas et al. (2014) present an extensive review of algorithms for building design. 
Nguyen et al. (2014) focus the discussion on discontinuous multi-modal building optimization 
problems, the performance and selection of optimization algorithms for building performance, 
MOO, optimization under uncertainty, and the dissemination of optimization techniques into real-
world design challenges. Huang and Niu (2016) analyze the history, current status, and potential 
of optimal building design supported by building simulated performance. Shi et al. (2016) conduct 
a literature review on BPO of energy-efficient building design from architects’ perspective. The 
review includes an overview of the origin and development of BPO approaches for minimizing 
predicted building energy consumption, design objectives and variables in BPO of energy-efficient 
buildings, whole-building energy simulation engines, the optimization algorithms, and the 
application of BPO in the design of high-performance buildings. Eltaweel and Su (2017) analyze 
current parametric design tools in daylighting building design. Longo et al. (2019) review the 
deployment of optimization techniques to the design and energy retrofitting of buildings. The 
authors analyze and compare optimization algorithms, common objective functions used in BPO 
workflows for sustainable design, and discuss the importance of using PGDS approaches to 
improve the predicted energy use in the life cycle of buildings. Zhao and de Angelis (2019) 
conducted a general literature review on the use of PGDS in architectural design. The work 
discusses the use of BPO approaches in the different disciplines that contribute to the design of 
high-performance buildings, including energy-efficient buildings that benefit from adequate 
daylighting strategies. 

As demonstrated by Longo et al. (2019), the present decade (2010-2020) shows a consistent 
increase of BPO applied to sustainable building design. This reinforced interest aligns with new 
governmental directives adopted across the world that establish goals for reducing Greenhouse 
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Gases (GHG) emissions. Since the building energy use is responsible for significant GHG 
emissions, the design optimization of energy-efficient buildings has become even more important.  

In terms of architectural design strategies, Turrin et al. (2011) discuss the benefits derived from 
combining parametric modeling and Genetic Algorithms (GAs) to achieve a performance-oriented 
process in building design. In that work, the authors focus on the key role played by geometry in 
architecture. Granadeiro et al. (2013) proposed a method to integrate shape grammars and building 
envelope design using MATLAB and EnergyPlus. As already mentioned, Caldas and Santos 
(2012) had previously incorporated the generative systems of shape grammars in GENE_ARCH. 
Approaches that aim specifically at building form and layout include the work of Zhang et al. 
(2016). In that work, the authors developed a multi-criteria PGDS that optimizes free-form 
building masses to simultaneously maximize space efficiency (i.e., the ratio between usable space 
volume and the total volume of the building mass), solar radiation gain, and minimize shape 
coefficient (i.e., the ratio of the building’s area ratio to its inner volume). The work combined a 
parametric model, implemented using the Visual Programming Language (VPL) Grasshopper, 
Radiance to perform solar radiation analysis, and a Pareto-based GA.  

Konis et al. (2016) applied a MOO framework to improve the predicted performance of passive 
strategies in the early phases of building design. The proposed PGDS combines parametric 
building models implemented in Grasshopper, the SPEA-2 algorithm provided by Octopus, an 
optimization add-on for the Grasshopper environment, with DAYSIM and EnergyPlus. 
Additionally, the proposed framework is able to automatically model the context of the 
hypothetical building, given a specific location. To that end, the system uses the CADtoEarth 
Geographical Information System (GIS). The proposed MOO aims to simultaneously maximize 
daylight use and minimize building energy consumption. Chapter 7 provides more details about 
the daylighting metrics used in this work.  

Zhang et al. (2017) extended the MOO approach previously proposed in Zhang et al. (2016) to 
optimize the predicted thermal and daylight performance of a school building in a cold region in 
China. The work aimed to find the best passive design parameters for each typical spatial 
configuration of Chinese elementary and high schools. Dino and Üçoluk (2017) presented a MOO 
approach that combines SOO and MOO in the same workflow. The tool first uses a single-
objective GA to generate and optimize near-optimal building layouts according to pre-established 
formal, topological, and orientation criteria. Then, the system uses a Pareto-based GA to search 
for different combinations of fenestration positioning and size that promote a good balance 
between daylighting and thermal building performance.  

Regarding decision-making support, Diakaki et al. (2010) propose a multi-objective decision 
model that aims to simultaneously reduce the predicted building’s annual energy consumption, 
carbon footprint, and initial investment cost. The same authors extended their multi-objective 
mathematical programming method to select among different energy efficiency measures, 
considering both energy savings and construction cost. Basbagill et al. (2013; 2014) propose a 
MOO for reducing the life-cycle environmental impact and cost performance of buildings in 
conceptual design stages. The authors explore the concept of Multidisciplinary Design 
Optimization (MDO) already used by Flager et al. (2009) in the multi-objective optimization of a 
classroom’s structural and energy performance. Lin and Gerber (2014b, 2014a) focus on early-
stage design decision processes by proposing an MDO framework for concept design that uses a 
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standard GA for design and performance optimization. The work demonstrates the impact of 
applying this process to reduce predicted energy use intensity (EUI) at early-stage architectural 
design, and identifies performance feedback criteria for MDO design and implementation. Welle 
et al. (2014) developed a CAD-centric Attribution Methodology for Multidisciplinary 
Optimization Environments (CAMMOE). The proposed method enables designers to improve the 
accuracy of optimization processes by assisting them in the development and analysis of 
alternative solutions. In earlier work, Welle et al. (2011) presented ThermalOpt, a BIM-based 
methodology for multidisciplinary thermal simulation intended for use in MDO environments. 
Brown and Mueller (2016) also advanced an MDO model for the early design phases supported 
by structural and building energy analysis. The structural optimization objective was to minimize 
the amount of steel required, whereas the goal of the energy optimization was to reduce the 
building's annual energy in terms of lighting, heating, and cooling. The authors used the NSGA-II 
algorithm to approach the Pareto front over several generations of design alternatives of three types 
of large steel span structures. The utilized span structures were the following: (i) a trussed arch, 
(ii) a “PI” structure composed by two columns and a spanning truss, and (iii) an “x-brace” 
structure, which consists of three-hinged arch cantilevered roof beams composed by a series of 
vertical struts. Amer et al. (2020) present a new optimization approach named Multi-Objective 
Parametric Analysis (MOPA). MOPA conducts an exhaustive sensitivity analysis to identify 
optimum design variables. The authors apply MOPA in a specific, well-defined MOO problem 
that aimed to reduce construction weight, building energy use, and Life Cycle Cost (LCC). The 
authors found that MOPA could estimate the Pareto much faster than common MOO approaches 
in specific applications.    

Concerning model-based approaches, Asadi et al. (2014)  propose a model-based optimization 
model that combines the fast evaluation of surrogate models developed using Artificial Neural 
Networks (ANNs) with the optimization power of GAs. The optimization algorithm is able to 
quantitatively assess and select, from a set of predefined retrofit actions, the most suitable 
combination of actions in a building retrofit project. The authors applied the optimization method 
in the energy retrofitting case study of a school building. The goal was to minimize the building’s 
energy consumption, retrofit cost, and thermal discomfort hours. Wortman et al. (2015) propose a 
new surrogate-based optimization method. The method interpolates and updates a mathematical 
model that approximates the behavior of the objective function from data generated during the 
optimization process. The model-based approach combines Radial Basis Functions (RBF) with 
different metaheuristics and direct-search algorithms. The authors applied their method to optimize 
the daylighting performance of a mixed-use high-density church in Singapore. They applied the 
goal-programming approach to simultaneously maximize Useful Daylight Illuminance (UDI) and 
minimize Daylight Glare Probability (DGP). Research on this model-based approach continued in 
a series of comparative studies that compare it with common optimization processes (Wortmann 
et al., 2017; Wortmann, 2019), which eventually led to the development of an optimization tool 
for the Rhinoceros+Grasshopper environment called Opossum (Wortmann, 2017). Azari et al. 
(2016) also proposed a model-based optimization procedure by coupling an ANN with a GA to 
optimize the building envelope with respect to the energy use and life cycle contribution to the 
environmental impacts of a low-rise office building in Seattle, Washington. 

Building energy retrofit studies also use BPO approaches to develop efficient strategies that 
significantly improve current building energy use. For example, similar to Asadi et al. (2014),  
Murray et al. (2014) propose a simulation-based optimization approach for the retrofitting of 
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existing buildings. The BPO approach uses a simplified and quick simulation method based on 
degree-days derived from the Chartered Institute Building Services Engineers (CIBSE) Guide 
TM41, Degree Days: Theory and Application, to predict the overall thermal energy consumption 
of a building. In order to minimize carbon emissions, payback time, and overall energy 
consumption, the approach consisted of using a GA to optimize a discrete list of decision variables. 

BPO applications for energy-efficient design of residential buildings include several works. For 
example, Fesanghary et al. (2012) developed a multi-objective optimization algorithm that 
simultaneously tackles energy efficiency, financial cost, and different environmental impacts 
measured in CO2 equivalent (CO2-eq) emissions. Ferrara et al. (2014) describe a simulation-based 
optimization method to find the cost-optimal level for a nearly zero energy single-family building 
in France. Xu et al. (2015) developed a systematic methodology to minimize building heating and 
cooling loads using a combination of experimental design and non-sorting GAs. The experimental 
design determines an initial ranked list of design parameters. The GA selects near-optimal sets 
from the evolving list of building design factors.  

In façade performance optimization, Schneider and Donath (2013) proposed a PGDS that varies 
simultaneously the topological and geometric properties of a façade. Wright et al. (2014) presented 
a MOO approach to optimize fenestrations. The method divides a building façade into several 
small, regularly spaced cells and uses a multi-objective GA to minimize energy use and initial 
capital cost. Using MOO, C. Kasinalis et al. (2014) described a framework for assessing the 
performance of seasonally adaptable façades. Wadgdy and Fathy (2015) propose a parametric 
approach to optimize solar screens in hot and dry climates. Using a brute force method, i.e., a 
technique that evaluates all feasible design solutions, the authors optimized different parameters 
of a louver-based solar screen. Such parameters include Window-to-Wall Ratio (WWR), screen 
depth ration, louver tilt angle, and screen reflectivity. Futrell et al. (2015a, 2015b) used GenOpt to 
optimize the thermal and lighting performance of building envelopes. Chapter 7, section 7.2 – 
Related Work – provides more details about these two works. Hou et al. (2017) proposed an 
integrated building envelope design workflow that uses the Rhinoceros+Grasshopper platform to 
control EnergyPlus, DAYSIM, and the MOO algorithm SPEA-2 optimization. Such workflow 
aimed to simultaneously minimize total annual space thermal loads, envelope construction cost, 
and maximize UDI in the illuminance range of 100 to 2000 lux. Rodrigues et al. (2018) applied 
automated sensitivity analysis techniques to generate and simulate large datasets of construction 
specifications for lightweight building envelopes. The goal was to find the best combination of 
construction assemblies that are energy-efficient for desert-like climates. The approach uses 
regression techniques to correlate geometric and construction solutions generated by the system 
and their energy performance. 

In the field of daylighting design, several PGDS approaches have been advanced, including the 
ones proposed by Torres and Sakamoto (2007), Rakha and Nassar (2010, 2011), Lartigue et al. 
(2014), the already mentioned works of Futrell et al. (2015a, 2015b) and Wortmann et al. (2015), 
Caicedo and Pandharipande (2016), Manzan and Clarich (2017), Mangkuto et al. (2018), and 
Kirimtat et al. (2019). Chapter 7 discusses these works in more detail in section 7.2 – Related 
Work. The same section of chapter 7 gives special attention to LightSolve (Andersen et al., 2008; 
Andersen, Gagne and Kleindienst, 2013; Andersen, 2015), a comprehensive, goal-oriented design 
expert system focused on daylight dynamics that is able to balance solar gains, illumination, and 
glare levels in buildings over the course of a year. 



47 
 

2.3.4 Application of Parametric Design and Analysis (PDA) and Building Performance 
Optimization (BPO) approaches in real-world projects 

Although PDA and BPO approaches have been more prevalent in academia, there are examples of 
real-world projects that apply such methods in the design of sustainable buildings. Nevertheless, 
most of the existing examples refer to high-end buildings designed by well-established and large 
architectural firms. Typically, such cases involve highly specialized in-house teams, such as BIG 
Compute in Bjarke Ingels Group (BIG), the sustainable engineering group in Skidmore, Owings, 
and Merril (SOM), the sustainability team of UN Studio, AEDAS environmental analysis team, 
Zaha Hadid Computation and Design (co|de) group, and others. The out-sourcing of specialized 
building consultancy firms, such as Arup, Atelier Ten, Transsolar, Integral Group, 
Loisos+Ubbelohed, Lam partners, and Thornton Tomasetti, is common as it complements the 
degree of expertise of design teams in implementing such design workflows.  

Despite the fact that PDA approaches are less effective than BPO methods, the former continue to 
be more used because they require less expertise, and they typically are faster than BPO workflows 
since they involve fewer performance evaluations. The following discusses selected examples that 
illustrate different applications of PDA and BPO in the design of sustainable buildings. 

Examples of PDA include the collaboration between BIG and Arup that won the National Library 
in Astana, Kazakhstan competition (BIG, 2009). The project consisted of a Moebius strip with a 
perforated skin that directly responds to the variations of incident solar irradiation and self-
shading. Regarding solar responsive screens, AEDAS (2012) designed a responsive façade system 
for the Al Bahar Towers (Abu Dhabi). Several parametric explorations supported the design of a 
sophisticated kinetic shading screen that responds to the different solar and light conditions. 
Daylight and solar radiation simulations informed the design process. The shading screen applied 
to the towers can reduce up to 50% of solar gains, thus reducing the energy employed in 
conditioning spaces.  

SOM used similar approaches in the design of the BBVA bank operations in Mexico City (SOM, 
2015a). The project involved building energy modeling to support the design of the façade and its 
shading devices. The exploration and analysis of different design alternatives led to 34% of energy 
savings compared with initial design attempts and the baseline building that follows ASHRAE 
standard guidelines (ASHRAE, 2013). SOM utilized sophisticated daylight analysis, including 
glare evaluations in the extension of the Christ Hospital in Cincinnati, Ohio (SOM, 2015b). The 
project aimed to achieve high visual and thermal comfort standards and, as a result, obtained LEED 
Silver accreditation. SOM also uses whole-building energy simulation in PDA workflows. The 
design of the U.S. Air Force Academy Center for Character and Leadership Development located 
in Colorado Springs, CO, USA, combined advanced simulation techniques such as Computational 
Fluid Dynamics (CFD), EnergyPlus BEMs, and Radiance daylighting models to design a high-
performance façade and optimize the performance of several building systems (SOM, 2016).   

The consultancy firm Loisos+Ubbelohde (L+U) provided comprehensive parametric daylighting 
analysis, particularly on visual comfort, sun control, and daylight and illumination in the retrofit 
of Facebook buildings MPK 20 (L+U, 2015) and MPK 21 (L+U, 2018), both located at Menlo 
Park, CA, USA. Gehry and Partners was the architectural firm responsible for the overall project. 
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The work used Radiance-based approaches in the design and analysis of skylights, glazing 
selection, and control of shading devices.  

Shigeru Ban architects with Transsolar designed a sophisticated building skin for the free-form 
building of the Swatch Omega Headquarters, located in Bienne, Switzerland. The design and 
analysis of the building involve parametric analysis using BEMs, and solar radiation simulations, 
to achieve an energy-efficient and comfortable building. The building envelope design included 
selecting high-performance glazing, testing shading devices between glass panels, assessing the 
thermal resistance of the building envelope, and distributing photovoltaic (PV) panels (Transsolar, 
2019).    

UN Studio is an architectural firm that uses BPO approaches in the design of sustainable buildings. 
The firm used multi-objective GAs in the design of a tower for Paris, France, called the Tour 
Bioclimatique. The approach used Rhino+Grasshopper to combine parametric models with the 
SPEA-2 optimization algorithm in the optimization of the overall shape of the building and the 
resulting façade system in terms of wind flow, sun angle, and view orientation (UN Studio, 2011). 
UN Studio used similar methods to optimize the integration and distribution of PV panels and 
maximize the diversity of the façade using a small number of façade panels (UN Studio, 2013). 
The design of the Singapore University of Technology and Design utilized a PGDS based on GAs 
to create a glare-free environment by optimally positioned horizontal shades to reflect and diffuse 
daylight into the interior spaces (UN Studio, 2015).   

From this shortlist of illustrative projects, the only unbuilt projects are the National Library in 
Astana, Kazakhstan (BIG, 2009), and the Tour Bioclimatique (UN Studio, 2011). These examples 
show that the PDA and BPO supported by daylight and building energy analysis are becoming a 
part of the design practice. These examples also suggest that it is a question of time for a broader 
adoption of PDA and BPO methods supported by daylight and building energy simulations in the 
design of sustainable buildings. The work presented in this dissertation contributes to facilitating 
such adoption.    

2.4 Concluding remarks 

This chapter presented a comprehensive review of the main topics and technical aspects 
approached by this dissertation. The discussion covered two fields essential to building design that 
is supported by daylighting and whole-building energy simulations: (i) the simulation of the 
thermal, energy, and daylighting behavior of buildings using digital tools, and (ii) the integration 
of such simulation processes in computational design workflows.  

The study of current modeling processes for daylight and building energy simulation provides  an 
essential background for specific research tasks conducted in this dissertation, particularly the ones 
presented in chapters 5 and 6. The work presented in those chapters focuses on developing 
alternative modeling strategies that either replace, complement, or simplify current simulation-
based processes. To better ground the work presented in chapters 5 and 6, this chapter has provided 
a complete understanding of the fundamental concepts and computational tools that translate light 
and thermal building physical phenomena. The chapter summarized the main modeling methods 
that support thermal and daylight simulation, giving particular emphasis to white-box modeling 
approaches, since they are the most prominent and practicable simulation methods used in early 
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design phases. The discussion addressed the different requirements and modeling techniques 
involved in the simulation of heat transfer and light transport in buildings. The review also 
supported the choice of EnergyPlus and Radiance choice as the main simulation tools for thermal 
and daylight simulation used in this dissertation. EnergyPlus accurately models all the heat transfer 
modes (conduction, convection, and radiation) in a building, whereas Radiance is the “gold 
standard” for daylighting simulation. Both simulation engines are validated and continue to be 
incrementally updated and extended. Additionally, from the thermal and BES and lighting 
programs currently available, EnergyPlus and Radiance are the most used by designers and 
building analysts, primarily because of the several interfaces that enable their use from a CAD and 
BIM platform. 

This chapter also reviewed current methods and practices regarding the integration of BES and 
daylighting software in computational building design processes. The review identified and 
defined three main performance-based workflows for sustainable building design: (i) Iterative 
Design and Analysis (IDA), Parametric Design and Analysis (PDA), and (iii) Performance-based 
Generative Design (PGD). The discussion summarized the advantages and disadvantages of each 
workflow, highlighting the benefits of PGD and the subsequent use of Performance-based 
Generative Design Systems (PGDS) and Building Performance Optimization (BPO). To 
demonstrate the benefits of using PGDS and BPO and their increasing importance in scientific 
literature, the chapter provided an overview of the application of PGDS and BPO approaches in 
the study and design of high-performance buildings. Despite the extensive amount of work found 
in the literature and the potential benefits that they show in providing useful feedback into design 
processes, goal-oriented processes are not widely adopted by the building design community, and 
are thus largely confined to the academic realm (Attia et al., 2013; Shi et al., 2016; W. Tian et al., 
2018). The use of PDA and BPO in the design of high-performance buildings in real-world 
examples is mostly confined to high-end buildings designed by large architectural firms. Even in 
those cases, the deployment of PDA and BPO workflows often require the involvement of highly 
specialized teams. The following chapter discusses the current limitations of both simulation 
processes and goal-oriented design approaches that hamper their wider dissemination and use.  
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Chapter 3:  
Research Problem 
3.1 Introduction 

The discussion presented in this chapter further develops the general research problem presented 
in chapter 1, which is as follows:  

It is difficult to simultaneously use design, whole-building energy, and daylighting simulation tools 
to study crucial aspects related to buildings’ energy, thermal, and daylight performance. This 
limitation hampers their deployment and integration in the early phases of building design, 
analysis, and performance optimization. 

The chapter first draws a background, provides an overview of the problem, and describes the 
current deployment and integration challenges. The investigation then subdivides the main 
problem into isolated and well-defined issues that are responsible for the current difficulties in the 
early-stage design of high-performance buildings. Finally, based on the research problem 
discussion, the work refines the main research question into specific questions and establishes 
concrete and well-defined goals for hypothesis development.  

3.2 Problem overview and background 

The recent increase of Building Energy Simulation (BES) programs, daylighting analysis tools, 
and black-box optimization methods for popular Computer-Aided Design (CAD) and Building 
Information Modelling (BIM) platforms promotes the deployment of both parametrically-driven 
or goal-oriented design approaches in the design of high-performance buildings. The literature 
review in Chapter 2 traced the evolution and consistent rise of such ancillary methods in 
architectural design and research. 

Despite the remarkable advances in adopting energy and daylighting simulation techniques in 
building design and optimization, some limitations still hinder the widespread use of such 
approaches at the early design stages. Although parametric-design and Building Performance 
Optimization (BPO) based on daylight and BES share the same hindrances, the obstacles are more 
evident in the case of BPO. As a result, goal-oriented design workflows based on simulated 
daylighting and building energy performance are not yet widely applied by building designers.  

Based on a comprehensive review of 165 publications and 28 interviews with practitioners, Attia 
et al. (2013) determined that 93% of the BPO applications are academic exercises. Three years 
later, Shi et al. (2016) reported that only 28% of the literature on building energy optimization 
refers to real-world building design cases, while 66% are on fictitious buildings, i.e., academic 
exercises. The survey-based review conducted by Tian et al. (2018) confirms the trend by claiming 
that, although the literature of the last two decades reports more than 30 optimization tools for 
energy-efficient buildings, goal-oriented design approaches are not yet widely applied by the 
building design community. The lack of use of performance-based generative design systems is 
even more acute in the architectural field. A recent comprehensive literature review on applying 
optimization in the design of high-performance buildings (Longo, Montana and Riva Sanseverino, 
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2019) confirms what Attia et al. (2013) reported –  that the vast majority of BPO work uses tools 
and techniques unfamiliar to most architects, e.g., MATLAB.  

As chapter 2 shows, there is a significant benefit to using either parametric or BPO processes to 
reduce predicted energy consumption and improve simulated daylighting performance in buildings 
in the early phases of design development. For example, the work presented by El Daly (2014), 
Ercan and Elias-Ozkan (2015), and Wagdy and Fathy (2015) illustrates how BPO and parametric 
approaches supported by BES and daylighting analysis tools effectively helps architects to develop 
high-performing design solutions. Thus, when designers decide not to use such methods, they are 
missing an opportunity to efficiently tackle the complex task of designing high-performance 
buildings – a view shared by a significant number of BPO experts. The survey conducted by Attia 
et al. (2013) showed a broad consensus among building energy analysts and BPO experts that 
optimizing simulated building performance should be a standard activity in the design of energy-
efficient buildings. Hence, designers and building performance analysts should plan and deploy 
such processes early in the design process. 

Additionally, the design of a high-performance building based on daylighting analysis and BES 
entails different and often conflicting objectives. However, the literature shows that Single-
Objective Optimization (SOO) procedures dominate (Huang and Niu, 2016) and that most Multi-
Objective Optimization (MOO) approaches to building envelope design use different 
measurements provided by a single analysis tool, either a BES or a daylight simulation software. 
Huan and Niu (2016) show that 62% of multi-objective approaches to BPO use a single analysis 
tool. The limited use of performance metrics generated by different dedicated simulation tools 
results from the lack of better interoperability between various computer applications and the high 
specialization level of academic researchers. For example, a researcher who is an expert on 
daylight tends to use MOO in the solving of daylighting problems that involve conflicting 
objectives such as the maximization of daylight availability while minimizing glare.   

In sum, the current status of architectural design based on daylighting and building energy 
performance simulation unveils problems in the following areas: 

1) Deployment and impact – despite the increase of BES and daylighting simulation 
platforms, parametric and generative design workflows supported by such tools are not yet 
applied by architects or other professionals of the building design community. Most 
applications are usually research-based and conducted in an academic setting. As a result, 
despite their potential in improving current performance-based methods, they have limited 
impact on real-world design scenarios and, consequently, are not used as essential 
instruments in the improvement of the built environment. 

2) Integration of daylighting and energy analysis in early-stage building design workflows – 
this problem partially relates to the previous one. Most of the work on parametric design 
and BPO based on daylighting and building energy simulated performance tends to be 
either daylight- or energy-related. As a result, there are few guidelines for modeling the 
simultaneous use of both types of analysis in building design. 

The following section further explores these problems by presenting and discussing their causes. 
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3.3 Problem and related obstacles – identifying the main causes 

Related work reports several obstacles that hinder the deployment of parametric and goal-oriented 
design approaches supported by daylighting and building energy simulated performance. 
Uncertainty of simulation input data and output (Attia et al., 2013), and the lack of user-friendly 
interfaces for analysis and optimization (Attia et al., 2013; Shi et al., 2016) are some of the reported 
issues tackled by current research.  

Simulation uncertainty is an inherent problem in digital building performance assessments. 
However, several modeling guidelines aim to reduce uncertainty in building simulation, such as 
the ones provided in ASHRAE standards and guidelines (ASHRAE, 2002, 2013) – that address 
building energy modeling (BEM) –, and in IESNA standards (IESNA, 2012), that focus on annual 
climate-based daylight simulations. Additionally, at the early design stages, designers do not 
expect entirely accurate and precise predictions, and some deviation is acceptable. High accuracy 
and precision are only desirable in later design phases and typically demand model calibration. In 
initial studies, designers are more concerned about quickly obtaining reasonable feedback from 
several simulations to inform and support decision-making in design.      

Regarding user-friendly interfaces, it is undeniable that in recent years, the building performance 
research and design community have made efforts to deliver easy-to-use tools for architects and 
other building designers. Ladybug+Honeybee (Roudsari, Pak and Smith, 2013) for 
Rhino+Grasshopper and Revit+Dynamo, DIVA for Rhino+Grasshopper (Jakubiec and Reinhart, 
2011), and OpenStudio (Guglielmetti, Macumber and Long, 2011) for SketchUp are just a few 
examples of recent software that interface CAD and BIM tools (i.e., Rhino+Grasshopper and 
Revit+Dynamo) with EnergyPlus (Crawley et al., 2001), a state-of-the-art whole-building energy 
program, and Radiance (Ward, 1994), a research grade lighting simulation engine. More recently 
several packages for single and multi-objective optimization became available to architects. Only 
in the Rhino+Grasshopper ecosystem is it possible to find several optimization algorithms, 
namely:  Simulated Annealing (SA) and Standard Genetic Algorithms (SGA) in Galapagos, 
Standard Strength Pareto Algorithm 2 (SPEA2) combined with the Hype algorithm in Octopus 
(Vierlinger, 2018) plug-in, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) delivered 
by Wallacei (Makki, Showkatbakhsh and Song, 2020), and model-based optimization approaches 
that combine Machine Learning (ML) techniques with metaheuristics provided by OPOSSUM 
(Wortmann, 2017), which couples gaussian-regressors based on Radial-basis Function (RBF) with 
evolutionary-based optimization algorithms. 

However, despite the current effort on addressing relevant limitations, there are still fundamental 
modeling obstacles that hinder both the deployment and integration of daylighting and building 
energy analysis in BPO and parametric-based architectural design workflows. Based on the 
discussion in chapter 2, the obstacles reported in three survey-based reviews, and a comprehensive 
literature review on simulation-based optimization methods for building design (Attia et al., 2013; 
Nguyen, Reiter and Rigo, 2014; Shi et al., 2016; Z. Tian et al., 2018), it is possible to summarize 
three types of limitations or obstacles, as follows:  

1) Obstacles in tool interoperability: poor interoperability between design, simulation, and 
optimization tools as well as low flexibility of the different models used to share 
information – i.e., to be fully or partially reused by the various computer applications 
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involved in the design process – hinders a smooth and desirable integration of daylight and 
building energy analysis both in parametric and BPO design workflows. This obstacle 
mainly affects architects, since it forces them to switch between familiar modeling 
environments and ones that require expertise that frequently they lack, which is 
inconvenient and error-prone. 

2) Simulation-related obstacles: daylighting and BEMs are computationally expensive. 
Therefore, their use results in long calculation times that are incompatible with design 
times. Model complexity (e.g., multi thermal zone BEM) and the recent demand for the 
calculation of advanced performance metrics (e.g., daylight glare probability, climate-
based metrics) add to this problem. The impact of time-costly simulations is more acute in 
goal-oriented design since the search process requires a significant number of evaluations. 

3) Limitations in defining design goals and building performance problems: setting 
problems on goal-oriented design workflows is a challenging task. Performance-based 
building design depends heavily on the boundary conditions imposed by the context and 
the design brief. The context-based nature of performance-based design hampers the 
development and use of standard approaches in defining and planning optimization 
procedures in BPO, particularly objective arrangement, variable types, and constraint 
violation. The definition of optimization problems is more challenging for architects since 
it involves a set of skills and techniques that are usually alien to them.  

The two first obstacles relate to modeling and analysis tasks in both parametric and goal-oriented 
design workflows. The third limitation focuses on problem formulation in building design 
processes based on automated search and optimization. 

These three obstacles also generate skepticism among architects, particularly early-adopters, about 
the usefulness of using daylighting and whole-building energy simulations. In the survey 
conducted by Tian et al. (2018), most of the architects new to simulation and optimization of 
building energy performance mentioned that, despite the good outcomes provided by BPO 
approaches, it was unclear if the time spent in using goal-oriented approaches was worthwhile or 
not. The following discusses each obstacle in detail.  

3.3.1 Obstacles in tool interoperability 

Lately, the emergence of different tools/plug-ins that interface CAD and BIM tools with 
daylighting and building energy simulation programs brought the promise of facilitating the use 
of building performance analysis in architectural design processes. The integration mechanisms 
proposed by such tools typically assume two forms. The first form consists of Graphical User 
Interfaces (GUI) that enable both modeling inputs and collect and visualize simulation results. The 
second is the use of domain-programming languages that enable parametric modeling for building 
performance simulation in what is referred to in the literature as Integrated Dynamic Models 
(IDM) (Negendahl, 2015).  

At the early design stages, designers favor the use of interface tools with GUIs, and the IDM 
approaches over other methods based on data exchange schemas, such as the Industry Foundation 
Classes (IFC) (Bazjanac, 2008), and the green building Extensible Markup Language (gbXML) 
(Roth, 2014). The purpose of such schemas is to automatically parse information from BIM models 
to simulation tools. Nevertheless, both IFC and gbXML have limitations that prevent their 
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successful application at the early design stages. IFC typically requires a level of detail and 
information incompatible with early-stage design; thus, its use is more common in later stages of 
the design process where parametric or optimization procedures have less impact. Moreover, IFC 
parsing methods are not fully automated in particular cases, requiring manual modification of some 
of the data transformation rules (Bazjanac, 2008). Alternatively, some applications use gbXML to 
handle early-stage building massing models (e.g. Revit + Autodesk 360). However, such 
applications provide limited control of the automatically created simulation model. For example, 
they use opaque heuristics to generate missing data required by the simulation, which augments 
the associated uncertainty. Additionally, both formats only work with BIM software, are difficult 
to read and consequently debug, and do not embed best modeling practices, making them fallible, 
error-prone, and extremely sensitive to geometry input. For these reasons, designers, building 
performance analysts, and researchers prefer the IDM (Negendahl, 2015) or the plug-in approach 
since they provide better support in terms of modularity, analysis tool diversity, and feedback 
between tools.  

Despite the considerable improvement brought by daylighting and BES plug-ins and IDM 
approaches, the integration of the different tools is still partial and, in several cases, fragile, 
primarily because they use design tools as merely geometric modelers for simulation tools. Hence, 
in the case of early-stage building design based on BES and daylighting simulations, they force 
users to model three different representations of the same design separately – one that fully 
describes the solution’s geometry and form, another that fits to a BES program, and another 
tailored for daylight analysis. Separately describing three different models that represent the same 
entity is redundant, time-consuming, inconvenient, hard-to-manage, and, consequently, error-
prone.  

In sum, current tools and approaches for early-stage daylighting and energy-efficient design did 
not fundamentally change modeling procedures towards integration and full interoperability. Thus, 
although architects currently do not need to switch between different applications, they still need 
to switch between different modeling modes.  

Differences between modeling requirements and capabilities of the tools involved are the main 
obstacles in finding common ground that will foster better interoperability. One of the main 
differences relates to data and information requirements. BEM and daylighting models need some 
information that typically is unknown or uncertain at early-stage design, e.g., material properties, 
occupancy and other loads schedules, digital sensors, etc. Usually, either the user provides the 
extra input data while defining the boundary conditions of the simulation, or the tool uses some 
assumptions to "fill in the blanks." The former is preferable to the latter since it reduces 
uncertainty.  

Another difference, and the one that poses more difficulties, consists of the disparity of general 
building representation between design and simulation tools, particularly BES programs. BES has 
specific geometry representation rules and constraints. For example: (i) curved surfaces, thickness 
are not allowed, (ii) all surfaces need to be planar and convex, the building envelope needs to be 
closed, (iii) fenestrations needs to be coplanar with their correspondent wall or roof and cannot 
produce holes in them. These geometric constraints and limitations do not exist in CAD and BIM 
tools and are radically different from architectural building representation codes, which make them 
particularly alien to architects. Even simple building designs require an extensive pre-processing 
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to fit BEM requirements. Moreover, the parsing of single or complex double-curved building 
surfaces, easily modeled with any CAD or BIM tool, is particularly challenging. Current geometry 
export methods based on mesh triangulation typically result in inefficient BEMs that are 
computationally expensive and difficult to debug. 

The geometry parsing of a daylight simulation does not pose a significant obstacle since daylight 
simulations are not as sensitive to geometry. There are few differences between a daylighting and 
a CAD or BIM model since validated lighting simulation tools include few restrictions such as 
modeling glazing assemblies as surfaces without thickness and observing some rules for surface 
direction. The application of those restrictions to a design model is easy to implement. 
Nevertheless, current CAD- and BIM-based tools and toolkits for daylighting simulation typically 
force users to create a separate analytical model. 

In sum, current tools do not bridge the different modeling approaches and requirements involved 
in digital design processes based on building energy and daylighting simulations. They often force 
the designer to model each performance model separately; a task that constrains the generative 
potential of online feedback between models, entails a significant amount of effort, is 
inconvenient, and is susceptible to mistakes. 

3.3.2 Simulation-related obstacles 

The main obstacle of using validated daylighting and BES in early-stage parametric or goal-
oriented building design processes is simulation run time. Detailed BEM and building models for 
daylight simulation might be computationally expensive. Considering that parametric and 
optimization studies typically require the evaluation of several design alternatives, the calculation 
time involved might not be feasible for design practices that use parametric or BPO workflows. 
Survey-based reviews on design and analysis of high-performance buildings show that designers 
are aware of this obstacle and consider it as a critical aspect that prevents the widespread adoption 
of goal-oriented design approaches in practice (Attia et al., 2013; Shi et al., 2016; Z. Tian et al., 
2018). 

BEM and daylighting building simulation models run time is highly sensitive to the type of 
calculation task and the model’s level of detail. Even with current approaches that use different 
parallelization techniques, simulation run time can range from a couple of seconds to several hours, 
depending on those two factors. 

In the case of early-stage BEM, simulation run time is very susceptible to the number of thermal 
zones and geometric detail, i.e., polygon mesh density. The higher the number of thermal zones or 
mesh faces, the longer the simulation. More thermal zones increase the number of heat balance 
calculations, which involve the complex computation of heat transfer between different zones. 
Mesh density impacts simulation time superlinearly (Clarke, 2001; Hensen and Lamberts, 2019) 
because of the necessary view factor calculations for radiative heat transfer. The mesh density 
issue is relevant in representing curved and double curved building surfaces in BEM. Current tools 
use simple surface triangulation to automatically parse such surfaces. As a result, they often 
produce BEMs so detailed that they are impractical to run (see chapter 5, section 5.4). 

Daylighting Simulation Models (DSM) are not as susceptible to geometry detail as BEM. The 
computational complexity of a DSM increases sublinearly with the number of mesh faces (Ward 
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and Shakespeare, 1998). The computational time complexity of DSM is sensible to analysis type 
and simulation parameters. The run time of daylighting simulations based on sensor grids, e.g., 
horizontal illuminance assessments at work plane height (≈ 0.75 m), is highly sensitive to the 
number of sensors. In grid-based analysis, the computational time complexity increases 
considerably in the calculation of annual dynamic daylight metrics, also known as climate-based 
metrics. Analyses that depend on the generation of synthetic High Dynamic Range (HDR) images, 
such as surface luminance-based studies and glare assessments, entail a higher computational 
overhead when compared with grid-based analysis. DSM are also very susceptible to simulation 
parameters, particularly those that control ambient calculation of inter-reflected light in a model 
and consequently provide accuracy to the simulation. Standards for daylighting simulation 
(IESNA, 2012) and validation and comparative studies (Reinhart and Breton, 2009; McNeil and 
Lee, 2013; McNeil et al., 2013; Bellia, Pedace and Fragliasso, 2015; Nathaniel L. Jones and 
Reinhart, 2015; Jones and Reinhart, 2017) recommend specific guidelines to sensor grid size and 
simulation parameters that often result in computationally expensive DSM. Nevertheless, 
significant progress has been made in accelerating illuminance grid-based analysis using the 
Graphical Processing Unit (GPU) architecture (Nathaniel L. Jones and Reinhart, 2015; Nathaniel 
L Jones and Reinhart, 2015; Jones and Reinhart, 2017).  

Presently, there is an increasing demand for annual visual comfort analysis based on HDR images, 
a computationally expensive simulation type. For example, the European standard EN 17037 – 
Daylight in Buildings (CEN, 2019) requires the annual assessment of Daylight Glare Probability 
(DGP) to determine if DGP-threshold values do not exceed a certain fraction of the occupied 
schedule in specific locations. Annual DGP analysis requires time-series HDR computation to 
estimate hourly DGP for a particular place and point-of-view (POV). The production of large HDR 
images arrays increases in orders of magnitude the time complexity of an already computational 
expensive simulation – a single HDR. The HDR array is also just a sub-product of the computation 
since the approach deletes it after determining hourly DGP. Moreover, because HDR-based 
analyses are view dependent, to annually assess the visual comfort of a space, current methods 
entail the calculation of annual DGP for several POVs in different locations. Considering this, 
visual comfort analyses, as recommended by standards, are extremely time-consuming and often 
unfeasible in the early design stages.  

Currently, a way to address computationally expensive models is through surrogate models, i.e., 
an approximate model of the original that attempts to mimic its behavior at reduced computational 
cost (Nguyen, Reiter and Rigo, 2014). Typically, surrogate models use Machine Learning (ML) 
techniques that entail the generation of a large data set of full simulations to train an ML method, 
e.g., a support vector machine, an artificial neural network, etc. Although several works show the 
usefulness of surrogate modeling (Li et al., 2017; Gou et al., 2018; 2019), particularly in BPO 
based on simulated performance, building the training data set using simulation is computationally 
expensive and depends heavily on the complexity of the original simulation model used in the 
process. Thus, if the surrogate technique uses computationally expensive simulation models, it is 
likely that the time necessary to build the training data set would make the approach unfeasible. 
Surrogate methods also increase the degree of uncertainty and perform poorly in optimization 
problems with sensitive objective functions, i.e., functions where a small deviation from the 
optimum variables might result in significant degradation of the objective function value (Nguyen, 
Reiter and Rigo, 2014).  
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In sum, current modeling approaches for daylighting and whole-building energy simulations are 
highly susceptible to producing inefficient simulation models that entail unfeasible run times for 
early-stage parametric and goal-oriented design approaches. In the case of BEM, simulation is 
highly sensitive to geometric detail. Current methods do not implement efficient geometry 
simplification procedures, particularly in the parsing of complex (double)curved geometries. 
Regarding DSM, they are susceptible to critical simulation parameters that determine output 
quality and analysis types, particularly those involving the computation of large arrays of time-
series HDR images, such as the calculation of annual DGP. Finally, although promising, the 
feasibility of using surrogate modeling approaches based on simulated models in early-design 
performance optimization depends on the computational complexity of the models used in the 
generation of the training data set. Thus, even in the deployment of fast and efficient surrogate 
techniques for building design, it is necessary to address the other problems related to BEM and 
DSM computational complexity.     

3.3.3 Limitations in defining design goals and building performance problem 

Goal-oriented approaches to building design that use optimization techniques involve the 
formulation of an objective function, which the search algorithm needs to minimize (cost function) 
or maximize (reward function).  As discussed in chapter 2, building optimization problems are 
typically constrained. Still, in most cases, the constraints consist of setting bounds to decision 
variables, which are relatively easy to define and solve (Si et al., 2019). Regarding dependent 
variable constraints, BPO typically addresses them using penalty functions (Nguyen, 2013).  

Although current digital design tools facilitate the use of black-box optimization in building design 
(e.g., Galapagos, Wallacei, Octopus for Rhino+Grasshopper), architects still need to define goals, 
objective functions, and constraints in inverse-design processes – a non-trivial task in certain cases. 
In general, describing objective functions for optimizing simulated building energy performance 
is relatively easy since building energy metrics are cumulative, i.e., they use a summation to 
integrate their temporal variation. Thus, in building energy optimization the most common way to 
define an objective function is to directly minimize simulation outputs or use a simple function 
that involves them such as estimated total energy consumption during a specific period and its 
normalization by unit area – the Energy Use Intensity (EUI). Even in cases involving constraints 
other than the simple limitation of the range of decision variables, some strategies facilitate the 
definition of goals and optimization problems. For example, constraining the minimization of 
predicted building energy consumption with thermal comfort metrics is common (Huang and Niu, 
2016; Wright and Alajmi, 2016; Z. Tian et al., 2018). Nevertheless, it is easy to transform this 
constrained problem into an unconstrained one by either using thermal comfort indices as factors 
of a penalizing term of a single-objective function, in a process known as scalarization method 
(Coello, 2006; Ehrgott, 2006), or using them in an independent objective-function of a multi-
objective optimization problem. 

Specifying goals and objective functions in daylighting optimization is a more challenging task. 
Unlike building energy metrics, which entail only temporal variation, daylight metrics have high 
spatial variability. The description of spatial granularity and pattern variation of the daylight metric 
involved in the optimization is a complicated task. As a result, BPO based on daylighting 
performance tends to oversimplify the target spatial distribution by summarizing it into a single 
number or target interval. The reduction of the spatial variability of daylight performance often 
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entails averaging-based processes or measuring areas that meet some illumination criteria. For 
example, Torres and Sakamoto (2007) averaged annual illuminance averages measured in different 
observer positions in the design of the fitness function to optimize façade shading elements. 
Caicedo and Pandharipande (2016) averaged illuminance levels of occupied and unoccupied zones 
of a typical office space to optimize a lighting system control scheme. Others averaged Useful 
Daylight Illuminance (UDI) simulated in sensor grids (Zhang et al., 2017; Kirimtat et al., 2019). 
Despite the valuable contributions of such works, integrating the spatial variability through 
averaging processes is not recommended since average-based approaches are highly susceptible 
to the cancelation effect, i.e., when a positive bias compensates a negative one. Averaging daylight 
metrics is particularly susceptible to the cancelation effect because illuminance levels in daylit 
spaces vary in one to four orders of magnitude (Reinhart, 2019). A preferable approach is to 
measure areas that meet specific illumination criteria since such methods are not susceptible to the 
cancelation effect. For example, climate-based metrics like spatial Daylight Autonomy (sDA) 
measure the percentage of area that reports an illuminance level equal to or above 300 lux at least 
for 50% of the considered occupied schedule (IESNA, 2012). Some authors apply the same 
concept to the different UDI bins and propose spatial UDI (sUDI) (Konis, Gamas and Kensek, 
2016; Zhang et al., 2017; Mangkuto, Siregar and Handina, 2018). Although preferable, temporal 
and zonal daylight metrics such as sDA or sUDI do not enable designers to shape the DA or UDI's 
annual pattern. Determining spatial patterns for both point-in-time and annual dynamic daylight 
metrics is crucial in the design of multi-purpose spaces that entail different functional 
requirements. 

In sum, unlike in building energy optimization-based workflows, current approaches of goal 
definition for generative design methods based on daylighting simulations are ill-defined and fail 
to capture spatial target variation. Averaging-based processes are highly susceptible to the 
cancelation effect and, therefore, misleading. Although approaches based on temporal and zonal 
metrics are preferable, it is difficult to use them to specify the spatial target pattern, limiting the 
generative potential of goal-oriented design procedures for daylighting in buildings. One 
possibility to spatially describe goals would be through a weighted polynomial-based objective 
function. Nevertheless, that task is non-trivial and requires skills such as hyperparameter 
optimization to fine-tune the different scalars of the polynomial that architects usually do not 
master. 

3.4 Refining and reframing the main research question and objective 

Considering the main limitations, obstacles, and their causes, it is possible to subdivide the general 
question presented in chapter 1 – How to improve the design process of high-performance 
buildings using current digital design and analysis tools? – into four research questions that 
directly address them. The questions are the following: 

1) What type of geometric modeling strategies enable a better interoperability between 
parametric design and Building Energy Simulation (BES) tools?  

2) Which modeling and analysis procedures generate quick and adequate feedback on 
energy and daylight performance of buildings at early design stages?  



59 
 

3) How can we develop strategies that help architects and other non-experts in optimization 
to formulate inverse design problems?  

4) How effective are the proposed modeling strategies? What are their advantages and 
limitations?  

Solving the main research question involves answering these four questions. The first two 
questions relate to current modeling and analysis limitations of digital design processes based on 
whole-building energy and daylighting simulations. The first question directly addresses the 
problem of interoperability between design, BES, and daylighting simulation tools, particularly 
regarding geometric modeling and representation of buildings. The second one focuses on 
surpassing simulation related obstacles in initial parametric and goal-oriented design processes. 
The third question aims to investigate alternatives to performance target definition in BPO-based 
workflows. The last is an overarching methodological question necessary to determine the validity 
and applicability of the proposed modeling strategies. 

The first three refined research questions directly inform the formulation of four goals that aim to 
achieve the general research objective described in chapter 1 – To devise a set of strategies that 
improve the use of current thermal and daylight simulation tools in early-stage design workflows 
based on parametric and building optimization approaches. Such goals are:  

1st Goal - Automatically generate simulation models from an initial building geometry  

2nd Goal - Automatically simplify simulation models  

3rd Goal - Develop simplified approaches that either replace or reduce the need for 
computationally expensive simulations  

4th Goal - Use familiar techniques known to designers to expedite the definition of 
performance goals  

The first goal addresses the first research question by aiming to improve the interoperability of 
different building representations, thus shortening the current gap between parametric design tools 
geometric modeling capabilities and BES software. Achieving this goal will promote a smoother 
integration of simulation tools in parametric and goal-oriented building design methods. The 
second and third goals tackle the second research question by seeking the elaboration of methods 
that expedite simulation feedback in design processes, thus, shortening the difference between 
simulation and design times. Finally, the fourth goal addresses the third question by focusing on 
approaches that can facilitate the definition of feasible targets for time-based performance metrics 
that are difficult to describe in a single zonal index, i.e., metrics that simultaneously include 
temporal and spatial variation. The last goal appeals to the use of familiar techniques used in 
architectural design practice to define performance goals spatially as an alternative to more 
conventional methods purely based on mathematical expressions. 

Figure 3-1 maps the refinement of the dissertation’s general question and problem into four 
specific research questions that directly address the problem’s causes and obstacles. It also 
illustrates how these questions inform the particular research goals that are central to this 
dissertation.  
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Figure 3-1. Relationship between the general research problem and the specific research questions, goals, and 

overall objective.  

3.5 Concluding remarks 

This chapter introduced and discussed in detail the general research problem of this dissertation: 
to identify, examine, and address current limitations on deployment and integration of daylighting 
and building energy simulation tools in early-stage building design, analysis, and performance 
optimization. Based on the existing literature, the work identified and framed three subproblems 
that contribute to the main one. Such subproblems or main problem causes are as follows: (i) 
obstacles in tool interoperability, mainly caused by differences in building geometric 
representation; (ii) simulation-related limitations, particularly the ones related to run time either 
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caused by computationally expensive simulation models or the maladjustment of advanced 
simulation and prediction procedures in early-phase parametric and generative design procedures 
that are based on building performance; (iii) challenges in defining goals and targets for 
performance-based generative design processes, particularly if they involve the definition of 
spatially granular objectives.   

The discussion of the identified main obstacles led to the refinement of the general research 
question and definition of four research goals that will steer the formulation of hypotheses to solve 
each particular problem, answer the specific research questions, and consequently achieve the 
dissertation’s primary objective. The goals are the following : (i) automatically generate simulation 
models from an initial building geometry; (ii) automatically simplify simulation models; (iii) 
develop simplified approaches that either replace or reduce the need for computationally expensive 
simulations; (iv) use familiar techniques known to designers to expedite the definition of 
performance goals.          

The next chapter introduces the methodological approach applied in the development of alternative 
modeling strategies for parametric and goal-oriented design based on daylight and building energy 
performance. The different modeling strategies introduced in chapter 4 and developed in chapters 
5, 6, and 7 observe the presented research goals, aim to answer the research questions, and achieve 
the general investigation objective.  
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Chapter 4:  
Research Methodology and Methods 
4.1 Introduction 

As mentioned in chapter 1, section 1.4. – Research objective – the general objective of this 
dissertation is to improve current design support methods used in the digital design of high-
performance buildings, particularly in the initial analysis and optimization of their daylight, 
thermal, and energy performance. Hence, the research effort focuses on addressing the main 
limitations, gaps, needs, and correspondent causes summarized in chapter 3. This chapter 
introduces and discusses the overall research method applied in the development of dedicated 
design and analysis approaches that tackle those limitations and, consequently, improve the 
integration of building energy, thermal, and daylight simulations in early-stage performance-
driven design workflows.  

The chapter starts by framing the research method in the broader context of design research 
methodologies. The discussion includes a close examination of the method's objectives, means, 
structure, and outcomes; thus, it provides a theoretical foundation for the overall approach used 
and its application. Following the methodological framing, the chapter introduces the general 
research methodology, presenting its overall structure, discussing its relation to the research goals, 
and elaborating on its different parts. It then advances by providing specific examples of the use 
and application of the methodology and introducing modeling, analysis, and validation procedures.  

The research methodology introduces the concept of modeling strategies as design and analysis 
methods that address the limitations discussed in chapter 3.  

Finally, the chapter ends by summarizing the advantages and limitations of the proposed research 
method and discusses how the potential outcomes of its application fulfill the goals of this 
dissertation. 

4.2 Methodological frame 
This dissertation's research method positions itself in the overarching family of design research 
methods, particularly in the Design Inclusive Research (DIR) framing methodology (Keller, 2005; 
Wensveen, 2005; Horváth, 2007, 2008; Koskinen et al., 2013; Davila Delgado, 2014; Vermeeren, 
Roto and Väänänen, 2016). At this point, it is helpful to elaborate on the concept of design research 
and framing methodology. 

Design research encompasses a set of methods that bridge basic sciences, such as mathematics and 
physics, with product development that includes software, industrial design products, or buildings 
(Overbeeke and Forlizzi, 2006; Davila Delgado, 2014). Hence, design research interfaces 
fundamental research, applied science, and technology development in the pursuit of designing a 
specific product or technology (Friedman, 2003; Koskinen et al., 2013). Such type of research 
fosters short innovation cycles that result from the technological utilization of basic scientific 
research and provides opportunities to add/generate knowledge that emerges from the development 
of new technologies (Overbeeke and Forlizzi, 2006; Zimmerman and Forlizzi, 2014). Thus, 
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scientific research produces knowledge (fundamental research) and means (applied research) for 
design, and research design synthesizes and contextualizes those otherwise distinct bodies of 
knowledge for design practice, reshaping their purpose and context (Edelson, 2002; Horváth, 2004, 
2007, 2008; Overbeeke and Forlizzi, 2006). Based on this reasoning, design research is both a 
result of a knowledge transfer from fundamental research to design and also a knowledge enabler, 
since, as Horváth (2007) argues, it “extends scientific knowledge with genuine design knowledge.” 

