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Abstract of the Thesis

Using Active Learning for Activity Recognition on

Smartwatches

by

Farhad Shahmohammadi

Master of Science in Computer Science

University of California, Los Angeles, 2016

Professor Majid Sarrafzadeh, Chair

Advancements in wearable technologies have equipped smartwatches with various sen-

sors. Motion and direction sensors, namely accelerometers, gyroscopes, and magne-

tometers, have broad applications in human activity recognition due to their ability

to detect movements of the hand, wrist, and arm. While many activity recognition

algorithms have been proposed in recent years, most studies emphasize the use of

inertial sensors in smartphone devices or other body-worn sensors. By comparison,

very few works have evaluated the application of smartwatches for activity monitoring

applications. In this study, we present a system to detect five daily activities using

smartwatches. Our system identifies activities with 91.9% accuracy based on over 540

minutes of data collected from twelve subjects. We also demonstrate that the oppor-

tunity to deploy active learning for activity recognition can be a significant advantage

of smartwatches over other devices. By collecting personal data from subjects online,

active learning improves the accuracy of classifier predictions, while lowering variance

between different users.
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CHAPTER 1

Introduction

Human activity monitoring has been widely utilized in recent medical and health care

research [3, 4, 16]. With ever increasing age of the current population, development

of remote health monitoring systems for the elderly seems vital [14]. According to

gerontologists, detecting changes in the everyday behavior of the elderly is a valu-

able criterion for early detection of health problems, and it is often more beneficial

than biometric information [33]. Monitoring the elderly’s daily activities can play a

tremendous role in detecting these changes. In addition, remote monitoring of pa-

tients’ activities is a valuable resource to keep track of their rehabilitation treatment

process [26].

Nowadays most of the cellphones and smartwatches are equipped with motion and

direction sensors, which can be used to identify the human activities. Most of the cur-

rent efforts on this practice is focused on cellphones and there has been less focus on

the smartwatches as the primary device [23]. The shortfall of attention paid to smart-

watches for activity recognition, in comparison to other devices, could be due to their

lack of popularity among the users, which has seen an increase in the past few years,

and their limited computation power and battery life and the lack of WiFi support

prior to the 5.1.1 Android Wear update. Before this update the smartwatches could

only be connected to the Internet via a smartphone. Thus, in the absence of another

device with WiFi capability, they could not even play the role of a gateway to offload

the computation to a web server. As a result, it was impractical to use smartwatches

as the sole device in large scale, for example at a rehabilitation center. In this study

we show that smartwatches can identify daily activities quite accurately and they are a
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great tool for activity recognition. As an activity recognition tool, smartwatches have

some advantages over other devices, including smartphones. They minimize the effort

of the subjects to keep track of the device and it is also easier for a nurse to keep track

of the smartwatches that are worn by patients. Another important advantage of using

smartwatches is that they allow us to benefit from active machine learning in order

to improve our activity recognition algorithms. Active learning requires querying the

user to annotate some unlabeled data points, and hence increasing the training data

by the most informative samples [34]. Smartwatches provide an easy way to interact

with the user and as a result they can satisfy this requirement perfectly.

In this study we investigate the feasibility of activity recognition using smart-

watches. Twelve subjects have participated in our study and we focused on five daily

activities: running, walking, standing, sitting, and lying down. Monitoring these ac-

tivities has been shown to be effective in keeping track of rehabilitation process of

patients, especially for chronic diseases. [6, 20]. Our data was recorded without the

author’s supervision. Considering the broadness of the terms we used, each of which

able to refer to a variety of human activities, we asked our subjects to provide us a

brief description of the performed action for each category. For the running activity,

our subjects either ran on a treadmill or jogged. For the standing activity the subjects

were standing on foot and some of them did take a few steps once in a while, but they

were mostly stationary. They also reported eating, drinking and speaking during this

period. For the sitting activity, our subjects reported typing, playing piano, speaking

and eating. Before the experiments we asked our subjects to be active during the

sitting period, since resting the hand completely (especially on an arm chair) would

result to the exact same hand performance as the lying down activity and, as a result,

these activities would have become indistinguishable. For the lying down activity, our

subjects laid on their back or stomach, but they were not necessarily still. A number of

the subjects reported using their cellphones in this position. For the walking activity,

our subjects reported walking with their usual speed on the ground or on a treadmill.

