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for multiple subgroups

Waverly Wei1, Maya Petersen1, Mark J van der Laan1, Zeyu Zheng2, Chong Wu3, Jingshen 
Wang1

1Division of Biostatistics, University of California, Berkeley, California, USA
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Abstract

In biomedical science, analyzing treatment effect heterogeneity plays an essential role in assisting 

personalized medicine. The main goals of analyzing treatment effect heterogeneity include 

estimating treatment effects in clinically relevant subgroups and predicting whether a patient 

subpopulation might benefit from a particular treatment. Conventional approaches often evaluate 

the subgroup treatment effects via parametric modeling and can thus be susceptible to model 

mis-specifications. In this paper, we take a model-free semiparametric perspective and aim to 

efficiently evaluate the heterogeneous treatment effects of multiple subgroups simultaneously 

under the one-step targeted maximum-likelihood estimation (TMLE) framework. When the 

number of subgroups is large, we further expand this path of research by looking at a variation 

of the one-step TMLE that is robust to the presence of small estimated propensity scores in finite 

samples. From our simulations, our method demonstrates substantial finite sample improvements 

compared to conventional methods. In a case study, our method unveils the potential treatment 

effect heterogeneity of rs12916-T allele (a proxy for statin usage) in decreasing Alzheimer’s 

disease risk.
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1 | INTRODUCTION

1.1 Motivation and our contribution

In biomedical studies with observational data, investigators often aim to assess the 

heterogeneity of treatment effects in subpopulations of patients. Such analyses may provide 

useful information for patient care and for future medical research. For example, existing 

studies suggest that statins—a class of commonly prescribed coronary artery disease 

(CAD) drugs for lowering low-density lipoprotein cholesterol concentration—may reduce 

Alzheimer’s disease (AD) risk in some, but not all population (Zissimopoulos et al., 2017). 

Understanding the heterogeneous treatment effects of statin usage may provide new insights 

for personalizing drug prescriptions to prevent AD.

In this paper, we aim to make valid inference on heterogeneous treatment effects in a 

user-supplied family of subgroups after adjusting for potential confounding factors with 

state-of-the-art machine learning algorithms. Motivated by our case study (Section 7), we 

work under the setting that the treatment and outcome variables are binary. The extension 

of our method to continuous outcomes is discussed in Web Appendix E.1. Our parameter 

of interest includes relative risk under a treatment versus a control in d pre-specified 

subgroups of interest: αRR = αRR, 1, …αRR, d
⊤, αRR, j = P Y 1 = 1 ∣ X ∈ Aj

P Y 0 = 1 ∣ X ∈ Aj
, j = 1, …, d, where 

P Y 1 = 1 ∣ X ∈ Aj) (or P Y 0 = 1 ∣ X ∈ Aj ) is the conditional expectations of the potential 

outcome under treatment (or control) evaluated in the subgroup Aj. We denote X ∈ ℝp as the 

potential confounders, and denote Aj j = 1
d  as pre-specified possibly overlapped subgroups. 

We work under the classical semi-parametric inference framework, in which we aim to make 

inference on the low-dimensional target parameter αRR in the presence of high-dimensional 

nuisance parameters (see Section 4.1 for rigorous statements).

In this context, two potential issues emerge when one evaluates the treatment effects for 

multiple subgroups. On the one hand, while a commonly used method is to serially divide 

individuals into subgroups based on relevant pre-treatment characteristics and then estimate 

the treatment effect in each subgroup with either the (augmented) inverse propensity score 

weighting (Rosenbaum & Rubin, 1983) or the targeted maximum-likelihood estimator 

(TMLE) (van der Laan & Rubin, 2006), this “one-group-at-a-time” approach can be 

computationally costly (see Section 3.1 for a concrete example). On the other hand, when 

the estimated propensity scores or subgroup proportions are close to zero or one in finite 

samples (a phenomenon referred to as “practical positivity violation” in Petersen et al., 

2012), such approaches can be numerically unstable due to the inverse propensity score or 

inverse subgroup proportion weights tending to infinity.

To address such potential issues, we work with a one-step TMLE that “targets” multiple 

subgroup treatment effects simultaneously. The so-called “targeting” step here involves 

fluctuating the initial plug-in estimator of the nuisance parameters in semiparametric models 

in directions which maximally adjust those initial estimates per change in the log-likelihood. 

Furthermore, we propose a variation of the one-step TMLE that not only targets multiple 

subgroups simultaneously but is also robust to the presence of small estimated propensity 

scores in finite samples. Deviating from the mainstream literature on the targeted learning, 
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we also look into the problem from an optimization point of view, where we further 

demonstrate that such a variation of the one-step TMLE can be viewed as a reparameterized 

dual formulation of the primal optimization problem (Web Appendix B).

From our theoretical investigations, we show that the proposed estimator for multiple 

subgroup treatment effects attains the semiparametric efficiency bound, and it converges 

in distribution to a multivariate Gaussian distribution when the sample size becomes 

large. This result thus allows us to construct valid simultaneous confidence intervals and 

develop powerful multiple testing procedures fully utilizing the joint dependence among 

the subgroup-specific test statistics. In addition to these large sample guarantees, through 

simulation studies, we demonstrate that the proposed estimator has substantial finite sample 

improvements relative to either applying the classical targeted learning approach (van der 

Laan & Rose, 2011) or the “double machine learning (DML)” frequently adopted in the 

econometrics literature (Chernozhukov et al., 2017). From an application point of view, 

leveraging the observational data collected from the UK Biobank study, we analyze the 

differential effects of inheriting rs12916-T allele (a proxy for statin usage) in decreasing AD 

risk across multiple subgroups.

