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April 22, 1971

ABSTRACT

The Amati-Bertocchi-Fubini-Stanghellini-Tonin multiperipheral

model isvmodified tg@ study deep inelastic electron-nucleon scattering.

The behavior of the structure functions is derived in the limit of

= 2B pived
2

. -q

but large. In particular, sceling is derived. To accomplish this

large energy and momentum transfer, v and q2, with w
derivation it is necessary to introduce a cutoff for the momentum
fransfer of the exchangednucleon, which directly couples to the photon
in the multiperipheral chain. The multiperipheral derivation is

compéred with derivations that use other models. The generality of

our derivation, in the sense of requiring only Regge behavior and a

particular asymptotic off-shell dependence, is discussed.

| ‘ -2-

| I. INTRODUCTION

One method to probe the structure of hadrons is to do inelastie

| -
electron-nucieon scattering experiments. The electron interacts with

the nucleon ?y means of exchanging photons§ The part that is known
|

~ sbout this réaction is the electron-photon vertex, given by ordinary
I .
. ‘ .
quantum elecﬁrodynamics. The unknown part, due to the hadronic

structure of &he nucleon, is the photon-nucleon vertex. If only the

final electroﬁ is observed in unpolarized inelastic e;N scattering,
then in the o%e-photon-exchange aﬁproximation, all information is
contained in &W or the two structure functions Wi and Wé- They
aré defined bﬂ

i

'E_
L hnzkﬁg Z{: <p|Ju(0)|n>(n|Jv(0)lp)(2n)h 8'(a + p - p,)
i n |

3.4 . ' -
T B _pa _ P4
2 ) Ml 2\%u "2 W)\ B "7 ¢
q n" \FY ¢ YNV Y

] X W2(q2)V); (1.1) ‘

where Ip) is aj one-nucleon state with four-momentum pu and mass
’ i

m, J (x) is thé total hadronic electromagnetic current operator
N \ S >

|
qu, qz, and »V&E E;g are respectively the four-momentum of the

virtual photon, %ts mess squared, and its energy in the laboratory

system. The nucl%on spin has been averaged in the definition of Wﬁ .

The differential Eross section in the 1aﬁoratory system is given by
| : . :

ded l;8‘1‘((?12E '

4E'd cos @ gt

[eos”(9) Wy(a®,v) + 2 sin?(B) W (a%,0)],

. : (1.2)
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whbere E' and © are the final energy and the scattering angle of
the electron. The kinematics are illustrated in Fig. 1.
A great deal éf attention ﬁas recently beenAdevoted to the
study of deep inelastic e-N scattering from both experimental and
theoretical.points of'view.l Many theoretiéal models have been pro-

posed. They include parton model,? canonical field-theory mod_el,5

. . L -
diffraction model, vector-meson-dominance model,5 and Veneziano-like

model.6 Particular emphasis is on the scaling property of Wi» and
vwe, as first suggested by Bjorken,7 in the Bjorken limit of v — =
with ZBY rixed.

-q

The bﬁrpose of this paper is to present another mode18 for
deep inelastic e-N scattering. Our model is a simple modification of
the Amati-Bertocchi-Fubini-sﬁanghelliii—Tonin (ABFST) muitiperipheral
model (MPM),9 which is known to explain many qualitative and quantita-
9~11

tive features of high-energy hadronic interactions. We derive

several results, including the scaling préperty of Wl and vWQ. All
our results are consistent with present experimental data.l’lz In

Sec. II, we present our model and our results. The derivation of these
results is given in Sec. ITI. A general discussion of our model and a
comparison with previous models are contained in Sec. IV. The general-
ity of our derivation, in the sense of requiriné_only Regge behavior
and a particular asymptotic off-shell depeﬁdence, is also discussed in
this section. Appendix A contains a generalization of the Matsuda-
Suzuki argumeﬁtl3 for a constant YNN vertex function. Appendix B
shows our model satisfies current conservatioﬁ in fhe asymptotic limit

we are interested in.

o

II. OUR MODEL AND OUR RESULTS

To construct a model for inelastiec e-N scattering, it is
sufficient in the one-photon-exchange approximation to construct a
model for Compfon scattering of a virtual photon. Our model for virtuai
Compton séattering is a_;imple modification of the ABFST MPM.9 We
assume that the high-energy virtual*photon-nucleon~scattering amplitude
is dominated by'tHChanhel pion poles, with the exceftion of the last
link, that couples directly tq the photon; for this las£ link we assume
a t-channel nucleon pole. In other words, exceﬁt for the last link our
model is described by the'ABFST MPM. Our model is shown in Fig. 2.