As part of this study we compare the performance of the supervised machine learn-
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ing techniques on different sensor sets. We introduce two software based sensors im-

plemented by the Android operating system, namely linear acceleration sensor and

rotation vector sensor, which are not popular in the literature related to activity recog-

nition. We show that using the aforementioned sensors results in an increase in the

accuracy of prediction compared to physical accelerometers. We also study two dif-

ferent methods for applying active learning to our prediction models and demonstrate

how these methods can generate personalized models for different subjects, which in-

creases the prediction accuracy, especially for the subjects that have a low prediction

accuracy.

The remainder of the thesis is organized as follows. Chapter 2 describes our data

collection process and properties of the recorded data. Chapter 3 describes the feature

extraction process. Performance of multiple supervised machine learning techniques

on data collected from different sensors is discussed in Chapter 4. Chapter 5 describes

how active learning can improve the prediction model obtained in Chapter 4 for subject

specific use. Chapter 6 describes the related work and Chapter 7 summarizes our work.
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CHAPTER 2

Data Collection

We developed an Android application to record the data for our task. In this appli-

cation each user selects his or her username, one of the five activities and a duration

of five or ten minutes to perform the activity. Afterwards, the smartwatch starts to

record from the sensors with 10 Hz frequency for the specified duration and uploads

the recorded data, username, label of the activity being performed and the time of

the experiment to a web server. All of our data is recorded using Samsung Gear Live

smartwatches.

Twelve subjects participated in our study, including 8 males and 4 females. Their

age ranged between 22 to 28 years. Among them, three were left handed and wore

the watch on their right hand and the rest wore it on their left hand. Each user was

asked to perform walking, standing, sitting and lying down for 10 minutes and to

perform running for 5 minutes. We chose a shorter duration for running, since it is

inherently easier to distinguish this activity from the other ones, and running for 10

minutes could be physically daunting for our subjects, which in turn would introduce

unwanted noise in our data. Since we asked our subjects to perform the activities

for a fixed amount of time, our dataset is not skewed towards any subject or activity,

and hence we avoid over-fitting our classifier. All subjects performed the experiments

without the author’s supervision. By asking our subjects to perform the activities for

long time intervals, we aimed to remove the unconscious impacts of performing a test

on the subjects’ behavior, in order for the data to be more realistic. We also removed

the first 10 seconds of each interval of 5 minutes, to remove the impacts of starting

the experiment from the data.
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Figure 2.1: Smartwatch Relative Coordinate System

Our Android application recorded the data from accelerometer, linear acceleration

and rotation vector sensors. Linear acceleration sensor and rotation vector sensor are

software-based motion sensors defined in the Android Open Source Project (AOSP)

[1]. In the following sections we briefly discuss these sensors.

2.1 Linear Acceleration Sensor

A tri-axial accelerometer is a device which measures the acceleration applied to it in

each of the X-axis, Y-axis and Z-axis. Smartwatches are usually equipped with a tri-

axial accelerometer which measures the acceleration relative to the device’s coordinate

system, which can be seen in Figure 2.1. The acceleration applied to the device includes

the force of gravity which is useful for determining the orientation of the device, but

makes it difficult to find the acceleration created by user’s activity. Android’s linear

acceleration sensor excludes the force of gravity from the accelerometer’s measurement

and reports the acceleration applied to each axis by the user wearing the watch.
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2.2 Rotation Vector Sensor

Android’s rotation vector sensor is a fused sensor that measures the orientation of the

device relative to the East-North-Up coordinates system. It mainly uses integration

over the gyroscope to obtain the rotation of the device. In addition, this sensor uses

accelerometer and magnetometer sensors to obtain more accurate results. The rotation

vector sensor returns device’s orientation as a unit quaternion. Quaternions system

is a four dimensional extension of the complex numbers system which is shown to be

useful for handling spacial rotations [10]. The rotation axis and the rotation angle

can be calculated from a unit quaternion. A rotation around the obtained axis by the

calculated angle will transform the East-North-Up coordination system to the device’s

relative coordination system. A unit quaternion is of form (cos(θ/2), x ∗ sin(θ/2), y ∗

sin(θ/2), z∗sin(θ/2)) where θ is the angle of rotation and (x, y, z) is the axis of rotation

in three dimensions.
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CHAPTER 3

Feature Extraction

A common way to extract features from time series data to train supervised machine

learning classification algorithms is to divide the time series into fixed length windows

[11, 35]. In this study we use windows of length 10 seconds. This window length is

shown to be reasonable for activity recognition [15, 36]. Since we collected the data

with 10Hz frequency, each window will contain approximately 100 sensor readings. For

each window we generate some summary features based on these readings.

