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ABSTRACT OF THE THESIS

Optimal Shortest-Distance Motion Planning through a Field of Circular Obstacles: A
Classifier-Enhanced Approach

By

Robert Palfini

Master of Science in Mechanical Engineering

University of California, Irvine, 2023

Associate Professor Solmaz Kia, Chair

Global shortest distance motion planning through a field of obstacles using gradient based

optimization techniques is a nonlinear and non-convex problem which is very challenging

to optimize. Exact motion planning techniques such as visibility graphs scale poorly with

the number of obstacles, and sample based methods find optimal paths asymptotically with

samples, making them not ideal for online planning applications. Inspired by the the fact

that visibility graphs can find shortest path solutions in fields of circular obstacles, and that

these solutions can be characterized by the direction of the path around the obstacles, we

look to train an Artificial Neural Network to predict the initialization needed for locally

converging to the global minimum in our shortest-distance optimization. We found this

method works well for obstacle courses with low numbers of obstacles, achieving 90% test

accuracy for unseen obstacle courses, but has issues scaling due to an exponential increase in

the amount of data needed for generalization across the entire feature space. This technique

is meant for online planning applications that require many path queries, in a configurable

environment, as it leverages the O(1) time complexity of a classifier, combined with the

interior point algorithm for finding optimal paths rapidly.
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Chapter 1

Introduction

1.1 Challenges of Non-Convex Optimization

A common issue when solving nonlinear optimization problems, is when our problem formu-

lation is non-convex. There are many challenges associated with non-convex optimization

such as potentially many local minima, saddle points, very flat regions, or a combination of

all three. When utilizing gradient descent, all of these challenges make it extremely difficult

to find the global minimum. When optimizing these problems using gradient descent, the

quality of our solution is dependent on the initialization used for the problem. As seen in

Figure 1.1 the initialization chosen resulted in our minimization only finding a local min-

imum instead of the global minimum. In fact, finding the global minima is known to be

NP-Hard for non-convex optimization problems [3].

When approaching non-convex optimization problems, we can still use methods from con-

vex optimization such as gradient descent to quickly find local minimum. These methods

are great for finding local minimum quickly in convex settings. As we can see in Figure

1.1, our non-convex objective can be divided into convex intervals. These convex intervals
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Figure 1.1: Example of nonlinear, non-convex, objective function taken from [1].

explain why gradient descent can find local minima even on a non-convex function. We can

reinitialize our solver with different initializations and choose the best minimum from these

solutions, but this provides no guarantees that the point found is a global minimum as we

don’t have a connection between initialization and locally convex region until we solve the

optimization problem. Additionally we do not know how many convex regions our objective

has.

There are other methods that can escape shallow minimum such as stochastic gradient

descent, mini-batching, momentum, and variance reduction [4]. While these methods have

been met with success in applications such as optimizing the weights of a neural network, they

do not provide a robust method for finding the global minimum for non-convex optimization.

However, for some non-convex optimization problems, such as spatial path planning, there

exists other methods outside of pure optimization, which can find the global minimization

of the equivalent non-convex optimization problem. Typically, however, these methods are

computationally expensive to perform. This leads to the motivation for this Thesis. What

if we could leverage these other methods to aid our gradient-based optimizer in finding

the global minimum of our optimization problem? More specifically, what if we could use

these other methods to generate data offline, to train a neural network that can predict

initializations for our optimization problem online, that will lead us to the global minimum.

2



This type of method would combine the best-of-both-worlds as it leverages the ability of

other methods to find global minima with the speed of gradient-based optimization. To

explore this question, we examine the shortest distance path planning problem through a

field of circular obstacles as shown in Figure 1.2.

Figure 1.2: Example Path Planning Environment.

1.2 Shortest Distance Path Planning Methods

In shortest distance path planning, our goal is to find a trajectory vector for the shortest

distance path that goes from our start to goal coordinate, without intersecting any of the

obstacles. This problem is seen in many navigation applications such as path planning

for automated robots in warehouses, hospitals, agriculture, and more. This problem is

well-known and there are many methods that are used to solve it outside of formulating

it as an optimization problem. These methods can be classified as exact, or sampling-

based [5]. Exact methods involve calculating the path in the continuous configuration space.

One method for doing this is to use visibility graphs [6]. Visibility graphs are created by

3



making a graph of all the points of visibility between obstacles in the environment. When

building a graph with this method, it is shown that the shortest path through the field

of obstacles is contained in this graph [6]. The drawback to this method is that the time

complexity of computing the visibility graph scales with the number of obstacles, making

it undesirable in online applications. Another issue is that visibility graphs work in the

continuous configuration space [7] of an obstacle environment. This is undesirable as the time

complexity for computing the continuous, configuration space of an obstacle environment is

exponential in the dimension of the robot’s configuration space [8].

The other class of methods for path planning, which are generally considered state-of-the-

art [9], are sample-based methods. In these methods, we create samples of our environment

and search the sampled states for our path. These methods are popular as they circumvent

the need to calculate the continuous, configuration space, and rather sample individual

points from the configuration space [5], reducing our computational costs. Rapidly Exploring

Random Trees (RRT), is a sample-based method that builds a graph of our path planning

environment by randomly sampling points from the environment and connecting them to

the nearest node in the graph [10]. One disadvantage of RRT is that it does not have any

guarantee for finding the shortest distance path. To find the shortest distance path, many

variants have been created based on this method such as RRT* [11], informed-RRT* [12], or

Batch Informed Trees (BIT*) [13]. In these variants, they allow modification of the graph

created as new points are sampled, which allows it to find optimal paths asymptotically

[11–13]. The issue with these methods for our application is that they still can take a long

time to find the optimal path, which is undesirable in online applications.
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1.3 Solution Introduction

In this Thesis, we develop a data-based path planning method, which utilizes a classifier

trained on offline data generated from visibility graphs, to predict initializations for a short-

est distance, optimization problem that will lead us to finding the global minimum of our

objective. We use visibility graphs instead of a sampling-based method as this method finds

exact solutions for our global shortest path and is proven to find the global minimum. This

technique is ideal for online, shortest distance, path planning applications where we wish to

perform multiple queries for many robots that are navigating a highly configurable obstacle

environment. The reason this method is ideal for online applications, is that it utilizes a

combination of a neural network which has time complexity of O(1) with a gradient-based

optimization which can find local minimum quickly. Additionally, since the neural network

is trained from data created by visibility graphs, it can leverage that data to improve the

chances that the solution found via our optimization problem will be a global minimum. The

reason this method is ideal for multiple-query problems is due to the time it takes to gener-

ate offline data with visibility graphs. If we invest the time to create an offline dataset, we

want it to be for an environment that will receive many queries so we can see the benefit of

our method versus exact and sampling-based methods. Lastly, the reason why this method

is meant for highly configurable obstacle environments, is that visibility graphs provide a

better solution for static environments as it only needs to calculate the obstacle visibility

graph once.