We now present our results, leaving the derivation to the next

section. We find that a cutoff (or an extra damping factor) for the

momentum transfer of the exchanged nucleon is needed. This cutoff is.
consistent with the experimental fact that for high-energy scattering
the transverse momentum of secondaries is limited. When this cufoff

is introduced, we find in the limit

v o@, -g° 5w, and @ = 3‘% fixed but large (11.1)
-q
that
W, o= cdz, ﬁwg = 2mcdz-l, o (11.2)

which implies that

W . _
1 W
;@ = 5 _ _ (11.3)
GS _.2
= = 5 = 0 (II.4)
T v

where Og and 0y are the "longitudinal” and "transverse" phott-

gbsorption crosé sections. They are defined in terms of W1 and W2 by
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X
W, = g,
1 hnza T
. 2
_ _X ! '
W, = - (9 + o) , (11.5)

bnla (¢° - 0)

where

LT
K = v+2m...

Result (II.4) corresponds to spin—% pa.rtons2 and to the Callan-Gross
1‘<—3sultl)'lL for a spin—% quark current. Similarly, in the limit (TI.1)

we have

Wip) - wén), vwép) - vWén) , (I1.6)

where superscripts p and n refer to proton and neutron, respec-
tively. Result (II.6) is the same as that of the parton model® for the

case of the nucleon consisting of three quarks and a quark-antiquark

1 ”

sea,. The average multiplicity of pions is given by

(nﬂ) ~ tn w . - (11.7)

Equation (II.7) implies that our model is expected to be correct only

for large w when the multiperipheral chain is long. Our results are

1,12

consistent with present experimental data and are very close to

those of DLY.5 In Sec. IV we compare the two models.
In our derivation we do not have to assume current conservation.

But it can be shown that in the limit v —o with gg% fixed, our
' t -q
model is consistent with current conservation. In other words, in the

EE% fixed, our model describes correctly the gauge-
-q

invariant aspect of deep inelastic e-N scattering.

limit v - with
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III. DERIVATION
The absorptive part of the forward Compton scattering amplitude
is given by the sum of diagrams of Fig. 2. This sum, together with the
kinematics, is,represénted in Fig. 3. We first neglect the photon link
on the left. Therefore, we start with the N-N amplitude. Before
calculating this, we consider the gx-N scattering amplitude when the
spins of the external nucleons are averaged over.

From ABFST,9 we know that the g-N amplitude is simply related

, } Ny
to the gn-n amplitude and that ?1?
A G A~ @ T, ()
s' large

where

1

z;:;iif ) (111.2)

¢aﬂ’r(u"' ,u") /\/ )
u" large
Figure 4 illustrates the kinematics. The absorptive part of the forward

elastic n-N amplitude at the high-energy limit is given by
' 1 - R/~ —
HMUM+fwmme=5FfuJﬂ®&+w%md

dE'du"' " 2. = ne o, oo oy} " "
X .];[a;;—:f;§;§ QAB’I'“S‘I‘(s pTRS 8,05 SO) Ann(s su yu),

(111.3)

where ¢ 1is the pion mass, the superscfipt R refers to low-energy
n-N elastic scattering, and QABFST(S",-mE; s ,u™; EO) is the ABFST
boundary function.

Since we are averaging over the spins of the nucleons, we don't

have to know < and @ separately. The combination we need is



é_m Trace[ (~7 + ﬁ'@ﬂN(m + #)]

m
- nN

ds du™ o }
_ no_ . ot m o, o
- ‘T (u,.. @ 2 Yprgr(s”s w5 815U 5 5p)

o 2 p. —
X [-2 (lR(sO) +___§_Q,B (s O)] A (500" u"). (III.k)
Since
R~ 2 P-Q 4R/~
[-QCL_(SO)+ ™ @ (SO)]I[N
= 3 .]; 2 P 1] ‘ -
= 2 &Gy +3n° - 5y - W) BGEHI g
does not have any u" dependence, the u" dependence of AnN
(averaged over spin) is given by that of AmI And since s'¢
1 X —_
becomes s after integration over s', we conclude that
- n ’
N(averaged over spin) /’—\\‘~/ s & ¢aﬂN(u"), (111.5)
large
where
¢aﬂN(U") —~ —=—. (11I.6)