An important measure to determine the activity being performed is the magnitude

of the acceleration vector which can be calculated from the accelerometer readings. For

each window we generate a new time series containing the magnitudes. Afterwards,

we generate summary features for acceleration, based on the three time series that

were generated by the accelerometer and the magnitude time series.

In order to use the data collected from the rotation vector sensor, we need to

transform quaternions to some expressive information. To achieve this goal, we rotate

the (0, 0, 1) vector (the unit vector towards sky) by each quaternion in a window to

obtain the (x, y, z) coordinates of the unit normal vector of the watch surface. We

generated our summary features based on these coordinates. Although unit normal

vector of the watch surface does not uniquely specify the orientation of the watch, it

has sufficient information for our task. We figured out that including the coordinates

of other axes of the relative coordinate system of the watch will make our features

noisier, and hence, reduces the quality of classification.

Table 3.1 shows the list of the extracted features. Among our features Dynamic

Time Warping distance needs more explanation. Dynamic Time Warping (DTW)
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Features Sensors

Mean Acceleration & Orientation

Standard Deviation Acceleration & Orientation

Skewness Acceleration & Orientation

Kurtosis Acceleration & Orientation

Dynamic Time Warping Distance Acceleration & Orientation

Energy Acceleration

Inter Quartile Range Acceleration

Average of absolute differences between successive points Acceleration

Standard deviation of absolute differences between successive points Acceleration

Table 3.1: List of Extracted Features

a well-known algorithm for comparing two time dependent sequences. It finds the

optimal alignment between nonlinear warpings of the sequences [24]. We use DTW

distance as a feature to recognize repetitive human activities like walking. In order to

do so, we divide a 10 seconds interval into two 5 seconds intervals and then compute

the DTW distance between these intervals. For repetitive activities like walking this

distance is smaller, compared to non-repetitive activities like standing. For acceleration

data, we computed this distance using normalized signals to ensure that it is only

related to pattern of the signal, and not its magnitude.
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CHAPTER 4

Results of Supervised Machine Learning

Techniques

We described our data collection and feature extraction phases in the previous chapters.

In this chapter we compare the performance of different supervised machine learning

classification techniques on different sets of sensors, to obtain a predictive model for

subjects’ activities. In the next chapter we will describe how using active learning

can enhance this model. We used Python’s Scikit-Learn package [27] as our machine

learning tool.

We explored the performance of 5 different classification techniques: Random For-

est, Extra Trees, Naive Bayes, Logistic Regression and Support Vector Machines, on

4 different sets of sensors: accelerometer, linear acceleration, rotation vector, and

combination of rotation vector with either linear acceleration or rotation vector sen-

sor. Accelerometer sensor has been vastly utilized in the literature related to activity

recognition. To evaluate the performance of our models we use leave-one-subject-

out (LOSO) cross-validation. That is, for each subject, we train the classifier on the

data collected from the other subjects and then we test the classifier on the subject’s

data. At the end, we report the average performance of classification among all of the

subjects. By using this method we ensure that the training and test data are subject-

independent. In [5] it is shown that having access to subject specific data can increase

the classification accuracy of some activities. Thus, in order to obtain generalizable

results we need to preserve subject-independence among training and test data. Sup-

porting this claim, in a recent study [32], it is shown that using 10-fold cross-validation

instead of LOSO cross-validation for activity recognition can result in obtaining de-
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Figure 4.1: Accuracy of Different Classifiers on Different Sets of Sensors

ceptively high accuracies. Figure 4.1 depicts the accuracy of the classifiers on each set

of sensors. As it can be seen, using linear acceleration sensor produces slightly better

results compared to using accelerometer sensor. Using rotation vector sensor on its

own does not produce great results, but in in combination with linear acceleration,

these sensors provided the highest accuracy. Combining the data from the rotation

vector sensor with accelerometer data did not provide much enhancement. This can

be due to the fact that the orientation of device has already impacted the readings

of the accelerometer sensor. From Figure 4.1 we can also see that decision tree based

classifiers outperform other classifiers, regardless of the sensors being used. Among

them, Extra Trees classifier provided slightly better results. Extra Trees classifier is

presented in [12]. For this classifier we used 1000 estimators and we split a leaf only if

it contains at least 5 samples.