In the following chapters, Chapter 2 covers the preliminaries from the literature that are

used to establish our result. In Chapter 3, we cover the methodology of our path finding

solution. In Chapter 4, we go over the results found from training our neural network.

Finally, Chapter 5 gives our conclusions and avenues for future research.
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Chapter 2

Preliminaries

In this chapter we examine the concepts and material from the literature that is used to

develop our method. We leverage concepts from computational geometry, optimization, and

machine learning.

2.1 Notations

For describing path planning problems, we use the following notation. xck and yck are the

coordinates to the center of obstacle k of n obstacles, with Rk corresponding to obstacle k’s

radius. Points along the discrete trajectory of the path are given by (xi, yi) where this is

the ith point our of L along the trajectory vector (x,y) with x,y ∈ RL. (xstart, ystart) refers

to our start location and (xgoal, ygoal) refers to our goal location. These values are shown in

Figure 2.1 and are used later in (3.1). When referring to optimal path, we are referring to

the shortest-distance path.

For optimization problems, an initialization refers to the initial values of our variables of

optimization. We require these values to be able to perform optimization such as gradi-

6



x

y

Rk(xck, yck)

•
•

•
•

Discretized path

•
•

(xgoal, ygoal)

(xstart, ystart)

Figure 2.1: Components of environment and path description.

ent descent. Re-initialization refers to solving the optimization problem again, but with a

different set of initial values.

When referring to our artificial neural network, we refer to it as a neural network or a

classifier. When referring to neural network architecture, we are referring to the number

of hidden layers, the number of neurons per hidden layer, the activation functions used in

the hidden layers, the optimizer chosen, and any hyperparameters used such as batch size,

learning rate, and number of epochs.

When referring to the axes of plots in this Thesis, x and y will refer to the directions as

shown in Figure 2.2.

x

y

Figure 2.2: Axis labels for obstacle environment.
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2.2 Circle Direction Label Notation

In this work we are applying a binary label to each obstacle in our problem. These labels

are “above” and “below”, or “up and “down”. In Figure 2.3, we provide visual examples of

what these labels correspond to visually.

Figure 2.3: Example of obstacle with up and down labels.

For the obstacle on the left, we can see it has an “up” label as our initialization, and final

solution go “above” the circle’s center on the y-axis. Similarly, on the right we have a

“down” label as our initialization goes “below” the circle’s center on the y-axis. Note that

the initialization and solution found will match the direction label of the circle.

2.3 Shortest Distance Path Planning

Shortest distance path planning consists of finding a trajectory in an environment that

provides the shortest distance from the start to the goal. In shortest distance path planning,

an initialization refers to a vector of points that is used as the initial solution of the problem.

8



With an initial solution we can perform gradient descent on our optimization problem to

find the shortest distance trajectory.

2.4 Dubins Path

In geometry, a Dubins path refers to the curve of minimal length between a start and end

goal with a constraint on average curvature defined in Definition 1. We give a short view of

Dubins Path as this is the basis for why our visibility graphs discussed in the next section,

contain the shortest path through a field of circles.

Definition 1 For a curve X , in real n-dimensional Euclidean space, parameterized by arc

length s, for which Ẍ (s) exists everywhere, we define its average curvature, f(s1, s2) by

(2.1) [14].

f(s1, s1) =
∥Ẋ (s1)− Ẋ (s2)∥
|s1 − s2|

(2.1)

We say that a curve X in real Euclidean n-space parameterized by arc length has aver-

age curvature always less than or equal to R−1 provided that its first derivative Ẋ exists

everywhere and satisfies the Lipschitz condition (2.2) [14].

∥Ẋ (s1)− Ẋ (s2)∥ ≦ R−1|s1 − s2| (2.2)

In [14], it is proven that the shortest distance path, or R-geodesic, consists of pieces, each

of which are either a straight-line segment, or an arc of a circle of radius R or less. We note

in (2.2), that for a field of circles with varying radii, R is equal to the radius of the largest

radius circle.

9



2.5 Visibility Graphs

In this section we cover graph notation, tangent circular visibility graphs, and how to find

the shortest distance path with them.

2.5.1 Graph Notation

A graph G, is a collection of nodes and edges, (V , E), respectively. For our visibility graphs,

a node is a point in our free space, and an edge refers to lines of visibility between the nodes.

We take lines of visibility to mean lines of sight between nodes with no obstruction from

obstacles. The edges can also refer to edges connecting two nodes on an obstacle.

2.5.2 Tangent Circular Visibility Graphs

A graph is considered a visibility graph if its vertices v1, . . . , vn can be associated with

disjoint, horizontal line segments s1, . . . , sn in the plane such that vi and vj are joined by an

edge if and only if there is a vertical line segment connecting si to sj without intersecting any

other sk [15]. Visibility graphs have many uses such as circuit planning, motion planning,

and are fundamental for use in computational geometry and geometric graph theory [16]. For

navigation through a field of obstacles, we can utilize visibility graphs as a way of simplifying

our configuration space. With this graph built based on points of visibility between obstacles,

we can use graph search techniques to find the shortest paths.

To construct a visibility graph for circles, we first must find the bitangents between our

obstacles. We must find these bitangents as the graph built from them will contain the

Dubins path from our start to goal. Between two non-intersecting circles, there exists four

bitangents. A bitangent is a line that is tangent to two obstacles. There are two types of

10



bitangents as shown in Figure 2.4. These are the first type of edge that connects nodes in

our visibility graph. These types of edges are referred to as surfing edges.

Figure 2.4: External (red) and internal (blue) bitangents.