1.2 | Related literature

The proposed method builds on the foundation of the targeted learning framework which is, 

broadly speaking, a meta-learning framework allowing various machine learning algorithms 

to enter the process of estimating desired target parameters (van der Laan & Rose, 2011). 

van der Laan and Rubin (2006) proposed the original version of TMLE, which uses 

maximum likelihood in a least favorable direction and then performs k-step updates using 

the estimated scores, in an effort to better estimate the target parameter. Zheng and van der 

Laan (2010) introduced the cross-validated TMLE, which relaxes the stringent Donsker 

condition via sample splitting for the initial estimation of the nuisance parameters. A 

recent advancement in the targeted learning framework is the one-step TMLE (van der 

Laan & Gruber, 2016), which adopts a “universal least favorable submodel” to avoid 

excessive data fitting in the locally least favorable submodel. In terms of estimating a 

vector of multi-dimensional parameters with TMLE, seminal works by van der Laan 

and Rose (2011) and van der Laan and Gruber (2016) develop a universal canonical one-

dimensional submodel such that the one-step TMLE, only maximizing the log-likelihood 

over a univariate parameter, solves the multivariate efficient influence curve equation. A 

recent work (Levy et al., 2021) adopts this general TMLE approach for estimating the 

variance of the stratum-specific treatment effect functions. We also note that the general 

strategy of TMLE that targets multi-dimensional parameters have also been discussed for 

estimating survival curves (see, e.g., van der Laan and Rose 2018, Chap. 5).

Our proposal contributes to the semiparametric statistics literature. Early work on 

semiparametric statistics (Newey, 1990) provides general efficiency results for the 

development of semiparametric estimators. Based on these efficiency results, Robins and 

Rotnitzky (1992) proposed a general estimating equation approach that solves for the 

parameter of interest by setting the efficient score equations to zero. The estimating equation 

approach is further discussed in van der Laan and Robins (2003). Bickel et al. (1993) 
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developed a one-step estimator that adds the empirical average of the efficient influence 

function to an initial estimator. Van der Vaart (2000) discussed the use of maximum 

likelihood estimator and parametric submodel in semiparametric estimation.

Our work is also tied to the literature on heterogeneous treatment effect estimation in 

causal inference. Different from our parameter of interest, Chernozhukov and Semenova 

(2018), building on the debiased DML framework (Chernozhukov et al., 2017), proposed 

to estimate the average treatment effect conditional on a small subset of the potential 

confounders. Künzel et al. (2019) proposed meta-learning frameworks that estimates the 

average treatment conditional on all possible confounders. Unlike our approach, which 

efficiently evaluates the treatment effects in pre-specified subgroups, Imai and Ratkovic 

(2013) formulated the problem on heterogeneous treatment effect identification from a 

variable selection perspective. In this thread on heterogeneity identification, VanderWeele et 

al. (2019) provided a nice overview of subgroup selection problems encountered in practice.

2 | CAUSAL FRAMEWORK AND IDENTIFICATION

Let Oi i = 1
n = Y i, T i, Xi i = 1

n  be an independent and identically distributed (i.i.d.) random 

sample of the observed binary response variable Y , the treatment indicator variable T , 

and potential confounders X ∈ ℝp. In accordance with the Neyman-Rubin causal model 

(Neyman, 1923; Rubin, 1974), we define the potential outcome Y T  as the outcome 

we would have observed under the treatment assignment T . The observed outcome is 

thus the potential outcome variable corresponding to the received treatment, that is, 

Y = TY 1 + 1 − T Y 0 . This framework allows us to characterize the multi-subgroup 

disease risk under different treatment arms as: αt = αt, 1, …αt, d
⊤, αt, j = P Y t = 1 ∣ X ∈ Aj ,

t ∈ 0, 1 , j = 1, …, d, where Aj denotes a pre-specified subgroup j. Here, we allow different 

subgroup to overlaps, and we assume that the variables used to define the subgroups 

of interest are based on X. When comparing disease risks between two treatment arms, 

our framework allows practitioners to estimate three popular causal effect measures: 

relative risk, odds ratio, and absolute risk difference, across different subgroups, defined as 

αRR = αRR, 1, …αRR, d
⊤, αRR, j = α1, j/α0, j, αOR = αOR, 1, …, αOR, d

⊤, αOR, j = α1, j/ 1 − α1, j / α0, j/ 1 − α0, j , 

and αARD = α1,1 − α0,1, …, α1, d − α0, d  (Section 3.3).

The three causal quantities described above are not observable because the potential 

outcomes are subject to missingness, meaning that for each individual we observe either 

the potential outcome under the control, Y 0 , or the potential outcome under the treatment, 

Y 1 , but never both. Following the mainstream literature in causal inference, we impose the 

unconfoundedness, positivity, and stable unit treatment value assumptions (SUTVA) below 

to identify our causal parameters of interest:

Assumption 1

(Unconfoundedness). Conditional on X, the treatment assignment is as good as random, that 

is, T ⊥ Y 1 , Y 0 ∣ X.
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Assumption 2

(Positivity). For any x ∈ X, t ∈ 0, 1 , there exists a constant c ∈ 0, 1  such that 

c < P T = t ∣ X = x, X ∈ Aj < 1 − c and c < P Aj < 1 − c, for j = 1, …, d.

Assumption 3

(SUTVA). If unit i receives treatment T i, the observed outcome Y i equals the potential 

outcome Y i T i , meaning that the potential outcome for unit i under treatment T i is unrelated 

to the treatment received by other units.

Under Assumptions 1–3, we are able to identify αt, j as 

αt, j = P Y 1 = 1 ∣ X ∈ Aj = EX P Y = 1 ∣ T = t, X ∈ Aj . Here, by “identify” we mean that 

under Assumption 1, the causal effect involving unobserved potential outcomes can be first 

written as a function of observed data. Then, within an i.i.d. sample Y i, T i, Xi i = 1
n , under 

Assumptions 2 and 3, the causal parameter can be estimated (or point identified) at a regular 

parametric root-n rate (Khan & Tamer, 2010).

