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ABSTRACT OF THE DISSERTATION

Network Interactions During Spontaneous Activity:
Theory and Experiment

by

Krishna Choudhary

Doctor of Philosophy in Physics

University of California, Los Angeles 2021

Professor Mayank Mehta, Chair

Higher order functions of cognition rely on the cooperative computations of multiple
brain regions. Understanding how these spatially and temporally distributed neural cir-
cuits work together remains an important question. Attempts have been made at a com-
putational understanding of these brain circuits and their coordinated activity, but usually
involve models requiring thousands of parameters. The explosion of dimensionality trades
biophysical accuracy with predictive power and analytic understanding. In this dissertation,
I outline a theory of cortical interaction that can explain a variety of phenomena within the
in vivo brain using only two parameters, and I study the implications of this theory using
the cortico-entorhinal-hippocampal circuit in vivo.

Briefly, a theory of coordinated interaction between generic cortical networks is devel-
oped using only excitation, inhibition, and the adaptation of excitation. By constraining
this model onto a 2D parameter space by modulating only the recurrent excitation of the
efferent network and the external drive coming in from the afferent network, the theory is
able to reproduce over a dozen experimental observations during spontaneous activity in
vivo. The theory reproduces previously observed phenomena, namely spontaneous persis-
tent activity, which occurs when the efferent networks decouple from the afferent drive and
remain active while the afferent network has shut down. The theory goes further to predict
a novel phenomena, spontaneous persistent inactivity, when the efferent network remains
inactive while the afferent excitation turns on. This has never before been observed ex-
perimentally or computationally. We test our theory using simultaneously recording local
field potential within the neocortex and membrane potential measurements from individual
neurons in the entorhinal cortex. We find that while MEC layer 3 neurons show persistent
activity, both MEC and LEC neurons show persistent inactivity.

The advantage of our mean field theory is that its simplicity gives insights into the mech-
anistic principles behind these decoupling events. Both persistent activity and inactivity
arise from the non-linear amplification of afferent network excitation. Through further anal-
ysis of the entorhinal cortex, we find that persistent activity is also found in MEC layer 2,
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and persistent activity is found in both MEC layer 2 and LEC layer 2.
Given the ubiquity of connections between the entorhinal cortex and the hippocampus,

we further analyze hippocampal activity during these persistent activity and inactivity
events. We find that specific subfields, namely the Dentate Gyrus granule cells and CA1
inhibitory neurons, also display persistent activity and inactivity. We find that hippocampal
activity is modulated by entorhinal persistent activity and inactivity in a fashion that is
in line with anatomical observations of the connections between these two brain regions.
Additionally, these regions coordinate information transfer within specific oscillation bands
unique to each brain region. Our results indicate a new way of understand persistent
activity, persistent inactivity, and the functional connectivity between large brain networks
during spontaneous activity in the absence of sensory stimulus.

Finally, we show the presence of a unique, 3-Hz oscillation in cells of the lateral entorhinal
cortex, dentate gyrus, and hippocampal inhibition. This is not present in neocortical and
MEC neurons, suggesting that it is distinct from the theta and delta oscillations studied by
others. The findings suggest a functional link between inhibition in the hippocampus and
LEC circuits.
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Chapter 1

Introduction

1.1 The role of theory in science

A familiar joke among academic circles about physicists is their tendency to simplify prob-

lems to absurd levels, like assuming a cow is a sphere in the zero-gravity environment (Fig.

1.1). Yet despite this derision, physics has been extremely successful in explaining natural

phenomena. Some may even argue that this success occurs precisely because physicists

tend to approach problems from first principles, and add complexity only when absolutely

necessary. This approach to problem solving has been especially productive in the study

of many-body systems, or systems with a large number of degrees of freedom. The ideal

gas law is a famous example: by assuming that all particles of gas in a room are essen-

tially point-like billiard balls that collide with one another elastically, one can deduce the

quantitative relationship between pressure, temperature, and volume. This law successfully

describes, to first order, aside range of gaseous substances, from mono-atomic helium to

poly-atomic carbon dioxide, and gives intuitive insights into how microscopic behavior of

individual constituents, in this case the atoms or molecules of gas itself, can collectively

manifest into macroscopic phenomena.
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Figure 1.1: A) Cartoon by Abstruse Goose, highlighting how physicists tend to simplify
things. B) The BCS superconductivity paper. In the conclusion section, they highlight the
simplicity of their theory, and the fact that it can explain quantitatively multiple experi-
mental observations [1].

Many-body physics is full of examples where simplifying assumptions lead to low-

dimensional theories that can accurately reproduce numerous experimental observations.

A famous example is the BCS theory of superconductivity, which utilizes just three param-

eters to explain a whole host of phenomena [1]. The success of such theories relies to a large

extent on the validity of the simplifying assumptions: it is, for example, completely reason-

able to treat every constituent part as completely identical, as every electron is identical,

every phonon is identical, and every Ising spin is identical. In biology, however, these fun-

damental simplifications break down. The theoretical study of neurons and neural networks

is marred with the problem of high-dimensionality, as each brain network involves billions

neurons, each neuron synapses onto tens of thousands of other neurons, and within each

neuron the dynamics of activity involve the operation of millions of constituent parts. Even

one of the most celebrated theoretical works in neuroscience, the Hodgkin-Huxley equa-
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tions, for example, involve about 17 parameters that must be fit using experimental data,

all just to predict the activity of a small constituent part of the neuron itself [2]. Once fit to

these parameters, however, the theory allows one to reliably predict experimental results;

in particular, one can accurately calculate the speed of propagation of inaction potential

along the squid axon once the fitted parameters of conductances and gating variables are

known.

Developing a theory that is fundamental in its assumptions but accurately describes

biological phenomena is the task.

1.2 Spontaneous Activity: What is it good for?

Another lesson from the discipline of physics is the idea of using simplified experimental

preparations to test theories quantitatively. This idea is as old as Galileo himself, who used

smooth inclined planes to develop the law of inertia. In modern times, artificial vacuums

and experimental preparations near absolute zero can still be used to answer fundamental

questions about the nature of constituents. Such isolated systems allow us to accurately

test our theories while controlling for outside influence, and are indispensable to research.

The overarching goal of neuroscience is to understand how the brain, consisting of all its

different cell types, can manifest thought, cognition, and behavior. One approach used by

many is to study the brain under natural conditions and behavior, such as free foraging; an-

other method is to use specific tasks to subject the animal to the same stimuli over multiple

reputations. These approaches have been instrumental in establishing the field of systems

neuroscience, and while the discipline has had moderate success in describing certain behav-

iors, it is undeniably deterred by the randomness involved in trial-to-trial variability, and

in the underlying complication that cognition, and perhaps even consciousness, introduce.

Another approach, followed in this dissertation, is to study brain networks in isolation;

i.e. in the absence of sensory or behavioral input. In this condition, one can study the spon-

taneous internal activity of neural networks while controlling for influences from the external

world. Although the brain is fundamentally a structure that functions to understand and
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predict the external world, by disconnecting it entirely from sensory and conscious influence,

one can begin to investigate the fundamental states, and thus the fundamental operating

principles, of brain networks. In practice, this isolation can be achieved in three ways: using

in vitro preparations, wherein slices of brain tissue are kept alive under neurophysiological

conditions conducive to active neural phenomena, using in vivo studies when the animal is

subjected to loss of consciousness through anesthesia, and during natural sleep, when the

animal is mostly cutoff from outside sensory stimulus.

Spontaneous activity during the absence of sensory or behavioral input is exhibited in

many brain structures. Resting state imaging studies in humans have found that ongoing

brain activity consumes 20% of the body’s energy; further, task-related increases in neuronal

metabolism only represents a < 5% increase compared to baseline levels during the resting

state [3]. Despite several decades of research into spontaneous activity, its importance and

significance during normal brain function is still poorly understood.

1.2.1 More than just noise

Upon the presentation of identical stimuli, cortical neurons exhibit variability in their re-

sponses. While their activity reflects Poisson statistics, one can often extract a signal from

the variable responses by averaging over repeated presentations of the stimulus [4, 5]. In

doing so, one can remove the effect of the intrinsic dynamics; from a mechanistic point

of view, this procedure assumes that the underlying noise is simply a consequence of how

inherently noisy biology is, given that almost all brains operate at 300 Kelvin. This inter-

pretation, however, diminishes the meaning of spontaneous activity as simply a nuisance;

something the brain has to deal with and overcome, and something that is not helpful in

any way.

Spontaneous activity within networks, and even individual neurons, is generated by the

synaptic inputs from other coherently activated neurons, and can be observed in the absence

of sensory input to be as large as sensory-evoked activity itself [6, 7]. This activity can be

correlated across spatial scales, as much as multiple millimeters, and across time scales, from

milliseconds to tens of seconds [8]. This spontaneous activity contributes to the underlying
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variability of cortical responses to stimuli, and its interaction with the external world can

lead to the responses seen in experiments.

1.2.2 Insights into functional connectivity

During development, spontaneous activity is evoked by networks in isolation and is crucial

in defining informative properties for individual cells, like receptive fields and tuning curves.

The early patterns of connectivity can thus be built without any sensory experience; the

activity is thus reflective of the underlying connectivity within the cortex [9, 10]. For

example, primary visual cortex orientation maps, where neighboring cells within the visual

cortex display tuning towards the orientation of a simple visual stimulus, can interestingly

emerge during spontaneous activity as well [11, 12]. Furthermore, the connectivity map

unveiled by triggering the activity of other neurons on the activity of a single neuron reveals

a pattern that highlights those cortical columns that match the orientation preference of

the triggering neuron[13, 14]. The connectivity maps unveiled through this method are

confirmed by anatomical and cross-correlation analysis of pairs of single-unit recordings [15].

These results change depending on anesthesia depth, showing that while circuit connectivity

highly affects spontaneous activity dynamics, the same network can display different activity

patterns dependent on ambient conditions.

At larger spatial scales, imaging and electrophysiological studies across brain regions

can be used to find anatomically separate cortical networks observed as covariation of

measured activity. Such procedures are commonly referred to as functional connectivity

analysis [16, 17]. Functional Magnetic Resonance Imaging (fMRI) can be used to study

brain connectivity during resting-state conditions [18, 19]. Spontaneous activity during

these conditions can covary with brain state [20], and is relatively stable across a wide

range of cognitive states, ranging from wakefulness to light sleep and deep anesthesia.

1.2.3 During Sleep

The most natural form of spontaneous activity occurs when we sleep. Contrary to the

popular view, the brain is capable of complex processing of sensory information during
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sleep, as first indicated by multiple behavioral experiments in humans [21, 22]. In recent

decades, there has been increased interest into the patterns of spontaneous activity evoked

during sleep. For example, both the hippocampus and neocortex have been found to replay

firing patterns observed during prior behavior [23–28]. This activity replay is likely crucial

in the process of memory consolidation, and may form the substrate by which brain circuitry

can be structurally reorganized for long term memory storage through synaptic potentiation

[29–31]. These replay patterns are not, however, purely related to learning, and likely reflect

the activity of local circuits which are already present, since sequences can be observed

even before the presentation of stimuli [32]. These patterns are highly altered after the

repeated presentation of a stimulus or sequence of stimuli, thereby altering the patterns

of subsequent spontaneous activity [33]. According to classic Hebbian learning, persistent

interaction between cells can cause long lasting cellular changes [34]. Thus, reverberation

of the activity within cell assemblies during spontaneous activity can serve as a substrate

for short-term memory formation and long-term learning[35].

1.3 Cortical Oscillations

Ever since the advent of modern electrophysiology, the electrical oscillations within brain

tissue have been the subject of extensive research. The first mention is usually attributed

to Hans Berger in 1929, who first discovered that the electrical activity of the human brain

could be measured through the scalp, i.e. the electroencephalogram, or EEG [36]. In the

same study, he also noticed that the EEG signal could display a regular oscillation pattern

at about 10Hz when subjects closed their eyes. Since then, neural oscillations have been

discovered during behavior, during sleep, and even in isolated slices of brain tissue.

Oscillations can be observed within the membrane potential of individual neurons and

in the network activity of large numbers of neurons, suggesting that they can arise at

multiple scales, from intrinsic neuronal mechanisms to dynamic interplay between neurons

and groups of neurons [37]. The tendency of cortical circuits to oscillate suggest that they

could be functioning like central pattern generators, commonly observed in vertebrates,
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which comprise of circuits where sensory input provides a drive for a many-body oscillator,

like those responsible for respiration, walking, etc [38]. This framework, however, is less

applicable to cortical oscillations, since they are weak compared to the overall power spectra,

and their bandwidth is very wide. Additionally, spiking behavior of cortical neurons is

inherently stochastic, which is qualitatively different from oscillators generated through

central pattern generators.

The frequency of cortical oscillations can span from extremely slow (0.5Hz) to extremely

fast (500Hz), and can be broken up into many categories.

Figure 1.2: Up-Down state oscillations are considered the default activity states of cortical
circuits. A) Slow oscillations, the natural sleep version of Up-Down states, recorded with
EEG from frontal regions under propofol anesthesia (top trace) and during spontaneous
sleep in humans (bottom trace). From [39]. B) Up-Down states recorded in vitro intracel-
lularly (top) and extracellularly (bottom) from ferret visual cortex. From [40]

1.3.1 The Slow Waves

During non-rapid-eye-movement (nREM) sleep, under the effect of several anesthetics, and

during drowsy or quite-wakefulness periods, EEG/LFP signals are dominated by high am-

plitude slow fluctuations in the delta band (0.1 to 2 Hz) [7, 32, 41–43]. Within single cells,

this pattern of activity is accompanied by alterations between a phase where neurons do

not fire, and individual neurons are hyperpolarized, and a phase where they are tonically

firing, and individual neurons are depolarized. While the delta oscillations during nREM

sleep and the slow oscillations were initially thought to be separate phenomena, recent work
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suggests that these are not separate patterns but rather the same [44]. Delta waves have

been suggested to have both thalamic and cortical origin, but recent work has shown that

thalamic lesions do not completely silence the delta oscillation [45].

Slow waves propagate through the cortex, from the forebrain to the hindbrain, as shown

in high-density EEG recordings [46]. These slow waves also propagate in the rodent brain

under anesthesia, and can be observed by means of voltage sensitive dyes and electrode ar-

rays [47–50]. Simultaneous intracellular recordings reveal that neighboring cortical neurons

undergo synchronous transitions [51]. This synchronization can be effective over several

millimeters, supported by horizontal cortico-cortical connections [52, 53]. Evidence for this

mechanism comes from studies which show that pharmacological disruption of these con-

nections between neurons can reduce the synchronization of slow waves [54].

1.3.2 Up-Down States as the Default Network Activity

Some studies have suggested that the slow-oscillations expressed within cortical tissues can

be considered as the default activity regime of neural networks [55]. Slow oscillations are

the emergent activity pattern when the cortex has been functionally disconnected from the

outside world, such as during slow wave sleep and deep anesthesia [31, 41, 56, 57]. These

oscillations are invariant under different anesthetics, including ketamine-xylazine, propofol,

midazolam, halothane, isoflurane, and urethane [39, 58–61]. Furthermore, physical separa-

tion of brain tissue preserves the slow oscillation, such as cortical slabs and even random

cortical networks ex vivo [62–64]. Slow oscillations also occur in specific clinical conditions,

such as the “cortical island,” which occurs as a result of a traumatic or cerebrovascular

disorder [65]. These oscillations are also common in acute ischemic cortical stroke and can

persist for months and sometimes even years [66]. Finally, cortical slices in the dish can

express slow oscillations in the absence of any chemical or electrical stimulation. These are

described in detail in the following sections [67].
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1.3.3 Fast Oscillations

In addition to the slow oscillations, neural networks ubiquitously show fast oscillations.

These are grouped into the theta (4-8Hz), beta (15-30 Hz), and gamma bands (40-150 Hz),

and each of these bands can be broken up into slow and fast subbands. At these frequencies,

spikes locked to a certain phase tend to occur in synchrony. Neural synchrony is a potential

mechanism by which information can be encoded and transferred, as neurons are sensitive to

coincident arrival of input spikes as opposed to asynchronous inputs [68, 69]. This synchrony

may play a role in well timed coordination and communication between neural populations

simultaneously engaged in cognitive processes.

During awake and sleep states, the EEG of spontaneous activity exhibits fluctuations at

high frequencies with low amplitude. Oscillations in the theta band have been associated

with spatial memory and navigation [70–72]. Oscillations in the beta band and gamma

band have been associated with working memory readout [73–75]. They have also been

associated with cognitive processing such as attention, decision making, motor functions,

and sensory processing [76–79].

1.4 Up-Down states across the extended brain

Up and Down states are defined by the bi-modality of the membrane potential during

the slow-oscillation, with one depolarized phase and one hyperpolarized phase. This was

observed in vivo for the first time in spiny neurons for the neostriatum of anesthetized rats.

Since this discovery, most of the work about Up and Down states have been performed

using either anesthetized animals or in vitro preparations [41, 80].

In slices showing slow oscillatory activity, intracortical stimulation is able to evoke tran-

sitions from Up to Down and Down to Up states [40]. Studies in thalamocortical slices

which sustain UDS have shown that both electrical and chemical stimulation to the thala-

mus during the Down state can induce a transition to the Up state, but not from the Up

to the Down state [81, 82]. Many in vivo studies have shown that Up-Down transitions can

be triggered by sensory stimulation; yet still other studies disagree [47, 83]. This difference

9



could be explained by anesthesia type and dosage, but further studies are necessary. In any

case, it is clear that network activity has a fundamental role in the alteration between the

Up and Down states.

1.4.1 In the Cortex

Up and Down states are coincident across most neocortical areas in mammals [84, 85].

Specifically, the rodent barrel cortex (part of the somatosensory cortex) has been extensively

used to study the spatio-temporal nature of Up and Down states. The somatosensory cortex

is a prototypical primary sensory cortex, consisting of 6 layers. Thalamic input into the

somatosensory cortex, which carry information about touch, pressure, temperature, and

proprioceptive input, are excitatory but can target both excitatory and inhibitory neurons

[86–88].

The entorhinal cortex (EC) connects the parietal, temporal, and prefrontal cortices to

the hippocampal formation, and thus forms the interface between the neocortical brain

regions, which encode ongoing sensory information and long-term memories, and the hip-

pocampus, which is responsible for long-term memory consolidation [89]. The entorhinal

cortex further serves the primary input-output structure for the hippocampus, and can

be divided into the lateral and medial subdivisions. Unlike the neocortex, which is tightly

linked to the thalamic nuclei, there is no evidence for strong monosynaptic coupling between

the thalamus and the EC. However, this does not deter the EC from exhibiting robust UDS,

indicating that there are several other motifs of recurrent activity. Previous experimental

work has found that Up states in the neocortex likely propagate into the entorhinal cortex.

EC neurons show UDS in vivo, and gamma oscillations are nested within the Up states.