Another important point about selecting the sensors for activity recognition is how

well each set of sensors can distinguish different activities. Figure 4.2 depicts the

performance of the Extra Trees classifier on different sets of sensors to predict each

activity. To measure the quality of classification, we reported the F1-score for each

label. This figure shows that using the linear acceleration sensor can accurately identify
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Figure 4.2: F1-Score of Activities Obtained by Extra Trees Classifier on Different Sensor Sets

walking and running activities, but this sensor works poorly for detecting standing and

sitting activities. This may be due to the fact that by having access to only linear

acceleration sensor, the algorithm has no sense of the orientation of the coordinate

system of the device. Using the combination of linear acceleration and rotation vector

sensors, our classifiers identify all activities with better or equal scores, compared to

any other combination of sensor. This combination especially works better for the

standing activity.

Table 4.1 shows the F1-scores obtained by different classifiers for all activities,

trained on the data collected from the combination of linear acceleration and rota-

tion vector sensors. Extra Trees classifier has the best score for all activities, except

for walking, for which SVM classifier’s score is slightly better. Table 4.2 shows the

confusion matrix for Extra Trees classifier. The overall accuracy is 91.9%.
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F-Score

Random Forest Extra Trees Naive Bayes Logistic Regression SVM

Walking 0.9785 0.9829 0.9693 0.9768 0.9842

Standing 0.9104 0.9172 0.7205 0.8753 0.8753

Lying Down 0.8526 0.8571 0.7201 0.7707 0.7871

Sitting 0.8647 0.8727 0.7942 0.7985 0.8066

Running 0.9928 0.9928 0.9787 0.9566 0.9913

Table 4.1: F1-Score Results of Different Classifiers

Predicted

Walking Standing Lying Down Sitting Running

Actual

Walking 690 4 0 1 1

Standing 6 648 27 15 0

Lying Down 2 40 591 63 0

Sitting 7 25 65 600 0

Running 4 0 0 0 344

Table 4.2: Confusion Matrix for Extra Trees Classifier

In the remainder of the thesis we use the Extra Trees classifier trained on the

combination of linear acceleration and rotation vector sensors data as a baseline for

the performance of the supervised methods. Table 4.3 shows the F1-scores obtained

by this classifier for each subject. Although in general our classifier did pretty well

in classifying the activities, it has high variance among subjects, like up to 0.11 for

the sitting activity. In chapter 5 we will enhance this method by adopting it to

subjects’ personal activities using active learning. We will show that the interactive

algorithm can reduce the mentioned variance among the users, while increasing the

overall accuracy.
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Subject ID Accuracy
F1-score

Walking Standing Lying Down Sitting Running

1 0.985 1.000 0.973 0.983 0.975 1.000

2 0.893 1.000 0.926 0.836 0.755 1.000

3 0.946 0.983 0.957 0.893 0.924 1.000

4 0.935 0.991 0.924 0.865 0.923 1.000

5 0.843 0.991 0.905 0.649 0.739 0.983

6 0.954 0.983 0.991 0.924 0.901 0.982

7 0.950 0.967 0.957 0.919 0.949 0.964

8 0.943 0.973 0.918 0.897 0.951 1.000

9 0.839 1.000 0.818 0.725 0.642 1.000

10 0.897 0.949 0.921 0.800 0.860 0.982

11 0.858 0.959 0.708 0.812 0.862 1.000

12 0.981 1.000 0.991 0.966 0.956 1.000

Mean 0.919 0.983 0.916 0.856 0.870 0.993

Std 0.051 0.018 0.080 0.098 0.105 0.012

Table 4.3: Results Obtained by Extra Trees Classifier for Each Subject
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CHAPTER 5

Enhancing the Classifier Using Active Learning

Active learning is a subfield of machine learning in which the learning algorithm has

the ability to query an oracle to annotate some unlabeled data points. It is specially

useful when the data is abundant but labeling the data is costly [29]. Active learning

can be applied in two settings: stream based setting [9] in which the algorithm receives

unlabeled data points one at a time and has to decide whether or not to issue a query,

and pool based setting [22], in which the algorithm has access to a small set of labeled

data and a large set of unlabeled data and it can select an unlabeled data point to be

annotated by the oracle at each step. Our task of activity recognition fits within the

stream based setting perfectly. The sensor data is being collected by the smartwatch

all the time, but in order to label the data we should either ask the subjects to follow

specific protocols or monitor their activities by some external resources. On the other

hand, querying the user for annotating his current activity can be done easily using a

smartwatch.

The main step in an active learning algorithm is to decide when to query the user,

i.e. the querying strategy [29]. In this chapter we will study the performance of two

popular querying strategies: Uncertainty Sampling [17] and Query by Committee [30].

In the first strategy the classifier requests the label of data points for which it has the

least certainty. In the second strategy, the algorithm uses multiple models to predict

the results and issues a query based on the degree of disagreement between the models.