Notation. We use P  to denote the probability operator and E to denote the expectation 

operator. We use capitalized letters to denote random variables, for example, T , and lower-

case letters to denote the realizations of random variables, for example, t. For t ∈ 0, 1 , 

we denote pt X = P Y = 1 ∣ T = t, X  as the conditional probability of Y = 1 given T = t
and X . et X = P T = t ∣ X  denotes the conditional probability of T = t given X. Lastly, we 

define expit (x) = 1
1 + e−x  and logit(x) = log x

1 − x .

3 | MULTIPLE SUBGROUP TARGETED LEARNING

In this section, to simplify presentation, we first introduce our method on estimating the 

conditional average risk αt for group t ∈ 0, 1  and defer the estimation for other causal 

parameters to Section 3.3 and Web Appendix E.2. We shall review the classical one-step 

TMLE (van der Laan and Gruber, 2016) in a single subgroup case, followed by discussing 

its limitations when naively generalizing it to the multi-subgroup case. We then introduce 

the one-step TMLE that directly targets the multi-subgroup treatment effects simultaneously.

3.1 | Limitation of the classical one-step targeted maximum-likelihood estimator

To estimate αt, a natural choice is to apply the one-step TMLE in each subgroup separately. 

For a subgroup j, one-step TMLE starts with some initial estimates of pt(X) and et(X) using 

the observations in the subgroup Aj, denoted as p̂tj
Init(X) and êtj(X). These initial estimates 

can be obtained from any state-of-the-art machine learning methods-such as random forest, 

gradient boosting (Breiman, 2001), or highly adaptive lasso (HAL) (Benkeser and van 

der Laan, 2016)-as long as they are not too far away from the target estimands (see 

Assumption 5 in Section 4.1 for rigorous specifications). Within a random sample, because 

p̂tj
Init(X) and êtj(X) may substantially deviate from the truth, the targeted learning approach 

identifies a correction term, ε̂ ⋅ Ŝtj(X), that pushes the initial estimates to “concentrate/target” 

on the estimand: p̂tj Xi = expit(logit p̂tj
Init Xi + ε̂ ⋅ Ŝtj Xi ), Ŝtj Xi = 1 Xi ∈ Aj

P̂ Aj

1 T i = t
êtj Xi

. Here, 
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P̂ Aj = ∑i = 1
n 1 Xi ∈ Aj

n , ε̂ captures the magnitude of the correction Ŝtj Xi  (so-called clever 

covariate in van der Laan and Rubin (2006)), and it is the estimated coefficient of Ŝtj Xi  in 

the logistic regression:

Y i ∼ logit p̂tj
Init Xi + εŜtj Xi , i ∈ Atj,

(1)

that regresses Y i on logit p̂tj
Init Xi  and Ŝtj Xi  with a fixed coefficient 1 for logit p̂tj

Init Xi . 

Here, Atj = Aj ∩ i:T i = t  contains the subjects with T i = t in the subgroup Aj. After 

this one-step correction, the final estimate α̂t, j
one‐step takes the empirical average of 

p̂tj Xi : α̂t, j
one‐step = 1

ntj
∑i = 1

n p̂tj Xi , where ntj is the cardinality of the set Atj. The regression 

problem defined in Equation (1) is the essence of the one-step TMLE. Such a regression 

problem adaptively learns the difference between p̂tj
Init ⋅  and ptj ⋅  from the data, aiming to 

find an ε̂ that locally improves the empirical fit of the initial estimator p̂tj
Init ⋅ . We choose ε̂

in a data adaptive fashion because when the initial estimate of the conditional probability is 

identical to the true conditional probability, we hope to set ε̂ = 0. It is only when the initial 

estimate p̂tj
Init ⋅  drifts away from ptj ⋅ , ε̂ accounts for their difference and updates p̂tj

Init( ⋅ )
accordingly. Furthermore, because our goal is to estimate αt, j, the clever covariate Stj Xi

specifies the updating direction of the initial estimator that yields a maximal change (or 

maximal information gain) in the target parameter. Benefiting from such an update, the final 

estimator α̂t, j
one‐step attains the semiparametric efficiency bound under the regularity conditions 

in Section 4.1. In addition, because the one-step TMLE applies an “expit” transformation on 

the sum of logit p̂tj
Init Xi  and the inverse propensity score, the estimated conditional risk α̂t, j

one‐step

never falls out of the range between 0 and 1 regardless of how small êtj( ⋅ ) is (Section 6.2).

Nevertheless, naively carrying out the above procedure one subgroup at a time can be 

computationally inefficient in the presence of many subgroups. In a simple comparison 

provided in Table 1, our proposed estimator directly targeting the multi-subgroup parameter 

αt as a whole improves the computational speed by about 35% compared to this one-group-

at-a-time approach, when the initial estimator p̂tj
Init( ⋅ ) and the estimated propensity scores 

êtj( ⋅ ) are obtained via GLMs.

3.2 | One-step targeted maximum-likelihood estimation targeting multiple subgroups

3.2.1 | Procedure overview—To avoid the discussed potential problems of the 

conventional one-step TMLE, we amend the one-step TMLE estimator so that it directly 

targets αt. A natural idea is to replace the univariate clever covariate with a multi-

dimensional vector of clever covariates (Ŝt1 Xi , …, Ŝtd Xi )⊤ in the logistic regression

Y i ∼ logit pt
Init Xi + ∑

j = 1

d
εt, j ⋅ Stj Xi , i ∈ i:T i = t ,

(2)
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where Ŝtj Xi = 1 Xi ∈ Aj

P̂ Aj

1 T i = t
êt Xi

. Note that here we generate the initial estimates p̂t
Init Xi  and 

êt Xi  with the entire available sample. We then construct the estimator for αt with

αt
one − step = 1

nt1
∑

i = 1

n
pt1 Xi , …, 1

ntd
∑

i = 1

n
ptd Xi

⊤
,

(3)

where p̂tj Xi = expit(logit p̂t
Init Xi + ε̂t, j ⋅ Ŝt, j Xi ).