The second type of edge are edges between nodes on the same obstacle, which are referred

to as hugging edges as shown in Figure 2.5.

2.5.3 Bitangents Between Two Circles

To calculate the bitangents needed for our graph we refer to the solution of the belt and

pulley problem [17].

To calculate the endpoints of our external bitangents, we find θ with equation (2.3), where

Node B

Node A

Figure 2.5: Hugging edge of circle visibility graph.
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A B

θ

θ

θ

θ

d

Figure 2.6: External bitangent diagram.

rA is the radius of circle A, and rB is the radius of circle B.

θ = arccos

(
rA + rB

d

)
(2.3)

A B
dϕ

ϕ

ϕ

ϕ

Figure 2.7: Internal bitangent diagram.

To calculate the endpoints of our internal bitangents, we find ϕ with equation (2.4), where

rA is the radius of circle A, and rB is the radius of circle B.

ϕ = arccos

(
|rA − rB|

d

)
(2.4)

We have shown how to find the nodes and edges of the bitangents between circles. In the

next section we will explain how to check if these bitangents are lines of visibility or if another

obstacle obstructs this line of visibility.

12



2.6 Collision Primitives

There are a variety of collision primitives that we need to use to build a visibility graph.

For example, how do we check if there is an intersection between a line of visibility and an

obstacle? Or how can we check if two circular obstacles are intersecting? The primitives in

the following section provide routines for answering these questions.

2.6.1 Line Segment Intersection Primitive

To detect a line intersection, we use the primitive described in [18]. This is used to build

our visibility graph.

a

b

c

d

Figure 2.8: Intersection of two line segments

For two line segments ab and cd we wish to determine if there is a single point of intersection.

Another way to describe this problem is if there exists a point p1, on ab and a point p2, on cd

such that p1 ≡ p2. We can accomplish this by first checking if the lines,
←→
ab and

←→
bc intersect.

If they intersect, we then check if the point of intersection lies within the segments, ab and

cd.

To check if the two lines intersect, we first note that we can describe any point along each

13



line segment with:

p1 = a+ s1(b− a) for s1 ∈ [0, 1]

p2 = c+ s2(d− c) for s2 ∈ [0, 1]

Now if we set p1 equal to p2 and describe a = (xa, ya), b = (xb, yb), c = (xc, yc), and

d = (xd, yd), we get a system of two linear equations with two unknowns, s1 and s2:

xa + s1(xb − xa) = xc + s2(xd − xc)

ya + s1(yb − ya) = yc + s2(yd − yc)

We can solve for s1 with:

s1 =
(xd − xc)(ya − yc)− (yd − yc)(xa − xc)

(yd − yc)(xb − xa)− (xd − xc)(yb − ya)

and s2 with:

s2 =
(xb − xa)(ya − yc)− (xa − xc)(yb − ya)

(yd − yc)(xb − xa)− (xd − xc)(yb − ya)

Having solved for s1 and s2 we can determine if the lines
←→
ab and

←→
bc intersect, by examining

the values of the numerator and denominator of either s1 or s2. If the denominator is nonzero,

then the lines are not parallel and intersect at a single point. If the denominator equals zero,

then the lines do not intersect at a single point.

If the lines
←→
ab and

←→
bc do intersect, we can now check if the line segments ab and cd intersect

by checking if s1 and s2 belong to the interval [0, 1].
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2.6.2 Line Segment and Circle Intersection Primitive

When checking if a line segment intersects a circle, there are three cases. The first case is

the line does not intersect the circle. The second case is the line intersects the circle once,

and the third case is the line intersects the circle twice. We first check if the line defined

by two points intersects the circle. Next, we check if this intersection occurs within the line

segment. To perform this task, we use the following primitive. First, we find the distance d,

of the line ax+ by + c = 0 from the center of the circle (x1, y1) using the following equation

from [19]:

d =
|ax1 + by1 + c|√

a2 + b2

From here we compare d to the radius of the circle, r. If d > r, the circle and line do not

intersect. If d ≤ r, the circle and line intersect, so we now need to check if the line segment

intersects the circle. We can do this by checking if the line segment defined by (x3, y3) and

(x4, y4) intersects the line segment defined by (x1, y1) and (x2, y2) as seen in Figure 2.9.

(x2, y2) is the point on the line segment defined by (x3, y3) and (x4, y4) that is closest to the

center of the circle (x1, y1). Let the line segment defined by (x3, y3) and (x4, y4) be described

by ax+ by + c = 0. Then, from [20], we can find (x2, y2) with equation (2.5).

x2 =
b(bx1 − ay1)− ac

a2 + b2

y2 =
a(ay1 − bx1)− ac

a2 + b2

(2.5)

Now we can use the primitive defined in section 2.6.1 to check if these two line segments

intersect, which indicates if the line segment defined by (x3, y3) and (x4, y4) intersects the

circle.
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(x1, y1)(x3, y3)

(x4, y4)

(x2, y2)

(a) Circle intersection with one point of in-
tersection.

(x1, y1)

(x3, y3)

(x4, y4)

(x2, y2)

(b) Circle intersection with two points of in-
tersection.

Figure 2.9: Possible intersections of a line segment and circle.

2.6.3 Circle Intersection Primitive

To check if two circles are intersecting, we use the following primitive. The circles are

considered colliding if they either intersect, or one circle is completely contained within the

other.

(x1, y1)

r1

(x2, y2)

r2

Figure 2.10: Two intersecting circles.

First we calculate the distance d, between (x1, y1) and (x2, y2).

d =
√

(x2 − x1)2 + (y2 − y1)2
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If d > (r1 + r2), then the circles do not intersect. If d ≤ (r1 + r2), then the circles are

intersecting.

2.7 Machine Learning

Machine learning is a field of artificial intelligence that answers the question: can we devise

algorithms that enable computers to learn from data? The basic premise of learning from

data is whether we can use a set of observations to uncover an underlying process [21]. Since

the problem of learning from data is a very general problem, machine learning is considered to

have three subfields: supervised learning, unsupervised learning, and reinforcement learning.

In this thesis we use techniques from the field of supervised learning.