14



5.1 Uncertainty Sampling Strategy

Since our task contains more than two labels, we used a variant of uncertainty sampling

strategy defined for multi-label tasks, called margin sampling [28]. In this strategy, the

algorithm issues queries for predictions which don’t provide reasonable margin between

the two most probable labels. For each prediction of the Extra Trees classifier, we

define the probability of a label as the number of estimators which predicted the label,

divided by total number of estimators in our classifier. We also define the certainty of

the prediction as follows:

p(y|x) =
# estimators predicted y for input x

# estimators

certainty(x) = p(y1|x)− p(y2|x)

where y1 and y2 are the first and second most probable labels for x.

Figure 5.1 shows the cumulative distribution of certainty among correctly and

incorrectly classified instances of each activity, that is, for each level of certainty, the

chart shows the percentage of correctly and incorrectly classified instances with less

or equal certainty. As it can be seen, in general the classifier had less certainty for

misclassified instances and hence, by using this strategy our algorithm can gain in-

formation about the points on the decision boundary. Another important point that

can be inferred from Figure 5.1 is that for some activities, the amount of certainty

is usually less than the others, regardless of whether or not the instance is correctly

classified. For example a data point which is predicted with label walking with cer-

tainty 0.6 is a good candidate to be annotated by the user, since less than 10% of the

data points correctly classified as walking are obtained with certainty less than 0.6.

On the other hand around 40% of the data points which are correctly classified as

lying down are reported with certainty less than 0.6. Thus, comparing the certainties

without considering the predicted label is not a good measure for issuing the queries

because it would excessively skew the query issuance toward some activities. To avoid

this problem, for each activity we define a separate threshold. We set these thresholds

15



Figure 5.1: Prediction Certainty for Different Activities

in such a way that they cover a fixed percentage of misclassified data instances of the

activity. For example to cover 80% of misclassified instances, we get certainty thresh-

old of 0.61 for walking and 0.42 for standing. If our algorithm predicts an activity for

a data point with certainty less than the activity’s threshold, the algorithm will ask

the subject for the real activity being performed.

To evaluate the performance of our active learner, we use the same data set that

we gathered in chapter 2. We divide each subject’s data in two parts, each containing

2.5 minutes of running and 5 minutes of other activities. Let these sets be A and

B. In the cross-validation described in chapter 3, we add a querying phase for each
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Figure 5.2: Active Learner’s Work Flow

subject. In this phase we treat set A as a time period in which the algorithm can issue

queries and we simulate the answers of the subject with our knowledge about the real

labels that we have for set A. After this phase, we add the data obtained by queries

to the training data that algorithm already had and re-train our classifier. We add the

queried samples with weight 5, same as the minimum number of samples required to

split a leaf, to insure that in case of a test point falling within a tree leaf containing

these points, our algorithm credits user annotated data more than combination of the

default training samples in the leaf. After training the new classifier, we will test it

on set B to obtain predictions for data points in this set. Afterwards we repeat our

algorithm by considering set B as our querying time period and set A as our test set

to obtain predictions for all points in our dataset. Figure 5.2 shows the process in

one iteration of our LOSO cross-validation. Notice that in this process, annotating

the activity of a time window doesn’t affect the classification of itself or time windows

close to it, because they will all reside in the same subset.

Figure 5.3 shows the results of our active learner algorithm for different subjects

and activities. The first point that can be inferred from this figure is that only the

three worst predicted subjects had considerable increase in the accuracy. For other

subjects, our classifier could achieve at least 89% accuracy without issuing any query

and issuing queries did not have negative effect on them. Hence, we can safely use the

active learner to reduce the variance among users and detect the outlier subjects. The

maximum reduction in the accuracies was 0.04%, while we achieved and increase as

big as 7.3%. With threshold set to 100%, our algorithm issued 1446 queries in total,

which is equal to 46% of all data instances. Another point worth mentioning is that the
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Figure 5.3: Simulation of Active Learning with Uncertainty Sampling Using Different Thresholds

number of queries issued for each subjects is correlated with the amount of increase

in the accuracy that our active learner could achieve for them. For example, with

threshold set to 60%, our algorithm issued only 21 queries for subject 1, which had

the most accurate predictions, while it issued 91 queries for subject 9, which had the

least accurate predictions. We also see that our algorithm improved the predictions

for standing, sitting and lying down activities, but it did not have noticeable impact

on walking and running activities. Table 4.1 shows that walking and running were

predicted correctly more than 98% of the times and hence, active learner did not have

much room for improvement.