Slices of both MEC and LEC can generate UDS even in the absence of long range inputs

[90–92]. Finally, these UDS oscillations in the EC are physically locked to those in the

neocortex [93, 94].
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1.4.2 Cortico-Hippocampal Interaction and Memory Consolidation

Memory consolidation occurs during neocortical-hippocampal dialogue during slow-wave-

sleep, and has been a subject of extensive study [26, 95]. Within the hippocampus, this

process has been associated with the sharp-wave-ripple, which consists of high-frequency

“ripple” oscillation (150 Hz and above) riding on top of a depolarizing “sharp-wave” event

[96]. During these events, a process called “replay” occurs, where cell assemblies active

during the waking information-acquiring behavior are reactivated in the same order as in

the waking state. One hypothesis is that replay strengthens synaptic connections in the

neocortex, thereby mediating a “transfer” of memory from the short term to the long term.

In support of this hypothesis is the fact that replay events within the hippocampus and the

neocortex are highly correlated, and that impairing sharp wave events in the hippocampus

during post-learning sleep reduces memory consolidation [25, 97–100]. Further, strengthen-

ing the coupling between sharp wave ripples and cortical events via precisely timed electrical

stimulation during ripple events improves memory consolidation[101].

During sleep, especially nREM slow wave oscillations, the sharp-wave-ripples in the hip-

pocampus appear to be closely linked to neocortical Up and Down states . Some studies

show that these occur mostly during neocortical Down states, with their peak occurrence

happening just before the noeocrtical Down-Up transition [102]. Other studies have sug-

gested that these ripples actually occur during Up states [93, 101]. Regardless, the events

in the hippocampus seem tightly coupled to the Up-Down oscillation of the neocortex, and

thus the coordination between ripple events and the slow oscillation is likely important for

memory consolidation. In this context, the direct input from CA1 to the prefrontal cortex

likely plays an important role [103, 104].

Finally, in contrast to the neocortex, the somatosensory cortex, and the entorhinal

cortex, the hippocampus does not display clear epochs of Up and Down states. Instead,

hippocampal LFP during slow wave sleep exhibits “large irregular activity.” Intracellular

recordings in rodents reveal unimodal, and not bimodal, distribution of the membrane

potential of pyramidal neurons in both CA1 and CA3 [93, 105]. Granule cells in the dentate
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gyrus have only skewed distributions, while interneurons are completely phase locked to

neocortical UDS [106]. Finally, neurons in the subiculum show bimodality, consistent with

its extensive neocortical, paleocortical, and thalamic connectivity [93, 107].

1.5 Persistent Activity and Working Memory

Persistent activity is often considered a neural substrate for working memory, as information

can be stored in the sustained firing of cells even after synaptic input has been extinguished.

Thus, multiple research efforts have been devoted to understanding the potential mecha-

nisms underlying persistent activity, especially as it relates to working memory [108]. The

theories fall into two broad categories: either cell intrinsic mechanisms or network mech-

anisms. We will focus on the network mechanisms, as the phenomena discussed in this

dissertation is most likely not due to intrinsic cellular processes.

1.5.1 Computational Network Models of Persistent Activity

The key challenge in implementing a biophysically realistic model of how networks can

sustain working memory is to bridge the timescales involved: while working memory can

last seconds to tens of seconds, neuronal responses to external synapses decay within 10-20

ms. Thus, central to these models is the idea that patterns of connectivity must extend

these short-term representations into long term activity. One way to achieve this is to store

information in so called “attractor states,” such that activity patterns converge on these

states and remain stable on their own [109].

Spiking neuron models are the most biologically realistic, as real neurons communicate

with action potentials. The simplest of these models are integrate and fire neurons; each

neuron is characterized by a single parameter, the membrane potential, and when its value

achieves the spiking threshold, the neuron fires an action potential and resets its value back

to the resting state [110]. More complicated models use the many-compartment idea, where

the membrane potential varies across different parts of the cell [111]. Still more complicated

models include a range of different ionic currents, with each conductance modeled using
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non-linear gating variables akin to the Hodgkin Huxley models [112, 113].

Another method is to not model the dynamical evolution of each neuron’s membrane

potential, but to compare the total synaptic input into the neuron to a pre-described thresh-

old. If the neuron is receiving inputs above its threshold, it fires a spike in that time bin.

These binary neurons models (0 for no spike, 1 for a spike) capture the discrete nature of

neuronal responses but ignores the temporal nature in which neurons integrate their inputs,

as all inputs co-occur and are coincident in the same time bin [109].

Finally, there are the continuous or rate-coded models. Here, instead if modeling the

sequences of action potentials emitted by neurons, the focus is on describing each neuron

with a continuous-valued rate variable that changes over time dependent on the synaptic

inputs [114, 115]. The parameter here can describe the rate of action potential firing, or

the overall activity level of the entire network. The models do not capture the discrete

nature of neuronal dynamics, but are much more amenable to mathematical analysis than

the spiking or binary models. This type of model will be developed in this dissertation.

1.6 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, I review the basic mean-field tech-

niques and build a mean-field theory of cortical interaction using only excitation and inhibi-

tion. In Chapter 3, I outline the in vivo experiments that were used to test the theory, and

quantify several predictions that are quantitatively tested within the experiment, all yield-

ing stark agreement to theory. In Chapter 4, I extend the ideas of the model to understand

how cortical interactions can affect downstream structures, specifically the hippocampus,

as it is the major source of input from cortical areas during natural spontaneous activity

and is the site of memory consolidation and learning.

13



Figure 1.3: Up-Down states in Entorhinal Cortex and Hippocampus. A) Entorhinal cortex
intracellular recordings in layer 2,3, and 5 (each column). Top: histology of cell. Top middle:
Hippocampal LFP. Bottom middle: Intracellular recording of Vm. Bottom: Histogram of Vm

values, showing bimodal distribution. Adapted from [93]. B) Left: Intracellularly recorded
Up states in MEC layer 3 pyramidal neurons (red) can outlast one or more neocortical
Up-Down state cycles (gray). Right: The duration of these Up states preferentially lasts an
integer number of neocortical UDS cycles. Adpated from [94]. C) Intracellular recordings
from pyramidal neurons in CA1 and CA3, showing no bimodality. The organization is
similar to A. Adapted from [93]. D) Colored coded stacked cross-correlograms of CA1,
dentate gyrus (DG), and CA3 neurons (one per row) recorded during slow wave sleep in a
naturally sleeping rat, aligned to the Down-Up transition. A clear Down state can be seen
only in DG. Adapted for [93]. E) Intracellular membrane potential from hippocampal CA1
layer interneuron (red), showing phase locking with neocortical UDS (gray), along with
histological reconstruction. Adapted from [106]
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Chapter 2

A mean field theory of network
interactions

This chapter outlines the mean field model of excitation, inhibition, and adaptation used

to study persistent activity and inactivity throughout. We begin with a brief review of how

neural networks work in biological brains. We then use mean field techniques to abstract

the long timescale (i.e. > 100 ms) features and develop the equations of motion of a single

neural network consisting of excitatory and inhibitory neurons. We then add adaptation to

the excitatory neurons and use this formulation to build a simple model of the Up-Down

state (UDS) oscillation. Finally, we examine the dynamics of coupled networks, showcasing

how such a simple model can yield both persistent activity and persistent inactivity. We

explore the physics underlying these phenomena in detail, specifically focusing on falsifiable

predictions that can be tested in an in vivo experimental setup.

2.1 A brief introduction to the relevant neuroscience

Mammalian brains consist of billions of neurons, the basic unit of the nervous system;

the human brain has over 80 billion. Each neuron makes thousands to tens of thousands of

connections with other neurons, creating neural networks of vast complexity. The combined

activity of all of these neurons creates behavior, cognition, and, somewhere down the line,

consciousness. Over the years, experimentalists have advanced our understanding of how

the brain works at scales ranging from the action of individual molecules to the activity of

the entire brain.

15



2.1.1 The individual neuron

Despite the varied morphologies of neurons found in the brain, the basic structure of neurons

is similar in all living creatures with nervous systems (Fig. 2.1) [116]. Differences between

animals is usually in the number of neurons and the complexity of the interconnections. An

individual neuron operates by maintaining an electrical potential difference across its cell

membrane; when the neuron is at rest (i.e. inactive), a balance of ions (K+, Na+, Cl-, etc.)

maintains the intracellular space at a lower voltage compared with the extracellular space

(-40 to -70 mV). This non-equilibrium state is maintained through the active expenditure of

energy in the form of ATP, which is used to pump ions against their concentration gradient

across the membrane.

Neurons are unidirectional systems, having a space for inputs (the dendrites), a space

for integration (the soma), and a space for output (the axon and presynaptic terminals).

Neurons meet at synapses; the neuron outputting signal is called presynaptic, while the

neuron receiving signal is called postsynaptic. When signals come into the dendrites (at the

postsynaptic terminal), the intracellular space becomes flooded with ions from the outside

of the cell. These ions serve to either depolarize the cell, making the inside less negative

in voltage, or hyperpolarize the cell, making the inside more negative. If there are enough

depolarizing inputs in the dendrites, the soma voltage increases until a threshold, usually

termed the firing threshold. Once this happens, a sequence of reactions initiate a strong,

short-lived electrical signal, called the action potential, which propagates down the neuron,

through the axon, and towards the neuron’s postsynaptic targets. Action potentials are

also termed ”spikes,” and are a signature of the neuron being active at some point in time.

After an action potential occurs, the neuron returns to the resting state for some time,

called the ”refractory period.” During this time, active processes within the cell return all

ion concentrations to the steady-state value, thereby preparing the cell to fire another action

potential in the future.
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Figure 2.1: A) The basic structure of neurons and their connections, called synapses. Each
neuron receives input from other neurons through the dendrites. These signals are inte-
grated in the soma, the cell body. If the inputs integrate above the firing threshold, an
action potential is generated, which travels along the axon of the neuron via electrical im-
pulses, governed by the transport of ions across the membrane potential into and out of
the neuron. These impulses are called action potentials. The axon terminates on the den-
drites of other neurons, which then go through a similar process. The location where the
neuron’s axon terminates on another neuron’s dendrite is called the synapse (inset). The
neuron sending the action potential is the presynaptic neuron, while the one receiving is
called the postsynaptic neuron. When the action potential reaches the presynaptic terminal
from the soma, neurotransmitters are released into the synaptic cleft (space between the
pre and postsynaptic terminals). These neurotransmitters then bind to neuroreceptors in
the postsynaptic neuron. This generates an excitatory postsynaptic potential (EPSP) that
is depolarizing if the signal comes from an excitatory neuron. If it comes from an inhibitory
neuron, it is called an inhibitory postsynaptic potential (IPSP) and typically hyperpolarizes
the postsynaptic neuron. B) A drawing from Ramon y Cajal’s notebook, detailing the di-
versity of morphologies neurons can have in the mamalian brain. Picture credit: Wikipedia.
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2.1.2 Excitation and Inhibition

When a spike arrives at the presynaptic terminal at the end of the axon, the presynaptic

neuron releases molecules called neurotransmitters into the space between the presynaptic

terminal and the postsynaptic dendrite. Examples of well known neurotransmitters are

dopamine, serotonin, and norepinephrine; these are well known for their specific effects on

the brain. But the bread and butter of the brain are just two molecules: glutamate and

gamma-aminobutyric acid (GABA). When glutamate binds to the receptors on the post-

synaptic dendrite, it causes positive ions (like Ca2+) to enter the cell, thereby depolarizing

the cell and pushing it towards the firing threshold. Binding of GABA, on the other hand,

causes negative ions (like Cl-) to enter the cell, hyperpolarizing it and driving it away from

the firing threshold. Thus, glutamate works to ”excite” the postsynaptic neuron, while

GABA works to ”inhibit.”

One crucial fact that is seemingly invariant across species is the fact that neurons come in

two distinct categories: excitatory and inhibitory. Excitatory neurons release on excitatory

neurotransmitters, like glutamate, while inhibitory neurons release only inhibitory ones.

The balance between excitation and inhibition is crucial to normal brain function. A brain

dominated by glutamate would only be capable of exciting itself in bursts of activity, similar

to an epileptic seizure. Conversely, a brain dominated by GABA would be highly inactive.

A healthy brain operates in the middle regime, where the opposing forces of excitation and

inhibition can generate complex patterns of activity.

2.2 The mean field technique

While studies of individual neurons and their interactions are crucial for understanding

brain function at the fundamental level, higher cognitive functions like sensory informa-

tion processing, learning, memory storage, and pattern recognition involve the concerted

activity of large groups of neurons. Approaching these problems at a single cell level can

be problematic. Furthermore, while local interactions between nerve cells are largely ran-

dom, these connections can lead to quite precise long-range interactions. In physics, the
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knowledge of the minute details of the system’s components are often deemed unnecessary

for the understanding of the system as a whole; for example, one does not need to know

the identity of every molecule in a container in order to extract the relationship between

pressure, temperature, and volume.

2.2.1 The Wilson-Cowan equations

In view of these ideas, it is more fruitful to develop a theory that emphasizes not the indi-

vidual cell but rather the properties of populations. The cells comprising these populations

are assumed to be in close spatial proximity, and their interconnections are assumed to be

random, yet dense enough that there is at least one path connecting any two cells within

the population. Under these assumptions, we can neglect spatial interactions and deal sim-

ply with the temporal dynamics. The relevant variable is then the proportion of cells in

the population which are active at any time. We denote this variable by E(t) and I(t) for

the excitatory and inhibitory sub-populations, respectively. This approach was first used

by Wilson and Cowan [115]; a modified approach is outlined here. Similar works include

[117–120].

From single neurons to populations

To find the general equations governing the behavior of E(t) and I(t), we will need two

independent expressions for the proportion of sensitive cells (i.e. cells which are not re-

fractory after spiking) and the proportion of cells receiving afferent excitation higher than

threshold. Then, if E(t), I(t) represent the proportion of cells active at time t, then at time

t+dt these functions will equal the proportion of cells that are sensitive and receive enough

excitation to become active.

Let us assume all excitatory and inhibitory neurons have the same refractory period, rE

and rI , respectively. Excitatory neurons which have fired within the time window [t− rE , t]

are then considered refractory at time t, so the proportion of refractory excitatory neurons
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is given by

Erefractory =

∫ t

t−rE

E(t′)dt′ (2.1)

Similarly, for inhibitory neurons, the proportion of refractory cells is

Irefractory =

∫ t

t−rI

I(t′)dt′ (2.2)

The amount leftover are then the proportion of neurons which are sensitive

Esensitive = 1−
∫ t

t−rE

E(t′)dt′ (2.3a)

Isensitive = 1−
∫ t

t−rI

I(t′)dt′ (2.3b)

We now need an expression for the proportion of each subpopulation that is receiving

at least threshold excitation per unit time as a function of the average activity level of each

subpopulation; these functions will be called the subpopulation response functions. Note,

these functions assume that all neurons in a subpopulation are sensitive. If we assume that

the distribution of neural thresholds (θ) within a subpopulation is given by some unimodal

function D(θ), and that all cells recieve the same number of excitatory and inhibitory

afferents, then on average all cells will be subjected to the same average excitatory input

x(t), and the response function will take on the form

ΨE/I(x) =

∫ x(t)

0
DE/I(θE/I)dθE/I (2.4)

where the subscript indicates the subpopulation each variable describes. This response

function is monotonically increasing, and in the simplest case will be of sigmoid form. This

sigmoid shape is intuitively simple: in a population of thresholds, too low excitation will

not excite any elements, while too high excitation will excite all elements, but no more.

This non-linear relationship has been supported by numerous experimental studies, at the

level of dendrites, single cells, and even networks as a whole.

To make equation 2.4 useful, we must find an expression for x(t), the average excitation

generated within each cell of a subpopulation. For the excitatory cells, let WEE and WIE

represent the average number of excitatory and inhibitory synapses per cell, and if we
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assume that individual cells sum their inputs and the effect of stimulation decays with a

time course α(t), then the average excitation generated within an excitatory neuron is

xE(t) =

∫ t

−∞
αE(t− t′)[WEEE(t′)−WIEI(t

′)]dt′ (2.5)

Similarly, for the inhibitory subpopulation, the average excitation within each neuron is

xI(t) =

∫ t

−∞
αI(t− t′)[WEIE(t′)−WIII(t

′)]dt′ (2.6)

where WEI and WII represent the average excitatory and inhibitory synapses in inhibitory

neurons.

We have now find expressions for the proportion of sensitive cells, the subpopulation

response functions, and the average excitation within each subpopulation. We can combine

these to get the equations of motion for E(t) and I(t). The activities in a subpopulation at

time t+ τ will be equal to the proportion of cells which are both sensitive and receive above

threshold excitation at time t. If these two conditions are independent, then we have

E(t+ τE) =

[
1−

∫ t

t−rE

E(t′)dt′
]
·ΨE (xE(t)) (2.7a)

=

[
1−

∫ t

t−rE

E(t′)dt′
]
·ΨE

(∫ t

−∞
αE(t− t′)[WEEE(t′)−WIEI(t

′)]dt′
)

(2.7b)

I(t+ τI) =

[
1−

∫ t

t−rI

I(t′)dt′
]
·ΨI (xI(t)) (2.7c)

=

[
1−

∫ t

t−rI

I(t′)dt′
]
·ΨI

(∫ t

−∞
αI(t− t′)[WIEE(t′)−WIII(t

′)]dt′
)

(2.7d)

In real biological networks, there is undoubtedly a correlation between the average

excitation within a subpopulation and the fraction of sensitive cells; this can be neglected for

highly interconnected networks because of the presence of spatial and temporal fluctuations

in the average excitation within the populations. Additionally, thresholds for individual

neurons and networks observed in classic experimental works and highly variable [121, 122].
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Time Course Graining

For the purposes of our study, we are interested in dynamics of long timescales, much longer

than the population update time τ . We can define a new variable:

Ē(t) =
1

2s

∫ t+s

t−s
E(t′)dt′ (2.8a)

Ī(t) =
1

2s

∫ t+s

t−s
I(t′)dt′ (2.8b)

Now, if we assume that α(t) is close to unity for 0 ≤ t ≤ r and 0 for larger t for both E

and I subpopulations, then one can replace the integrals in 2.7d with their time-averaged

values ∫ t

t−r
E(t′)dt′ → rĒ(t) (2.9a)∫ t

−∞
α(t− t′)E(t′)dt′ → kĒ(t) (2.9b)

where k is a constant that relates to the time dependence of external synaptic input.