Framing methodology (Horváth, 2007; Davila Delgado, 2014; Vermeeren, Roto and Väänänen, 
2016) is the process of selecting or developing a research methodology, i.e., a theoretically 
supporting system of principles, methods, procedures, and practices that facilitates a thinking 
process. Thus, a framing methodology does not explicitly describe the methods, tasks, and analysis 
procedures of a research process. It rather specifies a reasoning strategy, a set-up of research 
actions, and their implementation. 

In design research, different framing methodologies express different levels of integration and 
contextualization (Horváth, 2004, 2007, 2008; Davila Delgado, 2014). Considering that the 
dissertation aims to develop new modeling and analysis methods for early-stage parametric and 
goal-oriented design processes, DIR is the adequate framing methodology to structure the research 
approach. DIR uses design as a research medium and introduces scientific inquiry to either extend, 
generate, or validate contextualized knowledge. In this dissertation, the integration of the design-
like experiments with scientific inquiry aims to develop new models and design methodologies 
and assess their feasibility and validity.  

Generally, DIR encompasses three phases: the pre-study, the design-study, and the post-study. The 
pre-study includes (i) acquiring knowledge related to the research problem and its context, (ii) 
formulating a critique based on the existing body of knowledge related to the investigation, (iii) 
defining research questions that inform an hypothesis that addresses the problem, (iv) set goals for 
the investigation, and (v) systematizing a set of methods to solve the research problem (Horváth, 
2007, 2008; Davila Delgado, 2014). The pre-study phase is essential to the successful development 
of a design procedure. The literature presents several examples that demonstrate the relevance of 
pre-design phases in architectural research and practice. The work presented in Lassance (1999) 
illustrates how to implement a pre-design process as a computational tool. The pre-design tool 
integrates cognitive representation of different aspects related to the daylighting of selected 
buildings to aid designers in implementing daylighting design strategies. Elango and Devadas 
(2014) developed a process to frame a mental model for multi-criteria analysis that shapes a design 
brief (pre-study) and the analysis procedures (post-study) for a design studio course. Jusselme et 
al. (2016) proposed a pre-design method that facilitates the integration of sustainable design 
knowledge at the early design stages. The authors used Life Cycle Assessment (LCA) of buildings, 
sensitivity analysis methods, and visualization techniques (parallel coordinates) in a computational 
framework that assesses the LCA impact of different design parameters.   

The design-study phase consists in implementing and testing the hypothesis and procedures 
developed in pre-study. Usually, it consists in defining and executing a Design of Experiments 
(DoE) by doing the following:  

1) Framing the developed research methods and procedures in a specific design problem. 
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2) Establishing the main design parameters, constraints, assumptions, variables and metrics 
to measure. 

3) Conducting the experiment. 
4) Collecting the results or findings. 

DIR’s post-study is a confirmative stage and typically entails the following actions:  

1) Verification of the hypothesis developed in the pre-study phase 
2) Internal validation of both research and design methods 
3) External validation of the findings, e.g., external validation from the design and scientific 

community, post-occupancy studies, human-subject experiments, etc. 
4) Consolidation of the results by matching them against the existing body of knowledge and 

if possible generalizing them to other applications (Horváth, 2007). 

The literature contains several examples that demonstrate the usefulness of the post-study phase 
in the assessment and validation of either a built design, a proposal, or a tool. For example, Delgado 
(2014) conducts internal and external validation of several strategies for structural inverse-design 
using statistical-based methods that post-process the results of the different experiments. The 
external validation process used by the author consisted of comparing the effects of different 
strategies among themselves and against an existing built case. The internal validation consisted 
of measuring the sensitivity of the different goal-oriented design systems to the variations of key 
input parameters and system settings. Jones and Reinhart (2019) both internally and externally 
validated a new daylight simulation technique showing its usefulness in supporting design through 
a human-subject experiment. Internal validation consisted of assessing the error in simulation 
output by comparing it with the one produced by current validated approaches. External validation 
entailed a small human-subject experiment where 40 designers designed two shading devices that 
aimed to balance glare and daylight availability in an office setting. Chamilothori et al. (2019) 
present a prediction method for building design that could only be externally validated. The work 
aims to assess the usefulness of using a Virtual Reality (VR) façade design tool by conducting a 
within-subject experimental design1 where 72 participants respond to different façade patterns. 
These examples show that some of the post-study steps mentioned above are not necessary since 
their application depends on the scope and research goal. In this dissertation, the post-study phase 
will adapt to the particularities of each research task and consequent DoE.  

Considering that the proposed research seeks to develop new modeling methods that improve the 
use of validated building energy and daylighting simulation tools in digital design, it will not use 
experimental-design studies with human subjects as an external validation process. Instead, it will 
compare the proposed modeling methods to current ones used in research and design practice, a 
validation process named as inter-program or inter-modeling comparison method (Reinhart, 2019).  

 
1 A within-subject experimental design, also known as repeated-measures design requires fewer participants 
and minimizes random noise. In within-subject studies, the same person tests all the conditions of the 
experiment.  
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4.3 General Research Methodology 

The DIR framing methodology provides a conceptual structure that informs the several methods 
used in the dissertation’s investigation. This section presents the overall methodology and relates 
it to the different phases and research actions of DIR. 

This dissertation adopts a top-down approach to investigate the main research questions and 
achieve its objectives. Top-down design, also known as design decomposition (Guindon, 1990) or 
stepwise design (Fricke, 1996) , is a problem-solving method that consists of recursively breaking 
down an ill-defined problem or system to smaller well-defined sub-problems that are easier to 
model and solve. In design research the top-down approach focuses both on the problem and on 
the method used to solve it. Thus, this method is also an investigative approach that provide a 
complete understanding of the entire problem and its different parts. This type of approach is very 
common in basic sciences, applied sciences, and other fields of knowledge, such as design. An 
excellent example of a top-down approach in architectural design is the parti approach, which 
consists of incrementally detailing, refining, and reformulating an initial high-level spatial and 
formal diagram. In building design research, it is common to use top-down approaches in 
structuring research steps, methods, and tasks. For example, Chazivasileiadi et al. (2018) proposed 
a top-down process to solve the adjacencies of complex thermal models automatically. 

Given their recursive/iterative nature, it is easy to express top-down research methods as an 
algorithm. Departing from this analogy, Figure 4-1 depicts a flow chart of the general top-down 
methodology adopted in this research.  

 

Figure 4-1. Flowchart of the recursive top down approach used as the general method of inquiry in this dissertation.  
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The algorithmic formulation of the research strategy allows an easy adaptation of its conceptual 
structure to the different phases of the research. The top-down approach entails the following 
entwined steps: 

1) Statement of the research problem – i.e., the formulation of the problem to be solved. 
2) Critical analysis – this step is two-fold. The first task consists of collecting existing data 

and information in the literature to obtain an in-depth knowledge of the problem context, 
causes, and existing body of work that addresses it. The second involves a critical discussion 
about the problem to assess whether previous or current work fully solved the problem. If 
not, the investigation identifies the problem's causes, the existing gaps, and needs. 

3) Inquiry – if the existing body of knowledge does not present a satisfactory solution to the 
problem, this step assesses whether the problem is well-defined and, consequently, develops 
a hypothesis for its resolution, i.e., a strategy that tackles it. 

4) Strategy proposal – if the previous step determines that the problem, its causes, and 
resulting needs are well-defined, the methodology seeks to devise a strategy, i.e., a set of 
methods and procedures, to address it. Advancing a strategy entails the following tasks: (i) 
formulate it, i.e., structure it, its goals, methods, and envisioned outcomes, (ii) implement 
the strategy either as a design method, a heuristic, a computational tool, or a combination 
of all the previous, (iii) based on a small isolated design example, design an experiment 
with well-established assumptions, input parameters, output variables, and validation 
procedures (DoE), execute it and collect the results; (iv) validate the finding using 
appropriated validation procedures and assumptions. If the results of the experiment are 
valid and satisfactory, the proposed strategy is a viable solution to the research problem at 
hand. Otherwise, the methodology pursues to either reformulate or further subdivide the 
problem. 

5) Problem subdivision – if the inquiry step establishes that the problem is either too complex 
or ill-defined, the methodology subdivides the problem into smaller problems based on its 
causes and limitations. For each subproblem, the approach redefines the research questions 
and repeats the entire process until it produces a satisfactory strategy. 

The framing of the presented top-down methodology in DIR is straightforward. All tasks of 
Statement of the research problem, Critical analysis, and Inquiry are pre-study ones. They define 
and frame the problem, formulate a critique of the related work, and identify essential gaps and 
needs. In sum, they assemble the necessary information to define the research goals and the 
subsequent formulation of a hypothesis that addresses the problem. DIR’s design-study frames a 
considerable part of the Strategy proposal step, namely the formulation of the hypothesis in a 
design or modeling strategy, its consequent implementation, and experimentation. DIR’s post-
study phase takes place either in the strategy validation tasks or in the Problem subdivision. Both 
comprise confirmative tasks; the former assesses the effectiveness of the proposed strategy in 
solving the research problem in hands, and the latter confirms the need to re-apply the top-down 
approach to subdivide the problem into well-defined and solvable subproblems. Additionally, 
considering that DIR supports the development of research approaches, the proposed methodology 
concretizes it into a multi-purpose investigative framework that is applicable in different moments 
of the research. 
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After this higher-level discussion of the adopted framing methodology and how it shaped a general 
research approach, the following sections further examine its application to solve the main research 
problem discussed in chapter 3. 

4.4 Modeling Strategies – tackling the main problem and its causes 

George E.P. Box’s aphorism that “(…) all models are wrong, but some are useful” (Box, 1979) 
acquires a new dimension in the case of architectural design. Because of the context and case-
dependent nature of architecture, it is extremely challenging to develop generalized modeling 
methods for analysis and optimization tasks in performance-based design. However, that does not 
mean that approximate prediction and optimization methods are not useful in providing feedback 
to design. Considering this, the dissertation introduces the idea of modeling strategies, i.e., 
heuristic procedures designed to find a solution to the different research problems or an 
approximate and reasonable answer to them. Their objective is to achieve the general objective of 
the dissertation - improve the use of validated thermal, energy, and daylighting simulation in the 
design of buildings, particularly in cases where existing approaches are insufficient. To that end, 
they either extend current modeling and simulation approaches or propose different alternatives to 
them. Nevertheless, because of their heuristic nature, it is likely there are several design instances 
where the proposed strategies are either insufficient or inadequate. 

As discussed in chapter 3, section 3.3, the problem of using daylight and whole-building energy 
simulation tools in early-stage building design workflows supported by algorithmic, parametric, 
and optimization tools entail obstacles related both to modeling and analysis tasks and goal 
definition in inverse-design problems. The modeling and analysis challenges emerge from poor 
interoperability between design and analysis tools and from the ineffective use of advanced 
simulation procedures that often result in either computational expensive simulation models or in 
time-consuming calculations. Regarding target definition tasks in generative design, it is 
particularly challenging if it involves the description of spatially granular objectives, which are 
difficult to express in a simple objective or fitness function. To address these obstacles, chapter 3, 
section 3.4, refined the research question and proposed specific goals that favor tool 
interoperability, expedite simulation feedback in parametric and generative-design processes, and 
facilitate the definition of performance targets that include spatial variation in goal-oriented design 
approaches. Such goals frame the development and implementation of alternative modeling 
strategies that address the different obstacles and are the following: 

1st Goal - Automatically generate simulation models from an initial building geometry. 
2nd Goal - Automatically simplify simulation models. 
3rd Goal - Develop simplified approaches that either replace or reduce the use of 

computationally expensive simulations at early-design stages.  
4th Goal - Use techniques known to designers to expedite the definition of performance goals 

in inverse-design problems. 
Based on these goals, the work hypothesized five effective modeling methods that directly address 
the different problem: (i) Strategy A – Automatically generate valid building geometry for 
Building Energy Simulation (BES); (ii) Strategy B – Automatically simplify building geometry 
for BES; (iii) Strategy C – Abstract Complex Fenestration Systems (CFS) for BES; (iv) Strategy 
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D – Assess glare potential of indoor spaces using a time and spatial sampling technique; (v) - 
Strategy E – Painting with Light - a novel method for spatially specifying daylight goals in 
Building Performance Optimization (BPO). Strategies A, B, and C focus on BES, D on advanced 
daylighting analysis of buildings, and E on user-driven methods that promote a better integration 
of daylighting analysis in BPO. 

Figure 4-2 relates the modeling strategies introduced here to the goals set for their development 
and implementation and correspondent questions discussed in chapter 3. It demonstrates how the 
proposed methodology refines a set of research questions to well-defined goals that inform the 
formulation of valid hypotheses for solving the problem – the modeling strategies.  

 

Figure 4-2. Relationship between research questions, goals for strategy development and implementation, both 
discussed in chapter 3, and the hypothesized strategies introduced in this chapter. 

The decomposition of the general research problem into smaller problems (chapter 3), the 
systematic study of each subproblem, and the development of strategies that addresses them 
(chapters 5, 6, and 7), directly results from the application of the recursive top-down methodology 
presented in this chapter. The development of the strategies also re-applies the same 
methodological approach adjusting it to their requirements, goals, and other particularities. 
Therefore, each modeling strategy involved a focused literature review to identify gaps and needs 
– an essential step to design and implement them –, specific sets of methods, and experiments. For 
that reason, the chapters 5, 6, and 7 have specific related work, methods, and result sections per 
strategy. The next sections summarize the different modeling strategies. 
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4.4.1 Modeling strategies for Building Energy Simulation (BES) 

Chapter 5 presents a set of strategies to address the problem of interoperability between design and 
whole-building energy simulation tools. The strategies focus on automatically generating valid, 
accurate, and efficient geometric descriptions for Building Energy Models (BEM), i.e., geometry 
surrogates that are faster to run and produce small output deviations in Building Energy Simulation 
(BES) tools. The main objective is to bridge different computational design and analysis tools in 
design by (i) shortening the gap of the geometry of design and analysis building models, (ii) 
avoiding tedious and redundant modeling tasks, and (iii) generating BEMs that provide quick and 
useful feedback in early-design stages. The resulting strategies are the following:  

Strategy A – Automatically generate valid building geometry for BES – using sophisticated 
algorithms of planarization, the modelling approach generates valid geometric descriptions for 
BES from an initial building mass.  

Strategy B – Automatically simplify building geometry for BES – this strategy extends the 
previous by automatically simplifying the geometry of complex BEM with one or more 
thermal zones.  

Strategy C – Abstract Complex Fenestration Systems (CFS) for BES – the two previous 
strategies tackle the issues of representing building form in BES. Strategy C addresses the 
simplification of complex intricate shading systems and architectural screens explored by 
architects at early design phases. 

The set of modeling strategies for BES realizes the first and second goals envisioned to solve the 
problem of interoperability between design and whole-building energy tools. Strategy A 
concretizes the first implementation goal – automatically generate simulation models from an 
initial building geometry – while Strategy B and C the second one – automatically simplify 
simulation models. Chapter 5 presents and discusses the above modeling strategies for BES. 

4.4.2 A modeling strategy for advanced daylight simulation of buildings 

The proposed strategy focuses on addressing the ineffective use of advanced simulation resources 
in early-stage parametric and generative design based on daylight simulations. As discussed in 
chapter 3, there is a misalignment between what is required by specific standards in terms of 
daylight analysis, current simulation approaches that support such analysis, and parametric and 
generative-driven design processes. Therefore, chapter 6 presents a strategy that expedites 
expensive computational daylight simulations, particularly those involving climate-based metric 
calculations for the annual study of glare potential of indoor spaces. The strategy is the following:  

Strategy D – Assess glare potential of indoor spaces using a time and spatial sampling 
technique – this approach investigates the potential of using easier-to-compute daylight 
metrics, such as annual vertical illuminance, to spatially assess indoor visual comfort. The 
purpose is to substantially reduce the generation and analysis of computationally expensive 
High Dynamic Range (HDR) images by identifying worst-case scenarios to render point-in-
time HDR for detailed Daylight Glare Probability (DGP) calculations. Such a strategy will 
help designers to conduct detailed glare calculations required by the new European standard 
for Daylight in Buildings, EN 170377 (CEN, 2019). 
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Strategy D concretizes the third implementation goal, which tackles the problem of simulation 
resources misuse in building design and analysis at the early design stages. Chapter 6 describes 
and discusses in detail the strategy. 

4.4.3 A user-driven strategy for goal-oriented design formulation 

The last strategy focuses on problem modeling in goal-oriented design rather than on simulation 
related limitations. It addresses the challenges of modeling optimization problems based on 
daylight performance metrics. Unlike building energy metrics, which only entail temporal 
variation, it is difficult to specify and model the spatial variation of daylight targets in a building 
optimization process. As discussed in chapter 3, this difficulty either promotes the misuse of 
automated search techniques in the optimization of daylighting in buildings or limits the generative 
potential of goal-oriented design procedures. 

Due to the context-dependent nature of goal-oriented design procedures, the strategy presented in 
chapter 7 is a proof-of-concept that illustrates the potential of using methods commonly used by 
designers in defining goal-oriented design processes. The strategy follows here: 

Strategy E – Painting with Light - a novel method for spatially specify daylight goals in 
Building Performance Optimization (BPO) – this strategy implements a painting-style 
interface that helps designers to spatially specify daylight goals in indoor spaces. Its purpose 
is three-fold: (i) reduce the difficulty of defining the daylight optimization (or design) problem, 
(ii) expand the generative potential of goal-oriented design procedures for daylighting design, 
and (iii) reduce the gap between standard optimization approaches used in inverse-design and 
common methods applied in architectural design.  

Strategy E is a good example of how to concretize the fourth development and implementation 
goal. The modeling approach aims to improve the use of performance-based generative design 
methods by reducing the gap between commonly used design methods and optimization 
techniques, particularly in the definition of inverse building design problems. Chapter 7 presents 
and discusses Strategy E in detail. 

4.5 Validation 

Validating new modeling and ancillary simulation-based methods for the early building design 
stages is a challenging task. The dissertation uses two different types of validation procedures – 
external and internal. The following presents them by first introducing both approaches within the 
context of the related work and then by discussing their application in the context of this 
dissertation. 

4.5.1 External validation procedures  

External validation in building performance simulation frequently aims both to test the accuracy 
of new simulation methods and to assess whether their application is generalizable and transferable 
(Matt, Brewer and Sklar, 2010). Frequently, researchers use empirical validation, an external 
validation method that consists in comparing physical measurements against predictions obtained 
through simulation with similar boundary conditions to the ones of the physical experiments (Perez 
et al., 1990; Perez, Seals and Michalsky, 1993; Reinhart and Walkenhorst, 2001; Reinhart and 
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Andersen, 2006; Reinhart and Breton, 2009; Tabares-Velasco, Christensen and Bianchi, 2012; 
McNeil and Lee, 2013; Jones and Reinhart, 2017).  

Empirical validation often entails calibration, particularly in cases where accuracy is paramount. 
Since empirical validation uses well-defined experiment settings, it does not ensure that the 
prediction technique will perform in the same way in different boundary conditions. Thus, the use 
of a validated simulation tool or method always requires calibration to the characteristics of 
specific boundaries that frame the analysis problem (Coakley, Raftery and Keane, 2014). In other 
words, a valid external method does not exclude internal validation. Although it is common to 
calibrate a prediction procedure to match the output of a validated simulation technique, e.g., 
surrogate modeling based on statistical learning, usually calibration resorts to physical 
measurements.    

External empirical validation and calibration focus on accuracy and usually involve time-
consuming processes such as physical experiments or collection of data in post-occupancy stages. 
Such methods are often incompatible with design times, requirements, and needs at initial design 
stages either due to the shortage of time to conduct empirical experiments or to the lack of a well-
defined design, i.e., a design that by its evolving nature is incomplete. Hence, external validation 
based on empirical experiments or physically collected data often happens later in the design 
process or even after its consummation, i.e., after construction (e.g., post-occupancy studies). As 
a result, early-stage design based on building performance uses simulation with the available 
information and seldom confirms simulation results using external empirical validation. 

Nevertheless, building performance analysis at initial design phases do not aspire to be entirely 
accurate; their goal is to provide useful feedback that is accurate enough in the design process. 
Therefore, accuracy in early-stage building simulations deals more with the ability of the 
prediction model to properly capture the main dynamics of the phenomena under study than to 
make very accurate and precise predictions. Thus, the study of the thermal and daylighting 
performance of buildings at early-design phases demands validated simulation tools that can model 
all the related physical phenomena. 

The external validation of this research aims to assess if the proposed strategies are either valid 
complements or alternatives to current methods used in the parametric or generative design of 
high-performance buildings. It consists of comparing the results of the proposed modeling 
strategies with the ones delivered by the best simulation practices currently used in practice, in a 
process named as inter-program or inter-modeling approach comparison (Reinhart, 2019). In sum, 
the research assumes that a modeling strategy is externally valid if employing less effort and using 
fewer resources delivers similar results provided by the current best practice modeling methods. 

Simulation and building performance optimization literature present similar external comparative 
validation procedures. For example, Dogan and Reinhart (2017) validate the results of a simplified 
energy modeling tool for urban clusters (Shoeboxer) by comparing its results against the ones of 
fully detailed multi-zone urban BEM. The first validation of the 3-phase method, an advanced 
bidirectional raytracing technique for Radiance, consisted of comparing the results produced by 
the 3-phase method against previously validated results produced by the standard raytracing 
method used by Radiance – backwards raytracing (Ward et al., 2011). Davila Delgado (2014) 
validates the proposed modeling strategies for structural analysis and optimization by comparing 
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them with design calculations used by standard and validated methods. Jones and Reinhart (2017) 
externally validate a new Radiance-based tool for Graphical Processing Units (GPU) calculation 
by comparing it with the standard Radiance, compiled to use Central Processing Units (CPU). 

This research uses two building simulation tools, EnergyPlus (Crawley et al., 2001) for thermal 
and whole-building energy analysis, and Radiance (Ward, 1994) and its extensions for daylighting. 
Both programs are open source, research-grade, and consistently validated. EnergyPlus supports 
the modeling of all heat transfer modes in buildings (conduction, convection, and radiation), 
Heating, Ventilating, and Air Conditioned (HVAC) systems, and simplified calculations for 
natural ventilation and daylighting. Radiance is a synthetic imaging system that fully captures the 
transient phenomena of daylight, complementing EnergyPlus limitations regarding daylighting. 
These tools are central in developing the strategies and modeling the benchmark cases used for 
comparative external validation procedures.  

The external validation of Strategy B and C uses EnergyPlus to compare the simulation time and 
output of the models produced by the strategies with fully detailed BEM modeled using standard 
practices. Chapter 5 presents in more detail the several experimental results and validation 
procedures. 

Strategy D's external validation (chapter 6) consisted of using DGP data of an external experiment 
conducted by the author of this dissertation (Santos, Leitão and Caldas, 2018) to determine the 
vertical illuminance threshold that minimizes the occurrences of False-Positive (FP) and False-
Negative (FN) glare events.  

The validation procedures of strategies A and E are exclusively internal. The following section 
summarizes internal validation approaches and presents an overview of the ones applied in each 
proposed modeling strategy.   

4.5.2 Internal validation procedures  

Researchers use internal validation to determine to which extent a result supports a cause and effect 
assertion, considering the problem under study and the amount of collected data. Thus, an 
internally valid modeling approach is one that proves to be useful and makes sense to its users. It 
includes three different types of tests (Liu et al., 2011): 

1) Theory validity test – this test evaluates if the theory used in the design of the model is 
sound and if the model makes a valid use of it, i.e., if the model results align with the 
theoretical framework and system that explain the phenomena that it tries to emulate (Liu 
et al., 2011). 

2) Requirements validity test – examines if the model complies with clearly defined 
requirements and provides meaningful answers to a well-established research question (Liu 
et al., 2011).  

3) Face validity test – assess if the modeling approach is based on plausible assumptions and 
if its outcomes “look right” or make sense (Liu et al., 2011).  

In performance-based design, the application of internal validity tests aims to assess if a specific 
process or result supports or provides useful and consistent feedback to a design process. In the 
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particular case of thermal and daylighting simulations, the theory that describes the related 
physical phenomena is well known and grounded. Thermal and daylighting simulation approaches 
are theoretically valid if we can prove or explain their results using physical laws and building 
physics concepts. For example, the simulation of illuminance (E) due to direct light in a single-
window room needs to show a decay pattern that resembles the pattern of the general inverse 
square law, which determines that E is inversely proportional to the square of the distance from 
the window. When considering both the direct and indirect components of daylight in the 
calculation of E, the decay of E might not follow precisely the inverse law behavior because of the 
indirect contributions caused by interreflections – e.g., cases with light redirecting systems or with 
surfaces whose reflectance is highly variable.   

In building simulation research, the use of consistently validated simulation tools that fully capture 
the mechanics involved in the simulated phenomena, such as EnergyPlus and Radiance, provides 
a strong basis for theory validity. Conducting theory validity tests is more relevant in the 
development of white-box simulation tools. Since this dissertation uses already validated 
simulation tools, it assumes that the physical phenomena its correctly modeled and that their output 
is theoretically valid based on several validation studies. EnergyPlus validation studies include 
Crawley et al. (2001), Zhou et al.  Tabares-Velasco et al. (2012), Mateus et al. (2014), Andjelković 
et al. (2016), Goia et al. (2018), Haves et al. (2019), among several others. Validation studies on 
Radiance and Radiance-based applications include Reinhart and Walkenhorst (2001), Reinhart and 
Andersen (2006), McNeill and Lee (2013), Lee et al. (2018), Xuan et al. (2019), Kharvari (2020), 
and others. 

The requirements validity tests assess if the results of a specific modeling strategy are consistent 
and reasonable. Fulfilling specific requirements in internal validity tests is particularly relevant in 
stochastic prediction and optimization. It is possible to assess the method’s reproducibility by 
repeating the same experiment several times by measuring the similarity of the results of the 
different trials. For example, the work presented in (Wetter and Wright, 2004) and in (Wortmann 
et al., 2017), not only compared several optimization methods in the minimization of energy 
consumption of particular designs but also measured the variation of optimization outputs of the 
different analyzed methods. Another example is testing an optimization algorithm in a problem to 
which the optimal solution is already known. Caldas and Norford (2002) examined whether their 
goal-oriented design system could find an already known optimal solution previously found using 
a brute-force method. Similarly, Al-Homoud (2005) used three test functions with known 
minimum values to assess whether his optimization approach could find such values.  

Face validity determines if a method can either provide plausible feedback or generate solutions 
that improve the predicted performance of a specific design. In other words, if an analysis-based 
approach delivers results that make sense, then it is valid to use in a design context. The literature 
presents several examples of this type of internal design validation. Usually, they compare the 
performance of either a baseline design (also called base-case) or benchmark against the result of 
the reiterated application of the proposed design method. For example, Shea and Cagan (1999) 
tested the effectiveness of shape annealing optimization method in truss design, comparing the 
results against the ones of a standard Warren truss type, the benchmark used by the authors. Caldas 
(2008) uses a Generative Design System (GDS) called GENE_ARCH to explore alternative design 
solutions that aim to improve the energy performance of Álvaro Siza's School of Architecture at 
Oporto. In (Pan, Yin and Huang, 2008), the authors internally validated a design process for 
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energy-efficient data center buildings by comparing different designs produced by their method to 
an ASHARE 90.1-2004 compliant budget model. Other works, such as (Manzan and Pinto, 2009; 
Khoroshiltseva, Slanzi and Poli, 2016), validate their proposed goal-oriented design approaches 
by reporting and analyzing the progress of the optimization procedure, i.e., by assessing whether 
the optimization progressively approaches towards the desired outcome.  

Sensitivity tests are useful internal validation procedures since they can test the three types of 
internal validity. They consist of systematically varying simulation inputs and study the resulting 
model’s response surface (Feng and Staum, 2017). Consider the already given example of 
simulating E in a single-window room. With sensitivity analysis, it is possible to conduct a theory 
validity test by varying the distance of the measuring point to the window and examine if the 
model’s E predictions observe the inverse square law. A face validity test could involve changing 
the window size and assessing if E values change accordingly. Finally, a requirement validity test 
might test different Visible Light Transmittance (VLT) and observe the expected impact 
on E values, e.g., assess if a decrease of 10% on VLT corresponds to the same linear reduction 
on E. 

In this dissertation, internal validation traverses all proposed strategies. Strategy A (chapter 5) 
validation only uses a requirement validity test because it serves a single purpose – to automatically 
generate valid geometries for Building Energy Simulations. The requirement validity test 
determines whether the geometry created by the proposed approach did not produce severe 
simulation errors in the EnergyPlus error report. Face validation consists in observing whether the 
proposed goal-oriented design approach generates alternative solutions that yield better energy 
performance than an initial base case. 

Strategy B (chapter 5) face validation performs a sensitivity analysis to assess the impact of BEM 
mesh density in simulation time. Considering how EnergyPlus models radiative heat transfer, 
simulation time should vary super-linearly (e.g., quadratically or exponentially) with the number 
of BEM faces. 

The sensitivity analysis on changing shading factor on Strategy C (chapter 5) experience 
constitutes a face validity test. Another face validity test used in the assessment of this approach 
was to measure the reduction in simulation time that resulted from applying the proposed strategy.  

In Strategy D (chapter 6), the use of a simple room geometry to test the proposed approach helps 
in face validation. It is easy determining a priori visual discomfort periods on critical points-of-
view (POV); thus, facilitating if the proposed modeling approach could produce meaningful and 
plausible results by checking if it signaled such time events on critical POVs.  

In chapter 7, the requirement internal validity test used in Strategy E is similar to the one presented 
by Caldas and Norford (2002). It consists of feeding the proposed GDS pre-simulated Daylight 
Factor (DF) data as the desired input goal. Thus, it is possible to assess if the GDS can find similar 
design solutions to the one that produced the objective function data.  

4.5.3 Statistical metrics used in the development and validation of the different strategies  

The performance assessment, external, and internal validation of the proposed modeling strategies 
use several statistical metrics. They measure the quality of the output produced by the different 
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approaches, particularly in comparison-based validation tasks, and assess their ability to improve 
feedback in building design, by either reducing computation time or help the finding of better-
performing alternatives. 

The following describes the statistical indexes used in assessing the quality of a strategy simulated 
output. 

Percentage of error (% error) 

Percentage of error (% error) measures the discrepancy between a predicted or measured value (S) 
and a value (D) assumed as accurate or correct. It consists of calculating the absolute error, which 
is the absolute value of the difference between D and S, dividing it by D, resulting in the relative 
error, and then multiplying it by 100 to obtain the percentage error. Equation (4-1) expresses the 
calculation of % error used in this dissertation for a given simulation output (ρ):  

% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (ρ) =  
|𝐷𝐷(ρ) − 𝑆𝑆(ρ)|

𝐷𝐷(ρ)
 × 100 (%)  (4-1) 

where, D(ρ) is simulated data that is considered accurate and true, and S(ρ) is the predicted data. 

Root Mean Square Error (RMSE) 

RMSE is the standard deviation (σ) of a regression prediction error. In other words, it measures 
the variation or dispersion of the residuals. This metric indicates the level of concentration of 
measured data points around the best-fit trend line. The dissertation uses RMSE as part of the 
calculation of more advanced error metrics particularly designed to estimate error in building 
energy simulation and calibration such as the Coefficient of Variation of Root Mean Square Error 
(CVRMSE). Equation (4-2) presents the formulation of RMSE: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆,𝐷𝐷 =  �∑ (𝑆𝑆𝑖𝑖 − 𝐷𝐷𝑖𝑖)2𝑁𝑁
𝐼𝐼=1

𝑁𝑁
  (4-2) 

where, Di is an accurate simulated data point or a correct measurement, Si is the corresponding 
prediction, and N the data sample size. 

Coefficient of Variation of Root Mean Square Error (CVRMSE) 

CVRMSE measures the variability of the errors between S and D. Similar to RMSE, it determines 
how well a model fits data by analyzing the offsetting errors (residuals). The advantage over RMSE 
is that CVRMSE is unitless, allowing the comparison of different modeling approaches. 
Additionally, this index is not susceptible to the cancelation effect, i.e., where a positive bias 
compensates a negative one. For those reasons, it is one of the most used error metrics in BEM 
calibration. Equation (4-3) presents the CVRMSE formulation: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
1
𝐷𝐷�

 ∙ ��
(𝐷𝐷𝑖𝑖 − 𝑆𝑆𝑖𝑖 )2

𝑁𝑁 − 1

𝑁𝑁

𝑖𝑖=1

 × 100 (%) (4-3) 

where 𝐷𝐷𝑖𝑖 is an accurate data point, 𝑆𝑆𝑖𝑖 is the predicted value, 𝑁𝑁 is the data sample size, and 𝐷𝐷� is the 
mean of the accurate values.       

Coefficient of determination (R2) 

R2 measures how differences in one variable relate to differences in a second variable, i.e., it 
measures the percentage variation in a y-variable explained by x-variables. Similar to RMSE or 
CVRMSE, R2 is an indicator of goodness of fit in regression studies. The higher R2, the better the 
fit. It is also useful in determining the likelihood of future events falling within the predicted 
outcomes. Equation (4-4) determines R2: 

𝑅𝑅2  = 1 −  
∑ (𝐷𝐷𝑖𝑖 −  𝑆𝑆𝑖𝑖)2

𝑖𝑖

∑ (𝐷𝐷𝑖𝑖 −  𝐷𝐷�)2
𝑖𝑖

 (4-4) 

where, 𝐷𝐷𝑖𝑖 is a correct measurement or simulated data point, 𝑆𝑆𝑖𝑖 is the corresponding predicted value, 
and 𝐷𝐷� is the mean of the accurate values. The fraction numerator is the Sum of Squares Errors 
(SSE), while the denominator is the total sum of the squares (SST). The dissertation uses R2 to 
evaluate the effectiveness of linear regression techniques that uses Ordinary Least Squares (OLS) 
based on one independent variable or regressor.  

Normalized Mean Bias Error (NMBE) 

NMBE provides the average of the deviations between forecasts (S) and true measurements (D) 
normalized by the mean of D values. Negative values mean over-prediction, while positive values 
indicate under-prediction. This index is very common in BEM calibration. However, since NMBE 
is susceptible to the cancelation effect, calibration standards (ASHRAE, 2002) recommend pairing 
it with CVRMSE. Equation (4-5) describes its calculation: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
1
𝐷𝐷�

 ∙ �
𝐷𝐷𝑖𝑖 − 𝑆𝑆𝑖𝑖

𝑁𝑁

𝑁𝑁

𝑖𝑖=1

 × 100 (%)  (4-5) 

where Di is an accurate simulated data point or a correct measurement, Si is the predicted value, N 
is the data sample size, and 𝐷𝐷� is the mean of the accurate values. 

Assessing the usefulness of the proposed modeling strategies requires focusing on two essential 
aspects. The first is to determine the modeling strategy's ability to reduce simulation time, while 
the second is to evaluate their capacity in supporting the development of high-performance 
solutions. To this end, the dissertation used the metrics described below. 
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Percentage of improvement (% of improvement) 

Similar to % of error, this metric measures the relative difference of a particular performance 
metric between two design solutions. Building energy standards such as (ASHRAE, 2013), use 
this index to calculate the relative improvement of a design alternative against a benchmark or a 
baseline design. The only difference between this measurement and % of error is that the numerator 
does not return an absolute value. Consequently, the resulting value can be either negative or 
positive. A positive value means that the design instance outperforms the baseline. A negative one 
indicates that the design alternative performs worse than the base-case. The dissertation uses % of 
improvement to compare the predicted performance of different design solutions produced by 
some of the proposed modeling approaches. The ASHRAE 90.1 standard (2013) determines its 
calculation as follows: 

% 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =  
𝐷𝐷(𝜌𝜌) − 𝑆𝑆(𝜌𝜌)

𝐷𝐷(𝜌𝜌)
 × 100%  (4-6) 

where (ρ) denotes the simulated building performance metric, D(ρ), its value in the baseline case, 
and S(ρ) in the design alternative.  

Simulation time related metrics 

Simulation time is a sensible parameter in performance-based design supported by parametric, 
algorithmic, and goal-oriented approaches. In such cases, simulation feedback should be fast and 
reliable. Therefore, a way to assess whether alternative modeling techniques are useful is to 
measure how fast they are to run relative to current simulation methods. In the case of strategies 
that aim to reduce calculation time, the work compares the simulation time of their resulting 
models against the runtime of a benchmark model that reflects current best practices. All the time 
measurements are in seconds (s). The comparison uses two metrics to assess how much run time 
improvement the proposed strategy attained:  

1) Times faster than the baseline case (x times faster), calculated by dividing the simulation 
time of the baseline case by the run time of the strategy’s resulting model. 

2) % of simulation time reduction, computed using the % of improvement formulation but 
using run time of both the benchmark and the modeling strategy cases. 

Finally, some experiments conducted in this dissertation use additional indices. For example, in 
chapter 6 the determination of the illuminance threshold to signal potential glare events involved 
calculating the percentage of false-positive and false-negative events. Whenever the work 
introduces a new statistical index, it fully describes it. 

4.6 Concluding remarks 

This chapter presented and discussed the general methodology used in the dissertation work. 
Design Inclusive Research (DIR) provides the methodological framework of the top-down 
methodology used throughout the investigation. The top-down methodology recursively 
decomposes the different research problems into smaller well-defined problems. The three DIR 
phases – (i) pre-study, (ii) design-study, (iii) post-study – frame the several methodology tasks. 
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The pre-study phase entails the Statement of the research problem, Critical Analysis, and Inquiry 
steps of the general top-down research methodology. Design-study includes a significant part of 
the Strategy Proposal, particularly in devising methods and procedures that implement the 
formulated hypothesis. The post-study stage comprises the Strategy Proposal validation tasks, 
which assess the effectiveness of the proposed strategy, and the Problem subdivision 
methodological step, which confirms whether it is necessary to re-apply the methodology to further 
decompose the problem into simpler and solvable subproblems. 

The methodology’s application to the primary research problem resulted in subdividing the main 
problem and hypothesizing possible solutions – the modeling strategies. The chapter defines the 
concept of modeling strategy, frames it in the context of the research questions and objective, sets 
four goals for strategy development and implementation, and introduces the five modeling 
strategies proposed in this dissertation.  

Strategies A, B, and C focus on improving the interoperability between design and analysis tools 
as well as the use of the latter in parametric and goal-oriented design processes. Strategy A 
proposes the automatic generation of valid geometric descriptions for BES from complex 
(double)curved building masses. Strategy B extends A and aims to improve analysis feedback in 
building design by automatically simplifying BEM geometry and consequently reducing 
simulation time. Similarly, Strategy C presents another simplification strategy that addresses the 
energy modeling of complex architectural screens.   

Strategy D aims to improve the deployment and use of advanced daylighting analysis in the early 
design stages. The strategy advances an ancillary method for visual comfort studies that quickly 
qualifies entire spaces and supports a more efficient use of detailed glare analysis. 

Strategy E proposes a method that helps architects in formulating inverse-design procedures based 
on daylighting simulations. It facilitates the definition of spatial daylight by employing processes 
commonly used by designers.  

This work uses both external and internal validation procedures. The external validation procedure 
consists in comparing the simulation output of the proposed modeling strategies with those 
delivered by standard simulation practices based on research-grade validated software. Strategy B 
and C use geometrically detailed BEMs as benchmark validation models. Strategy D used external 
DGP data to determine the accuracy of using vertical illuminance in signaling glare events.  

Regarding internal validation, this chapter provided an overview of different approaches and 
discussed the application of face and requirement-based validity tests in this investigation. The use 
of validated simulation techniques that fully capture the thermal and daylighting phenomena 
dynamics in buildings provides theoretical validity to the proposed strategies. A validity test based 
on requirements determines whether a model is internally valid if it complies with pre-established 
criteria. In this dissertation, the requirement-based validity tests assess whether: (i) the strategy 
simulation model runs without generating any errors – Strategy A, B, and C;  (ii) the output 
deviation of the modeling strategies falls into a pre-established range of error – Strategy B, C, and 
E; (iii) optimization procedures find plausible solutions to a known design problem – Strategy E. 
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Face validity determines whether a modeling strategy provides useful feedback in digital design 
processes supported by thermal and daylight simulations. The face validity of this research work 
examines whether (i) the strategy effectively helps in the generation of better performing designs 
– Strategy A, C, and E; (ii) the proposed procedure reduces simulation time – Strategy B, C, D; 
(iii) sensitivity analysis results are plausible – Strategy B and D; and (iv) the strategy’s application 
provides meaningful and expectable feedback in well-defined and easily predictable design 
scenarios – Strategy D.  

The methodological discussion also introduced and defined essential statistical indices that 
supported the development and validation of the different modeling strategies. Percentage of error 
(% error), Root Mean Square Error (RMSE), Coefficient of Variation of Root Mean Square Error 
(CVRMSE), Coefficient of determination (R2), assess the quality of the strategies simulated 
output. Percentage of improvement (% of improvement),  % of simulation time reduction, and 
times faster than the baseline case (x faster) are the indices applied in the examination of the 
usefulness of the proposed strategies either in assisting the design of high-performance buildings 
or in reducing analysis time during building design. 

The proposed top-down methodology provides a flexible investigative framework that can easily 
adapt to the different research lines pursued in this work. However, it entails two main limitations. 
First, the general method follows a heuristic process. Thus, it is impossible to determine whether 
the proposed modeling approaches are optimal, only whether they are valid and improved 
alternatives to current ones. Second, the validation of the proposed strategies used certain 
assumptions and particular experimental settings. Thus, their application in design scenarios that 
comprise significantly different conditions needs to be critically examined. 

However, both methodological limitations are acceptable and do not compromise the investigation 
findings. This dissertation seeks to improve current modeling methods for design processes 
supported by daylighting and building energy simulations; it does not aspire to develop an ultimate 
solution to all the modeling issues in the digital design and analysis of high-performance buildings. 
Therefore, a heuristic approach is acceptable. The second shortcoming, related to validation, is a 
common hurdle in building simulation. Even sophisticated techniques widely accepted by the 
building simulation community are susceptible to it. For example, the most advanced sky model 
used in daylighting simulations, the Perez all-weather sky model (Perez, Seals and Michalsky, 
1993), is only based on data collected at Berkeley, CA, and therefore has limited application. 
Nevertheless, all climate-based simulation techniques use it because of the lack of better 
alternatives. This work acknowledges that it can only partially generalize its findings. For that 
reason, it explicitly describes the experiments’ boundary conditions and assumptions. Moreover, 
the purpose of the work is not to provide a universal and closed methodological approach to the 
problem, but, similar to the Perez all-weather sky example, suggest one whose application is 
plausible and useful in design analysis tasks, and suitable for further refinement.  
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Chapter 5:  
Modeling Strategies for Building Energy Simulation 
5.1 Introduction 

The previous chapter presented the general research approach adopted in this dissertation and 
provided an overview of the different developed strategies to address the causes of the problems 
identified and discussed in chapter 3. This chapter focuses on the developed strategies that address 
the existing interoperability limitations between parametric and generative design tools and whole-
building energy simulation caused by the current differences in geometric modeling capabilities. 
The work gives particular attention to the modeling challenges posed in either describing curved 
or double-curved building surfaces for Building Energy Simulations (BES). 

The chapter begins with an analysis of the current state-of-the-art on building geometry modeling 
techniques that aim to integrate BES in early-stage design workflows. The discussion conducted 
in section 5.2 – Related Work – focuses on the latest developments of either translating Computer-
Aided Design (CAD) or Building Information Modeling (BIM) building models to Building 
Energy Models (BEM) or describing complex façade systems for early whole-building energy 
assessments. The main goal is to identify and isolate current limitations, gaps, and needs, which in 
turn will inform the development of specific modeling strategies that will improve the integration 
of BES in parametric and generative design workflows.  

The literature review identified three main limitations: (i) current interoperability problems in 
representing complex building geometry in BES tools; (ii) inefficiencies caused by inadequate 
geometric descriptions in Building Energy Models (BEMs), particularly of (double-) curved 
building envelopes; (iii) modeling highly sophisticated building skins in early-stage energy 
performance-driven design workflows.  

Section 5.3 presents Strategy A – Automatically generate valid geometry for BES as an answer to 
the first limitation. This strategy offers a method that mitigates the current gap between the 
geometric modeling capabilities between design and BES tools. It proposes the automatic parsing 
of early-stage free-form building geometry, typically modeled using Non-Uniform Ratio Basis 
Spline (NURBS) based tools, to the more constrained planar mesh face-based BEM geometry. The 
goal is threefold; (i) to avoid redundant modeling tasks in early stage building energy assessment 
studies, (ii) to shorten the representational gap between the design model and BEM, and (iii) to 
automatically generate valid geometric descriptions for BEM from an initial building envelope 
regardless of its geometric complexity. The application of this strategy in a goal-oriented design 
experiment confirmed the other two limitations. 

Section 5.4 introduces Strategy B: Automatically simplify building geometry for efficient whole-
building energy simulations – that directly tackles the second limitation. This strategy extends 
Strategy A by automatically generating optimized BEM simplifications that are faster to run and 
do not introduce relevant deviations in simulation output. The goal of producing geometric 
surrogates to reduce simulation run time is to improve feedback in performance-driven building 
design processes. 
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Strategy C: Abstract Complex Fenestration Systems for the early energy assessment of complex 
building skins (section 5.5), proposes a method that simplifies the modeling of highly sophisticated 
façade systems for BES. Such complex envelope systems include custom-designed solar control 
screens, non-planar shading devices, and light redirecting systems, for early whole-building energy 
performance assessments. Hence, Strategy C aims to shorten the gap between modeling 
capabilities of design and analysis tools. Current parametric and algorithmic design approaches 
allow the early development of intricate facades that are challenging to model and simulate using 
current BES programs. The method introduced by Strategy C facilitates the modeling and 
simulation of sophisticated building skins.  

Finally, the chapter ends with a discussion that frames the advantages and limitations of each 
strategy, possible ways of integrating them, and suggests areas for future work. Figure 5-1 presents 
a flow chart that illustrates both the approach used in this chapter and its structure. The flow chart 
illustrates the adjustment of the top-down methodology approach described in chapter 4 – Research 
Methodology – to the work presented here. 

 

Figure 5-1. General research approach used in this chapter and resulting chapter structure. 

The following sections present in detail the analysis of the related literature and describes the 
different strategies along with their respective methods, experiments, and results. 
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5.2 Related Work 

Recent developments attempt to address to the need to translate CAD and BIM building models to 
BEM as a way to shorten the geometric modeling gap between design and building energy analysis 
tools. Several researchers developed methods to automatically or semi-automatically generate 
valid BEM from digital building models with different degrees of detail that range from conceptual 
building masses to fully detailed architectural models (Jones et al., 2013; Georgescu and Mezić, 
2015; Kensek, 2015; Kim et al., 2015; Dogan, Reinhart and Michalatos, 2016; Jeong and Son, 
2016; Lilis, Giannakis and Rovas, 2017). However, the literature on automated BEM inference 
and simplification focuses primarily on the thermal zoning of massing models according to 
ASHRAE guidelines (ASHRAE, 2013), such as in Dogan et al. (2016), Dogan and Reinhart (2013, 
2017), and Jones et al. (2013), or in sensitivity analysis of simple box-shaped buildings composed 
by planar surfaces (Amitrano et al., 2014; Picco and Marengo, 2015). Jones et al. (2013), presents 
a conversion methodology of CAD building models based on extrusions of planar polygons. This 
work explores ray casting and view factor-based techniques to solve the topological complexity of 
BEMs. The authors present a method that generates a multi-zone thermal model based on minimal 
information on internal spatial organization and program. The proposed method automatically 
executes several modeling tasks that result from the combination of different programmatic 
volumes or thermal zones such as solving the resulting adjacencies and boundary conditions, and 
the pairing child-surfaces, i.e., any type of fenestration or vent, with their correspondent parent-
surfaces, i.e., the wall, ceiling, or roof to which they belong. Lillis et al. (2017), presents an 
approach that automates the production of BEMs with simplified thermal zoning from BIM models 
with well-defined internal spaces. The authors propose a tool that first maps the topological 
relationship of different spaces and then uses information on orientation, program, HVAC system, 
and occupancy to automatically merge contiguous similar individual rooms. Despite the significant 
advances introduced by both works, they do not address either the automatic division of building 
masses with no interior space layout into thermal zones or complex building envelope geometries. 

Dogan et al. (2016) introduced Autozoner, a tool that automatically divides a building mass with 
undefined interior space boundaries into a multi-zone thermal model. The tool uses ASHRAE 90.1 
guidelines for splitting a building plan with no information of its interior layout into perimeter and 
core zones (ASHRAE, 2013). Autozoner divides the perimeter area into different zones by using 
cardinal orientation to then iteratively subdivide the resulting zones until all resulting zones are 
convex. The method successfully processes complicated building floor plans. However, it neither 
addresses curved geometry nor proposes advanced methods of dividing the perimeter building area 
in order to capture the impact of self-shading. 

Based on the Autozoner experience, Dogan and Reinhart (2017) developed a method called The 
Shoeboxer that automatically simplifies the thermal zoning of urban building clusters. The 
simplification consists of sampling a set of building volumes into a group of representative 
simplified “shoebox” BEMs. The sampling technique considers orientation, contextual shading, 
and incident solar radiation. The tool estimates the energy results of the whole building cluster by 
first extrapolating the results of each simplified BEM to their respective areas of influence to then 
aggregate all the extrapolated results. The authors tested the method in several building clusters 
with different Floor Area Ratios (FAR). Compared with the perimeter and core multi-zone thermal 
zoning approach of ASHRAE 90.1 Appendix G (ASHRAE, 2013), Shoeboxer’s annual energy 
predictions could be 50 to 296 times faster with low error deviations in simulation output, i.e., with 
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a Root Mean Square Error (RMSE) of 11% and 20% respectively. This work demonstrates that 
sampling methods are effective in early-stage design. Nevertheless, the authors apply it only in the 
analysis of neighborhoods and city blocks composed of simple box-like building volumes. There 
is still no application of like approaches to large buildings with free-form envelopes.  

Other works discuss the viability of geometric simplification of building elements in BES. Pico 
and Marengo (2015) study the impact of simplifying shading elements, glazed fenestration, and 
thermal zoning in annual energy simulations. The authors found that, on average, strong 
simplifications in geometry did not produce relevant differences in energy simulation outputs. 
Nevertheless, their work also shows that geometric simplifications, particularly on the level of 
thermal zone definition, can lead to a deviation of ≈ 20 % in simulation output. Amitrano et al. 
(2014) conducted a similar study that showed that, even in simple shoebox BEM, the inclusion of 
detailed geometry reduces the uncertainty of energy simulations by 5 to 15%. Although both 
studies address only simple box-like building envelopes, they show that geometric simplification 
is acceptable up to a certain point, since oversimplifications significantly increase the degree of 
uncertainty in thermal and energy analysis.  

Regarding the automatic parsing of curved or double-curved building surfaces from a CAD or 
BIM model to a BEM, current approaches use standard non-adaptive triangulation algorithms. 
Although they guarantee that all the faces of the model are planar and convex, they limit the control 
of the geometry density of a model and thus its computational efficiency, and do not guarantee 
other BES geometric requirements (e.g., the enclosure of thermal zones). Popular front-end tools 
for thermal and Building Energy Simulation (BES) such as Ladybug/Honeybee (Roudsari, Pak 
and Smith, 2013) and Autodesk Insight analysis tools (Autodesk, 2019) use this triangulation 
approach and often produce BEMs that either take too long to simulate or fail to run. Figure 5-2 
shows the result of a small experiment, conducted in the context of this dissertation, that 
anecdotally demonstrates the limitations of current tools in automatically generating either valid 
or efficient BEMs that run in valuable time. The experiment tested the ability of Autodesk Insight 
to simulate two building masses produced by a Dynamo (Autodesk, 2020) parametric visual script 
that generates twisted towers. One (Figure 5-2, left) resulted in time-consuming simulations due 
to a dense mesh tessellation (left), while the other failed to run (Figure 5-2, right). 

 

Figure 5-2. Autodesk Insight attempts to automatically parse the geometry of two towers produced by a parametric 
Dynamo visual script. Left: the BEM highly dense mesh leads to time-consuming simulations in the Autodesk cloud 
server. Right: a simple twist and the resulting double-curved envelope was impossible to successfully translate to a 

BEM with a valid geometry description. 