Table 5.1 shows the accuracy of the classifier and F1-scores for different activities

for all subjects with threshold set to 90%. At this threshold, the accuracy gets close

to its highest value for most of the subjects while the number of issued queries, 1059,

is equal to 34% of all data instances. In this table, the amount of increase for all rows,

including the last two, refers to the amount of increase in the values compared to Table

4.3. Using this querying strategy, we could achieve around 3% increase in F1-scores for

18



Subject ID

New Value Amount of Increase

Accuracy
F1-Score

Accuracy
F1-Score

Walking Standing Lying Down Sitting Running Walking Standing Lying Down Sitting Running

1 0.989 1.000 0.973 0.991 0.983 1.000 0.004 0.000 0.000 0.009 0.008 0.000

2 0.900 1.000 0.927 0.846 0.778 1.000 0.008 0.000 0.001 0.010 0.023 0.000

3 0.954 0.991 0.966 0.911 0.924 1.000 0.008 0.008 0.009 0.018 0.000 0.000

4 0.946 1.000 0.933 0.889 0.933 1.000 0.011 0.009 0.009 0.024 0.010 0.000

5 0.862 0.974 0.896 0.719 0.789 0.983 0.019 -0.017 -0.009 0.071 0.050 0.000

6 0.962 0.983 0.991 0.940 0.920 0.982 0.008 0.000 0.000 0.016 0.019 0.000

7 0.954 0.967 0.957 0.929 0.957 0.964 0.004 0.000 0.000 0.010 0.008 0.000

8 0.950 0.982 0.933 0.907 0.951 1.000 0.008 0.009 0.015 0.010 0.000 0.000

9 0.900 1.000 0.911 0.821 0.814 1.000 0.077 0.000 0.093 0.096 0.172 0.000

10 0.904 0.949 0.935 0.824 0.860 0.982 0.008 0.000 0.015 0.024 0.000 0.000

11 0.908 0.967 0.808 0.896 0.904 1.000 0.050 0.008 0.099 0.084 0.042 0.000

12 0.985 1.000 1.000 0.966 0.965 1.000 0.004 0.000 0.009 0.000 0.009 0.000

Mean 0.935 0.984 0.936 0.887 0.898 0.993 0.016 0.001 0.020 0.031 0.029 0.000

Std 0.039 0.017 0.051 0.074 0.071 0.012 -0.013 0.000 -0.029 -0.024 -0.034 0.000

Table 5.1: Results Obtained by Active Learner with Threshold Set to 90%

sitting and lying down and 2% increase for standing. In addition, standard deviation

for sitting, standing and lying down are reduced by 0.034, 0.029, and 0.024 which

makes the standard deviations relatively 36%, 24%, and 32% smaller. In addition,

this table shows that we can achieve up to 17.2% increase in F1-scores for sitting,

9.9% increase for standing and 9.6% increase for lying down, without reduction in

almost any of the scores.

5.2 Query by Committee Strategy

Query by Committee strategy issues queries based on the level of disagreement among

different models for predicting the results. To implement this strategy for our task, we

used three different models: Extra Trees Classifier, SVM with linear kernel and Naive

Bayes classifier. We issue a query when any pair of these classifiers predict different

labels for a data point. After issuing the queries, we re-train the Extra Trees classifier

and use this model for returning the final decision of the algorithm. To measure the

performance of this strategy, we used LOSO cross-validation with the same procedure

as Section 5.1, depicted in Figure 5.2. Our algorithm issued 566 queries, running on
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Figure 5.4: Comparison of the Performance of Different Querying Strategies

our data set. This number of queries is equal to the number queries issued by the

uncertainty sampling strategy with threshold set to 64%. Figure 5.4 shows the F1-

scores and standard deviations of both strategies. In order to assess the performance

of both strategies, we also simulated an active learner which issues queries uniformly

with probability 0.181 to obtain a similar number of queries. It can be seen that both

strategies outperform randomly issuing queries. Also using a same number of queries,

uncertainty sampling strategy slightly performs better than the query by committee

strategy.
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Uncertainty sampling is also more flexible for our task, since we can modify the

query issuance rate by modifying the algorithms threshold. As it can be seen in Figure

5.4, using 90% threshold for uncertainty sampling strategy completely outperforms

other strategies, even issuing queries for all instances.
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CHAPTER 6

Related Work

Human activity recognition using accelerometer data has been vastly studied on dif-

ferent kinds of activities and different placement configurations on human body. A lot

of these studies use multiple accelerometers on different body locations [8]. Although

using multiple accelerometers enables the system to achieve more information about

the movements of the subjects and hence, recognize more kinds of activities, it makes

the system harder to use, especially for remote health monitoring. In this chapter

we first review the works involving supervised machine learning algorithms for activ-

ity recognition, based on a single accelerometer placed on the wrist. Afterwards we

discuss the efforts been done on using active learning for human activity recognition.