" large '(u")afl

In other words AKN(aver&ged over spin) has functional dependence similar

"

to that of ,Amr in the limit of large s" and u". ¥From now on

we use AnN_ to designate AﬂN(averaged over spin).
The absorptive part of the forward N-N amplitude is related

to that of x-N by’

-A(p',p) + #8,(0",p) + ¥'B,(»',D)

[-8%(sg) + £'8,R(sg) + #'B,R(s,)]

1 L,
= =7 dSO dp T
B (0 - W)
t " 2 "
X 8l(p' -2")" - 5,1 A (p",p) .

(111.7)

The reason for having two B terms is that the nucleon of momentum

p' 1is off mass-shell. By taking trace, it follows from Eq. (III.7)

" that

oy A (so) sl(p' - p")2 - 5]

A( ', = 1 Tr
P P) Z‘:Eff (P.E_ 2)2

#8,(0',0) + #'B,(p",p)

(878, (s0) + #'B,"(s,)]

R, . '
1 b, ‘B 5 T E 5
= 5 || st ”
8x ,I'j’ (p° - u¥)°

AﬂN(p"JP)_)

A n(p"sp)8l(p’ -p")z—so]

(111.8)
Let us define .
I‘bl(p':P) + }"be(p',p)
. 1 . h  B'B) (s ) sl(p' - p")? o".2)
¥ A " . III.
gﬂj AR PP (111.9)
In terms of» bl’bz’ we. can express Bl -and. B2 as
B]_(P')P) = bl(PY:P):
el (so)a[<p -p")?-5518 4 (2"2)
B,(p',0) = by(p',p) + — ds, e
2(P"> Poletp) + g o 2)2

(111.10)

W

x
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From Eg. (III.9), we can determine b, and b, by multiplying by 7

and P' and then taking traces. The results are

ds dhp"
b, (p',p) = ' L >
1\P P = 5T 5 2.2
bm p © - (8" - p 7 - m")

T, ¥
8 (p © - u°)°

X 31R(so) sl(p' - p")° -

"2 .

X ‘AﬂN(p",p)[2p'2(S" -pcal) 4 (s -p - m?)(so -p 238,

’ o as a'p
be(pllp) = P vé L 5 I N 10yé 55
bop. = - (s* -p " - m") 8 (p © - 1%)

X B,R(sg) SL(e" - )7 - 5]
X & (e"p)-(s' -2 - wd)(s" - p 2 - u) - 2u(sy -2 2 - b O)).
' (¥I1.11)

So far, we have concentrated on the N-N . amplitude. Now we
add the photon link by using ordinary Feynman rules. The tensor wuv

is then given by

: 2 2 2
o B gk B ) -m )
LRCEON d ; 5

p
16m” (p 2. m?)

X Trace((-A + g3, + $'B)(§" sm) T8 - A+ T, ),

(111.12)

where f is the YNN vertex function, which has been assumed to be
a constant. In Appendix A, we give a generalization of the Matsuda-
Suzuki plausibility argumentl® to justify this assumption in the

asymptotié limit in which we are interested. Let us denote the traée

in (I11.12) by T,,(q,p',p). Then

-10-
1 (2000) = Trace((-a + go, + §'R)(>" + MY, (' - f + m)
X 1,08+ )

2 . 1o _ 2_ 1o . .
kg, [a"(p"-pB; + D By m) + (n° - p °)(a-pB) +a-p'By)]

+ 8(p'-pB) + p'EB2 - ma)lp/ (' - @), + 2, (0" - a),]

-+

3 - p D) (e 'VQ)u(PVBl + p;ﬁz) + (p,By + B’ - ) ).