We can then expand Eq. 2.7d about τ = 0, yielding

Ē + τE
dĒ

dt
=

[
1− rĒ

]
·ΨE

(
k[WEEE(t′)−WIEI(t

′)]
)

(2.10a)

Ī + τI
dĪ

dt
=

[
1− rĪ

]
·ΨI

(
k[WEIE(t′)−WIII(t

′)]
)

(2.10b)

Taking the limit as r → 0, and absorbing the constant k into the connectivity constants

Wij , we arrive at our final equation for an isolated, connected network of excitatory and

inhibitory neurons:

τE
dE

dt
= −E +ΨE (WEEE −WIEI) (2.11a)

τI
dI

dt
= −I +ΨI (WIEE −WIII) (2.11b)

2.2.2 Adding Adaptation

We now outline the mean-field model equations used in the present work to study the

Up-Down state oscillation. The Wilson-Cowan equations, derived in the previous section,
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assume that over long timescales each subpopulation is capable of sustained firing, and the

memory of the network is only as long as the individual subpopulation time constants τE

and τI . However, experiments have observed that excitatory neurons, but not inhibitory

ones, show long-timescale adaptation in both spike-frequency and spike-amplitude. During

sustained intracellular current injections, inhibitory neurons can sustain repeated action

potentials of equivalent strength; pyramidal neruons, on the other hand, fire bursts of action

potentials before slowing down, with each subsequent spike diminishing in amplitude. This

phenomena is commonly termed adaptation, and has to do with resource depletion and

fatigue within excitatory neurons. The addition of this third variable has huge consequences

to the temporal activity of the model. The equations of interest are:

τE
dE

dt
= −E +ΨE (WEEE −WIEI −WEAA+ ξE + iE) (2.12a)

τI
dI

dt
= −I +ΨI (WIEE −WIII + ξI) (2.12b)

τA
dA

dt
= −A+WAEE (2.12c)

These describe the time evolution of the average excitatory E(t) and average inhibitory I(t)

activity within a subpopulation, where the excitation is governed by a negative feedback

adaptation A(t). The time constants τE = 10ms and τI = 5ms for each subpopulation are

much shorter than the adaptation time constant τA = 300ms; these values are consistent

with experimental data on the time-constants of each neural subtype. ξ is an additional

noise current to simulate uncorrelated network fluctuations, and is drawn from a gaussian

distribution (µ = 0, σ = 0.03). Each subpopulation receives independent noise. Finally, iE

represents inputs coming from outside the entire network itself, either from experimental

perturbation or long-range synapses.

As described earlier, the functions Ψ(x) define the population response function, relating

the net input excitation x to the proportion of the subpopulation that will be active at that

input level. This function is, in simplest form, a nonlinear sigmoid: at extremely low input,

none of the neurons are active, at extremely high input, all of the neurons are active, and

for medium levels of input, there is a linear relationship between input and proportion of
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Figure 2.2: A) A single network with excitatory (E) and inhibitory (I) subpopulations, each
characterized by the average activity level, a dimensionless number between 0 and 1. Only
the excitatory subpopulation shows activity dependent adaptation (A). The connectivity
weights are named with convention WXY : from population X to Y . Triangular synapses
denote positive weights, while bars indicate negative weights. B) In the E-I phase plane,
nullclines for E (blue) and I (orange) for a single E-I network intersect at the stable Up
(green circle) and Down (red circle) fixed points. The separatrix (dashed line) separates
the two basins of attraction.

neurons active. Assuming we are nowhere near saturation, we can use the simplest possible

response function: a threshold linear relationship:

ΨE/I(x) = gE/I(x−ΘE/I)+ (2.13)

where gE/I is the slope of the input/output relationship for each neural population, and

ΘE/I is the minimum input needed to excite any element of the population. Throughout

this dissertation, gE = 6, gI = 30, and ΘE = 0.0517,ΘI = 0.2778. Furthermore, the

connectivity parameters are WEE = 1,WII = 0.083,WEI = 0.166,WIE = 1.66. For the

adaptation variable, WEA = 0.166,WAE = 1.1. A schematic of the network is show in Fig.

2.2.
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2.3 The Up and Down States

Analyzing Eq. 2.12 in the absence of noise ξ = 0 and external input iE = 0 shows that

trivially, E = 0, I = 0 is a steady state of the system. Intuitively, this makes sense; when

both populations are inactive, there is no drive to become active. We identify this situation

with the ”Down” state from the Up-Down state oscillation.

Since the adaptation parameter is so slow-varying, we can consider a snapshot of the

network at a fixed adaptation A∗ and consider the state space of all possible realizations of

activity E/I. We can solve for the nullclines of each population by setting the derivative of

the activity in each population to zero, and solving for E:

E =
gEWEII + gE(WEAA

∗ +ΘE)

gEWEE − 1
(2.14a)

E =
(1 + gIWII) · I + gIΘI

gIWIE
(2.14b)

These are the excitation and inhibition nullclines, respectively, and are plotted in Fig. 2.2.

In order to have a stable Up state, these two nullclines must intersect at nonzero values of

E and I, which is possible under the condition that

ΘI ≥ gEWIE

gEWEE − gEWEAWAE − 1
ΘE (2.15a)

gE ≤ 1 + gIWII

WEE(1 + gIWII)− gIWEWIE
(2.15b)

These conditions are satisfied by our choice of parameters, and ensure that the excitation

nullcline is steeper than the inhibition nullcline but has a smaller E-intercept, thus ensuring

an intersection. We identify this intersection with the neurological Up state, where both

excitatory and inhibitory populations exhibit sustained firing. Its coordinates are

E =
WEIΘI −

[
WII +

1
gI

]
·ΘE

WEIWIE −
[
WEE − 1

gE
−WEAWAE

]
·
[
WII +

1
gI

] (2.16a)

I =

[
WEE − 1

gE
−WEAWAE

]
·ΘI −WIEΘE

WEIWIE −
[
WEE − 1

gE
−WEAWAE

]
·
[
WII +

1
gI

] (2.16b)

We identify this fixed point with the ”Up” state, when both excitatory and inhibitory
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populations are firing in a sustained fashion. Finally, there is a third fixed point at

E = 0 (2.17a)

I =
gE(WEAA

∗ +ΘE)

gEWEE − 1
(2.17b)

2.3.1 Linear Stability Analysis

If we were to freeze the adaptation level at some particular value A∗ and track the fate of the

network that starts at arbitrary points on the E − I plane, we will find that every network

ends up in either the Up or the Down state (Fig 2.3). The third fixed point, identified by

Eq. 2.17, lies exactly on the separatrix, which marks the boundary between the two regions

of stability.

The local stability of the Up state can be found by linearizing Eq. 2.12 about the Up

state fixed point, found in Eq. 2.16 [123]. If the eigenvalues of the matrix coefficients have

a negative real part, the fluctuations from that fixed point will exponentially decrease with

time. For our 2D coefficient matrix, this is equivalent to imposing the condition that the

determinant of the coefficients matrix is positive and the trace is negative. These conditions

yield the following relations between connectivity, time-scale, and gain:

[
WII +

1

gI

]
·
[
WEE +

1

gE

]
≤ WEIWIE (2.18a)

τI · (gEWEE + 1) ≤ τE · (gIWII + 1) (2.18b)

These conditions are satisfied by our choice of parameters.

2.3.2 Oscillation via Adaptation

The global stability of each fixed point is inversely related to the distance of the fixed point

from the unstable separatrix. The closer each stable fixed point (the Up or Down state)

is to the separatrix, the less relatively stable that fixed point becomes, since random noise

has a higher chance of kicking the network over the boundary. Notably, the variable A∗ is
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Figure 2.3: The mean field equations define an attractor landscape in the E − I coordinate
plane. The mean field model defines two discrete attractors in the E − I coordinate plane.
Here we trace the evolution of a single network in the (E, I) coordinate plane from various
initial conditions (denoted by the black square) to the final condition (denoted by the
circle) in the absence of noise and for fixed adaptation level (α = 0.5). The excitation and
inhibition null clines are depicted (solid colored lines) along with the separatrix (dotted
line). Conditions A,B,C, and F end in the ‘Down’ state fixed point, while the others end in
the ‘Up’ state fixed point.
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simply an additive constant to the excitation nullcline, the dynamics of which determines

the positions of intersection for both the stable Up state as well as the separatrix (See Fig.

2.4). As the network remains in the Up state, the adaptation variable increases, effectively

shifting the excitation nullcline up. This not only decreases the overall firing rate in the Up

state by shifting the fixed point, it also stabilizes the Up state by bringing the separatrix

closer to the Up state. A kick from random noise eventually forces the network to transition

into the down state. Here, adaptation recovers back to zero, shifting the excitation nullcline

down, thereby bringing the separatrix closer to the Down state fixed point; eventually, a

noisy kick forces the network into the Up state, where the cycle repeats.

2.4 Coupled Networks

A minimal mean field network supporting UDS has only three crucial, and biologically

well-established ingredients: excitation, inhibition, and the adaptation of excitation (but

not inhibition). We constructed a mean field theory of two cortical regions, each with its

own recurrently connected inhibitory and excitatory populations, as in Fig. 2.2. In iso-

lation, each network exhibits transitions between Up and Down states that are the stable

fixed points of the dynamical system of equations. Their stability is inversely related to

their distance from the separatrix, a line which defines the boundary between the basins of

attraction for each fixed point. The changing, activity-dependent adaptation translates the

excitatory nullcline, thereby influencing the relative stability of each state. In this frame-

work, growing adaptation governs the transition from the Up to Down state, while external

drive and a falling adaptation governs the transition from Down to Up. Underlying gaus-

sian noise gives the network a “temperature,” preventing it from stagnating in a particular

state for arbitrarily long time periods. One can use the physical analogy of pendula swing-

ing between two possible states, with adaptation determining the frequency of oscillation

(Fig 2.5). For simplicity, quantitative falsifiability, and based on available observations,

we assumed that all internal parameters except the recurrent excitation strength WEE are

identical across the afferent and efferent networks.
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Figure 2.4: A)The Excitation(E)-Inhibition(I)-Adaptation(A) model. B) A sample trace
of E, I, and A. C) The time-evolution of the network for one complete UDS cycle (time
points in B) can be visualized on the E-I phase space. Nullclines for the E and I variables
are plotted in blue and orange, respectively, and denote where the time derivative for that
particular variable (E ,I ) is zero. Intersections of the nullclines denote equilibrium points
where both Ė == 0 and İ == 0. There are two stable points, corresponding to the Up state
(E,I¿0) and the Down state (E,I=0). These two attractor points form basins of attraction
in the E-I plane, with a separatrix (dashed line) denoting the boundary. Under noise, the
relative stability of each point is inversely proportional to its distance from this separatrix.
An increase in α corresponds to a upwards translation of the E nullcline, making the Up
state less stable; a decrease in α corresponds to a downward shift, making the Down state
less stable.
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2.4.1 Variability of Network Activity during UDS

Further, the afferent network provides a weak excitatory input WEXT into the excitatory

population of the efferent network (Fig 2.5). We use WEXT to refer to this synaptic weight

from the afferent to the efferent network and WINT to refer to the internal excitatory-

excitatory weight in the efferent network (WEE in all equations so far). Effectively, this

means that for the efferent network there is an external input into the excitatory population

iE(t) = WEXT (EA(t) ∗ Z) (2.19)

where EA(t) is the activity of the excitatory population in the afferent network, and Z

denotes the fluctuations in the network activity, modeled by an Orstein-Uhlenbeck process

centered at 1 and with standard deviation 0.3. Without this noise term Z, the UDS of

the afferent network would be a simple square wave, since the ‘Up’ and ‘Down’ state fixed

points are rigid and show little variation from one UDS cycle to another. This is not

biologically realistic, since real networks show considerable variability in activity during

UDS (See Fig. 2.6). If the connection strength WEXT between the afferent and efferent

excitatory populations is sufficiently strong, the two networks UDS oscillations phase lock,

as the transitions between states in the efferent network are no longer due to independent

noise but the timed increase and decrease in input coming from the afferent network. Similar

to previous results, the connection strength WEXT must be about an order of magnitude

smaller than the internal connections WINT in order to show desynchronization [117].

2.4.2 Persistent Activity and Inactivity

What happens when both networks are in the Up state and the afferent input transitions

into the Down state? This cuts off afferent input WEXT , immediately shifting the efferent

excitation nullcline to the left, thereby destabilizing the efferent Up state. The efferent

network can either remain in the Up state through its own recurrent excitation or follow

the afferent and transition into the Down state. Instances when the efferent remains in the

Up state are termed “spontaneous persistent activity (SPA)” (Fig. 2.7). It follows from
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Figure 2.5: The coupled afferent-efferent network. To distinguish between afferent and ef-
ferent internal excitation WEE , we refer to the efferent network internal recurrent excitation
as WINT for the remainder of this dissertation. There is an additional afferent current being
fed to the efferent network. Both networks can sustain UDS on their own, like two coupled
pendula. The external connection can be imagined as a unidirectional spring

the stability arguments outlined earlier that by increasing the distance between the Up

state fixed point and the separatrix, one can increase the stability of the Up state, thereby

increasing the probability that the network will display SPA. If we refer to the excitation

nullcline equation [Eq. 2.14], we see that increasing WINT (i.e. WEE in earlier equations)

results in the downward scaling of the nullcline: the Up state fixed point shifts to the right,

and the unstable fixed point shifts downward. Combined, this has the effect of increasing

the stability of the Up state, thus leading to higher probability of SPA.

The converse scenario applies for the Down state, where both networks are in the Down

state and the afferent transitions into the Up state. This suddenly increases the input,

shifting the excitation nullcline down, destabilizing the Down state. The efferent network

can either follow into the Up state or remain in the Down state; the latter case we term

“spontaneous persistent inactivity” (SPI: Fig 2.7). The size of downward shift due to the

incoming current from the WEXT synapse has a direct consequence on the stability of the

Down state: the larger the weight, the more the shift, and thus the more destabilized the

DOWN state becomes. Thus, decreasing the synaptic weight WEXT increases the probabil-
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Figure 2.6: A Ornstein-Uhlenbeck process can capture the variability of in vivo gamma
activity during UDS. A) In the in vivo experiment, the parietal LFP (black trace) exhibits
clear Up-Down states. The filtered gamma power (blue trace: 40-120 Hz) also follows UDS
but additionally exhibits fluctuations from one cycle to the next. As a result, some Up
states contain higher gamma power than others. The same goes for Down states. B) In
our model, the afferent network exhibits Up-Down state oscillations (left). However, the
excitation is more regular than in the experiment, since the model equations define the
attractor landscape in the E-I coordinate plane, and this landscape is largely unchanged
from one UDS cycle to the next. To simulate in vivo variability, we multiply this UDS
with a U-O process with mean of 1 and a standard deviation of 0.3. C) The resulting UDS
trace shows similar variability compared to the in vivo experiment (the gamma power in A).
This is used as the net afferent input into the excitatory population of the efferent network.
Simulated LFP (black trace, see Appendix) using poisson-spiking excitatory and inhibitory
neurons shows characteristic UDS, similar to experiment, and the variability is not visible,
since the low frequency components dominate. D) The coefficient of variation (CV) of the
PAR LFP gamma power within the Up states and the Down states is similar in magnitude
(Up: 0.29± 0.1, Down: 0.31± 0.14). Thus, we used a UO process with standard deviation
of 0.3. E) Simulated LFP using poisson-spiking excitatory and inhibitory units showed an
increase in the gamma band power in the LFP with increasing overall activity level within
the network. Depicted are resulting from three different simulations where the neurons are
held at three different membrane potential values.
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ity of SPI. Indeed, simulations where we modulated both WINT and WEXT confirmed our

hypothesis on the dependence of persistent activity and inactivity on these two variables

(Fig. 2.8).

2.4.3 Effect of Afferent Fluctuations on SPA and SPI

For our simulations, the size of the afferent network fluctuations, given by the OU process,

were chosen such that the standard deviation matches that observed within experiment

(Fig. 2.6). To investigate what effect this had on the prevalence of spontaneous persistent

activity and inactivity, we reproduced the simulations with different OU process amplitudes

(Fig. 2.8). This modulation had virtually no effect on the SPA prevalence, but had huge

effects on the SPI; this is likely due to the fact that the Up-Down transition is governed

by internal variables, while the Down-Up transition is governed by afferent input. This

differential dependence is explored further in the next chapters.
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Figure 2.7: SPA and SPI occur when the efferent network persists in its current state
and does not follow a state transition in the afferent network. A) Left: SPA occurs when
the efferent network (blue) persists in the Up state while the afferent (gray) undergoes
a complete Down state. The black scale bar represents 1 sec in time, and the blue and
gray scale bars correspond to activity of 0.1. Right: Each network lives in its own E-
I coordinate plane. A sudden decrease (from 2-¿3) in the afferent input (an Up-Down
transition) translates the efferent output E nullcline upward, destabilizing the Up state and
inducing a synchronous transition to the Down state. If the destabilization is not enough
(because the decrease was not large, i.e. the afferent Down state has high activity), the
efferent network can persist in the Up state on its own, resulting in SPA. B) Similar to A,
but showing SPI, which occurs when the efferent network persists in the Down state while
the afferent undergoes a complete Up state. A sudden increase in the afferent input (a
Down-Up transition) translates the efferent E nullcline downwards, destabilizing the Down
state an inducing a transition to the Up state. Again, if the destabilization is not enough
(because the afferent Up state has low activity), the efferent network can persist in the
Down state, resulting in SPI. Scale bars show time (horizontal black, 1 second) and the
amplitude in afferent (vertical gray, 0.1) and efferent (vertical blue, 0.1) network activity.
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Figure 2.8: The time-averaged prevalence of SPA (green) and SPI (red) observed in a single
simulation, created by varying just two variables, WEXT (x-axis) and WINT (y-axis). The
contour lines and shaded areas reveal that WEXT has a greater impact on SPA (nearly
horizontal green lines), whereas WINT has a greater impact on SPI (nearly vertical red
lines). A) In the absence of a UO process, the model still exhibits SPA and SPI. As the
UO process variability is increased (B-C), SPI is exhibited by efferent networks with higher
WEXT . The variance of the UO process has little effect on the amount of SPA exhibited by
the efferent network.
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Chapter 3

Persistent Activity and
Inactivity in Entorhinal Cortex

Layer 3 in vivo

Interactions between large brain networks govern all cognition. A mechanistic understand-

ing of these interactions is a major challenge. In the previous chapter, we outlined a sim-

ple, analytically tractable, mean field theory of network interactions during the ‘Up-Down’

state oscillation (UDS). The theory predicts new phenomena: spontaneous persistent activ-

ity (SPA) and inactivity (SPI). In this chapter, we confirm these predictions in vivo using

simultaneously recorded parietal cortical local field potential (LFP) and the membrane po-

tential (Vm) of identified excitatory neurons from several brain areas in vivo, especially

from layer 3 of the medial (MECIII) and lateral entorhinal cortex (LECIII), which show

SPA and SPI. Further, the theory reproduces quantitatively, not just qualitatively, several

in vivo features, on average and on a cell-by-cell basis using just two variables. We show

that the strength of internal excitation within the entorhinal cortex mediates SPA, and the

strength of afferent cortical input mediates SPI. The theory predicts, and the experiments

confirm, that SPA and SPI are quantized by cortical UDS and result from a nonlinear

amplification of small fluctuations in afferent cortical gamma power. Our results further

suggest that internal excitation within MECIII is greater than within LECIII. These conver-

gent, theory-experiment results provide a novel way to generate persistent activity, which

has been implicated in a wide range of conditions, and persistent inactivity, and help to

understand the rich dynamics of interactions between large networks of neurons in vivo.
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3.1 Introduction and Motivation

Cognition involves interactions between several neural networks, each network containing

millions of neurons, each neuron in turn characterized by many microscopic parameters,

resulting in billions of parameters for a detailed biological network. But, to develop an an-

alytically tractable theory of the fundamental operating principles, one must use only a few

salient variables to both reproduce experimental observations and propose novel predictions

that can be tested in simplified experimental preparations that capture the essence. This

is analogous to using frictionless inclined planes or artificial vacuums to study the laws of

motion in physics. In the previous chapter, we developed a theory of spontaneous persistent

activity, a phenomenon implicated in several cognitive functions. Here, we verify the theory

in vivo during internally generated activity in the absence of external sensory stimuli.