84 
 

Despite the current need for methods that efficiently discretize curved surfaces for BES, the 
literature that studies the impact on simulation output of simplifying curved or other types of 
sophisticated building envelope geometry is still limited. Only recently did Chatzivasileiadi et al. 
(2018) conduct a sensitivity analysis on the discretization of simple curved building envelopes in 
BES. The authors found that a significant reduction of geometry complexity has a negligible 
impact on energy simulation output. This work also shows that simulation accuracy deteriorates 
rapidly below a critical threshold. Despite its valuable contribution, the study focuses primarily on 
simple extrusions of planar curves. A slightly twisted tower is the only example of a more complex 
curved building envelope. Moreover, the statistical approach used in the study to measure 
simulation results deviations lacks the inclusion of essential statistical metrics typically used in 
hourly-based BES (ASHRAE, 2002), such as the Normalized Mean Bias Error (NMBE) and the 
Coefficient of Variation of the Root Mean Squared Error (CVRMSE). Thus, the work is unable to 
provide clear recommendations on techniques for automatically simplifying curved building 
envelopes that result in efficient thermal and energy simulations.  

Efficiently processing curved and double-curved building envelopes in the production of valid 
BEMs is a challenging problem. Fabricating and assembling curved envelopes typically involve 
higher financial costs that result both from the required labor, expertise, material, and 
technological apparatus. The economic impact is more evident in steel and glass construction than 
in certain types of cast concrete techniques, such as the ones that use metal or polymer-based 
frameworks. To minimize construction costs and feasibility, it is desirable to discretize curved 
building surfaces into the smallest number of planar elements, a common research topic in 
architectural geometry and digital fabrication (Baldassini et al., 2010; Eigensatz et al., 2010; Deng 
et al., 2015; Pottmann et al., 2015).  

Recent developments in architectural geometry and digital fabrication address the discretization 
problem of curved building surfaces into planar elements by applying quad-mesh quasi-
planarization techniques (Sechelmann, Rörig and Bobenko, 2013; Rörig et al., 2015). To obtain a 
planar quadrilateral subdivision of any given surface, quasi-isothermic algorithms first tessellate 
an input surface into a triangle mesh. They then use conformal maps of the resulting triangle 
meshes to generate an S-isothermic quadrilateral mesh. An S-isothermic mesh is a discretization 
of a surface into planar shapes that are both curvature-aligned and angle-preserving. A 
quadrilateral mesh is S-isothermic if, and only if: (i) all the quadrilaterals are planar, (ii) all faces 
have incircles, and (iii) the incircles of adjacent quadrilaterals touch. Figure 5-3 illustrates the 
concept of a quadrilateral isothermic mesh and how the quasi-isothermic algorithm remeshes a 
given mesh into a planar quad-mesh. Sechelmann, Rörig, and Bobenko (2013) describe in more 
depth the algorithmic approach to create S-isothermic quadrilateral meshes. 
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Figure 5-3. S-isotermic and non-isothermic quadrilateral meshes. Left: incircles of a non-S-isothermic quad-mesh. 
In order to be S-isothermic the incircles of adjacent meshes need to touch. This produces the same ratio on both 

sides of the edge ij; cot(βi/2)/cot(βj/2) (Sechelmann, Rörig and Bobenko, 2013). Right: examples of S-isothermic 
quad meshes generated by the algorithm proposed in Sechelman, Rörig, and Bobenko (2013). Images adapted from: 

Sechelman, Rörig, and Bobenko (2013). 

The tools that use quasi-isothermic planarization techniques, such as Kangaroo for Grasshopper 
(Piker, 2015), allow the user to control the remeshing process of any arbitrary surface into a set of 
planar and quadrilateral panels. Although such techniques have a direct application in the fields of 
architectural geometry and digital fabrication, they have great potential to improve the pre-
processing of complex curved geometry to produce valid BEMs. 

The early design of green buildings includes not only the study of conceptual masses but also the 
generation of sophisticated building skins. Current algorithmic-based design methods enable the 
generation of complex and intricate architectural compositions in the design of sophisticated 
building skins at early design stages. Architects and researchers use such approaches to both 
conceive and study architectural surfaces with different patterns, levels of porosity, density, and 
opacity, that adapt to different requirements, such as the geometry of the building envelope or 
climatic conditions (e.g., solar irradiance). Recently, several researchers have been exploring the 
potential of parametric-driven tools in the design and optimization of high-performing facades. 
Tabadkani et al. (2019), used Honeybee and Ladybug, both environmental analysis plugins for 
Rhinoceros 3D Visual Programming Language (VPL) Grasshopper, to investigate modular and 
responsive origami-based components for smart façades. The work proposed in (Mahmoud and 
Elghazi, 2016) presents a similar approach applied to kinetic building envelopes based on the 
rotation and translation motion of hexagonal components. The authors study the correlation 
between geometric patterns generated by different states of their dynamic elements and visual 
comfort in buildings. Zani et al. (2017) combined parametric design tools with a standard Genetic 
Algorithm (GA) to develop high-performance concrete static shading systems that simultaneously 
harvest daylight and minimize building energy consumption. Ercan and Elias-Ozkan (2015) 
present similar work.  

Wagdy and Fathy (2015) developed a parametric model that generates louver-based designs based 
on louver count, depth ratio, tilt angle, and Window-to-Wall Ratio (WWR). Using a brute force 
approach, the authors simulated all possible solutions via Radiance and EnergyPlus. They found 
that the louvers depth ratio was the parameter that had the most impact on spatial Daylight 
Autonomy (sDA) and, consequently, lighting energy end-use. Inspired by the heliotropic response 
of plants, i.e., the movement of some plants in response to the sun position, Henriques et al. (2012) 
developed a parametric system that populates canopies with kinetic skylights that dynamically 
adapt to environmental conditions and internal functional demands. Based on an extensive 
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parametric study, the work proposes a heuristic that determines in real-time the aperture of the 
different skylights that provides the required daylight and visual contrast. In Turin et al. (2012), 
the authors applied a similar approach but extended it to free-form shape roofs of semi-outdoor 
spaces. The work also used a GA based generative design tool called ParaGen to optimize the 
form of the roof and the orientation, openness, and shading factor of its opening using the ratio 
between incident solar radiation and Daylight Factor (DF) as the main performance metric. 

Nevertheless, the study and design of highly sophisticated building skins using algorithmic, 
parametric, or generative approaches pose two different types of challenges. The first challenge is 
the generalization of a method to create parametric façades. Designers often build their parametric 
models from scratch, a task that, although more efficient than manual modeling, requires effort, 
programming expertise, and is frequently limited to a specific type of façade element. For example, 
a program that generates parametric louver systems is unable to produce hexagonal kinetic shading 
elements. Recent work addresses the generalization for parametric modeling in the context of 
algorithmic approaches to design. DrAFT (Caetano, Santos and Leitão, 2015; Caetano and Leitão, 
2016) is an example of a design tool that expedites the generation and control of parametric façade 
designs. It provides an algorithmic framework to control key façade aspects such as envelope 
geometry, façade element’s section, size, material, color, and geometric transformation functions. 
The user can use and combine the different algorithms through functional operators in order to 
generate any type of façade, easily apply and change different types of façade units, control their 
distribution, parametric properties, and finally articulate them in any arbitrary building envelope. 
Figure 5-4 illustrates how DrAFT composes different functional operators to distribute different 
design elements and control their parametric properties.  

 

Figure 5-4. Two façade designs produced with DrAFT (Caetano and Leitão, 2016) using a combination of different 
functional operators. Left: a simple line attractor exercise that controls the opening of a truncated pyramidal building 

element. It uses the following functions: L1 – function that creates the façade element, L.2 – function that 
distributes/propagates the element in a regular grid, L.3 – function that sets the smoothness of the attractor curve in 
controlling the openings of the truncated pyramid elements, L.4 – linear function that sets the range from minimum 

to maximum aperture for the pyramidal elements. Right: application of DrAFT to model Sheung Wan Hotel in Hong 
Kong designed by Heatherwick Studio. DrAFT used the following operators: R.1 – function that creates the façade 

panel, R.2 – function that distributes the panel in a regular-grid, R.3 – function that subdivides the element into 
irregular patterns, R.4 – function that assigns randomly to each panel glass or metal materials, R.5 – function that 

assigns random depth-size to the subpanels. Images adapted from: Caetano and Leitão (2016). 
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The other main challenge in the parametric and generative design of building skins is simulating 
the impact on energy and daylight performance of sophisticated exterior shades, architectural 
screens, and other types of Complex Fenestration Systems2 (CFS) that systems like DrAFT can 
generate. The modeling of such complex building skins is more cumbersome in thermal and energy 
simulation because of their geometric limitations and the impact that geometry has on simulation 
time. Currently, and like daylight simulation, it is possible to use BSDF to describe CFS in BES 
tools, such as TRNSYS or EnergyPlus, to accurately determine solar gains (LBNL, 2015). 
Although accurate (Hauer et al., 2019) using BSDF in BES typically results in slow simulations 
(Petersen et al., 2018), particularly if a BSDF material is applied to discrete parts of the envelope. 
Additionally, generating BSDF of highly customized parametric façade elements that seamlessly 
adapt to complex building envelopes is a difficult task that requires a high level of expertise. In 
daylight and energy building performance studies, there are two ways to generate synthetic BSDF 
data. One uses WINDOW software (Huizenga et al., 2017) and the other genBSDF, a Radiance 
routine. WINDOW provides BSDF data of some commercially available CFS and allows the 
synthetic generation of BSDF descriptions of custom CFS based on simple parametric models for 
even distributed louvers, perforated screens, and glass frit. On the other hand, genBSDF generates 
a BSDF for any type of fenestration geometry given a Radiance scene or a Material and Geometry 
Format (MGF) file, therefore providing a better support in the analysis of highly customized CFS. 
Nevertheless, generating BSDF data of custom CFS, either with WINDOW or with genBSDF, 
entails a considerable computational overhead. Moreover, BSDF data describes in detail a specific 
CFS, thus limiting the desirable exploration of different types of systems and assemblies with 
similar thermal and optical properties in the early stage of building design. Therefore, despite the 
recent progress in simulating sophisticated building skins, there is a need to develop simplified 
approaches that will expedite the assessment of CFS in either parametric or generative design 
processes. 

5.2.1 Discussion 

The previous section on related work shows that despite the current progress on combining digital 
design tools and state-of-the-art BES programs, there are still fundamental limitations in 
integrating BES in parametric and generative design practice. Such restrictions are more 
pronounced in the case of representing and analyzing both unconventional building forms and 
highly sophisticated building skins. As briefly summarized in section 2.1, this literature review 
unveiled the following limitations and resulting needs: 

1) Interoperability problems caused by the difficulty of modeling curved and double-curved 
building envelopes for BES - the difficulty of current geometry parsing methods to translate 
free-form surfaces to BES hampers the use of whole-building energy analysis in the early 
design of free-form buildings. Thus, there is the need for robust methods that effectively 

 
2 CFS refers to any fenestration assembly that incorporates a non-clear (specular and non-specular) layer in 
the glazing assembly or in its attachments (e.g., shadings). It includes switchable (smart) glazing, 
translucent or transparent insulation, solar films, patterned/fritted glass, light redirecting systems based both 
in nanoparticles and in macroscopic systems such as reflective louvers, non-planar shading systems, etc. 
The combination of such layers with other shading elements and advanced clear window products (e.g., 
spectrally selective glazing) promote an efficient use of daylight and reduce the unwanted solar heat gains 
and potential glare problem associated with the clear window product alone.  
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discretize any type of building geometry and produce valid BEMs from an initial CAD or 
BIM massing model.  

2) Inefficient building energy simulations caused by BEM geometric descriptions – this 
limitation is directly related to the previous one. As discussed, when current methods of 
automatically parsing complex building envelopes are able to produce valid geometric 
descriptions for BES, the outcome is far from being optimal. Usually, the resulting BEMs 
entail a considerable computational simulation overhead. Therefore, it is paramount to 
develop and implement approaches that generate valid and optimized geometric 
descriptions that promote quick and accurate analysis in current digital design workflows. 

3) Difficulty in modeling complex façade systems for early whole-building energy 
assessments – current parametric, algorithmic, and generative tools allows designers to 
easily model a wide variety of building skins with intricate shading screens, devices, and 
other complex façade systems. Although there are ways to model such building skins in 
BES, the current methods entail a considerable modeling effort, expertise, and usually result 
in slow simulations, therefore unfit for early analysis. Consequently, architects are unable 
to fully analyze the impact in whole-building energy performance of advanced façade 
solutions. In order to reduce the considerable gap that exists between the early design and 
energy analysis of complex façade systems, it is necessary to find ways that simplify the 
modeling and early analysis of sophisticated facades in BES.  

The following sections describe the different proposed modeling strategies that directly address 
the limitations and needs described above. 

5.3 Strategy A: Automatically generate valid geometry for Building Energy 
Simulation 

This section proposes an automatic and robust method for deriving valid BEMs from fully 
parametric building models with complex curved or double-curved envelopes. The development 
and implementation of the proposed modeling method results from a joint research effort between 
the author of this dissertation and his advisers, published in Santos et al. (2017).  

Automatically deriving BEMs from their parametric/architectural counterparts allows designers to 
directly use energy-based generative design processes without the need for remodeling simulation 
models, a time-consuming task. Thus, it promotes a smoother integration of BEM either in early-
stage parametric or goal-oriented design based on whole-building energy analysis. The proposed 
automation also aims to reduce the current gap between the geometric representation of a BEM 
and a conceptual architectural building massing model, thereby strengthening the relationship 
between them. Reinforcing the relationship between the geometry of the building design model 
and the BEM fosters a more precise assessment of the impact that specific formal changes have on 
the thermal and energy building performance. 

To achieve this goal, the proposed method uses mesh planarization algorithms to discretize curved 
or double-curved surfaces into meshes composed by planar quadrilateral faces of enclosed building 
massing models based on NURBS geometry. The resulting model is an enclosed volume, or a set 
of enclosed volumes, with surfaces that a BES tool such as EnergyPlus can process. Applying such 
planarization algorithms minimizes the differences among the geometries of the parametric model 
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used in the architectural design process and the energy simulation model. In this way, one model 
can directly inform the next. 

Because surface remeshing algorithms are common in digital fabrication, the automated BEM 
generation approach will support a goal-oriented design approach that focuses both on energy 
performance and on construction feasibility. The goal-oriented approach uses a standard GA to 
search for glass frit solutions that reduce the energy consumption of an all-glass building envelope. 
The resulting generative design system will also adapt the emergent mesh subdivision within pre-
defined boundaries and rules that ensure construction feasibility (e.g., maximum glass panel size 
and deviation from the original surface). Figure 5-5 illustrates the proposed integration of mesh 
planarization techniques in the goal-oriented design process that aims to reduce building energy 
use.  

 

Figure 5-5. Diagram of an energy-based generative design system that uses the proposed discretization method of 
curved or double-curved building envelopes. From an initial surface, a mesh based on planar quad-meshes is 

produced both for fabrication and energy simulation. The GA search process will optimize the fritting density of the 
fabrication model glass panels. 

In the proposed goal-oriented design system, planarization algorithms first process an initial 
freeform geometry. The result is a mesh composed of planar quads with constraints applied to their 
maximum dimensions. Each planar quad corresponds to a planar glass panel with a maximum size 
of a standard double glass panel: 3x3 m. The resulting geometry is directly fed to EnergyPlus and 
Radiance by assigning specific EnergyPlus and Radiance materials to each panel. An irradiance 
Radiance simulation maps solar radiation on the building envelope. Based on incident solar 
radiation similarity, the system clusters the façade panels. A Genetic Algorithm (GA) controls the 
glass frit density assigned to each panel cluster. In this way, the GA searches for the best fritting 
densities for each solar exposure. Finally, when the GA converges, the resultant glass frit pattern 
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is remapped on the digital fabrication model. Through this loop, two parameters, construction and 
building energy consumption, inform a single architectural geometric representation. The 
following section discusses in detail the methodological approach used in discretizing complex 
curved building envelopes for valid BEM.  

5.3.1 Method for discretizing curved and double-curved building envelopes 

The discretization of arbitrarily curved building surfaces entails two steps; (i) panelize the input 
surface into quadrilateral panels, and (ii) planarize the resulting panels.  

The first step consists of a simple algorithm implemented in Rhino/Grasshopper that, given the 
number of desired panels or specific constraints to the panel dimensions, divides the original 
surface along its 𝑢𝑢�⃗  and 𝑣⃗𝑣 direction. The discretization process transforms the original surface into 
a poly-mesh composed of quad-meshes. Finally, the program identifies the largest and smallest 
panel that resulted from the panelization and outputs their dimensions upon request. 

The second step planarizes the quad-panels of the polymesh using algorithms that implement S-
isothermic planarization techniques. The proposed tool used Kangaroo Physics 2.0, a dynamic 
physics simulator for Rhino/Grasshopper that provides access to such algorithms. S-isothermic 
discretization is a quasi-isothermic remeshing technique; thus, it does not ensure that all the 
resulting quad-meshes are perfectly planar. Such algorithms only guarantee quasi-planarity, since 
there are surfaces that are impossible to be subdivided into a set of planar quads. Thus, after the 
first planarization, the proposed approach tests the planarity of each quad-panel using a dedicated 
procedure. The planarization test calculates the dot product of the normal vector of the plane 
created by three points of the quad with the vector formed between two points of the quad. The 
test always returns a Boolean value; if the result of the dot product is 0 or below the epsilon (ε) 
that EnergyPlus uses to approximate 0 in vertex coordinates, 1.0-8, the test returns “True”; 
otherwise, it returns “False.” If all the planarity test returns are “True” for all quad-mesh panels, 
Kangaroo's remeshing settings are validated, and the parsed surface is valid for a BEM. If not, the 
system reapplies the planarization procedure iteratively until the resulting poly-mesh is fully 
composed by planar surfaces or it reaches the number of remeshing iterations defined by the user. 
In the unlikely case that this approach does not generate a fully planar poly-mesh, the system 
identifies the non-planar quads and subdivides them into triangular planar meshes. Figure 5-6 
shows the output from both the panel sizing algorithm and the planarity test executed in an 
intermediate step of the planarization process of a quad-mesh composed of 120 panels. 

 
Figure 5-6. Left: the design system identifies the location and the dimensions of the biggest (orange) and smallest 

(purple) glass panel. In this way, the user can assess the construction feasibility of the surface rationalization. Right: 
planarity test of an intermediary step of the planarization process. The red color flags non-planar quad-meshes, 

while the green color indicates planar ones. 
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5.3.2 Design of experiments 

To test and validate the proposed approach, the following section presents the application of the 
goal-oriented design system to a hypothetical design scenario. The design scenario consists of 
optimizing the distribution of glass frit densities to minimize building energy consumption in three 
instances of a parametric glass pavilion. The three pavilions are variations of a semi-ellipsoid 
shape. This type of spheroid is a good example of a double-curved non-developable quadratic 
surface commonly used as the starting point in the development of complex building envelopes. 
In fact, it is possible to find different variations and deformations of ellipsoids and semi-ellipsoids 
in contemporary architectural production. Figure 5-7 presents a collage that shows different 
buildings with an overall geometry that is based on a semi-ellipsoid. It shows a wide range of 
approaches on how to use and adapt this base geometry to different programmatic, structural, and 
spatial requirements. The Rika Mansueto Library – Figure 5-7, a) – located in Chicago, IL, and 
the National Wales Botanical Gardens – Figure 5-7, b) – situated at the welsh village of 
Llanarthney, UK, are examples of grid shell glass canopies that apply the semi-ellipsoid geometry 
in a more literal way. Foster and Partners (2000) designed the latter canopy while the Chicago 
based firm Murphy/Jahn Architects designed the former (2011). Figure 5-7, c) and d), presents a 
deformed egg-shaped building designed by Renzo Piano Building Workshop (RBWP) for the 
Pathé Foundation in Paris, France, as an example of a deformed variation and a freer application 
of the ellipsoid base geometry. There are also small-scale buildings such as architectural pods and 
pavilions that are good examples of derivations of the ellipsoid’s double-curvature geometry. 
Figure 5-7 presents two examples of this type of pavilions: the Cella Bar located in the Azorean 
island of Pico designed by the joint venture FCC Arquitectura + Paulo Lobo (2015) – Figure 5-7, 
e) –, and Achim Menges’ (2019) proposal for the Pavillion of the German State of Baden-
Wuerttemberg in the World EXPO 2020 at Dubai – Figure 5-7, f). 

 

Figure 5-7. Examples of buildings with double curved envelopes formulated either using more direct applications of 
ellipsoid-based geometries or deformations of it: a) Rika Mansueto Library, Chicago, IL (Murphy/Jahn, 2011); b) 

National Wales Botanical Gardens, Llanarthney, UK (Foster and Partners, 2000); c) and d) Pathé Foundation, Paris, 
France (RPBW, 2014); e) Cella bar, Pico, Portugal (FCC Arquitectura, 2015); f) proposal for the World EXPO 2020 

Baden-Wuerttemberg German state pavilion (Menges, 2019). All images rights reserved. 



92 
 

The base semi-ellipsoid used in the experiment has a 30 m long primary axis, a 15 m long 
secondary axis with, and a 7.5m height apex. In each case, the primary axis aligns with the North-
South cardinal direction: poles are cut to provide two entrances on the North and South ends. This 
base geometry constitutes Solution A. Solution B is a deformation of solution A that resulted from 
the rescaling of the ellipsoid section along the primary axis. The “peanut” shape of this solution 
promotes self-shading and, consequently, different patterns of solar radiation across the building 
skin that will cause local variations in glass fritting coverage. Finally, Solution C is the result of 
the deformation of the main meridians of the ellipsoid. Since it has different curvatures in both 
directions, it is the most challenging model to parse into a BEM. Figure 5-8 shows the initial 
NURBS geometry of all the solutions of the case study. Table 5-1 reports the floor area, surface 
area, volume, and form factor (surface-to-volume ratio) of each pavilion. 

 

Figure 5-8. The base semi-ellipsoid and the three pavilions derived from it. 

Table 5-1. Floor area, volume, surface area, and form factor of each solution. 

 Floor Area (m2) Volume (m3) Surface area (m2) Form factor 
Solution A 339.5 1646.8 583.2 0.35 
Solution B 302.5 1182.6 508.3 0.43 
Solution C 321.9 1211.5 497.8 0.41 

 
The system automatically parsed the geometry of the three parametric instances into valid BEMs. 
Figure 5-9 illustrates both the original surfaces and the resulting planar quad-meshes of applying 
S-isothermic planarization algorithms available in Kangaroo. They constitute both the 
construction/fabrication model for the glass panels and the geometric model for EnergyPlus. 
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Figure 5-9. Original surfaces and the resulting S-isothermic planar quad-meshes. The processed meshes are ready to 
be fed to EnergyPlus, a popular thermal and whole-building energy simulation software. 

The modeling of parametric glass fritting panels, which can vary their fritting density, is 
challenging in goal-oriented design processes based on BES. Glass frit panels are Complex 
Fenestration Systems, which are properly modeled in EnergyPlus using BSDF material 
descriptions. As mentioned in section 5.2, either synthetically generated BSDF data or BSDF 
descriptions in BES entails a considerable computational overhead that hampers their use in 
optimization-based procedures. Thus, in order to reduce the simulation time this work assumes a 
rough simplification; every glass panel has a scalable centered opaque EnergyPlus shading object 
with Solar and Visible Reflectance of white ceramic material (≈ 0.7). By scaling every shading 
object, it was possible to infer the glass frit percentage applied to each glass panel. The system 
then reprocessed the simplified shades back to the digital fabrication model as fritting patterns 
through a dedicated set of scripted functions that allows the user to control the size and shape of 
the glass frit pattern. Figure 5-10 shows a BEM with shading objects equivalent to a fritting density 
of 60% and their translation to a possible fritting pattern within the digital fabrication model. 
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Figure 5-10. EnergyPlus shading objects (60% shading ratio) and their remapping to a possible glass fritting pattern. 

After generating a valid BEM by automatically parsing the initial geometry of the pavilions, the 
system runs energy and solar radiation simulations using EnergyPlus and Radiance, respectively. 
The location and climatic data used in this experiment refers to the Typical Meteorological Year 
(TMY) of Logan International Airport, Boston, USA. Although having a cold climate, Boston 
experiences hot and humid summers; thus, it provides a useful environment to test both winter and 
summer conditions. Summer thermal performance was of importance because the proposed system 
aims for solar control optimization, a passive cooling design strategy. 

Triple Low-e glazing assemblies, with argon and aluminum frames with thermal breaks, compose 
the all-glass envelope. This type of glazing was chosen for its high thermal performance, 
specifically its low thermal conductivity (U-factor), which is appropriate for the climate of Boston. 
Finally, the ground floor is a heavyweight concrete slab. 

To avoid panel-by-panel glass frit density optimization, the system automatically clusters panels 
according to their irradiance values (kWh/m2). This dimensionality reduction technique aims to 
reduce the number of design variables controlled by the GA. Although this strategy constrains the 
design solution space, it facilitates the search process without losing too much granularity. Thus, 
before running a whole energy building simulation, an ancillary Radiance simulation determines 
the cumulative incident solar radiation per panel for a specific selected analysis time period. To 
conduct this solar analysis, the system places a Radiance sensor node in the area centroid of each 
panel. Based on the range of solar radiation results, the system groups the different panels into 5 
bins. Table 5-2 shows the irradiance binning process for each design alternative. Figure 5-11 pairs 
the results of annual solar radiation per panel in each design alternative with the result of the 
clustering process that groups panels with similar solar radiation (SR) or irradiance. 

Table 5-2. Solar radiation bins for each pavilion. 

 

SR: Full 
range 

(kWh/m2) 

Bin I 
SR: 0-20% 
(kWh/m2) 

Bin II 
SR: 20-40% 

(kWh/m2) 

Bin III 
SR: 40-60% 

(kWh/m2) 

Bin IV 
SR: 60-80% 

(kWh/m2) 

Bin V 
SR: 80-100% 

(kWh/m2) 
Solution A  [417, 1636]  [417, 1636[ [661, 905[ [905, 1148[ [1148, 1392[ [1392, 1636] 
Solution B  [593, 1647] [593, 804[ [804, 1015[ [1015, 1225[ [1225, 1436[ [1436, 1647] 
Solution C [830, 1613] [830, 987[ [987, 1143[ [1143, 1230[ [1230, 1456[ [1456,1613] 
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Figure 5-11. Top and middle: annual solar radiation per panel mapped in the three pavilions. Bottom: the five glass 
panel clusters based on the annual irradiance of Boston, MA. 

The percentages of glass fritting coverage in each panel cluster make up the decision variables (x) 
of the optimization problem. The experiment used Galapagos, a Standard Genetic Algorithm 
(SGA) available in Grasshopper to minimize energy consumption. The analysis of building energy 
performance considered three main energy uses: heating, cooling, and lighting. The experiment 
excluded equipment/process loads because they do not depend on environmental factors or on 
building envelope characteristics but on the type of equipment and appliances used, as well as on 
occupancy schedules. Thus, the total building energy consumption is the sum of hourly energy for 
heating, cooling, and lighting. Considering that the different design alternatives have different 
areas and volumes, the experiment normalized energy consumption results per area unit, using the 
Energy Use Intensity (EUI - kWh/m2) metric, and per volume unit, by modifying the previous 
metric (EUI(v) - kWh/m3). In this way, the results of the different solutions are comparable.  

EnergyPlus simulated the energy performance of each solution generated by the SGA. The main 
simulation assumptions and settings were the following: (i) a simplified Variable Air Volume 
(VAV) HVAC system, the Ideal Loads Air Zone System (ILAS) to calculate sensible cooling and 
heating loads and energy consumption for space conditioning; (ii) heating setpoint set to 20 ºC and 
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cooling setpoint set to 26 ºC; (iii) infiltration rate of 0.3 Air Changes per Hour (ACH), which 
represents an airtight building; (iv) a power density for light fixtures of 11.4 W/m2 (a typical value 
for fluorescent light bulbs); and finally, (v) an illuminance setpoint of 300 lux to control the 
dimmable lighting system used in the model. 

Finally, the performance-based design exploration of this experiment included two main tasks: 

An annual parametric study of different shading conditions – before setting an automatic 
optimization procedure for shading/fritting density, the proposed approach generated and 
simulated three different glass frit coverage scenarios to understand the baseline energy profile of 
the three pavilions better. The different glass fritting alternatives were as follows: (i) no fritting 
(base case), (ii) 40% evenly distributed fritting, and (iii) a fritting gradient determined by solar 
radiation (SR) measurements. Table 5-3 shows the distribution of glass fritting in different glass 
clusters of the latter glass fritting alternative. 

Table 5-3. Distribution of glass frit densities in the different panel clusters with varying fritting gradient, determined 
by incident solar radiation.  

 Bin I  Bin II Bin III Bin IV Bin V 

% of frit coverage 25 40 55 70 85 
 

By simulating different design solutions with similar areas and volumes, it is possible to assess 
how form affects solar irradiance and total energy consumption, as well as the impact of different 
shading schemes in the overall energy profile of each case. 

Optimization of shading/fritting percentage for cooling energy consumption – using the lessons 
learned from the previous task, the proposed generative design system optimized the glass fritting 
densities in the different clusters to reduce cooling energy. The experiment focuses on cooling 
energy demand because the shading effect introduced by glass frit is a strategy that mainly reduces 
solar heat gains. Thus, the cooling period of the year considered for the optimization was May 
20th to September 21st, which includes the end of spring and the whole of summer. 

5.3.3 Results 

The following presents the results of the two-phased experiment. 

Parametric study of different shading/glass frit conditions  

Figures 5-11, 5-12, and 5-13 illustrate the annual solar radiation analysis for Boston, and the three 
different glass fritting strategies applied for each design alternative. Figure 5-11 (see section 5.3.2 
- Experiment) shows how the geometric differences in tilt, angle, and self-shading patterns 
generate different irradiance distributions among the three tested forms. Thus, although these 
tested forms derive from the same archetypical geometry, their annual irradiance distributions are 
sufficiently diverse to result in mutually unique glass fritting patterns. Figure 5-12 illustrates the 
resultant patterns given a desired homogeneous glass fritting coverage of 40% per panel. In 
contrast, Figure 5-13 shows the shading pattern given a gradient glass fritting strategy based on 
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solar radiation values, where incident radiation acts as an attractor/repeller that controls the frit 
coverage for each panel cluster.  

 

Figure 5-12. The three design alternatives with a homogeneous 40 % glass fritting distribution. 

 

Figure 5-13. The gradient glass fritting solution is modeled with the simplified modeling approach of glass frit 
coverage composed by quasi-coplanar EnergyPlus shading objects. 
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Table 5-4 reports both EUI and EUI(v) annual results of each solution. Figures 5-14 and 5-15 
present a bar chart that compares the energy performance of the three design alternatives, 
respectively, in terms of EUI (kWh/m2) and EUI(v) (kWh/m3).  

Table 5-4. EUI and EUI(v) annual results of the parametric study conducted in each design alternative.  

 
Solution A Solution B Solution C 

No 
shading  

40% 
shading 

Gradient 
shading 

No 
shading  

40% 
shading 

Gradient 
shading 

No 
shading  

40% 
shading 

Gradient 
shading 

EUI - kWh/m2 
Heating 105.1 110.5 128.9 53.6 54.5 64.7 52.8 57.0 62.2 
Cooling 29.6 22.2 11.4 49.2 40.5 25.5 45.1 35.2 26.5 
Lighting 10.5 10.5 10.7 11.4 11.5 11.6 11.0 12.0 11.1 

 EUI [total] 145.2 143.3 151.0 114.2 106.5 101.8 108.9 104.3 99.9 
EUI(v) - kWh/m3   

 Heating 21.7 22.8 26.6 13.7 13.9 16.6 14.0 15.2 16.5 
Cooling 6.1 4.6 2.4 12.6 10.4 6.5 11.97 9.4 7.0 
Lighting 2.2 2.2 2.2 2.9 2.9 3.0 2.9 3.2 3.0 

EUI(v) [total] 29.9 29.5 31.1 29.2 27.3 26.1 28.9 27.7 26.5 
 

 

Figure 5-14. Annual EUI (kWh/m2) of the different design alternatives in the parametric study. 
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Figure 5-15. Annual EUI(v) (kWh/m3) of the different design alternatives in the parametric study.  

As Table 5-4 and the charts of Figures 5-14 and 5-15 show, solution A has the highest heating 
energy consumption, which results from the small solar exposure that this solution has on the 
northern part of its envelope. Solutions A and B have similar irradiance distributions on their north-
facing regions; however, solution B compensates for the associated heat losses via two south-
facing areas that receive high solar gains. Solution C has the lowest heating energy consumption 
of the three test cases due to a more uniform solar irradiance distribution, which reduces the 
contrast between heat losses and gains. In all cases, shading is effective in reducing cooling loads, 
but it also increases the heating demands. The gradient shading solution is the most effective in 
reducing cooling energy consumption, thus supporting the intuition that the panels that need more 
shade are the ones that are more exposed to the sun. The small variation on lighting energy 
consumption is a direct result of the large glazed area of all solutions, and of the glass fritting 
strategy blocks the direct sun by diffusing it, thus promoting diffuse light across all solutions. 
Moreover, the differences between lighting energy consumption are insignificant relative to those 
of the space conditioning end-uses, i.e., heating and cooling. 

Figures 5-14 and 5-15 indicate that the significant reduction of cooling energy consumption 
provided by the gradient solution is not enough to offset heating demand. From this more holistic 
perspective, the 40% homogeneous shading solution is slightly more efficient, as indicated by its 
lower EUI and EUI(v). 

This parametric study shows that providing a static system to control solar gains in a specific all-
glass building geometry can be effective year-round, even in a climate like Boston. The experiment 
shows that even a homogeneous 40% shading ratio improves overall energy consumption. This 
supports the choice to run the optimization cycle for the summer period only to find the best glass 
frit strategy for reducing cooling loads. 
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Optimization of glass frit percentage for cooling energy consumption  

The second phase of the experiment consisted of conducting two fully automated search 
procedures using Galapagos’ standard GA. The first, Opt#1, does not have restrictions on the 
parameters that control the glass frit coverage for each group of panels receiving the same 
irradiance range. In contrast, the second, Opt#2, entails some constraints assigned to those 
parameters, which minimize shading in panels that are less exposed to solar radiation, thus 
promoting a gradient shading pattern. Since glass fritting is a design strategy that supports passive 
cooling through shading and blocking unwanted solar radiation, the optimization period comprises 
the cooling season in Boston - end of spring, May 20th, to the end of summer, September 21st.  

Figures 5-16 and 5-17 show the results of the unconstrained optimization experiment, Opt#1. 
Figure 5-17 shows the remapping of glass frit coverage ratios, presented in Figure 5-16, to a 
specific frit pattern. Figures 5-18 and 5-19 show the results of the second optimization experiment, 
Opt#2. 

 

Figure 5-16. The result of the unconstrained optimization experiment Opt#1 using the simplified modeling approach 
of glass frit coverage composed by quasi-coplanar EnergyPlus shading objects. 
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Figure 5-17. Opt#1 resulting shading ratio remapped as a fritting pattern. Shading ratio label indicates the average of 
the different ratios attributed to each panel cluster.  

 

Figure 5-18. The result of the constrained optimization experiment Opt#2 using the simplified modeling approach of 
glass frit coverage composed by quasi-coplanar EnergyPlus shading objects.  
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Figure 5-19. Left: Opt#2 resulting shading ratio remapped as a fritting pattern. Shading ratio label indicates the 
average of the different glass fritting ratios attributed to each panel cluster. Right: Examples of fritting patterns 

generated with the remapping algorithm. All three options have the same shading ratio, 70%.  

Opt#1 recommended solution is counterintuitive because it provides more glass frit to the panels 
that are less exposed to solar radiation. To reduce cooling loads, the GA blocked the panels with 
the largest area, except the ones that are more exposed to the sun. This optimization run indicates 
that the GA probably found a local minimum and that the process needed more guidance. In Opt#2, 
the constraints imposed on the search lead the GA to find a more expectable solution that places 
the higher shading ratio in the areas that report higher irradiance values.  

Table 5-5, Figure 5-20, and Figure 5-21 compare the energy performance of the three designs for 
no shading (baseline), Opt#1, and Opt#2 in the period under study. The comparison shows that 
Opt#2 is extremely effective in reducing cooling loads in Solution A, slightly effective in Solution 
B and not as effective as Opt#1 in Solution C.  

However, the results of solution A and B show that steering the optimization process, through 
constraints based on preliminary parametric analysis, can lead to better results that are more 
energy-efficient and closer to the designer’s intents. In sum, using a metaheuristic approach based 
on GA, it is possible to search a considerable large solution space and find efficient design 
strategies that improve the energy performance of all glazing pavilions in the summer period. 
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Table 5-5. EUI and EUI(v) of each solution for no shading, Opt#1, and Opt#2. 

  
Solution A Solution B Solution C 

No 
shading  Opt#1 Opt#2 No 

shading  Opt#1 Opt#2 No 
shading  Opt#1 Opt#2 

EUI - kWh/m2 
Heating 0.37 0.46 0.54 0.08 0.13 0.11 0.07 0.11 0.09 
Cooling 24.24 6.59 4.34 34.65 12.05 11.26 32.85 6.47 12.47 
Lighting 4.28 4.29 4.41 4.55 4.49 4.58 4.34 4.42 4.46 

 EUI [total] 28.89 11.33 9.29 39.28 16.66 15.95 37.26 11.00 17.01 
EUI(v) - kWh/m3   

 Heating 0.08 0.09 0.11 0.02 0.03 0.03 0.02 0.03 0.02 
Cooling 5.00 1.36 0.90 8.87 3.08 2.88 8.73 1.72 3.31 
Lighting 0.88 0.88 0.91 1.16 1.15 1.17 1.15 1.18 1.18 

EUI(v) [total] 5.96 2.34 1.92 10.05 4.26 4.08 9.90 2.92 4.52 
 

 

Figure 5-20. Annual EUI of the different design alternatives in the optimization experiment. 
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Figure 5-21. Annual EUI(v) (kWh/m3) of the different design alternatives in the optimization experiment.  

5.3.4 Discussion 

Both phases of the experiment demonstrated that the optimization of individualized fritting 
patterns in glass panels requires BEMs with a geometry that captures at least the essential features 
of the initial models. Thus, they reinforce the usefulness of the adopted strategy in automatically 
parsing the geometry of a buildable panelized envelope geometry with minimal formal deviations. 

The parametric study tested three shading scenarios for each of the following glass fritting 
solutions: no shading, 40% homogeneous shading for the glass panels, and a gradient shading 
approach based on incident solar radiation incident over the building envelope. The goal was to 
test the efficacy of a shading strategy based on a glass frit pattern to reduce annual energy 
consumption in Boston, Massachusetts. Boston experiences all seasons. The summers are warm to 
hot and humid, with periods that can exceed 32 ºC, while winters are cold, with freezing 
temperatures from November through the end of March. Typically, Boston’s climate is heating-
dominated, but because it also experiences hot and humid summers, cooling loads are relevant in 
this period. Thus, and considering that this work focused on whole glass pavilions, controlling 
solar gains is also an important energy conservation measure. 

The annual parametric simulations show two different patterns. Table 5-4, Figure 5-14, and Figure 
5-15 show that heating loads dominate Solution A, while in Solutions B and C, the difference 
between heating and cooling loads is much smaller. There are several reasons for this, but it seems 
that the relationship between surface area and volume plays an important role. Because it has the 
largest volume of the three, Solution A has the biggest volume of air to heat; simultaneously, it 
has the largest surface area of the three solutions, which means that it is more sensitive to heat loss. 
The result is significantly higher heating than cooling loads.  

Moreover, because Solution A does not have self-shading and has a more exposed surface area, it 
also requires a higher percentage of glass frit in the panels of the gradient shading scenario. This 
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eventually blocks desired solar heat gains in the winter, which also contributes to the relatively 
high heating loads. That is why the gradient shading scenario is the only one where glass frit is 
unfavorable. The volumes and surface areas of Solutions B and C are smaller; thus they require a 
smaller heating load and experience less heat dissipation than solution A. Self-shading and a more 
even distribution of solar radiation on the envelopes of solutions B and C help distribute a more 
balanced frit pattern in the gradient shading scenario. 

Table 5-6 shows the percentage of improvement (% of improvement) of EUI by adding shading to 
the glass pavilions. Chapter 4, section 4.5.3, equation (4-7) describes the calculation of % of 
improvement as proposed in ASHRAE standard 90.1 (ASHRAE, 2013). In this particular case the 
equation is reformulated as follows (5-1): 

% 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑝𝑝𝑟𝑟𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸
  (5-1) 

The results presented in Table 5-6 show that shading through glass frit is an effective year-round 
passive strategy in all solutions. Even solution A sees a small benefit from 40% homogeneous 
shading in its glass panels, indicating that glass frit reduces energy consumption in cases with a 
large glazed exposed surface area even in climates with cold winters. The table also shows that 
deriving a shading pattern based on solar radiation distributions can be more efficient than using 
homogeneous shading factors. These results reinforced the need for the second set of tests that 
aimed to optimize the glass frit in each glass panel cluster. 

 Table 5-6. Percentage of improvement in energy consumption in the parametric study of different glass fritting 
coverage. The calculation of percentage of improvement considered two scenarios: (i) 40% homogeneous and the 

gradient shading against no shading; (ii) gradient shading against 40% homogenous shading.  

 
% of improvement 

(Base case: No shading) 
% of improvement 

(Base case: 40% homogeneous shading)  
 40% homogeneous shading Gradient Gradient 

Solution A 1% -4% -5% 
Solution B 7% 11% 4% 
Solution C 5% 8% 3% 

 

Because shading is a passive cooling strategy, the optimization experiment aimed to determine the 
efficacy of glass fritting in reducing cooling energy demand in a whole glass pavilion in Boston. 
Thus, the period considered in optimization corresponds to Boston’s warm months. This phase of 
the experiment entailed two optimization runs. The first, Opt#1, did not constrain the amount of 
shading for each panel cluster. Figure 5-16 shows that the shading optimization prioritized panel 
cluster area rather than the amount of solar radiation incident on the building envelope. To test the 
quality of the search in Opt#1, a second optimization (Opt#2) imposed a more direct relationship 
between incident solar radiation and the amount of glass frit. 

Table 5-7 compares both Opt#1 and Opt#2 to a non-shaded base case, as well as to each other. The 
automated search procedure provided by the GA made it possible to considerably reduce the 
overall energy consumption of the non-shaded base cases. 
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Table 5-7. Percentage of improvement of energy consumption in the optimization study. The calculation of 
percentage of improvement considered the following scenarios: (i) Opt#1 and Opt#2 against no shading; (ii) Opt#2 

against Opt#1. 

 
% of improvement 

(Base case: No shading) 
% of improvement 
(Base case: Opt#1)  

 Opt#1 Opt#2 Opt#2 
Solution A 61% 68% 18% 
Solution B 58% 59% 4% 
Solution C 71% 54% -55% 

 

As expected, the optimization produced a considerable improvement in Solution A in both 
optimization procedures. This improvement is related to the fact that Solution A has the largest 
surface area and, consequently, the most exposed envelope of the three scenarios. Comparing the 
two optimization strategies, constraining the search procedure to promote a gradient glass frit 
pattern based on the solar radiation distribution yields better results in solutions A and B. In 
solution A, Opt#2 was able to find a solution that is 18% better than the Opt#1. In the case of 
solution C, Opt#2 found a worst solution than Opt#1, indicating that the success of steering the 
search by imposing constraints in Opt#2 is closely related to the amount of exposed surface area. 
Thus, the poor performance of Opt#2 in solution C could be related to that scenario’s lower solar 
radiation variance, which makes this option a less suitable candidate for a gradient-based shading 
approach. 

The different experiments demonstrated the benefit of using goal-oriented methods to understand 
the complex trade-offs associated with energy-related problems in buildings. Unexpected results 
from these methods could inform the design process with new perspectives and different solutions 
to solve specific design problems. The results also indicate that in some cases steering the 
optimization process by constraining certain design parameters improves the quality of the search. 
Finally, the experiments also showed how the energy performance approach can inform the 
physical and aesthetic properties of the building envelope with different densities of fritting 
patterns. 

Despite the robustness of the proposed method in parsing complex double-curved geometry for 
BES, the resulting integration in a goal-oriented design workflow presents a few drawbacks, some 
already mentioned and discussed in section 5.2. The main limitations are: (i) efficiency of the 
search; (ii) slow simulation run times that make it difficult to use the proposed approach at early 
design phases; (iii) the oversimplification used in modeling a complex glass-frit system might 
affect the accuracy of the results.  

Since the proposed generative design system is search mechanism agnostic, it is possible to 
improve the efficiency of the search by using a more sophisticated optimization metaheuristic. 
Thus, addressing the first limitation is not vital. However, the two other limitations are intrinsically 
related to the geometric modeling of BEMs, a task to tackle up-front. Thus, the following sections 
of this chapter present two strategies that specifically address those limitations. Section 5.6 - 
Concluding remarks - discusses in detail Strategy A limitations.  
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5.4 Strategy B: Automatically simplify building geometry for efficient whole-
building energy simulations 

The previous section successfully proposed a method that automatically generates valid geometric 
descriptions of complex building envelopes with a reduced formal gap between the initial 
geometry and the resulting BEM. This section focuses on extending that method to produce 
equivalent and more efficient geometric descriptions that result in valid, accurate, and faster 
whole-building energy simulations. Therefore, this section presents and discusses approaches that 
automatically simplify the geometry of either single or multi-thermal zone BEM, by using the 
following two approaches: 

1) Reduce the amount of geometry, i.e., the number and density of mesh polygons, particularly 
in BEM that entail complex (double-) curved building envelopes.  

2) Decompose complex multi-zone BEM into simpler, faster to run, sets of representative 
single thermal zone BEM. 

5.4.1 Automatically reducing geometry 

Current parametric design tools and visual programming languages for popular CAD/BIM tools 
(e.g., Dynamo for Revit and Grasshopper for Rhinoceros 3D) are becoming increasingly popular 
among architects. One of the reasons for this trend is because such tools facilitate the quick 
development and exploration of building geometries of considerable formal complexity and 
sophistication at early design phases. Unfortunately, the formal scope of state-of-the-art and 
validated BEM tools, such as EnergyPlus, mainly focus on simple box-like building geometries. 
As a result, BES tools can quickly process box-like buildings but have difficulties in providing 
feedback in useful time if the simulation model mesh includes many polygons. The following work 
focuses on automatically simplifying BEM geometry. Thus, the goal is to automatically generate 
geometric surrogates for BES, particularly if the building geometry entails either curved or double-
curved surfaces or both. The resulting geometric-surrogates based BEMs are simulation models 
with coarser geometric representations that capture the essential formal features of a more refined 
building representation. They are faster to run, and although they sacrifice some accuracy, they do 
not introduce relevant deviations to simulation output. To pursue the objective of automating the 
generation of BEMs that have a more efficient geometric description, the following work aims to 
answer two essential research questions: 

1) How to automatically simplify early-stage building models, namely those with single- or 
double-curved envelopes?  

2) How far can this simplification go?  

To answer these questions, the following sections of this subchapter present two geometry 
simplification heuristics for BEMs. The proposed heuristics and subsequent implementation result 
from a collaborative research effort between the author of this dissertation and his advisers, 
published in 2019 (Santos, Schleicher and Caldas, 2019). The first is a tessellation procedure that 
generates a low-poly mesh version of the building’s envelope while preserving the original 
volume. The second proposes a zone sampling technique that reduces a complex multi-zone BEM 
to its most representative parts. The result is a novel digital tool that automatically simplifies 
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complex and convoluted building envelopes for BES. Two different experiments tested the 
proposed method and its computational implementation. The analysis and discussion of the 
experiments results led to potential modeling recommendations for mesh reduction in BES, 
particularly at early design stages. 

5.4.2 Methods to reduce the geometric complexity of complex building forms for Building 
Energy Simulations 

This work proposes the computational implementation of the two heuristics for automated 
simplification of complex curved building envelopes in BES. The first heuristic uses the method 
presented in section 5.3 to tessellate the building’s envelope into a simpler low-polygon mesh, 
composed of planar faces. By dividing the original surface width (u) and length (v) the proposed 
approach generates an approximated mesh formed by quadrilateral faces, i.e., quads. If planar 
quads do not entirely compose the resulting mesh, the heuristic remeshes the envelope surface 
using a quasi-isothermic planarization algorithm (Sechelmann, Rörig and Bobenko, 2013; Rörig 
et al., 2015). If the planarization step is not successful in planarizing all quads, the heuristic will 
split the resulting non-planar quads into tri-meshes. The simplification of the building’s envelope 
into a low-poly mesh has a direct impact on the original volume of air of the thermal zone or zones, 
thus introducing deviations to the heat balance calculation. To avoid volume deviations, our 
approach automatically scales the simplified thermal model to match the original volume. Equation 
(5-2) determines the factor of the uniform 3D scaling (𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) for the x-, y-, and z-directions. 

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  �
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
3

 (5-2) 

The second proposed approach simplifies multi-zone BEMs by decomposing them into a set of 
representative single-zone models. The user can manually identify and isolate the sample thermal 
zones by drawing a polygon over the model or let the system automatically find and isolate the 
representative thermal parts. Currently, the implemented heuristic uses information regarding 
orientation, zone program, schedules, loads, and other zone properties such as heating and cooling 
setpoints to perform this automatic subdivision. After subdividing the BEM into representative 
single thermal zones (𝑍𝑍𝑖𝑖), the system calculates the original volume of influence of each 
representative zone (𝑉𝑉𝑧𝑧𝑖𝑖) and closes the sampled simplified thermal model with adiabatic surfaces. 
Then, the tool simulates each single thermal zone in parallel and normalizes the simulation outputs 
in a volume-based Energy Use Intensity (𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉), as an alternative to the typical EUI that normalizes 
energy by unit area. Equation (5-3) is then used to find the energy consumption of any energy end-
use of the entire building, which sums the energy consumption of all representative zones 𝑍𝑍𝑖𝑖, which 
in turn result from the multiplication of the correspondent 𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉 by 𝑉𝑉𝑧𝑧𝑖𝑖. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑍𝑍𝑖𝑖) =  � 𝑉𝑉𝑧𝑧𝑖𝑖  ×  𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉(𝑉𝑉𝑧𝑧𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

  (5-3) 

The following section presents in detail two experiments that tested the effectiveness of the two 
simplification approaches in automatically simplifying both single- and multi-thermal zone BEMs. 
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5.4.3 Design of experiments 

Two experiments assessed the performance of the proposed approaches in automatically 
simplifying BEM in terms of run time and energy simulation output deviation. Both compared the 
simplified BEM (i.e., a BEM with a coarser geometric resolution) results with the ones from a 
BEM with a high geometric resolution using the following metrics: simulation time, measured in 
seconds (s), the Coefficient of Variation of the Root Mean Squared Error (CVRMSE), and 
Normalized Mean Bias Error (NMBE). In this case, NMBE provides the average of the errors of 
the BEMs with simplified versions of the building envelope (the simplified models) normalized 
by the mean of the results of a BEM with a highly detailed envelope representation, the benchmark 
model. In NMBE, negative values mean over-prediction, while positive values indicate 
underprediction. Because NMBE is susceptible to the cancelation effect, it needs to be 
complemented with CVRMSE, a statistical index that is not affected by it. In this experiment, 
CVRMSE measures the variability of the errors between the benchmark BEM and the different 
simplified BEMs. Chapter 4, section 4.5.3, equation (4-6) describes NMBE while equation (4-3) 
CVRMSE. 

Table 5-8 presents ASHRAE Guideline 14 (ASHRAE, 2002) acceptability thresholds for 
CVRMSE and NMBE for hourly building energy simulations. Although these guidelines directly 
apply in BES calibration studies (i.e., compare BEM results with measured data), this work uses 
them to study the impact of different geometric resolutions of complex (double-) curved building 
envelopes in simulation outputs. The assumption is the higher the geometric resolution of a BEM 
the higher the accuracy of the simulation results. Thus, the benchmark case used to compare 
different levels of resolution is the BEM with the highest resolution produced by the proposed 
approach. 

Table 5-8. ASHRAE Guideline 14 for whole-building energy simulation calibration criteria. 

Data type NMBE (%) CVRMSE (%) 
Hourly ± 10 % 30 % 

 

EnergyPlus (Crawley et al., 2001) was the whole-building energy software used to conduct all 
simulations, and Rhinoceros 3D was the CAD modeling software used to generate the initial 
geometry of the models. The implementation of the proposed BEM simplification methods used 
both visual and textual programming techniques by combining Grasshopper with Python.  