In the presence of multiple subgroups with large d, we may observe small P̂ Aj  or êt Xi

within a random sample. In this situation, given that P̂ Aj  and êt Xi  enter the regression 

problem in Equation (2) as denominators, the above procedure can potentially produce 

numerically unstable estimates, which may inflate the variance of α̂t
one‐step. We hope to further 

robustify the above procedure by considering a simple variation, where we shall also 

demonstrate that the algorithm proposed below is a reparameterized dual problem of the 

above (primal) problem defined in Equation (2) (see Web Appendix B for details). Our 

proposed procedure operates as follows, for each iteration k,

Y i ∼ logit p̂t
k − 1 Xi + γSt

k − 1 Xi ,

p̂t
(k) Xi = expit logit p̂t

(k − 1) Xi + γ̂(k) ⋅ St
(k − 1) Xi

i ∈ i:T i = t , k = 1, … , K,

,

(4)

where γ̂(k) is the estimated regression coefficient obtained in the logistic regression (4). 

p̂t
(1) Xi  denotes the initial estimate. p̂t

(k − 1) Xi  denotes the estimate from the previous iteration, 

and St
(k − 1) Xi  is the customized “clever covariate” that directly targets αt:

St
(k − 1) Xi = j = 1

d 1 Xi ∈ Aj

P̂ Aj

1 T i = t
êt Xi

⋅ l = 1
n ϕ̂j

(k − 1) Y l, T l, Xl

j = 1

d
l = 1
n ϕ̂j

(k − 1) Y l, T l, Xl
2

,

(5)

where ϕ̂j
(k − 1) Y i, T i, Xi = 1 Xi ∈ Aj

P̂ Aj

1 T i = t
êt Xi

Y i − p̂t
(k − 1) Xi . The intuition of St

(k − 1) Xi  shall be 

explained in the next section. When the maximum number of iterations K is reached or when 

γ̂ is sufficiently close to 0, we take the final estimate p̂t Xi = p̂t
(K) Xi  and estimate αt again 

with:

α̂t = i ∈ A1 p̂t Xi

nt1
, …, i ∈ Ad p̂t Xi

ntd

⊤
,

(6)
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where ntj = ∑i = 1
n 1 T i = t 1 Xi ∈ Aj  denotes the subgroup j’s sample size in the arm t. We 

refer to the estimator in Equation (6), which is obtained from Equation (4), as the iterative 

version of the one-step TMLE (iTMLE) targeting multiple subgroups of interest.

3.2.2 | Intuitive explanation of our proposal—Note that although the proposed 

estimators in Equations (3) and (6) are asymptotically equivalent as n ∞, we provide some 

heuristic explanations of the benefits of adopting our procedure defined in Equation (4) 

compared to the procedure defined in Equation (2) in finite samples.

First, given that the performance of the one-step TMLE defined by Equation (2) depends on 

the initial estimator p̂t
Init Xi , our revised procedure in Equation (4) works with an improved 

initial estimator in each iteration. Concretely, in Equation (4), the initial estimator entering 

each iteration is constantly being updated, leading to increased estimation efficiency 

and reduced estimation bias compared to the procedure defined in Equation (2). Such 

improvements can be rather prominent in finite samples (see Web Appendix H.1 for 

simulation comparisons).

Second, the form of the clever covariate St Xi  in Equation (4) may have the added 

benefit of being robust to the presence of small estimated propensity scores, because the 

estimated propensity scores only enter the estimation process after being self-normalized 

in St Xi . Small propensity scores are often encountered in datasets with unbalanced 

covariate distribution across the treatment and control groups. Such an imbalance can lead to 

conventional estimators having substantial biases and large variances (Petersen et al., 2012). 

Many numerical studies have found that similar self-normalization of propensity scores 

provides much more stable estimates of the treatment effects in finite samples (Hájek, 1971). 

While the original formulation of the primal problem in Equation (2) involves a sum over d
inverse propensity score weighted clever covariates, its performance can be sensitive to the 

presence of small propensity scores in finite samples. Even though the estimator obtained 

by Equation (4) and the estimator obtained by Equation (2) are asymptotically equivalent, 

the estimator obtained by Equation (4) may have finite sample improvements when the 

estimated propensity scores are small (see Web Appendix B for discussion).

Third, the estimator obtained from Equation (4) not only remains semi-parametric efficient 

and “doubly robust, (DR)” but also solves the direct sample analogue of the efficient 

influence function. To see why it is semiparametric efficient, we set the derivative of the 

objective function of the logistic regression in Equation (2) with respect to ε to zero, which 

reduces to (see Web Appendix F for detailed derivations)

∑
j = 1

d 1
n ∑

i = 1

n 1 Xi ∈ Aj

P Aj

T i
e t Xi

Y i − pt Xi

2
= 0.

(7)

This indicates that our estimator α̂t = α̂t, 1, …, α̂t, d
⊤ solves the direct sample analogue 

of the efficient influence function: 1
n ∑i = 1

n 1 Xi ∈ Aj

P̂ Aj

T i
êt Xi

Y i − p̂t Xi + p̂t Xi − α̂t, j = 0, 
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j = 1, …, d. Therefore, it attains the semiparametric efficiency bound (Bickel et al., 1993) 

under appropriate conditions imposed on the nuisance parameter estimators (Theorem 

1). Regarding the “doubly robustness,” for any model-based estimators êt( ⋅ ) and p̂t( ⋅ ), 
our estimator combines regression imputation and inverse propensity score weighting, 

and remains consistent if either the model et( ⋅ ) or pt( ⋅ ) is misspecified (see Section 6.2 

for simulation results). We provide further heuristic explanations of the TMLE from a 

semiparametric inference point of view in Web Appendix C.