During quiescence, deep sleep, under anesthesia, and in vitro, local neural networks

from many brain areas, including cortex, show synchronous, rhythmic activity termed delta

oscillations, non-REM sleep oscillations, slow wave sleep (SWS) etc.[41, 124, 125]. The

LFP shows rapid transitions between periods of elevated activity (the Up state) and silence

(the Down state). The Vm of individual neurons exhibit synchronous UDS oscillations

with depolarization (Up) and hyperpolarization (Down) states. The UDS are ubiquitously

found across species and experimental preparations, and are considered the default activity

of many networks [50, 55, 59, 64]. Several studies have suggested that the interactions

between cortical regions during UDS are crucial for memory consolidation [26, 93, 126–

128]. Impairment of UDS causes learning and memory deficits, while UDS enhancement

leads to improvement [129].

Although most cortical areas show synchronous UDS oscillations [93], recent studies

have shown that in vivo only MECIII, but not LECIII, pyramidal neurons show persistent

activity during UDS: events where the neuron’s Vm spontaneously persists in the depolarized

Up state while the afferent neocortical areas transition to the Down state [94]. The SPA here

notably differs from some studies that refer to singular Up states within an isolated network

as themselves forms of persistent activity [91]. Depolarizing current injections do not elicit
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SPA within MECIII neurons, implicating network rather than intracellular mechanisms.

Network models for SPA involve thousands of spiking neurons, and thus tens of thousands

of differential equations [130, 131]. This approach trades predictive power for biological

realism, as the number of variables are far greater than the number of observables. Mean

field models involving few parameters are extensively used to understand UDS dynamics

within a local population of neurons [115, 117, 119, 130], but have not been employed to

understand large interacting networks and cannot account for major experimental findings.

We found that a simple, mean-field model involving interacting networks of excitation-

inhibition can capture the dynamics of SPA during UDS. Our theory also proposed a new

phenomenon: spontaneous persistent inactivity (SPI). The theory is detailed in the previous

chapter. To test the theory quantitatively, we used the in vivo cortico-entorhinal circuit

as our model system. Anatomically, the parietal cortex (PAR), a part of the neocortex,

serves as an afferent source of input to other neocortical regions, like the frontal (FRO) and

prefrontal (PRE) cortices, and to further paleocortical regions like the entorhinal cortex

(EC) [132–134]. We thus used the LFP, indicative of average neural activity within a brain

region, in the PAR cortex as the afferent reference. Simultaneously, we did whole-cell Vm

measurements from anatomically identified pyramidal neurons in the afferent PAR and the

efferent FRO, PRE, and EC; as the spontaneous activity of single neurons is tightly linked

to the cortical networks in which they are embedded, this allowed us to probe the activity

of localized networks within each target region [14]. Both FRO and PRE cortices are

implicated in attention, working memory, and memory consolidation [135–140]. Within the

EC, the medial (MEC) and lateral (LEC) subdivisions are anatomically and functionally

distinct: the MEC contains spatially selective “grid cells” [141], while the LEC is thought

to encode objects or experienced time [142, 143]. We focused in particular on the EC layer

3 regions, since MECIII neurons are a major source of input to the hippocampus, show SPA

in vivo, and are crucial in the generation and maintenance of UDS in the MEC [94, 144].

We detected in vivo SPA in MECIII and SPI in both MECIII and LECIII, but not in

FRO, PRE, or PAR. Further analysis of these events showed clear agreement with theo-

retical predictions, as both SPA and SPI showed dependence on neocortical input, were
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quantized by neocortical UDS, and resulted in a non-linear amplification of afferent neo-

cortical activity. Further, differences in SPA and SPI across cells could be attributed to

differences in excitatory connectivity between and within brain regions. The number of

experimental observations explained by our theory are greater than the number of param-

eters we varied, demonstrating its predictive power. To our knowledge, our study is the

first to predict theoretically and detect experimentally the novel phenomena of persistent

inactivity, and show that both SPA and SPI not only co-occur but are the result of common

network interaction principles.

3.2 Thein vivo experiment

Details of the experimental procedures are outlined in the Appendix, and are briefly de-

scribed here. Our theory involves coupled networks, where each network consists of re-

currently connected excitatory and inhibitory populations and each network is capable of

sustaining its own UDS oscillation. To test the theory quantitatively, we used the in vivo

cortico-entorhinal circuit as our model system. Mice were lightly anesthetized with urethane

to induce robust and steady UDS that were synchronous across the entire neocortex. The lo-

cal field potential in the parietal cortex (PAR) was measured using a silicon multi-electrode

array; this served as our afferent network reference (Fig 3.1). Simultaneously, we did whole-

cell Vm measurements from anatomically identified pyramidal neurons in PAR and other

neocortical regions like the frontal (FRO) and prefrontal (PRE) cortex and paleocortical

regions like the medial and lateral entorhinal cortex, especially layer 3 (MECIII/LECIII).

3.2.1 Detection of UDS, SPA, and SPI

A hidden Markov model was used to classify the data into a binary UDS sequence [145].

Consistent with previous studies, the LFP from PAR and Vm of neurons in the afferent

PAR (N=24) and several efferent regions FRO (N=7), PRE (N=13), MECIII (N=57), and

LECIII (N=16) showed clear bimodal UDS (Fig 3.2). For subsequent analysis, the amount

of SPA (SPI) was defined as the proportion of efferent Up (Down) states which outlasted an

39



Figure 3.1: Experimental design. Local field potential (LFP) from the parietal cortex was
measured using a silicon probe (black). Simultaneously, membrane potential (Vm) was
measured using whole-cell patch clamp from an anatomically identified neuron in multiple
brain regions.

entire afferent Down (Up) state during an entire experiment. As a first test of the model, we

computed the relationship between the PAR LFP and the Vm from PAR pyramidal neurons,

which were recorded close by (0.5 mm apart). Since these belong to the same brain region,

WEXT is large, and the model predicts complete phase locking, with virtually nonexistent

SPA and SPI. This was indeed the case.

We then tested the model, now using FRO and PRE as the efferent. These regions

are also in the neocortex, receiving strong inputs from PAR, suggesting large WEXT from

afferent PAR [132]. Hence, the model predicted complete UDS synchrony between these

areas with virtually no SPA and SPI. This was again confirmed by experiment (Fig 3.3).

Consistent with previous studies, MECIII neurons showed clear instances of SPA, while

LECIII neurons did not. In contrast, both LECIII and MECIII neurons showed clear

instances of the newly predicted SPI (Fig 3.5). Theory also predicted relative independence

of SPA and SPI. Consistently, some MECIII neurons showed both SPA and SPI, only a few

seconds apart. Some experiments showed instances of SPA and SPI that were as long as 10

seconds long (Fig 3.4).
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Figure 3.2: Comparison between model output (left) and experimental results. A) The
model can reproduce synchronized UDS activity in the two networks (afferent in gray,
efferent in blue). The same scale bars for time and amplitude (in z-score) are used for
(A-H). B) In vivo data matched to simulations of simultaneous UDS in afferent PAR LFP
(gray) and efferent Vm (blue), with histological reconstructions (right) of brain region and
the patched cell (insets). Here, a PAR neuron’s Vm is phase-locked to the PAR LFP,
matching theory in (A). Action potentials have been truncated for clarity. The same scale
bars for time (1 second), amplitude (z-scores), and length scale (100 µm, 500 µm) are used
for all traces and histology. C) Increasing efferent WINT leads to spontaneous persistent
activity (SPA, green box), when the efferent network persists in the Up state even when
the afferent makes a transition to the Down state. D) Clear SPA (green box) in the Vm of
an MECIII pyramidal neuron, matching (C). E) Decreasing WEXT leads to spontaneous
persistent inactivity (SPI, red box), when the efferent network persists in the Down state
while the afferent makes a transition to Up state. F) Clear SPI (red box) in the Vm of an
LECIII pyramidal neuron, matching (E). G) The same network can exhibit SPA and SPI
at different times. H) Both SPA and SPI at different times exhibited by the same MECIII
pyramidal neuron, similar to (G).
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Figure 3.3: Additional examples of experimental traces A) Example trace of the Vm (blue) of
a prefrontal cortex layer 5/6 pyramidal neuron, along with simultaneously recorded parietal
LFP (gray). Black scale bar at the bottom shows one second time interval, and the detected
Up-Down state sequence is shown above for each trace. B) Example trace from frontal
cortex layer 5/6 pyramidal neuron. Both neurons (in A and B) exhibited phase-locked UDS
to the parietal cortex LFP. C) Two examples of LECIII pyramidal neurons, one showing
heightened levels of persistent inactivity (top, red boxes), and the other showing complete
phase locking (bottom).
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Figure 3.4: Additional examples of experimental traces. A) An example of MECIII neuron
showing extremely long persistent inactivity state (red box), lasting over 17.2 seconds. B)
An example of MECIII cell showing extremely long persistent activity states (green boxes),
lasting 8 and 6 seconds.

Figure 3.5: Prevalence of SPA/SPI showed significant variation as a function of brain region,
with MECIII showing the highest SPA (18.5±7.5%) as well as SPI (10.2±5.3%). LECIII
showed diminished SPA (3.3±2.4%) and SPI (5.9±3.1%), while PAR (SPA: 2.6±1.8%, SPI:
1.9±0.7%) and FRO/PRE (SPA: 2.0±0.9%, SPI: 1.3±0.5%) showed even smaller levels.
MECIII SPA and SPI levels were both significantly different from both LECIII levels (SPA:
p < 10−5, SPI: p < 0.05) and PAR levels (SPA: p < 10−9, SPI: p < 10−9), while for LECIII
only the SPI level was significantly larger from PAR (p < 10−5). Error bars represent ±1
s.t.d, and number of experiments within each brain region is indicated under each bar.
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Figure 3.6: The amount of SPA in an entorhinal cell was not significantly correlated with
the amount of SPI. Both MECIII and LECIII cells showed varied levels of SPA and SPI
in experiment, but there was no significant correlation between SPA and SPI (MECIII:
r=0.18, p > 10−1; LECIII: r=0.49, p > 10−1).

The levels of SPA and SPI within the population of LECIII and MECIII neurons were

not significantly correlated to one another (Fig 3.6), consistent with the idea that these

two phenomena are the result of independent network parameters. Finally, SPA/SPI levels

were not correlated with the duty cycle and the frequency of PAR UDS, indicating that

they were not artifacts of differences in brain states across experiments (Fig 3.7).

3.3 Fitting Experiment and Theory

The properties of SPA and SPI not only varied across brain regions, but even between

different neurons from the same region. We hypothesized that all of these differences could

arise from just two network parameters: the strength of recurrent excitation in the effer-

ent network (WINT ) and the strength of external excitatory input to the efferent network

(WEXT ). To test this idea, we used a two-step approach. First, we simulated all possible

networks in this 2D parameter space by varying only WEXT and WINT , while leaving all
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Figure 3.7: The prevalence of SPA or SPI in an experiment was independent of the depth
of anesthesia. The depth of anesthesia varies from one experiment to another, and deeper
anesthesia produces UDS with longer duration cycles and smaller duty cycle (proportion
of the cycle spent in the Up state). Parietal UDS statistics were used to quantify depth
of anesthesia of the animal. A) SPI prevalence was not significantly correlated with PAR
duty cycle for both LECIII neurons (yellow: r=0.15, p > 0.1) and MECIII neurons (blue:
r=-0.24, p > 0.05). B) SPI was not significantly correlated with mean duration of parietal
UDS cycles in the experiment (LECIII: r=-0.27, p > 0.3; MECIII: r=0.17, p > 0.2). C)
Conversely, SPA was not significantly correlated with parietal UDS duty cycle (LECIII:
r=0.38, p > 0.3; MECIII: r=-0.12, p > 0.3) and D) not correlated with mean duration of
UDS (LECIII: r=-0.43, p > 0.05; MECIII: r=-0.01, p > 0.9).
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other variables unchanged. Modulating just two free parameters yielded networks with a

wide range of both SPA and SPI. Thus, we could estimate the two crucial network variables,

WINT and WEXT , by simply computing the amount of SPA/SPI observed experimentally

(Fig 3.8). Crucially, we did not match any other properties of SPA and SPI between the

model and data. Overall, regions in this (WEXT , WINT ) plane with smaller values of WEXT

corresponded with higher levels of SPI, and those with larger values of WINT corresponded

with higher SPA. While SPA and SPI prevalence across neurons was uncorrelated, the fitted

values of WINT and WEXT were significantly negatively correlated, especially for LECIII,

indicating differential properties of the networks (Fig 3.9). The two parameter model, thus

constrained by experiments, was then used to make several independent, experimentally

verifiable predictions, thus providing a large number of quantitative tests of the theory on

a cell-by-cell basis.

3.3.1 Differential Connectivity of Cortical Regions

Further, the experimentally constrained model made major predictions about the network

connectivity of different brain areas, outlined here and shown in Fig 3.8.

1. Recurrent connectivity WINT within MECIII is greater than within LECIII.

2. The external excitatory input WEXT to MECIII is weaker than to LECIII.

3. The recurrent connectivity WINT within frontal and parietal cortices is weaker than

in MECIII.

4. Parietal input WEXT to frontal and prefrontal cortices is greater than to MECIII and

LECIII.

There is evidence for some of these predictions in previous experimental work, while oth-

ers are completely novel and could guide future work. Details are included in the Discussion

section of this chapter.
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Figure 3.8: The time-averaged prevalence of SPA% (green) and SPI% (red) observed in a
single cell were reproduced in the model by varying just two variables, WEXT (x-axis) and
WINT (y-axis). The contour lines and shaded areas reveal that WEXT has a greater impact
on SPA (nearly horizontal green lines), whereas WINT has a greater impact on SPI (nearly
vertical red lines). Each cell is represented by a point (blue circle MECIII, yellow diamond
LECIII, violet square parietal (PAR), green square prefrontal/frontal cortices(FRO/PRE)).
Locations of the examples cells used in Fig1 are highlighted by the black circles. Bottom:
The fitting reveals that WEXT is the largest for FRO/PRE (green, 0.21 ± 0.005) and PAR
(violet, 0.21 ± 0.01), smaller for LECIII (yellow, 0.15 ± 0.02), and smallest for MECIII
(blue, 0.14 ± 0.03). WEXT to MECIII was significantly smaller than to LECIII (p< 0.05),
and both were significantly smaller than to PAR (p< 10−5). Box limits and black bar
represents middle 50% of data and median, and dotted lines extend to the range, except
outliers. Right: The fitting predicts that WINT is the largest for MECIII (1.06 ± 0.01),
smaller for LECIII (1.03 ± 0.015), and even smaller for PAR (1.01 ± 0.02) and FRO/PRE
(1.01 ± 0.005). MECIII WINT was significantly larger than LECIII WINT (p< 10−2), and
both were larger than PAR WINT (p< 10−2).
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Figure 3.9: Fitted parameters WINT and WEXT were significantly anti-correlated within
both MECIII (r=-0.36, p<10-2) and LECIII (r=-0.80, p<10-3).

3.3.2 An alternative fitting strategy

The WEXT −WINT parameter space was divided into a 100-100 grid, and each point was

taken as the input into 5 independent simulations of length 1000s. For each experiment, we

calculated the “distance” between the experimental data SPA/SPI level and each simulated

SPA/SPI level. Let ΦSPA/SPI denote the proportion of efferent states which were classified

as SPA/SPI in the experiment, and ΨSPA/SPI denote the proportion in a given simulation.

The distance between the experiment and any particular simulation is then given by

D =

√
(ΦSPA −ΨSPA)

2 + (ΦSPI −ΨSPI)
2 (3.1)

The simulation with the minimum distance to the experiment was chosen as the best fit.

One could also take Φ and Ψ to denote the proportion of afferent LFP states which were

classified as ‘skipped’ by the efferent network, and use this for the distance metric. Results

of this fit are shown in Fig 3.10, and are virtually identical to the procedure used in Fig 3.8

and the rest of the dissertation.
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Figure 3.10: Experimental fits to the model were robust over different fitting procedures.
In the main text (see Fig 2A), the time-averaged prevalence of SPA and SPI in the efferent
states was used to match simulations to the experiment. A) Another method of fitting
experimental data to the model is to use the time averaged proportion of afferent states
that are “skipped” by the efferent network (skipping afferent Up states leads to SPI, while
skipping afferent Down states leads to SPA). Each cell is matched to the simulation space
using this metric. The symbols used for each brain region are the same as in Fig 2A. B)
Comparing the fits to WINT resulting from this matching scheme (x-axis) to the %SPA/SPI
scheme used in the main text (y-axis) reveals that both methods give extremely close values
(diagonal line is perfect agreement). C) Comparing the fits to WEXT also shows stark
agreement.
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Figure 3.11: The experimentally observed lag between the parietal LFP and efferent MECIII
cells was the largest, evidenced by cross-correlation lag (gray, 152 ± 145ms), Up-Down
transition latency (green, 401 ± 23ms) and Down-Up latency (red, 223 ± 34ms). The
delays for LECIII cells was shorter than those for MECIII cells (xcorr latency 89 ± 22 ms,
Up-Down 22 ± 12 ms, and Down-Up 76 ± 13 ms). PAR cells were unique in that they
preceded PAR LFP (xcorr latency -54 ± 21 ms, Up-Down -43 ± 34 ms, and Down-Up -58
± 13 ms).

3.4 Inferred Connectivity predicts Latency between Brain

Regions

As a first test to our theory, we investigated the relative timing between networks. If

neurons behave like leaky capacitors, the strength of afferent excitatory input should be

inversely correlated with the response latency of the efferent network [2, 146]. This was

corroborated on a population level in vivo, with regions fit to lower values of WEXT having

larger latencies to neocortical LFP (Fig 3.11).

3.4.1 The Down-Up transition and WEXT

LECIII cells with greater predicted excitatory input WEXT showed significantly shorter

Down-Up transition latency (Fig 3.12). Similar result was found within the population
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of MECIII neurons. Further, consistent with model prediction that WEXT from PAR to

LECIII is stronger than to MECIII, the population of LECIII neurons showed shorter

Down-Up latency than the MECIII population (Fig. 3.12). While WEXT enhances the

coupling between the two networks, larger values of WINT make the efferent network more

independent of the input. The effect of these competing inputs is state dependent, differ-

entially modulating the efferent Down-Up versus Up-Down transitions. During an afferent

Down-Up transition, the efferent network is invariably in the Down state, where recurrent

excitation WINT does not contribute. Thus, the latency of the efferent Down-Up transition

should be relatively insensitive to WINT but depend strongly on WEXT . This was strongly

supported across both LECIII and MECIII populations.

3.4.2 The Up-Down transition and WINT

The situation is reversed for the Up-Down transition, when the efferent network is in the Up

state, where recurrent excitation WINT contributes strongly and helps sustain the Up state

despite the loss of afferent input, which is in the Down state. Networks with higher WINT

have more stable Up states, thereby increasing their “inertia.” Thus, the model predicts

that that ECIII neurons that have greater predicted WINT should follow the PAR Up-

Down transitions with longer latency. This was confirmed for both MECIIII and LECIII.