All simulations used TMY data from Oakland’s Airport. Table 5-9 presents the thermal and optical 
properties of the building envelope used in both experiments. The thermal properties of the opaque 
surfaces align with ASHRAE 90.1 standard (ASHRAE, 2013) recommendations for Oakland’s 
ASHRAE climate zone (iii). Because the specified glazing assembly for climate zone 3 by 
ASHRAE 90.1 standard has a low VLT, this work uses the thermal, solar, and optical properties 
of a clear, low-emissivity double-glazed unit. The investigation assumes that such glazing unit 
balances well thermal and daylight performance. The use of the Façade Design Tool, an online 
recommendation system for high performing glazed façade systems based on COMFEN analysis 
software (Hitchcock et al., 2008), supported the selection of the used glazing properties. 
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 Table 5-9. Thermal, solar, and optical properties used in the experiments. 

Opaque Surfaces 
Building Element/Surface R-value (m2∙K/W) 

Floors 1.8 
Walls 1.95 
Roof 1.95 

Glazed/Transparent Surfaces 
U value (W/m2∙K) 2.56 

Solar Heat Gain Coefficient (SHGC) 0.27 
Visible Light Transmittance (VLT) 0.64 

 

Table 5-10 lists the main simulation parameters used in the EnergyPlus simulations, including 
internal loads, HVAC system properties, thermostat, infiltration and ventilation rates, and 
daylighting controls. 

Table 5-10. EnergyPlus simulation parameters.  

Internal Loads 
People (ppl) 0.05 ppl/m2, with a typical office schedule 
Lights 11.8 W/m2, with a typical office schedule and daylight dimming 
Equipment 1.95 

HVAC System 
Type 2.56 
Cooling COP* 0.27 
Heating COP* 0.64 
Economizer None 
Outdoor Air 0.14 cfm** per person 

Thermostat 
Cooling setpoint 26 ⁰C, with a typical office schedule 
Cooling setback 32 ⁰C 
Heating setpoint 21 ⁰C, with a typical office schedule 
Heating setback 18 ⁰C 

Daylight Controls 
Type Continuous off dimming control with typical office schedule 
Minimum Input Power Fraction 0.1 
Minimum Light Output Fraction 0.1 
Illuminance Setpoint 300 lux 
Zone Fraction per daylight sensor 1 / Number of daylight sensors  

*Coefficient of Performance | ** cubic feet per minute 
 
The following discusses in more detail the setting of each experiment. 
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Experiment 1 – reducing mesh density in Building Energy Models 

The first experiment assesses the impact of simplifying complex double-curved building envelopes 
in BES outputs. The goal of this experiment is to find the optimal degree of mesh reduction that 
improves run time with minimal impact in simulation output. This experiment used the NURBS 
massing model illustrated in Figure 5-22. This massing model is similar to the peanut-like building 
of section 5.3 - Solution B. It encloses a single thermal zone that corresponds to a 1700 m3 double-
curved pavilion with a varying depth (7.5 m to 16.8 m), 25 m of length, and height (3.75 m to 8.4 
m).  

 

Figure 5-22. Initial massing model composed of Non-Uniform Rational Basis Spline (NURBS) surfaces.  

This particular shape was selected for two reasons: first, its double-curved envelope is challenging 
to model for BES; second, its overall form alludes to some existing free-form built buildings, 
namely the Landesgartenschau Exhibition Hall pavilion in Stuttgart, Germany (Krieg et al., 2015) 
and the Sage Gateshead building in London, UK, designed by Foster and Partners (Foster and 
Partners, 2004), both shown in Figure 5-23. 

 

Figure 5-23. The Landesgartenschau Exhibition Hall pavilion in Stuttgart (left) and the Sage Gateshead building in 
London (right) inspired the shape of the single thermal zone pavilion presented in Figure 5-22. Left image source: 

Krieg et al. (2015). Right image from: Foster and Partners (2004). 

Using the first geometry simplification heuristic, the proposed method generated 10 different BEM 
from the initial massing model with varying mesh resolutions, i.e., quad count. All BEM have a 
Window-to-Wall-Ratio (WWR) of 40%. Initially, the NURBS surface parser available in 
Honeybee (Roudsari, Pak and Smith, 2013), a popular EnergyPlus and Radiance front-end for 
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Grasshopper, produce the benchmark energy model, i.e. the high polygon count BEM used to 
assess the impact of geometry reduction/simplification in simulation output. The Honeybee 
resulting BEM, shown in Figure 5-24, has 6,278 faces, and it was unable to run in useful time – 
after 4 hours the energy simulation was still initializing warm-up calculations. This attempt 
emphasizes the results of the small experiment presented in section 2.1 that used Autodesk Insight 
to automatically parse the geometry of two curved towers to EnergyPlus. The failed attempt to use 
existing automatic NURBS surface parsers to BEM reinforces the anecdotal evidence of the 
difficulty that current tools designed to integrate energy modeling and architectural design have in 
dealing with complex geometries. As a result, the BEM considered as the comparison benchmark 
in this experiment was the model generated by our approach with a high mesh polygon count (see 
Table 5-11). 

 

Figure 5-24. Initial massing model (left) and the resulting Honeybee BEM (right). Due to the high polygon mesh 
count, the BEM was unable to run in EnergyPlus in useful time.  

Table 5-11 lists the different simplified models along with the original envelope surface u and v 
subdivisions and the resulting main building surfaces (i.e., walls, floors, and roofs) and subsurfaces 
(i.e., windows and skylights) count. A light gray fill highlights the benchmark BEM (Res10). 
Figure 5-25 presents an axon of every geometry generated by the proposed simplification method. 

Table 5-11. BEMs generated by the proposed approach for the initial massing model.  

BEM ID Envelope subdivisions (u, v) Main Surfaces Subsurfaces 
Res01 (4, 4) 26 16 
Res02 (6, 6) 52 36 
Res03 (8, 8) 86 64 
Res04 (10, 10) 126 100 
Res05 (12, 12) 178 144 
Res06 (14, 14) 236 196 
Res07 (16, 16) 298 256 
Res08 (18, 18) 376 324 
Res09 (20, 20) 457 400 
Res10 (22, 22) 543 484 
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Figure 5-25. BEMs with different levels of geometric resolution generated by the proposed simplification method, 
from the coarsest one in the left, Res01, an intermediate resolution in the middle, Res04, to the highest resolution in 

the right, Res10, the BEM considered as the geometric benchmark in this experiment due to its higher polygon 
count. 

Although the approach ensures that the resulting simplified BEM has the same air volume of the 
benchmark, it is essential to measure the deviations on external surface area, since the heat transfer 
through the envelope depends on exposed envelope area. Table 5-12 compares relevant envelope 
surface parameters, including form-factor (i.e., surface-to-volume ratio) and surface area. The 
approach keeps the deviation very low both in envelope surface area and in form factor, thus 
minimizing any simulation output errors due to differences in surface area. 

Table 5-12. BEMs’ form parameters comparison. 

BEM ID Surface Area (m2) Surface Area % error 
(compared with Res10) Form Factor Form Factor % error 

(compared with Res10) 
Res01 1005.3 5 % 0.592 5 % 
Res02 979.1 2 % 0.576 2 % 
Res03 970.5 1 % 0.571 1 % 
Res04 966.4 1 % 0.568 1 % 
Res05 964.3 0 % 0.567 0 % 
Res06 962.9 0 % 0.567 0 % 
Res07 961.9 0 % 0.566 0 % 
Res08 961.3 0 % 0.566 0 % 
Res09 960.9 0 % 0.565 0 % 
Res10 960.5 N.A. 0.565 N.A. 

 
Table 5-13 assesses the difference between the glazed area considered as a window and as a 
skylight. The difference between window and skylight is a sensitive modeling point since there 
are differences in terms of the heat transfer coefficients applied to different tilts of glazed surfaces. 
The proposed implementation automatically dispatches envelope surfaces either as roofs or walls 
and consequently as windows or skylights, depending on the tilt angle of the surface. Thus, the 
proposed method labels outdoor surfaces with a tilt angle between ≥ 60⁰ and ≤ 120⁰ as walls or 
windows. The deviation variability presented in Table 5-13 directly results from the application of 
this rule. Nevertheless, starting from Res03, the deviation error is acceptable for the area assigned 
to skylights and windows in the simplified models (≤ |10|%). 
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Table 5-13. BEMs’ window and skylight surface area comparison. 

BEM ID Window Area (m2) Window Area % error 
(compared with Res10) Skylight Area (m2) Skylight Area % error 

(compared with Res10) 
Res01 149.8 -21 % 87.64 105 % 
Res02 176.61 -7 % 57.52 35 % 
Res03 194.62 3 % 38.59 -10 % 
Res04 188.7 0 % 44.08 3 % 
Res05 187.8 -1 % 44.74 5 % 
Res06 191.46 1 % 40.9 -4 % 
Res07 185.44 -2 % 46.8 9 % 
Res08 191.2 1 % 40.95 -4 % 
Res09 192.77 2 % 39.33 -8 % 
Res10 189.31 N.A. 42.75 N.A. 

 
All the energy models have three equally spaced daylight sensors located along the central North-
South axis at 0.8m height. The first experiment compared the simulation time, NMBE and 
CVRMSE for heating, cooling, lighting, process, and total energy of the benchmark BEM (Res10) 
against their simplified counterparts. 

Experiment 2 – sampling and decomposing multi-zone Building Energy Models 

The first experiment tested the effectiveness of the first simplification method, focusing on 
reducing the overall geometric complexity of single thermal zone models with complex (double-) 
curved envelopes. The second simplification method extends the first one to BEM with several 
thermal zone models – multi-zone BEM. Experiment 2 assesses the performance of the second 
simplification heuristic that decomposes a multi-zone model into simpler and smaller 
representative single thermal zone models. The aim is to estimate the overall results of a larger 
BEM by quickly simulating smaller parts of it, thus saving simulation time and reducing the effort 
in complex modeling tasks. The building geometry used to test this heuristic is a semi-torus mass 
with a volume of approximately 27,426 m3, an inner radius of 12 m, an outer radius of 24 m, and 
a 12 m high arched section (see Figure 5-28 - left). Similarly, to the geometry selection process in 
the previous experiment, real architectural designs inspired the use of a funnel-like space in this 
experiment. These types of structures are common both in large commercial buildings with big 
free-form roof canopies or in small pavilion-like architecture. Figure 5-26 presents two examples 
of architectural designs that use funnel structures to sustain big continuous canopies that enclose 
large spaces. In the left, it presents the New Milano Trade Fair, Rho-Pero designed by Studio 
Fuksas (Studio Fuksas, 2005); in the right the proposal for the New Mexico City airport, designed 
by a joint venture between Foster and Partners and Fernando Romero Architects (Foster and 
Partners, 2014). Figure 5-27 depicts the 2010 research pavilion of the Institute for Computational 
Design/Institute of Building Structures and Structural Design (ICD/ITKE) of the University of 
Stuttgart that used a semi-torus as its base form.  
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Figure 5-26. Examples of funnel/torus like structures for large continuous roof canopies. Left: New Milano Trade 
Fair Rho-Phero. Image from: Studio Fuksas (2005). Right: New Mexico City Airport. Image from: Foster and 

Partners (2014).  

 

Figure 5-27. The semi-torus shape of 2010 ICD/ITKE research pavilion. Images adapted from: Knippers and 
Menges (2010).  

The semi-torus BEM used in this experiment entails four different thermal zones are physically 
separated by partition walls with a thermal resistance value (R-value) of 0.39 k.m2/W. 

Figure 5-28 shows the implementation workflow of the second BEM simplification method. First, 
using the first simplification method, the proposed tool starts to automatically process the curved 
building envelope of the initial semi-torus mass. Since there is no programmatic differentiation in 
the original thermal mass and the overall shape is symmetric, the implemented algorithm splits the 
original mass into four thermal zones that follow orientation and solar exposure. In the context of 
this experiment, the tool produced two BEMs, one with a dense mesh (Full_High_res) and another 
with a coarser geometric resolution (Full_Simp_res). The Full_High_res BEM is the benchmark 
BEM of this experiment, i.e., the reference model used to assess simulation output deviation and 
run-time improvements. After generating the two multi-zone BEM, the proposed approach further 
samples each BEM by isolating a representative part of each thermal zone, consequently reducing 
the initial BEM into a group of four small single-zone models. Thus, the Sample_High_res, the 
BEM composed by four single thermal zones of high mesh resolution results from sampling the 
Full_High_res BEM, while Sample_Simp_res results from slicing the Full_Simp_res model. Since 
each slice represents a portion of the volume of the larger thermal zone, the proposed approach 
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assumes that there is no heat transfer on the side surfaces of the sampled single-zone models. Thus, 
the tool caps each single-zone sample with adiabatic surfaces. This is a common procedure in other 
thermal zone reduction procedures of multi-zone models, such as the use of thermal zone 
multipliers in EnergyPlus to reduce the redundant analysis of similar thermal zones in high-rise 
buildings (Big Ladder, 2015). Figure 5-28 colors the adiabatic surfaces in magenta.  

 

Figure 5-28. Simplification method for multi-zone BEMs applied to a torus shaped building mass. Original semi-
torus mass building mass (left), the two generated multi-zone BEMs with different mesh resolutions (center), and 
the resulting sampled BEMs. The thicker black lines in the two multi-zone BEMs (center) indicate the location of 
the partition walls that separate the different thermal zones. The magenta colored surfaces in the sampled BEMs 

(right) represent the location of adiabatic surfaces that resulted from slicing each thermal zone. 

Table 5-14 compares the geometry of the different BEMs used in this experiment; Full_High_res, 
the detailed four thermal zone energy model benchmark, the Sample_High_res, which corresponds 
to the sampled BEM with a high degree of mess resolution, and Sample_Simp_re, the reduced 
BEM with a coarser surface subdivision. 

Table 5-14. Geometry comparison between the BEMs generated in the second experiment, by the simplification 
approach for multi-zone BEMs. 

BEM ID Number of Main Surfaces Number of Sub Surfaces (windows) 
Full_High_res 732 480 

Sample_High_res 588 (147 per single-zone) 288 (72 per single-zone) 
Sample_Simp 156 (39 per single-zone) 72 (18 per single-zone) 

 
The second experiment compared the results of Sample_High_res and Sample_Simp_res against 
the outputs of the benchmark BEM used in this experiment, Full_High_res. 
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5.4.4 Results 

The following present the results of the two experiments that focused on producing equivalent but 
simplified geometric descriptions for efficient BES of a building with complex geometry. 

Experiment 1 – results of reducing mesh density in BEM 

To determine the impact of the discretization degree of complex (double-) curved building 
envelopes in building energy simulation run time, Figure 5-29 plots the number of main surfaces 
against simulation time. Using regression analysis, the data show that simulation time tends to 
grow exponentially with the increase of the number of main surfaces in a BEM. A high coefficient 
of determination (R2) of the exponential fit, R2= 0.92 confirms this trend. Using this regression 
technique, the implemented tool can reasonably predict the amount of simulation time that a certain 
degree of simplification entails in this specific case.  

 

Figure 5-29. The impact of BEM geometry complexity, measured in number of main surfaces, in BES simulation 
time. Each data point is a BEM generated by the first simplification proposed approach. 

Figure 5-30 shows the relation between the geometric complexity of each simplified BEM and 
simulation output deviation, measured through CVRMSE and NMBE. Those two error statistical 
indexes are broken down by energy end-use cooling, heating, lighting, process, and total energy – 
and, as already mentioned in section 5.4.3, they use Res10 as the reference BEM.  

Table 5-15 relates the percentage of geometry reduction, simulation speed, CVRMSE, and NMBE 
of the total estimated building energy consumption for each simplified BEM, relative to the 
benchmark model (Res10). 
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Table 5-15. Geometry reduction, relative run speed, and CVRMSE and NMBE of each simplified BEM.  

BEM ID Geometry reduction CVRMSE (total energy) NMBE (total energy) x faster than Res10 
Res01 95.2% 11.4% -6.7% 595 
Res02 90.4% 4% -1.3% 204 
Res03 84.2% 3.4% 0.1% 112 
Res04 76.8% 3% 0.5% 37 
Res05 67.2% 2.2% 0.3% 19 
Res06 56.5% 1.4% 0.4% 12 
Res07 45.1% 1.1% 0.3% 6 
Res08 30.8% 1% 0.3% 4 
Res09 15.8% 0.6% 0.2% 2.5 

 

 

Figure 5-30. Impact of degree of geometry complexity in energy-end use prediction. Top: deviation of hourly annual 
energy data of each simplified BEM measured in terms of CVRMSE. Bottom: deviation of hourly annual energy 

data measured of each simplified BEM in terms of NMBE. 
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Experiment 2 – results of sampling and decomposing multi-zone BEMs 

Tables 5-16, 5-17, and Figure 5-31 present the results of the two tests performed in the second 
experiment: (i) sampling, isolating, and simulating the full multi-zone BEM (Full_High_res) in 
four detailed samples (Sample_High_res), (ii) further simplification of the geometry of the samples 
(Sample_Simp_res) by adopting the heuristic used in the first experiment.  

Table 5-16 presents the simulation time of the Full_High_res, Sample_High_res, and 
Sample_Simp. It also lists the percentage of simulation time reduction of the simplified BEMs in 
comparison with the benchmark BEM - Full_High_res. 

Table 5-16. Simulation time of the three BEM approaches and reduction of simulation time of the simplified BEMs, 
Sample_High_res and Sample_Simp_res.  

BEM ID Simulation time (seconds) % of simulation time reduction 
Full_High_res 15,407 N.A. 

Sample_High_res 644,4 95.8 
Sample_Simp_res 89 99.4 

 
Table 5-17 relates both run time and the error deviation in the simulation output of the implemented 
method of simplifying multi-zone BEM in simulation output deviation. The table presents the 
CVRMSE and NMBE of total energy and speed improvement of the simplified BEM when 
compared with the geometry and annual hourly results of the benchmark used in this experiment 
– Full_High_res.  

Table 5-17. Geometry reduction in of the simplified BEM compared with the benchmark BEM used in the second 
experiment (Full_High_res) and correspondent simulation output deviation measured using CVRMSE, NMBE, and 

improvement of simulation run time.  

BEM ID % of geometry 
reduction 

CVRMSE 
(total energy) 

NMBE 
total energy) x faster than Full_High_res 

Sample_High_res 20 % 6.4 % -1.4 % 24 
Sample_Simp_res 79 % 7.2 % -1.7 % 173 

 
Finally, Figure 5-31 presents a full breakdown of the error metrics CVRMSE and NMBE by energy 
end-use for the two simplified BEMs and how do they relate with the acceptance threshold adopted 
for those metrics – see Table 5-8. 
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Figure 5-31. CVRMSE and NMBE of the second experiment simplified BEMs per energy end-use. The NMBE 
acceptance interval is marked in a magenta dashed line and the CVRMSE in a red dashed line. 

5.4.5 Discussion 

Experiment 1 results indicate an exponential relationship between simulation run time and 
geometric complexity, measured in terms of the number of quad panels necessary to describe a 
complex curved envelope in BES. Figure 5-29 clearly shows that small increments in surface 
subdivision yield a significant impact in simulation time. Additionally, Figure 5-30 demonstrates 
that high levels of surface discretization are extremely useful in reducing simulation time at a 
minimal cost in simulation output results. Nevertheless, they also show that extreme 
simplifications CVRMSE and NMBE rapidly increase. Although the simpler BEM Res01 shows 
acceptable CVRMSE and NMBE for most of the energy end uses, it presents higher error values 
when compared with the other simplified BEMs. The deviation is more evident for lighting and 
heating, indicating that high levels of geometric simplification might fail to fully capture solar-
related phenomena such as solar heat gains and daylighting. As a matter of fact, the NMBE of 
Res01 in lighting is not acceptable (> |10|%). It is plausible to assume that if we increase the level 
of simplification, for example, to only two 𝑢𝑢�⃗  and 𝑣⃗𝑣 subdivisions of the shell surface, that both 
heating and lighting would not fulfill the acceptance criteria adopted for CVRMSE and NMBE. 
This indicates that reducing envelope dominated buildings with complex curved facades to 
shoebox BEMs is oversimplification that will likely fail in properly model the heat transfer 
phenomena. Considering the results presented in Figure 5-29, Figure 5-30, and in Table 5-15, we 
recommend a maximum of ≈ 80% reduction of the original number of polygons that describe in 
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detail complex building envelopes. Res03 (≈ 84% of geometry reduction) shows an excellent 
balance between error and simulation time – it ran in 3 min and 53 seconds (112 times faster than 
Res10) and shows minimal error in total energy consumption; CVRMSE and NMBE is 3.4% and 
0.1%, respectively. 

The simplification method for larger multi-zone BEM tested in Experiment 2 also presents 
promising results in significantly improving simulation run time while ensuring accuracy, i.e., 
minimal impact on simulation results. It shows that sampling a multi-zone model and decomposing 
it into smaller and simpler single thermal zones generates an efficient proxy of fully detailed, 
complex multi-zone BEM. The combination of this approach with the building envelope geometry 
simplification used in the first experiment yield significant improvements in simulation time with 
minimal output deviations. Sample_Simp_res, the BEM that combines both the thermal zone 
sampling and surface rationalization approaches, is 7 times faster than Sample_High_res, the BEM 
that only uses the sampling and decomposition approach. This improvement in run time as a small 
impact in NMBE (-0.3%) and CVRMSE (+0.8%). Compared with Full_High_res, the benchmark 
model of this experiment, Sample_Simp is 173 faster to run (1 min and 29 seconds) and reports 
acceptable CVRMSE and NMBE in terms of total energy; 7.2% (22.8% below the acceptance 
threshold) and -1.7% (8.3% above the negative range of acceptance threshold) respectively (see 
Table 5-17). 

Figure 5-31 provides a more detailed analysis on the effectiveness of the proposed simplification 
method for multi-zone BEM by measuring the deviation error in each energy end-use. It shows 
that all the energy end-uses in Sample_High_res and Sample_Simp are within the acceptance 
criteria adopted for CVRMSE and NMBE. As expected, the error in process loads is null, since 
this energy use exclusively depends on surface area and control schedules, and the simplification 
approach introduced minimal deviations to the original surface area. The error in both Cooling and 
Heating are similar, indicating that the simplifications can properly capture the overall 
performance of the highly detailed BEM. 

The small difference between Sample_High_res and Sample_Simp in all energy end-uses also 
indicates that the combination of the two simplification heuristics is feasible, valid, and beneficial 
to use in the study of multi-zone BEMs with complex curved envelopes, particularly at early design 
stages where faster whole building energy simulations are desirable. 

5.5 Strategy C: Abstract Complex Fenestration Systems for the early energy 
assessment of complex building skins 

Sections 5.3 and 5.4 presented methods to automatically generate valid, accurate, and efficient 
geometric descriptions of early-stage free-form architectural massing models. However, current 
parametric and generative design workflows empower architects to quickly explore highly 
complex patterns of porosity, opacity, and other surface properties in the early design of highly 
sophisticated building skins. The design and control of Complex Fenestration Systems (CFS) have 
a direct impact on the energy and daylight performance of buildings, particularly in narrow plan 
designs. Although current digital tools facilitate the design and automatic propagation of complex 
and intricate patterns or façade elements, it remains challenging to translate the resulting building 
skins to a BEM and simulate the impact that they have in whole-building energy.  
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The design of intricate patterns entails a level of geometric detail that often result in time-
consuming or highly specialized BEM modeling tasks (e.g., the use of Bidirectional scattering 
distribution function) and in computationally intensive simulations that are incompatible with 
early-stage design times. Moreover, in the case of free-form building geometries, the resulting 
irregular panelization and formal adjustment of different façade components is even more difficult 
to model for BES. Thus, designs that combine curved or double-curved building envelopes further 
add to the difficulty of using current validate whole-energy building simulation tools in the early 
energy performance of parametric and generative façade solutions. As a result, the energy 
simulation of such façade systems is unfortunately often moved to a post-design stage, where it 
has less influence on the building design. In sum, under an environmental perspective, the current 
gap between design and BES tools limits a sustained and grounded design of highly sophisticated 
building skins, particularly at early-design stages. 

The research presented in this section emerges from collaborative work between the author of this 
dissertation and his two thesis advisers. The work, published in 2018 (Schleicher, Santos and 
Caldas, 2018), aims to directly answer the third limitation discussed in sections 2.1 and 5.2 and 
respond to the current need to quickly evaluate the energy performance of CFS in the context of 
unconventional building forms.  

5.5.1 Goal and general approach 

Strategy C aims to improve the integration of whole-energy simulation tools in the early study of 
CFS used in (double-) curved building envelopes. It proposes a new streamlined performance-
driven workflow that avoids complex modeling tasks, accelerates the simulation of BEM that 
contain CFS, and delivers useful information to steer the early design of highly sophisticated 
building skins. To achieve this goal, the proposed method combines parametric modeling 
techniques with whole-building energy simulation based on co-simulation. More precisely, the 
proposed method improves the data exchange between powerful 3D geometry parametric 
modelling tools such as Rhinoceros + Grasshopper, with state-of-the-art BES software such as 
EnergyPlus (Crawley et al., 2001), Radiance (Ward and Rubinstein, 1988), and WINDOW 7.5 
(Huizenga et al., 2017). The parametric modeling capabilities of Rhinoceros/Grasshopper allows 
architects to quickly generate, explore, and compare different building skin designs. EnergyPlus 
simulates the impact of such designs assisted by irradiance analysis performed by Radiance and a 
new CFS simplification method based on WINDOW 7.5 single fenestration simulations. The 
following section explains in more detail the integration of the different tools, the co-simulation 
method, and the resulting modeling workflow. 

5.5.2 Method of abstracting CFS for building energy performance-driven design 

The proposed method integrates the different design and simulation tools into a single workflow 
using the following five steps: 

Step 1 – Form-generation and panelization – this step uses the process proposed in section 5.3 to 
discretize a smooth (double-) curved building envelope, usually represented through a NURBS 
surface, into a set of planar quad-mesh faces of different sizes, but which are similar in shape and 
angles. As already discussed, the panelization of an initial arbitrary free-form building envelope 
into a set of planar meshes is an essential pre-requisite to generating a valid BEM. 
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Step 2 – Mapping cumulative annual irradiance – based on TMY data of a specific location, the 
proposed method computes the cumulative annual incident radiation in each façade panel using 
Radiance. This information is crucial either to a user or an automated optimization system to 
determine the shading needs of each panel to constrain its overall optical, solar, and thermal 
properties. 

Step 3 – Conversion of the shading geometry of a CFS into simplified thermal, solar, and optical 
glazing properties – in BEM, it is possible to model a glazed facade panel using two different 
procedures: (i) a detailed one, which specifies each layer material and component of the 
fenestration, or (ii) a simplified one, which describes the glazing assembly through conductance 
(U-factor), Solar Heat Gain Coefficient (SHGC), and Visual Light Transmittance (VLT). Although 
the detailed modeling of windows delivers more precise results, the simplified description of a 
glazing system is accurate enough to inform early design stages. Because the goal of the proposed 
method is to simplify the geometrical features of CFS, it adopts the simplified modeling approach. 
The proposed method uses WINDOW 7.5 (Huizenga et al., 2017), a validated computer program 
for calculating window performance indices, to study the impact that different CFS, and their 
different configurations, have on U-factor, SHGC, and VLT on a standard glazing assembly. The 
user can either use WINDOW built-in parametric shading devices (e.g., louvers, fins, different 
shaped perforated screens, and frit ceramic cover) or develop custom shading geometry, transform 
it into a BSDF WINDOW layer using the Radiance subprogram genBSDF (Ward, 2010). The latter 
requires more expertise and involves demanding calculations when compared with the former. 
Because the approach advanced here reduces the geometric data of a CFS to simple performance 
indices, this dissertation refers to this modeling procedure as abstracting CFS to their 
correspondent performance indices. The proposed method also gathers data that results from 
testing different fenestration and shading systems to build a surrogate model that links the CFS’ 
geometric features to their correspondent SHGC, VLT, and U-factor. The current implementation 
of the method uses supervised statistical learning techniques, specifically regression-based 
approaches, to build a surrogate model that predicts fenestration performance indices from key 
geometric parameters and vice-versa. The resulting surrogate enables the selection of different 
CFS solutions of similar performance, thus allowing the optimization of the distribution of the key 
fenestration performance indices without entailing the a priori selection of a specific CFS.  

Step 4 – Whole-energy Building Simulation – after abstracting different CFS and their parametric 
variations to simplified fenestration performance indices, the user or a generative design system 
can assign different fenestration performance indices for each façade panel. The user or the 
generative design systems can use the solar radiation results to inform each panel with specific 
values for SHGC, U-factor, and VLT. After every façade panel has an SHGC, U-value, and VLT, 
it is possible to assess the overall impact of the CFS strategy in whole-building energy performance 
by running an EnergyPlus simulation for the desired period. 

Step 5 – Re-generating the geometry of the CFS back to the model – based on the correlation 
between the CFS geometry and fenestration performance indices, it is possible to reverse the 
process of converting geometric data to a simplified material surrogate to re-create the three-
dimensional features of the shading devices in Grasshopper. This visual feedback is helpful for the 
further development of the facade design. For example, such feedback allows users to compare the 
solutions visually and fine tune them parametrically. 
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Figure 5-32 illustrates the integration of the several steps that compose the proposed co-simulation 
method for abstracting and efficiently modeling CFS for free-form building envelopes at early 
design stages. 

 

Figure 5-32. Flow-chart of the proposed method of abstracting and simulating CFS in (double-) curved building 
envelopes. 

The computational implementation of the proposed modeling workflow combined textual and 
visual programming languages – Python and Grasshopper, respectively. The outcome is a 
prototype of a performance-driven design tool that enables users to explore and assess two 
different types of CFS. The following sections introduce an experiment that both shows the 
potential of the proposed modeling method and validates it. 

5.5.3 Design of experiment – reducing solar heat gains in a free-form glass enclosed canopy 
using the new CFS abstraction modeling method  

The application of the proposed workflow in a concrete design example illustrates its potential. 
Thus, the study of different shading systems in a prototypical curved glass façade served as the 
testbed of the new methodology. The experiment considers the modeling, simplification, and 
abstraction of two different types of parametric CFS as a proof-of-concept of the proposed 
modeling method. The first CFS is a glass frit, a surface glass treatment based on silk-screening 
ceramic frit that reduces solar heat gains and that can assume different types of patterns and density 
of surface coverage. The second is a non-planar shading system composed of parametric equally 
spaced louvers that seamlessly adapt to the local curvature of the envelope. 

The overall form of the building used in this experiment is a double-curved quadratic surface, a 
semi-ellipsoid. As mentioned in section 5.3, sphere deformations, as ellipsoids, are common in 
double-curved free-form architectural envelopes. The glass dome of the Academy Museum of 
Motion Pictures, in Los Angeles (LA), California, designed by RPBW (2019), served as the 
starting inspiration point for the glass semi-ellipsoid used in this experiment. Figure 5-33 shows 
the “soap-bubble” glass canopy, as the architect Renzo Piano calls it, that covers a rooftop venue 
over the museum’s theater. The dry-warm climate of LA is not a favorable climate for a fully 
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glazed structure, which makes it a good example of a design that could directly benefit from CFS 
that mitigate unwanted solar heat gains.  

 

Figure 5-33. The glass dome of the Academy Museum of Motion Pictures by RPBW (2019). This built example and 
location motivate the experiment conducted in this section. Images adapted from: RPBW (2019).  

To be consistent with the previous experiments presented in this chapter, the prototypical building 
mass used is a semi-ellipsoidal glass building similar to section 5.3 base geometry - Solution A. 
This form is interesting and challenging because it results from a scale affine transformation of a 
base hemi-sphere. Hemi-spheres are double-curved quadratic surfaces that can be easily described 
using only three parameters, length of primary and secondary axis, and apex height. 

The first step of the new modeling method for simplifying CFS pre-processes an initial geometry 
for BES. The panelization in planar quad-meshes used in Strategy A (section 5.3), is based on the 
conformal mapping approach introduced by Sechelmann et al. (2013). As demonstrated in section 
5.3, the panelization approach enables a subdivision of the surface into planar mesh faces of 
different sizes, but of similar shapes and angles. Figure 5-34 illustrates the process of obtaining 
the initial semi-ellipsoid shape and the subsequent surface discretization for BES. The generation 
of the base geometry entailed the following:  

1) Using Rhinoceros, the research team first modeled an ellipsoid of 25x18x7 meters, to then 
subdivide it using the lines of surface curvature. The surface curvature lines are appropriate 
guidelines for an efficient planarization of this type of quadratic surfaces. The result of this 
process is a network of lines that follow the curvature of the original surface and divides into 
quadrilateral patches (see Figure 5-34 – left and center). 
2) A simple algorithm detected the intersection points of the network and subdivided the 
original surface. The modeling process then involved cutting the ellipsoid in half using its 
equator as the cutting edge. The process preserved the upper part of the ellipsoid (see Figure 
5-34 – center and right).  
3) The application of quasi-isothermic planarization techniques that enables the generation of 
simulation models composed of completely planar quad panels. The touching inner circles of 
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the mesh faces, shown in Figure 5-34 – right, demonstrates the planarity requirement of the 
proposed envelope discretization. 

 

Figure 5-34. Conformal mapping of an ellipsoidal test body and the resulting semi-ellipsoid mesh composed of 
planar quadrilateral panels. Left: initial ellipsoid modelled as a NURBS surface. Center: ellipsoid’s curvature line 

network. Right: resulting mesh of planar quad panels of the upper part of the ellipsoid. 

The primary axis of the emerging structure runs north-south. 

The second step of the proposed simplification method consists in assessing the annual cumulative 
irradiance in each panel. This information will inform either a user or an automated optimization 
system on the local variance of shading needs that might constrain the optical, solar, and thermal 
properties of different CFS. Annual solar radiation analysis depends on location. Since this 
experiment studies new ways to model CFS that reduce solar gains in (double-) curved glass 
building envelopes, the selected location is Los Angeles, CA; thus, following the motivational 
example of Figure 5-33. The dry, warm climate of LA (ASHRAE climate zone 3B) is suitable for 
assessing the impact of passive cooling shading strategies on the energy performance of such large 
glazed spaces.  

Using TMY data (TMY3) collected in Los Angeles International Airport (LAX), the proposed 
method uses Radiance to calculate the cumulative solar radiation kWh/m2 on each glass panel. 
Figure 5-35 shows the irradiance distribution on the entire envelope. As expected, the solar 
exposure of the individual panels varies, thus indicating that locally adapted shading solutions are 
better suited to control solar gains. Figure 5-35 color gradient shows an annual solar radiation 
range that goes from 100 to 2000 kWh/m2.  

 
Figure 5-35. Based on the LA TMY file, the proposed workflow uses Radiance to map annual solar radiation on the 

envelope as seen from south-east (left) and north-west perspective (right). 
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The third step of the novel workflow uses WINDOW 7.5 to convert the geometry of CFS to an 
equivalent U-factor, SHGC, and VLT. Since this experiment focuses on simplifying two 
parametric CFS into simple fenestration performance indices, the application of this step involved 
a parametric study of different states of both systems and the resulting impact on SHGC, U-factor, 
and VLT of a standard glazing assembly. The standard glazing assembly is composed of two 6 
mm clear glass panes and an air gap of 12 mm and has an SHGC of 0.68, a U-factor of 2.83 
W/m2K, and a VLT of 0.76 (76%). 

Figure 5-36 provides an example of how a user utilizes WINDOW 7.5 GUI to conduct a parametric 
study to assess the impact of varying the tilt angle of a louver-based shading system on the overall 
window assembly performance. The proposed method automates this workflow in particular and 
similar procedures for other types of planar and non-planar CFS. 

 

Figure 5-36. WINDOW 7.5 interface. Left: louver editor with slat width, louver spacing, blind tilt angle key 
parameters highlighted. Center: glazing assembly editor. Right: Window assembly editor with glazing and total 

window optical, solar, and thermal properties. 

The first CFS is a parametric louver-based shading system composed of white-colored metal 
louvers. The parametric study of different states of the systems maintains a 1:1 ratio between slat 
spacing and slat width. By preserving this ratio as a constant, it is possible to generate louvers in 
different sizes and geometry while keeping the same profile solar angle and thus the same overall 
performance. The parametric study performed on the louver-based system tested the system for 
various tilt angles in incremental steps of 5º with the axis parallel to the glass plane. 

The second CFS, the glass frit-based system, uses a white silk-screening ceramic frit applied 
directly on the interior surface of the outermost glass pane. The specular and diffuse light 
distribution data of the used glass frit result from measurements conducted at Lawrence Berkeley 
National Laboratory (LBNL). The parametric study entailed the analysis of different frit coverage 
ratios, from 0% (no frit coverage) to 100% (full frit coverage) in incremental steps of 5%. 

Based on the results from simulating different instances of the two CFS, the proposed method 
builds a surrogate model that predicts the different window performance indices based on the 
variables used in the parametric assessment.  

The study results reveal that changing the different parameters of the parametric CFS different 
CFS did not produce a relevant impact on U-factor. The only registered significant change in U-
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factor happens with the addition of external louver-based shades to the standard glazing unit, which 
resulted in a drop from 2.83 to 2.5 W/m2K. All the other variations of the tilted louvers had a 
negligible impact. As expected, the adding of frit to the standard base glazing assembly did not 
change its conductance properties. Therefore, the system kept the U-factor of the base glazing 
assembly. Hence, the U-factor assumed for all louver variations is 2.5 W/m2.K while the U-factor 
of the frit-based assembly is the same of the base assembly, 2.83 W/m2.K. Considering that there 
is a fixed U-factor for all states of the two CFS, the implemented workflow used linear regression 
to build a surrogate model that expresses slat tilt angle, frit coverage, and VLT as a function of 
SHGC. 

Figure 5-37 shows the linear regression models obtained for the louver- and frit-based shading 
systems. In both cases, the high R2 values present a strong correlation between the variables, 
indicating that the model predictions are robust. It is possible to use the resulting linear models to 
map SHGC, and VLT in the envelope in function of solar radiation, as well as to (re)generate the 
respective louver and/or frit geometry given a specific SHGC value. The graphs of Figure 5-37 
also show that, by applying the parametric approach prescribed in the third step of the proposed 
modeling method, it is possible to find different CFS that have similar overall solar, thermal, and 
optical performance. As a result, the method enables architects to consider and compare different 
shading systems simultaneously – and thus different façade compositions – at early design phases, 
stages where usually designers are not yet committed to a single type of solution.  

Having a surrogate model that abstracts different CFS, and their respective instances, into solar, 
thermal, and optical indices it is possible to use the resulting information in the BEM to study the 
impact of different types of skin design strategies on building energy performance. 

The fourth step of the proposed workflow uses EnergyPlus to conduct such studies.  
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Figure 5-37. Linear regression models for the louver- and frit-based shading systems. Top: the tilt angle of the 
individual louvers (blue) and frit coverage (red) - measured in percentage of glass surface - expressed as a function 
of SHGC. Bottom: visual light transmittance (VLT) as a function of SHGC for louver- (blue) and frit-based (red) 
shading systems. In both graphs, the space between the two dashed lines marks the solution space where the two 

different CFS have similar optical, solar, and thermal performance. 

The experiment applied the method to study and compare the following façade designs: 

A. Base Case - No shading and standard glazing. 
B. Perpendicular Louvers - all louvers are perpendicular to the glass panel, which corresponds 

to a tilt angle of 0°. 
C. 45° tilted Louvers - the glass panels have louvers with a tilt angle of 45°. 
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D. SR based Gradient Louvers – the result of the work presented in section 5.3, and published 
in (Santos, Schleicher and Caldas, 2017), showed that applying a shading density gradient 
that follows the distribution of Solar Radiation (SR) on the envelope might yield a 
significant reduction in cooling loads. Thus, for each panel this solution remaps the incident 
SR to a SHGC value and corresponding tilt angle of the louver. This remapping is based on 
a linear interpolation, where the highest SR value relates to the lowest SHGC that the louver-
based shading system can reach (0.06), and vice versa. In this way, the louvers of the panels 
with high SR will be more closed than the ones with low SR. 

E. 25% Frit Coverage - the envelope has a uniform frit coverage of 25%. 
F. 50% Frit Coverage - all panels have a frit coverage of 50%. 
G. SR based Gradient Frit - the same logic of SR based Gradient Louvers but applied to the 

frit-based shading system where the range of SHGC only goes from 0.3 to 0.68. 

Figure 5-38 illustrates solutions B through G. Solution A is the base model generated in step 1 and 
presented in Figure 5-34 – right. 

 

 Figure 5-38. Freeform facade with different CFS configurations used in this experiment. The top three pictures 
show the three louver-based configurations, respectively: Perpendicular louvers (B), 45° tilted louvers (C), and SR 

based gradient louvers (D). The bottom three images illustrate the three frit-based configurations, respectively: 25% 
frit coverage (E), 50% frit coverage (F), and SR based gradient frits (G).  

All solutions used a single thermal zone BEM with a floor composed of a 200 mm thick concrete 
slab plus a 120 mm thick Extrude Polystyrene (XPS) insulation board covered with a cement 
screed. The resulting combined U-factor is 0.28 W/m2.K. The simulation parameters used in the 
EnergyPlus simulations, which encompasses internal loads, HVAC system properties, thermostat, 
infiltration and ventilation rates, and daylighting sensors and controls, are identical to the ones 
used in section 5.4 and listed in Table 5-10 (page 110). The daylight sensor is in the center of the 
space located at a typical work plane height, 0.8 m above the floor. 
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Total annual energy consumption (kWh), total EUI (EUItotal) (kWh/m2) and parceled annual energy 
consumption and EUI per energy end-use, are the metrics that express the BES results. In this 
experiment, total energy consumption is considered the sum of heating, cooling, and lighting 
energy. Since the study focuses on the energy performance of either shading systems or solar 
glazing surface treatments, other factors like plug loads or fan energy were not included in the total 
energy calculation. Finally, the comparison of the performance of the different designs uses 
percentage of improvement (% of improvement) in EUItotal, as formulated in ASHRAE 90.1 
standard – see chapter 4, section 4.5.3, equation (4-7), or equation (5-1). 

The fifth and last step of the proposed method uses the correlation between CFS geometry and the 
simplified glazing performance indices established in step 3 to re-create the three-dimensional 
features of the CFS in Rhinoceros + Grasshopper. In this experiment, the implemented workflow 
uses the SHGC assigned to each panel to automatically generate either a louver-based shading 
system, given a specific number of louvers or louver width, and different glass frit coverage 
densities, given a particular pattern. This visual feedback is helpful for the further development of 
the facade design. For example, it allows architects to compare different solutions for their optical 
effect and/or fine-tune design alternatives parametrically. Figure 5-39 illustrates how a designer 
can use this step to parametrically adjust the geometrical characteristics of a louver-based envelope 
strategy without affecting the overall solar, optical, and thermal properties of the envelope. 

 

Figure 5-39. The proposed modeling method allows to parametrically modify the geometric features of a selected 
shading device – for example, from 8 (left) to 14 louvers per panel (right) – without affecting the predefined glazing 

properties of the panels.  

This experiment also includes a validation procedure of the proposed simplification method that 
consists of comparing the simulation output of two fully detailed re-created solutions, one per CFS 
type, with their simplified counterparts. Solution C, a louver-based CFS solution, and solution F, 
a frit-based instance, were the solutions used in the validation process – see Figure 5-38. The 
validation process is similar to the one used to validate the modeling strategy presented in section 
5.4. It uses CVRMSE – chapter 4, section 4.5.3, equation (4-3) –, NMBE - chapter 4, section 4.5.3, 
equation (4-6) – and the percentage of error (% error) – chapter 4, section 4.5.3, equation (4-1). 
Although those statistical indexes are commonly used in BES calibration (Coakley, Raftery and 
Keane, 2014), the proposed validation process adopts them to measure simulation output deviation.  

By definition, CVRMSE and NMBE are able to process data series, such as annual hourly 
simulation data, while % error is only able to analyze single values, in this case post-processed 
data such as the cumulative energy consumption over a period of time. Thus, this experiment uses 
CVRMSE and NMBE to measure the deviation in hourly energy simulated data, either for each 
energy end use or total energy, and % error to assess the difference in EUItotal. The acceptance 
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criteria of CVRMSE and NMBE are set out by ASHRAE Guideline 14 (ASHRAE, 2002) which 
are 30% and - or + 10% respectively (see Table 5-8, section 5.5.3). The acceptance threshold 
assumed for % of error is 10%. Finally, to assess the cost-benefit of the proposed method, the study 
compares the run time of simplified BEM against the one of the detailed BEM.  

5.5.4 Results 

Table 5-18 shows the summary results of the EnergyPlus simulations for all shading alternatives.  
Figures 5-40 and 5-41 plot the results of the annual energy performance for each individual façade 
solution. The chart of Figure 5-40 compares in detail the annual cumulative energy consumption 
per end-use. Due to the existence of outliers in cooling energy, the graph maps the values in log10 
scale. Through the analysis of Table 5-18 and Figure 5-40, it is possible to assess the weight of 
each energy end-use in the overall energy performance. 

Table 5-18. Summary of energy simulation results of each shading design solution. 

 Annual Energy Consumption [kWh] EUI [kWh/m2] 

 Heating Cooling Lighting Total Heating Cooling Lighting Total 

Base case (A) 99.1 148, 289.4 1,006.3 149,454.8 0.3 418.1 3 421.4 
Perpendicular 

louvers (B) 55.2 143,128.8 1,066.5 144,250.5 0.2 403.6 3 406.8 

45° Tilted louvers 
(C) 755.7 53,975.3 1,072.5 55,803.5 2.1 152.2 3 157.4 

SR-based gradient 
louvers (D) 1,039.7 42,502.1 1,083 44,624.8 2.9 119.9 3 125.8 

25% Frit 
coverage (E) 205.4 113,307.9 1,066.7 114,580 0.6 319.5 3 323.1 

50% Frit 
coverage (F) 360 93,684.1 1,067.4 95,111.5 1 264.2 3 268.2 

SR-based frit 
coverage (G) 627.6 71,130.3 1,069.3 72,287.2 1.8 200.6 3 205.4 

 

 

Figure 5-40. Bar chart of annual energy consumption (kWh) for each shading system. Note that the y-axis uses log10 
scale. 
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Figure 5-41 shows the EUItotal per façade solution. The magenta dotted line marks the EUI 
benchmark for the same building type in Los Angeles, California. The benchmark value is from 
the U.S. Department of Energy Commercial Buildings Energy Consumption Survey (CBECS). 
Figure 5-42 shows the % of improvement (see chapter 4, section 4.5.3, equation (4-7), or equation 
(5-1), page 105) in EUItotal of each design solution when compared with the base case.  

 

Figure 5-41. Total Energy Use Intensity (EUI) per design alternative. The thicker bar outline highlights the base case 
and the louver and frit solution that are more energy efficient. 

 

Figure 5-42. Percentage of improvement of each design alternative when compared with the Base Case. The bars 
with a thicker outline indicate the best performing solution per CFS type. 

Figures 5-43 and 5-44 present the validation results. Figure 5-43 maps the simulation output 
deviation error of the simplified selected models in terms of CVRMSE and NMBE. Figure 5-44 
shows the % of error in total EUI and compares the simulation time of the fully detailed energy 
models with the simplified models. 
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Figure 5-43. Assessment of the error metrics CVRMSE and NMBE of the proposed simplification for the 45° tilted 
Louvers and 50% Frit Coverage. These two metrics measure the deviation on hourly simulation output for different 
energy metrics between the simplified BEM and their fully modeled counterparts, i.e., the same solution but with 
CFS geometry fully modeled. The magenta dotted and dashed lines mark the acceptance thresholds for CVRMSE 

and NMBE respectively. 

 

Figure 5-44. Left: Percentage of error in total EUItotal between the simplified (simp.) and detailed modeled versions 
(full geom.) of solutions 45° tilted Louvers and 50% Frit Coverage. Right: comparison of run time of the same 

solutions. 
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5.5.5 Discussion 

Table 5-18 and Figure 5-40 show that cooling is the most relevant energy end-use. Even in the 
best performing case (D), cooling still represents more than 95% of the overall energy 
consumption. The weight of cooling loads in the energy performance of all cases indicates that it 
is possible to analyze the energy benefits of reducing solar heat gains through shading by analyzing 
the total energy consumption or the total EUI. As expected, the base case has the worst energy 
performance because of the overwhelming amount of cooling required to ensure thermal comfort 
in a fully glazed dome like space located in LA. Figure 5-41 shows that the base case consumes 
twice as much energy as the benchmark, showing how inefficient this type of structure is for warm 
climates. Adding perpendicular shades to each panel produces a marginal improvement of only 
3.5% (Figure 5-42). The small impact that this shading solution has on reducing SHGC of the 
standard glazing unit explains the small improvement.  

In comparison, a relatively small percentage of frit coverage produces a more significant impact: 
an improvement of 23.3% for 25% of frit coverage (Figure 5-42). Figures 5-40 and 5-41 show that 
either increasing the louver tilt angle or the frit coverage yields a positive impact in energy 
performance. Nevertheless, the effect of incrementally closing the louvers by changing their tilt 
has a bigger impact on decreasing cooling loads than would be achieved by increasing frit 
coverage. A close analysis of Figure 5-37 top graph explains this phenomenon: the slope of the 
linear regression in the louver system is more pronounced than in the frit system, meaning that the 
tilt angle is more effective in reducing SHGC than frit coverage.  

The adaptive shading schemes based on solar radiation present the best results in each shading 
type, confirming the pattern observed in section 5.3 and by Santos, Schleicher, and Caldas (2017). 
The SR based Gradient Frit (G) improves the energy performance of the base case in 51.3%, and 
it is the only frit-based solution that reduces EUI to levels below the benchmark. The SR based 
Gradient Louvers (D) yielded an outstanding 70.1% improvement relative to the base case, 
lowering the total EUI from 421.4 kWh/m2 to a reasonable 125.8 kWh/m2, 40% below the 
benchmark of assembly buildings in LA. In sum, louver-based shading systems have the highest 
potential of reducing cooling loads in fully glazed envelopes. If well designed, they could reduce 
the overall energy consumption of large glazed structures even in non-favorable climates, such as 
those like that of Los Angeles, to acceptable levels that are significantly below the benchmark. 
The gradient of louvers based on incident solar radiation is the most effective solution in reducing 
cooling loads with a relatively small impact on heating and lighting loads.  

The validation results show that the proposed simplification modeling method for CFS is effective 
in both simplifying modeling tasks and is capable of accelerating BES with a low impact in 
simulation output. Figure 5-43 error results are within the acceptable criteria except for heating. 
However, heating is of little relevance in the error assessment due to its small weight in the overall 
energy performance: 1.4% and 0.38% for the louver and frit cases, respectively. The low weight 
of heating in the overall building energy performance also distorts the error in CVRMSE and 
NMBE, since any little deviation has more relative impact. The % of error in total EUI is also 
comfortably below the acceptance threshold. The simplified energy models can run 7.5 to 26 times 
faster than the detailed models (5-44) indicating that the method promotes useful energy 
performance feedback in the early design of complex building skins. Finally, the wide range of 
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simulation acceleration confirms the pattern identified both in the literature and in section 5.4 – 
the run time of BES is highly sensitive to the number of faces of the energy model. 

5.6 Concluding remarks 

This chapter presented three different strategies that automate the generation of efficient whole-
building energy models, particularly in early-stage building designs of complex geometry that 
emerge from the use of parametric, generative design tools, and algorithmic approaches. Each 
strategy aims to address the needs identified in the analysis of the related work, namely: 

• To parse the geometry of curved or double-curved parametric building envelopes and 
sophisticated parametric façade systems for BES. 

• To reduce simulation run time of either free-form building masses in order to reduce the 
gap between simulation and analysis time and design time. 

• To facilitate the modeling and simulation of sophisticated custom-designed building skins 
and CFS at early design stages. 

Strategy A addresses the need to accurately translate complex curved or double-curved building 
surface geometry to a BEM. Strategy B extends A to improve simulation run time by implementing 
new and valid geometric simplification methods. Strategy C proposes a novel approach that 
substantially reduces the geometric modeling and simulation effort in energy-related studies of 
CFS.  