A dataset consists of observations from an underlying process. For example, a dataset could

consist of the attributes of a sample of cars such as engine type, car brand, miles driven,

and their monetary value. Now consider we wish to make a prediction based on this data,

for example given a car’s engine type, brand, and miles driven can we predict the car’s

monetary value? This is an example of a supervised learning problem. This falls under

supervised learning as our dataset consists of features x, i.e. engine type, brand, and miles

driven, to describe the car, as well as labels y, i.e. the monetary value, which explains the

correct answer for a given sample of features. The goal of our learning problem is to find

a function g, that closely approximates an unknown target function f , that correctly maps

our feature space X , to our label space Y . To turn this problem into a supervised learning

problem, we use the learning framework shown in 2.11.

First we consider a hypothesis space H which consists of the set of parametric functions

h(x;w), that maps our feature space to our output space, i.e. h(x;w) : X → Y . There are

many different options for H, but in this work, we use neural networks for our functions
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Figure 2.11: Overview of Machine Learning Process

h(x;w), where w is a vector of parameters defining a hypothesis in H. Next we present our

data and H to our learning algorithm A, which is a procedure that seeks to pick optimal

parameters w∗ such that f(x) ≈ g(x) ≡ h(x;w∗) ∈ H.

But how do we determine if g ≈ h? To do this we define an error or cost function C(y, ŷ),

where we compare our labels y = f(x) from our dataset, with the predictions ŷ = g(x) ≡

h(x;w∗). Using the cost C(y, ŷ), our learning algorithm A, picks our w∗, usually found as

the solution to an optimization problem of C(y, ŷ). In the following sections we elaborate on

the specifics used for H, C(y, ŷ), and A in our classification problem. For more information

on the field of machine learning, please consult [21].
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2.7.1 Artificial Neural Networks

An Artificial Neural Network, or neural network, is a type of parametric function that can

be characterized by a vector of weights w. The basic building block of a neural network is

a neuron that is connected to other neurons via links. [22]. Each link has a numeric weight

associated with it. Weights are the primary means of long-term storage in neural networks,

and learning takes place by updating these weights. As shown in Figure 2.12, a neuron

creates a weighted sum of its input links, x ∈ Rr with its weights w ∈ Rn plus a bias b. Next

the neuron takes this sum as the input to an activation function f . The output of f is then

taken as the neuron’s output. f is a function that can be set for each neuron.

Figure 2.12: Structure of a neuron, taken from [2].

If we form a network of multiple neurons arranged in layers, with the outputs of the neurons

in the previous layer as the inputs to the next layer, we get a feedforward neural network

(FFNN), as shown in Figure 2.13. When a FFNN has multiple hidden layers, it becomes a

deep neural network (DNN). In this work we utilize deep feedforward neural networks but

will refer to them as FFNN.

The motivation for using FFNN is their ability to be used as universal approximators for
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Figure 2.13: Structure of a deep feedforward neural network. Layers l1, . . . , l
are called hidden layers.

linear and nonlinear functions. Specifically, the universal approximation theorem [23–25]

states that a feedforward network with a linear output layer and at least one hidden layer with

a “squashing” activation function can approximate any Borel measurable function from one

finite-dimensional space to another to any desired degree of accuracy, provided sufficiently

many hidden units are available. In [26], extended universal approximation to hold for

networks built with ReLU activation functions as well. Borel measurability is beyond the

scope of this thesis, but for our purposes, we can say a continuous function on a closed and

bounded subset of Rn is Borel measurable and therefore may be approximated by a neural

network [27]. In the next section, we will explain how the weights of FFNN are updated.

2.7.2 Learning Algorithms

A learning algorithm is the mechanism by which the weights of a neural network are updated.

To create this formulation, we first need to define the Risk R(w), which is the objective we
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attempt to minimize.

R(w) =

∫
C(y, h(x;w))p(x, y)dxdy (2.6)

In equation (2.6), p(x, y) is the joint probability density function of our input features x,

and output labels y. We wish to solve min
w

R(w) to obtain w∗ and h(x,w∗) ∈ H. However,

p(x, y) is unknown and we only have our independent samples (xk, yk) ≈ p(x, y).

To estimate R(w), we examine the empirical risk Remp shown in (2.7) which is based on our

independent samples.

Remp =
1

N

N∑
n=1

C(yn, h(xn, w))→ R(w), N →∞ (2.7)

The law of large numbers implies that Remp → R(w), N → ∞ for independent samples

(xk, yk) [28].

We can update our weights w, with Gradient Descent shown in equation (2.8), where η is

our learning rate.

w(t+ 1) = w(t)− η
∂Remp

∂w
(2.8)

We can efficiently calculate ∂Remp

∂w
by using backpropagation. See [28] for further details on

this method.

To improve convergence, there are other gradient based methods which utilize momentum

and adaptive learning rates to improve our results. One of the methods is ADAM and is

primarily used in this work.
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2.7.3 Loss Function Binary Cross-Entropy

For our loss function, we use binary cross-entropy as this loss is suitable for training binary

classification problems [28].

2.7.4 ReLU, Sigmoid, and Tanh Activation Functions

An activation function maps an input to a new domain depending on the function used.

These functions are typically nonlinear, although linear functions can be used. We use non-

linear functions as this allows our neural network to better approximate nonlinear processes.

There are two activation functions that are used in this work, the Rectified Linear Unit

(ReLU), Sigmoid functions, and Tanh functions. There are many more options for activa-

tion function, but we will only cover the ones used in this work. In the following diagrams,

we will define s for a given neuron in (2.9) using the variables established in Figure 2.12.

s =
n∑

i=1

wixi + b (2.9)

The ReLU activation function shown in Figure 2.14, linearly maps positive values of s while

zeroing negative values. This is a popular function for hidden layers as this function does

not suffer as severely from the exploding/vanishing gradient problem.

The sigmoid activation function shown in Figure 2.15, takes the weighted sum s and maps the

values between zero and one. We note that sigmoid has the following asymptotic behavior:

σ(s) =

1, for s→ +∞

0, for s→ −∞


The sigmoid function is useful for classification problems with a binary decision. For example
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Figure 2.14: The ReLU activation function.

it could be used in the decision of whether a picture shows a cat or does not show a cat.

The output of the sigmoid function represents the probability of the input belonging to the

positive class. We use a cutoff of 0.5 in mapping the decision class to either the positive or

the negative decision, e.g. if the picture does or does not contain a cat.