(I11.13)

We show the explicit calculation only for the B1 term.
Similar calculations can be done for the A and B2 terms. Wévfirst

change to invariant variables by defining 'Wh%(s;u) and Bl(s',u’) by

.
.Wi];(q,p) - jfdsdu Wut(s,u) (o + a)° - 5] 8(u + a°), (III.ks)-
B (5,0) = Has au B (st,0r) 8l(o + p)° - 5] 8w +2'2),

(III lhb)
where the superscript B1 means that we are considering just the Bl

term. Substituting this into (III.12) gives

B, 2 B, (s',u') B, .
W , = ds'du’ ———————5—5 Q (s u; s',u"; m )
“V(S w) 16mr° (u' +m°) ’
(III.15)
where

B (4 B o 2
%ﬂ&msuwsﬁ) jdp'%J%Fw)&@'-ﬂ -m]

x dl(p+ p')? - s'] Bu' + p 2). (II1.16)
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Bl :
Since 'Tuv is symmetric as can easily be seen from (III.13), the most R
eneral form for 51 is the sum ¢ + c +c ' ! (SO) _ds"du? Q (s',u'; s",u"; s,)
€ Uy ‘ S CTVERER L TR R LM Bi(s',u') = [ dsg o [2)2 “amrsT'® 380 5

telpa, +ap).

_ We show in Appendix B that current is conserved in the limit

(u" +

L
2ur(s” +u" - w°) - (s' v - m)(sy + " )

. X‘A (s",u")
of s »eo with s/u fixed, i.e., We can write . N :

. 2,2
hmPu' + (s +u' -m) .
(111.21)
By » oy B ' AT s ‘ and s'/u', this becomes |
Q (S,u; s',u'; m ) = - Tll (S,U; s',u'; m ) g -+ KV In the limit of large s' an s /u »
uv (13 u i :
A s! o | "
B . : g (u™) g
"1 2 . 1 _ R as" o o
1, (s,u; s',u'; m°) (p-a)a ] (p-a)q rat) % “fds. B, (s,) = du
2 - : B V. ‘ 'Bl(s v =3 . 0110 s’
+ - P+ m Pt - (111.17) v 165 . . i

Therefore, our model describes correctly the gauge invariant aspect of
deep inelastic electron-nucleon scattering. The structure functions

are therefore given by

. . \1" + )
0 s"; SO "
—{a' +——r
<] S
l-—-s,

[zu'(s“ st - ) - (s ¥

B . (s ,u ) B} » ,
l(s,u)_ = 6 J[]P "du’ (l )2 g (s,u; s',u'; m2). L s ¢ (un)s
1 mn u' o+ m ' T e 8 as"
. (I11.18) 635" dsy By ( O) ol du" (s LI ) "jr"“ﬁ"
| . 16x7s 0 (u"+)
Appendix B also shows that in the limit of s — e with s/u fixed, l-::) (111.22)
Bl )
1 2 . B; ' _s" .
_25— [m2 + iE;%l_] ~ nl'l It _u[(mg + u{)(p-q) - u(p-p')], When we change variable from s" to x = e we immediately find that

(111.19) we have Regge behavior:

B (s ) Ay ()

2 B B : ‘ s' large

bmfu' + (s +u' - m)

u' - mg)(s0 +u" 4+ u')]
2\2 :

= ¢;1‘(uv ). (111.23)

after integrating over x by

~ jat ' - 2 . v [ 2
-y n, SN ~ 2{us' - su m s)_QABFST(s,u, s',u'; m°) . on 1(uv) 1o given
e € ression
(III.20) x® o
when s/u 'is large.
/ - B gty = - -
Before we can calculate W, , we must first calculate . o’ 16:0(a + 1)(2u')

Bl(s‘ u'). Changing varisbles as in (III 14) and using (III.10) and

(111.11), we have

R ' .2k
5 jdso By _(so) J(a,so,g ), (TI1.2k)
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where
[2e]
v N : ,
J((X,So,u') = : du" ¢aﬂ (u”) (SO +a" +u )
’ 0
[so +u o+ u" - [(so +u' 4 u")2 Yy u"]2Td+l
X . — N (111.2%)
(u" + %)

If u' is-also large, we can approximate J(a,sogu') by

u'
. ‘ s N
J(oc,so,u') ~ o u" ¢ bt (\1")
O (u" +
+ u' n" f ') ¢ ﬂN(uu)
" ( 'l) -
-b a+l v
i1
& u " (n 2 ¢ ﬂN(u") P ean Q' du"(u")a 1 ¢anN(un)
0 (u” + b
© N
¢ (un)
+ (2u)% g " L (111.26)
u' (u")
where b is a constant such that for u" >'b, ¢a"-N(u") ~ ‘—'lgq )
. (u")

Evaluating the integrals in (III.26), we find that, for large u’',

J(a,sogu') ~u'. This, together with Eq. (III.24), allows us to

conclude

By 1
Py () . (I11.27)

O
]
u' large (u')
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‘Substituting Egs. (III.20), (III.23), and (III.27) into Eq. (III.18)

and following the method we just used to evaluate the asymptotic
expression for B, we find in the limit s o, u —«, and s/u
fixed but large .