Section 5.3 presented and discussed Strategy A. This strategy offers a new modeling method to 
describe complex building envelopes in BEM for goal-oriented design methods based on BES. It 
consists of automatically generating valid geometry for BEM from initial parametric descriptions 
of curved and double-curved building geometry. The proposed approach uses planarization 
methods, borrowed from the architectural computational geometry and digital fabrication fields, 
to overcome the current limitations of energy modeling of curved and double curved building 
envelopes. The integration of such planarization methods allows architects to automatically 
generate valid BEM geometry from a 3D CAD model, thus avoiding time-consuming manual 
modeling tasks that are incompatible with fully automated optimization workflows. The proposed 
approach also allows controlling the discretization of the initial building surfaces and, 
consequently, the degree of detail of the resulting BEM. The application of Strategy A in the case-
study of optimizing glass frit ratios in fully glazed grid shell envelopes was successful in 
minimizing the gap between the design model and the energy model, optimizing glass frit ratios, 
and, consequently, reducing predicted whole-building energy consumption. The deployment of the 
strategy in such a case study also demonstrated how accurate geometric building envelope 
descriptions are relevant in energy optimization workflows, particularly in the case of free-form 
buildings. Additionally, the case study showed that optimization of glass frit in double-curved 
building envelopes requires a geometric description detailed enough to capture self-shading and 
variable solar radiation distribution patterns. Thus, Strategy A utilization demonstrates that in the 
energy optimization of building energy use in building with complex (double)curved envelopes, 
excludes the use of oversimplified approaches based on shoebox BEM. 
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The integration of the proposed strategy in an inverse design process exemplified the usefulness 
of using goal-oriented methods in the study of complex trade-offs associated with building-energy 
related performance. The analysis of unexpected results that emerge from these methods inform 
the design process with new perspectives and different solutions to solve specific design problems. 
The experiments indicated that steering the optimization process by constraining specific design 
parameters can improve the quality of the search. The implemented method also demonstrated 
how the results of an optimization process could inform the design of different glass-fritting 
densities and patterns and, consequently, the overall aesthetic properties of the building envelope. 

In sum, the integration of Strategy A in a generative-design system prototype proved to be: 

• Robust – it was able to parse a diversity of double-curved building geometries to EnergyPlus 
automatically. 

• Adaptable – it allows the user to control the generation of the BEM model and steer the 
optimization process through the use of constraints. 

• Useful – particularly in providing feedback, since it allowed the search mechanism to 
evaluate valid BEM in order to find design solutions that improve the building energy 
performance of the base cases in almost 70% (see Table 5-7).  

As briefly mentioned in section 5.3.4, although Strategy A is robust, the resulting workflow 
presents three main limitations: (i) one related to the search process, (ii) another to simulation run 
time, (iii) and the last to the simplification strategy used in describing CFS, such as glass fritting. 

Regarding the first limitation, Opt#1 experiment showed that the GA probably became stuck in a 
local minimum. The fact that the used GA, Galapagos (SGA), does not scale well along with the 
increasing number of decision variables might explain the inefficiency of the search. Nevertheless, 
the use of a Galapagos SGA served as a proof-of-concept that tested the integration of Strategy A 
in the context of an ecosystem of digital design tools that architects currently use. Hence, it is not 
a limitation caused by the modeling strategy but rather by the search algorithm. Since Strategy A 
is agnostic to the optimization algorithm used in the search procedure, it is relatively easy to 
improve it through the use of more robust optimization evolutionary metaheuristics, such as 
SPEA2 (Ziztler, Laumanns and Thiele, 2002) or the Nondominated Sorting Genetic Algorithm II 
(Deb et al., 2002).  

The second limitation results from the direct correlation between the number of panels and 
simulation time: the higher the BEM polygon count, the higher the calculation time of its energy 
performance. This run time overhead in EnergyPlus is primarily due to view factor calculations 
for radiant heat transfer computation and the resulting impact on heat balance convergence.  

The third limitation emerges as a consequence of the second one. The glass fritting modeling 
approach is oversimplified to avoid long simulations that hamper the usability of the proposed 
methodology. The modeling of individual frits would increase the number of mesh faces to an 
unacceptable (or even unfeasible) run-time horizon. The generation and use of BSDF to describe 
the different glass frit states would also slow EnergyPlus simulations and consequently burden the 
optimization with a considerable time overhead. Thus, the proposed simplification intentionally 
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sacrifices accuracy over speed, considering that some deviation on energy simulation output is 
acceptable in the context of a workflow that requires the simulation of many design alternatives.  

Since Strategy A focuses on parsing complex (double-) curved geometry into a valid mesh 
representation for BES, the second and third limitations are a direct consequence of its application. 
Strategy B and C address those limitations by proposing the generation of surrogate geometric 
representations of both complex building forms and façade systems. 

Section 5.4 introduces Strategy B, which both extends Strategy A’s scope to multi-zone models 
and improves the efficiency of the generated BEMs by automatically simplifying their geometric 
descriptions. Strategy B encompasses and combines two modeling approaches. The first 
automatically parses any curved enclosed building envelope and generates an equivalent low 
polygon BEM. The second approach samples a multi-zone BEM to isolate smaller and 
representative parts of the original model. 

The experiments that tested Strategy B modeling approaches confirmed that BES are highly 
sensitive to the geometry complexity of BEMs. Figure 5-29 shows that simulation run-time 
increases exponentially with the number of BEM mesh faces. The results also show that BEMs 
with oversimplified geometries that do not capture the overall building shape are likely to be 
inadequate surrogates (see Table 5-15 and Figure 5-30). However, it also demonstrated that it is 
possible to automatically generate simpler and more efficient BEM geometries, i.e., geometric 
descriptions for BES that result in faster simulations and have minimal impact in simulation output. 
However, the simplification is only successful if it preserves the volume of each thermal zone and 
minimizes deviations in envelope surface area. 

The results showed that Strategy B can generate simplified and efficient geometric surrogates for 
either single or multi-zone BEMs. Both experiments showed that the proposed modeling 
approaches produce BEMs that run faster, with simulation output deviation within the acceptable 
range assumed both for CVRMSE and NMBE. The sensitivity analysis that tested the first 
modeling approach (geometry simplification of complex building envelopes) showed that it is 
possible to reduce by 80% the number of mesh faces in a BEM. The second experiment 
demonstrated that it is not only possible to decompose a multi-zone BEM into isolated 
representative single-zone models, but that it is feasible and desirable to reduce their mesh density. 

Despite the usefulness of the strategy, three points limit a generalized application of the results 
and recommendations of the experiments. The first is the HVAC model assumed in both 
experiments, the simple EnergyPlus Ideal Loads Air System (ILAS). ILAS is a variable-air-
volume (VAV) system that is not connected to a central air system, making it a system that supplies 
cooling and heating air to each zone in just a sufficient amount to meet each zone thermal load. It 
also assumes a well-mixed air volume for each thermal zone. As a result, the simulations do not 
capture the typical inefficiencies and losses of a centralized VAV system and thermal stratification. 
Although the use of such a simplified HVAC system limits the applicability of the results, this 
simplification is acceptable since this dissertation focuses on the use of BES at early-design stages, 
and ILAS is a system that designers commonly use in such phases. The second is that both 
experiments used buildings with narrow plans, making the envelope have a more predominant role 
in heat exchange. This assumption is also acceptable in the general scope of the research since the 
dissertation focuses on high-performance buildings, which usually have narrow plans since they 
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facilitate the implementation of both natural ventilation and passive solar design strategies as 
essential energy conservation measures. The third point is that both experiments used TMY data 
from Oakland, CA – ASHRAE climate zone 3C, Warm-Marine. The mild Oakland climate might 
be smoothing errors, and, consequently, some of the recommendations suggested by the results, 
such as the level of acceptable geometry reduction, might not be valid. Future work will address 
this point to assess the applicability of the proposed method results at early-stage parametric and 
generative design in a wide diversity of climates. The envisioned locations to further test Strategy 
B will be representative of more extreme climates, e.g., Phoenix, AZ (hot and dry), and Boston, 
MA, (cold winter and hot and humid summers).  

Although the assumptions used in section 5.4 experiments constrain the applicability of the results, 
the tests showed that Strategy B is effective in automating the description of buildings with 
complex geometries in the context of BES-based design workflows. Thus, it is especially useful 
for non-expert energy modelers, such as architects. It also yields a high integration potential in 
early building energy optimization studies, particularly the ones that use metaheuristics, since the 
tool can automatically generate valid BEMs that are faster to simulate. 

Strategy C also extends the modeling capabilities of Strategy A. It proposes a simplification 
approach that addresses the generation of efficient geometric descriptions of highly sophisticated 
façade systems at the early design stages. Such facades systems include CFS that control solar heat 
gains and mediate light and air in complex free-form building envelopes. 

This strategy combines parametric design, surrogate modeling techniques based on statistical-
learning, window performance and whole-energy building analysis tools in a single streamlined 
design workflow. The main innovation that it proposes is using co-simulation to first abstract and 
simplify the geometric features of CFS into simplified fenestration performance indices, and then 
use them in the early study and optimization of whole-building energy performance. Since the 
method abstracts the geometry of façade systems into simplified fenestration performance metrics, 
it is possible to use it to find formally distinct solutions of similar thermal, solar, and optical 
performance. This ability makes the method particularly useful in the early design of facades with 
intricate patterns, phases where architects usually are still evaluating the aesthetic contribution and 
qualities of different façade strategies and their resulting patterning effects. 

The application of the novel method in the design and simulation of louver- and frit-based shading 
systems for a fully glazed semi-ellipsoid showed that it is possible to select configurations of the 
two systems that have similar performance. The experiments demonstrated that Strategy C delivers 
building energy performance results on valuable time and within an acceptable accuracy for either 
parametric or goal-oriented design processes based on overall building energy performance. The 
application of Strategy C in a specific design case confirmed an observation that emerged from 
the Strategy A experiments: static shading façade systems are more effective if annual incident 
solar radiation simulation data constrains the modulation of either their shading factor or SHGC. 
The application of Strategy C showed that informing the façade panels with a specific louver tilt 
or frit coverage based on incident solar radiation is the most effective strategy to improve the 
energy performance of fully glazed envelopes with static shading devices or high-performance 
glazing coatings. The experiments also indicate that a more refined study, which would include 
the hourly variation of solar radiation, may have the potential to inform the design and operation 
of dynamic shading devices that most likely outperform static shading solutions. This particularly 
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true for buildings with continuous envelopes that simultaneously face different orientations, as was 
the case for the semi-ellipsoid glazed covered space used in the Strategy C study. 

Although Strategy C presented acceptable errors, particularly in annual EUItotal, it is less robust in 
minimizing simulation output deviations than Strategy B. The models produced by Strategy C 
showed hourly deviations (measured using CVRMSE and NMBE) outside the acceptability range 
in the case of predicting heating energy consumption. The other energy end-uses reported 
acceptable CVRMSE and NMBE values. Nevertheless, the experimental setting might lead to an 
overestimation of the error measured in heating. Since heating has a minimal weight in the overall 
energy performance of the case study used in the experiments, any small absolute deviation on it 
will produce significant relative errors. However, it is also plausible to assume that the proposed 
simplification is causing such errors. Abstracting complex fenestration assemblies to static 
performance indices result in a considerable dimensionality reduction. Consequently, such 
abstraction flattens the granularity of the hourly impact that shading has on building energy 
performance. However, the loss of information is acceptable at early design phases since quick 
feedback is desirable, and designers are more concerned with the overall annual performance than 
with hourly predictions.  

Considering annual estimations, the models produced by Strategy C introduce minimal deviations, 
confirming the usefulness of the method. Nonetheless, it is possible to refine the proposed 
approach through the development of dynamic SHGC, VLT, and U-factor. Such an approach will 
model CFS similarly to electrochromic or thermochromic glazing units. Although this refinement 
will increase simulation run-time, it will allow the detailed assessment of several solutions that 
emerged through the application of the current strategy. It will also extend the proposed method 
to analyze dynamic CFS. 

In sum, Strategy A enables the automatic generation of valid BEMs for BES of complex free-form 
building envelopes. Strategy B extends A by allowing the creation of geometric surrogates that 
simplify the geometry of an initial massing model or refined multi-zone BEM. By preserving 
essential geometrical properties (e.g., air volume, surface-to-volume ratios, and overall shape), the 
models produced by Strategy B are computationally more efficient since they run faster and the 
resulting simplification has a small impact on simulation output. Strategy C also extends A by 
expanding its scope to the study of complex façade systems that shape the solar, thermal, and 
optical performance of highly sophisticated building skins. The simplification proposed by 
Strategy C reduces the geometry of CFS to simple fenestration performance indices – SHGC, VLT, 
and U-factor. The resulting surrogates are faster to run and deliver useful feedback of acceptable 
accuracy for early whole-building energy assessments. 

Because the modeling Strategies B and C directly derive from Strategy A, it is possible to 
combine Strategy B and C with A. For example, a complex parametric model could use Strategy 
A to parse complex double-curved building envelope geometry and Strategy C to study and 
optimize different shading façade systems. Strategy A can also pre-process the envelope 
geometry of a massing model that entails different thermal zones. Then, Strategy B can both 
simplify the initial geometric description produced by Strategy A and sample the multi-zone 
BEM and decompose it into simpler representative single-zone BEMs. 

Considering that Strategy C is more robust in annual estimations and less in hourly predictions, 
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its combination with Strategy B could produce oversimplified models that, although presumably 
quicker to run, might deliver inaccurate results because of error accumulation.  
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Chapter 6:  
Modeling Strategies for Advanced Daylight 
Simulation of Buildings 
6.1 Introduction 

As mentioned in chapter 3, section 3.3.2, the obstacles to using daylighting simulations in BPO or 
other parametric building design workflows are primarily related to the demand for advanced, 
detailed, and computationally expensive simulations to assess glare in indoor spaces.  

The examination of glare is essential in assessing visual comfort in buildings since it is a key visual 
discomfort indicator. Thus, when architects and daylight analysts want to improve the daylight 
performance of buildings, they aim to simultaneously minimize glare and maximize the use of 
daylight, which in turn minimizes lighting energy use.  

Like thermal comfort, preferred light levels and visual comfort in buildings are subjective; they 
vary from person to person. Thus, one might argue that glare mitigation should be directly 
addressed by building occupants. Nevertheless, leaving control of the daylit environment solely in 
the hands of building occupants is risky, as their behavior is often unpredictable. For example, the 
building monitoring study conducted by Correia da Silva et al. (2013) presented some cases where 
glare led building occupants to permanently block light with operable shades despite the limited 
duration of the phenomena – see section 3.1 in Correia da Silva et al. (2013). This type of behavior 
has a direct impact on building energy performance since it leads to the undesired increased use of 
electric light, and, consequently, to higher building energy consumption. 

Although shading is an effective strategy to mitigate glare, they may not always be easily accessed 
or controlled. There may be cases in which several occupants compete for control, or where manual 
shading devices are too high for occupants to reach.  

Moreover, some types of shade may even magnify glare. For example, a building occupant might 
adjust a highly specular venetian blind system to his or her liking, yet the resulting light reflections 
might bother another user. The use of micro-perforated light-colored roller blind systems can also 
increase the discomfort caused by glare. Such shades decrease the intensity of the glare source by 
diffusing it through their participating media. As a result, the roller shades glow and increase the 
size of the glare source. Since glare source size is a critical factor in determining visual discomfort, 
such roller shades might themselves become a glare source, affecting an area than that of the 
original small bright light source. Finally, if glare is caused by a high contrast ratio of surfaces, the 
building occupant has a limited range of actions with which to improve the situation. 

The previous scenarios show the difficulty of controlling glare using standard shading devices. 
The assessment of glare thus becomes an important task in designing visually comfortable spaces, 
either through manipulating building geometry, conceiving and operating shading devices, or 
selecting building materials.  
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To address the complexity of visual comfort, several glare metrics were developed. Recent studies 
(Wienold et al., 2018) reveal that the Daylight Glare Probability (DGP) (Wienold and 
Christoffersen, 2005, 2006) is the best daylight metric available for estimating glare and visual 
comfort by measuring the discomfort caused by glare. Like thermal comfort metrics, DGP predicts 
the expected level of visual discomfort among a large number of people. Nevertheless, the 
calculation of DGP requires the generation of synthetic High Dynamic Range (HDR) images, 
which are computationally expensive.  

Several efforts have been made to advanced simpler alternatives to DGP. Those alternatives 
attempt to correlate simpler annual climate-based metrics based on horizontal illuminance (Eh) 
with visual comfort, such as Useful Daylight Illuminance (UDI) and Annual Sun Exposure (ASE) 
(IESNA, 2012; Konis, 2014). However, such studies present certain limitations, mainly: (i) annual 
Eh metrics are unable to either partially or fully capture the glare phenomenon; (ii) they lack 
generalized consensus in the daylight research community; and (iii) they result in over-
constrained guidelines as to what is admissible in terms of direct light. 

Thus, the most refined method to assess annual glare induced by daylight still consists of 
calculating the Daylight Glare Probability index (DGP), using a time series of HDR images 
for the entire year with the evalglare program (Wienold, 2004). The increasing relevance of 
annual DGP (aDGP) led its adoption by the new European standard EN 17037 – Daylight in 
Buildings (CEN, 2019) as an essential visual comfort metric. The goal of such adoption is to 
mitigate visual discomfort as much as possible in design phases by accurately assessing glare. By 
requiring the analysis of glare and setting acceptability criteria for DGP, the standard promotes the 
reduction of glare through the following: (i) building form, (ii) orientation and correspondent 
façade design, (iii) the design of fixed building elements such as windows, static shades, and light 
redirecting systems, (iv) the selection of building materials, particularly shades and interior 
building finishes, and (v) an adequate arrangement of the interior spatial layout, particularly 
regarding furniture. 

EN 17037 determines whether a space is visually comfortable or not if hourly DGP-threshold 
values do not exceed a certain fraction of the annual occupied schedule for specific points-of-view 
(POV). However, the definition of the POV entails a complex process that depends heavily on the 
geometry of the building. For that reason, designers and researchers often default to the simplified 
method presented by the standard that is exclusively based on solar geometry, making it even more 
rudimentary than the use of Eh based metrics to estimate glare (Paule et al., 2018). 

Although annual DGP (aDGP) adequately addresses the temporal aspect of the glare 
phenomenon, typically its calculation takes a considerable amount of time making its use 
unfeasible in most building design processes, particularly initial ones. Moreover, because 
DGP depends on the viewer's location and POV, it cannot qualify an entire space or a zone in 
terms of visual discomfort or comfort.  

Considering that DGP is currently the best available method to predict visual discomfort 
caused by glare in indoor spaces (Wienold et al., 2018) and that aDGP analyses times are often 
unfeasible in most building design workflows, two questions emerge:  
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Is it possible to develop a simplified prediction approach that quickly classifies the visual 
comfort of an indoor space over an entire year? 

The underlying hypothesis of the strategy advanced in this chapter (Strategy D) is that it is 
possible to use annual vertical illuminance at the eye level (EV) to generally qualify a space in 
terms of its visual comfort. The hypothesis also includes using the same EV data to find critical 
time events at well-defined POVs and utilizing them in point-in-time DGP analysis. Such 
detailed DGP analysis would provide granularity and useful detail about critical aspects of 
worst-case scenarios, including the relative size and position of the circumsolar region in the 
observer’s field-of-view (FOV), reflections, and surface luminance contrast. In sum, the 
strategy aims to address the following challenging question: 

If it is desirable to replace aDGP with point-in-time simulations, when, where, and for 
which point-of-view should we run point-in-time DGP? 

These questions that motivate the development of the strategy proposed in this chapter frame 
the second dissertation research question specified in chapter 3, section 3.4 to the use of 
advanced visual comfort analysis in architectural design workflows. The second research 
question mentioned in chapter 3, section 3.4 states the following: What modeling and analysis 
procedures generate quick and adequate feedback on energy and daylight performance of 
buildings at early design stages? Consequently, the resulting method satisfies the third 
development and implementation goal (chapter 3, section 3.4): Develop simplified approaches 
that either replace or reduce the need for computationally expensive simulations. 

The work presented in this chapter results from a collaborative effort between the author of 
this dissertation and his primary advisor, Professor Luisa Caldas. The chapter summarizes 
two publications, one in a peer-review international conference (Santos and Caldas, 2018), 
which presentation won a merit award, and the other published in a peer-reviewed scientific 
journal of the field (Santos and Caldas, 2020). 

6.2 Related Work 

Wienold and Christoffersen (2005, 2006) introduced DGP, a glare metric expressed in equation 
(6-1): 

𝐷𝐷𝐷𝐷𝐷𝐷 = 5.87 ∙ 10−5𝐸𝐸𝑉𝑉+ 0.0918 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 +  � �
𝐿𝐿𝑠𝑠,𝑖𝑖

2 ∙ 𝜔𝜔𝑠𝑠,𝑖𝑖

𝐸𝐸𝑉𝑉
1.87 ∙ 𝑃𝑃𝑖𝑖

2�
𝑛𝑛

𝑖𝑖=1

� + 0.16 (6-1) 

where 𝐸𝐸𝑉𝑉 is the vertical eye illuminance, measured in lux, produced by the light sources at the 
observer’s eye, 𝐿𝐿𝑠𝑠,𝑖𝑖

  is the luminance of a glare source, 𝜔𝜔𝑠𝑠,𝑖𝑖 is the solid angle of the source seen by 
the observer in steradians (sr), and 𝑃𝑃𝑖𝑖

  is the position index that expresses the change in experienced 
glare relative to the angular displacement of the source (azimuth and elevation) from the observer’s 
line of sight.  
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The DGP formula is valid within DGP values that range between 0.2 and 0.8 (DGP ∈ [0.2, 0.8]), 
and for vertical eye illuminance (EV) above 380 lux. Table 6-1 shows the DGP categories of visual 
discomfort caused by glare. 

Table 6-1. Daylight Glare Probability (DGP) categories.  

DGP glare categories Probability range ∈ [0-1] 

Imperceptible glare DGP < 0.35 
Perceptible glare 0.35 ≤ DGP < 0.4 
Disturbing glare 0.4 ≤ DGP < 0.45 
Intolerable glare DGP ≥ 0.45 

 
The formulation of DGP was a considerable breakthrough because no other glare metric was able 
to handle large light sources such as the sun and thus address the effect of direct daylight in visual 
comfort (Suk, Schiler and Kensek, 2013). However, different researchers reported several 
limitations to DGP, including the following: 

1) DGP is less accurate in predicting visual discomfort in glare situations caused by luminance 
contrast than by high EV (Kleindienst and Andersen, 2009). 

2) The development of the metric used only stable clear skies (Van Den Wymelenberg and 
Inanici, 2014), thus presenting a higher uncertainty with other types of skies, such as hazy 
bright ones.  

3) DGP is based on a correlational fit of mean data, thus it might either not have the desired 
granularity or be susceptible to the cancelation effect (Van Den Wymelenberg and Inanici, 
2014). 

4) DGP model did not perform as expected when tested on data sets of similar experiments 
(Van Den Wymelenberg, Inanici and Johnson, 2010).  

Nevertheless, recent studies showed that DGP is currently the most advanced available method 
for assessing visual comfort (Jakubiec and Reinhart, 2010; Suk, Schiler and Kensek, 2013; 
Wienold et al., 2018) outperforming other glare metrics such as the Discomfort Glare Index (DGI) 
(Hopkinson, 1972; Chauvel et al., 1982). 

The simulation of DGP involves the production of a synthetic HDR image and its analysis through 
the evalglare software (Wienold, 2004; Wienold and Christoffersen, 2006). This simulation-based 
pipeline entails a considerable computational overhead, primarily caused by the generation of full 
HDR images, a task typically performed through Radiance (Ward, 1994). 

To accelerate DGP simulations, Wienold proposed a simplification under the name of DGPs, 
which stands for DGP simplified (Wienold, 2009). Mostly based on EV, DGPs is faster to calculate 
than full DGP. Nevertheless, it assumes that no direct sun – or any specular reflection of it – 
reaches the eye; thus it is not suitable in the glare assessment of indoor spaces that are highly 
exposed to direct light or in the study of highly specular LRCFS. To deal with these limitations, 
Wienold proposed the Enhanced Simplified Discomfort Glare Probability (eDGPs) as an 
alternative that is more accurate than DGPs and faster to simulate than DGP (Wienold, 2009). The 
eDGPs approach splits the initial definition of DGP into two simplified terms: the first depends on 
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EV and the second on the detected glare sources. The first term is easy to calculate while the second 
requires the computation of a simplified image that renders only the main glare sources, thus 
neglecting most of the indirect ambient reflections. Although eDGPs is a faster method to predict 
glare, it is still computationally expensive for annual glare assessments.  

Jones and Reinhart (Jones and Reinhart, 2017) used Graphical Processing Unit (GPU) 
parallelization techniques to accelerate DGP simulations. Although the remarkable improvements 
in simulation time brought by GPU parallelization, aDGP simulations are still slow for 
metaheuristic-based optimization studies. This approach also constrains designers and lighting 
analysts to use specific graphics cards (hardware lock). 

Another way to study glare and visual comfort avoiding time-consuming DGP simulations is to 
correlate annual Eh metrics such as UDI with glare related phenomena. However, there is no 
consensus about UDI use and its upper illuminance threshold as a proxy to glare and visual 
discomfort. Mardaljevic et al. (2012) reported some promising correlations between UDI and 
DGPs, but because the study used DGPs it is difficult to establish a full correlation between Eh and 
DGP. In a field-based study, Konis (2014) concluded that the use of Eh as an estimator of visual 
comfort is context-specific and that it is thus necessary to complement Eh analysis with luminance-
based assessments. Similarly, Santos, Leitão and Caldas (2018) showed that even using a 
conservative illuminance threshold (> 2000 lux), UDI is insufficient to accurately assess the glare 
performance of LRCFSs. ASE is another annual Eh based metric used to assess visual discomfort 
potential. However, because it considers only direct light, it falls short in assessing the glare 
performance of more complex fenestration systems, such as LRCFS.  

Giovannini et al. (2018) used EV to predict DGP. Although the work showed a good correlation 
between the different DGP bins with EV, the research presents some limitations that constraint the 
generalization of its results, particularly:  

1) It is difficult to validate the results since the authors used DAYSIM (Reinhart and 
Walkenhorst, 2001) to calculate DGP. For computationally convenience, DAYSIM 
calculates eDGPs (Wienold, 2009), which uses a simplified HDR to determine the 
luminance contrast term of DGP, thus being more biased towards EV. 

2) The authors test the approach under the annual sky conditions of a single location. 
3) DAYSIM does not support materials described through bidirectional scattering distribution 

functions (BSDFs). Hence, it is highly questionable if the collected data captures light 
scattering effects, particularly in the models that used specular materials. 

Despite the assumptions and resulting limitations of the work presented by Giovannini et al. 
(2018), the investigation shows a correlation between EV and glare discomfort, mainly if the scene 
includes the sun or its reflections in the viewer’s field-of-view (FOV). However, the experiments 
conducted by Wienold and Christoffersen (2006) showed that using EV as a predictor of the 
different levels of visual discomfort yields a considerable deviation error, especially if EV is high. 
Based on this discussion, the work presented in this chapter assumes that there is the potential to 
use EV only as a binary indicator of glare events (DGP ≥ 0.35), not as a predictor of the different 
DGP categories. 
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Using simulation to map visual discomfort spatially is a challenging task. Early attempts (Reinhart 
and Wienold, 2011) used DA and UDI to generate a daylight availability map that marks overlit 
areas susceptible to glare. Despite its usefulness in early design phases, the approach is susceptible 
to the limitations that result from using Eh to predict glare. Recently, researchers use either EV or 
DGP to spatially assess visual comfort. In Giovannini et al. (2018), the authors used EV to infer 
DGP values to color-code a point grid. The use of EV to extrapolate a DGP value limits a 
generalized use of the method. Additionally, since the work uses only one view direction, the 
proposed visualization does not provide any information about different view directions and 
critical time events.  

The work advanced by Zomorodia and Tahsildoost (2019) provides information on critical time 
events by proposing a spatial DGP index (sDGP) that measures the hourly percentage of space 
exposed to intolerable glare. Although this metric provides information on critical time events, it 
reduces spatial information to a percentage. Therefore, sDGP is unable to report critical POVs 
susceptible to glare. Jones (2019)  presents an imageless method to accelerate DGP calculations. 
The work also advances a new annual glare metric, glare autonomy, which is the fraction of 
occupied hours that a specific POV does not report perceptible glare. This simulation-based 
approach has two main limitations. First, the method uses the two-phase method, which limits its 
applicability – for example, it excludes the use of BSDFs and consequently the study and analysis 
of CFS. Second, the imageless approach considers only the sun and sky contributions to calculate 
the luminance contrast term of DGP equation, thus excluding any other glare source. Nevertheless, 
the method maps both point-in-time DGP and glare autonomy into a sensor grid by color-coding 
different view directions (arrows) per sensor. The resulting tool provides detailed information 
about glare potential, relevant POVs, but not on critical time events.  

Considering the limitations of current metrics and simulation methods, it is reasonable to assume 
that combining EV analysis with the calculation of DGP in critical events and POVs is a suitable 
approach for performing quicker annual visual comfort studies. Additionally, there are few 
guidelines for selecting appropriate POV and HOY in DGP-based studies. An interactive map that 
summarizes annual EV data in different locations can be useful in the selection of POV/HOY pairs 
for detailed glare analysis.  

6.3 Strategy D: Assess glare potential of indoor spaces using a time and spatial 
sampling technique  

In order to answer the research questions stated in section 6.1, this section presents a new 
simulation-based tool that implements a heuristic approach that explores the relation between 
glare and EV previously reported in the literature, particularly in Wienold and Chirstoffersen 
(2006) and Giovannini et al. (2018). The strategy hypothesis is that it is possible to use annual 
EV calculations, which are much simpler and faster to compute than aDGP, in preliminary 
visual comfort assessments. The heuristic uses EV specifically to spatially map glare potential 
and find POV and hour-of-the-year (HOY) pairs that yield high glare potential for further 
analysis.  

To that end, the envisioned modeling strategy consists of a heuristic that samples annual EV 
data calculated in a grid of sensors. The proposed heuristic uses an EV threshold (EV,Thr) to 
label every time event on any POV as susceptible or non-susceptible to glare  (DGP ≥ 0.35). 
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The tool then displays preliminary visual comfort information that consists of mapping glare 
potential over a POV grid and providing the necessary information to conduct more detailed 
analyses. Such analyses consist of accurate point-time DGP simulations or false-color 
luminance HDR images for the most critical POVs and HOY pairs. Considering this, the 
investigation goals are as follows:  

1) Find a robust EV,Thr that is able to detect glare events in different types of annual skies 
in any given location.  

2) Propose an interactive computational tool that samples, maps, and visualizes annual EV 
data. This tool should deliver preliminary visual comfort assessments and information 
on critical locations, POVs, and time events to guide the user in more detailed studies, 
including full point-in-time DGP simulations. 

3) The tool should support all types of daylight simulations, including the accurate 
simulation of specular reflections, which typically are one of the primary causes of 
glare.  

To fully support the simulation of specular reflections and caustics effects, the proposed 
modeling strategy uses advanced techniques that include forward ray tracing in daylight 
simulation. Such techniques enable the tool to assess the glare potential of different spaces 
with different types of fenestrations, including spaces with highly specular Light Redirecting 
Complex Fenestration Systems (LRCFS). For this reason, the work presented here 
demonstrates the applicability of the tool in the study of different combinations of 2 different 
fenestration systems, one consisting of a standard clear double pane glazing and the other of 
a LRCFS, previously developed and tested by the author of this dissertation in a research done 
in collaboration with others (Santos, Leitão and Caldas, 2018). The research tests the different 
combinations of fenestration in a simple scene composed of a common office space with two 
windows, one facing south and the other west. 

6.3.1 Methods 

The development and testing of Strategy D entails three parts: (i) use annual EV data to detect glare 
events; (ii) develop and implement an heuristic that spatially maps glare potential and queries EV 
data to find POV/HOY pairs to conduct full DGP simulations; and (iii) apply the resulting tool in 
a case study to face validate the proposed approach. The following summarizes the methods used 
in each part. 

Finding an Ev threshold to detect potential glare events 

A parametric analysis tested different EV values to find a robust threshold (EV,Thr) that detects 
potential glare events. Using the results of similar work that attempts to correlate EV and DGP 
(Wienold and Christoffersen, 2006; Giovannini et al., 2018), the tested values for EV,Thr range from 
2000 to 3500 lux in increments of 50 lux (EV,Thr ∈  ℕ: {2000,2050,…,3500}). Although the results 
reported by Giovannini et al. (2018) use a higher EV,Trh, the proposed range starts at 2000 lux, 
based on the empirical work that led to the formulation DGP metric (Wienold and Christoffersen, 
2005, 2006). The laboratory human subject experiment conducted in that study found a reasonable 
linear correlation between EV and percentage of people disturbed by glare (R2 = 0.77). The same 
research also showed that as EV increases, the error of using to predict visual discomfort levels also 
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increases. Thus, and in contrast to the work of Giovannini et al. (2018), this work uses EV  as a 
binary marker to identify if a specific POV/HOY pair is susceptible to glare. 

The parametric analysis compares different EV values against full annual DGP results of three 
POVs in a south-facing small office room. This comparison uses Typical Meteorological Year 
(TMY) data of three locations that represent different annual sky trends: (i) Phoenix, AZ, USA 
(33.45⁰ N, 112⁰ W) – a tendentially clear annual sky; (ii) London, UK (51.15⁰ N, 0.18⁰ E) – a 
location dominated by overcast skies; (iii) Oakland, CA, USA  (37.72⁰ N, 122⁰ W) – a good 
example of an annual mixed sky. The hourly calculation of the sky clearness index (ε) supported 
the selection of these locations. Perez et al. (Perez et al., 1990) define eight ε bins that range from 
a totally overcast (bin 1) to a completely clear sky (bin 8). Figure 6-1 presents an ε annual hourly 
heatmap for each location paired with the relative frequency of each ε bin. 

 

Figure 6-1. Annual sky clearness index, ε, for Phoenix, AZ, USA (top), Oakland, CA, USA (middle), and London, 
UK (bottom).   

Figure 6-1 shows that clear skies dominate Phoenix since the ε bins 6 to 8 represent ≈ 66% of the 
daytime hours. In London, the bins 1 to 3 represent ≈ 70% of the hourly skies, making this location 
a good representative of a typical annual overcast sky. In Oakland, the ε bin 6, an intermediate to 
clear sky condition, yields the highest frequency (28.3%), immediately followed by the overcast 
condition (bin 1 – 20.8%). The clearer sky conditions (bins 7 to 8) report ≈ 12% of the daylit hours 
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while intermediate conditions (bin 3 to 6) ≈ 60%.  Considering this variability, Oakland is an 
adequate location to represent an annual mixed sky condition. 

Figure 6-2 and Table 6-2 shows the geometry and the optical surface properties of the room model 
used in this parametric analysis. The room represents a generic space of an enclosed office that is 
5 m large, 7 m deep, and 2.7 m high with a 5 x 1.7 m (width x height) south-facing window placed 
1 m above the floor. The glass in the window has an overall Visible Light Transmittance (VLT) 
of 65 %. Figure 6-2 also shows the location of three representative POVs – POV01, POV02, and 
POV03 – placed at the average eye height of a seated person, 1.3 m. This basic room layout 
simplifies the identification of the room’s daylit and non-daylit zones. Hence, if we consider the 
rule-of-thumb that specifies that the depth of the daylit zone of a sidelight room is approximately 
1.5 times window head height (Reinhart, 2014; Grondzik and Kwok, 2019), POV01 and POV02 
are at the middle of the daylit zone. PV01 is centered relative to the window, while PV02 has an 
eccentric view of it. POV03 is at the back of the room (6 m from the window) and represents a 
view outside the daylit zone. The aim of selecting three POVs was to determine how well each 
EV,Thr captures glare events by considering different daylit zones with different surface area 
weights in the FOV. The authors also used this particular geometry because they had previously 
used it in a comparative study of LRCFSs (Santos, Leitão and Caldas, 2018), and consequently 
had some validated aDGP data on it.   

 

Figure 6-2. The geometry of the room of an enclosed office. Top left: section. Bottom left: plan. Right: pre-
visualization of the different views using Radiance’s rvu routine (Ward, 2004a). 
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Table 6-2. Optical properties of the different room surfaces used in the EV,Thr assessment experiment. 

Surface Reflectance (%) Visual Light Transmittance (%) 
Outside ground 20 N.A. 
Floor 40 N.A. 
Ceiling 80 N.A. 
Interior Walls 60 N.A. 
Exterior Surfaces 35 N.A. 
Window glass N.A. 65 

 
For each POV, EV,Thr , and hour of the occupied schedule, the parametric analysis assesses whether 
the EV,Thr matches the binary condition DGP < 0.35 (no glare event) or DGP (≥ 0.35) calculated 
using the available aDGP data. Whenever the EV,Thr fails to meet such criteria, the analysis 
classifies the prediction as a False Positive (FP), i.e., an overestimation, or as a False Negative 
(FN), i.e., an underestimation. The following functions determine for each hour, t, whether an 
EV,Thr is successful in signaling a glare event or not. Equation (6-2) describes the condition when 
EV,Thr captures a glare event, equation (6-3) when it reports an FP event, and equation (6-4) when 
it signals an FN event. The computation of each function always returns a Boolean value. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡, 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ) =  𝐸𝐸𝑉𝑉(𝑡𝑡) ≥ 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ ⋀ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) ≥ 0.35  (6-2) 

𝐹𝐹𝐹𝐹�𝑡𝑡, 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ� =  𝐸𝐸𝑉𝑉(𝑡𝑡) ≥ 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ ⋀ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) < 0.35    (6-3) 

𝐹𝐹𝐹𝐹�𝑡𝑡, 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ� =  𝐸𝐸𝑉𝑉(𝑡𝑡) < 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ ⋀ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) ≥ 0.35   (6-4) 

To test the accuracy of EV,Thr in predicting potential glare events, the parametric analysis uses 
equation (6-5) to report the percentage of the hourly failed predictions (FP + FN) relative to the 
total number of hours that reported glare. 

% 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ� =  
∑ (𝐹𝐹𝐹𝐹(𝑡𝑡, 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ) + 𝐹𝐹𝐹𝐹(𝑡𝑡, 𝐸𝐸𝑉𝑉,𝑇𝑇𝑇𝑇ℎ)𝑛𝑛

𝑡𝑡=1 )
∑ (𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) ≥ 0.35)𝑛𝑛

𝑡𝑡=1
 × 100% (6-5) 

The goal is to identify the EV,Thr that minimizes equation (6-5). The sensitivity analysis that 
supports the determination of the EV,Thr assumes an acceptability threshold for error predictions on 
an average of 10%. In this way, the adopted EV,Thr would be within the 90% interval of confidence 
on average.   

Strategy description and implementation 

The proposed strategy encompasses three phases: simulation, data post-processing, and 
visualization and querying. Each phase entails several tasks, detailed below. 

Phase I – Simulation: initially, the user describes a Radiance scene, including geometry, materials, 
an analysis sensor grid, and provides TMY data. For each sensor, the implemented heuristic 
generates an n (n ∈ ℕ: {1, 2, …, 8}) cardinal-based POV, and conducts an annual EV simulation 
for each POV. 
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Phase II - Data post-processing: using EV,Thr, the approach begins to process the hourly EV data of 
each POV by labeling it as susceptible (EV(t) ≥ EV,Thr) or non-susceptible to glare (EV(t) < EV,Thr). 
Then the procedure calculates the frequency of events susceptible to glare. 

Phase III - Visualization and querying: having collected and labeled the EV data of each POV, the 
tool spatially maps the glare potential over the sensor grid. The tool generates a radar graph for 
each sensor that displays the frequencies of potential glare events in each POV for a given analysis 
period. By default, this period corresponds to the entire year, but the user can set it to monthly or 
seasonally intervals.  

The resulting visualization indicates which POVs are more susceptible to glare. Figure 6-3 
describes the visualization output for a sensor. Each radial line corresponds to a POV. The four 
concentric rings indicate different percentages of the annual daylit hours (i.e., the total number of 
hours when the sun is up), ranging from 0% (center) to 100% (circumference ring) in incremental 
steps of 25%. The colored polygon reports the glare potential. The position of the intersection of 
the polygon with each POV line measures the number of hours that yield glare potential normalized 
as a percentage of the total number of daylit hours. 

 

Figure 6-3. Guide to interpret the radar graph output of a given sensor. 

Although the user can visualize and query the data of each sensor, the modeling strategy 
automatically selects the POVs with a frequency whose deviation is within +/- 10% of the 
maximum frequency. Finally, in each sensor of the analysis grid, the user can select any of the 
eight POVs to obtain feedback about the period that yields a higher glare potential. Once more, for 
each selected POV, the strategy heuristic approach automatically identifies the HOY in order to 
conduct a full point-in-time DGP simulation by finding the hour that yields the highest EV of the 
largest set of consecutive pairs day/hour that are susceptible to glare. 

Strategy D was computationally implemented in the Rhino+Grasshopper environment as a 
daylighting analysis tool using the Python programming language. The resulting digital tool uses 
Radiance’s 3-phase method (McNeil and Lee, 2013) to simulate annual EV. The 3-phase method 
provides bi-directional raytracing capabilities to Radiance backward raytracing engine, thus 
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enabling the accurate simulation of highly specular scenes, caustic light effects, and complex 
fenestration systems (see chapter 2, section 2.2.2 - Daylight simulation in buildings using physical 
(unbiased) approaches). The point-in-time DGP simulations for the selected POV/HOY pairs use 
Radiance’s rpict (Ward, 1999) routine to produce the HDR images and evalglare to calculate DGP. 
The system uses Radiance’s gendaylit (Delaunay, Wienold and Sprenger, 1994) subprogram to 
generate an accurate Perez all-weather sky given a specific hour, location, and TMY data, thus 
ensuring that the resulting HDR image reflects the sky condition considered in EV calculations. 
Figure 6-4 summarizes the proposed approach modeling phases, and subsequent steps, in a flow 
diagram.  

 

Figure 6-4. Proposed modeling approach to assess annual glare potential using vertical illuminance simulated at eye 
level (EV) data. 

Design of Experiments – application to a case study 

The test and face validation of the proposed modeling strategy consisted of applying the tool to 
analyze the annual glare potential of an architectural space. To that end, the authors 3D-modeled 
a hypothetical representative office room of a commercial building in a typical 5 x 7.5 m structural 
grid. The 9.8 x 7.2 x 2.7 m (width x length x height) room faces both south and west. Compared 
with the model used in the determination of the EV,Thr, the case study model introduces more 
complexity by adding a challenging window in the FOV, the West window.  

After determining the EV,Thr the goal of the case study experiment was to test how the proposed 
approach copes with different daylight contributions from multiple orientations, a common 
scenario in design practice. The south and the west façade have windows that start at 1.1 m height 
and end at the ceiling. A six-point 4.2 x 3.2 x 1.5 m grid defines the spatial location of the different 
POVs. This grid is centered relative to the room, and its spacing is representative of a typical office 
layout. The tool generates 8 POVs per point, each one facing a different cardinal direction. The 
optical properties of the opaque surfaces of the case study model are the same used in the 
sensitivity analysis (see Table 6-2). Figure 6-5 shows two axonometric views, SE and NW of the 
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model, whereas Figure 6-6 presents the sensor grid overlaid over a hypothetical office furniture 
layout marked with a dashed line. 

 

Figure 6-5. Axonometric views of the 3D model of a typical office room used in the experiments that test the 
proposed modeling strategy. Left: Southeast axonometry. Right: Northwest axonometry. 

  

Figure 6-6. Plan of the typical office room used in the experiments that test the proposed modeling strategy. The 
sensor grid (blue) is placed over a hypothetical room layout (dashed line). Sensor 3 (bottom right) illustrates the 8 

POV directions generated in each sensor. 

The experiment compares three different fenestration assembly schemes in the model described 
above at the three locations considered in the determination of EV,Trh – Phoenix, AZ, USA; London, 
UK; Oakland, CA, USA. The first fenestration scheme (Scheme #1) defines a baseline case. It 
consists of a double-clear glazing with a VLT of 65% applied in both windows. Scheme #2 
combines the double-clear glazing with a glazing assembly composed of a macroscopic LRCFS 
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optimized to maximize Daylight Factor (DF) levels. The west window received the double-clear 
glazing assembly, whereas the south window received the LRCFS. The LRCFS is a set of equally 
spaced highly specular/reflective blinds (99.3% of reflectance) placed between two clear glass 
panes (VLT of 65%) developed and tested in a comparative study conducted by the dissertation’s 
author in collaboration with other researchers (Santos, Leitão and Caldas, 2018). Figure 6-7 depicts 
the in-between glass layers light redirecting system. Santos, Leitão, and Caldas (2018) provides 
more detail about the LRCFS. The third fenestration scheme (Scheme #3) applies the LRCFS to 
both windows. 

 

Figure 6-7. Sectional detail of the LRCFS used in the case study application and previously optimized in Santos, 
Leitão, and Caldas (2018). 

The purpose of using different combinations of clear glazing assemblies with LRCFS is to test the 
flexibility of the proposed modeling strategy in handling both simple and complex fenestration 
systems. Clear glazing assemblies are often used at the early-stage design process. In contrast, the 
deployment of CFS are more common in comparative studies conducted by designers to support 
the selection or development of specific facade products. The use of CFS might significantly 
impact the overall image of a building. Thus, although the CFS analysis usually occurs at later 
design phases, it is not unusual to undertake preliminary studies involving CFS at the early stages 
of the design process. 

For each scheme, the proposed tool runs a climate-based annual EV simulation, visualizes the 
frequency of events susceptible to glare in each POV, and selects the critical POV/HOY pairs for 
the different rows of sensors separately, to then run a full DGP analysis. To better compare the 
results, the tool overlays the resulting radar graphs of the different fenestration schemes. 

The simulation parameters used in the 3-phase method annual simulations closely follow  the LM-
83 standard recommendations (IESNA, 2012). The list below presents the simulation parameters: 

• Ambient resolution (-ab) – 6 ambient bounces to guarantee enough accuracy without a 
substantial computational burden using the 3-phase method. 

• Ambient resolution (-ar) – 300, a reasonable number for a point grid calculation with 
Radiance's subroutine rtrace (Ward, 1997) and for a model of that size. 
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• Ambient divisions (-ad) – 1000, a fair amount of ambient division for a sensor-based 
simulation. 

• Ambient sampling (-as) – 500, typically half of -ad (Ward, 1999). 
• Ambient accuracy (-aa) – 0.1. 
• Direct threshold (-dt) – 0, to test all light source sampling both in global illumination and 

shadow calculation (Ward, 1999). 

In the case of the DGP HDR-based simulations, Radiance parameters are well above the 
recommendations provided by manufacturers of commercial LRCFSs (LightLouver LLC, 2010). 
They keep the same parameter values used in the sensor-based simulation except the -ad parameter, 
which is set at 50,000. This -ad value ensures an adequate number of ambient divisions to 
accurately capture specular reflections and inter-reflections originated by the LRCFS (McNeil, 
2010). 

6.4 Results 

The following sections present in detail the parametric analysis results, conducted to 
determine an appropriate vertical eye illuminance threshold (EV,Trh) to detect glare events, as 
well as, to test the application of the tool to the case study described in section 6.3.1, Design 
of Experiments – application to a case study. 

6.4.1 Determination of the EV threshold (EV,Trh) 

Table 6-3 and Figure 6-8 presents the results of the sensitivity analysis that tested the accuracy of 
different EV,Trh in predicting glare events (DGP ≥ 0.35). Both Table 6-4 data and the scatter plot of 
Figure 6-8 map the percentage of failed events of each EV,Trh relative to the total number of hours 
that reported glare (DGP ≥ 0.35). 

Table 6-3. Percentage of hours, relative to the total number of glare events (DGP ≥ 0.35), when EV,Trh failed to 
predict a glare event (DGP ≥ 0.35) either by reporting an FN or an FP. The selected EV,Thr (2300 lux) is highlighted 

in bold over a gray background. 

 Phoenix, AZ, USA 
Failed predictions [%] 

Oakland, CA, USA 
Failed predictions [%] 

London, UK 
Failed predictions [%]  

EV,Thr 
[lux] POV01 POV02 POV03 POV01 POV02 POV03 POV01 POV02 POV03 Average 

failed predictions [%] 
2000 7.7 12.0 26.7 9.4 12.2 16.4 16.5 16.9 5.9 13.7 
2050 7.4 11.8 23.0 8.6 11.7 12.6 15.8 15.3 4.1 12.3 
2100 6.8 11.3 19.6 7.8 11.2 9.4 15.0 14.3 3.0 10.9 
2150 6.3 10.7 15.9 6.7 10.5 6.8 14.0 13.0 3.2 9.7 
2200 5.8 10.0 11.7 6.3 9.6 4.7 12.2 12.0 4.7 8.6 
2250 5.2 9.5 8.6 5.9 8.7 4.5 11.0 11.4 6.9 8.0 
2300 4.8 8.7 7.3 5.5 8.1 5.0 9.9 10.6 9.2 7.7 
2350 4.4 8.2 8.2 5.3 7.4 5.9 9.1 9.2 13.7 7.9 
2400 4.0 7.6 9.9 4.6 6.5 8.9 8.2 8.0 15.9 8.2 
2450 3.6 7.0 12.5 4.0 5.9 13.2 7.2 7.4 17.7 8.7 
2500 3.2 6.4 16.0 3.6 5.2 16.3 6.0 6.4 20.9 9.3 
2550 2.9 5.5 17.8 3.3 4.4 19.7 4.9 5.2 24.2 9.8 
2600 2.7 4.9 20.6 2.8 3.5 23.4 3.8 4.4 26.3 10.2 

Table continues in the following page. 
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Table 6-3. Percentage of hours, relative to the total number of glare events (DGP ≥ 0.35), when EV,Trh failed to 
predict a glare event (DGP ≥ 0.35) either by reporting an FN or an FP. The selected EV,Thr (2300 lux) is highlighted 

in bold over a gray background (continued). 

 Phoenix, AZ, USA 
Failed predictions [%] 

Oakland, CA, USA 
Failed predictions [%] 

London, UK 
Failed predictions [%]  

EV,Thr 
[lux] POV01 POV02 POV03 POV01 POV02 POV03 POV01 POV02 POV03 Average 

failed predictions [%] 
2650 2.2 4.4 22.5 2.0 2.1 26.7 3.1 3.1 28.0 10.5 
2700 2.1 4.0 24.0 1.5 1.6 29.3 2.6 2.1 29.2 10.7 
2750 1.8 3.7 26.2 1.0 1.3 31.4 2.1 1.9 31.0 11.1 
2800 1.3 3.8 28.7 0.8 1.8 33.8 1.6 2.4 33.0 11.9 
2850 1.3 3.8 30.8 0.7 2.3 37.4 0.9 3.1 34.7 12.8 
2900 1.3 3.7 32.6 0.6 3.2 40.2 0.6 4.0 36.9 13.7 
2950 1.7 4.1 33.8 1.0 3.6 42.6 1.0 4.9 39.0 14.6 
3000 2.3 4.6 36.2 1.3 4.0 44.5 1.6 5.7 41.7 15.8 
3050 2.9 5.1 38.1 2.0 4.6 45.8 2.3 6.6 44.7 16.9 
3100 3.2 5.4 40.0 2.6 5.2 47.1 3.1 7.7 46.9 17.9 
3150 3.7 5.9 41.4 3.0 5.6 48.1 4.6 8.5 49.0 18.9 
3200 4.2 6.3 42.7 3.5 6.2 49.0 5.5 9.2 50.4 19.7 
3250 5.0 6.7 43.9 3.8 7.0 50.0 6.2 10.1 52.0 20.5 
3300 5.8 7.2 45.8 4.2 7.7 51.3 7.1 10.9 53.3 21.5 
3350 6.5 7.6 47.3 4.7 8.7 52.2 8.2 12.0 55.2 22.5 
3400 7.0 8.3 49.3 5.6 9.3 53.1 9.2 12.5 57.1 23.5 
3450 7.8 9.1 50.3 6.1 10.6 54.3 9.9 13.1 58.3 24.4 
3500 8.3 9.5 51.5 6.7 12.4 55.3 11.4 13.7 60.3 25.5 

 

 

Figure 6-8. Measuring the percentage of failed predictions relative to the DGP events (≥ 0.35) of each EV,Thr. The 
continuous magenta line shows the average error. The black dashed line marks the acceptability error threshold 

considered in this study (10 %). The adopted EV,Thr is highlighted in bold. 

The EV,Thr of 2300 lux is the threshold that reports the minimum of failed predictions on average, 
7.7 % in all POVs and locations. The results indicate that higher thresholds (EV,Thr ∈ [2750, 2950 
lux]) are more successful in capturing glare events closer to the window (% failed events ∈ [0.6, 
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4.9]). However, such thresholds fail more often in predicting glare in POVs farther away from the 
window by frequently signaling FN events. Figure 6-9 illustrates the inability of the best EV,Thr 
(EV,Thr = 2900 lux) for POV1 and POV2, the POVs closer to the window, in detecting glare events 
in POV3, the POV located at the back of the room. 