Lastly, the tanh function shown in Figure 2.16, takes the weighted sum s and maps the values

between negative one and one. We note that tanh has the following asymptotic behavior:

ϕ(s) =

 1, for s→ +∞

−1, for s→ −∞


This output range of negative one to one is suitable for applications for which we need

to capture both positive and negative relationships in the data. Although this function is

typically not chosen due to the vanishing/exploding gradient problem, our best performing

networks typically used one layer where the effect of the vanishing/exploding gradient is not

as much of a problem.
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Figure 2.15: The sigmoid activation function.

Figure 2.16: The tanh activation function.
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Chapter 3

Methodology

In this chapter, we will cover the three parts of our path planning solution. The first section

will describe the formulation of our shortest distance optimization problem. The second

section will cover data generation for our classifier. The third section will cover our neural

network design, and the last section will explain how we integrated our classifier with our

optimization problem.

3.1 Shortest Path Formulation

Let us consider the following motion planning problem. We desire to determine the shortest

path between a start and goal point in a field of circular obstacles. We use circular obstacles

as this is a conservative approximation for all obstacles if the circle fully contains the obstacle.

We also choose circular obstacles for their simplification of our neural network features, as

a circle can be described by just three parameters. We wish to find the shortest distance,

collision-free path. For a given environment consisting of N obstacles, and by describing

the trajectory as a discrete vector of points of length L+ 1, starting at the start coordinate
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and ending at the goal, we can formulate finding the shortest distance path as a constrained

minimization as shown in equation (3.1).

min
x,y

L∑
i=0

√
(xi − xi−1)2 + (yi − yi−1)2

s.t (xj − xck)
2 + (yj − yck)

2 > R2
k, ∀j ∈ {0, . . . , L},∀k ∈ {1, . . . , N}

(x0, y0) = (xstart, ystart)

(xL, yL) = (xgoal, ygoal)

(3.1)

In this formulation, our objective function is our total path length calculated by summing

the L2-norm between adjacent points in the trajectory vector. For our inequality constraints,

we use the equation of a circle to enforce that our trajectory vector is outside the circle. We

check every point of the trajectory against every circle. For our equality constraints, we

require the first point of our trajectory to be our start location, and the final point of our

trajectory to be our goal location. Although our objective function is convex, our constraint

set is non-convex resulting in our optimization formulation being non-convex. To minimize

this problem, we utilize the interior-point algorithm.

3.1.1 Connecting Unique Local Minima to Optimization Initial-

izations

For each local minimum, there are an infinite number of initialization trajectories that will

result in our optimizer finding the same local minimum. However, due to the circles being

the source of non-convexity in our optimization problem, there is a pattern in the relative

direction of the path around an obstacle, and the local minimum found. We make the

following conjecture. Each local minimum can be characterized by the relative direction

of the initialization around an obstacle. For a field of N obstacles, there is up to 2n local
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Figure 3.1: Visual of All Unique Initializations for Three Obstacle Course.

minima. Each of these local minima can be found by utilizing an initialization that obeys

the specified directions around the obstacles. For example in Figure 3.1, we can see there are

eight patterns of “above” and “below” for the initializations of a three-obstacle course. Any

initialization for equation (3.1) that matches a given pattern of “above” and “below” labels

will find the same local minimum. This observation is imperative for building a connection

between our optimization formulation, and the classifier we will create. This is because our

classifier will communicate a given initialization to our optimization problem by specifying

the relative directions around obstacles our initialization must follow. This initialization will

set up our optimization problem to have local convergence to the global minimum if the

neural network prediction is correct.
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3.2 Neural Network Design for Classification

In this section we outline the design of our Neural Network classifier. First, we will describe

the features and labels chosen, and then we will describe the architecture of the classifier.

3.2.1 Features and Labels

When choosing features for the input layer of our Neural Network, we want to use parameters

from the problem that can help the classifier identify the correct obstacle labels. The features

chosen to describe our problem environment are shown in Figure 3.2. The first four features

Figure 3.2: Features and Labels used for Neural Network

x start, y start, x goal, and y goal, are real numbers that correspond to the coordinates

of our start point and goal point. The next features are real numbers that describe our
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circular obstacles. For each obstacle there are three features, the radius, the x, and the

y coordinate of the circle’s center, going from obstacle 1 to obstacle N . To calculate the

number of features, f , we can use equation (3.2). In this study we examined classifiers for

obstacle environments with up to twenty obstacles.

f = 3N + 4 (3.2)

The labels used for our classifier are “down” or “up”, or zero and one, to indicate the

direction the optimal path takes around an obstacle. There are N binary outputs that each

correspond to one of the N obstacles in our environment.

Due to neural networks having fixed number of features and labels, this implies that a given

classifier can only make predictions on courses with N number of obstacles. To overcome

this issue, we came up with the following solution to make an N obstacle environment able to

predict on an n < N obstacle environments. For features referring to non-existent obstacles

in our environment, we zero these inputs and ignore the predicted labels. We present the

results of this method in section 4.4.

3.2.2 Is this Learning Feasible?

An important question in learning is do our features provide the information needed to learn

the underlying process? To examine if learning on our problem is feasible, we examined

in reduced feature cases the decision boundary. For example, in Figure 3.3a, we examine

a simplified version of our problem where all our features are fixed except for the features

ystart and ygoal. We see that based on these features we form a continuous decision boundary

which a neural network could learn. In Figure 3.3b, the red lines indicate the axis on which

the features shown in the plot were varied. A start end pair in the red region of Figure 3.3a
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corresponds to the top plot in 3.3b, while the blue region corresponds to the bottom plot in

3.3b.

(a) One obstacle decision boundary (b) One obstacle environment.

Figure 3.3: Decision Boundary Visual for One Obstacle.

To examine our other features, we performed the same problem but added more obstacles.

In Figure 3.4a, we plot the decision boundary for each obstacle with the same features ystart

and ygoal. As we can see, we still have a continuous decision boundary albeit more complex,

which a neural network could learn.

30



(a) Four obstacle decision boundary.

(b) Four obstacle environment.

Figure 3.4: Decision boundary visual for four obstacles.
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3.2.3 Network Architecture and Activation Functions

For our network architecture we chose to use a fully connected Deep Neural Network (DNN).