In contrast to Down-Up transitions, the latency of the efferent Up-Down transition should

be relatively insensitive to WEXT compared to WINT . This prediction too was strongly

supported across individual neurons within MECIII, within LECIII, and across the MECIII

vs LECIII ensemble (Fig. 3.12).

These latencies were more correlated with the predicted WINT and WEXT values than

with simply the levels of SPA or SPI (Fig 3.12), further supporting the model. Additionally,

neurons with greater net excitatory input (WEXT + WINT ) should have higher firing rate;

this was confirmed by experiments, showing greater mean firing rates for MECIII than

LECIII, even at the level of individual cells. Further, LECIII neurons’ Vm was significantly

less depolarized than MECIII neurons (Fig 3.13). The predicted model parameters WEXT

and WINT were more strongly correlated with the UDS latencies than the mean firing rates,
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Figure 3.12: Up to Down transition lag between afferent PAR LFP and ECIII Vm is most
correlated with recurrent excitation WINT , while the Down to Up transition lag is most
correlated with external input strength W¬EXT. A) The internal recurrent excitationWINT

increases the stability of efferent network Up state, leading to higher Up-Down delays w.r.t.
PAR LFP (MECIII: blue, r=0.47, p< 10−3; LECIII: yellow, r=0.63, p< 10−2). All delays
are reported in units of mean UDS duration. B) WEXT is significantly correlated with
the Down to Up Delay (MECIII: r=-0.56, p< 10−5; LECIII: yellow, r=-0.60, p< 10−2). C)
WEXT is negatively correlated with the Up-Down delay, but this is not significant (MECIII:
r=-0.17, p > 10−1; LECIII: yellow, r=-0.17, p > 10−1). D) WINT is positively correlated
with the Down-Up delay, but this is significant for the MECIII population (blue, r=0.29,
p< 0.05) and not significant for the LECIII population (yellow, r=0.49, p > 10−1). E)
Previous studies [94] reported a strong correlation between the amount of SPA in a neuron
and the Up-Down delay. This is reproduced here. Both MECIII and LECIII populations
show significant positive correlation (MECIII: r=0.36, p< 10−2; LECIII: yellow, r=0.70,
p< 10−2). F) Conversely, the amount of SPI in a neuron was correlated with the Down-Up
delay. MECIII population showed significant positive correlation (r=0.48, p< 10−3), while
the LECIII population showed positive but not significant correlation (r=0.42, p > 10−1).
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further supporting the model and not nonspecific effects.

3.5 SPA and SPI result from non-linear amplification of af-

ferent gamma fluctuations

The above analysis shows that internal WINT and external WEXT excitation strengths are

the primary determining factors of the average prevalence of SPA and SPI respectively.

However, SPA and SPI are stochastic, varying from cycle to cycle. Can the model capture

this stochasticity? Not all afferent Up states are identical: the afferent network is more

active during some Up states than others [147]. Similarly, some afferent Down states are

more inactive than others. This within-state variability could arise from various processes,

ranging from synaptic to neuronal and network. This is reflected in the cortical gamma

band power (γ-power, 40-120 Hz), whose magnitude fluctuates considerably across UDS.

3.5.1 Modulation of cortical gamma power during SPA and SPI

To understand the effect of cortical variability on ECIII activity, we modeled the cortical

γ-power fluctuations by scaling the afferent input by a memory-less Ornstead-Uhlenbeck

process (µ=1, std=0.3), reflecting the coefficient of variation (CV) of the γ-power in the

PAR LFP during UDS. According to our theory, the total magnitude of afferent input

(UDS with γ-power) should be predictive of the efferent response: afferent Down states

with larger γ-power has a greater probability of inducing an Up-Down transition in the

efferent network, thus resulting in SPA (Fig 3.14). The converse applies for SPI: an afferent

Up state with diminished γ-power is less likely to induce an efferent Down-Up transition,

resulting in a larger probability of SPI (Fig 3.15).

This mechanism makes several distinct predictions that we verify as follows. The first

prediction is about the magnitude of γ-power during SPA and SPI, in theory and in ex-

periment. The PAR γ-power was significantly larger during Down states which elicited

SPA in the ECIII Vm than during the Down states that did not. Conversely, the PAR

γ-power was significantly smaller during Up states that induced SPI. The amplitude of the
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Figure 3.13: Firing rate of MECIII but not LECIII cells was significantly correlated to
inferred connectivity parameters. A) The average firing rate of a neuron during the Up
state was not significantly correlated with our estimate for the recurrent excitation WINT

for either the MECIII (blue: r=0.07, p > 0.5) or LECIII (yellow: r=0.42, p > 10−1)
populations. B) The average firing rate in the Up state was significantly correlated with our
estimate for the external input WEXT for only the MECIII population (r=0.43, p< 10−3)
and not for the LECIII population (r=-0.4, p > 10−1). C) To find the total excitatory
input into a neuron, we used the sum of our estimates for the recurrent and external
excitations WEXT + WINT . The MECIII population showed significant positive correlation
(r=0.49, p< 10−3) while the LECIII population did not show significant correlation (r=-
0.29,p > 10−1).
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unfiltered PAR LFP did not show such significant modulation during ECIII SPA/SPI (Fig

3.16). Thus, fluctuations in the instantaneous cortical γ-power can predict whether a given

cortical state will result in SPA or SPI in the efferent network.

3.5.2 Amplification of gamma fluctuations

The second prediction is about the magnitude of γ-power amplification. Our theory predicts

that positive afferent γ-power fluctuations during Down states and negative fluctuations

during Up states are nonlinearly amplified in the efferent response to generate SPA and SPI,

respectively. This amplification cannot be captured by simply taking the difference between

the efferent intracellular Vm and afferent extracellular LFP, which by their very nature are

orders of magnitude different (Fig 3.17). Instead, we used the ratio of γ-power between

the Up and Down states: this is a good approximation, as this ratio was similar between

PAR LFP and PAR Vm data, and the γ-power within each state was highly correlated

between LFP and Vm data, both within and across PAR experiments (Fig 3.18). The γ-

power ratio provided not only a qualitative but a quantitative match between the theoretical

predictions and experimental data (Fig 3.19). Specifically, we found that the afferent γ-

power fluctuations were amplified by a factor of 3.5±0.2 during SPA and 2.81±0.82 during

SPI (Fig 3.20), demonstrating large amplification.

3.5.3 Non-linear dependence of probability on gamma fluctuation size

A third prediction of our theory is about the precise dependence of the probability of

SPA/SPI as a function of the afferent γ-power. As previously mentioned, SPA and SPI

are binary phenomena, evidenced by the bimodal distribution of MECIII Vm. This bi-

modality can be naturally described by a binomial random variable. The log-odds of

SPA/SPI should depend linearly on the afferent γ-power, i.e. larger probability of SPA(SPI)

for larger(smaller) γ-power in the Down(Up) state, and thus the probability distributions

should have a sigmoid dependence. This prediction was supported quantitatively between

theory and experiment (Fig 3.22). Further, these theoretical predictions were matched

quantitatively with experimental data on a cell-by-cell basis. Data from each individual
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Figure 3.14: Cycle to cycle fluctuations of MECIII SPA are governed by fluctuations in
the afferent cortical gamma power in the Down state. A) Afferent network activity varies
from cycle to cycle, which manifests as fluctuations in the gamma band (γ: 40-120 Hz)
power. Our model predicts that afferent network Down states with higher activity (and thus
higher γ-power, green box) are more likely to prevent a synchronous Up-Down transition
in the efferent network, resulting in SPA. B-C) Examples from two experiments, showing
simultaneous UDS in the afferent PAR LFP (dark gray) and the efferent MECIII Vm (blue),
with LFP γ-power shown underneath. The MECIII Vm persists in the depolarized Up state
during the PAR Down state with high γ-power (compare green area to other dark gray
ones). Note the several orders of magnitude difference in the vertical scales (right) between
afferent and efferent voltages. Time scalebar shows 1 sec in B-C. D) Theory (inset) predicts
that efferent activity triggered on afferent Up-Down transitions (dotted lines in A) will either
persist in the active state (SPA: green) or follow with an Up-Down transition (blue). In
agreement with theory, the average Vm of MECIII neurons triggered on Up-Down transitions
in the afferent cortex persisted in the depolarized state during SPA (green) compared to
synchronous transitions where the neuron goes to a Down state (blue). The maximum
difference (20.3±4.1 mV) occurred at a lag of 823 ms and was highly significant (p< 10−8).
E) Theory (inset) predicts a significant positive difference in afferent activity when triggered
on Up-Down transitions that resulted in SPA (green trace in D) vs. those that did not (blue
in D). The in vivo data confirms this, with significant positive modulation (17 ± 5 µV at lag
of 756 ms, p< 10−4). Shaded regions here and everywhere represent ±1 standard deviation.
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Figure 3.15: Cycle to cycle fluctuations of MECIII SPA are governed by fluctuations in the
afferent cortical gamma power in the Up state. A) Afferent network Up states with lower
activity (and thus lower γ-power, red box) are less likely to induce a synchronous Down-Up
transition in the efferent network, resulting in SPI. This mechanism is symmetric to SPA.
B) Example from experiment, showing simultaneous PAR LFP (gray), efferent MECIII Vm

(blue), with LFP γ-power shown underneath. The MECIII Vm persists in the hyperpolarized
Down state during the PAR Up state with low γ-power (compare red area to other gray
ones). Time scalebar shows 1 sec. C) Example of SPI in LECIII Vm (orange) during PAR
Up states with low γ-power. Timescale same as B. D) Theory (inset) predicts that efferent
activity triggered on afferent Down-Up transitions (dotted lines in A) will either persist in
the inactive state (SPI: red) or follow with a Down-Up transition (blue). In agreement with
theory, the average Vm of MECIII neurons triggered on Down-Up transitions in PAR LFP
persisted in the hyperpolarized state during SPI (red) compared to synchronous transitions
where the neuron goes to an Up state (blue). The maximum difference (24.2±5.1 mV) at
a lag of 653 ms was highly significant (p< 10−5). E) Theory (inset) predicts a significant
negative difference in afferent activity when triggered on Down-Up transitions that resulted
in SPI (red trace in D) vs. those that did not (blue in D). The in vivo data confirms this,
with significant negative modulation (-23 ± 10 µV at lag of 345 ms, p< 10−3).
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Figure 3.16: Fluctuations in cortical LFP gamma power are larger than fluctuations in LFP
amplitude during SPA/SPI. A) The difference in the amplitude (in z-score) of the broadband
LFP (high-pass filtered above 0.05 Hz) when triggered on cortical Up-Down transitions
that resulted in ECIII SPA vs those that did not shows a significant positive modulation
(p<0.05). B) Same as Fig 3E. The same procedure shows positive modulation in the afferent
γ-power during SPA vs during synchronous transitions. C) During SPA, the modulation
of γ-power in the LFP (y-axis) was significantly larger (p< 10−4) than the modulation of
the amplitude of the LFP (x-axis) on a cell-by-cell basis. Each point represents a single
experiment. D) Same as A, but triggered on the Down-Up transition to show the difference
in LFP broadband amplitude during SPI vs not. There is no significant difference (p>0.05)
E) Same as B and Fig 4E, the cortical γ-power shows negative modulation during SPI vs
not. F) On a cell-by-cell basis, the modulation in LFP γ-power (y-axis) was significantly
more negative (p< 10−4) than the modulation in LFP broadband amplitude (x-axis), which
itself was not significantly different from zero (p> 0.05).
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Figure 3.17: PAR LFP fluctuations during SPA/SPI occur within Down/Up states, but
MECIII activity switches between Up and Down states. A) During SPA, the average am-
plitude of parietal LFP (PAR LFP) is not significantly different (p>0.1) from the amplitude
during normal Down states (normal Down: -0.78±0.17mV, SPA: -0.76±0.22mV). The bars
represent averages over all experiments, and individual points represent individual exper-
iments. The global axis on the left represents the quantity in terms of z-score, while the
individual axis on the right represents the actual experimental values. The average parietal
LFP gamma band power (PAR LFP γ) was significantly higher than during normal Down
states (normal Down: 12.1±1.2µV, SPA: 17.3±2.7µV; p< 10−3). In the efferent network,
the average MECIII membrane potential (MECIII Vm) was significantly negative during
non-persistent Down states and significantly positive (in terms of z-score) during persistent
activity states, signifying an efferent Up state. The membrane potential was hyperpolar-
ized during normal Down states (-75.8±1.5mV) and depolarized during persistent activity
states (-54±2.5mV), and were significantly different (p< 10−7). The average gamma power
in the MECIII membrane potential (MECIII Vm γ) was significantly higher during SPA
states (0.9±0.12mV) than during non-persistent Down states (0.32±0.04mV). B) Same as
A, but for SPI and non-SPI Up states. PAR LFP was not significantly different (normal
Up: 1.2±0.23mV, SPI: 1.1±0.29mV), but PAR LFP γ-power was significantly lower during
Up states which elicited SPI than those that did not (normal Up: 68±4µV, SPI: 53±11µV,
p< 10−3). MECIII membrane potential (MECIII Vm) was significantly negative during
SPI and positive during non-persistent Up states (in terms of z-score), and was hyperpolar-
ized during SPI and depolarized during non-persistent Up states (normal Up: -49.1±4.2mV,
SPI: -73.3±5.2mV). The average gamma power in the MECIII membrane potential (MECIII
Vmγ) was significantly lower during SPI states (0.51±0.08mV) than during non-persistent
Down states (1.1±0.04mV).
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Figure 3.18: Gamma power fluctuations in the membrane potential serve as a surrogate for
local network activity. A) LFP from parietal cortex (gray) and membrane potential from
a single neuron (purple) in the parietal cortex were z-scored (top) to enable comparison of
relative size of fluctuations in the gamma band (γ: 40-120 Hz). Spikes were clipped from
the membrane potential trace. B) The traces were filtered in the γ-band and showed similar
fluctuations, both in size and duration. Thus, the membrane potential γ-power gives a close
estimate of the gamma power in the extracellular LFP. C) Up states had significantly higher
γ-power than Down states, but the relative sizes of each was similar between membrane
potential and LFP. Each point here corresponds to the average γ-power within a single
Up or Down state for the example experiment in A/B. The diagonal line gives perfect
agreement. D) Over the ensemble of experiments involving simultaneous recording from
parietal LFP and parietal membrane potential, the relative sizes of Up and Down states
was similar. Each point represents the average over an entire experiment.
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Figure 3.19: Non-linear amplification of MECIII SPA and SPI can be quantified using
fluctuations in gamma power. A) Both PAR LFP (gray) and MECIII membrane potential
(blue) were normalized by z-score. MECIII spikes were removed for subsequent spectral
analysis, and are indicated by the asterisks. B) The traces were filtered in the gamma band
(40-120 Hz) and smoothed. Instances of SPA and SPI are highlighted in the green and
red boxes, respectively. C) Both gamma power traces were triggered on parietal LFP Up-
Down transitions that were followed by efferent SPA (green) and compared with the traces
triggered on Up-Down transitions that were followed by an efferent Down state (gray for
LFP, blue for Vm). D) To calculate the size of the fluctuation following the transition, the
SPA trace (green) was divided by the null, non-SPA trace (gray), and converted to a percent
change. In this particular example, the LFP gamma power saw an increase of 100% during
SPA, whereas the MEC gamma power saw an increase of 300%. This yields an amplification
of 3. E) Same as A, but showing an LECIII neuron (yellow) exhibiting SPI (red boxes). F)
The z-scored trace in (E) was filtered in the gamma band and smoothed. G) Both gamma
traces were then triggered on parietal LFP Down-Up transitions, and transitions which were
followed by SPI were compared against those that were followed by a synchronous Up state.
H) The size of the fluctuation was again calculated in a similar fashion to SPA in (D). In
this particular example, the LFP gamma power saw a decrease of 20% during SPI, whereas
the MEC gamma power saw a decrease of 90%, yielding an amplification of 4.5.
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Figure 3.20: A) Theory (inset) predicted that afferent activity (gray) was higher during
the Down states that elicited SPA in the efferent network, compared with Down states
that did not (same as Fig 3E inset). Due to SPA, the efferent network activity (green)
was also significantly higher. The ratio of the efferent to afferent activity modulation,
defined as the % increase in activity, termed the amplification factor, was significantly
larger than unity (3.5±0.2, p< 10−9). in vivo, the PAR LFP γ-power was significantly
larger (gray: 64±25%, p< 10−4) during Down states that elicited SPA in ECIII neurons
vs. those that did not (same as Fig 3E). ECIII Vm γ-power was also significantly higher
(green: 180±65%, p< 10−5), yielding an amplification factor significantly larger than unity
(2.81±0.82, p< 10−5), in agreement with theory. B) Same as A, but for SPI. Theory (inset)
predicted that afferent activity was significantly lower during Up states that elicited efferent
SPI vs those that did not (same as Fig 4E inset). Due to SPI, efferent activity (red) was also
significantly lower, yielding an amplification factor significantly larger than unity (2.2±0.20,
p< 10−10). in vivo, PAR LFP γ-power was significantly lower (gray: -21±5%, p< 10−4)
during Up states that elicited SPI vs. those that did not (same as Fig 4E). ECIII Vm

γ-power was also significantly lower (red: -70±12%, p< 10−6), yielding an amplification
factor significantly larger than unity (3.12±0.61, p< 10−5), in agreement with experiment.
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cell/simulation was well fitted by a sigmoid, supporting our binomial random variable for-

mulation. As expected, the parameters of the sigmoid varied substantially among exper-

iments, based on the degree of SPA and SPI. Remarkably, despite this variability, for a

given cell very similar parameters of the sigmoid provided a fit to both the experimental

and theoretical results.

The fourth prediction concerns the joint effect of the network variablesWINT andWEXT

and the afferent cortical γ-power in determining the odds of SPA and SPI. According to the

theory, WINT modulates the stability of the efferent Up state, so an increase in WINT would

increase the overall odds for the efferent to exhibit SPA by decreasing the threshold γ-power

needed in the afferent Down state. The log-odds sigmoid should thus shift to lower values

for larger WINT ; this is corroborated by the experiments (Fig 3.23). WEXT modulates the

coupling of the afferent to the efferent network, so an increase in WEXT would decrease the

overall odds for efferent SPI by decreasing the threshold γ-power needed in the afferent Up

state. Thus, the log-odds sigmoid for SPI should shift to lower values as WEXT¬ increases.

Again, the experiment confirms these predictions quantitatively.

3.6 Quantization

The model predicts that SPA and SPI are all-or-none events. As a result, even though

efferent Up/Down state and SPA/SPI durations form a continuous, unimodal distribution,

these durations should be quantized in integral units of the afferent UDS cycles (Fig 3.24).