 

Figure 6-9. Annual hourly heatmap of the performance of the EV,Thr = 2900 lux in detecting glare events in POV03 in 
Phoenix, AZ, USA (top), Oakland, CA, USA (middle), and London, UK (bottom). 

Considering that the goal is to find a single EV,Thr that qualifies any point in space in terms of glare 
potential, the difference of error trends between different POVs types constrains the selection of a 
threshold to the 2200 to 2400 lux range (EV,Thr ∈ [2200, 2400 lux]). Therefore, this work adopted 
EV = 2300 lux as the EV,Thr to detect glare events. 

Figure 6-10 presents a detailed analysis of the adopted EV,Thr performance at Phoenix, Oakland, 
and London. If we consider the entire daylit period of the year in each location (4399 hours in 
Phoenix, 4392 hours in Oakland, and 4400 hours in London), rather than the total number of hours 
that the aDGP reported a glare event, the percentage of events where EV,Thr failed to predict glare 
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on average is smaller: 4.4 %. Appendix B breaks down Figure 6-10 heatmaps per location and 
shows them at a bigger scale to provide more detail. Table 6-4 summarizes the percentage of failed 
predictions relative to the entire daylit period of the year. 

 

Figure 6-10. Performance of the selected EV,Thr  (2300 lux) in detecting glare events in all POVs in Phoenix, AZ, 
USA (top), Oakland, CA, USA (middle), London, UK (bottom). In each location, the top heatmap visualizes hourly 
aDGP, while the bottom heatmap maps the failed (FN + FP) and successful hourly events in using EV,Thr = 2300 lux 

to detect glare events. 
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Table 6-4. Percentage of failed predictions (FN + FP) of EV,Thr = 2300 lux for each POV, relative to the total number 
of daylit hours per location. 

  Phoenix, AZ, USA 
Failed predictions [%] 

Oakland, CA, USA  
Failed predictions [%] 

London, UK 
Failed predictions [%] 

POV01 3.8 4.1 5.6 
POV02 6.5 5.6 5.5 
POV03 3.2 2.1 3.0 

    
Average - Failed predictions [%] 4.4 

 
6.4.2 Case study results 

Table 6-5 and Figures 6-11 through 6-16 present the results of the application of the proposed 
modeling strategy to the case study. Figures 6-11 through 6-13 show the visualization output of 
the proposed computational tool, i.e., the radar graphs per sensor point mapping the frequency of 
the events susceptible to glare for each POV direction. The frequencies are normalized for the 
number of daylit hours in each location: 4399 hours in Phoenix, AZ, USA, 4392 hours in Oakland, 
CA, USA, and 4404 hours in London, UK. 

Table 6-5 presents a summary of the relevant information used by the proposed tool in selecting 
POV/HOY pairs to conduct a full point-in-time DGP simulation. The last row of the table shows 
the DGP results for each pair POV/HOY selected. Figures 6-14 through 6-16 present the result of 
using evalglare to analyze in detail the selected POV/HOY pairs. The resulting images deliver 
detailed information about the location of glare sources, the position of the circumsolar region, 
reflections, and the luminance contrast of the different surfaces. 

Table 6-5. Results per sensor of the implemented modeling strategy. 

Phoenix, AZ, USA  
Sensor #2 Sensor #6 

Fenestration  
Scheme 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 
POV [vx,vy,vz] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] 
Date [m/d/h] 1/5/3PM 12/30/2PM 12/30/2PM 11/27/2PM 12/30/2PM 12/30/2PM 

EV [lux] 4057 3982 3752 8008 8468 7965 
Frequency [%] 

(EV ≥ EV,Thr) 
87% 82% 76% 76% 75% 73% 

DGP 1 1 1 0.84 0.81 0.65 

Table continues in the following page, 
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Table 6-5. Results per sensor of the implemented modeling strategy (continued). 

Oakland, CA, USA 
 Sensor #2 Sensor #6 

Fenestration  
Scheme 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 
POV [vx,vy,vz] [0,-1,0] [0,-1,0] [0,-1,0] [0,-1,0] [0,-1,0] [0,-1,0] 
Date [m/d/h] 11/19/10AM 12/22/2PM 12/22/2PM 12/22/12PM 8/1/1PM 8/1/1PM 

EV [lux] 4339 4755 4302 9974 7858 7828 
Frequency [%] 

(EV ≥ EV,Thr) 
84% 78% 77% 71% 68% 64% 

DGP 1 1 1 0.36 0.44 0.45 

London, UK 
 Sensor #2 Sensor #6 

Fenestration  
Scheme 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 

#1 
(Double 
Clear) 

#2 
(Mixed) 

#3 
(Full 

LRCFS) 
POV [vx,vy,vz] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] [0, -1, 0] 
Date [m/d/h] 1/15/1PM 1/7/2PM 1/21/12PM 1/12/3PM 1/12/3PM 1/12/3PM 

EV [lux] 10403 6986 7878 18599 15538 16840 
Frequency [%] 

(EV ≥ EV,Thr) 
69% 61% 61% 51% 49% 47% 

DGP 1 1 1 1 1 1 
 

 

Figure 6-11. Visualization output of the proposed strategy in analyzing the several fenestration schemes applied to 
the case study model using an annual all-weather Perez sky calculated for Phoenix, AZ, USA.  
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Figure 6-12. Visualization output of the proposed strategy in analyzing the several fenestration schemes applied to 
the case study model using an annual all-weather Perez sky calculated for Oakland, CA, USA. 

 

Figure 6-13. Visualization output of the proposed strategy in analyzing the several fenestration schemes applied to 
the case study model using an annual all-weather Perez sky calculated for London, UK. 
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Figure 6-14. Full DGP analysis for the POV/HOY pairs selected by the proposed tool for Phoenix, AZ, USA. The 
different colored areas in the images represent potential glare sources in the FOV found by evalglare. 

 

Figure 6-15. Full DGP analysis for the POV/HOY pairs selected by the proposed tool for Oakland, CA, USA. The 
different colored areas in the images represent potential glare sources in the FOV found by evalglare. 
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Figure 6-16. Full DGP analysis for the POV/HOY pairs selected by the proposed tool for London, UK, USA. The 
different colored areas in the images represent potential glare sources in the FOV found by evalglare. 

6.5 Discussion 

The 2300 lux threshold that emerged from the EV,Thr parametric study diverges from the one 
adopted in Giovaninni et al. (2018) to estimate perceptible glare (DGP ≥ 0.35), which was 
approximately 3250 lux. Although the goals and assumptions of the two works do not exactly 
match, the difference between EV thresholds results from the fact that this work considered 
POVs that are both inside and outside of the daylit zone, whereas Giovaninni et al. (2018) 
only used POVs placed within the daylit zone. The results of this experiment show that the 
success of an EV threshold depends on spatial location. As Table 6-3 and Figure 6-8 
demonstrate, for the two daylit zone POVs, POV01 and POV02, EV thresholds that are closer 
to 3000 lux (∈ [2750, 2950 lux]) are fairly accurate in detecting glare events. Their percentage 
of failed events oscillates in the range between 0.6% and 4.9 % (% of failed events ∈ [0.6, 
4.9]). However, these thresholds show a high number of failed predictions in POVs located 
farther away from the window; locations where DGP is more sensitive to surface luminance 
contrast due to the lower EV and the size of glare sources in the viewer’s FOV is smaller. In 
such cases, higher EV,Thr tend to detect more FN events.  

Figure 6-8 reveals this trend by showing a lower error variation in POVs within the daylit zone 
compared with the one reported in PV03, illustrated by the abrupt slope that begins around 
EV,Thr > 2400 lux. Figure 6-9 confirms that higher vertical eye illuminance thresholds, which 
are suitable to POVs placed closer to fenestrations, are not effective in signaling glare events 
in POVs placed outside the daylit zone. The figure shows that the best EV,Thr (EV,Thr = 2900 
lux) in the POVs closer to the window, POV01 and POV02, labeled several HOY as FN 
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(EV(HOY) < EV,Thr ꓥ DGP(HOY) ≥ 0.35) in POV03, particularly in hours that bear low sun 
angles. This analysis supported the adoption of 2300 lux as the EV,Thr for signaling potential 
glare events, since it yields the minimum of failed predictions on average, considering all 
locations and POVs. Table 6-4 and Figure 6-10 attest to the good performance of the selected 
EV,Thr, by reporting at the most 6.5% of failed predictions at POV01 under the annual all-
weather Perez sky model of Phoenix, AZ.  

Although the results support the adoption of a single EV,Thr in the study of glare in side-lit 
rooms,  they also suggest that an adaptive EV,Thr, determined in function of the distance 
between the POV to the main glare sources, would be a suitable approach, particularly in deep 
and complex plans. Such an adaptive threshold should be higher closer to the windows and 
lower outside the daylit zone since EV sensitivity of DGP is higher in the former and lower in 
the latter. The future development and generalization of an adaptive EV,Thr would require the 
study of more complex building plans, orientations, and fenestration types. 

The proposed modeling strategy used the selected EV,Thr to map glare potential and identify 
critical events in the room described in Figures 6-5 and 6-6 at three locations that represent 
different types of annual skies: a location dominated by clear skies, another by mixed skies, 
and another by overcast skies. 

When compared with Phoenix, London has a lower frequency of potential glare events. 
However, Table 6-5 and Figure 6-13 show that the selected events for London yield both a 
higher DGP and vertical illuminance levels. The analysis of Figure 13 HDR images indicates 
that one of the reasons for higher EV and DGP values is the higher latitude and a more frequent 
presence of the circumsolar region in the FOV, particularly on the POVs that look at the South 
quadrant. Oakland results follow a similar trend to Phoenix but with lower DGP values. 
Sensor #6 reports the lowest DGP value of the select pair POV/HOY – the 22nd of December, 
2 pm – 0.36, a value close to the threshold that separates perceptible from imperceptible glare, 
DGP < 0.35.  

Considering the geometry of the model and the sensor grid layout, Figure 13 presents an 
expected pattern: the south window is the largest daylighting contributor, the northeast corner 
is the darkest because it is the less exposed, and sensor #6 has an asymmetric distribution of 
potential glare events due to the impact of the west window. Although sensors #1 and #2 show 
similar results, the system selected the south direction of the latter because it was the most 
consistent POV of the three locations, i.e., although all locations reported the same frequency 
of potential glare events, sensor #2 reported events with higher EV. The corner column slightly 
shades sensor #1. In the second row of sensors, the system selected the south direction of 
sensor #6 as the representative POV because it yields both the higher frequency of potential 
glare events and the highest EV. Although the southwest POV of sensor #2 also shows a high 
glare potential, the size of the south window in the FOV is responsible for making the south 
POV the most critical. The radar graphs also show the shading effect of adding an LRCFS to 
the windows. Both the frequencies and illuminances values are lower when the LRCFS is 
added to the south window. Nevertheless, adding the LRCFS to the west window did not 
produce a relevant impact on the frequency of events susceptible to visual discomfort. The 
main reason for the small impact of adding the LRCFS to the west window is that the LRCFS 
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configuration resulted from an optimization procedure for a south facing window (Santos, 
Leitão and Caldas, 2018).  

Finally, a closer analysis of Figures 6-14, 6-15, 6-16, and the EV values reported in Table 6-5 
shows that the computational implementation of Strategy D captures critical glare events. In 
those events, however, the circumsolar region has a considerable weight in the FOV, 
indicating a bias towards low sun angles and clear skies. This bias is a direct consequence of 
using a single EV,Thr that resulted from an annual analysis that includes different and mixed 
sky conditions. A further refinement of the strategy should study EV,Thr that only address 
overcast or hazy skies in periods of the year with higher sun angles (mid-season to summer). 

6.6 Concluding Remarks 

The work conducted in the development and implementation of Strategy D demonstrates that 
a proper vertical illuminance (EV) threshold (EV,Thr) can signal hourly glare events (DGP ≥ 
0.35). Through the use of such EV,Thr, the research demonstrated that it is possible to sample 
annual EV data spatially and temporally in order to:  

• Conduct preliminary assessments on glare performance in perimetral zones of office 
spaces. 

• Find the relevant POV/HOY pairs to conduct full point-in-time DGP analysis. 
• Reduce the number of time-consuming DGP simulations in visual comfort studies. 

Although this investigation showed that a single EV,Thr can qualify the glare potential of any 
location in space, it also indicated that an adaptive EV,Thr, i.e., one that responds to the distance 
between glare sources and the viewer’s location, has the potential to be even more accurate in 
predicting potential glare events. The sensitivity analysis experiment that supported the EV,Thr 
selection revealed that higher thresholds performed better in the daylit zone of a side-lit room 
while lower ranges better predicted the occurrence of glare events in locations out of the daylit 
zone of the room. Future work will address this in order to improve the proposed approach. 

There are several examples of the use of EV as a preliminary indicator for visual discomfort 
both in the literature and in current simulation approaches. For example, for annual DGP 
analysis, current tools use the 2-phase method, particularly its implementation in DAYSIM 
(Reinhart and Walkenhorst, 2001). Such tools use EV estimations to inform eDGPs calculations in 
the occupied schedule, usually for a specific POV, to reduce simulation time. Compared with 
such approaches, the proposed daylighting analysis tool uses EV to spatially map glare 
potential over a grid of sensors. Consequently, the proposed strategy addresses current POV-
related limitations of annual DGP (aDGP) by simultaneously considering several points in 
space and different view directions. 

Additionally, the tool uses EV simulated data to automatically identify critical POV and time 
events to then conduct detailed full DGP analysis, using the three-phase method (McNeil and 
Lee, 2013). Hence, it avoids the eDGPs and the 2-phase method limitations, particularly those 
concerning the inability of the former in considering indirect glare sources and of the latter in 
capturing specular light scattering. 
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The tool uses EV to signal where and when to conduct fully detailed DGP analyses that are 
able to capture the effect of glare sources and accurately describe luminance distribution in a 
scene. Fully detailed DGP analyses using the 3- or 5-phase method for Radiance, are 
particularly relevant in the analysis of highly specular complex fenestration systems such as 
the one used in the case study application. The automatic identification of critical POV and 
time events proposed by this tool are also important pieces that promote the use of glare 
simulations in automated daylighting optimization procedures.  Future work will explore the 
use of the proposed tool in the context of optimization of light redirecting complex 
fenestration systems.    

Although the proposed method finds critical events, it shows a bias for low sun angles of 
bright and clear skies. This bias is a direct result of the procedure used to determine the EV,Thr 
applied in this investigation. Future work also includes the refinement of the strategy by 
enabling the detection of events with high glare potential in a wider range of skies. The 
envisioned refinement could be achieved by either adding or modifying the HOY selection rules 
or using an adaptive EV,Thr that responds to spatial location and sky type. In this way, future 
iterations of the tool will be able to find critical events on which the circumsolar region is 
either not visible or is relatively small in the FOV. 

The focus of DGP and EV studies on the perimetral zone of office spaces limits their 
application scope. Thus, since the proposed assessment method relies both on EV and DGP, 
the application of the results presented here is limited to the examination of side-lit offices 
perimetral areas. Further research is necessary to determine if EV and DGP are good indicators 
for visual discomfort in areas located in deeper zones of buildings. Future developments of 
the proposed strategy will include ancillary and easy-to-compute metrics such as luminance 
contrast ratios to complement EV and DGP analysis in the study of visual discomfort of deeper 
building areas.  

Regarding other building types and programs, it is necessary to conduct further empirical 
research to determine whether building occupants have different levels of visual adaptation 
and tolerance and whether EV and DGP are good indicators of visual comfort. Future 
improvements of the proposed analysis method will include updating any potential future 
DGP and EV future guidelines and thresholds. Moreover, the experiments considered only a 
limited set of fenestration systems – a clear glazing and a particular LRCFS – and one type of 
advanced daylight simulation based on daylight coefficients, Radiance’s 3-phase method. 
Thus, to further validate and extend the scope of the proposed approach, future work will 
address top-lighting strategies, other types of glazing, shading, and light-redirecting systems, 
and use other advanced daylight simulation methods, including the 5-phase method and 
dedicated front-forward raytracing approaches based on photon-mapping techniques.  

The inclusion of the 5-phase method to the modeling strategy will enable a thorough study of 
both the direct and diffuse light contribution to visual(dis)comfort. As discussed in chapter 2, 
section 2.2.2 –Daylight simulation in buildings using physical (unbiased) approaches), the 5-
phase method decouples the direct solar component from the sky and the inter-reflected solar 
component, thus facilitating the identification of potential glare events when the circumsolar 
region is not visible in the FOV. The photon-mapping will allow a better assessment of the 



168 
 

specular effects of LRCFS and better handling of light caustics in the FOV, thus enabling a deeper 
understanding of their role in evaluating EV in the perimeter zone.  

The research presented in this chapter also shows that Strategy D has a high potential for use 
in automated search procedures for daylight-based design since it effectively helps to reduce 
the number of computationally expensive simulations used in annual visual comfort studies. 

At early design stages, this strategy supports the arrangement of the different building spaces, 
the design of the overall building form, façade windows, and static shading devices. At 
intermediate design phases, the strategy is able to provide useful information for the 
development of efficient automated shading control protocols, glazing selection, shading 
devices, light redirecting systems, interior surface materials, and the layout of furniture. 

Finally, the strategy presented in this chapter focused on facilitating glare studies in the design 
of buildings that aim to achieve high visual comfort standards, such as the one set by EN 
17037. Nevertheless, it is up to the design team to evaluate the potential constraints to the 
design process that might result from a heavy emphasis on achieving overall light quality. 
Although it is desirable to achieve the maximum level of visual comfort in buildings, such 
achievement should not hinder the overall quality of the design. It is equally recommendable 
that some agency be provided to building occupants in controlling their immediate daylit 
environment. As demonstrated in personal comfort systems for thermal comfort (Kim, 
Schiavon and Brager, 2018; Luo et al., 2018; André, De Vecchi and Lamberts, 2020), a designer 
should first ensure an overall comfortable environment and then allow, as much as possible, 
the building occupant to adjust the immediate environment in order to satisfy his or her 
personal preferences (de Bakker et al., 2018). In the case of visual comfort, this granular control 
could be achieved by the design of furniture, monitoring and managing occupant feedback to 
control automated shading systems (Meerbeek et al., 2016), personal control of desk materials 
selection, and deployment of task lights controlled by the user (de Bakker et al., 2017). 
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Chapter 7:  
User-driven formulation of spatial-based performance 
goals for generative design systems  
7.1 Introduction 

As argued in chapter 3, section 3.3.3, formulating optimization problems for goal-oriented design 
approaches that are based on daylighting simulations is more challenging than in design processes 
that aim to optimize building energy simulated performance. The primary cause for such difficulty 
is that daylight performance metrics have a high spatial granularity, i.e., their spatial pattern is 
highly variable. In fact, some daylight metrics, such as illuminance (E), may vary from “tens to 
ten thousands of lux” in indoor settings (Reinhart, 2019), making them very susceptible to 
the cancelation or compensation effect, whereby a high values cancel low ones. Therefore, 
summation or average-based processes are not adequate to summarize the zonal variation of 
daylight indices. In contrast, although building energy-related metrics entail temporal variation, it 
is relatively easy to reduce their temporal transience to a single or a small array of cumulative 
values. The lower sensitivity of common building energy indices to spatial distribution (e.g., 
Energy Use Intensity - EUI, energy consumption, unmet load hours, etc.) in a thermal zone 
facilitates the definition of building energy-related performance goals in design processes that are 
based on Building Performance Optimization (BPO) workflows.  

Considering that light is one of the determining factors that contribute to the spatial quality of 
buildings and the wellbeing of its occupants (Ozorhon and Uraz, 2014), goal-oriented processes 
for daylighting design must support the definition of spatial performance target patterns. Enabling 
designers to specify the spatial distribution of goals in daylighting inverse design problems 
provides them a better control of the daylight behavior of the search result, an important aspect in 
cases that aim to integrate diverse lighting environments. The spatial definition of daylight 
performance targets is particularly helpful in cases where variable light environments are desirable, 
i.e., scenarios in which the architect aims to promote visual alliesthesia3. One of the typical 
examples of visual alliesthesia in buildings is either the gradual or abrupt transition from dim and 
more “introspective” spaces to bright and “lively” ones. The Vals spa/baths located on 
Graubünden, Switzerland, designed by the architect Peter Zumptor is an excellent example of how 
a thoughtful arrangement of different light environments triggers different experiences in building 
occupants. Another built example that aims to convey a specific experience through a progression 
of different light environments is the Leça da Palmeira outdoor swimming pool building, located 
at Leça da Palmeira, Portugal, and designed by the architect, Álvaro Siza Vieira. The visitor or the 
user of that swimming pool is first exposed to a bright outdoor environment, then to different 
spaces that include locker rooms and showers with variable light qualities, and finally to the bright 
environment of the pools located at the shores of the Atlantic Ocean. 

 
3Alliesthesia is a psychophysiological phenomenon that describes the relationship between the 
environmental stimuli and the internal subjective perception of pleasure or displeasure by the subject 
exposed to that stimuli (Parkinson and De Dear, 2015).  
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Another case where the spatial definition of daylight targets is useful is when architects desire to 
design a building form that expresses the variable light environments that the building comprises. 
Recent pavilion-like structures are good examples of buildings that formally express their light 
environments. Examples include the Serpentine temporary gallery designed by Bjarke Ingels 
Group, the Sclera and Genesis pavilions designed by Adjaye Associates, and the Crematorium in 
Kakamigahara (Gifu, Japan) designed by Toyo Ito and Associates, which wavy roof responds both 
to structural requirements and to the required light levels of different building functions – see 
Figure 7-8, right. Although these examples did not use a BPO approach to daylighting design, they 
would benefit from a spatial definition of daylight targets if they were to be designed using a goal-
oriented design method.   

To better support goal-oriented design of diverse daylit environments, this chapter focuses on 
discussing generative design approaches to daylighting design and proposes a new modeling 
method that supports the spatial definition of daylight performance targets.  

Following the top-down investigative method described in chapter 4, section 4.3, the chapter 
begins with a summarized literature review that traces the evolution of goal-oriented design 
approaches in daylighting design. Such approaches includes systems that use optimization 
algorithms as search mechanisms, expert systems (Aronson, Liang and MacCarthy, 2005; Shu-
Hsien Liao, 2005), and interactive Graphical User Interfaces (GUI) for performance target 
specification as viable alternatives to conventional methods that mathematically formulate 
objective functions. The objective of the literature review is to frame the development and 
implementation of the strategy and assess current needs by analyzing existing limitations that 
prevent an easier deployment of goal-oriented design methods in daylighting design. After the 
literature review, the chapter introduces Strategy E and its computational implementation: the 
performance-based generative design system (PGDS) Painting with Light. The research tasks, 
development, implementation, and calibration of the proposed PGDS are fully described in the 
Design of Experiments (DoE) section. The chapter then presents and discusses the results. Finally, 
it summarizes the findings discussed in this chapter, the advantages and limitations of Painting 
with Light, and future directions for the research. 

The work presented in this chapter is part of a larger research project led by the primary adviser of 
the author of this dissertation, Professor Luisa Caldas, which evolved to be a part of this 
dissertation investigation. The dissertation’s author contributed both to the conceptualization of 
the proposed PGDS and substantially to its development and implementation. Thus, this chapter 
results from a joint research effort between the author and his primary adviser, published in Caldas 
and Santos (2016). The present chapter extends and updates the content of that publication.  

7.2 Related Work 

The development of computational tools capable of predicting daylight in buildings has allowed 
designers to apply building simulation tools to optimize predicted building performance, including 
daylighting in buildings. Johnson et al. (1984), presents one of the earliest works that involve 
daylight estimations to minimize building energy consumption, particularly through the 
optimization of glazing assemblies. The authors used the DOE-2.1B Building Energy Simulation 
(BES) program, which contains a simplified daylighting prediction model, to run an extensive 
parametric study that involved several combinations of wall and fenestration properties. Most of 
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the earlier works on optimizing the daylight performance include iterative simulation and the 
indirect optimization of daylighting in buildings by considering it in the calculation of the energy 
needs of a building, such as in the works of Sullivan et al. (1992) and Hayter et al. (1999). 

At the turn of the twenty-first century, several researchers began to integrate different optimization 
metaheuristics to fully automate the search in building performance optimization. However, in the 
early years of research in goal-oriented building design, most approaches used daylight prediction 
only indirectly in the optimization process. Peippo et al. (1999) implemented a direct search 
algorithm to minimize building cost and energy. The authors considered daylight simulations in 
the calculation of energy demands. Wetter proposed GenOpt (2000) as a generic BPO program 
that allows coupling with any building simulation software such as DOE-2 or EnergyPlus. The 
work presented by Wetter (2001) exemplifies the coupling of GenOpt with EnergyPlus to 
minimize building energy consumption, which considered the contribution of daylight in the 
calculation of lighting building energy use. 

GENE_ARCH (Caldas and Norford, 2002) is a generative design system that combines Genetic 
Algorithms (GA) and EnergyPlus in the design of energy-efficient buildings. Similarly to GenOpt, 
GENE_ARCH uses DOE2.1 and EnergyPlus to calculate the daylight contribution in the overall 
building energy performance. In Caldas (2008), the author uses GENE_ARCH in a Multi-
Objective Optimization (MOO) that includes daylight and thermal performance. The formulation 
of both objectives results in estimating building energy use. The daylighting goal consists of 
minimizing lighting energy consumption, while the thermal goal was to reduce heating and cooling 
loads of the O’Porto School of Architecture, designed by the architect Siza Vieira. Nevertheless, 
the work is an early example of the use of refined daylight analysis, including point-in-time 
illuminance distribution and sun penetration, as a post-analysis step.  

The emergence of toolkits that facilitate the use of detailed daylight simulations and advanced 
metrics that describe the annual daylight performance of buildings has enabled designers to explore 
goal-oriented design methods that directly use advanced annual daylighting performance metrics. 
Torres and Sakamoto (2007) averaged annual illuminance averages measured in different observer 
positions in the design of the fitness function to optimize façade shading elements.  

Andersen et al. (2008) propose LightSolve, an interactive goal-oriented expert system for 
daylighting design. With this tool LightSolve, the user is able to draw areas of interest and set 
goals for annual periods determined by time-segmentation, a method that splits the year into a 
small number of periods and averages their daylight illumination levels (Kleindienst, Bodart and 
Andersen, 2008). The work describes a holistic view on daylighting performance based on five 
“good daylighting” goals, calling for goal-based design decision support with non-deterministic 
feedback loops. Andersen et al. (2013) further extended LightSolve’s expert system to a more 
comprehensive analysis and daylighting design tool that balances illumination, glare and solar 
gains over a year. The authors validated the system in a user study focused on early design stages. 
The last LightSolve development extended the approach to include both perceptual, visual 
(comfort), and non-visual physiological (health) approaches to daylighting (Andersen, 2015).  

Rakha and Nassar (2010, 2011) combined Radiance and LUA scripting language to create a 
generic tool for the generation of curvilinear ceiling forms, using a criteria applied to the daylight 
uniformity ratio metric. The daylight uniformity ratio results by dividing the maximum E by the 
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minimum E found in a sensor grid given a specific sky condition, location, and time. The authors 
used the CIE clear sky with sun in Cairo, Egypt, at noon. 

Manzan (2014) used the GA of modeFrontier (Bäck, 2005) – a proprietary Multidisciplinary 
Design Optimization (MDO) framework – to optimize primary energy consumption that includes 
artificial lighting, heating, and cooling. Radiance (Ward, 1994) and DAYSIM (Reinhart and 
Walkenhorst, 2001) were the daylighting programs used to calculate the annual building 
daylighting performance using climate-based daylight metrics. The authors used the data generated 
by the daylight simulation process as input to the BES program used in this research, ESP-r 
(Strachan, Kokogiannakis and Macdonald, 2008), to accurately determine the energy consumption 
of the building’s lighting system. Similarly to Caldas (2008), the author used the climate-based 
daylight simulation data to analyze in more detail the performance of the solutions optimized for 
energy consumption by the approach. Later, Manzan and Clarich (2017) further extended the 
approach by advancing a new search procedure – FAST – applied to a slightly different design that 
adds dynamic exterior shading control but has the same performance goals.  

Lartigue et al. (2014) developed a methodology for optimizing the building’s envelope to minimize 
heating and cooling loads and maximize daylight. The method uses Daysim climate-based 
calculations to estimate lighting loads. In order to control the lighting, the system compares annual 
hourly illuminance data to a threshold. The search procedure couples an Artificial Neural Network 
(ANN), to reduce the calculation time of computationally expensive cost functions, with GenOpt. 

Futrell et al. (2015b) proposed a method for building design to minimize predicted lighting loads 
by combining GenOpt with Radiance simulations. The latter determines the building daylighting 
performance using dynamic climate-based lighting simulations. The work compared four 
optimization algorithms implemented in GenOpt: (i) Simplex Algorithm of Nelder and Mead with 
the Extension of O'Neill (SAEO), (ii) Hooke Jeeves (HJ), (iii) Particle Swarm Optimization using 
Inertia Weight (PSOIW), (iv) and a hybrid PSO Constriction/Hooke Jeeves (PSOC/HJ) algorithm. 
Later, the same authors proposed a bi-objective optimization of building enclosures, both for 
thermal and daylighting performance (Futrell, Ozelkan and Brentrup, 2015a). In this work, the 
authors considered annual daylighting performance as an independent objective. They advanced a 
normalized daylighting objective that sums annual hourly daylighting scores normalized by the 
number of the horizontal sensor nodes and the total hours of the occupied schedule. The hourly 
score assigned to each sensor node depends on whether E observes a specified criterion or not. 

Wortman et al. (2015), used surrogate modeling approaches that use Radial Basis Functions (RBF) 
kernel methods to interpolate a mathematical model from simulated Useful Daylight Illuminance 
(UDI) and annual Daylight Glare Probability (aDGP). The authors applied the goal programming 
method (Coello, 1999; Aköz and Petrovic, 2007; Biswas and Pal, 2019) to combine both UDI and 
aDGP in a single objective function. The surrogate model replaces expensive daylight simulations 
during the optimization of a perforated architectural screen that aims to maximize UDI and 
minimize aDGP. 

Caicedo and Pandharipande (2016) averaged illuminance levels of occupied and unoccupied zones 
of a typical office space to optimize a lighting system control scheme. Konis et al. (2016), applied 
a different strategy, which avoids cumulative or averaging processes on daylight studies. Utilizing 
the spatial daylight autonomy (sDA) concept, the authors advanced a new zonal and annual metric, 
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spatial UDI (sUDI) – a climate-based index that applies the sDA concept to UDI. The work aimed 
to simultaneously maximize the sUDI of a specific illuminance range (300 to 3000 lux) and 
minimize building energy use of typical commercial buildings. The authors implemented the goal-
oriented design approach in Rhino Grasshopper and used Octopus Pareto GA – the Strength Pareto 
Evolutionary Algorithm 2 (SPEA2) (Ziztler, Laumanns and Thiele, 2002) – in the MOO exercise. 
Zhang et al. (2017) and Mangkuto et al. (2018) use a similar approach, although Zhang et al. (2017) 
also considered UDI averages of a grid of sensors in the search process. Kirimtat et al. (2019) also 
averaged the UDI calculated in a sensor grid in a MOO of amorphous shading devices that aim to 
reduce the total energy consumption and maximize UDI of an office room. 

With the exception of LightSolve (Andersen et al., 2008; Andersen, Gagne and Kleindienst, 2013; 
Andersen, 2015), all the goal-oriented design approaches above fail both in including the spatial 
variation of the daylight phenomena and in proposing more accessible means for non-experts in 
optimization to set performance targets. A large part of the literature work includes daylight 
simulations only as a necessary step to control and calculate the energy of a building’s lighting 
system, such as the works proposed by Johnson et al. (1984), Sullivan et al. (1992), Hayter et al. 
(1999), Peippo et al. (1999), Wetter (2001), Caldas and Norford (2002), Caldas (2008), Manzan 
(2014), Lartigue et al. (2014), Futrell (2015b), Manzan (2017), and Caicedo and Pandharipande 
(2016). In such cases, the formulation of performance goals is straightforward since it consists of 
minimizing the simulated lighting energy end-use in a building. Of the authors that directly 
optimize daylight metrics, a significant number use cumulative and average-based processes to 
reduce the spatial dimension of daylight simulation data, such as Rakha and Nassar (2010, 2011), 
(Futrell, Ozelkan and Brentrup, 2015a), Wortman et al. (2015), Zhang et al. (2017) – in a part of 
the work, and Kirimtat et al. (2019). As previously mentioned, daylight in buildings is highly 
susceptible to the compensation effect, which increases the risk of misguiding optimization 
processes that averages or aggregates daylight simulated data. To reduce such risk, some 
researchers use specific normalization or weighting processes (Futrell, Ozelkan and Brentrup, 
2015a; Wortmann et al., 2015), a non-trivial task that involves time-consuming trial-and-error 
processes and requires expertise that most architects do not have. Thus, zonal-based assessments 
such as sDA and sUDI are preferable to averaging or cumulative based methods. However, only 
few works fully adopt that approach, such as the ones presented by: Konis et al. (2016), Zhang et 
al. (2017) – partially, and Mangkuto et al. (2018). Although the measurement of areas that meet 
an illumination criterion is less biased than averaging illumination predictions, it does not fully 
support the spatial distribution of daylighting performance targets. 

Despite the current variety and application of goal-oriented approaches in building performance-
based design, only a few advanced visual interfaces that use interactive brushing and linking 
techniques (Becker and Cleveland, 1987) for target setting in automated search processes, namely: 
Audioptimization (Monks, Oh and Dorsey, 2000), for acoustic design, and LightSolve (Andersen 
et al., 2008; Andersen, Gagne and Kleindienst, 2013; Andersen, 2015), for lighting and daylighting 
design. 

Audioptimization (Monks, Oh and Dorsey, 2000) is a PGDS for acoustic design. The workflow 
proposed by this system encompasses two stages. In the first, the user describes a parametric model 
of the space to optimize, including both its fixed characteristics and the discrete geometric and 
material variables to be optimized, and their respective minimum and maximum ranges. This 
description defines the solution space of the design problem, i.e., all the geometric and material 
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combinations possible. In the second stage the user sets the goals for different acoustic metrics 
(interaural cross-correlation coefficient, early decay time, bass ratio, and sound strength/level) by 
painting them in different spatial elements. Figure 7-1 shows Audioptimization's goal specification 
visual interface and illustrates how to paint objectives with it. 

 

Figure 7-1. Painting objectives through Audioptimization's visual interface. Left: sound level painted goals in 
different surfaces for 80 ms. Right: sound level specification editor for a specific surface. Top row shows the current 

sound level simulation; the middle row shows the painted targets for this particular metric; and the bottom row 
shows the difference heatmap between the two. Images adapted from: Monks et al. (2000). 

After describing both the design problem and the desired acoustic targets, Audioptimization 
searches the solution space for a high performance solution by combining two search procedures: 
Simulated Annealing (SA) for a more global search, and steepest descent (a gradient-based 
optimization algorithm) for a more refined search around the global minimum found by SA.  

Audioptimization has an advanced visual interface that allows the user to paint objectives through 
brushing and linking techniques. The generation of a difference heatmap (Δ heatmap) between 
desired performance targets and the results of the optimized solutions is useful in quality 
assessment tasks. The Δ heatmap visualization contributes to the understanding of the design 
problem by assessing: (i) to what degree the system met the spatial performance patterns set; (ii) 
the feasibility of painted goals; (iii) the constraint levels applied to the design problem, i.e., 
whether the design problem is over or under-constrained. 

The tool also supports point-in-space measurements through the use of positional glyphs. A glyph 
is a cylinder that positions a listener in space, and it conveys the difference between target and 
actual simulation value of three different acoustic metrics as follows: 

1) Interaural Cross-correlation Coefficient (IACC) through the offset shell region not covered 
by the actual result. Ideally, this difference shell would be absent.  

2) Early Decay Time (EDT), represented as a cone on top of the listener cylinder icon. The 
radius of the cone indicates absolute difference and the color shows whether the result is 
higher than (red) or lower than (blue) its target. Ideally, the radius of the cone would be the 
smallest possible or zero.  
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3) Bass Ratio (BR) difference, represented by a ring between result and target values, with the 
same EDT color code. Like the other metrics, the ring would be absent in an ideal scenario. 

However, these diagnostic techniques are purely visual and only convey the difference between 
the desired targets and simulated performance. Advanced analysis with sophisticated statistical 
error metrics typically used in building performance simulation, such as percentage error (% error), 
Coefficient of Variation of the Root Mean Square Error (CVRMSE), and Normalized Mean Bias 
Error (NMBE), could be automatically provided by the system in order to support better decision 
making processes. 

LightSolve (Andersen et al., 2008; Andersen, Gagne and Kleindienst, 2013; Andersen, 2015) is an 
interactive goal-oriented design tool that integrates into a single workflow several daylighting 
considerations such as daily and seasonal variations, illumination, and visual comfort. LightSolve 
design workflow supports a bidirectional interaction between user inputs, and system outputs 
through three primary interfaces: (i) geometry and material editor; (ii) a set of selection tools for 
specifying horizontal workplane sensors, views and times of interest from a temporal map; and 
finally (iii) the performance target interface, which allows the user to alter the current design goals 
by specifying a range of desirable or acceptable values for the daylight metric under study. 

Figure 7-2 shows the LightSolve interface and how it enables the user to assess the linked relation 
between performance and renders interactively. If the current design does not meet all the 
designer’s goals, LightSolve will propose effective changes to improve its daylight 
performance through a search mechanism that computationally implements a set of “expert 
rules.” This “expert system” is based on a Design of Experiments (DoE) approach. Thus, 
unlike other PGDS such as Audioptimization (Monks, Oh and Dorsey, 2000), eifForm (Shea, 
Aish and Gourtovaia, 2005), GenOpt (Wetter, 2000), and GENE_ARCH (Caldas and Norford, 
2002; Caldas, 2008; Caldas and Santos, 2012), LightSolve’s goal-oriented design workflow 
does not aim to find a global or even a local optimum but attempts to predict the effectiveness 
of specific design changes on the daylighting improvement of a current design status. In a 
sense it acts as a “virtual design assistant.” 

LightSolve has a detailed and sophisticated interface that supports sensor point workplane 
grids, goal-based illuminance temporal maps displayed alongside interactive renderings, and 
a triangular color scale specially developed to assess goal compliance (Kleindienst and 
Andersen, 2012). Different daylight metrics, such as Acceptable Illuminance Extent (AIE) 
(Andersen, Gagne and Kleindienst, 2013), are also incorporated. While previous versions of the 
tool (Andersen et al., 2008) only allowed users to assign a threshold value to a given 
geometrical surface, the target definition the current target definition consists of defining a 
minimum and maximum illuminance value to different workplane sensor points, thus 
allowing the definition of spatial daylighting patterns. In terms of outputs, LightSolve is now 
more focused on time-mapped visualizations of daylight performance combined with 
sequential rendering visualizations. 
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Figure 7-2. LightSolve interface. Left: time-varied daylight performance displayed in temporal maps interactively 
linked to renders of the space under study. Right: annual image map showing renderings over time. Images adapted 

from: Andersen et al. (2013). 

Outside the building performance field, some computer graphics tools have been using interactive 
approaches to steer image-editing software solvers. An example is the Interactive Digital 
Photomontage tool (Agarwala et al., 2004). From an initial set of color-coded images of the same 
scene, the user defines a goal image by painting a series of strokes in one image using the 
designated color associated with the other source images. Then, the tool creates a composite image 
that approximates the desired objective using two main techniques: (i) graph-cut optimization, to 
find the best possible seams to cut the various source images; (ii) gradient-domain fusion, to 
remove any visible artifacts that might remain after the joining of image seams. Figure 7-3 
illustrates the Interactive Digital Photomontage workflow by exemplifying how the user selects 
and paints the objectives over an image, the relation between the targets set for each part of the 
goal-image and the initial set of images, and the final composite image generated by the tool. 

 

Figure 7-3. Example of the Interactive Digital Photomontage workflow. Left: the initial source image set. The colors 
around each image represents an objective associated with each specific image to be painted on one of the source 

images. For example, red represents the maximum luminance objective, while blue is the minimum luminance 
objective. Middle: one of the source images painted with the different image-objective goals. Right: the final 
composite image found by the Interactive Digital Photomontage solver. Images adapted from: Agarwala et 

al.(2004).  

In sum, the few approaches that support the spatial definition of performance targets in 
performance-based generative design systems are either limited in their scope or in their analysis 
methods. The Interactive Digital Photomontage tool (Agarwala et al., 2004) advances a Graphical 
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User Interface (GUI) that allows users to set different goals for combining and composing images. 
Although the work is outside of the building performance field, it provides a conceptual example 
of how a user can interactively set targets for a goal-oriented tool using intuitive visual methods. 
Although Audioptimization (Monks, Oh and Dorsey, 2000) is an acoustic PGDS, it supports a 
visual interface that allows users to spatially specify performance targets. However, the diagnostic 
methods supported by the tool consist only of visual difference maps, thus lacking essential error 
metrics to assess the output quality of the search, such as the Root of Mean Square Errors, 
CVRMSE, NMBE, percentage of error (% error), among others. LightSolve (Andersen et al., 2008; 
Andersen, Gagne and Kleindienst, 2013; Andersen, 2015) is the only goal-oriented design tool that 
enables the visual specification of performance targets for daylighting design. Despite 
LightSolve’s significant contribution, it constrains the designer to use time-mapped visualizations, 
complex triangular color scales to assess the quality of the solution provided by the expert system, 
and seldom-used annual dynamic daylight metrics. LightSolve also has limited search capabilities 
since its search mechanism is based only upon a Design of Experiments and not on optimization 
algorithms. Additionally, the tool also does not include essential statistical indices to assess the 
quality of the solutions that emerge from the interaction between user and the program. Finally, 
both Audioptimization and LightSolve are stand-alone applications. Although they support the 
export-import of geometry with CAD applications, they are not modular and do not follow the 
Interface Dynamic Models (IDM) “toolkit” paradigm preferred by designers in the deployment of 
parametric and goal-oriented design approaches (Negendahl, 2015). IDM is a modular approach 
to parametric and generative design that allows designers to custom tailor modeling approaches 
that best fit their needs. IDM combines a programming language, typically a visual one, a CAD or 
a Building Information Modelling (BIM) tool, simulation software, and, in inverse design, a library 
of optimization algorithms. 

Considering the current limitations of goal-oriented approaches in allowing the specification of 
daylight spatial target patterns there is a need to develop a modeling strategy that enables designers 
to easily define spatial daylight targets for inverse daylighting design. Additionally, the 
computational implementation of the strategy approach should favor modularity and aim for full 
integration into current digital design “ecosystems” that enable the use of design tools, simulation 
software, and optimization algorithms. 

7.3 Strategy E: Painting with Light – a novel method for spatially specifying 
daylight goals in Building Performance Optimization 

Strategy E focuses on providing a feasible answer to the third research question specified in chapter 
3, section 3.4 – How to develop strategies that help architects and other non-experts in 
optimization to formulate inverse design problems? Consequently, it aims to achieve the fourth 
development and implementation goal defined in the same chapter and section – Use familiar 
techniques known to designers to expedite the definition of performance goals. Hence, the main 
objective is to address the problem of setting performance targets for daylighting-based goal-
oriented design approaches by proposing an initial, proof-of-concept interactive interface in the 
Rhino environment – Painting with Light. The integration of Painting with Light with Rhino favors 
the implementation of the IDM concept (Negendahl, 2015) by allowing access and integration of 
the following components: (i) advanced 3D modeling tools; (ii) Grasshopper's – a Visual 
Programming Language (VPL) for Rhino – built-in functions and methods for 
parametric/generative design; (iii) dedicated interfaces for lighting simulation with Radiance and 
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DAYSIM (Reinhart and Walkenhorst, 2001), such as DIVA (Jakubiec and Reinhart, 2011); and 
finally (iv) evolutionary solvers for search and optimization, such as Galapagos, which uses a 
Standard Genetic Algorithm (SGA) and Octopus, which can perform multi-criteria optimization 
using SPEA2 (Ziztler, Laumanns and Thiele, 2002). 

The proposed interface aims to facilitate a performance target description using painting-style 
processes that use brushing and linking techniques. A painting-style interface will allow designers 
to easily set performance goals and define their spatial distribution to building performance-based 
problems. By promoting the draw of colored regions, the proposed interface better approximates 
the methods commonly used by designers in their workflows, thus being more intuitive and easier 
to use.  

Finally, this work aims to address some of the limitations found in previous research (Monks, 
Oh and Dorsey, 2000; Andersen et al., 2008; Andersen, Gagne and Kleindienst, 2013) by 
implementing a visual performance target editor that adequately addresses the spatial 
resolution and pattern variation of the daylight problem, and supports any grid-based daylight 
metric, namely, Daylight Factor (DF) (Hopkinson, Petherbridge and Longmore, 1966), point-
in-time illuminance (E) and climate-based metrics such as Daylight Autonomy (DA) 
(Reinhart, Mardaljevic and Rogers, 2006), Annual Sun Exposure (ASE) (IESNA, 2012), and 
Useful Daylight Illuminance (UDI) (Nabil and Mardaljevic, 2006).  

7.3.1 Method for specifying performance targets in goal-oriented design using user-driven 
painting-like techniques 

The development of Strategy E includes the computational implementation of the Painting with 
Light tool in Rhino using Grasshopper visual programming language (VPL) and Integrated 
Development Environment (IDE), and GHPython (Piacentino, 2011; Cuvilliers, 2017), a Python 
library and interpreter for Grasshopper. The interface allows designers to use typical CAD drawing 
techniques to color the performance targets for the space under study. The painting process entails 
two steps: (i) define areas with a specific color/performance target by drawing enclosed areas with 
closed polylines or Non-Uniform Rational Basis Splines (NURBS) curves; and (ii) use sliders to 
control the degree and strength of light decay from the drawn areas. The system automatically 
groups the sensor nodes by color, and consequently, by performance target value.  

Figure 7-4 shows how a designer uses closed polylines or NURBS curves to paint the space and 
link the sensor nodes to a specific performance target. The image on the left shows how the user 
draws closed NURBS curves to specify the area with the highest performance target value. The 
image on the right demonstrates how the user can repaint goals by either redrawing the NURBS 
curves that represent lighting boundaries or by manipulating the curves control points. 
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Figure 7-4. Painting performance targets using and manipulating closed NURBS curves over a grid of lighting 
sensors. Left: the user draws the area of that correspondents to the highest DF target value. In this particular case, 
the highest DF admitted is 10 %, since it corresponds to high light levels (Grondzik and Kwok, 2019). Right: the 

user repaints the performance targets by manually manipulating the NURBS curve control points. 

Figure 7-5 illustrates how to control the desired light decay (left) and how to adjust performance 
target values by changing the numeric range of the color scale (right) using sliders specially 
designed for those purposes. As Figure 7-4 and Figure 7-5 show, the assignment of targets is 
discrete, i.e., each color represents a range of performance values. 

 

Figure 7-5. Controlling the light decay pattern (left) and changing performance targets by resetting the color scale 
values (right) using sliders. 

Regarding the visualization of results, Painting with Light supports both visual and analytical tools. 
Visually, the interface pairs in the same viewport three heat maps: (i) the painted performance 
target in the sensor node grid mesh, (ii) the simulation result of the solution found by the system’s 
search mechanism, and (iii) a difference map (Δ map) between simulation results and desired 
targets. 

The tool automatically generates the difference map with a color scale that ranges from blue to 
white and white to red. Blue nodes indicate that the solution has a performance below the target, 
white nodes shows that the design achieved the target, and red nodes report that the daylight 
performance is higher than the painted targets. Figure 7-6 illustrates the three painted meshes 
in a Rhino viewport. 
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Figure 7-6. Visualization of results in the computational implementation of Strategy E - Painting with Light. 

Finally, the system automatically computes and displays the different statistical metrics lacking in 
Audioptimization (Monks, Oh and Dorsey, 2000) and typically used in building performance 
simulation – NMBE, CVRMSE, and % of error. Regarding % of error, the tool measures its 
average across all nodes. The proposed implementation also includes other statistical indices, such 
as the percentage of area in the first quartile, and the absolute difference in average. Such metrics 
enable designers to quickly assess whether the simulation was successful or not. Figure 7-7 shows 
how Painting with Light presents the computed statistics indices. Section 7.3.2 – Metrics used in 
simulation, calibration, and strategy validation – further details the statistical methods supported 
by the tool. 

 

Figure 7-7. Statistic results dashboard in the proposed approach. The results measure the success of the optimization 
search in matching the spatially painted targets.  
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The next section introduces a set of experiments designed to assess the ability of the proposed 
approach in finding solutions that matched painted performance targets. 

7.3.2 Design of experiments and strategy calibration 

The development of the proposed PGDS entailed several experiments to both assess the accuracy 
of the system and progressively calibrate it. The method used to conduct those experiments 
contemplated three different steps: (i) parametric implementation of the building geometry used 
to perform the several optimization runs, (ii) selection of metrics used in simulation and result 
analysis, and (iii) Design of Experiments (DoE). The following section summarizes each step. 

Implementation of the parametric model 

To test the proposed modeling strategy for performance target definition, the authors implemented 
a parametric model of a free form open-plan building. The building assumes a blob form with an 
envelope that alternates between concave and convex shapes, therefore inducing self-shading 
surfaces. Figure 7-8 depicts two building examples, designed by renowned architectural offices, 
that inspired the hypothetical parametric building, particularly its convoluted roof shape and 
curvilinear curtain wall. The first building (Figure 7-8, left) is the Crematorium in Kakamigahara, 
Gifu, Japan, designed by Toyo Ito & Associates, Architects between 2004 and 2006 (Toyo Ito & 
Associates, 2006). The second example (Figure 7-8, right) is the 2009 Serpentine Gallery pavilion 
in London, UK, designed by the architectural office SANAA - Kazuyo Sejima + Ryue Nishizawa 
(SANAA, 2009). 

 

Figure 7-8. Two examples that inspire the hypothetical parametric building used in Strategy E experiments. Left: 
Crematorium in Kakamigahara, Gifu, Japan. Image source: Toyo Ito & Associates (2006). Right: 2009 Serpentine 

Gallery pavilion, London, UK. Images adapted from: SANAA (2009). 

The floor plan is fixed and oriented north-south in Figures 7-9 and 7-10 The floor plan is deep, 
particularly on the north side, to promote skylight use, as side lighting becomes insufficient to 
adequately daylight such deep spaces. The non-conventional building form challenges the 
designer's light prediction skills while supporting the generation of a wide variety of light 
distribution patterns, which are more difficult to obtain with more narrow and conventional 
layouts. 

Roof shape, skylight radius, and skylight positioning are the primary parameters of the model. 
Four parametric interpolated NURBS curves generate the roof shape. The curves define the four 
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edges of an untrimmed NURBS surface, which is subsequently trimmed by the projection of the 
floor plan perimeter. Each curve has seven control points, the start and end points fixed at 3.5m 
height, and five intermediate points with variable z-axis coordinates. The parametric surface 
generated by these four curves enables the generation of a wide variety of roof designs and building 
curtain walls. Thus, the parametric roof allows the system to search for different roof designs and 
different façade height variation patterns to control the interior light levels. The roof can also 
generate an overhang for shading purposes, with a variable depth (d) between 2 and 6 m. The 
parametric model includes four circular skylights, with parametric radius (r) and position specified 
through their centroid point encoded in parametric surface coordinates u and v. 

Figure 7-9 shows a plan of the implemented parametric model with the variable parameters marked 
in red. Figure 7-10 presents an axonometric view of the building showing the roof generating 
curves and their parametric control points.  

 

 
Figure 7-9. Plan of the parametric model. All variable parameters in red. 
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Figure 7-10. Axonometric of the parametric model showing the parametric curves that generate the roof. All 

variable parameters in red. 

 

Table 7-1. Variable model parameters types and their respective domain. 

Parameter Description Range 

d Depth of roof overhang [2 m, 6 m] 

rn Radius of each skylight (n) [0 m, 2.5 m] 

Skylightnun u coordinate (un) of each skylight center point (Skylightn) [0, 1] 

Skylightnvn v coordinate (vn) of each skylight center point (Skylightn) [0, 1] 

CrvnPtzn Move in the z-axis for each point (Ptzn) of each generating roof curve (Crvn) [1.5 m, 5 m] 
 

Table 7-2 describes the Radiance material properties, both for opaque and transparent surfaces, 
used in all experiments and simulations. 