We tested a variety of different DNN configurations and found the best performance with

networks using layer shapes with one hidden layer using the activation function tanh on the

hidden layer, and sigmoid on the output layer. This architecture was found through trial

and error and had the best accuracy when classifying our obstacles. The results of training

is presented in Chapter 4.

3.2.4 Neural Network Loss, Optimizer and Hyperparameters

For neural networks solving binary classification problems, we use the binary cross-entropy

loss. This loss is ideal for classification with two classes [28]. Since each of our outputs are

attempting to distinguish a binary class for an individual obstacle, we use this loss. For

our optimizer we tried using Adam, rmsProp, and SGD. We have found the best results

using Adam. For hyperparameters, we used the learning rate = 0.0001 and batch size =

64. For epochs we tested for at most 200 epochs. For our initial weights, we used default

initialization from Keras [29].

For training our classifier, we implemented training code with Keras [29]. The metrics

we used to analyze performance were sample and binary accuracy which we define in the

following sections.

3.2.5 Sample Accuracy and Binary Accuracy

To analyze the performance of our neural network model, we use the following two metrics,

sample accuracy and binary accuracy. We define these accuracies in equations (3.3) and (3.3),
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respectively, and how they are used for neural network model analysis. In the following we

define one data sample as one set of features and associated labels.

Sample Accuracy

We define sample accuracy by (3.3) and indicates the percentage of our samples, where

our neural network model correctly identified the initialization that will lead to the global

minimum shortest distance. For a sample to be considered identified correctly, all model

outputs, corresponding to our obstacles’ labels, had to be predicted correctly. This is the

primary measure for the performance of our classifier as it tells us how often our neural

network can predict the optimal initialization. Since there are N outputs for an N -obstacle

neural network, the difficulty of predicting the optimal initialization scales with the number

of obstacles.

sample accuracy =
samples identified correctly

total samples
(3.3)

Binary Accuracy

For binary accuracy, we define it in (3.4). This accuracy is based on the percentage of

outputs correct over total outputs. This differs from sample accuracy as binary accuracy

measures the fraction of correct neural network outputs in terms of each of the N obstacles

in our environment. We use this as another indicator to understand how our neural network

is performing. Since it gauges the accuracy based on each output instead of based on the

whole sample, we can look at the incremental progress of our neural network during training.

This gives us a better idea of if the network is still improving during training. For the case

of one obstacle neural networks, the binary accuracy is equivalent to the sample accuracy.
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binary accuracy =
number correct outputs

total outputs predicted
(3.4)

3.3 Data Generation

To generate the data set for training our classifier, we use circle visibility graphs combined

with uniform cost search a.k.a. Dijkstra’s method. To create a classifier with good gener-

alization, we desire a large data set with a variety of different obstacle configurations. The

following is our overall strategy for data generation. First, we generate an obstacle course

with random obstacle placements and radii. Second, we build a visibility graph based on

the obstacle configuration, our start, and our goal location. Third, we search our visibility

graph using uniform cost search to find a trajectory for the shortest-distance path. Finally,

we compare the trajectory of our path to the center coordinate of our obstacles to determine

if our obstacle is above or below a given obstacle. This process is outlined in Figure 3.5 and

explained in subsections 3.3.1 and 3.3.2.

3.3.1 Random Obstacle Course Data Set Generation

The following sections describe the parameters, assumptions, and methodology used for

generating our data set.

Obstacle Course Generation Parameters and Assumptions

This section explains the parameters chosen and assumptions made for generating our data

set. To improve the generalization of our classifier, we need to set limits on the parameters of

our training environment. By doing this, we ensure all our samples fall into a given range and
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Figure 3.5: Overview of Label Creation Process.

give us a domain for which our classifier can perform. Without these restrictions, it would be

impossible to generate enough data as all our features are real numbers. We can justify our

classifier will still be able to generalize to problem environments outside the scale of our data

generation environment as we can rotate and scale any given problem environment to the

scale of our generated environments, and still receive a valid prediction from our classifier.

We first must limit the size of our environment. We have chosen that our environment is a

square of thirty meters by thirty meters. This is approximately the size of two basketball

courts placed side-by-side with their longer edges adjacent. In this environment we define

three regions, the start, obstacle, and goal areas, as shown in Figure 3.6. All start points

must be contained with the start area, all obstacles must be within the obstacle area, and

all goal points must be contained with the goal area. We can add this restriction as all

obstacles that are within the start and goal areas, which are not between the start and goal

on the x-axis, do not need to be considered as they do not affect the optimal path. Our
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Figure 3.6: Visual of Generated Obstacle Course Parameters.

second restriction is on the size of our obstacles. We assume the size of our obstacles are

between one tenth and ten meters. We place a restriction on the size of our obstacles to

prevent our obstacles from being larger than our environment, and to increase data diversity

by preventing our data set from consisting of one relatively very large obstacle augmented

with a large number of relatively very small obstacles. This can also be seen as there is

limited area for obstacles in our problem and as soon as a relatively very large obstacle is

placed, there is only room for relatively very small obstacles in the remaining obstacle area,

resulting in a lack of diversity in the size of most of the obstacles on the field. Another

assumption made for our problem is that none of our obstacles are intersecting. Removing

this assumption will be examined in future works.

Obstacle Course Generation Methodology

With restrictions on the magnitude of our features established, we can describe the method

for generating an obstacle environment used in our data set. To generate our obstacle

environment, we use the following obstacle placement procedure:

1. Sample the radius, r of our candidate obstacle from a truncated normal distribution.
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Variable Truncated Normal, N(µ, σ, a, b)
r N(2, 0.5, 0.1, 10), N(4, 2, 0.5, 6)
xc N(15, 5, 5, 25)
yc N(15, 5, 0, 30)

Table 3.1: Truncated normal distributions used for sampling obstacle center coordinates and
radii. µ is the mean, σ is the standard deviation, a is the lower bound, and b is the upper
bound.

Variable Uniform, U(a, b)
xc U(5, 25)
yc U(0, 30)

Table 3.2: Uniform Distributions used for sampling obstacle center coordinates. a is the
lower bound and b is the upper bound.

Details of the distribution are described in Table 3.1.