To compute this for SPA, segments of the efferent activity trace were extracted around every

efferent Down-Up transition, sorted according to the ensuing efferent Up state duration, and

assembled into a single matrix (Fig 3.24). The underlying afferent activity matrix for the

same time points exhibited alternating bands of UDS, with integer multiples of afferent

UDS fitting inside each efferent Up state. The in vivo matrix matched strikingly well

with model predictions. The same procedure for efferent Down states and SPI produced a

similar quantitative match between theory and experiment. The probability distribution of

the rescaled state durations for single experiments was significantly multimodal, with peaks
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Figure 3.21: Stochastic response of efferent ECIII membrane potential to afferent PAR
gamma fluctuations. A1) Simulated response of the efferent network (y-axis) to afferent
activity fluctuations (x-axis) shows the stochastic nature of SPA. The theory predicts that
for a given afferent Down state, the efferent network exhibits SPA or a synchronous Down
state in a discrete, all-or-nothing manner. Thus, Down states with similar activity content
can exhibit both SPA and a synchronous Down state within the same experiment. A2) Ex-
ample from experiment shows probabilistic, all-or-nothing nature of response in the efferent
MECIII membrane potential: cortical Down states with similar γ-power can both elicit
SPA and a synchronous Down state in an all-or-nothing manner. B1-B2) Another example
of SPA, with same convention as A1-A2. C1) Simulated SPI shows that, for afferent Up
states with the same activity, the efferent network can both exhibit SPI or a synchronous
Up state probabilistically, in an all-or-nothing fashion. C2) The experiment shows similar
all-or-nothing, probabilistic response in the membrane potential of the efferent neuron. D1-
D2) Another example of SPI in model and experiment.
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Figure 3.22: A) Theory predicted that, across the ensemble of matched simulations, the
probability of efferent SPA increased as a function of the afferent activity during the Down
state (green diamond). Conversely, the probability of SPI decreased as a function of afferent
activity during the Up state (red diamond). B) In agreement with theory, the probability
of ECIII SPA increased as a function of PAR LFP γ-power in the Down state (green circle),
and the probability of ECIII SPI decreased as a function of PAR LFP γ-power in the Up
state (red circle). The γ-power in Up/Down states were normalized by the average power in
each state in every experiment to highlight dependence on fluctuations and compare across
different experiments, but axes on the lower right show the true scale of fluctuations.

at the half integers, indicating that the ECIII state transitions were still locked to the

PAR LFP transitions, and that the ECIII skipped entire PAR Up/Down states in integer

quantities (Fig 3.25, 3.26). Remarkably, this quantization was observed when consolidating

the rescaled durations of the Up/Down states over all experiments, further demonstrating

the generality of our model.

3.6.1 Departure from Memoryless Bernoulli process

The precise history-dependence of SPA/SPI can provide a further test for our model. One

can imagine three scenarios. First, the SPA/SPI are entirely stochastic, in which case their

probability distribution would follow a memoryless Bernoulli process, like a sequence of coin

flips. Second, SPA/SPI arise due to some change in the overall state of the animal, such

that all the SPA/SPI co-occur. However, our theory predicts a third possibility: it should

be rarer to have consecutive sets of SPA/SPI compared to singular events. This is because

the probability of SPA/SPI is strongly history-dependent. If the network exhibits SPA at
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Figure 3.23: A) Examples of two experiments with different fitted WINT values. The
dependence of SPA probability on γ-power fluctuations within the experiments (circle)
and within matched simulations (diamond) was well-fit by a simple logistic function (p<
10−3). The size of each data point is proportional to the number of observations in each
γ-power/activity bin. The network with larger “inertia” (higher WINT ) is more likely
to exhibit SPA for smaller fluctuations in the afferent input during Down states, thereby
shifting its sigmoid dependence to the left. This can be quantified by the threshold θSPA

γ-power, measured in units of normalized γ-power fluctuation, where the odds of SPA and
not-SPA are equally likely. B) As predicted by the theory (diamonds), in vivo (circles)
also showed that the larger the internal recurrence WINT , the lower the threshold θSPA,
and the more sensitive the efferent network becomes to positive fluctuations in the afferent
Down states. Both theory and experiment were significantly negatively correlated (theory:
p< 10−9, in vivo: p< 10−3) C) Examples of two experiments with different fitted WEXT

values. The network with larger “coupling” (higher WEXT ) is less likely to exhibit SPI
for smaller negative fluctuations in the afferent input during Up states. The dependence
was well fit by a negative logistic function (p< 10−3). θSPI was the threshold afferent Up
state γ-power where SPI and not-SPI are equally likely. D) The theory predicts that θSPI

decreases for increasing WEXT , and this is confirmed with in vivo data. Both theory and
experiment were significantly negatively correlated (theory: p< 10−8, in vivo: p< 10−2).
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Figure 3.24: Quantization of SPA and SPI in units of afferent parietal UDS cycles results
from adaptation, a history-dependent process. A) In the theory, the efferent SPA (blue)
span a continuous range of durations, but they are quantized (green boxes, 1,2,3. . . n) in
the units of the number of afferent UDS cycles. B) All efferent Up states were aligned to
the efferent Down-Up transition and ordered with increasing duration. C) A second matrix
was constructed using the same time points, but using the afferent network activity. The
examples (1-3) in (A) correspond to the row numbers in (B/C). Efferent SPA can last 8
seconds, spanning several afferent UDS cycles. Same colorbar axis is used for the amplitude
(z-score) for all the panels. D) in vivo data from an MECIII neuron validates the theory
by showing efferent MECIII Up states (blue) last an integer multiple (i-iii) of afferent PAR
LFP UDS cycles (gray). E) Similar to A-D, but for SPI, showing that efferent Down states
and SPI show a continuous duration but are quantized (red boxes) in the units of afferent
PAR LFP UDS cycles, in theory and F) experiment.
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Figure 3.25: A) With time measured in units of the varying afferent UDS cycles, theory
(inset) predicted that the distribution of both Up and Down state durations should be
multimodal, with peaks at the half integers (reflecting state transitions after an Up/Down
state). in vivo data showed the predicted multimodality and quantization when MECIII
Up/Down state durations were measured w.r.t. variable PAR UDS cycle lengths. B) The
multimodal, quantized nature of the distribution was evident even when combining data
across all experiments (main) and fitted simulations (inset).
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Figure 3.26: Experimental distributions of efferent state length in units of afferent UDS
was significantly quantized compared to bootstrap shifted null distributions. A) The dis-
tribution of efferent Up state lengths in terms of afferent UDS in the experiment (green)
was compared with the same distribution resulting from a random shift of the efferent data
(gray). The standard deviation (gray shaded area) of the null distribution was obtained
by calculating the distribution from 60 random shifts. The peaks and trough of the real
distribution were significantly different from the null. B) Another example of efferent SPA
quantization, with corresponding null distribution. C) An example of efferent Down state
lengths (red) in terms of afferent UDS also shows significant quantization, different from the
null distribution (gray). D) Another example of significant quantization of SPI. E) Taking
the difference between the real and null distributions from each experiment and normaliz-
ing by the standard deviation in each bin shows that the first trough (at Q.D.=1) and the
second peak (at Q.D.=1.5) for both SPA and SPI is significantly different (SPA: first trough
p<10-3, second peak p< 10−3; SPI: first trough p< 10−3, second peak p< 10−2) from the
null distribution at the population level.
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a given afferent Down state, the efferent network’s recurrent excitation WINT would be

more adapted than usual, reducing the resources needed to sustain SPA in the next Down

state, thus reducing the probability of consecutive SPAs. Similarly, the occurrence of SPI

at a given afferent Up state would make the efferent network less adapted and hence reduce

the probability of consecutive SPIs. To test this prediction, we used the first two modes

of the quantized probability distribution (in Fig 3.25) to calculate a1, the probability of a

solitary SPA/SPI, and a2, the probability that another SPA/SPI occurred given a1 already

happened. Here, a2 = a1 for the first memoryless hypothesis, a2 > a1 for the second

brain-state dependent hypothesis, and a1 > a2 for the third hypothesis, predicted by our

theory. The experiments strongly corroborated our theoretical predictions: the probability

of SPA/SPI diminished after the first such event (Fig 3.27). Thus the two network system

has a longer-term memory of SPA/SPI due to the adaptation of the recurrent excitation

WINT in the efferent network.

3.7 Discussion

3.7.1 A brief history of persistent activity

Persistent activity has been hypothesized to mediate working memory via reverberating

activity [34, 109], and has been studied extensively in vivo, in vitro, and in silica. The

in vitro experiments and computational studies focus on the role of specific intracellular

mechanisms [148–151], while in vivo studies focus on network mechanisms of sustained

activity during a delay period in many brain regions [113, 139, 152]. Recent studies have

shown sustained activity in hippocampal CA1 place cells during navigation [72, 153, 154].

Persistent activity, in the form of sustained depolarization or plateau potentials, has been

found in somatic Vm in several brain areas [155–157]. Persistent depolarization and spiking

has also been seen in the dendritic Vm of parietal cortex pyramidal neurons during natural

sleep and free foraging [158]. Additionally, elevated gamma (γ) power has been found in

specific brain areas during working memory [73, 138, 159]. The ubiquity and diversity of

persistent activity in different cell types, brain regions, brain state, and behavior supports
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Figure 3.27: To find the precise history-dependence, one can imagine the efferent response
to afferent UDS as a sequence of coin flips, as SPA and SPI are all-or-nothing binary
events. State transitions in the afferent network destabilize the efferent network, which
either persists in its current state, resulting in SPA/SPI (heads, probability Pr=a), or
makes a corresponding transition (tails, Pr=1-a). The probability that a given efferent
state lasts a single afferent UDS cycle is Pr=1− a1 (the first mode in Fig. 3.25), while the
probability that it lasts between 1 and 2 cycles is Pr=a1 · (1−a2) (the second mode), where
the subscript denotes the nth transition. Unlike a memoryless process (i.e. a1 = a2) or brain
state dependent process (i.e. a1 < a2), the theory (inset) predicted that the probability of
SPA/SPI should decrease when conditioned on SPA/SPI having occurred previously (i.e.
a1 > a2, p< 10−16). This was confirmed in the in vivo data (main, p< 10−7) and reflects
the underlying long-term memory of the adaptation in the efferent network.
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the hypothesis that a common mechanism could apply.

Persistent activity was recently observed in MECIII during UDS in vivo. It could not be

initiated or terminated by current injections [94], further implicating network mechanisms.

Similarly, persistent activity in LECIIII neurons in vitro cannot be perturbed by current

injections, but can be influenced by synaptic activation [149]. Thus, we focused on a

network based theory of persistent activity with generic neurons. Existing network models

show that sustained activity can generated through reverberant excitation and feedback

inhibition [160, 161]. These models can explain many experimental observations about

stimulus evoked responses, but have not been used to address spontaneous persistent activity

in the absence of external sensory input [162]. Models of spontaneous activity have focused

on a single network sustaining activity in the Up state [113, 117, 118]. Other studies

have modeled interaction between cortical UDS and hippocampal irregular activity, but not

studied persistent activity during UDS [163]. Furthermore, these models have not studied

the inactive regime.

3.7.2 Summary of Results

The Model

To obtain an analytical understanding of interaction between large networks, and make

experimentally testable quantitative predictions, we focused on the cortico-entorhinal inter-

action during UDS oscillations, using simultaneous LFP from parietal cortex that served as

a common afferent reference, along with the membrane potentials measured from anatom-

ically identified neurons in several efferent brain regions. We treated each brain region as

a system governed by just three continuous variables, average excitation, average inhibi-

tion, and activity-dependent adaptation in only the excitatory population [117–119]. These

simplifying assumptions greatly reduced the computational complexity of our theory. But,

even this simplified network has 23 independent parameters, which limits quantitative pre-

dictions and falsification. Hence, we further simplified the theory using dynamical systems

techniques [123] and modeled different brain regions by varying only two biologically rel-
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evant parameters: the strength of internal connections WINT within the efferent network

and the strength of external input WEXT arising from the afferent parietal cortex, while

leaving all the other parameters unchanged. Using only these two variables, we made several

quantitatively verifiable predictions about the dynamics of the interaction between these

networks. To verify these predictions, we studied the cortico-entorhinal circuit in vivo, but

under controlled conditions, namely urethane anesthesia. This removed the differential con-

tribution of sensory stimuli and behavior to different networks [7], removed the variation

of UDS properties with different sleep stages, made the UDS durations sufficiently large so

that persistent activity and inactivity could be detected unequivocally, and made all neo-

cortical areas nearly synchronous. The combination of this simple, two parameter theory

and simplified experiment provided quantitative verification of the theory of spontaneous

cortico-entorhinal interaction, not only in a region specific fashion, but also in a cell-specific

way. Our theory of persistent activity made a surprising prediction, namely the existence

of persistent inactivity. In contrast to persistent activity, which involves the efferent net-

work sustaining activity while afferent inputs have shut off, persistent inactivity involves

the efferent network sustaining inactivity while afferent input remains active. This has not

been reported before in any studies, though there are hints [164, 165]. Dynamical systems

analysis revealed the differential roles that the internal efferent excitation WINT and the

external input strength WEXT play. Increasing WINT enhanced the ability of the efferent

network to sustain activity on its own, increasing the likelihood of persistent activity. On

the other hand, decreasing WEXT reduced the ability of the efferent network to initiate an

‘Up’ state, thereby increasing the likelihood of persistent inactivity. Thus, a combination

of theory and experiment about the nature of persistent activity and inactivity can provide

powerful insights about the large scale network connectivity across different brain areas in

vivo.

Testing the theory in vivo

In addition to detecting SPI in the experimental data, we confirmed several other model

predictions using just two physiological variables, WEXT and WINT , across several brain
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regions at the network level and on a cell-by-cell basis. This revealed the nature of large-scale

connections between and within several brain regions. Our results predicted that parietal

input onto the entorhinal region should be weaker than to the frontal regions. While

this has not been directly measured in vivo, it is supported by anatomical observations

of strong intra-neocortical connections [132, 166, 167]. Within the entorhinal region, the

model predicted that parietal input into LECIII was significantly stronger than to MECIII,

consistent with anatomical studies [168]. Our analysis found greater amounts of persistent

activity in MECIII than LECIII, and the model predicted that this is because the recurrent

connections WINT should be larger within MECIII than within LECIII. This is indirectly

supported by recent experiments showing greater recurrent connectivity between principal

neurons within MECIII than within other MEC layers, and that MECIII network is crucial

in the initiation and maintenance of the Up state during UDS in vitro in isolated EC slices

[144, 169]. Furthermore, the application of acetylcholine to MEC slice preparations in

vitro causes prolonged Up states in individual cells due to increased overall excitation and

more frequent and rhythmic population-wide events, consistent with our hypothesis that

persistent Up states are the result of networks having increased internal excitation WINT

[170].

The model with above network connectivity not only predicted the prevalence of SPA

and SPI in the efferent neurons but also predicted their relative timing to afferent cortical

activity [2, 146], at both population-wide and single-cell resolution. Cells with higher pre-

dicted WEXT , and thus stronger coupling, exhibited significantly shorter state transition

lags, while larger recurrent excitation WINT , and thus stronger “inertia,” had longer lags, as

expected. The latency patterns were quite different for Down-Up vs Up-Down transitions:

the former was more modulated by WEXT , and the latter more by WINT . Our results thus

support the hypothesis that the Up state is terminated by internal network mechanisms but

is initiated by external input [102, 119]. Taken together, these mechanisms resulted in sys-

tematic differences in the response latencies of MECIII and LECIII neurons during Up and

Down states, which would influence the information processing in downstream hippocampal

neurons [93, 94] and hence the memory consolidation process via spike timing-dependent
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plasticity mechanisms [26].

While several studies have focused on persistent activity during working memory tasks,

others have focused on the elevated γ-power in the LFP [73]. Our simple theory can unify

these two aspects by showing that small fluctuations in the afferent cortical drive, estimated

using the instantaneous γ-power, should have a large impact on the occurrence of SPA and

SPI in the efferent entorhinal neurons. Specifically, parietal cortex Down(Up) states with

larger(smaller) γ-power were significantly more likely to generate SPA(SPI) in both model

and data. Crucially, this meant that fluctuations within afferent Up and Down states led to

an all-or-nothing response in the efferent network, and the probability of this all-or-nothing

response increased non-linearly with the size of the afferent fluctuation, fitted well by a

sigmoid dependence. Our model further predicted that the nature of this sigmoid depen-

dence should itself depend on the fitted connectivity parameters: larger internal recurrence

WINT should decrease the threshold in the Down state for SPA, while larger external con-

nectivity WEXT should decrease the threshold in the Up state for SPI. These relationships

were corroborated by both model simulations and experiment to a remarkable degree of

agreement.

The all-or-nothing response with sigmoid probability dependence to afferent input means

that the efferent network can non-linearly amplify input fluctuations. During SPA, the

efferent network amplifies positive fluctuations in the afferent Down state, while during

SPI, the efferent network amplifies negative fluctuations in the afferent Up state. This

nonlinear amplification of γ-power could explain the correlations found between γ-power and

memory load and provide the mechanism by which discrete oscillatory dynamics manifest

working memory through either persistent activity or elevated γ-power [159, 171, 172].

Given the monosynaptic coupling between MECIII pyramidal cells and the hippocampal

CA1 network, along with the fact that CA1 inhibition is phase-locked to cortical UDS, this

nonlinear amplification of cortical fluctuations could also explain why hippocampal multi-

unit activity during UDS shows significant positive modulation during MECIII SPA when

compared to an average cortical Up state [94, 106].

As a direct consequence of the underlying physics of the model, the theory predicted that
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both SPA and SPI durations, while showing continuous, long-tailed distributions, should

also show quantization in the units of afferent parietal cortical UDS cycles. This too was ver-

ified experimentally, with quantitative match between theory and experiment. Our model

went further to predict that SPA/SPI was highly history-dependent, reducing the proba-

bility of consecutive SPA or SPI, and was also confirmed in vivo. This further ruled out

alternate mechanisms such as stochastic or statewide variables.

3.7.3 Metabolic and Computational Advantage of Persistent Inactivity

While persistent activity has been studied extensively as the mechanism underlying work-

ing memory, it is far more energetically expensive than persistent inactivity. Furthermore,

the models involving only persistent activity have a limited storage capacity, especially

when dealing with memories that require overlapping representations [173–175]. Persistent

inactivity introduces a new mechanism to overcome this difficulty. From an information

theoretic perspective, a 0 is just as informative as a 1. Hence, a combination of persis-

tent activity and inactivity would be an efficient scheme for storing overlapping memories

by multiplexing the representation, which can manifest as γ-band fluctuations [135, 176].

Related, our theory predicted that the same neuron can show SPA and SPI, and this was

experimentally confirmed.

3.7.4 Limitations

The long duration of UDS under anesthesia allowed unequivocal detection of both SPA

and SPI. But, since SPA and SPI remained unchanged across a range of anesthesia depths,

and SPA has been shown in MECIII during drug-free sleep, these results should be broadly

applicable [94]. On the other hand, a large number of biological factors that we did not

consider could modulate our system wide findings. For example, in addition to the direct

inputs from the parietal cortex to EC, there is substantial indirect input via the perirhinal

and postrhinal cortices that we did not consider [177]. Recent studies show some cortical

inhibitory neurons that remain active during the down state, which can alter the nature of

cortical UDS [178]. Finally, hippocampus receives EC input and projects back to EC, and

76



EC projects back to the frontal cortices; these connections were not included in our model,

but could be studied in the future [89]. Despite this, the simple model was able to predict

and match a large amount of experimental observations in a quantitative and cell-by-cell

manner. Thus, future studies can build on this approach to study SPA/SPI during drug-free

sleep.