B
1 5,\&
LA (s,u) ~ (ﬁ) fn u

and
1l,s.a-2
=(£)

Wy (s,u) ~ 5§ £n u.

3

As in DLY's derivation,” if a cutoff or an extra damping factor

is introduced in the u' integration, we obtain:

B
1 ~ 1 783\
Wl (s,u) ~ ¢ (E)
B 2 :
1 .k ! Q-2
Wy (s,u) xS (@, (111.28)

where c¢' 1is a proportionality constant. Similar results are obtained

from the A and B, terms, except that nc cutoff is needed for the

2.
A term. Remembering that u = -q2 and s X 2my for large w, we
obtain the results quoted in (II.1) - (II.4). Equation (II.6) follows
from the fact that the vacuum Regge pole couﬁles‘identically fo pf
and nn channels. If the vacuum Regge pole has intercept. 1, vwe(w)
should approach a constant. .

The expression (II.7) for the avefage pion multiplicity can be

derived following the usual approach of.ABFST.g’lO

The only change for
the case of deep inelastic e~N scattering is that we have ug,
instead of s*. The aferage multiplicity is therefore given by

(nn) ~ fn w. The fact that our derivation requires w to be large is

congistent with this logarithmic growth of the multiplicity, because
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large w means a long miltiperipheral chain and so justifies the use

of the integral equation approach.

-16-

IV. DISCUSSION AND COMPARISON WITH PREVIOUS MODELS
1. Our multiperipheral derivation is concerned with unitarity
diagrams, and not Feynman diagrams, éb it is not necessary to consider

3 only the leading

renormalizations. In DLY"s field-theory derivation,
term is kept in each order; they had to assume that the sum of these

leading terms is the dominant contribution. For this reason, they

cannot determine the constant in Eq. (II.2). Oh the other hand, the

multiperipheral integral approach keeps all terms; only at the end

does one approximate by keeping the leading Regge poles. In this

respect, the multiperipheral derivation is more rigorous.16 Further-

' more, in principle we can determine the eigenfunction of the inhomo-

geneous integral equation and therefore the constant in (II.2).

2. Our model is consistent with the ABFST multiperipheral
assumption of meson-g¢xchanged dominance. Note #hat our model has only
one éxchanged nucleon, as compafed with DLY's, in which all exchanged
particles are nucleons (see Fig. 5). We have shown that deep inelastic
e-N scattering can be adequately described by a minimal modificaﬁien
of the ABFST MPM.

3. The ctﬁoff or extra damping factor can be justified because
the nucleon propagator does not sufficiently damp out large transverse
momenta (corresponding to large momentum transfers). This cutoff also
allows all other momentum.transfers to be small, consistent with the
notion of peripheralism. Note that no gutoff is needed for momentum
transfers corresponding to exchanged pions. In DLY's model, a cutoff
is needed for evéry exchanged particle. |

k.. As already mentioned in Sec. II, our results correspond to
the parton model where the partons have spin-% and the nucleon gbns&sts

of three quarks and a quark-antiquark "sea."



#

‘obtain a finite but nonzero value for =)

N

5. 1In our model, the contribution of any Regge trajectory

. ' n
scales, in contrast to Harari's diffraction model in which contribu-

11

tions of "ordinary" trajectories do not scale. -

6. We have also calculated the diagram with no‘nucleon
exchange, i.e., the photon coupleé to.two pions. In this case we get

vk,

> = émzba_lv (same functional dependence as before) and

: 2 _ , _
W o=c o 591:%—1 , i.e., W -0 in the limit (11.1).>7  Therefore,
" (=a%) ~ S

at least for W,

coupling to spin~% particle dominates over the diagram with 7

coupliné to épin-O particle. When both diagramg are included, we

o : g, ~

i.e S_¢

T i
T

7. Our model predicts that an energetic NN pair is. produced

in the -1imit of large -q2 the diagram with ¥

GT’ :

ip deep inelastic . e=N scaftering. We can conclude from the previous
péfagraph that the likelihood of producing an energetic §N pair
increases as (-q2) ‘increases. If such energetic NN pair is not
obsérved experimentally, it means tbat the meson-exchange: disgram is
not yet negligible in the present kinematic region. .Since our deriva-
tion of scaling (as in almost all other models) is an asymptotic

derivation, it still leaves unanswered the question of why scaling

sets in so early.