2. Sample the obstacle’s center coordinates xc, yc from either a truncated normal distri-

bution or a uniform distribution. Details of the distributions are described in Table

3.1 and 3.2. The tighter bounds on xc are to prevent obstacles from being placed in

the start and goal grids.

3. Check if obstacle placement intersects with any already placed obstacles. If so, re-

sample our obstacles center coordinates xc and yc.

4. If we re-sample our center coordinates more than our max number of attempts, we

return to step one to re-sample our obstacle radius.

5. Repeat procedure until desired number of obstacles have been placed.

Remark 3.3.1 The use of a variety of distributions and distribution parameters was to

increase the diversity of data in our data set.

Once we have an obstacle course created, we now create a grid of start and goal locations

within our start and goal areas to create our data set. The start and goal areas both have
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dimensions of five meters by thirty meters. For the x and y coordinates of our start and goal

area, we create a grid with size (x values, y values). We chose the grid size for both our

start and goal with equal probability of size (10, 30), (10, 25), or (12, 32) to promote variety

in our data set. Each pair of start and goal locations creates one sample in our data set.

3.3.2 Visibility Graph and Label Creation

With our start, goal, and obstacle courses created, we can now create a visibility graph. We

use the following procedure to generate a visibility graph and create our obstacle labels.

1. For each pair of obstacles, calculate the four bitangents to use as edges of the visibility

graph.

2. For each bitangent, verify the candidate edge does not intersect any of the remaining

obstacles. If it does, throw out the candidate edge.

3. Calculate the two bitangents between the start and every obstacle, and the goal and

every obstacle.

4. Calculate the hugging edges between vertices on a given obstacle. This completes our

visibility graph for this course.

5. Perform uniform cost search on the visibility graph to find the path of shortest distance

from our start to our goal.

6. Compare the center y coordinate, yc, to our path and assign a label of up if yc is below

the optimal path, and a label of down if yc is above the optimal path.
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3.3.3 Dataset Size

We used approximately twenty million samples to train each of our N -obstacle classifiers.

We created twenty of these datasets, with one dataset for each of our number of obstacles

from one to twenty.

3.4 Full Stack Combining Classifier and Optimization

Solver

In this section we explain how our full stack works to combine our classifier and optimization

solver in online, path finding applications. We first scale the obstacle course to match the

dimensions of our thirty-by-thirty meter training environment. We pass these scaled features

to our classifier which then outputs “up” and “down” labels for each obstacle. Next a human

in the loop will create an initialization that matches the outputs of our classifier. Lastly, we

pass this initialization to our optimization problem which then outputs the shortest distance

trajectory. If our classifier labeled all our obstacles correctly, this output trajectory will be

the global shortest path in our environment. This whole process is shown in Figure 3.7.
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Figure 3.7: Workflow of full stack classifier and optimization solver.
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Chapter 4

Results and Analysis

In this section we view the results and analysis from this project. We present results for the

accuracy of our classifiers, as well as results on the generalization of our N -obstacle classifier

to less than N obstacle courses, the coverage of our feature space by our data, and other

results.

4.1 Training Results for One through Twenty Obstacle

Classifiers

In this section we present the results from training and testing our N -obstacle classifiers

for N equal to one through twenty. We present our sample accuracy and binary accuracy.

In all tests, we split our data 90% training, 5% for validation, and 5% for testing. In this

section all networks used one hidden layer with three hundred hidden units and the tanh

activation function, and we took only our best result with this network design. This was

done to limit the number of changed variables when looking at how our classifiers perform

for various number of obstacles.
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4.1.1 Sample Accuracy Results

In this section we present the sample accuracy results for our N -obstacle classifier. We show

the results of our sampling accuracy on training, validation, and test data in Figure 4.1 and

Table 4.1. Neither the obstacles courses from our test nor validation data was shown to the

classifier during training.

Figure 4.1: Sample Accuracy vs Number of Obstacles Classified.

We can see in Figure 4.1 as the number of obstacles went up, the test accuracy goes down.

We believe this is due to the increase in our feature dimension by three for each additional

obstacle to our classifier and our relatively constant number of samples in each obstacle

dataset. With the increase in our feature space, this corresponds to an exponential increase

in the number of samples required for our classifier to have good generalization across the

feature space. This scaling in our number of samples generated offline for training is the

trade-off we face for having good time complexity in online path planning.
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Num Obstacles Train Sample Acc (%) Val Sample Acc (%) Test Sample Acc (%)

1 99.68 99.73 99.61
2 98.36 98.07 98.62
3 96.02 95.03 94.60
4 94.05 91.25 92.47
5 92.33 90.40 89.14
6 90.75 85.31 87.45
7 89.03 83.40 82.76
8 88.46 80.23 76.27
10 85.18 74.38 69.78
11 84.77 74.09 65.39
12 83.64 64.42 56.35
13 82.56 68.04 52.62
14 81.32 63.59 47.17
15 83.26 63.33 44.96
16 80.14 48.54 42.83
17 78.34 53.03 35.26
18 77.79 34.28 37.78
19 76.63 38.82 34.92
20 76.36 29.77 27.93

Table 4.1: Sample Accuracy vs. Number of Obstacles

To examine this, we trained our 20-obstacle classifier on a twenty-obstacle dataset consisting

of 66% of the number of samples in our full data set. As we can see in 4.2, as we decrease

the number of samples trained on, our test sample accuracy decreases by more than 10%,

which indicates a decrease in our generalization ability.

Data Samples Train Sample Acc (%) Val Sample Acc (%) Test Sample Acc (%)

10564605 75.31 20.18 16.62
15845296 76.36 29.77 27.93

Table 4.2: Sample Accuracy for different dataset sizes.

4.1.2 Binary Accuracy Results

In this section we present the binary accuracy results for our N -obstacle classifiers. The

results are shown in Figure 4.2 and Table 4.3.

Since this metric references the fraction of tested outputs with accurate predictions, it must

be greater or equal to the sample accuracy found for a given N -obstacle classifier. This
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Figure 4.2: Binary Accuracy vs Number of Obstacles Classified.

metric indicates how close our network was to finding the optimal solution. These accuracy

values typically correspond to one out of N outputs being incorrectly classified.

4.2 Best 20-Obstacle Classifier

In this section we show our best performing model architecture for a 20-obstacle classifier.