Table 7-2. Reflectance and Visual Light Transmittance (VLT) of Radiance materials used in the parametric model. 

Surface Reflectance (%) Visual Light Transmittance (%) 
Outside ground 20 N.A. 

Roof cladding 50 N.A. 

Curtain wall glass N.A. 64 

Skylight glass N.A. 64 

Interior floor 40 N.A. 

Interior ceiling 80 N.A. 
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The ambient settings that control the calculation of inter-reflected light in Radiance’s backward 
raytracing were the following: 

• Ambient resolution (-ab) – four ambient bounces guarantees enough accuracy without a 
substantial computational burden, making it a suitable number for an optimization cycle 
which will run a large number of models 

• Ambient resolution (-ar) – 300, a reasonable number for a point grid calculation with 
Radiance's subroutine rtrace and for a model of that size 

• Ambient divisions (-ad) – 1000 
• Ambient sampling (-as) – 500, typically half of -ad 
• Ambient accuracy (-aa) – 0.1 

Metrics used in simulation, calibration, and strategy validation 

Strategy E and its computational implementation supports all current daylight metrics available 
through DAYSIM (Reinhart and Walkenhorst, 2001) and DIVA (Jakubiec and Reinhart, 2011), 
including climate-based metrics like Daylight Autonomy (DA), Useful Daylight Illuminance 
(UDI), and Continuous Daylight Autonomy (CDA). However, this investigation uses Daylight 
Factor (DF) because of two fundamental reasons: 

1) Computational time. This work presents an initial prototype that computationally 
implements Strategy E in an interactive evolutionary generative system for daylight 
performance-based design. Considering the proof-of-concept nature of the research, the 
authors selected DF, a fast and easy to compute daylight index, to quickly run several 
optimization tests. Using more detailed metrics, such as climate-based ones, would entail 
calculation times incompatible with the phase of tool development and implementation. 

2) Generalized knowledge about DF. DF is a well-known, non-point-in-time daylight 
metric, thus more intuitive for designers than more recently developed performance indices 
such as climate-based annual metrics. As this metric is more familiar to designers who are 
not daylight experts, it facilitates the use and initial deployment of Painting with Light. 
Since designers are more familiar with DF, they will be able to paint feasible objectives, a 
factor that is highly relevant in the quality of the system output.  

This investigation used several statistical metrics to compare the different experiments, iteratively 
calibrate the proposed modeling strategy, and validate the resulting approach. The statistical 
indices used include CVRMSE, NMBE, absolute difference error (Δ error), absolute difference 
error average (∆ error��������), percentage of error (% error), percentage of error (% error���������) percentage of 
improvement (% of improvement), percentage of area ≤ 25 % error, percentage of area ≤ 10 % 
error. 

Chapter 4, section 4.5.3, already introduced CVRMSE, NMBE, % error, and % of improvement. 
Nevertheless, it is necessary to contextualize such metrics in the particular scope of the research 
included in the present chapter.  

Percentage of error (% error) is a simple metric commonly used in comparing the results of 
different simulations. It is a very useful metric in initial assessments because it is easy to 



185 
 

understand. In the following experiments, % error measures the relative deviation between 
performance targets and the simulated results of the solution found by the proposed system. 
Nevertheless, this index has often led to a compensation effect, whereby over-estimations cancel 
underestimations (Hubler, Tupper and Greensfelder, 2010; Coakley, Raftery and Keane, 2014). 
For that reason, this work uses more advanced statistical indices that better represent the 
performance of a model such as NMBE and CVRMSE. Chapter 4, section 4.5.3, equation (4-1) 
describes the % error calculation. The % error average, % error���������, is the arithmetic average of the % 
error calculated for all sensor nodes. Similarly to work presented in previous chapters, the 
acceptability threshold for % error is 10%.  

CVRMSE and NMBE are indices commonly used in energy model calibration. In this study, both 
metrics determine how well the search results fit with the target data. CVRMSE does this by 
capturing offsetting errors between the defined target and simulated data while NMBE by 
analyzing the variation between the mean difference of the performance targets and the 
simulation results of the solution found by the system. As discussed in chapter 4, section 4.5.3, 
NMBE is susceptible to the cancelation effect but CVRMSE is not (Coakley, Raftery and Keane, 
2014). Chapter 4, section 4.5.3, equation (4-3) describes CVRMSE, while equation describes (4-
6) NMBE. Because there are no guidelines regarding the use of both metrics in daylight 
simulations, the acceptance criteria used for CVRMSE and NMBE was the same as advanced by 
ASHRAE guideline 14 for hourly based energy simulations (ASHRAE, 2002): 30% for CVRMSE 
and ± 10 for NMBE. The hourly threshold of guideline 14 was favored against the monthly one 
because the number of considered data points is clearly greater than 12, thus better approximating 
the array size of hourly-based building energy simulations.  

The percentage of improvement (% of improvement) measures how much a system solution 
performance improved compared to a baseline case. In this chapter, this metric traces the evolution 
of the tool calibration process by comparing each calibration step with an initial calibration status. 
Chapter 4, section 4.5.3, equation (4-7) defines its calculation.  

In the following experiments, the calculation of % error, CVRMSE, and NMBE considered the 
target performance data as the benchmark data, i.e., the accurate data component (D) of the 
equations presented in chapter 4, while the simulated data of the solution found by the proposed 
PGDS as the predicted component (S) of the same equations. Regarding % of improvement, the D 
and S I term defined in chapter 4 corresponds to the comparison benchmark considered in this 
study and the calibrated version of the approach under study, respectively. 

The three metrics used in the subsequent experiments that chapter 4 did not introduce are absolute 
difference error – Δ error –, its average, ∆ error��������, percentage of area ≤ 25 % error, and percentage 
of area ≤ 10 % error. 

The Δ error metric is useful to measure sensor-by-sensor differences in detail, and it is essential in 
the generation of the Δ map visualization. It constitutes the numerator of % error. Equation (7-1) 
defines its calculation as follows: 

∆ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = |𝑆𝑆𝑖𝑖 − 𝑇𝑇𝑖𝑖|  (7-1) 
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where Si is the simulation result of the ith sensor in the solution found by the system, and Ti is the 
objective value set by the user for the same sensor. Similarly to % error��������� , ∆ error�������� corresponds to 
the arithmetic average of Δ error across all sensors. 

Percentage of area ≤ 25% error is a simple calculation that returns the percentage of area in the 
first % error quartile. The threshold of the % error is intentionally higher because of the limitation 
inherent to this index (cancellation effect), and because more accurate metrics (i.e., NMBE and 
CVRMSE) use a wider acceptance range. The measurement of the % error in the first quartile 
provides a rough idea of the overall spatial distribution of % error. 

Percentage of area ≤ 10% error uses the same method described in percentage of area 25% error 
but with the typical acceptance threshold used in the early years of building simulation, 10%. 
Similar to the previous metric, the computation of this index delivers a preliminary estimation of 
the spatial distribution of % error distribution. Hence, this study does not consider this metric and 
percentage of area 25% error as the final metric on the deviation error assessment between the 
solution found by the system and the desired targets. 

Design of Experiments (DoE)  

The DoE set for calibrating Painting with Light emulates how a typical designer would use the 
system. In all DoE experiences, the fitness function used by the system applies the goal 
programming method (Coello, 1999; Aköz and Petrovic, 2007; Biswas and Pal, 2019). This 
technique is computationally efficient and, if the goals are in the feasible domain of the problem, 
always yields a dominated solution (Coello, 1999). To further improve the system's search 
procedure, the authors introduced penalties and weight factors to the goal programming method. 
Note that the fitness function is a general objective function encoded in the system, and the user 
does not have direct access to it. The user can only control the function that penalizes high 
deviations between simulated data and specified targets. The fitness function is agnostic to the 
daylight metric in use, and its purpose is to guide the optimization search towards the painted 
targets. For the reasons presented in chapter 2, section 2.3.2 - Metaheuristics, the optimization 
algorithms used in these experiments are GA-based. The implementation of the strategy in the 
Rhino+Grasshopper environment also determined the selection of optimization algorithms of the 
GA family. The Integrated Development Environment (IDE) of Rhino+Grasshopper provides easy 
access both to single- and multi-objective genetic algorithms. Nevertheless, the modular nature of 
the approach makes the strategy agnostic to the search approach adopted. Thus, it is possible to 
couple the strategy with different optimization algorithms.   

The investigation entailed five testing experiments. The first four experiments consisted of 
progressive refinements on the formulation of the optimization algorithm objective function, by 
experimenting with methods for error computation as the primary way for improving Painting with 
Light prediction capabilities. After calibrating the system, the investigation entailed a final 
validation experiment to assess if Painting with Light could find a solution, for which the 
“optimum” value was already known. This validation experiment consisted of performing a DF 
calculation of an arbitrary building geometry and feed its results as the painted targets to the 
proposed tool. The following briefly describes the five experiments: 
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Experiment 1 - The first test used the SGA provided by Galapagos (Rutten, 2011). Galapagos’ 
genetic algorithm is a standard, single-fitness GA. The fitness function applied in this experiment 
was a simple minimization of the sum of the averages of the absolute difference between 
simulation results (S) and performance targets (T). Equation (2-4) describes the search problem 
and its fitness function. 

min
𝑆𝑆𝑖𝑖,𝑇𝑇𝑖𝑖 ∈ ℝ+

𝐹𝐹(𝑆𝑆𝑖𝑖, 𝑇𝑇𝑖𝑖) = �|𝑆𝑆𝑖𝑖 −  𝑇𝑇𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (7-2) 

where Si is the simulation result of the ith sensor in the solution found by the system, Ti is the 
objective value set by the user for the same sensor, and n is the number of sensors. 

Experiment 2 - Still using Galapagos’ SGA, the second experiment added penalties to the cost 
function defined in experiment 1 as a way to penalize significant deviations between the simulated 
results and their corresponding goals. The penalty attempts to force the system to find solutions 
that better match the painted objectives. Equation (2-7) defines the optimization problem and 
presents the penalized objective function. 

min
𝑆𝑆𝑖𝑖,𝑇𝑇𝑖𝑖 ,𝑝𝑝𝑖𝑖 ∈ ℝ+

𝐹𝐹(𝑆𝑆𝑖𝑖, 𝑇𝑇𝑖𝑖, 𝑝𝑝𝑖𝑖) = �|𝑆𝑆𝑖𝑖 −  𝑇𝑇𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

+ 𝑝𝑝𝑖𝑖(𝑆𝑆𝑖𝑖, 𝑇𝑇𝑖𝑖) (7-3) 

where pi is the penalty factor added to the absolute difference between Si and Ti in the ith sensor. 
The penalty value pi calculation depends on the difference between Si and Ti varying exponentially 
with it. 

Experiment 3 - This experiment adds a weighting factor to the penalized fitness function. The goal 
was to minimize distortion effects in the computation of the overall cost. The weighting factor 
aimed to distribute the penalties better, balancing them according to the weight of the respective 
goal area. In this way, the system can smooth out significant deviations if they occur in a relatively 
small goal painted area. Equation (7-4) formulizes the optimization process and its fitness function. 

min
𝑆𝑆𝑖𝑖,𝑇𝑇𝑖𝑖 ,𝑝𝑝𝑖𝑖, ∈ ℝ+,𝑤𝑤𝑗𝑗 ∈ ]0,1[

𝐹𝐹�𝑤𝑤𝑗𝑗, 𝑆𝑆𝑖𝑖, 𝑇𝑇𝑖𝑖, 𝑝𝑝𝑖𝑖� =  � �|𝑆𝑆𝑖𝑖 −  𝑇𝑇𝑖𝑖|

𝑛𝑛𝑗𝑗

𝑖𝑖=1

+ 𝑝𝑝𝑖𝑖(𝑆𝑆𝑖𝑖, 𝑇𝑇𝑖𝑖)
𝑚𝑚

𝑗𝑗=1

 . 𝑤𝑤𝑗𝑗   (7-4) 

where wj is the target area weighting factor, m is the number of target performance bins, i.e., the 
number of painted target areas, n is the number of nodes in each target area, Si is the simulation 
result, Ti the objective value, and pi the penalty factor for the ith sensor in the corresponding target 
area. The weighting scalar reflects the normalized area of each painted performance target bin 
(color) in the overall sensor grid. The function above shows that each performance target color has 
its own weighting factor that affects the penalized error in each of its sensors. 

Experiment 4 - The fourth experiment used a slightly improved painted target (i.e., a more feasible 
one) and Octopus GA as the search mechanism. The reason for using a different GA was that 
Galapagos GA tends to find more local minima as the complexity of the problem increases (Rutten, 
2011). Thus, the experiment tested the more robust Strength Pareto Evolutionary Algorithm 2 
(SPEA 2) (Ziztler, Laumanns and Thiele, 2002) available through Octopus Grasshopper add-on. 
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The fitness function was the same as in experiment 3, but the penalty function that calculates the 
penalty factor was redefined to penalize less the sensor nodes that reported a performance closer 
to their corresponding target, and to penalize heavily the ones that register high deviations. To 
enable the system to use a Pareto GA to optimize a problem with a single cost function, the authors 
added genetic diversity as a neutral second optimization vector, i.e., as an objective that does not 
produce an effect on the search as recommended by Octopus user guidelines (Vierlinger, 2012).  
Experiment 5 - After the approach calibration, the work entailed a final validation experiment. 
The fifth experiment used the results of a pre-defined design as painted goals, to assess if the 
system was able to find a solution similar both in performance and in design features. Considering 
that the painting goal interface depends on the user knowledge about light decay, which can be 
imprecise, this validation experiment also allowed to evaluate the impact of inputting a highly 
accurate, and therefore feasible, painted target space into the system. Nevertheless, since this 
experiment uses experiment 4 objective function, there was the need to discretize the target results 
by dividing their reported range into four bins.  
7.3.3 Results 

The following sections report the results for each experiment planned in the DoE. 

Experiment 1 

Figure 7-11 shows the geometry proposed by Painting with Light in experiment 1. Figure 7-12 
shows the painted performance targets, the proposed solution DF performance, and the spatial 
mapping of their difference. The generated overhang (d) is 5 m deep. 

The colors used in the painted targets were: Red: 10% DF; Orange: 7% DF; Yellow: 5% DF; Light 
yellow: 4% DF. Table 7-3 shows the values of the roof design variables, while Table 7-4 reports 
the skylights variables. 

The system proposed a deep overhang of 5 m, to respond to the fact that the user did not predict in 
the painted targets that higher Daylight Factor levels usually occur closer to the facades. As for 
the four skylights, only one of them was wrongly positioned, but its radius was so small that it had 
little effect on the design performance. The other three are quite accurately positioned and have 
radiuses that vary from 1.24 m to 2.10 m. It is possible to observe that the system tried to aggregate 
two skylights in an attempt to match the elliptical red area painted in the southeast part of the 
building. The system also slightly elevated the northwest corner of the roof to increase the glazing 
area and achieve higher light levels close to the red spot painted in the northwest corner. However, 
as we can see in the difference map, the system missed most of the DF targets by underestimation. 
Painting with Light failed to meet the goals set for the northwest corner, which requested a skylight 
directly above them. 
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Figure 7-11. Views of experiment 1 solution. Left: southeast perspective. Right: northwest perspective. 

 

Figure 7-12. Experiment 1 visual results overview. Left: painted objectives. Center: daylight factor simulation 
results of the solution proposed by the system. Right: difference (Δ) heatmap between painted objectives and 

simulation results. 

Table 7-5 shows the average of absolute difference and % error for each target color/DF levels and 
the overall space. It shows that the largest deviation between painted objectives and proposed 
solution performance is in the 10% and 7% DF target areas. The percentage of area ≤ 25% and ≤ 
10% error are both small, 6.59% and 21.87%, respectively. NMBE of this experiment is 53.06%, 
and the CVRMSE is 77.46%, both very far for the acceptance criteria assumed for those metrics. 

The poor results of this experiment are the result of two factors: the unfeasibility of the painted 
target solution that came about because of the user's lack of understanding of how DF works 
spatially in this experiment; and the distortion introduced by the necessary averaging on the fitness 
calculation for Galapagos GA. 

Table 7-3. Experiment 1 roof design parameter results. 

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 1.1 1.5 1.8 0.8 0.1 
Crv2 (East) 2.7 2.9 3.9 1.4 3.8 
Crv3 (North) 0.8 1.1 2.1 1.1 1.3 
Crv4 (West) 2 0.2 2.1 1.4 3.3 
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Table 7-4. Experiment 1 Skylight design parameter 
results. 

Table 7-5. Total and partial averages for absolute 
difference and percentage of error between desired goals 

and system output in Experiment 1. 
 

 U [0-1] V [0-1] Radius [m]  Goal area ∆ error�������� [DF] % error����������� 
Skylight 1 0.54 0.48 2.1  10% DF (red) 3.37 56.2 
Skylight 2 0.62 0.54 0.4  7% DF (orange) 2.08 48.1 
Skylight 3 0.57 0.44 1.24  5% DF (yellow) 1.1 41.6 
Skylight 4 0.56 0.48 2.5  4% DF (light yellow) 1.97 29 
     Total 2.2 44 

 
Experiment 2 

Figure 7-13 illustrates the design solution found by the system in this experiment. Figure 7-14 
presents the performance of the solution and the painted objectives. Painting with Light modeled 
one overhang of 2.36 m. The painted targets are more feasible in this experiment, namely on the 
perimeter, where the user painted higher DF values. Table 7-6 and Table 7-7 report the design 
variable values for this experiment. 7-17 quantifies the average of absolute difference and % error 
between painted objectives and the design solution proposed by Painting with Light. 

The system proposed a solution with an almost flat roof slightly tilted towards the East. The 
resulting glass facade has approximately the same height in all directions. The overhang is less 
deep than the one created in the first experiment, measuring 2.36 m. These results are consistent 
with the higher DF targets set for the perimeter in this experiment. The system produced a solution 
that is more compatible with the defined goals that depend on top lighting. The PGDS created four 
skylights: a group of two to match the elliptical red target area (10% DF) on the Southeast area of 
the building one for the Southwest red target values, and one for the Northwest red target area. 
Once again, Painting with light joins two circular skylights in an attempt to match the red target's 
elliptical shape.  

However, the difference map shows that, although it did better than in the first experiment, the 
system was still unable to accurately locate the Northwest skylight, generate the correct skylight 
radius, and produce a balanced solution between the curtain glass height and the overhang. The 
result produced some over lit areas (the narrower convex areas of the building) and a large blue 
dim area, which does not correspond to the DF pattern target painted by the user. 

In general, the average % error decreased in all the target areas for experiment 2. However, the 
average absolute difference increased as a result of some outlier data points. Although both the 
percentage of area ≤ 25% and ≤ 10% error increased, to 31.4% and 15.5% respectively, they still 
indicate that a large portion of the sensor node grid misses the target criteria. The NMBE and 
CVRMSE score confirm that preliminary indication. The NMBE scored 38.3%, and the CVRMSE 
69.04%, both still far from their acceptance range criteria. 
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Figure 7-13. Views of experiment 2 solution. Left: southeast perspective. Right: northwest perspective.  

 

Figure 7-14. Experiment 2 visual results overview. Left: painted objectives. Center: daylight factor simulation 
results of the solution proposed by the system. Right: difference (Δ) heatmap between painted objectives and 

simulation results. 

Table 7-6. Experiment 2 roof design parameter results.  

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 0.3 0.5 1.2 2.2 1.1 
Crv2 (East) 0.1 1.4 1.8 0.4 1.1 
Crv3 (North) 1.2 2 1.8 1.5 1.1 
Crv4 (West) 0.7 2.2 0.3 2 3.3 
 

Table 7-7. Experiment 2 Skylight design parameter 
results. 

Table 7-8. Total and partial averages for absolute 
difference and percentage of error between desired goals 

and system output in Experiment 2. 
 

 U [0-1] V [0-1] Radius [m]  Goal area ∆ error�������� [DF] % error����������� 
Skylight 1 0.54 0.53 0.75  10% DF (red) 4.15 41.5 
Skylight 2 0.38 0.62 1.42  7% DF (orange) 2.9 41.6 
Skylight 3 0.46 0.47 1.52  5% DF (yellow) 2 40 
Skylight 4 0.55 0.49 1.95  4% DF (light yellow) 1.43 38.9 
     Total 2.65 40 
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Experiment 3 

Figures 7-15 and 7-16, and Tables 7-9 to 7-11 report experiment 3 results. The generated overhang 
(d) for this experiment is 2 m deep. 

The design solution found by the system is very similar to that of experiment 2. However, the glass 
curtain wall is slightly higher, which improved the solution performance in the perimeter. The 
radiuses of the skylights are also slightly larger, further approximating DF criteria for inner areas. 
However, the proposed skylight locations are still inadequate, namely for the Northwest targets. 
This experiment reported a higher percentage of area in the first quartile of 25% error and 10% 
error: 44,77%, and 21.84%, respectively. Although NMBE improved to 17.2% and CVRMSE to 
55.23%, they still did not meet their acceptance range. 

 

Figure 7-15. Views of experiment 3 solution. Left: southeast perspective. Right: northwest perspective.  

 

Figure 7-16. Experiment 3 visual results overview. Left: painted objectives. Center: daylight factor simulation 
results of the solution proposed by the system. Right: difference (Δ) heatmap between painted objectives and 

simulation results. 
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Table 7-9. Experiment 3 roof design parameter results.  

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 0.2 0.5 1.2 2.1 1 
Crv2 (East) 0 1.2 1.8 0.4 1.1 
Crv3 (North) 1.1 2 1.7 1.5 1.1 
Crv4 (West) 1 2.5 1.5 2 2.5 
 

Table 7-10. Experiment 3 Skylight design parameter 
results. 

Table 7-11. Total and partial averages for absolute 
difference and percentage of error between desired goals 

and system output in Experiment 3. 
 

 U [0-1] V [0-1] Radius [m]  Goal area ∆ error�������� [DF] % error����������� 
Skylight 1 0.54 0.52 0.7  10% DF (red) 3.6 35.8 
Skylight 2 0.38 0.62 1.85  7% DF (orange) 2.5 35.6 
Skylight 3 0.46 0.47 1.95  5% DF (yellow) 1.68 33.5 
Skylight 4 0.55 0.49 1.9  4% DF (light yellow) 1.4 38.1 
     Total 2.3 36 

 
Experiment 4 

Figures 7-17 and 7-18 show the solution found in the fourth experiment. Tables 7-12 and 7-13 
show the design variables. The overhang depth (d) is 2.9 m. 7-13Table 7-14 reports the absolute 
deviation and the percentage of error between the painted targets and the design performance. 

Building from the previous experiences, this experience used a more feasible painted target. All 
the perimeter nodes were set to higher values, and the inner red focus assumed a more circular 
shape since the parametric model could only generate circular skylights. 

The solution found by the system generated a roof that achieves a good balance between facade 
height and overhang depth, better matching the painted objectives in the building perimeter. Thus, 
the system lowered the facade in the narrow southeast and southwest zones and raised it in the 
northwest quadrant, which has a deeper floor plan, generating a wavy rooftop with a central 
elevated bump area. Regarding the skylights, Painting with Light search mechanism only created 
three in this experiment, probably due to the approximation of the interior painted red spots to a 
circular shape. The skylights match the location of the inner red painted areas, and their radius are 
consistent with the defined target performance pattern. We can observe that the system located the 
largest skylights in the highest area of the rooftop. In contrast, the northwest skylight is smaller 
and placed in a location where the roof is relatively low, thus not needing to open as much to 
provide the required amount of light to meet the desired targets for that area. Overall, the difference 
map indicates that the solution met the vast majority of the desired results. 
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Figure 7-17. Views of experiment 4 solution. Left: southeast perspective. Right: northwest perspective.  

 

Figure 7-18. Experiment 4 visual results overview. Left: painted objectives. Center: daylight factor simulation 
results of the solution proposed by the system. Right: difference (Δ) heatmap between painted objectives and 

simulation results.  

The % error average was kept below 20% ranging from 10.4% (for the 7% target areas) and 18,4% 
(for the 5% target zone). The percentage of area ≤ 25% error increased dramatically to 77.24%. 
The percentage of area ≤ 10% error is now 52.21%. The reported NMBE of 1.54% is significantly 
below the acceptance threshold of ± 10%. Similarly, the CVRMSE registered a value of 
20.17%, almost 10% below the acceptance criterion used for this index, 30%. 

Results for this experiment produced a pattern that matches well the painted DF target 
distribution, and statistical error measurements for NMBE and CVRMSE were acceptable. 
However, it is possible to further calibrate the system by manipulating the definition of the 
fitness function, e.g., redefining the fitness and penalty functions, or inputting an improved 
DF target. 
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Table 7-12. Experiment 4 roof design parameter results.  

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 1.5 0.6 4.4 2.5 0.9 
Crv2 (East) 1.2 0.2 4.4 0.1 3.4 
Crv3 (North) 1.5 2.7 1.7 2.1 4.4 
Crv4 (West) 4.3 1.8 2.9 0.2 4 
 

Table 7-13. Experiment 4 Skylight design parameter 
results. 

Table 7-14. Total and partial averages for absolute 
difference and percentage of error between desired goals 

and system output in Experiment 4. 
 

 U [0-1] V [0-1] Radius [m]  Goal area ∆ error�������� [DF] % error���������� 
Skylight 1 0.42 0.58 1.75  10% DF (red) 1.62 16.15 
Skylight 2 0.57 0.48 2.4  7% DF (orange) 0.76 10.8 
Skylight 3 0.59 0.34 0  5% DF (yellow) 0.92 18.4 
Skylight 4 0.45 0.47 2.15  4% DF (light yellow) 0.88 22 
     Total 1.08 16.3 

 
Experiment 5 

The top two images of Figure 7-19 show the pre-defined building design that Painting with 
Light was asked to find, which was the one that produced the DF target system input. The 
bottom two images of Figure 7-19 show the design found by the Painting with Light, which 
is very close to the original design. Figure 7-20 shows the performance of the solution 
generated by the system and compares it with the desired goals. Tables 7-15 and 7-16 report 
the design variables of the pre-defined building, while tables 7-177-17 and 7-18 show the 
values found by the implemented strategy. Table 7-19 shows the absolute deviation and the 
% error between the pre-defined test geometry and the Painting with Light solution results. The 
overhang (d) of both solutions is 0.5 m. 

The overall shape of the roof that the system generated is very similar to that of the target 
building, which is particularly remarkable given the formal variation that the parametric 
model supports. As for the skylights, although the system generated only two skylights 
rather than the four skylights of the pre-shaped solution, it was capable of producing a 
solution whose performance is very close to the painted one. 
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Figure 7-19. Perspective views of experiment 5 solutions. Top: pre-defined test solution, which DF simulated results 
served as painted targets for the system. Bottom: Solution found by painting with light. 

 

Figure 7-20. Experiment 5 results spatially mapped. Left: painted objectives, deriving from DF simulation of pre-
determined geometry. Center: daylight factor simulation results of the solution proposed by painting with light. 

Right: difference (Δ) heatmap between painted objectives and simulation results. 
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Table 7-15. Experiment 5 pre-defined building roof design target values.  

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 2.4 0.2 0.2 1.5 1.7 
Crv2 (East) 1.5 1.5 1.5 1.4 1.4 
Crv3 (North) 0.8 1.4 1.7 2.8 1.8 
Crv4 (West) 1.5 1.5 0.2 1.5 0.4 
 

 
Table 7-16. Experiment 5 pre-defined building skylight design target values 

 U [0-1] V [0-1] Radius [m] 
Skylight 1 0.62 0.41 2.0 
Skylight 2 0.4 0.59 1.5 
Skylight 3 0.6 0.55 1 
Skylight 4 0.5 0.51 2.5 

 
Table 7-17. Experiment 5 building roof design solution parameter results.  

 PtZ1  
[m relative to 3.5 m] 

PtZ2 
[m relative to 3.5 m] 

PtZ3  
[m relative to 3.5 m] 

PtZ4  
[m relative to 3.5 m] 

PtZ5  
[m relative to 3.5 m] 

Crv1 (South) 1.4 0.3 1.6 1.5 0.1 
Crv2 (East) 1.5 1.5 1.5 1.4 1.3 
Crv3 (North) 2 1.4 0.3 2.8 4.1 
Crv4 (West) 1.5 1.5 0.2 1.5 0.4 
 

Table 7-18. Experiment 5 skylight design parameter 
results. 

Table 7-19. Total and partial averages for absolute 
difference and percentage of error between desired goals 

(pre-defined solution DF results) and system output in 
Experiment 5. 

 

 U [0-1] V [0-1] Radius [m]  Goal area ∆ error�������� [DF] % error���������� 
Skylight 1 0.5 0.52 2.5  15-20% DF (red) 1.5 8.3 
Skylight 2 0.72 0.34 0  10-15% DF (orange) 0.94 8.1 
Skylight 3 0.62 0.41 2.06  5-10% DF (yellow) 0.8 9.1 
Skylight 4 0.73 0.6 0  0-5% DF (light yellow) 0.5 9.5 
     Total 0.8 8.8 
 
On average, the % error of the solution found by Painting with Light never goes beyond 
10%. The difference map of Figure 7-20 shows minimal deviation, The difference map of 
Figure 7‑20 shows minimal deviation, except for a NE area, which corresponds to a skylight 
of the predefined solution that the system did not generate. The percentage of area ≤ 25% 
error increased to 94.4%. The percentage of area ≤ 10% error increased to 67%. NMBE is 
0.34% and CRMSE is 12.42%, yielding the best results of all the experiments. 

The area weights used in the penalty function could be one of the reasons why Painting with 
Light did not find the two smaller skylights of the predefined solution. Because the area 
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affected by these skylights was quite small, they had little impact on the overall 
performance, thus making the system focus more on finding a better match to the larger 
areas of the painted goals. Figure 7-19 also shows that Painting with Light proposed minor 
differences on the facade, namely in the NW quadrant, to compensate for the absence of the 
NW skylight that contributed to higher DF values on that corner of the pre-calculated design. 

This final validation experiment showed that Painting with Light is currently able to find 
solutions reasonably close to the optimum, giving a well painted, feasible solution space. 

7.3.4 Discussion 

The comparison of the different DoE experiments shows the impact of improving the definition of 
DF targets in system calibration. Figure 7-21 shows the progress of the percentage of area ≤ 25% 
error, and Figure 7-22 the incremental improvement of percentage of area ≤ 10% error. Figure 
7-23 reports the evolution of the other metrics used in this study. The bar chart present in Figure 
7-24 shows the percentage of improvement of all the experiments compared to experiment 1. 
However, because the first experiment was an initial trial that reflected the little knowledge the 
user had about DF spatial behavior, the analysis entails a second percentage of improvement study, 
which compares the experiments with a similar DF target pattern – experiment 2, 3, and 4. Figure 
7-25 shows the pattern of improvement of experiment 3 and 4 when compared to experiment 2. 

 

Figure 7-21. Total percentage of area ≤ 25% error between painted targets and simulation results on each 
experiment. Below each experiment bar there is a plan that locates the areas where percentage error is above 25%. 

On the right, a heatmap shows the nodes between 25% to 35% of error, to visualize the deviation pattern for the area 
above 25%. 
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Figure 7-22. Total percentage of area ≤ 10% error between painted targets and simulation results on each 
experiment. Below each experiment bar, there is a plan that locates the areas in which % error is above 10%. On the 
right, a heatmap assesses the deviation pattern in the area above 10% of error by showing the nodes whose % error 

is between 10 and 20%. 

 

Figure 7-23. Difference between painted goal averages and DF results of the solutions found by the implemented 
strategy – Painting with Light – in the five experiments. 
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Figure 7-24. Percentage of improvement in the different error metrics of experiment 2, 3, and 4 when compared to 
experiment 1. 

 

Figure 7-25. Percentage of improvement in the different error metrics of experiment 3, and 4 when compared to 
experiment 2.  

The modifications introduced in experiment 2 only slightly improve the error reported in 
experiment 1. The percentage of area ≤ 25% error increased 9.53%, the percentage of area ≤ 
10% error 8.93%, the global % error average decreased 4%, the NMBE 14.76%, and the 
CVRMSE only 8.42%. Those results indicate that while it provided a painted performance 
target with patterns closer to the real DF decay effect, the system still had difficulties in finding 
a good solution. This unsatisfying improvement is related to the averaging problems of the 
fitness function. Although the system uses a penalty function in experiment 2 the distribution 
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of the penalties did not consider the spatial weight of each target areas. Thus, the resulting 
fitness function could be biased by some outlier data points that had little relevance in the 
overall performance. 

The introduction of weighting factors that express spatial bias in experiment 3 produced a 
noticeable improvement. However, those improvements were still far from the acceptance 
threshold assumed for NMBE and CVRMSE. Compared with the first experiment, experiment 3 
improved 18.18% in % error, 67.58% in NMBE, and 32.22% in CVRMSE. The significant NMBE 
improvement is normal since this index is susceptible to the cancellation effect, where a positive 
bias compensates for a negative one. The high contrast between blue and red areas in experiment 
3 solution DF results indicates that the system resorts to compensation mechanisms to smooth out 
the average error. In contrast, CVRMSE is not susceptible to the cancellation effect; thus, it reports 
a slight improvement. It is worth mentioning that the absolute difference average in experiment 2 
and 3 appears to be worse than in experiment 1. However, outlier data points are biasing the 
absolute difference in experiment 1, thus distorting its average. In summary, when compared with 
experiment 1, experiment 3 indicates that the system could be further improved through 
calibration.  

Nevertheless, the improvements introduced by experiment 3 are far from being relevant. For 
example, CVRMSE improved 24%, and the mean % error 10%. Those small improvements 
indicate that the search process could be hampered from the inherent limitations of the 
optimization algorithm, thus trapping the search in a local minimum. A comparison between the 
designs of the two solutions also supports this observation – the design solutions of 
experiments 2 and 3 were very similar. 

Experiment 4 reports a considerable improvement in the system's performance in finding the 
painted goals. Steeping the penalty function curve but especially using a more robust GA (SPEA2) 
produced a significant impact on the quality of the system's outcome. The percentage of area ≤ 
25% error was 77.24%, increasing 55.37%, 45.84%, and 33.19%, in relation to experiment 1, 2, 
and 3, respectively. Regarding the 10% threshold for % error, the percentage of area ≤ 10% 
surpassed 50%, registering 52.21%, which resulted in an increment of 45.62%, 36.7%, and 30.37% 
compared with experiment 1, 2 and 3, respectively. All the statistical indexes report significant 
improvements. When compared with experiment 1, the percentage of improvement raised to 
97.1% in NMBE, and 73.96% in CVRMSE. When compared with experiment 2, this experience 
also shows remarkable progress, registering percentages of improvement that range from 53% 
(absolute difference) to 96% (NMBE). Both NMBE and CVRMSE, the most important indices in 
the calibration of the system, are comfortably in their acceptance range. Visually, the daylight 
performance pattern of the generated design is similar to the one painted by the user. This 
experiment demonstrates that it is possible to use goal-programming techniques to generate a 
solution that closely approximates a patterned performance target. 

After the implementation and calibration experiments, experiment 5 validates the proposed 
strategy by testing if Painting with Light can find a predefined solution. The validation also 
assesses to what degree a realistic and accurately painted solution improves the system's prediction 
ability. This experiment showed that when the system receives a detailed feasible performance 
target – i.e., a painted target that is part of the design solution space and accurately conveys the 
granularity of light distribution and decay patterns – it is able to find design solutions whose 
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performance are very close to the desired targets. Experiment 5 yielded the best results in all 
statistic indexes. The experiment results show improvements ranging from 63.64% (absolute 
difference) to 99.36% (NMBE) when compared with experiment 1 results, and, when compared 
with experiment 2, improvement percentages of 69.81% (absolute difference) and 100.89% 
(NMBE). Even % error achieved the standard acceptable thresholds, below 10%. The more 
advanced statistical methods for building simulation calibration lie very comfortably in the 
acceptance range (NMBE registers 0.34% while CRMSE 12.24%). In terms of the design 
solution’s architecture, the system was able to find the overall shape, with minor modifications on 
the northwest corner, and the two main skylights. The system did not find the two small skylights 
of the target (pre-calculated) design. However, those skylights affect a small area of the sensor 
grid plane, making them less relevant to the overall performance of the building. Because the 
fitness function prioritizes larger areas of painted goals, the low effect of those small skylights was 
probably neglected by the proposed computational implementation of Strategy E. 

7.4 Concluding remarks 

The research presented in this chapter discussed in detail Strategy E, which addresses the 
limitation that current goal-oriented design methods have in defining performance targets, 
particularly those that involve daylight metrics that entail a high level of spatial granularity.  

The work discussed the strategy's implementation into a PGDS prototype for daylighting 
design – Painting with Light, which supports a visual description of the desired daylight 
patterns on a horizontal sensor grid. The implemented target editor directly addresses current 
limitations on goal definition of current PGDS for building performance metrics with a high 
spatial granularity by doing the following: (i) using brushing and linking techniques in Rhino 
through the drawing of polylines or closed NURBS curves; (ii) controlling light decay pattern 
with sliders; (iii) supporting diagnostic visualization techniques by automatically generating 
a difference heatmap between desired performance targets and simulation results; and (iv) 
computing and displaying different statistics indexes that inform the user about the quality of 
the system's output solution, in terms of its deviation from the painted objectives. 

The experiments showed that by painting target patterns within the feasible region, and by 
progressively refining the fitness function, it is possible to calibrate the PGDS to produce high 
quality solutions. Experiment 4 demonstrated the tool’s capability of generating solutions that 
meet the desired spatial daylight pattern, by producing a design with an NMBE of 1,54% and 
a CVRMSE of 20.17%, both in the range of acceptance typically used in hourly-based energy 
simulations: ±10% for NMBE, and 30% for CVRMSE.  

Experiment 4 also showed that the robustness and quality of the search algorithm is crucial in 
the quality of the results. Whereas the initial experiments showed that Galapago's SGA search 
tended to get stuck in local minima as the complexity of the problem increased, the use of a 
more robust evolutionary optimization algorithm, SPEA2, in experiment 4 was more 
successful. The last experiment showed that when the system combines an efficient search 
mechanism with a realistically painted goal pattern, it can produce high-quality solutions that have 
a simulated performance close to the desired light values and their spatial distribution. 
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Despite the quality of the solutions that Strategy E implementation can generate, the approach still 
has some limitations related to the following: 

• User handling 
• The user might poorly design the target space because of her or his lack of 
understanding of how different daylight metrics spatially behave, and consequently 
hamper the search ability of the system. Because the implementation of the strategy into 
a PGDS used goal programming, the imposition of an unfeasible goal makes the search 
method very inefficient (Coello, 1999).  
• A non-expert user might over constrain the parametric model, making it impossible for 
the optimization algorithm to search for solutions that meet the desired performance 
targets. 

• Workflow 
• The system still requires some calibration of the fitness function to produce high-quality 
results. The need of this fine-tuning is a direct consequence of the main weakness of the 
goal programming method: the need to devise the appropriate weights (hyperparameters) 
to better steer the optimization search – a task that, depending on the problem, may require 
some iterations, an additional optimization procedure, and expert knowledge. 
Nevertheless, the system facilitates such calibration processes by enabling the designer to 
control the hyperparameters of the fitness function through sliders designed for that 
specific purpose. In that way, the architect does need to reformulate the entire objective 
function mathematically. 
• The experiments presented in this chapter only used Daylight Factor. There is a need to 
test the system with more complex daylight metrics, such as climate-based ones. 

• Interface 
• To control light decay in the painting process, the system applies a simple linear strength 
factor implemented as a slider. This approach requires a deep intuition about light decay 
patterns from the user, thus making the system more prone to human error. 
• The implemented goal programming method uses hyperparameters, i.e., scalar factors 
related to the area of the different painted goals. This may lead the system to overlook 
small effects or light patterns that the designer might include in the goal space. 
• The statistical methods used in the assessment of the search output quality could benefit 
from adequate visualizations. Such visualization would improve diagnostic tasks 
throughout the design workflow. 

Future work on the Painting with Light tool will address some of these limitations. To solve the 
current user limitations, it is necessary to develop an ''expert'' target editor that would steer the 
painting of performance patterns to more feasible regions or warn about the painting of unfeasible 
target areas. The development of this expert editor includes the investigation of special functions 
that compute patterns of light propagation and decay for different daylight metrics. To address the 
workflow limitations, further experiments will replace the goal-programming approach with 
Multi-Objective Optimization (MOO) methods that use evolutionary pareto-based optimization 
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metaheuristics such as the Non-dominated Standard Genetic Algorithm II (NSGA II) (Deb et al., 
2002; Hamdy, Palonen and Hasan, 2012). Such experiments will assign to each target area an 
objective function for the multi-objective Pareto GA optimize. The goal is to remove any bias 
introduced by the weight area factors and possibly improve the system’s ability to predict small 
pattern variations. Future experiences will also extend the daylight metrics used to annual climate-
based metrics such as Daylight Autonomy and Useful Daylight Illuminance.  

Additionally, the tool only used GA-based optimization algorithms. Recently, some authors have 
been challenging the efficiency of GA approaches in BPO (Wortmann et al., 2015, 2017; 
Wortmann, 2019). Belém and Leitão (2019) argue that no optimization algorithm outperforms all 
the others in every BPO problem. Thus, the authors recommend that selecting an optimization 
algorithm to solve a specific BPO problem should be supported by benchmark studies that compare 
the performance of several algorithms in similar problems. The modular nature of Strategy E 
allows such benchmarking studies, and future work will include them.  

The requirement of both a feasible painted target and robust optimization algorithm indicates that 
this strategy is particularly useful in the refinement of initial building envelope designs. For 
example, an architect can use this strategy to evaluate the initial design performance of a roof 
design, re-arrange the simulation results to express the desired light distribution, and let the system 
search for non-disruptive solutions whose performance matches the desired light distribution. 
Similar design refinement approaches have been applied in the structural optimization of grid 
shells. The walkable roof of Fukuoka central “Grin Grin” Park in Japan designed by Toyo Ito and 
Associates used a similar approach using a Simulated Annealing as the optimization algorithm. 
The shell designed by Toyo Ito and Associates for Crematorium in Kakamigahara Crematorium 
applied the same approach but using a GA as the search mechanism (Pugnale and Sassone, 2007). 
Future experiments will include the test of the strategy in more constrained design settings and the 
examination of adequate search algorithms in such applications. 

Although Strategy E promotes the design of diverse daylit environments, it is necessary to test the 
approach in more conventional designs that aim to obtain an even distribution of light levels, e.g., 
commercial buildings. An example of such an application includes the painting of adequate 
daylight goals in different programmatic areas of a commercial building and let the system 
optimize a shading system that seamlessly adapts to the several goals set by the designer. 

Further developments will also focus on automating optimal simulation parameters. For example, 
to ensure accuracy in the simulation of parametric models that can drastically change size, the tool 
will automatically set the ambient resolution (-ar) parameter. In this way, the system avoids any 
possible error caused by the spacing of the model’s surfaces; the literature reports that Radiance’s 
simulation error begins to increase on surfaces spaced closer than the scene size divided by the 
ambient resolution (Ward, 1997). 

Finally, to improve the simulation of the direct light component the authors plan to provide forward 
raytracing capabilities to the PGDS. Thus, future work will incorporate advanced Radiance-based 
simulation techniques such as the 3 and 5-Phase Method (McNeil and Lee, 2013; Geisler-Moroder, 
Lee and Ward, 2016) and the Photon Map extension to Radiance (Grobe, 2010; Schregle, Grobe 
and Wittkopf, 2015; Lars O. Grobe, 2019a; Lars Oliver Grobe, 2019), which overcomes the 
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limitations of Radiance's subroutine mkillum (Ward, 1995) in computing light reflections of curved 
specular reflectors. 
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Chapter 8:  
Conclusion 
8.1 Introduction  

The intention of this research has been to contribute to the improvement of Computational Design 
(CD) approaches in the early stage design of high-performance buildings by facilitating feedback 
on their daylight, thermal, and building energy performance. Predicting the daylight, energy, and 
thermal behavior of buildings is paramount in producing designs that are simultaneously energy-
efficient and thermally and visually comfortable. This investigation focused on improving the use 
of daylighting and whole-building energy simulation tools in parametric and Building 
Performance Optimization (BPO) workflows such as Performance-based Generative Design 
Systems (PGDS). 

Based on this intention, the hypothesis of the research was the following: The early integration of 
parametric, thermal, and daylight simulation tools is highly effective in the design, analysis, and 
optimization of high-performance buildings if it promotes model interoperability and provides 
performance feedback in useful time, regardless of the formal complexity of the design (see chapter 
1, section 1.3). 

Chapter 3 discusses and critiques the current state-of-the-art in performance-based design 
approaches (see chapter 2) supported by Building Energy Simulation (BES) and daylighting 
analysis tools. The chapter concludes that current daylighting and BES tools pose critical 
challenges to the desirable use of efficient exploratory design methods such as Parametric Design 
and Analysis (PDA) and PGDS. These challenges arise from limitations regarding (i) tool 
interoperability, (ii) simulation processes, and (iii) problem and performance goal definition in 
BPO/PGDS. The following briefly summarizes them. 

The obstacles posed by tool interoperability force designers to shift between modeling applications 
and “modes.” The primary cause for the lack of a single modeling approach emerge from 
fundamental differences in geometric modeling capabilities between design and simulation tools, 
particularly in the case of BES. State-of-the-art BES tools have limitations in representing and 
simulating buildings with complex curved and double-curved envelopes or buildings with intricate 
architectural screens that are currently easy to model at early-stage design phases using algorithmic 
approaches.  

Limitations related to simulation processes are primarily associated with run time. Detailed 
Building Energy Models (BEM) and advanced daylight simulations are computationally expensive 
and often result in unfeasible calculation times for PDA and BPO workflows. 

The current limitations in defining building performance goals in BPO workflows result from the 
gap between PGDS and standard performance-based design approaches. The current mechanisms 
to define optimization problems and performance targets for BPO are non-trivial, particularly to 
non-experts in optimization such as architects. Additionally, it is difficult to include the spatial 
variation of building performance metrics such as those regarding daylighting ones.     
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The dissertation proposed five strategies to test the research hypothesis and address the current 
obstacles in integrating whole-building energy and daylighting simulations in PDA and 
BPO/PGDS workflows. The strategies are the following: (i) Strategy A – Automatically generate 
valid building geometry for BES, (ii) Strategy B – Automatically simplify building geometry for 
BES, (iii) Strategy C – Abstract Complex Fenestration Systems (CFS) for BES, (iv) Strategy D – 
Assess glare potential of indoor spaces using a time and spatial sampling technique, and (v) 
Strategy E – Painting with Light - a novel method for spatially specify daylight goals in BPO.  

The research work showed that the strategies tackled the research problem and current limitations 
by (i) improving the interoperability between design and BES and daylighting simulation tools 
(Strategies A, B, and C); (ii) producing quick and adequate feedback on the daylight, thermal, and 
energy behavior of buildings (Strategies B, C, and D); and (iii) facilitating the spatial definition of 
performance goals in daylighting PGDS (Strategy E). 

The investigation validated the proposed strategies using both external and internal validation 
procedures. The external validation consisted of inter-program and inter-modeling comparisons 
(see chapter 4, section 4.5.1) that compares the results produced by the modeling strategy with the 
ones delivered by simulation procedures currently used in design practice and research. The inter-
modeling primarily validated Strategy A, B, and C. The validation approach was also used to 
support Strategy D and E. In the case of Strategy D, the work used external data produced by 
Santos, Leitão and Caldas (Santos, Leitão and Caldas, 2018) in developing a simplified predictive 
approach to signaling potential glare events in indoor spaces.  

The internal validation of the strategies primarily consisted of requirement and face validity tests. 
Requirement tests examine whether a strategy complies with clearly defined requirements. This 
type of validation also provides meaningful answers to well-defined questions (see chapter 4.5, 
section 4.5.2). Strategy A, B, and C passed the requirement validity test: generate valid geometry 
for BEMs that do not produce any simulation errors in EnergyPlus. In Strategy B and C, the 
proposed approaches generated simplified models whose simulation deviation output compared 
with a benchmark model is within a pre-defined acceptable range. Strategy E utilizes pre-
calculated Daylight Factor (DF) data as goals to the PGDS implemented by the strategy. The goal 
was to validate the form-finding capabilities of the proposed PGDS. The strategy passed the 
requirement validity test by generating a solution with a performance that is very close to the 
design that generated the pre-calculated DF data. 

Face validity tests assess if the strategy provides plausible and useful feedback to a design process. 
Strategy A observes face validity because its application in a PGDS generates design candidates 
whose energy performance is better than that of initial design states. The sensitivity analysis 
conducted in Strategy B and C demonstrates that the strategies produced surrogate geometric 
descriptions for BEM that run quickly with minimal error deviations in simulation output. The 
case study application of Strategy D shows that the strategy produces meaningful and useful 
feedback both in spatially mapping glare potential and in identifying critical points-of-view 
(POVs) and time events regarding discomfort caused by glare. Thus, using fewer simulation 
resources, the strategy provides relevant information in useful time for early design stages. The 
experiment also demonstrates that a user can employ the feedback provided by Strategy D to 
perform detailed and advance glare simulations based on High Dynamic Range (HDR) images. 



208 
 

The summary of the strategies achievements and validation show that the proposed strategies were 
successful in attaining the primary research objective, which is to develop a set of strategies that 
facilitate and improve the use of current thermal and daylight simulation tools in performance-
based design supported by parametric and BPO workflows. 

Thus, and as hypothesized, the dissertation demonstrates that deploying the proposed strategies 
contributes to improving the efficiency of using daylight and BES tools in the design, analysis, 
and optimization of high-performance buildings. The strategies achieve such improvement by 
promoting tool interoperability, providing feedback on predicted building performance, and 
facilitating the definition of performance targets in PGDS.   

The next section (8.2) answers the general research question (see chapter 1, section 1.3) and the 
more specific and refined questions posed in section 3.4 of chapter 3. The section examines how 
the proposed strategies provide valid answers to those questions. Section 8.3 reviews the merits 
and limitations of the modeling strategies. In section 8.4, the author presents recommendations for 
strategy application in computational performance-based design processes. Lastly, section 8.5 
discusses further research and potential extensions to the proposed strategies. 

8.2 Answers to Research Questions  

Chapter 1 introduced the general research question that tests the formulated hypothesis and 
motivates the investigation conducted in this dissertation. The general research question stated 
below addresses the current limitations of using BES and daylight simulation tools in building 
design processes supported by computational approaches.  

• How can we improve the design process of high-performance buildings using current digital 
design and analysis tools?  

After a thorough discussion about the research problem and its causes in chapter 3, the 
investigation concluded that to improve and better integrate current analysis tools in computational 
design workflows, it is necessary to achieve the following:  

1) Enhance the interoperability between design and simulation tools by automating modeling 
procedures. 

2) Propose alternative modeling methods that generate quick and adequate performance 
feedback on the thermal, energy, and daylight behavior of buildings. 

3) Develop approaches that facilitate problem and performance targets in BPO.     

To achieve these goals, the general question was further decomposed into four specific questions 
(see chapter 3, section 3.4). The next part of this section provides the answers to those questions. 
• What type of geometric modeling strategies enable a better interoperability between parametric 
design and Building Energy Simulation (BES) tools?  

Currently, the geometric modeling capabilities of state-of-the-art BES programs, such as 
EnergyPlus, do not follow the formal expressiveness provided by current parametric and 
algorithmic approaches available in design tools, e.g., Rhino+Grasshopper, Revit+Dynamo. Such 
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design tools enable architects to explore, at the initial design stages, complex building forms, 
including curved and double-curved building envelopes and highly sophisticated building skins 
with intricate geometric patterns. Expressing such geometric complexity is a challenging task in 
BES since it requires a high level of expertise and time-consuming modeling processes that often 
result in detailed BEMs that are unfeasible to run in design times. This endeavor is even more 
challenging when it is necessary to automate the generation of simulation models from parametric 
or generative building descriptions. Thus, it is desirable to develop new methods that mediate and 
manage the geometric description of design and simulation models. Such methods should 
automatically and efficiently parse building geometry produced by parametric and generative 
tools, including complex curved and double-curved surfaces, for BES tools.  

Strategy A answers this question by automating the generation of valid geometric descriptions for 
BEM from an initial set of surfaces that form a closed volume. The strategy automatically pre-
processes any building surface, including those that are complex curved and double-curved, for 
whole-building energy simulation. Strategy B and C extend the capabilities of strategy A. Strategy 
B automatically simplifies the simulation models that result from the application of Strategy A to 
reduce calculation times. Strategy C generates surrogate descriptions of complex façade systems 
that architects might explore and study at the initial stages. 