8. Our derivation is actually more general than’the ABFST MPM,

_'since once any extra damping factor for wu' is introduced, all that is

needed in our derivation is Regge behavior as in Eq. (II1.23) and
asymptotic off-shell dependence as in Eq. (III.27). It is not

necessary to know how these are derived. For example, scaling is true

- in the model where all exchanged particles are nucleons as long as a

;§18—

cﬁtoff is introduced for each momentum transfer (this isvjust the
result of DLY). Again, it is true in a model where any combination of
pions and nucleons is exchanged aé long as the photon couples to the
nucleon and a cutoff is introduced for eéch exchanged nucleon.

If only the final electron is observed, then inelastic e-N
scattering represents the inclusive reaction e + N - e + X, vhere

X means any hadron state. It is interesting to éﬁeculate?’whether

. one can derive our results by assﬁming some J-plane analyticity

18

structure of the sik—line connected part as in tﬁe work of Mueller
for pure hadronic scattering.

9. The methodkof this paéer can of'course be used to study
v-N and v-N scatterings. By ciossing; it‘caﬁ also be used to étudy

P et - p + anything.
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APPENDIX A. CONSTANT NN VERTEX FUNCTION
Matsuda and Suzukil3 presented a plausibility argument to show
that for three spinless particles the vertek function is a constant
when two of the particles are far from their mass~shells: Here we
pfesent a simple generaliz&tioﬁ of this plausibility argument tp our
case of a photon coupling to two spin-%- nucleons. The essential
argument in this generalization is that electromagﬁetic field is
minimially coupled to spin-% parﬁicles and there is no derivative
coupling among hadrons.

our starting point is the matrix elemént of the time-ordered

product
™ oo .Id"x 2" %(0| (4% (0) ?p(:g)‘)*-;g}, ' ' (A1)

where V¥(x) .is the nucleon field, Ia) is the one-nucleon state with

momentum Py aﬁd AY is the electromagnetic potential. We can write

‘Eq. {A.1) as

e LN e

where q 1s the momentum of the photon, p is the momentum of
nucleon, and ™ is the vertex function.
We consider the Bjorken limit py —e, in which (A.1) can be.
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expanded in powers of %— to give
0

~ip-x.
¥ [T ol o), Vg0l
) ¢}

b L 1H0), V0] + =15 WHO), V(501 + -+ 1]a).(43)
(ipo) ’ v ‘ (ipo) ' .
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T# we use the Gupta-Bleuler formalism for the electromagnetic fiéld,

ke AH'S are independent dynamical variables. . Their equal-time

commutation relations are

[(AH(x), A¥(x")1. ., =

s e

AO0), AT

R 00

where

0, v . O i

A" (x»)‘__ ¥A (x).

If the electromagnetic field is

" then we can write

Cif - e - m =,

where h is'a fiinction of ‘¥ field, but not its derivatives. The

we obtain

1
(py)

0,

sk -x), (a.4)

minimally coupled to the V- field,

o {as)

function- h describes. the ihferactions among hadrons. From Eq. (A.5), .

faow = :% (eAOW + ivor;ﬁw - ?foz“éw‘+ mrp& +'§gh).'_ »(A.6) .
',‘ F?'aiso know | | | - “ “
[A“(O),;wl(g,on = o (a.7)
Thié, together with Egs. (A.h):ana (A.6), implies
BH0), ¥(x,0)] = 0,  [4%0), ¥(x0)] £ 0.  (a.8)
Therefore, we £ind that in the Bjorken limit,
™ s constant. -(4.9)

-22-

On the other hand, the right-hand side of Eq. (4.2) gives us

™ > LMoo (p.). .. (A.10)
( )5 a‘¥a -
IR o :
Py fixed

Comparing Egs. (A.9) énd (A.lb), we conclude that " ua(pa)_—aconStant,
or ™ - constant.. Thus we have extended the plausibility argument of -
Matsuda-Suzuki to thq case of a photon c;upiing>to.two spin—% nﬁcleons.
| Befﬁre concluding this Appendix, we want to'rgﬁark that the
constanc& of NN vertex_in thé.asymptotip_iimit can also be easily. .

pfoved‘if'we use the radiation gauge formulation of the electromagnetic

fleld.
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APPENDIX B. 'CURRENT CONSERVATION