3.7.5 Conclusions

These results demonstrate that during UDS, the rich dynamics of the entire cortico-

entorhinal circuit can be captured in a quantitatively precise fashion using just two

variables: the cortico-entorhinal excitation and the recurrent excitation within the entorhi-

nal cortex. Given the direct and indirect pathways linking the entorhinal region to the

hippocampus, the decoupling of entorhinal activity from neocortical inputs during SPA

and SPI could contribute to selective removal, strengthening, and weakening of memory

traces from the hippocampus during slow-wave sleep, thus improving the signal to noise

ratio in the space of memories, thereby improving experimentally observed task-related

performance. Our theory is sufficiently general and could equally well apply to other

networks, e.g. parietal-prefrontal network, where persistent activity is seen during working

memory tasks. Recent studies have suggested that γ-oscillations play a crucial role in this

process. Our results integrate these findings to show that the γ-power of the input network

differentially regulates the persistent activity and inactivity in the efferent network.

Thus, a simple, two parameter network and fluctuations could predict more than a dozen

experimentally testable phenomena, which were all quantitatively verified in vivo. This

approach provides a powerful technique to understand the functional connectivity between

large networks of neurons.
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Chapter 4

SPA and SPI modulate
Cortico-Entorhinal-Hippocampal

Dialogue in vivo

Dialogue between networks of the neocortex, entorhinal cortex, and hippocampus during

sleep are fundamental in processes governing memory consolidation and learning. However,

a mechanistic understanding of how these brain regions coordinate their activity remains

elusive. The recently described spontaneous persistent activity (SPA) and inactivity (SPI)

provide a potential substrate for these processes; while the mean-field mechanisms impli-

cated in the generation of SPA and SPI is general and widely applicable, SPA has only been

detected in layer 3 neurons on the medial entorhinal cortex (MEC), and SPI in only the

layer 3 neurons of both the medial and lateral entorhinal cortex (LEC). Here, we expand on

previous investigations and find that SPA and SPI are ubiquitously found in the extended

parahippocampal circuit, including neurons in layer 2 of both MEC and LEC, granule cells

in the dentate gyrus, and interneurons in the hippocampal CA1 network. Further, we show

that cortical high-frequency power not only determines the probability of SPA and SPI but

also the fine-timescale coordination between cortical and efferent entorhinal and hippocam-

pal networks during synchronous UDS. Finally, we show that SPA and SPI in entorhinal

and hippocampal subpopulations have drastic effects on downstream hippocampal activity;

specifically, these subnetworks amplify the signals. These findings could elucidate the mech-

anism by which coordinated activity across brain regions can lead to memory consolidation

and learning.
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4.1 Cortico-Entorhinal-Hippocampal Connectivity

Higher order functions, like memory, learning, and cognition, rely on distributed and co-

operative activity of multiple large brain networks, distributed in distant regions of the

brain. Specifically, neocortical-hippocampal interactions lay at the foundation of informa-

tion processing for several forms of memory [25, 26, 29, 89, 93, 138]. Memory consolidation

is thought to occur during slow-wave-sleep (sometimes called non-rapid eye movement sleep,

or NREM sleep), when neocortical networks spontaneously transition between a quiescent

“Down” state and an active “Up” state. The hippocampus, on the other hand, shows weak

or non-existent correlation to these oscillations [93, 105]. Previous studies have found that

when neurons in layer 3 of the medial entorhinal cortex persist in the “Up” state, i.e. ex-

hibit spontaneous persistent activity (SPA), hippocampal circuits are excited at times when

neocortical neurons are silent [94]. This finding suggests that MEC firing during UDS may

gate the information flow needed for the consolidation of different types of memories and

could serve as a source for the observed neocortical-hippocampal decoupling during SWS.

Anatomically, the entorhinal cortex is the major input and output structure of the hip-

pocampal formation, forming the nodal point in cortico-hippocampal circuits [134, 179, 180].

Multimodal, as well as highly processed unimodal sensory inputs converge at the level of

neurons in the superficial layers of the entorhinal cortex. This input is then processed by

the entorhinal circuit and conveyed to the hippocampal formation by neurons in layer 2

and layer 3 of the entorhinal cortex. These two layers differentially target hippocampal

areas: while layer 3 targets the CA1 cell layer directly, layer 2 targets the dentate gyrus,

which then feedsforward to area CA3, which in turn feeds forward to area CA1. In turn,

the hippocampal formation, especially the CA1 cell layer and the subiculum, are the main

source of projections back to the entorhinal cortex, specifically layer 5. Layer 5 neurons

in turn project to widespread cortical and subcortical domains in the forebrain. Recent

electrophysiological recordings show that cells in MEC are predominantly spatially modu-

lated; in contrast, cells in the LEC care about objects in context [141–143, 181–183]. How

these differences in properties of the two subdivisions carry forward to the hippocampus
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and back is still a mystery. The ubiquity of connections, along with the demonstrated role

of the entorhinal and hippocampal formations in learning and memory, make the cortico-

entorhinal-hippocampal circuit and ideal substrate to study complicated network interac-

tions in vivo. While extensive studies have been conducted on these brain regions, analysis

of simultaneous activity between all four regions, and thus a systematic understanding of

how activity propagates from one network to another, is lacking.

4.2 Synchronous and Asynchronous UDS in the extended

para-hippocampal region

Details of the experimental procedures are outlined in the Appendix, and are briefly de-

scribed here. Mice were lightly anesthetized with urethane to induce robust and steady

UDS that were synchronous across the entire neocortex. The local field potential in the

parietal cortex (PAR), the hippocampal CA1 cell layer (CA1), and the dentate gyrus (DGG)

was measured using a silicon multi-electrode array; simultaneously, we did whole-cell Vm

measurements from anatomically identified pyramidal neurons in neocortical, paleocorti-

cal, and hippocampal regions. In the neocortex, we recorded from pyramidal neurons in

superficial layers of the parietal (PAR), prefrontal (PRE), and frontal (FRO) cortices. In

the lateral entorhinal cortex, we recorded from fan cells in layer 2 (LECII) and pyramidal

cells in layer 3 (LECIII). In the medial entorhinal cortex, we recorded from stellate cells

in layer 2 (MECII), pyramidal cells in layer 3 (MECIII), and layer 5 (MECV). Finally, in

the hippocampus we recorded from interneurons in CA1 (CA1i), pyramidal cells in CA1

(CA1p) and CA3 (CA3p), and granule cells in the dentate gyrus (DGg). The combination of

simultaneous recordings from four locations (the neocortical LFP, Vm from a single neuron

in a specific region, hippocampal CA1 LFP, and hippocampal dentate gyrus LFP) during

Up-Down states allowed for the analysis of inter-regional dialogue in the absence of sensory

stimulus.
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Figure 4.1: Modulation of neuron’s Vm during neocortical UDS. A) UDS was detected in
PAR LFP, and the modulation was calculated using the amplitude difference between the Vm

during Up vs. Down states. Across the neocortical region, Parietal (PAR) neurons showed
the highest modulation (0.88 ± 0.04), followed by Frontal (0.83 ± 0.09) and Prefrontal
(0.82 ± 0.07). Lateral entorhinal cortex neurons also showed significant modulation (LECII:
0.58 ± 0.1; LECIII: 0.74 ± 0.1). Medial entorhinal cortex neurons also showed significant
modulation (MECII: 0.73 ± 0.17; MECIII: 0.63 ± 0.14; MECV: 0.72 ± 0.16). Hippocampal
neurons had mixed responses. Dentate granule cells (DG: 0.52± 0.15) and CA1 interneurons
(CA1i: 0.82 ± 0.15) showed significant modulation, but CA3 and CA1 pyramidal neurons
did not (CA3p: 0.13 ± 0.2; CA1p: 0.09 ± 0.2). B) Similar results were found for the
peak (either positive or negative) of the cross-correlation between the PAR LFP and Vm

of neurons. Neocortical neurons showed the highest correlation (PAR: 0.78 ± 0.06; FRO:
0.78 ± 0.07; PRE: 0.73 ± 0.08), followed by lateral entorhinal neurons (LECII: 0.56 ± 0.14;
LECIII: 0.70 ± 0.12) and medial entorhinal neurons (MECII: 0.39 ± 0.44; MECIII: 0.38 ±
0.30; MECV: 0.56 ± 0.31). Finally, hippocampal neurons showed mixed modulation, with
dentate granule and CA1 interneurons showing significant correlation (DG: 0.46 ± 0.14;
0.50 ± 0.32), but CA3 pyramidal neurons showed little to no correlation (0.3 ± 0.23) and
CA1 pyramidal neurons showed weak negative correlation (0.14 ± 0.21).
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4.2.1 UDS modulation in parahippocampal networks

A hidden Markov Model was used to classify the parietal LFP into a binary UDS sequence

[145]. The UDS modulation of specific neurons was then found using two methods (Fig.

4.1). First, the peak of the cross-correlation between the broadband parietal LFP and the

Vm of each neuron was used to assess UDS modulation. This measure, however, is really

a measure of similarity between the LFP in PAR and the Vm of each neuron, and is not

necessarily a reflection of the Up-Down modulation. For a more stringent measure, we

calculated the amplitude difference, in units of z-score, between the Vm of neurons during

those times when the PAR LFP showed an Up state and those times when the PAR LFP

showed the Down state. To adjust for the differential timing between the PAR UDS and

each neuron’s Vm, we used the lag of the peak cross-correlation.

Both methods produced similar results. PAR pyramidal neruons showed the highest

modulation to PAR LFP Up-Down states, as expected, since the neuron and the electrode

are within the same brain region. Other neocortical areas like FRO and PRE also showed

significant modulation, which is expected, given that these neurons are also in the neocortex.

In the entorhinal cortex, all neural subtypes showed significant modulation to PAR UDS,

but this modulation was significantly weaker than for neocortical neurons. Within LEC,

layer 3 pyramidal neurons showed higher modulation compared to layer 2 fan cells. Within

MEC, layer 3 pyramidal neurons showed the weakest modulation, and layer 2 and layer 5

cells showed higher modulation. Finally, within the hippocampus, only dentate granule cells

and CA1 interneurons showed significant modulation to PAR UDS, consistent with previous

studies. CA1 pyramidal neurons showed weak negative modulation, while CA3 pyramidal

neurons showed no modulation at the population level. Given these profiles for each neural

subtype, we excluded CA1 and CA3 pyramidal neurons from our subsequent analysis of

network interactions during UDS. These results are in broad agreement with previous studies

[93, 94, 105, 106], but of note is the fact that these studies did not differentiate between

layer 2 in MEC vs LEC.
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Figure 4.2: SPA and SPI occur in almost all parahippocampal regions. A) The prevalence of
SPI within neurons of a population, averaged over each population. Color code is indicated
at bottom. Neocortical neurons had the smallest amount (PAR: 0.3±0.2%, FRO: 0.2±0.2%,
PRE: 0.2±0.2%). LEC neurons showed significant SPI (LEC II : 8±2%, LEC III: 6±1%),
along with superficial layers of MEC (MEC II : 11± 4%, MEC III: 10± 5%). Deep layers
showed virtually no SPI (MEC V: 1 ± 2%). Finally, hippocampal subfields also showed
significant SPI (DG : 11±4%, CA1 inter: 3±2%). B)The prevalence of SPA within neurons
of a population, averaged over each population. Neocortical neurons had the smallest
amount (PAR: 0.3 ± 0.2%, FRO: 0.4 ± 0.2%, PRE: 0.5 ± 0.2%). LEC neurons showed
significant SPI (LEC II : 4 ± 2%, LEC III: 2 ± 1%), along with superficial layers of MEC
(MEC II : 7 ± 4%, MEC III: 20 ± 5%). Deep layers showed virtually no SPA (MEC V:
2 ± 2%). Finally, hippocampal subfields also showed significant SPA (DG : 2 ± 4%, CA1
inter: 8± 2%).
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Figure 4.3: SPA and SPI are observed across the entorhinal-hippocampal circuit. A) The
simultaneously recorded PAR LFP and Vm from a pyramidal neuron show completely coher-
ent behavior, alternating between Up and Down states. Histology of the neuron is shown
on the right, with scale bars indicated. The same scale bar for time (1 second) is used
throughout. B) The lateral entorhinal cortex layer 2 fan cells and layer 3 pyramidal cells
both show instances of persistent inactivity (SPI, red boxes). C) The medial entorhinal
cortex layer 2 stellate cells show both SPI and persistent activity (SPA, green boxes). Same
for MEC layer 3 pyramidal cells. MEC Layer 5 pyramidal cells show SPA. D) We focus
on the hippocampal subfields which are modulated by cortical UDS. Dentate gyrus granule
cells show SPI, and interneurons in CA1 shows SPA.
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Figure 4.4: Neocortical neurons undergo synchronous transitions with respect to parietal
LFP transitions. A) Parietal cortex LFP (gray) and Vm (black) triggered on the LFP
Down-Up transition (left) and Up-Down transitions (right) showed synchrony. The parietal
cortex Vm preceded the LFP transitions. The average is across all experiments involving
parietal cortex Vm. shaded regions indicate ±1 standard deviation. B) Same as A, but for
frontal cortex membrane potential. C) Same as A, but for prefrontal cortex neurons.

85



Figure 4.5: Medial entorhinal cortex neurons undergo synchronous transitions with respect
to parietal LFP transitions, but can exhibit both SPA and SPI. A) Parietal cortex LFP
(gray) and MEC Layer 2 stellate cell Vm (blue) triggered on the LFP Down-Up transition
(left) and Up-Down transitions (right) showed synchrony, along with instances of SPI (red)
and SPA (green). The membrane potential significantly followed the parietal LFP. B) Same
as A, but for MEC Layer 3 pyramidal neurons. This population also shows significant SPI
and SPA. C) Same as A, but for MEC Layer 5 pyramidal neurons. This population only
shows SPA, not SPI.
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Figure 4.6: Lateral entorhinal cortex neurons undergo synchronous transitions with respect
to parietal LFP transitions, but can exhibit SPI. A) Parietal cortex LFP (gray) and LEC
Layer 2 fan cell Vm (orange) triggered on the LFP Down-Up transition (left) and Up-Down
transitions (right) showed synchrony, along with instances of SPI (red). The membrane
potential significantly followed the parietal LFP. B) Same as A, but for LEC Layer 3 pyra-
midal neurons. This population also shows significant SPI.

4.2.2 SPA and SPI in the extended parahippocampal circuit

Detection of UDS sequences within the Vm of neurons was done using a modified approach

from the one used in earlier work, because not all populations expressed bimodal Vm during

UDS, and thus using the Hidden Markov Model from earlier gave unreliable results. Instead,

UDS sequences were detected in parietal LFP; this was used as a universal clock for the

entire experiment. The behavior of Vm during this clock was used to detect SPA and SPI.

This new method was employed to expand the applications of our method to neuronal

populations which did not exhibit bimodaly distributed Vm but were still modulated by

parietal UDS, like DG granule cells and LECII fan cells. Details can be found in the

Appendix B.
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Figure 4.7: Dentate gyrus granule cells and interneurons in CA1 cell layer of the hip-
pocampus undergo synchronous transitions with respect to parietal LFP transitions, but
can exhibit both SPI and SPA. A) Parietal cortex LFP (gray) and Dentate Gyrus granule
cell Vm (purple) triggered on the LFP Down-Up transition (left) and Up-Down transitions
(right) showed synchrony, along with instances of SPI (red) and SPA(green). The membrane
potential significantly followed the parietal LFP. B) Same as A, but for CA1 interneurons.
This population also shows significant SPI and SPA.

We confirmed the presence of SPA and SPI in MECIII cells, and SPI in LECIII cells; the

average prevalence of SPA and SPI found using this new method were comparable to that

found using the more stringent, paired UDS method 4.2. In addition to these brain regions,

we also found SPA and SPI across the parahippocampal region 4.3. MEC layer II stellate

cells displayed both SPA and SPI, sometimes in the same cell. MEC layer V pyramidal

cells showed instances of SPA, but rarely SPI 4.5. In the LEC, layer 2 fan cells showed SPI

but not SPA, similar to the behavior of layer 3 pyramidal cells4.6. Finally, both dentate

gyrus granule cells and CA1 interneurons showed instances of SPA and SPI4.7. Neocortical

neurons again showed no SPA or SPI 4.4
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4.2.3 Power Spectra and Cross-Region Coherence

To confirm that the UDS oscillations in the brain were present in the Vm across brain

regions, we first calculated the power spectrum of each trace 4.8. As expected, all brain

regions that were significantly modulated by parietal UDS showed a peak in the delta band

(0.5-1 Hz), while CA3 and CA1 pyramidal neurons did not show a significant peak.

Figure 4.8: Power spectra across all cell populations, along with corresponding parietal LFP
power spectra, on log-log scale, showing delta modulation (or lack thereof) in cortex and
hippocampus. A) Both parietal cortex LFP and Vm showed a peak in the power spectra
within the delta band (<1Hz). Shaded regions represent ±1 s.t.d. B) Same as A, but for
frontal cortex neurons. C) Same as A, but for Prefrontal cortex neurons. D) LECII fan
cells do not show characteristic peak in delta band. E) LECIII neurons, however, do. F-H)
Neurons in MEC layer 2,3, and 5 all show significant peaks in the delta band. Continued
on next page.

89



Figure 4.8: I) Dentate gyrus granule cells show a small peak in the delta band. J) CA3
pyramidal cells show a peak in the delta band, but the peak is not significant, since only
about three neurons contribute, while the others show no modulation to the delta band.
K) CA1 interneurons show significant peak in the delta band. L) CA1 pyramidal neurons
did not show significant modulation in the delta band.

We then calculated the coherence between the parietal LFP and the Vm trace over

frequencies ranging from 0.1-100 Hz, and the phase difference within each frequency4.9.

Neurons of the neocortex, entorhinal cortex, the dentate gyrus, and CA1 interneurons all

exhibited significantly coherent oscillations in the delta band, with the coherence dropping

to chance level at higher frequencies. In neocortical neurons, the phase difference decreased

with increasing frequency, while for LEC, MEC, and hippocampal neurons with significant

coherence, the phase difference increased. This reflects that fact that neoceortical neu-

rons either precede or are coincident with parietal LFP, while entorhinal and hippocampal

neurons lag behind. This absolute time lag will manifest as a phase shift at different fre-

quencies; neurons which precede the LFP will show higher phases for higher frequencies

[93]. All subpopulations in the cortex were in phase with parietal LFP, but CA1 pyramidal

neurons were predominantly out of phase. CA3 and CA1 pyramidal neurons showed highly

diminished coherence compared to other cortical neurons, in agreement with the fact that

both CA3 and CA1 subpopulations are not modulated by cortical UDS [105].
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Figure 4.9: Cross-spectral coherence between parietal cortex LFP and populations of neu-
rons in brain regions. A) Top: Parietal cortex neurons were significantly coherent with
neighboring LFP from all frequencies lower than 15 Hz. Above this band, the coherence
was not significantly different from chance (0.5, dotted line). Bottom: the phase difference
between the Vm and the LFP decreased with increasing frequency, indicating that there was
a constant time lag between the two signals, with Vm preceding LFP. Shaded regions indi-
cate ±1 s.t.d. B) Same as A, but for frontal and prefrontal neurons. Both show significant
coherence for frequencies below 15 Hz, and a decrease in phase w.r.t. LFP. Continued on
next page.
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Figure 4.9: C) Same as A, for LEC Layer 2 fan cells and LEC Layer 3 pyramidal cells. Both
show significant coherence, but LEC III has significantly stronger coherence to parietal LFP
compared to LEC II. The phase increases for LECII fan cells, but not LEC III cells, due
to differential lag. D) Cells in MEC layer 2, 3, and 5 all show significant coherence at
frequencies below 10 Hz, and increase their phase with frequency, reflecting the fact that
MEC neurons significantly lag behind the PAR LFP. E) Hippocampal neurons have mixed
responses, varying with subpopulation. Dentate gyrus granule (DGg) cells had significant
coherence to parietal LFP below 10 Hz, and the phase increased with frequency in this
band. CA3 pyramidal neurons did not show significant coherence. CA1 interneurons showed
significant coherence, and the phase increased with frequency. CA1 pyramidal neurons, on
the other hand, showed slight coherence in the lower frequency bands, but were out of phase
with parietal LFP. The phase also increased with frequency.