Chernbumroong et al. [7] investigated the use of an accelerometer embedded in

a wrist worn sports watch for activity classification. They analyzed the same set

of activities we selected for our study. Their data is collected from 7 participants

and the total length of data is 35 minutes which is on average 1 minute of data per

activity per subject. Authors compared the performance of Decision Tree C4.5 and

Artificial Neural Network algorithms using four different feature sets and similar to

us, they concluded that the decision tree algorithm performs better using any feature

set, with 94.13% accuracy in the best case. The accuracies are obtained by 5-fold

cross-validation.

Yang [36] has studied activity recognition using an accelerometer placed on the

wrist which is quite similar to using a smartwatch. He collected data for 6 activities:

sitting, standing, walking, running, driving, and bicycling. He reported 90.6% accu-

racy for classifying the activities using C4.5 Decision Tree classifier. This accuracy is
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obtained by training the classifier on data collected from 3 subjects and testing on the

data collected from the fourth subject, which calls the generalizability of the results

into question, since, as it can be seen in Table 4.3, the accuracy of our method ranges

between 83.9% and 98.5% among different subjects.

Cleland et al. [8] studied optimal placement of accelerometers for detecting every-

day activities. They reported that using a single accelerometer on the hip achieves

highest accuracy, 97.81%. They analyzed 7 activities: lying down, running, sitting,

ascending the stairs, descending the stairs, standing, and walking. For a single ac-

celerometer placed on the wrist they reported 95.88% accuracy, using SVM classifier.

The study has been performed on 8 subjects and the results are reported based on

10-fold cross-validation.

Olguın & Pentland [25] studied 7 configurations of accelerometer placement on

human body to detect 8 activities: sitting, running, squatting, standing, crawling,

lying down and moving hand while standing. They used hidden Markov models as the

classification method. For a single accelerometer placed on the wrist, they reported

55.45% accuracy and they could achieve 92.13% accuracy by using 3 accelerometer

placed on the wrist, hip, and chest. The study has been done on 3 subjects. The

results are obtained using 9-fold cross-validation.

Maurer et al. [21] have explored activity monitoring using a multi sensor platform

worn on different body positions. They analyzed the data generated by a biaxial

accelerometer and a light sensor. The study analyzes 6 activities: running, sitting,

standing, walking, ascending the stairs, and descending the stairs. Authors reported

87.1% accuracy for the wrist placement of their device. They also reported that the

best placement is on subject’s shirt, resulting in 89.5% accuracy. Six subjects have

participated in the study and the results are obtained by 5-fold cross validation using

decision tree algorithm.

Mannini et al. [19] performed a comprehensive study on 26 daily activities, over the

data gathered from 33 subjects. They clustered the activities in 4 categories: ambula-
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tion, cycling, sedentary, and other activities. The study investigates the performance

of different machine learning models to detect activities in each cluster based on LOSO

cross-validation. Using SVM classifier they could identify the activity categories with

84.7% accuracy, using data from a wrist worn accelerometer. Authors also reported

that using an accelerometer on the ankle, they could achieve 95.0% accuracy. They

also explored the performance of their classifier for different feature extraction time

windows of 2, 4 and 12.8 seconds. They reported that the best result was obtained

using 12.8 seconds time interval which is close to our interval length of 10 seconds .

This study also confirms that 10-fold cross-validation for activity recognition produces

less generalizable results compared to LOSO cross-validation.

Guiry et al. [13] investigated the performance of both smartwatches and smart-

phones for activity recognition. Their study involves 10 subjects performing 9 activ-

ities: walking, running, cycling, standing, sitting, elevator ascend, elevator descend,

stair ascend, and stair descend. Authors analyzed the performance of different super-

vised machine learning methods on two datasets: a balanced dataset in which each

activity has same number of instances (similar to our dataset) and an unbalanced

dataset which resembles the activities done by humans in a real world scenario. In

the latter case, the the overall true positive rates will be skewed towards the ac-

tivities with greater share in the dataset. By only using the smartwatch, authors

could achieve 56.89% accuracy on the balanced dataset and 89.26% on the unbalanced

dataset, though it is not mentioned how these accuracies are computed. The smart-

watch used in this study only provided accelerometer sensor and other motion sensors

like gyroscope and magnetometer were not available. Using cellphone accelerome-

ter the authors achieved 75.00% and 95.50% accuracy for balanced and unbalanced

datasets respectively. For the unbalanced dataset, authors could increase the accuracy

slightly by fusing additional cellphone sensors including magnetometer, gyroscope and

pressure sensor, obtaining 94.60% accuracy. They reported that decision tree classifier

had the best performance for smartwatch based classification, while SVM performed

better in the smartphone based task.
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Reference Activities # Participants
Accuracy Calculation