In Sec. III, we made the statement that it can be proved that

in the 11m1t of s - with “s/u fixed, Qui
1

,Eq (3- 0, dees U

can be written. as

"the proof of -this statement

From Eas. (III 13) and (III. 16), th is given by
QBi' ;'v;[aﬁ '{bg - [a“(p' D) 4'( 2.5p'®) : ]
Qo= S p'lhe [a"(p"-p) + (u” - p “)g-p
S+ 8p’ '-:P[_'vgl'i(p' -q), +p (' - )]
o -2 A - ) p, v e (e - a) )
ST A T p v
x.at(pﬁ - 9)? -_.m2] sl(p + )7 = ') 8wt +p0).  (B.1)
; B '
Since .qu is symmetric, 1ts most general form can be wrltten as.
R '(p'q)'q ]{ (p+a)a ]
ot - . Ji__ P - Y
- qu - nl (: ot ;) p M u P, B

et 5pupv- (B.2)

. Dotting (3{2) with g%, p"p", ¢'p*, and q"q"; we can determine the
, — , : - B B,
four qoefficiénts in (B.2). The four equations.forz ni 5 ne l, Ts

.and 3 ére

satisfies current conservation.. We now present .

f?h'

wv

v B, . 1 2
3N T 22 o+ KEE&l;> - a4+ 5m2 = Mgl
m . .

' 2 R
~=vu(p-q) + &m (p-q) = q'p ey

2 2 :
n” o+ 8(peq)” = qvq“Qui- (:3) .

or

o 'l Vi V. u
o= [n°(q Ly . ( g)(q’p )]
(Zp q) _u nae Q“ »P Q“

. v Bl v -Bl
8(p-a) - la(a’"e ) + (pra)(a’'Q )], . (B.4)

By eéxplicit calculation from (B.1l), we find

G +(P Q‘)) +T(p q) +6m = VP“%?‘I;

e



&

. A

s
wgl W2pep' (2n? - w) + 2peq(n® + u')]
e, = P *epralm +ut) Qyppg
o B o » " "2, ' s
PP, = b{m“[-u(p-p') + (m +u')p-al
N ' N2 2,2 '
+ (p:p' - pra)[3(pp')” + 2m (0 + u' MQppan
3 v";u Bl . ' _2' y . . ) o 7:2 '.‘ N N
capQ = M +u)zpp(pra - pep') +mT(p'ra + )@y ppan

Bi

a'fe = M + u7)2 (p-p' -’p'q)]QABFST‘ j , (3;5) 

BV

By a straightforward. caleulation one can see that in the limit

of s »& with s/u fixed,

" B .
143 1 ~ - 1
g va ~ Q(Su )QABFST’
~ . B ‘-
: Pl e
pvqulJ.V ~ O(Su )QABFSTJ
1 '2
. qup'Qp.v = ) _O(Su )QABFST,
Vb L '2 B ' o 6
I O(su “)Qppar - (B.6)

- Using the last two equations in (B.h) and (B.6), we can conclude that

- u Lo
ro= O(:“E':>QABFST’

_ o o o _ _
5 = O(j’s :)QABFST' S (B.7)

. When we substitute. Y and & into the first two equations of (B.4),

wWe see immediately that we can neglect the 7T aﬁdA 5 terms, i.e.,

current.is conserved in the limit of & -« with s/u fixed. .This

method can also be used for the A and B2 ‘terms.
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B B

Solving for ™ 1 and M 1 then gives

B
1 . .
n v 2 B , .
22 . [m2 + ﬁl_z_];q ] ~ ﬂl,l. P -).;.[(m2 "fv_u' )(p_q) - u(,p-p’)],(B.8)

in. the limit of s —»w with s/u fixed. This is just Eq. (III.19).
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FIGURE CAPTIONS

" Kinematics for inelastic electron-nucleon scattering.

. Diagfam repreSenting our model:rsolid, dashed, and wavy lines.:

are nucleons; pions, and photons; respeétively.
Diagram representing unitarity sum and_defining kinematic

variables; solid, dashed, and wavy lines are nucleons, .pions,

‘and photons, respectively.

Kinematicg'for thé n-N -amplitude and the x-x amplitude.
Diagram for DLY's field-théory model: solid,rdashed, and wavy

lines are nucleons, pions, and photons; respectively.
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