3.3 | Extension to relative risk, odds ratio, and absolute risk difference estimations

Given that α1 and α0 are the building blocks of the multi-subgroup relative risk 

and odds ratio, estimation for these two parameters of interest largely follows our 

proposal in Section 3.2. The iterative version of the one-step TMLE needs a slight 

modification in that at each iteration k, we adopt the following logistic regression problem: 

Y i ∼ logit(p̂ k − 1 T i, Xi ) + γ1S1
(k − 1) Xi + γ0S0

(k − 1) Xi , k = 1, …, K, and perform the updating 

as p̂(k) T i, Xi = expit(logit(p̂(k − 1) T i, Xi ) + γ̂1
(k) ⋅ S1

(k − 1) Xi + γ̂0
(k) ⋅ S0

(k − 1) Xi . Then, we estimate 

αRR, αOR, and αARD with α̂RR = α̂1,1
α̂0, 1

, …, α̂1, d
α̂0, d

, α̂OR = α̂1,1
1 − α̂1,1

/ α̂0, 1
1 − α̂0, 1

, …, α̂1, d
1 − α̂1, d

/ α̂0, d
1 − α̂0, d

,  and 

α̂ARD = α̂1,1 − α̂0, 1, …, α̂1, d − α̂0, d

As for constructing simultaneous confidence intervals, we apply the Delta method on 

α1, α0  to estimate the sample covariance matrices of the relative risk and the odds ratio 

estimators following a recipe similar to Section 5. To avoid redundancy, we leave the 

detailed descriptions to Web Appendix E.2.

4 | THEORETICAL INVESTIGATIONS

4.1 | Regularity conditions

In this section, we introduce additional notation and assumptions adopted in the theoretical 

results. Recall that Oi i = 1
n : = Y i, T i, Xi i = 1

n  are i.i.d. random variables defined on the space 

O with respect to a probability measure P . If ℱ is a collection of real-valued functions 

defined on O, we assume that Pf = ∫ f dP  exists for each f ∈ ℱ. Note that such a notation 

can be more helpful as it allows us to conveniently work with random functions.We use 

EX f(X)  to denote the expectation taken with respect to the random variable X when it is 

more convenient to simplify notation. Given the probability measure P , our target parameter 

αt can also be written as a statistical function of P , denoted as αt(P ). Let ℋ be a convex set 

of functions such that the true nuisance parameter η0 ≜ e(x), p1(x), p0(x), P A1 , …, P Ad ∈ ℋ. 

Let ℋn ⊂ ℋ denote the nuisance estimator realization set, that is, the estimator of the 

nuisance parameters satisfy η̂ = (êt(x), p̂1(x), p̂0(x), P̂ A1 , …, P̂ Ad ) ∈ ℋn.

Let c, q, and C be fixed strictly positive constants, where q > 2. Let ξn n = 1
∞  and Δn n = 1

∞

be sequences of positive constants approaching 0. Denote the lq-norm with respect to a 

probability measure P  as ∥ ⋅ ∥P , q, for example, ∥ f(X) ∥P , q : = ∫ f(x) qdP (x)
1/q

. For o ∈ O, 

we define φt o; αt, η0 ≜ φt, 1, …, φt, d
⊤ as the vector of the efficient influence function for 
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estimating αt, φRR o; αRR, η0 ≜ φRR, 1, …, φRR, d
⊤ as the vector of the efficient influence function 

for estimating αRR, φOR o; αOR, η0 ≜ φOR, 1, …, φOR, d
⊤ as the vector of the efficient influence 

function for estimating αOR, and φARD o; αARD, η0 ≜ φARD, 1, …, φARD, d
⊤ as the vector of the 

efficient influence function for estimating αARD, where for j = 1, …, d,

φt, j ≜ φt, j o; αt, η0 = 1 x ∈ Aj
P Aj

y − p1(x) 1 (T = t)
et(x) + pt(x) − αt, j ,

(8)

φRR, j ≜ φRR, j o; αRR, η0

= 1 x ∈ Aj
P Aj

1
α0, j

y − p1(x) t
e1(x) + p1(x) − α1, j

(9)

+ α1, j

α0, j
2

1 − t
e0 x y − p0 x + p0 x − α0, j ,

φOR, j ≜ φOR, j o; αOR, η0

= 1 x ∈ Aj
P Aj

1 − α0, j

α0, j 1 − α1, j
2

y − p1(x) t
e1(x) + p1(x) − α1, j

(10)

− α1, j

α0, j
2 1 − α1, j

1 − t
e0 x y − p0 x + p0 x − α0, j .

φARD, j ≜ φARD, j o; αARD, η0

= 1 x ∈ Aj
P Aj

y − p1 x t
e1 x + p1 x − α1, j

− 1 − t
e0 x y − p0 x + p0 x − α0, j .

(11)

Assumption 4.—The function class φ o; αt, η , η ∈ ℋ  is a Donsker class.

Assumption 5.—The nuisance parameter estimator η̂ satisfies that 

supη ∈ ℋn ∥ η − η0 ∥2 = oP(1) and ∥ ê(X) − e(X) ∥P , 2 × ∥ p̂t(X) − pt(X) ∥P , 2 ≤ ξnn−1/2 holds with 

probability 1 when n tends to infinity.

Assumption 4 assumes the Donsker class condition for the class of efficient influence 

functions. This Donsker class condition can be weakened by conducting cross-fitting (see 

Web Appendix G.1 for implementation details) and at the expense of more complicated 

proofs (see Zheng & van der Laan 2010, for example). Additionally, Benkeser and van 
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der Laan (2016) proposed the HAL estimator which guarantees n-rate of convergence 

in the initial estimation step. Assumption 5 imposes regularity conditions on the nuisance 

parameter estimator. The second part in Assumption 5 bounds the product of errors of the 

nuisance parameter estimators p̂t(X) and ê(X).

4.2 | Properties of the proposed estimator

In this section, we introduce the main theoretical results and some necessary notation. Recall 

that Oi i = 1
n : = Y i, T i, Xi i = 1

n  is an i.i.d. random sample defined on the space O with respect 

to a probability measure P . Denote o = (y, t, x) as a realized data point, o ∈ O.