Method
Classification Method Accuracy

This study
Walking, Standing, Sitting, Lying Down,

Running
12 LOSO cross-validation Decision Tree 91.9%

Chernbumroong [7]
Walking, Standing, Sitting, Lying Down,

Running
7 5-fold cross-validation Decision Tree 94.13%

Yang [36]
sitting, standing, walking, running,

driving, bicycling
3

train on 3 subjects, test

on 1 subject
Decision Tree 90.6%

Cleland [8]
lying down, running, sitting, acceding

stairs, descending stairs, standing, walking
8 10-fold cross-validation SVM 95.88%

Olguın [25]

sitting, running, squatting, standing,

crawling, lying down, moving hands while

standing

3 9-fold cross-validation HMM 55.45%

Maurer [21]
running, sitting, standing, walking,

ascending and descending the stairs
6 5-fold cross-validation Decision Tree 87.1%

Mannini [19]
ambulation, sedentary, cycling, other

activities
33 LOSO cross-validation SVM 84.7%

Guiry [13]

walking, running, cycling, standing,

sitting, elevator ascend, elevator descend,

stair ascend, stair descend

10 NA Decision Tree

56.89%

(balanced)

89.26%

(unbalanced)

Table 6.1: Review of Studies on Activity Recognition Using Supervised Machine Learning Techniques

Based on a Wrist Worn Accelerometer

Table 6.1 summarizes the reviewed literature on supervised machine learning activ-

ity recognition using a wrist worn accelerometer. In regard to studies related to active

learning for activity recognition, Longstaff et al. [18] studied multiple semi-supervised

algorithms for activity recognition. Settings of their study was defined to identify three

activities: walking, running, and staying in one place, using accelerometer data and

GPS speed recorded by a smartphone. Authors analyzed active learning, self-learning,

En-Co-Training and democratic co-learning for this task and concluded that active

learning achieves the best results. They also reported that active learning performs

well when the classifiers accuracy is low, but it does not hurt the accuracy in any case.

This claim is also supported by our study.

Stikic et al. [31] focused on using active learning to reduce the number of data

instances required for training a classification model by selecting the most informative

data points to be labeled. Their study was based on data recorded from a smart home

environment which had been equipped with multiple infrared sensors in different places
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to keep track of subjects’ location. Also each subject wore 3 tri-axial accelerometers

on the wrist, hip, and thigh. Authors showed that active learning can achieve similar

or sometimes better performance compared to supervised methods, with significantly

less training data.

Abdallah et al. [2] used active learning to obtain subject adopted classification

models to detect activities of different users. The dataset used in this study is also

based on a multi-sensor enviroment. Authors proposed a cluster based active learning

method that issues queries on data points far from cluster centers. They concluded

that their proposed method using active learning shows improved performance over

different supervised methods.
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CHAPTER 7

Conclusion

In this thesis, we have presented a smartwatch-based system to detect five daily activ-

ities: walking, sitting, standing, lying down, and running. Twelve subjects were asked

to perform these activities, yielding a total of 540 minutes of data. An analysis of dif-

ferent sets of smartwatch sensors demonstrated that using Android’s software-based

sensors data, namely linear acceleration sensor and rotation vector sensor, outper-

formed physical accelerometer data, which is widely used in previous studies. We also

investigated the performance of different machine learning algorithms, among which

the Extra Trees classifier achieved the highest accuracy of 91.9%. Furthermore, we ex-

plored the performance of active learning for obtaining user specific models using two

different strategies: uncertainty sampling and query by committee. Our study showed

that active learning can increase accuracy for subjects with less than 89% accuracy,

without reducing accuracy for other subjects. Among the aforementioned strategies,

uncertainty sampling generated better models which improved classifier performance

in both accuracy and standard deviation. Uncertainty sampling with a 34% query rate

yielded an improvement in the F1-scores of ”sitting” and ”lying down”, and ”stand-

ing” by 0.3, 0.3, and 0.2 respectively, while also reducing the standard deviations of

the F1-scores of the aforementioned activities by 36%, 32% and 24% of their previous

values.
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