The network design used is shown in Figure 4.3. This network utilizes one hidden layer with

five hundred hidden units with the tanh activation function. We used the optimizer Adam,

a learning rate of 0.0001, a batch size of 64, and 10 epochs. The results of training are shown

in Table 4.4 and our loss and accuracy vs epochs is shown in Figure 4.4. Although the test

sample accuracy for our model is low at 29.53%, we recognize this is significantly better than

random guessing which has a test accuracy of 1
2

20
.
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Num Obstacles Train Binary Acc (%) Val Binary Acc (%) Test Binary Acc (%)

1 99.68 99.73 99.61
2 99.18 99.01 99.30
3 98.66 98.33 98.18
4 98.47 97.76 98.06
5 98.41 97.99 97.76
6 98.37 97.33 97.77
7 98.32 97.43 97.28
8 98.43 97.35 96.73
10 98.35 97.01 96.29
11 98.44 97.22 96.30
12 98.45 96.32 95.43
13 98.43 96.93 95.42
14 98.44 96.59 94.99
15 98.70 96.78 94.97
16 98.49 95.50 94.68
17 98.44 96.13 94.18
18 98.47 94.33 94.78
19 98.46 94.91 94.54
20 98.50 93.83 93.69

Table 4.3: Binary Accuracy vs. Number of Obstacles

Num Obstacles Train Sample Acc (%) Val Sample Acc (%) Test Sample Acc (%)

20 81.58 30.90 29.53

Table 4.4: Best Accuracy Results for 20-Obstacle Classifier.

4.3 Feature Space Coverage of 20-Obstacle Classifier

For our classifier to have good generalization, we require a dataset that provides examples

across the entire feature space. To do this we examine the distributions of the features of

our twenty obstacle dataset shown in Figure 4.5. In this figure each row corresponds to

the three attributes of an obstacle input. In our random course generation strategy, each

obstacle was placed in the course in the order of the rows shown in Figure 4.5. We can see

that our strategy provides good coverage of the entire feature space for our first obstacle, and

the coverage decreases significantly with each obstacle placed. Thus, our dataset consisted

of our first obstacle inputs containing large radii in the center of our course, while as we

go progress through the rest of the obstacle course, we can see that the other inputs only

have data for very small obstacles that are placed at the edges of the course. This dataset
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Figure 4.3: Best 20-Obstacle Classifier Architecture.

indicates that we have poor coverage of our feature space, and our predictions likely could

be improved by modifying the data generation strategy to create examples from portions of

the feature space that has few to no examples.

4.4 Effectiveness of N-Obstacle Classifier on less than

N Environments

Due to our neural network having a fixed number of inputs and fixed number of outputs, we

wish to examine the effectiveness of an N -Obstacle Classifier on datasets with less than N

obstacles. To do this we use the technique from 3.2.1, where we apply zero to all outputs and

only examine the first n outputs when measuring sample accuracy. The results are shown

in Figure 4.6.

From the data in Figure 4.6, we can see that our 20-obstacle classifier generalizes well to

unseen obstacle environments with less than twenty obstacles. Although the accuracy for

obstacles higher than nine, was found to be less than 50% on unseen courses, we have to

keep in mind that the best performance of this model on unseen twenty obstacle data was
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Figure 4.4: Loss and accuracy vs. epochs for best 20-obstacle classifier.

29.53%, so for our network to always be higher than this for less number of obstacles, shows

that better sample test accuracy on our twenty obstacle data correlates to better sample test

accuracy on courses with less than twenty obstacles.

If we compare the results from 4.6 with 4.1, however, we can see that a neural network

designed for the correct number of inputs and outputs for the number of obstacles in the

data always performs better than our 20-obstacle classifier. We can see that the percentage

difference between the two is less than 10% for obstacle datasets for 15-19, and that the

percent difference between the two grows as the number of obstacles in the obstacle dataset

decreases. This result indicates that we can use higher number obstacle classifiers on courses

with less than the number of obstacles it was trained with.
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Figure 4.5: Distributions of Feature Data by Obstacle. Each row corresponds to one of
twenty obstacles,
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Figure 4.6: Twenty obstacle neural tested on less than 20 obstacle courses.
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Chapter 5

Conclusion

In this thesis we presented a study on a data-based method for finding global minimum of

nonlinear, non-convex optimization problems. Non-convex functions are hard to minimize

due to their having saddle points, unknown number of local minima, very flat regions, or a

combination of all three. This method allowed us to predict with high accuracy an initial-

ization in the locally convex region of our problem and use the interior-point method to find

the global minimum.

This study was performed on the shortest distance path planning problem. By leveraging

that we can find globally shortest distance paths using circle tangent visibility graphs, as well

as the knowledge that path planning problems with a restriction on direction and location of

the start and goal nodes, have at most 2n number of local minima, we can train a classifier.

This classifier is based off a FFNN that is trained to classify the relative direction, “up” or

“down”, of the shortest distance path around each obstacle in the environment between the

start and goal nodes. Using the output of the FFNN we can create an initialization path

that follows the labels of the FFNN, and using a shortest path distance minimization with

constraints, we can find the shortest distance path.
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We were able to classify courses up to twenty obstacles with test accuracy on never-before-

seen samples with 29.53% sample accuracy. We found that this method does not scale well

with number of obstacles, with a 68% decrease in test sample accuracy from our 1-obstacle

classifier. We attribute this issue to a need for more data samples as our feature space

increases by three for each additional obstacle we classify, indicating an exponential increase

in the amount of data needed for generalization across the feature space. This technique

is recommended for path planning problems involving varied environments which require

multiple queries of the shortest distance path from a varied set of start and goal locations,

as our classifier has O(1) complexity scaling which leveraged with a fast convex optimizer,

which allows for finding shortest distance paths quickly.

In future work, we recommend learning for more obstacle types such as ellipses and inter-

secting obstacles. We also recommend comparing the full stack of neural network and convex

solver, to sampling based methods such as RRT*. We also recommend increasing the number

of obstacles and gauge the performance of this network design. Another recommendation

we make it to use a variety of distributions for generating data to get better coverage of

our feature space. We also recommend trying data augmentation by switching around the

feature columns in our dataset to increase the feature coverage of all our inputs. Lastly, we

recommend automating our initialization creation from classifier labels to gauge the speed

of our full stack solution.
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