Theorem 1.—Under Assumptions 1–5, we define the vector of the efficient influence 

function φt = φt, 1, …, φt, d
⊤, where φt, j is the efficient influence function (as given in Equation 

(8)) measured at a realized data point o = (y, t, x) for the subgroup j. The error of the 

proposed conditional risk estimator α̂t = αt, 1, …, αt, d
⊤ ∈ ℝd, after scaling by n, converges to 

a multivariate Gaussian random variable with mean 0 and covariance matrix P φtφt
⊤  when 

n ∞, that is, n α̂t − αt N 0, P φtφt
⊤ . (See the precise definition of φt, j in Section 4.1).

Theorem 1 says that our conditional risk estimator converges in distribution to a 

multivariate Gaussian distribution. For any subgroups under consideration, the variance 

of our conditional risk estimator attains the semiparametric efficiency bound. Theorem 1 

also justifies the validity of the simultaneous confidence interval provided in Equation (13) 

to be presented in Section 5. Derivations of the efficient influence functions for relative 

risk, odds ratio and absolute risk difference estimators are provided in Web Appendix 

A.3. We summarize the large sample properties of αRR, αOR, and αARD in Proposition 1, 

which demonstrates that the variance of the proposed causal effect estimators attains the 

semiparametric efficiency bound. The proof of the proposition below can be found in Web 

Appendix A.

Proposition 1.—Under Assumptions 1–5, define the vector of the efficient 

influence function φRR = φRR, 1, …, φRR, d
⊤, the vector of the efficient influence 

function φOR = φOR, 1, …, φOR, d
⊤, and the vector of the efficient influence 

function φARD = φARD, 1, …, φARD, d
⊤, where φRR, j, φOR, j, and φARD, j are the efficient 

influence functions (as given in Equations (9)–(11)) measured at a 
realized data point o = (y, t, x). The proposed causal effect estimators satisfy 
that as n ∞, n α̂RR − αRR N 0, P φRRφRR

⊤ , n α̂OR − αOR N 0, P φORφOR
⊤  and 

n α̂ARD − αARD N 0, P φARDφARD
⊤  (See the precise definitions of φRR, j, φOR, j, and φARD, j in 

Section 4.1).

5 | SIMULTANEOUS CONFIDENCE INTERVALS

To construct a level-q confidence interval for a single subgroup j, we work with 

α̂t, j ± Φ−1(1 − q/2) ⋅ ( Σ̂t, jj
n )

1/2
, where Σ̂t is the estimated covariance matrix with
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Σ̂t = (Σ̂t, jk)j, k = 1
d = 1

n i = 1

n
φ̂t, iφ̂t, i

⊤ , φ̂t, i

= φ̂t, 1 Y i, T i, Xi , …, φ̂t, d Y i, T i, Xi
⊤,

φ̂t, j Oi = 1
n i = 1

n 1 Xi ∈ Aj

P̂ Aj

T i
êt Xi

Y i − p̂t Xi + p̂t Xi − αt, j .

(12)

To construct a simultaneous level-q confidence interval though, let κ̂ q, Σt  be a consistent 

estimate of the (1 − q)th quantile of maxj ∈ 1, …, d Zj , where Z1, …, Zd
⊤ ∼ N 0, Σt  with 

Σt = Σt, jk j, k = 1
d

 and Σt, jk = Σ̂t, jk

Σ̂t, jjΣ̂t, kk
. Then, the constructed simultaneous confidence interval 

satisfies

lim
n ∞

P α̂t, j ± κ̂ q, Σt ⋅ Σ̂t, jj
n

1/2
, j = 1, …, d = 1 − q .

(13)

Such a simultaneous confidence interval ensures that all the confidence intervals cover the 

corresponding true subgroup parameter at the same time.

6 | SIMULATION STUDIES

To demonstrate the merit of the proposed method (iTMLE), we compare it with some 

conventional estimators under overlapping and non-overlapping subgroups cases. We 

compare the proposed method with a DR estimator and a generalized linear model estimator 

(GLM), and we compare the cross-fitted version of iTMLE with the DML method, since 

DML also utilizes cross-fitting. Before we present our simulation results, we summarize two 

main takeaways from the simulation studies for our readers: (1) the proposed method has 

smaller bias, smaller variance, and lower family-wise error rate (FWER) compared to the 

considered estimators in finite samples. Recall that FWER refers to the probability of at least 

one constructed simultaneous confidence interval excluding the truth; (2) with cross-fitting, 

the proposed method shows enhanced finite sample performance in terms of smaller bias 

than the implementation without cross-fitting.

We measure the performance of various estimators according to their n-scaled biases 

(computed as the root-n sum of mean differences between the Monte Carlo estimates and the 

true parameter across multiple subgroups), standard deviations (computed as the root-n sum 

of standard deviations of the Monte Carlo estimates across multiple subgroup), and FWER 

(computed as the proportion of Monte Carlo samples in which at least one constructed 

confidence interval for multiple subgroups excluding the truth). We scale the bias and 

variance by the sample size as they converge to zero as n goes to infinity.
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6.1 | Simulation design

Our simulation design mimics observational studies where treatments are assigned based on 

covariates. We simulate 1000 random Monte Carlo samples from: 

X = X1, …, X5
⊤ ∼ N(0, Σ), Σij = 0.5 i − j , T ∼ Bernoulli(expit X1 − 0.5 ⋅ X2 + 0.25 ⋅ X3 + 0.1 ⋅ X4

, and Y ∣ T , X ∼ Bernoulli(expit(21 + T + 27.4 ⋅ X1 + 13.7 ⋅ X2 + 13.7 ⋅ X3 + 13.7 ⋅ X4 ). We 

consider this specific simulation design because the design has been frequently adopted in 

the causal inference literature (see Imai & Ratkovic, 2014, for example). This enables us to 

better compare our approach with existing methods. Kindly pointed out by an anonymous 

reviewer, the above simulation design produces rather deterministic outcomes, and we thus 

provide additional simulation results under an alternative simulation design in Web 