In sum, Strategies A, B, and C promote better interoperability between simulation tools and 
parametric and generative design approaches by automatically handling complex and time-
consuming tasks of translating building geometry. For a detailed description of the implemented 
modeling steps of Strategy A, B, and C, please refer to chapter 5.  

• Which modeling and analysis procedures generate quick and adequate feedback on energy 
and daylight performance of buildings at the early design stages?   

Considering that time-consuming calculations are accountable for hampering quick and useful 
feedback at the early design phases, it is necessary to develop modeling procedures that simplify 
simulation models and propose alternative prediction methods that are easy to use, run quickly, 
and produce meaningful outputs. BES is particularly susceptible to geometric complexity and to 
the number of thermal zones, whereas daylight simulations are sensitive to simulation type, 
particularly those supported by HDR images. Thus, the following is necessary: (i) develop 
approaches that simplify BEM geometry and multi-zone models without hampering the simulation 
output quality, (ii) daylight analysis workflows that avoid expensive calculations of HDR, and (iii) 
new visualizations that provide information on-demand to better support design analysis and 
exploratory tasks. 

Strategy B, C, and D answer this question. Strategy B and C implement simplification procedures 
to reduce BEM run time without hindering simulation outcome. Strategy B implements and 
automates the following general procedure to single-zone models: (i) apply Strategy A to parse an 
initial building geometry into a BEM, (ii) simplify the resulting BEM geometry by reducing its 
mesh density (i.e., number of mesh faces) using a reduction factor, (iii) re-apply Strategy A to the 
resulting model to generate a valid BEM composed of triangular or quadrilateral planar faces that 
form an enclosed volume or set of enclosed volumes, and (iv) scale the resulting BEM uniformly 
to match the original volume of the initial BEM. In the case of multi-zone BEM, Strategy B 
samples the initial BEM and isolates representative parts of the model using a heuristic determined 
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by the user, e.g., orientation and solar exposure. It then applies Strategy B general procedure to 
generate single-zone BEMs, simulates them in parallel, and combines the results of the several 
single-zone BEMs weighted by the area of influence of each model. 

Strategy C generates surrogates of complex façade systems, whose geometry is difficult to 
translate into BEM and which often results in time-consuming simulations. The modeling method 
uses a co-simulation process that generates surrogate representations of complex architectural 
screens and façade systems. The resulting surrogates abstract the façade systems to equivalent 
thermal and optical indices of glazing assemblies, namely Solar Heat Gain Coefficient (SHGC), 
U-factor (conductance), and Visual Light Transmission (VLT).   

The models that result from Strategies B and C run much faster than current approaches, and the 
error deviation introduced by the simplifications is acceptable, particularly for early-design phases 
(see chapter 5, sections 5.4.4 and 5.5.4). 

Strategy D illustrates how to avoid expensive time-series HDR simulations to predict annual glare. 
Using information produced by quicker and simpler daylight analysis – annual illuminance at the 
eye level (EV) – the strategy automatically spatially maps glare potential over a grid of sensors and 
points-of-view (POVs) and provides information about critical events and POVs. A designer or a 
PGDS could use that information to conduct point-in-time, view-dependent, detailed glare 
simulations supported by HDR images. This strategy also advances an interactive visualization of 
spatial and temporal data based on radar graphs to qualify the visual comfort of indoor spaces (see 
chapter 6).  

In sum, the techniques implemented by Strategies B and C support quick and useful feedback to 
design by automatically simplifying BES simulation models. Strategy D presents an alternative 
simulation method for studying visual comfort in indoor spaces. The strategy reduces the use of 
time-consuming simulations, and quickly provides adequate information for early design stages 
through a visualization that spatially maps glare potential and provides information about critical 
time events and POVs. 

• How can we develop strategies that help architects and other non-experts in optimization to 
formulate inverse design problems?   

As previously mentioned, the methods typically used in optimization formulation and target 
definition in PGDS and BPO are non-trivial and not easy for architects to utilize. Additionally, it 
is difficult to define a search procedure that spatially allocates different performance goals using 
an analytical formulation of objective functions. The spatial distribution of targets is particularly 
critical in the optimization of daylighting in buildings. As a result, designers often default to 
average-based processes, which are susceptible to the cancelation effect and do not support the 
search for designs with specific spatial performance patterns. To address these problems, it is 
necessary to advance strategies that mitigate the gap between common design approaches and 
techniques and facilitate the spatial definition of performance targets.  

A way to mitigate the gap between the field of optimization and design in BPO is to develop 
procedures that help designers to visually define optimization problems and performance targets. 
Such procedures should process the architect’s visual specified objectives and automatically 
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generate adequate objective functions for search and optimization in building design. Additionally, 
using visual methods to formulate and interface with BPO approaches provides architects with a 
“familiar environment,” thus promoting the use of PGDS in building design.  

Strategy E implements these types of procedures by proposing a painting-style interface that allows 
designers to easily set performance goals and define their spatial distribution in BPO workflows. 
Based on the painted performance goals, the strategy automatically generates an adequate 
objective function to be minimized or maximized by an optimization algorithm. By supporting the 
spatial definition of goals by drawing colored areas, Strategy E better resembles methods 
commonly used by designers in their workflows, thus being easier for them to use. The modeling 
approach captures the spatial granularity of daylight performance targets, thus avoiding the 
problems caused by averaging predicted daylight performance in daylight optimization of 
buildings. 

• How effective are the proposed modeling strategies? What are their merits and limitations?   

The testing of the strategies in the several experiments conducted in this work shows that they 
effectively improve the use of BES and daylight simulations in early-stage performance-based 
design supported by parametric and BPO workflows. The general merits that make the strategies 
effective are the following:   

1) Reduce the representational gap between design and simulation models – Strategy A. 
2) Automate time-consuming modeling tasks that are prone to error for parametric and BPO 

processes – Strategies A, B, and C. 
3) Reduce simulation time and therefore quickly provide feedback to design processes – 

Strategies B, C, and D. 
4) Provide alternative analysis methods that are easy to handle and deploy. These analysis 

methods also produce meaningful and comprehensible information for design processes 
using fewer simulation resources – Strategy D. 

5)  Expedite the definition of performance goals in PGDS by deploying user-friendly 
approaches based on techniques known to architects – Strategy E.   

The validation of the strategies briefly summarized in section 8.1 verify these benefits. These 
achievements are relevant contributions to the better use of BES and daylighting analysis tools in 
building design supported by computational approaches. They reduce (i) the user modeling effort 
in describing the design problem and its inputs and (ii) the time to obtain useful feedback from 
performance-driven parametric and optimization workflows.    

There are two kinds of limitations: (i) those associated with inherent limitations of the simulation 
processes used by the strategies, and (ii) those related to the generalization of strategies application.  

The development of the strategies is based on specific simulation procedures; therefore, the 
strategies carry the inherent limitations of such prediction methods. For example, the 
approximation of complex fenestration geometry to simple thermal, solar, and optical properties 
proposed in Strategy C is based on a steady-state simulation process. Thus, and although the 
cumulative error is small and acceptable, it does not precisely capture hourly variations. 
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Considering the unique nature of each design and the fact that the strategies are heuristic-based, it 
is difficult to ensure that they will be applicable to all design problems. For example, there is little 
benefit from applying Strategies A, B, and C in the analysis of box-like building geometries. 
Strategy D was specially crafted for side lit spaces, thus it has limited application in the analysis 
of designs that include top-lighting.   

The following sections discuss the effectiveness of the proposed strategies by presenting each 
strategy’s merits and limitations (section 8.3), determining guidelines for strategy application 
(section 8.4), and envisioning further research to address their limitations (section 8.5). 

8.3 Merits and limitations of the proposed modeling strategies 

The proposed modeling strategies focused on better integrating simulation models and analysis 
methods in PDA and BPO workflows. Regarding their overall merits, the previous sections 
demonstrate that the discussed strategies achieve the primary objective to a large extent. However, 
it is important to note that this research assumed that an adequate parametric or algorithmic 
description of a building would always be provided, which might not be the case in a real-world 
scenario.  

Although parametric and algorithmic modeling methods are becoming more prevalent in 
architectural practice, architects may provide inefficient algorithmic descriptions of their designs, 
including under- and over-constrained parametric building models, and models with redundant or 
unnecessary parameters or modeling operations. Such design descriptions might also hinder the 
effectiveness of PDA and BPO approaches to design. 

Developing efficient parametric descriptions for performance-based building design is non-trivial. 
The algorithmic description of a building is highly variable since it depends on the following 
aspects: (i) the specific design problem; (ii) the design team’s approach to the project, e.g., a top-
down approach, in which the design further details an initial idea, or a bottom-up approach where 
the design results from the summation of different parts; (iii) the generative approach used, i.e., 
whether the geometry is generated by a parametric model or by a generative system such as an L-
system, a Cellular Automata, or a Shape-grammar, and (iv) the modeling techniques and 
operations involved.  

Despite this complexity, there has been some progress on the generalization of algorithmic and 
parametric modeling processes for building design. Caetano, Santos, and Leitão (2015) and 
Caetano and Leitão (2016) advanced frameworks that generalize the implementation of typical 
parametric modeling strategies in building envelope design using a combination of functional 
operators. The algorithmic framework allows designers to describe a wide variation of design 
using and combining functional operators that control the form, scale, distribution, and articulation 
of different elements that compose a building envelope. 

This parallel line of research complements the methods advanced in this dissertation. Both research 
lines concur for the effective deployment of computational-design methods in the design of high-
performance buildings. However, the study of generalized methods to parametrize an open, overall 
building shape entails a level of complexity that requires a dedicated focus. Nevertheless, further 
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attention should be given to such methods in further applications developments of the proposed 
modeling approaches in this dissertation. 

Sections 8.3.1 to 8.3.5 discuss the specific merits and limitations of the proposed modeling 
strategies. The discussion is based on the results of the application of the different strategies done 
in chapters 5, 6, and 7 and summarizes the findings presented for each strategy.  

8.3.1 Strategy A: Automatically generate valid building geometry for BES 

The primary merit of this strategy is the automatic production of valid geometry for BEM from 
initial parametric descriptions of curved and double-curved building geometries. The strategy uses 
planarization methods borrowed from the architectural computational geometry field to allow 
architects to automatically generate valid BEM geometry from a 3D CAD model. Hence the 
approach avoids time-consuming manual modeling tasks that are incompatible with BPO 
workflows. The strategy allows the user to control the degree of geometric detail in the generation 
of BEM models by managing the level of building envelope discretization. The application of the 
strategy in an optimization exercise (see chapter 5) demonstrated the importance of preserving the 
essential building form in BEM to capture self-shading and variable solar radiation distribution 
patterns. The same application also demonstrated that it is possible to handle free-form building 
geometries in optimizing predicted building energy use. The experiment showed that the PGDS 
that used this strategy found design alternatives that improved the building energy performance of 
initial designs by almost 70%. 

The main limitation of the strategy is related to simulation time. The run time of the BEM produced 
by Strategy A depends heavily on the level of geometric detail described by the user: the greater 
the number of surface subdivisions, the higher the calculation time of its energy performance. 
Thus, the achievement of acceptable optimization times highly depends on initial settings for 
geometry discretization. Moreover, it is difficult to foresee whether a particular level of detail is 
adequate for all building geometries that a PGDS might generate during the optimization process. 
A level of surface discretization that results for a design candidate might not be suitable for another 
since they might not correspond to the overall desired level of detail. 

Another limitation is that the strategy is unable to handle façade patterning and screen-based 
systems. This fact required that the author oversimplify glass fritting in the building envelope to 
generate simulation models that run quickly. 

Lastly, the testing and validation of Strategy A focus on single-zone thermal models. Strategy B 
and C complement Strategy A by addressing those limitations.  

8.3.2 Strategy B: Automatically simplify building geometry for efficient whole-building 
energy simulations 

The principal merit of Strategy B is that it extends the scope of Strategy A to multi-zone models 
and improves the computational efficiency of the generated BEMs by automatically simplifying 
their geometry. Strategy B combines two approaches. The first automatically parses any curved 
enclosed building envelope and generates an equivalent low polygon BEM. The second approach 
samples a multi-zone BEM to isolate smaller and representative parts of the original model. Both 
approaches can be used separately or together. 
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The testing of Strategy B showed that both methods produce geometric surrogates for BEM that 
run quickly, with simulation output deviation within the acceptable range. The experiments 
demonstrate that it is possible to reduce by 80% the number of mesh faces in a BEM as long as it 
preserves the original volume of the single or sampled thermal zone (see chapter 6). As previously 
mentioned, Strategy B automatically applies a uniform scale to the low-resolution polygon BEM 
that it generates to preserve the original thermal zone volume.  

Another merit is that the method implemented by Strategy B to handle multi-zone models 
automates several simplification tasks, including the sample of representative single-zone models, 
simulates them, and combines the results using a weighted sum. This approach also improved 
simulation time without producing significant deviations to simulation output. The research also 
showed that it is feasible and desirable to combine both approaches in addressing free-form 
buildings that comprise several thermal zones. 

The following limitations constrain a generalized application of the recommendations that resulted 
from testing Strategy B: (i) the experiments used a commonly used Heating, Ventilation, and Air 
Conditioning (HVAC) at the early design stages (Ideal Loads Air System - ILAS), thus the results 
cannot be directly extrapolated to other HVAC systems; (ii) the strategy was tested only in narrow 
plan examples, thus requiring further research to examine acceptable levels of simplification for 
deep plan buildings; and (iii) the experiment used a limited range of climates, therefore limiting 
the generalization of findings to different climates. 

8.3.3 Strategy C: Abstract Complex Fenestration Systems (CFS) for BES 

Strategy C complements Strategy A by enabling the simulation of complex and sophisticated 
architectural screens and façade systems at the early design stages. The primary merit of the 
strategy is that it mitigates the existing gap between design and simulation tools by allowing 
architects to quickly assess the impact in building energy use of their façade designs.  

Strategy C combines parametric design, statistical-learning techniques, window performance, and 
whole-building energy analysis tools in a single streamlined design workflow. The approach uses 
co-simulation to simplify the geometric features of complex fenestration systems (CFS) into 
thermal, solar, and optical indices. Because the strategy generates CFS surrogates based on a set 
of performance indices, it enables the generation of formally distinct solutions of similar 
performance. This ability is useful at initial stages of the design process, stages where architects 
examine different design alternatives. 

The application of Strategy C in a parametric design and analysis (PDA) experiment showed that 
the surrogates that it produces run quickly and with acceptable accuracy, particularly in cumulative 
annual results (see chapter 5, section 5.5). These benefits make this strategy suitable for either 
parametric or goal-oriented design processes based on overall building energy performance. 

Although Strategy C had a good performance in predicting annual building energy indices, it is 
less robust in producing surrogates that accurately capture building energy performance on an 
hourly basis. The experiments showed that strategy produced models with hourly deviations 
outside the acceptability range in heating energy use. This limitation might be the result of two 
factors. The first relates to the experimental setting and the statistical process applied. In the 
experiment, heating had a minimal weight in the overall energy performance. Thus, any small 
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deviation might have produced significant relative errors. The second factor lies in the co-
simulation process itself. The simulation tool used to abstract the CFS geometry, WINDOW 
(Huizenga et al., 2017), is based on steady-state assumptions, making the resulting surrogates less 
capable of capturing granular hourly data on energy performance. Thus, it is necessary to conduct 
further research to determine the cause of that single error. 

As argued in chapter 5, section 5.6, the annual accuracy presented by Strategy C makes the 
deployment of this strategy not only acceptable but desirable at early design phases, phases in 
which there is a need for quick feedback and architects are more concerned with global energy 
assessments than with hourly estimations.  

8.3.4 Strategy D: Assess glare potential of indoor spaces using a time and spatial sampling 
technique 

The primary merit of Strategy D is that it uses straightforward and easy-to-calculate methods 
to qualify entire spaces in terms of glare, thus mitigating the need to use sophisticated and 
time-consuming simulations in annual visual comfort studies. The approach advances a 
method for visual comfort studies that replaces computationally expensive annual Daylight 
Glare Probability (aDGP) simulations at the early design stages. The strategy maps glare 
potential in a space and helps architects to supplement that initial assessment with detailed 
and advance simulations. Thus, the strategy is a viable alternative analysis approach for early 
to intermediate design phases to those recommended by specific standards, e.g., EN17037 - 
Daylight in buildings (CEN, 2019).  

The strategy uses annual vertical illuminance at the eye level (EV) calculations to spatially 
map glare potential and find relevant points-of-view (POVs) and time events (hours-of-the-
year, HOY) to conduct point-in-time DGP based on detailed HDR images. 

The interactive visualization tool that spatially maps glare potential over a sensor grid also 
enables architects to (i) easily query EV data for finding critical time events and POV in each 
sensor, (ii) examine daily and seasonal patterns of EV distribution, and (iii) compare the glare 
potential of different design solutions.   

The strategy automates the use of advanced bi-directional raytracing methods (3-phase 
method), thus facilitating the simulation of complex fenestration systems, an ability that 
standard simulation tools that compute aDGP – e.g.,  DAYSIM (Reinhart and Breton, 2009) –
do not support. The approach also uses Typical Meteorological Year (TMY) data to hourly 
describe the sky conditions of a given location by using all-weather Perez sky models (Perez, 
Seals and Michalsky, 1993). 

The primary limitation of Strategy D lies in its bias for low sun angles of bright and clear 
skies. This bias may be the result of using a single EV threshold (EV,Thr) to determine glare 
potential under different sky types and POV locations. The sensitivity analysis that supports 
the definition of the EV,Thr used by the strategy shows that an adaptive EV,Thr that responds to 
spatial location and sky type has the potential to outperform the use of a single general EV,Thr. 
Finally, because DGP analysis supported the specification of EV,Thr the approach is constrained 
to the scope of DGP, which is limited to glare assessment in perimetral areas of side-lit offices 
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(Wienold and Christoffersen, 2006; Van Den Wymelenberg and Inanici, 2014; Wienold et al., 
2018). 

8.3.5 Strategy E: Painting with Light - a novel method for spatially specifying daylight 
goals in Building Performance Optimization 

The main merit of Strategy E is that it enables architects to easily define spatial performance 
targets using a painting-like tool in a PGDS for daylighting design and optimization. The 
proposed PGDS advances an interactive approach that allows architects to use familiar 
techniques such as painting or drawing, to define performance targets in inverse design 
problems.   

By enabling the spatial definition of different performance targets, the strategy also helps 
architects avoid averaging-based methods that condense the spatial variation of performance 
goals into a single value. Because averaging-based methods are susceptible to the 
compensation effect, their use to specify performance targets in BPO might negatively affect 
the quality of the search, particularly if the performance aspect to optimize entails a high level 
of spatial variability.  

The definition of spatial performance target patterns also enhances the use and generative 
potential of daylighting PGDSs, since the spatial description of goals steers search procedures 
in a way that is impossible through averaging or cumulative-based approaches.  

The iterative refinement of Strategy E and its application in a case study showed that the 
proposed PGDS is effective in finding solutions whose performance closely matches painted 
goal performance patterns.  

Nevertheless, the approach presents some limitations. For example, the quality of the search 
output depends heavily on the user’s knowledge about daylight behavior in buildings. The 
experiments show that the strategy could only generate interesting results if a precise goal 
pattern is provided. However, in the painting of the goals, the user controls daylight decay, 
thus constraining the quality of the inputted target to the user’s expertise on the spatial 
variation of daylighting metrics. The scalarization method used by the strategy in defining the 
objective function also has limitations. Although the proposed PGDS automatically assigns 
weights depending on the area of painted goals, the weight distribution might still require 
some calibration from the user side to improve the search procedure. Moreover, the weight 
approach of the scalarization method might lead to the PGDS’s search overlooking small light 
patterns included by the user in the performance goal pattern. 

The implementation of the strategy is also limited to GA optimization algorithms. Despite the 
success of GA in daylighting and building energy optimization, GA approaches are still time 
consuming as they require the evaluation of a large number of design candidates. Considering 
that there is no universal optimization algorithm in BPO (Belém and Leitão, 2019), there is the 
need to test the Painting with Light interface with other optimization algorithms. The modular 
structure of the strategy implementation facilitated the testing of different optimization 
algorithms. Such benchmark studies will allow the mapping of adequate search methods for 
different daylighting optimization problems.  
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Finally, the experiments used only Daylight Factor (DF) as the daylight performance metric, 
limiting the generalization of the findings. Thus, there is a need to test the system with more 
complex daylight metrics, including climate-based metrics that capture the typical annual sky 
variations of a given location.   

8.4 Recommendations for Strategy Application  

After discussing the benefits and limitations of the proposed strategies, this section presents 
recommendations for their use in building design and analysis processes. 

Strategy A is suitable for analyzing building forms that include curved or double-curved 
surfaces, particularly in cases that require a detailed geometric description of the building 
envelope for BES. Although Strategy A can parse box-like geometries, there are no benefits 
to using the strategy to do this, since box-like building geometry needs little pre-processing 
for energy simulation. Strategy A is also applicable only to single thermal zone BEMs.   

Strategy B is recommended in cases where it is desirable to generate simplified and quick-to- 
run single or multi-zone BEMs of buildings with curved or double-curved envelopes. The 
multi-zone simplification approach of this strategy can also be applied to box-like multi-zone 
BEMs. The recommended level of BEM mesh face reduction in the simplification is between 
75 to 85%. The experiments presented in chapter 5 show that this interval yields significant 
reductions in simulation time with a minimal impact on simulation output.  Above 85%, the 
resulting simplified BEMs do not fully capture the overall shape of the design and therefore 
present higher error deviations in simulation output.  

Strategy C is adequate in the initial assessments of complex façade systems, including CFS 
and light-redirecting systems in building energy performance. This strategy is recommended 
for conducting overall annual building energy estimations. As previously mentioned, this 
modeling approach has problems predicting hourly heating energy consumption. This strategy 
is also suitable in optimization scenarios in which the architect desires to compare different 
façade systems of similar performance.  

It is appropriate to combine Strategy A with Strategy C. Combining Strategy B with C 
depends on the level of geometric simplification introduced by Strategy B, i.e., if the BEM 
geometry is too simplified, using Strategy C to generate CFS surrogates might result in 
significant cumulative deviations in simulation output. 

Strategy D is suitable for early visual comfort assessments and to qualify the potential of 
visual discomfort caused by glare in indoor spaces. The strategy should be used only in 
designs dominated by side lighting. This strategy is able to provide useful information in 
façade design, including the design of shading systems and selection of glazed and opaque 
materials. The approach can also contribute to the optimization of automated dynamic shading 
controls, and the interior layout of furniture. The author recommends the following Radiance 
simulation parameters for assessing the glare potential of a space by using vertical eye 
illuminance calculations: 6 ambient bounces (-ab),  ambient resolution (-ar) set to 300, 
ambient divisions (-ad) to 1000, ambient sampling (-as) to 500, ambient accuracy (-aa) to 0.1, 
and direct threshold to 0. In the case of detailed point-in-time DGP analysis -ad should be set 
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to 50,000. These parameters ensure simulation output quality in the examination of a wide 
range of fenestration systems. It is possible to use Strategy D either in single- or multi-
objective BPO workflows. For example, in a single objective optimization the designer might 
minimize the number of potential glare events. In multi-objective optimization, the designer 
might minimize the number of potential glare events and the DGP levels in critical events and 
POVs found by the tool. 

Strategy E is appropriate to daylight building optimization problems that require the spatial 
differentiation of daylight targets in the creation of variable light environments. The 
requirement of well-defined feasible performance targets makes Strategy E particularly 
suitable for refining an initial roof and building envelope design. A designer can use the 
system first to assess the performance of a well-defined design concept. Based on the analysis 
results, the designer can utilize the painting interface to adjust daylight levels and use them as 
goals to run an optimization procedure. The system will then search for similar design 
solutions that closely match the desired daylight targets. 

Before using Strategy E, it is recommended to perform a small sensitivity analysis first. This 
analytical procedure would provide a useful insight into the specific daylight optimization 
problem at hand. Based on the sensitivity analysis results, the user will be better informed 
when painting performance targets, identifying the relevant parameters in the optimization 
problem, and assessing how sensitive the problem is too small lighting patterns.  

Finally, the BES modeling strategies (Strategies A, B, and C) can be used in parallel with 
Strategy D and E in multi-criteria optimization workflows. 

8.5 Future work 

This section presents the research endeavors envisioned to tackle the shortcomings of the 
strategies. The section isolates and summarizes the primary future research tasks identified in 
the discussion conducted in chapters 5, 6, and 7. 

Strategy B and C address the primary limitations of Strategy A. Hence, there is no pressing 
need for further refinements to Strategy A, only those that result from improving Strategies B 
and C. 

Future work in Strategy B aims to extend its applicability. The author plans to study the 
application strategy in the design of a building with deep plans. That study would provide 
useful insights about the admissible degree of envelope simplification in that type of building. 
The hypothesis is that the reduction of BEM mesh density could be even greater in such cases 
and that the sampling of multi-zone thermal models should focus more on core zones. 
Additional research on Strategy B also includes testing the strategy in a wider range of 
climates and with other HVAC systems. 

Regarding Strategy C, further research will focus on testing the strategy in different climates 
to assess whether the deviation found in hourly heating energy estimations is caused by a 
statistical procedure or by the steady-state nature of WINDOW simulations. Future work will 
also include the development of dynamic Solar Heat Gain Coefficients (SHGC), Visible Light 
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Transmission (VLT), and U-factor (i.e., thermal conductance) to generate surrogates of 
complex façade systems that better handle the transient nature of solar and heat transfer 
phenomena.  The author envisions modeling those dynamic fenestration indices using a 
similar method to model electrochromic or thermochromic glazing units. Moreover, the 
dynamic description of SGGC, VLT, and U-factor will also extend the modeling abilities of 
Strategy C to dynamic CFS. 

Future work on Strategy D will address the strategy limitations in signaling glare events 
caused by surface luminance contrast, and in using EV thresholds for determining glare 
potential in the different daylit zones of the same space. The determination of an even more 
robust EV threshold requires the inclusion of more annual skies of different latitudes and the 
formulation of a dynamic threshold. Such dynamic EV threshold will depend on annual sky 
type, latitude, distance to the different glare sources, and their relative size. The strategy will 
also incorporate the 5-phase method as the primary simulation approach. The use of the 5-
phase method will allow the decoupling of the direct and diffuse components of daylight, thus 
enable the user to distinguish glare events produced by the presence of the circumsolar region 
in the observer’s field-of-view from those primarily produced by light reflections and surface 
luminance contrast. 

As mentioned in chapter 7, section 7.4, future work on Strategy E will address current user 
limitations by developing an “intelligent” painting interface that helps designers to paint 
feasible performance targets. Such an interface should be able to automatically approximate 
light decay patterns from the specification of “hotspot” areas. The implementation of this 
expert editor requires the development of functions that calculate light propagation and decay 
for different daylight metrics. Further research will include a comparative study between the 
GA-based scalarization method currently used by the approach and other optimization 
approaches, including model-based optimization techniques and different multi-criteria 
optimization techniques such as Pareto-based methods. Such a comparative study aims to 
assess whether it is possible to remove the bias of the weighting-based approach applied by 
the scalarization method and whether there are more suitable search mechanisms to the 
proposed PGDS. The comparison between GA optimization techniques and model-based 
search mechanisms is especially relevant. Recent research shows that model-based 
optimization techniques based on the Radial Basis Function (RBF) can outperform GAs, 
particularly in optimization problems formulated using the scalarization method (Wortmann 
et al., 2017; Wortmann, 2019). The author also plans to extend Strategy E to other daylight 
performance indices, particularly climate-based daylight metrics.  

Finally, further research efforts will include the combination of the different strategies in 
Multi-Objective Optimization (MOO) studies, particularly the combination of BES related 
strategies (Strategy A, B, and C) with Strategies D and E. These studies will further assess 
their combined effectiveness in current sustainable building design MOO workflows. 
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Appendix A: 
List of Daylight and Building Energy Metrics 
This appendix summarizes the daylight and building energy metrics used or related to the work 
presented in the dissertation.  

Daylight Metrics 
Illuminance 

Illuminance (E) is a local and point-in-time metric. The illuminance at a point P (EP) of a given 
surface is a physical quantity, defined as the ratio between the luminous flux (ϕ) incident on an 
infinitesimal surface in the neighborhood of P and the area of that surface (Arec). In the 
International System of Units (SI), E is measured in lux. In the Imperial System of Units (IP) it is 
measured in in foot-candles (fc). Illuminance basically measures how much the incident light 
illuminates a surface in terms of human brightness perception. The mathematical formula is as 
follows (Carlucci et al., 2015): 

𝐸𝐸𝑃𝑃 =
d𝜙𝜙

d𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟
  (lux or fc) (1) 

 
Because it is a local and point-in-time metric, its spatial and time scope is limited. E measurements 
or simulations are fast and deliver an accurate measurement in an instantaneous moment for a 
specific spatial location within a given luminous environment. Although it is typically simulated 
under pre-defined skies, such as the Commission Internationale de l'Éclairage (CIE) Clear Sky, E 
can be simulated using weather data to better approximate the actual conditions of a site. To 
achieve this a sky needs to be generated using weather data through RADIANCE’s routines 
gendaylit or gensky (McNeil and Lee, 2013). It is possible to measure or predict E that falls in the 
horizontal plane (Eh), or in the vertical plane (EV). Vertical illuminance predictions are paramount 
in visual comfort assessments since the calculation of Daylight Glare Probability (DGP) (see 
below) requires the estimation of the vertical illuminance at the observer’s eye. To fully describe 
a luminous environment over time through E, the estimation of E needs to be taken in several 
points in space, typically organized in a horizontal sensor grid, at different occasions. The spatial 
and time granularity range from measurements performed in a couple of representative samples 
(e.g., for each analysis point, E is calculated at three different hours of the day for the equinox and 
solstices) to compact grids of analysis points with an hourly based time-series. The latter method 
leads to voluminous time-series, and it is the basis of dynamic daylight metrics. 

Daylight Factor 

First proposed by Trotter in 1895 (Walsh, 1951) and latter refined by Hopkins et al. (1954) the 
Daylight Factor (DF) at a point P (DFP), is the ratio of the horizontal illuminance at P due to the 
presence of any type of barrier that obstructs the view of the sky (EP,obs), to the horizontal 
illuminance measured at the same point if the view of the sky is unobstructed (EP,unobs). Both 
obstructed and unobstructed conditions exclude direct sunlight. DFP is calculated through the 
expression: 
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𝐷𝐷𝐷𝐷𝑃𝑃  =  
𝐸𝐸𝑃𝑃,𝑜𝑜𝑜𝑜𝑜𝑜

𝐸𝐸𝑃𝑃,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
  (2) 

 
DF is based on a ratio to avoid the dependency of assessing daylight performance based on 
instantaneous sky conditions (Reinhart, Mardaljevic and Rogers, 2006). In DF, it is assumed that 
the sky has a uniform luminance, thus being modeled as an overcast sky. Although this assumption 
makes this metric quick to simulate and representative for an entire year, it also limits its 
application. As pointed out in (Mardaljevic, Heschong and Lee, 2009), DF cannot properly 
represent daylight illumination conditions that differ from the overcast sky model. The sky model 
also makes DF insensitive to building orientation (Kota and Haberl, 2009). Reinhart et al. 
(Reinhart, Mardaljevic and Rogers, 2006) highlight that maximizing DF leads to admitting as 
much daylight as possible through the building’s envelope, potentially affect the thermal 
performance significantly.  Finally, DF is also a local daylight metric forcing the measurement at 
different positions to understand its spatial behavior.    

Daylight Autonomy 

The Daylight Autonomy (DA) at a point P (DAP) is the percentage of the occupied hours of the 
year that is above a specified illuminance threshold (ELimit) only due to daylight. DAP is calculated 
by applying the following expression (Carlucci et al., 2015): 

𝐷𝐷𝐷𝐷𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃  =  ∑ 𝑊𝑊𝑊𝑊𝑖𝑖.𝑡𝑡𝑖𝑖𝑖𝑖
∑ 𝑡𝑡𝑖𝑖𝑖𝑖

 ∈ [0, 1]  with,  𝑊𝑊𝑊𝑊𝑖𝑖 = �
 1, 𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  ≥  𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
0, 𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  <  𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

 , (3) 

 
where ti is each occupied hour of the year; Wfi is a discrete weighting factor that depends on: (i) 
the illuminance measure at ti at point P, only due to daylight (EDaylight); (ii) the illuminance 
threshold value (ELimit). The Association Suisse des Electriciens (ASE, 1989) first proposed this 
metric, which was later refined by Reinhart and Walkenhorst (2001).  

DA is a climate-based and local metric. It considers the weather conditions of the site and conveys 
the visual performance, at a specific point of the analysis plane, through a single value expressed 
as a percentage. Although it captures the variations of luminous environment through time, Nabil 
and Mardaljevic (2006) point the following limitations: (i) it excludes values that fall below the 
threshold, that could either be valued by the occupants or reduce electric lighting loads; (ii) 
considers values that largely exceed the threshold thus being oblivious to potential visual 
discomfort or excessive thermal gains due to an excess of daylight. The definition of DA also 
depends on the occupied schedule and the ELimit threshold. Although this makes the metric versatile 
enough to be applied in a wide range of cases there is a lack of guidelines especially regarding the 
value of ELimit. Olbina and Beliveau (2009) proposed the ELimit of 500 lux for a typical office 
environment, but 300 lux is also used both in practice and by standards (IESNA, 2012). Finally, 
being a local metric DA requires the evaluation of several analysis points to fully describe its 
spatial performance making the simulation of this metric computationally expensive. 
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Spatial Daylight Autonomy 

Spatial Daylight Autonomy (sDA), as defined in (IESNA, 2012), is a measure of daylight 
illuminance sufficiency for a given area. It reports the percentage of floor area that exceeds a given 
illuminance level for a specified fraction of the operating hours per year. sDA is calculated by first 
assessing DA in each point of a spatial grid over the area of interest, and then summing all the 
areas affected to the points above a given DA reference value (DALimit). It is expressed in the 
following: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥|𝑦𝑦% =  
∑ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖
 ∈ [0, 1] with,  𝑊𝑊𝑊𝑊𝑖𝑖 = � 1, 𝑖𝑖𝑓𝑓 𝐷𝐷𝐷𝐷𝑥𝑥 𝑃𝑃𝑃𝑃  ≥  𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

0, 𝑖𝑖𝑖𝑖  𝐷𝐷𝐷𝐷𝑥𝑥 𝑃𝑃𝑃𝑃  <  𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
 , (4) 

 
where x is the illuminance threshold, y% is the time fraction, Pi are the points of the calculation 
grid. 

Spatial Daylight Autonomy is a climate and a zonal based metric. The Illuminating Engineering 
Society (IES) recommends 300 lux as the illuminance threshold and 50% as time fraction limit: 
sDA300/50% (IESNA, 2012). sDA300/50% expresses the percentage of the analyzed area that is equal 
or over 300 lux for at least 50% of the operating hours (i.e., DA300lux ≥ 50%). The approved method 
for the calculation of sDA300/50% is described in the LM-83-12 standard (IESNA, 2012) which 
includes details and guidelines on performance criteria, analysis grids, blinds/shades operation, 
material properties, window groups, and other simulation parameters. The schedule for the 
occupied hours used in the calculation of sDA300/50% is fixed at 10 hours per day, from 8am to 6pm, 
over a year. In the calculation of sDA300/50%  the standard enforces an hourly deployment of 
blinds/shades if specific criteria are not met, which can lead to an underestimation of the actual 
daylight performance of the building envelope. In sum, the main advantage that this metric has 
over DA is that it can describe the daylight performance of the analyzed area through a single 
value. However, this ability hinders the metric to provide more information about the daylight 
spatial variation if not paired with DA visualizations.  

Useful Daylight Illuminance 

Nabil and Mardaljevic proposed the Useful Daylight Illuminance (UDI) metric in (2006). Similar 
to DA, UDI is defined as the fraction of the time in a year when indoor horizontal daylight 
illuminance at a given point falls in a given range. Currently, the following three limits to 
illuminance are defined: a lower (EL.L.), an autonomous (EA.L.), and an upper (EU.L.). Typically, 
these thresholds split the analyzed period into four bins: i) UDIOverlit, which measures the 
percentage of time with excessive daylight levels which might lead to visual discomfort and/or 
overheating phenomena (Nabil and Mardaljevic, 2006), (ii) UDIautonomous that represents the ratio 
of time with appropriate autonomous daylight illuminance levels, i.e., daylight levels that dismiss 
the use of artificial lighting, (iii) UDIUseful that gives the percentage of time of insufficient daylight 
levels that can be compensated with a partial use of an artificial lighting system, and (iv) UDIUnderlit 
represents the percentage of time when there is too little daylight. UDI at a given point P (UDIP) 
is expressed as follows: 
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𝑈𝑈𝑈𝑈𝑈𝑈𝑃𝑃 =
∑ 𝑊𝑊𝑊𝑊𝑖𝑖 . 𝑡𝑡𝑖𝑖𝑖𝑖

∑ 𝑡𝑡𝑖𝑖𝑖𝑖
 ∈ [0, 1] 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑈𝑈𝑈𝑈𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂           with   𝑊𝑊𝑊𝑊𝑖𝑖 = �

 1,                                  𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  >  𝐸𝐸𝑈𝑈.𝐿𝐿.

0,                                  𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  ≤  𝐸𝐸𝑈𝑈.𝐿𝐿.

UDI𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑊𝑊𝑊𝑊𝑖𝑖 = �
 1,                       𝑖𝑖𝑖𝑖 𝐸𝐸𝐴𝐴.𝐿𝐿. ≤ 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡 ≤ 𝐸𝐸𝑈𝑈.𝐿𝐿.
0, 𝑖𝑖𝑖𝑖 E𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡 < 𝐸𝐸𝐴𝐴.𝐿𝐿. ⋁ 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡 > 𝐸𝐸𝑈𝑈.𝐿𝐿.

UDI𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈               𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑊𝑊𝑊𝑊𝑖𝑖 = �
 1,                       𝑖𝑖𝑖𝑖 𝐸𝐸𝐿𝐿.𝐿𝐿. ≤ 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡 ≤ 𝐸𝐸𝐴𝐴.𝐿𝐿.
0, 𝑖𝑖𝑖𝑖 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 < 𝐸𝐸𝐿𝐿.𝐿𝐿. ⋁ 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡 > 𝐸𝐸𝐴𝐴.𝐿𝐿.

UDI𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈             𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑊𝑊𝑊𝑊𝑖𝑖 = �
 1,                                 𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  <  𝐸𝐸𝐿𝐿.𝐿𝐿.
0,                                𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖ℎ𝑡𝑡  >  𝐸𝐸𝑈𝑈.𝐿𝐿.

 (5) 

 
UDI is a climate-based and local metric that resorts to upper and lower thresholds to report and 
qualify the annual quantity of daylight at a specific point in space. UDI aims to deliver information 
on useful illuminance levels caused by daylight and the frequency of excessive daylight levels that 
might lead to visual discomfort and unwanted solar gains. Nevertheless, there is no full agreement 
on the illuminance limit thresholds. Initially, Nabil and Mardaljevic proposed EL.L= 100 lux, and 
EU.L= 2000 lux (Nabil and Mardaljevic, 2006). Later, Mardaljevic et al. (2009) suggested 
increasing the upper E threshold to 2500 lux. In Olbina and Beliveau (2009), the lower threshold 
is set to 500 lux and the upper threshold to 2000 lux. David et al. (2011) proposed a very different 
range, 300 to 8000 lux. Currently, the most adopted thresholds, particularly by recent daylighting 
analysis tools, including Climate Studio (Sollema LLC, 2020), are the following: (i) EL.L= 100 (ii) 
EA.L= 300 lux, and (iii) EU.L= 3000 lux. 

Spatial Useful Daylight Illuminance 

Spatial Useful Daylight Autonomy (sUDI), applies the sDA (see Spatial Daylight Autonomy) 
concept to the different bins of UDI. Hence, based on the UDI score of the different points (Pi), it 
is possible to determine sUDI for each UDI bin, k, as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|𝑦𝑦% =  
∑ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖
 ∈ [0, 1] with,  𝑊𝑊𝑊𝑊𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈𝑈𝑈𝑘𝑘 𝑃𝑃𝑃𝑃  ∈  𝑈𝑈𝐷𝐷𝐷𝐷𝑘𝑘

0, 𝑖𝑖𝑖𝑖  𝑈𝑈𝑈𝑈𝑈𝑈𝑘𝑘 𝑃𝑃𝑃𝑃  ∉  𝑈𝑈𝑈𝑈𝑈𝑈𝑘𝑘
 , (6) 

where k is the UDI illuminance bin, y% is the time fraction, Pi are the points of the calculation 
grid. 

Konis et al. (2016) used sUDIautonomous as one of building performance metrics in a multi-objective 
optimization application that aimed to simultaneously minimize building energy use and maximize 
comfortable daylight levels in commercial buildings. The authors used 50% as the time fraction 
for UDIautonomous, sUDIautonomous|50%. Santos, Leitão, and Caldas (2018) also used also the time 
fraction of 50% to compare the performance of two Complex Fenestration Systems (CFS). 

Annual Sun Exposure 

The IES LM-83-12 standard (IESNA, 2012) defines Annual Sunlight Exposure (ASE) as the 
percent of an analysis area that exceeds a direct sunlight illuminance level (EDirect Limit) for a 
specified number of hours per year.   
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𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦 =  
∑ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖
 ∈ [0, 1] with,  𝑊𝑊𝑊𝑊𝑖𝑖 = � 1, 𝑖𝑖𝑖𝑖 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃  ≥  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

0, 𝑖𝑖𝑖𝑖  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃  <  𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 , (7) 

where x is the direct illuminance threshold, y is the absolute amount of time in hours, and Pi are 
the sensor nodes of the analysis grid. 

ASE is a climate-based and zonal metric that describes the potential for visual discomfort in 
interior work environments. IES LM-83-12 standard recommends the analysis of ASE1000,250h, i.e., 
the percentage of the analysis area exposed to more than 1000 lux of direct sunlight for more than 
250 hours per year, before any shading device is deployed to block sunlight, considering the same 
analysis period as sDA. As stated in (IESNA, 2012), supporting research indicated that spaces with  
ASE1000,250h  > 10% have unsatisfactory visual comfort, while spaces with ASE1000,250h  < 7% were 
judge to be neutral, and spaces with ASE1000,250h  < 3% were considered acceptable. However, the 
same standard alerts that the research that led to these ASE1000,250h recommendations needs more 
information from field studies. The current metric does not include enough information on all 
variations of sun penetration, space types, shading devices, or climates (IESNA, 2012). Thus, it is 
recommended that this metric should be used in combination with DA and/or sDA. 

Daylight Glare Probability 

Although there are several glare metrics such as the Discomfort Glare Index (Hopkinson, 1972; 
Chauvel et al., 1982; Nazzal, 2005), the CIE Glare Index (Einhorn, 1979; Navvab and Altland, 
1997) the dissertation focus on the Daylight Glare Probability (DGP) metric since it is the only 
glare-related metric that can handle large light sources including the sun. Proposed and validated 
by Wienold and Christoffersen (Wienold and Christoffersen, 2006) DGP is calculated as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷 = 5.87 ∙ 10−5𝐸𝐸𝑉𝑉+ 0.0918 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10 �1 +  � �
𝐿𝐿𝑠𝑠,𝑖𝑖

2 ∙ 𝜔𝜔𝑠𝑠,𝑖𝑖

𝐸𝐸𝑉𝑉
1.87 ∙ 𝑃𝑃𝑖𝑖

2�
𝑛𝑛

𝑖𝑖=1

� + 0.16 , (8) 

where EV is the vertical eye illuminance produced by the light sources at the observer’s eye, Ls,i is 
the luminance of a glare source, ωs,i  is the solid angle of the source seen by an observer in 
steradians (sr), and Pi is the position index, which expresses the change in experienced discomfort 
glare relative to the angular displacement of the source (azimuth and elevation) from the observer’s 
line of sight. The formula is valid within the range of DGP between 0.2 and 0.8, and for vertical 
eye illuminance (EV) above 380 lux. 

 

Compared with other glare metrics, DGP includes the evaluation of vertical illuminance as 
perceived by the observer (EV). Wienold and Christoffersen collected empirical data showing a 
stronger correlation of EV with the observer’s response towards glare (Wienold and Christoffersen, 
2005). The discomfort of exceedingly bright environments can be predicted even without 
significant visual contrast (Jakubiec and Reinhart, 2011) (Wienold and Christoffersen, 2006) 
(Wienold and Christoffersen, 2005). The inclusion of EV makes DGP the most sophisticated and 
appropriate metric in assessing absolute glare issues, as stated by Suk et al. (2013). Nevertheless, 
DGP is a metric that is computationally expensive to calculate when compared with other glare 
indexes (Andersen et al., 2008). To address the computation time problem, Wienold et al. (2007) 
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and Hviid et al. (2008) proposed simplifications to DGP. Both simplifications cannot be used if 
direct sun, or a specular reflection of it, hits the observer’s eyes (Suk, Schiler and Kensek, 2013). 
Departing from the work conducted in Wienold et al. (2007), Wienold proposed the Enhanced 
Simplified Discomfort Glare Probability (eDGPs) (Wienold, 2009). The underlying idea is to split 
the initial definition of DGP into two simplified terms. The first term depends on the vertical eye 
illuminance and the second on the detected glare sources. The first term can be easily calculated 
while the second can be inferred by computing a simplified image that only renders the primary 
glare sources, neglecting the indirect ambient reflections. The results when compared to full DGP 
results, are acceptable (Wienold, 2009).  

Although DGP is a local point-in-time metric, Jakubiec and Reinhart (2011) extended its temporal 
scope to a TMY by automating its simulation. The annual DGP (aDGP) is displayed as an annual 
heatmap that renders (i) intolerable glare (DGP ≥ 0.45), (ii) disturbing glare (0.45 > DGP ≥ 0.4), 
(iii) perceptible glare (0.4 > DGP ≥ 0.35), and (iv) imperceptible glare (0.35 ≥ DGP). 

Visible Light Transmittance 

The Visible Light Transmittance (VLT or Tvis) is a ratio that expresses the fraction of light in the 
visible portion of the spectrum that passes through a glazing material. Since it is a ratio, VLT varies 
between 0 and 1, or 0 % and 100%. 

Building Energy Related Metrics 
Building Energy Consumption 

Building energy consumption refers to the cumulative of energy used to inhabit and operate a 
building during a specific period, usually the entire year. The energy that a building uses does not 
necessarily come from a single energy source. Buildings use different types of energy, from 
electricity, natural gas, biomass, to steam. It is possible to distinguish two types of energy in 
buildings, site, and source energy. Source energy represents the total amount of raw fuel that is 
required to operate the building. Thus, source energy incorporates all transmission, delivery, and 
energy production losses. Site energy is the energy consumed at the final destination of the power 
generation cycle, i.e., the energy consumed by the building without accounting for production and 
losses in transporting energy to the building. In other words, is the amount of energy shown on a 
utility bill. The dissertation uses site energy in the calculation of building energy consumption. 

Building energy consumption can be expressed kilowatt-hour (kWh) or in British thermal units 
(Btu). One kWh is equivalent to 3600 kilojoules (kJ) and one Btu to approximately 1.06 kJ. The 
dissertation adopts the kWh, the international system (SI) unit. 

The energy that a building uses in its operation can be further divided into different energy end-
uses. The most commons ones are the following: heating, cooling, lighting, equipment, process 
loads, and ventilation. The heating energy end-use refers to the amount of energy required to heat 
the several spaces of a building to keep comfortable temperatures. Similar cooling energy is the 
energy spend by the building to cool down the several interior spaces to a comfortable temperature 
range. Lighting energy is the energy that a building spends in artificial lighting to provide adequate 
light levels to perform different activities and tasks. Equipment refers to the energy spend by 
typically electrical equipment. Process loads include the energy needed to operate processing 
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equipment, i.e., equipment that uses energy to process materials or other resources, including 
appliances. The energy used by a kitchen stove and oven is a good example of a process load. 
Finally, the ventilation energy end-use measures the amount of energy consumed by a mechanical 
ventilation system in providing an adequate amount of fresh air to the different spaces of a 
building. 

Energy Use Intensity 

Energy Use Intensity (EUI) is the normalization of building energy use (total or by different 
building energy end-uses) per unit area (EUI) or volume (EUIV). When using EUI, energy use is 
either expressed as a function of a building’s total area or volume. Hence, the calculation of EUI 
and EUIV consists of dividing the predicted or measured energy consumption of a specific end-use 
by the total area (EUI) or volume of the building (EUIV). In this dissertation, EUI is expressed in 
kWh/m2 and EUIV in kWh/m3

. In the absence of robust benchmarks or energy standards, EUI is 
critical to compare the measured or predicted energy performance between buildings or designs. 

Solar Radiation  

Solar Radiation (SR), also called solar irradiation or solar irradiance, is the radiant flux (power) 
received from the Sun per unit area. SR is often integrated over a given time period to express the 
radiant energy received into a specific surface or environment over time. The dissertation uses 
kWh/m2 to express the time integration of SR. 

The adding or decoupling of the direct and the diffuse components of solar irradiance commonly 
results in the following associated metrics: 

• Global Horizontal Irradiance is the measure of the radiant flux over all wavelengths per unit 
area received on a horizontal surface. 

• Direct Normal Irradiance or Beam Radiation measures the direct component of the radiant 
flux that falls in a surface that is perpendicular to the Sun. It excludes the diffuse component 
of SR (see below), thus considering only the radiation that comes from the circumsolar 
region, i.e., the sun and sun disk. 

• Diffuse Horizontal Irradiance or Diffuse Sky Radiation corresponds to the diffuse component 
of solar radiation received by a horizontal surface. SR diffuse component includes the 
radiation that is scattered by the atmosphere and reflected by the surroundings from all 
directions, excluding the circumsolar radiation. 

Solar Heat Gain Coefficient  

Solar Heat Gain Coefficient (SHGC) is the fraction of incident solar radiation that enters a building 
through the glazed part of its envelope. This ratio is affected by glazing type and shading, and it is 
expressed as a dimensionless number from 0 to 1. 

U-factor and R-value  

U-factor is the heat transfer coefficient that measures the heat flow rate of a building envelope 
assembly. In other words, U-factor measures the capacity of a construction assembly to transfer 
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thermal energy across its several material layers. The U-factor reciprocal is the R-value, which 
measures the assembly’s thermal resistance to heat flow driven by conduction. The inch-pound 
units (IP) for U-factor are degree British thermal unit per degree Fahrenheit square-foot hour 
(Btu/hr∙ft2∙˚F), and the SI units are watts per square meter kelvin (W/m2∙K). The R-value IP units 
are degrees Fahrenheit square foot hour per British thermal unit (˚F∙ft2∙hr/Btu), and the SI units 
are kelvin square meter per watt (K∙ m2/W). The dissertation uses SI units for both U-factor and 
R-value. 
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Appendix B: 
Hourly Results of the Selected Vertical Eye 
illuminance Threshold to Predict Glare Events 
In chapter 6, Figure 6-10 presents the matrix of the hourly performance of the selected  EV,Thr in 
Strategy D (EV,Thr = 2300 lux) to signal glare events for all locations and points-of-view (POV). 
However, because of the layout of the page, the image does not show the full granularity of the 
results. Appendix B breakdowns Figure 6-10 results presented by location and POV in the 
heatmaps presented in the following pages.  
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Figure Appendix B-1. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV1 (see chapter 6, Figure 
6-2) in Phoenix, AZ, USA. 
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Figure Appendix B-2. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV2 (see chapter 6, Figure 
6-2) in Phoenix, AZ, USA.  
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Figure Appendix B-3. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV3 (see chapter 6, Figure 
6-2) in Phoenix, AZ, USA. 
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Figure Appendix B-4. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV1 (see chapter 6, Figure 
6-2) in Oakland, CA, USA. 
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Figure Appendix B-5. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV2 (see chapter 6, Figure 
6-2) in Oakland, CA, USA. 
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Figure Appendix B-6. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV3 (see chapter 6, Figure 
6-2) in Oakland, CA, USA. 
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Figure Appendix B-7. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV1 (see chapter 6, Figure 
6-2) in London, UK. 
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Figure Appendix B-8. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV2 (see chapter 6, Figure 
6-2) in London, UK. 
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Figure Appendix B-9. Hourly results of using EV,Thr = 2300 lux to signal glare events in POV3 (see chapter 6, Figure 
6-2) in London, UK. 
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