Appendix H.3. We consider two types of subgroups: overlapping subgroups and non-

overlapping subgroups. Overlapping subgroups with moderate d, d = 4, are generated by 

A1 = X1 > Φ−1(0.1) , A2 = Φ−1(0.1) < X2 < Φ−1(0.9) , A3 = X3 + X4 > − 2 , 

A4 = 1X4 > 0.5 > − 1 . Non-overlapping subgroups with large d, d = 10, are generated by 

Aj = QX1(j/10) < X1 < QX1((j + 1)/10) , j = 1, …, 10. For simplicity, in the following 

simulation studies, the considered parameter is α1 = α1,1, …, α1, d
⊤.

6.2 | Comparison with conventional estimators

We generate initial estimates of et( ⋅ ) and pt( ⋅ ) through logistic regression, random 

forest, or gradient boosting, implemented in R packages stats, ranger (Wright 

et al., 2020), and xgboost (Chen et al., 2019). We compare the iTMLE with 

the DR estimator, a simple regression adjustment estimator, and the inverse 

propensity score estimator, which are defined as α̂t, j
DR = 1

nj
∑i ∈ Aj [ T i

ê̂t Xi
Y i − p̂t

Init Xi + p̂t
Init Xi ], 

α̂t, j
GLM = 1

nj
∑i ∈ Aj p̂t

Init Xi , α̂t, j
IPW = 1

nj
∑i ∈ Aj

T i
êt Xi

Y i. Simultaneous confidence intervals for these 

estimators are constructed using standard large sample theory adopted in the literature (see 

Hahn 1998 for the DR estimator and van der Wal and Geskus 2011 for the IPW estimator). 

We provide finite-sample comparisons in Figure 1(A)–(C) for overlapping subgroups and 

Figure 1(D,E) for non-overlapping subgroups. As the IPW estimator has much larger 

variance than the other estimators, we exclude its results from these figures. From Figure 1, 

we observe that the iTMLE estimator out performs the others for bias, standard deviation, 

and FWER, regardless of how e1( ⋅ ) and p1( ⋅ ) are estimated initially. This is in-line with our 

theoretical results because the proposed estimator consists of a data-adaptive bias correction 

term which largely improves its finite sample performance. In addition, among all three 

initial estimators, random forest seems to be a winner.

6.3 | Comparison with the double machine learning

In this part of the simulation study, we compare the performance of the cross-validated 

version of iterated one-step TMLE for multiple parameters with the DML method 

(Chernozhukov et al., 2017). DML also involves the estimations of the propensity score 

model and the conditional mean model, and it is a meta-learning method that relies on 

Neyman orthogonal score and cross-fitting to generate debiased estimates for the causal 

estimands. The simulation results of the three-fold cross-validated iTMLE and DML 
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(implemented with the R package DoubleML (Bach et al., 2021)) are presented in Figure 2. 

There are two takeaways from the summarized results in Figure 2. First, the performance of 

CV-iTMLE surpasses DML. Although DML is rather robust compared to the DR estimator, 

it still yields larger bias and variance than CV-iTMLE. Second, compared to the iTMLE 

implementation without cross-fitting (Figure 1), CV-iTMLE shows a faster convergence 

rate. We conjecture that the sample splitting step allows the non-parametric estimators in 

the initial stage to converge faster and thus shows more robust performance (smaller bias, 

smaller standard deviation, and smaller FWER).

7 | CASE STUDY IN UK BIOBANK DATA

Statins are the most commonly prescribed cholesterol-lowering medications in the United 

States. Cholesterol’s role in β-amyloid processing and the potential link between serum 

cholesterol levels and AD pathology (Reed et al., 2014) have led to the argument that 

cholesterol-moderating drugs such as statins could reduce the risk of AD onset. However, 

this argument is controversial by current evisdence. Several cohort studies found a negative 

association between statin usage and AD (Zissimopoulos et al., 2017), while others have 

failed to replicate those findings. These inconsistent findings might be due to the effect of 

statins on AD varying across sex, age, and other subgroups (Zissimopoulos et al., 2017). 

Thus, we hypothesize that statin usage has significant benefits of reducing AD risk in 

some (butnotall) subgroups. To test this hypothesis, we analyzed data in the UK Biobank 

to investigate the heterogeneous treatment effect of inheriting rs12916-T allele, a proxy 

for statin usage, on AD risk in the White British subpopulations. We considered a cross-

sectional study design by looking at the disease prevalence at the end of year 2021.

7.1 | Study design

The UK Biobank study recruited 502,536 participants aged from 40 to 69 years in the 

United Kingdom from 2006 to 2010.WedefinedADstatusbyintegratinginformationprovided 

by Hospital Episode Statistics, death registries, and self-reported diagnoses (see details in 

Web Appendix I.1). We restricted our study to 293,929 White British individuals. These 

individuals are unrelated and had passed standard quality control steps.

Instead of directly adopting statin usage as a treatment variable, we adopted a genetic 

variant rs12916-T as a surrogate treatment variable. This means that if the subject carries 

the variant rs12916-T, the treatment indicator variable is set to be T = 1; otherwise, T is 

set to be zero. We adopted this genetic surrogate biomarker as the treatment variable for 

two reasons. On the one hand, the rs12916-T allele only affects the Low-density lipoprotein 

(LDL) cholesterol concentration through HMGCR inhibition, and it is thus functionally 

equivalent to statin usage (Swerdlow et al., 2015; Guo et al., 2022). More specifically, the 

decreased LDL cholesterol level associated with statin usage is similar to the association 

pattern with rs12916-T (R2 = 0.94) (Würtz et al., 2016), thus rs12916-T is a sensible 

surrogate treatment variable for statin usage. On the other hand, given that genetic variants 

are randomly inherited from parents, our treatment variable (whether or not the individual 

carries rs12916-T) is thus independent of unmeasured confounding factors such as lifestyle 

modifications after statin usage, potentially making Assumption 1 more plausible.
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To account for genetic pleiotropy, we adjusted for 385 single-nucleotide polymorphism 

(SNPs) that are associated with LDL (Web Appendix I.1). We further adjusted for age and 

sex variables, which may improve estimation efficiency given their associations with the 

outcome. We investigated the effect of inheriting rs12916-T allele on AD risk in(1)males,

(2)females,(3)age< 65years,(4)age≥ 65 years, (5) individuals with high AD genetic risk, and 

(6) individuals with low AD genetic risk. Notably, “high AD genetic risk” was defined as 

either a subject’s parents or siblings being diagnosed with AD, while “Low AD genetic 

risk” was defined as neither a subject’s parents nor siblings being diagnosed with AD. We 

compared the performance of CV-iTMLE with the DML and the GLM methods. We used 

the random forest as our first-stage estimator as it provides the most robust results in our 

simulation studies. Because statin usage may increase the risk of T2D (Swerdlow et al., 

2015), as a secondary analysis, we investigated the effect of inheriting rs12916-T allele on 

T2D to evaluate the potential heterogeneous side effects. The study design and results of this 

secondary analysis can be found in Web Appendix I.2.

7.2 | Results

Figure 3 summarizes the effect of inheriting rs12916-T (a proxy for statin usage) on AD 

risk in considered subgroups. As the GLM was applied to each subgroup separately and the 

sample size was much smaller, leading to non-significant associations for all the subgroups. 

The DML method also did not find any significant effects in all subgroups. This might be 

caused by small estimated propensity scores, leading to large variability in finite samples. 

In contrast, by targeting all subgroups simultaneously, the proposed method suggested that 

carrying rs12916-T allele is protective against AD in the subgroup younger than 65 (RR: 

0.92, 95% CI: 0.86–0.98). In sum, our proposed method showed shortened confidence 

intervals with improved statistical power in detecting significant subgroups, while the GLM 

and DML methods tend to lose power.

We acknowledge that the study design has potential limitations. First, our study only 

investigated the treatment effect of carrying rs12916-T allele or not. Although this genetic 

variant is a sensible proxy for statin usage, the findings from this study need to be 

interpreted cautiously. Second, our study was based on UK Biobank participants who were 

healthier than the general population. Thus, our findings may not be generalizable to other 

populations.

8 | DISCUSSION

In this paper, we propose a semiparametric efficient method for simultaneous heterogeneous 

treatment effect estimation across multiple subgroups. The proposed method allows us 

to construct a powerful multiple testing procedure leveraging the subgroup dependence 

structure. In our empirical studies, the proposed method demonstrates finite sample 

improvements compared to other conventional methods. This paper opens various 

possibilities for future research. Our current method can be extended to work with 

other types of outcomes. For continuous outcomes, one can either modify the updating 

step (Gruber & van der Laan, 2010), or dichotomize a continuous outcome into binary 

values (Web Appendix E.1). In addition, our current method defines subgroups using 
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observed confounders not only because we are interested in understanding the treatment 

effect heterogeneity based on patient observed confounders, but also because under the 

unconfoundedness assumption, defining subgroups based on observed confounders enables 

us to more directly identify subgroup treatment effects. Defining subgroups based on other 

types of variables (including mediators, instrumental variables, and exogenous variables) 

are also plausible but the identification condition may subject to change. We have provided 

more discussions in Web Appendix E.3s.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Comparison of bias, standard deviation (scaled by root-n), and (1-FWER) in overlapping 

and non-overlapping subgroups. “iTMLE” denotes the proposed estimator. “DR” denotes 

the doubly robust estimator. “GLM” denotes the generalized linear models. The maximum 

Monte Carlo standard error of (1-FWER) is 0.026 for iTMLE, 0.028 for DR, and 0.022 

for GLM. “The maximum Monte Carlo standard error of (1-FWER)” refers to the largest 

standard error of (1-FWER) (out of all three considered estimators for the propensity score 

and the conditional expectation of the outcome based on logistic regression, random forest, 
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and gradient boosting) computed from Monte Carlo samples. This figure appears in color in 

the electronic version of this paper, and any mention of color refers to that version.
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FIGURE 2. 
Comparison of the cross-validated iTMLE implementation and the double machine learning 

method. “iTMLE-CV” denotes the proposed method with cross-fitting. “DML” denotes the 

double machine learning method. The maximum Monte Carlo standard error of (1-FWER) 

is 0.024 for CV-iTMLE and 0.026 for DML. “The maximum Monte Carlo standard error 

of (1-FWER)” refers to the largest standard error of (1-FWER) (out of all three considered 

estimators for the propensity score and the conditional expectation of the outcome based 

on logistic regression, random forest, and gradient boosting) computed from Monte Carlo 
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samples. This figure appears in color in the electronic version of this paper, and any mention 

of color refers to that version.
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FIGURE 3. 
The effect of inheriting rs12916-T allele (a proxy for statin usage) on the risk of developing 

Alzheimer’s disease (AD) in the UK Biobank white British population (n = 293,929). 

“DML” denotes the double machine learning method. “GLM” denotes the generalized 

linear models. GLM is used for association test and does not imply causal relationships. 

“CV-iTMLE” denotes the cross-validated iTMLE method. This figure appears in color in the 

electronic version of this paper, and any mention of color refers to that version.
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TABLE 1

Computational time (in seconds) of the conventional TMLE and the proposed method with sample size n 
= 228,466 on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell 

processor

Classical one-step TMLE iTMLE

1441.36 924.51

Note: The core frequency is 2.3 GHz and supports 16 floating-point operations per clock period. TMLE, targeted maximum-likelihood estimation.
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