4.2.4 Latency between parahippocampal and neocortical activity

To compliment the analysis of spectral coherence, we calculated the transition-specific lag

between the parietal LFP and the Vm of neurons in each subpopulation. We confirmed our

earlier observations about neocortical neurons and LECIII and MECIII neurons. Further,

we found that LECII neurons followed parietal Down-Up transitions at significantly longer

lags than LECIII neurons. Additionally, MECII neurons followed PAR Down-Up transi-

tions at a longer lag than MECIII neurons, while MECV neurons followed PAR Down-Up

transitions at a shorter lag than MECIII neurons. In the hippocampus, dentate granule

cells and CA1 interneurons also followed parietal LFP at similar lags to MEC neurons.

For Up-Down transitions, LECII neurons had similar lags compared with LECIII neu-

rons; both were nearly coincident with parietal LFP Up-Down transitions. In MEC, layer

III neurons showed considerably longer Up-Down lags compared to layer II, and still longer

than layer V. According to theory, this is due to higher inter-connectivity in the excitatory

network. Furthermore, dentate granule cells transitioned to the Down state much sooner

than MEC cells, while CA1 interneurons followed with a lag close to that of MEC neurons.

These results corroborate those found using the phase-frequency relationship within the co-

herent bands: namely, those brain areas which preceded the parietal LFP showed decrease

in phase with frequency, and vice versa for those regions which followed parietal LFP.
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Figure 4.10: Transition lags between parietal LFP and neuronal Vm. Parietal cortex pre-
ceded the neighboring LFP for both Down-Up (−50±46 ms) and Up-Down (−167±87 ms)
transitions. Frontal cortex neurons followed parietal LFP during the Down-Up transition
(26 ± 36 ms) but preceded the Up-Down transition (−71 ± 43 ms). Same with prefrontal
neurons (Down-Up: 28 ± 45 ms; Up-Down: −18 ± 12 ms). Lateral entorhinal cortex neu-
rons all followed the parietal LFP, with layer 2 having significantly larger delays than layer
3 (LECII: Down-Up 253 ± 176 ms; Up-Down 250 ± 250 ms; LECIII: Down-Up 172 ± 70
ms; Up-Down 10 ± 167 ms). Medial entorhinal cortex neurons all followed parietal LFP.
With Down-Up transitions, the smallest lag occurred in MEC V neurons (235 ± 156 ms),
followed by layer 3 (246±135 ms), followed by MEC Layer 2 (265±123 ms). For Up-Down
transitions, MEC layer 5 neurons were again with shortest lag (200± 189 ms), followed by
MEC Layer 2 (261 ± 200 ms) and MEC Layer 3 (403 ± 250 ms). Finally, Dentate Gyrus
granule cells and CA1 interneurons also followed parietal LFP, with CA1 interneurons hav-
ing significantly longer latency (DGg: Down-Up 241± 96 ms, Up-Down 89± 112 ms; CA1i:
Down-Up 251± 176 ms, Up-Down 201210 ms).
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4.3 Cortical High-Freq Power modulates network interaction

strength and timing

Given our theory of cortical interaction, we have shown that SPA and SPI are stochastic

events which occur during positive fluctuations in the Down state and negative fluctuations

in the Up state. What is the effect of parietal γ-power during synchronous Up and Down

states? In the mean field approximation, networks are leaky capacitors; and the larger the

input current, the larger the response of the network. Furthermore, the network latency

should be shorter. This applies to synchronous Up states as well, and should manifest in

the experimental data. To check, we calculated the relationship between parietal gamma

power during Up states and the nature of the efferent response.

4.3.1 Timing of synchronous UDS cycles

During an Up state in the parietal cortex, afferent excitation turns on, thereby inducing

a Down-Up transition within the efferent neuron. As neuron’s are leaky capacitors, the

larger the input from the afferent network, the shorter should be the delay to the efferent

Down-Up transition. This should manifest within single experiments as well, not just on

average, as shown in the previous chapter. This was indeed the case in the in vivo data 4.11,

where for many cells the lag to the Down-Up transition and the afferent parietal gamma

power were significantly negatively correlated.

Across brain regions, cells which exhibited significant correlation between parietal drive

and Down-Up transition latency nearly always showed anti-correlation 4.12. The number of

cells which showed significant correlation varied across brain regions, however. A majority

of cells in the entorhinal cortices showed significant anti-correlation, while only a minority

of cells in the neocortex showed anti-correlation. This is despite the fact that entorhinal

cortex neurons showed significantly longer lags, on average, to the parietal LFP compared

with neocortical neurons. Nearly all cells in the MECIII population showed anti-correlation.
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Figure 4.11: Higher gamma power during Up state leads to shorted latencies between
afferent drive and efferent Down-Up response. A) Examples from an experiment involving
PAR LFP (gray) and MECIII Vm (blue), with the power in the gamma band shown in
black. i) For PAR UP states with higher gamma power, the MECIII neuron responds
with its own Down-Up transition almost immediately following the PAR LFP Down-UP
transition. As the Up state gamma power decreases (ii-iv), the membrane potential lags
significantly behind. All data was z-scored across the experiment for display purposes.
Continued on next page.
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Figure 4.11: B) All data from the parietal LFP gamma power was arranged into a matrix,
and aligned by the PAR Down-Up transition. The traces were then ordered by the lag
between Down-Up transition in PAR LFP and the same transition in MECIII Vm (shown
in C). The traces in (A) are shown as columns in (B) and (C). Clearly, those transitions that
induced shorter lags had more gamma power. D) The average gamma power in the PAR
LFP during the Up state was plotted against the latency during that transition, showing
significant negative correlation.

The converse effect happens during the Up-Down transition, as higher gamma power in

the parietal Down state should increase the lag in the efferent network to its own Up-Down

transition, since the extra current coming in from the afferent network can help sustain the

efferent Up state for longer. This was indeed the case, as nearly all cells which showcased

significant correlation showed positive correlation. Unlike the Down-Up transition, the Up-

Down transition was far more independent of the parietal drive. In most regions, only a

minority of cells showed any correlation; within MEC, layer 3 pyramidal neurons were the

most independent. Across populations, dentate granule cells showed the highest likelihood

of showing a correlation between parietal drive and the Up-Down latency. We repeated this

analysis using the time lag between a parietal transition and when the Vm reached 80% of

its peak amplitude during the Up state (or 20% the Down state amplitude for Up-Down

transitions), which yielded extremely similar results 4.13.
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Figure 4.12: Correlation between Timing and Cortical Gamma Drive across neuronal sub-
populations A) Across all populations of neurons, significant correlations between the PAR
Up state gamma and the Vm Down-Up lag was almost always negative. Conversely, signif-
icant correlations between PAR Down state gamma and the Vm Up-Down lag was almost
always positive. B) The number of cells which exhibited significant anti-correlation between
their Down-Up lag and the PAR gamma drive varied with brain region and cell type. 48%
of parietal cells showed significant correlation, only 26% of frontal neurons and 73% of pre-
frontal neurons showed significant correlation. In LEC, 80% of LECII and 72% of LECIII
neurons showed significant correlation. MEC showed the highest correlation, with 82% of
MECII cells, 93% of MECIII cells, and 71% of MECV cells showing significant correlation.
In hippocampus, 60% of Dentate granule cells and 55% of CA1 interneurons showed signif-
icant correlation. Caption continued on next page.
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Figure 4.12: C) Same as B, but now for Up-Down lag and gamma drive in the Down state.
10% of parietal cells showed significant correlation, only 0% of frontal neurons and 30%
of prefrontal neurons showed significant correlation. In LEC, 40% of LECII and 32% of
LECIII neurons showed significant correlation. MEC showed the highest correlation, with
55% of MECII cells, 29% of MECIII cells, and 55% of MECV cells showing significant
correlation. In hippocampus, 62% of Dentate granule cells and 45% of CA1 interneurons
showed significant correlation.

To further quantify the relationship between afferent drive and the timing of Down-Up

transitions, we calculated the slope in the linear relationship between the parietal gamma

drive and the timing lag 4.14. We restricted our analysis to only those cells which exhibited

significant anti-correlation between the two quantities. MEC III neurons showed the largest

negative slope, followed by LEC II neurons, followed by the hippocampal subfields. Further,

parietal, MECII, MECIII, and dentate neurons showed a negative correlation between the

average lag to the Down-Up transition and the slope of the relationship, which is expected.

The other subpopulations did not show significant correlation between the two quantities.

Another consequence of the capacitative properties of neurons is that the afferent drive

should not only be inversely related to the Down-Up transition lag, it should also be inversely

related to the time it takes for the neuron’s Vm to transition from the hyperpolarized Down

state to the depolarized, active Up state. This was indeed the case in the in vivo data, which

showed significant negative correlation between the transition time and the parietal LFP

gamma among those cells which were significantly correlated 4.15. Conversely, the greater

the afferent gamma power in the Down state, the longer the neuron takes to transition from

the Up state back into the Down state. Again, this was corroborated by the in vivo data,

with cells showing positive correlation. Not all cells and subpopulations showed significant

correlation, and the Down-Up transition time was more likely to be correlated than the

Up-Down transition time.
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Figure 4.13: An alternate method for quantifying Down-Up and Up-Down lag is to use the
delay between the PAR transition and the time when the Vm of a neuron crosses the 80%
threshold. A) Similar to the other method, across all populations of neurons, significant
correlations between the PAR Up state gamma and the Vm Down-Up lag was almost always
negative. Conversely, significant correlations between PAR Down state gamma and the Vm

Up-Down lag was almost always positive. B) The number of cells which exhibited significant
anti-correlation between their Down-Up lag and the PAR gamma drive varied with brain
region and cell type. 27% of parietal cells showed significant correlation, only 14% of
frontal neurons and 55% of prefrontal neurons showed significant correlation. In LEC, 45%
of LECII and 60% of LECIII neurons showed significant correlation. MEC showed the
highest correlation, with 72% of MECII cells, 95% of MECIII cells, and 61% of MECV cells
showing significant correlation. In hippocampus, 53% of Dentate granule cells and 70% of
CA1 interneurons showed significant correaltion. Continued on next page.
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Figure 4.13: C) Same as B, but now for Up-Down lag and gamma drive in the Down state.
10% of parietal cells showed significant correlation, only 0% of frontal neurons and 36%
of prefrontal neurons showed significant correlation. In LEC, 26% of LECII and 24% of
LECIII neurons showed significant correlation. MEC showed the highest correlation, with
47% of MECII cells, 45% of MECIII cells, and 75% of MECV cells showing significant
correlation. In hippocampus, 53% of Dentate granule cells and 23% of CA1 interneurons
showed significant correlation.

Figure 4.14: Continued on next Page
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Figure 4.14: The quantitative relationship between the amount of gamma power in the
PAR Up state and the Down-Up transition lag can be captured by the slope, calculated
for only those cells with significant correlation A) The largest negative slope occurred for
MECIII cells (−10.2 ± 5.1 ms/µV ), followed by LECII (−8.1 ± 4.1 ms/µV ), followed by
Dentate granule (−7.2±4.1 ms/µV ) and CA1 interneurons (−7.1±4.0 ms/µV ). B) Within
some subpopulations, the slope of this relationship was significantly negatively correlated
with the average Down-Up lag between the PAR LFP and the Vm Down-Up transition.
Within the parietal subpopulation, this lag was significantly negative (r=−0.43, p < 10−2).
C) Within the MECII population, there was also significant negative correlation (r=−0.31,
p < 10−2). Similar for D) MECIII neurons (r=−0.41, p < 10−3) and E) Dentate Gyrus
granule cells (r=−0.34, p < 10−2).

Figure 4.15: Continued on Next Page.
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Figure 4.15: The transition time between Down and Up states in the Vm are correlated
to the PAR gamma power. A) Across all populations of neurons, significant correlations
between the PAR Up state gamma and the Vm Down-Up transition time was almost always
negative. Conversely, significant correlations between PAR Down state gamma and the
Vm Up-Down transition time was almost always positive. B) The number of cells which
exhibited significant anti-correlation between their Down-Up transition time and the PAR
gamma drive varied with brain region and cell type. 48% of parietal cells showed significant
correlation, only 55% of frontal neurons and 13% of prefrontal neurons showed significant
correlation. In LEC, 12% of LECII and 55% of LECIII neurons showed significant correla-
tion. MEC showed the highest correlation, with 68% of MECII cells, 55% of MECIII cells,
and 20% of MECV cells showing significant correlation. In hippocampus, 42% of Dentate
granule cells and 41% of CA1 interneurons showed significant correlation. C) Same as B,
but now for Up-Down transition time and gamma drive in the Down state. Correlation was
very rare. 7% of parietal cells showed significant correlation, only 0% of frontal neurons
and 5% of prefrontal neurons showed significant correlation. In LEC, 27% of LECII and
5% of LECIII neurons showed significant correlation. MEC showed the highest correlation,
with 15% of MECII cells, 10% of MECIII cells, and 18% of MECV cells showing significant
correlation. In hippocampus, 12% of Dentate granule cells and 10% of CA1 interneurons
showed significant correlation.

4.3.2 Amplitude of synchronous UDS cycles

While the timing between Up-Down and Down-Up transitions for synchronous Up and Down

states were correlated and anti-correlated, respectively, to the afferent cortical γ power, this

depends highly on the direction of connectivity between the afferent and efferent networks.

Specifically, if the individual neurons that are analyzed are within, or indeed even afferent

to the neocortical UDS, as measured in the parietal cortex, then this correlation should be

diminished. This is qualitatively true in our data, since MEC and LEC neurons’ transition

lags showed higher anti-correlation and correlation to PAR gamma power during the Up

and Down states, respectively, compared with the lags of neocortical neurons.

However, the converse should be true for the amplitude of the membrane potential of

the neurons. First, the amplitude during the Up state should be positively correlated with

the gamma power observed in the parietal LFP, as with higher drive, the neurons should be

more depolarized due to larger synaptic excitatory input. Similarly, the amplitude of the
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neuron’s Vm during the Down state should also be positively correlated with the gamma

power observed in the parietal Down state. However, the number of neurons with significant

correlation during the Up state should be larger than the number of neurons with significant

correlation in the Down state, as the Up state has much higher afferent excitation than the

Down state. This was indeed the case (Fig 4.16).

Figure 4.16: The amplitude of the membrane potential in Down and Up states in the Vm

are correlated to the PAR gamma power. A) Across all populations of neurons, significant
correlations between the PAR Up state gamma and the Vm Up state amplitude was almost
always positive. Similarly, significant correlations between PAR Down state gamma and
the Vm Down amplitude was almost always positive. Continued on next page.
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Figure 4.16: B) The number of cells which exhibited significant correlation between their
Up state amplitude and the PAR gamma drive varied with brain region and cell type.
80% of parietal cells showed significant correlation, only 72% of frontal neurons and 61% of
prefrontal neurons showed significant correlation. In LEC, 72% of LECII and 70% of LECIII
neurons showed significant correlation. MEC showed the correlation, with 52% of MECII
cells, 55% of MECIII cells, and 45% of MECV cells showing significant correlation. In
hippocampus, 81% of Dentate granule cells and 55% of CA1 interneurons showed significant
correlation. C) Same as B, but now for Down state amplitude and gamma drive in the Down
state. 20% of parietal cells showed significant correlation, only 15% of frontal neurons and
24% of prefrontal neurons showed significant correlation. In LEC, 27% of LECII and 10%
of LECIII neurons showed significant correlation. MEC showed the highest correlation,
with 80% of MECII cells, 55% of MECIII cells, and 62% of MECV cells showing significant
correlation. In hippocampus, 7% of Dentate granule cells and 84% of CA1 interneurons
showed significant correlation.

Interestingly, neocortical neurons showed higher rates of significant correlation compared

with paleocortical and hippocampal neurons, during both Up and Down states. This is

most likely due to non-linear effects of inhibition that are local to the paleocortical and

hippocampal networks, which could be working independent of the afferent cortical drive.

Within the neocortex, the balance of excitation and inhibition could be tightly locked to

the afferent parietal drive, which is in effect a local network. This might not be the case for

paleocortical neurons.

We performed similar analysis for the amplitude of the gamma power within the indi-

vidual neuron’s Vm trace, as this is an approximate measure of the network activity that

is afferent to each particular neuron (Fig 4.17). This produced similar results: the gamma

power within the Vm was positively correlated with that in the afferent parietal LFP, for

both Up and Down states, and neocortical neurons showed higher rates of significant cor-

relation compared with paleocortical and hippocampal neurons.
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Figure 4.17: The amplitude of the gamma power in the membrane potential in Down and
Up states in the Vm are correlated to the PAR gamma power. A) Across all populations
of neurons, significant correlations between the PAR Up state gamma and the gamma in
the Vm Up state amplitude was almost always positive. Similarly, significant correlations
between PAR Down state gamma and the Vm Down gamma amplitude was almost always
positive. B) The number of cells which exhibited significant correlation between their Up
state amplitude and the PAR gamma drive varied with brain region and cell type. 64%
of parietal cells showed significant correlation, only 45% of frontal neurons and 55% of
prefrontal neurons showed significant correlation. In LEC, 72% of LECII and 34% of LECIII
neurons showed significant correlation. MEC showed the correlation, with 74% of MECII
cells, 30% of MECIII cells, and 45% of MECV cells showing significant correlation. In
hippocampus, 88% of Dentate granule cells and 55% of CA1 interneurons showed significant
correlation. Continued on next page.
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Figure 4.17: C) Same as B, but now for Down state gamma amplitude and gamma drive
in the Down state. 26% of parietal cells showed significant correlation, only 26% of frontal
neurons and 43% of prefrontal neurons showed significant correlation. In LEC, 45% of
LECII and 23% of LECIII neurons showed significant correlation. MEC showed the highest
correlation, with 70% of MECII cells, 67% of MECIII cells, and 78% of MECV cells showing
significant correlation. In hippocampus, 53% of Dentate granule cells and 54% of CA1
interneurons showed significant correlation.

4.4 Amplification of CA1 and Dentate spectral activity due

to SPA and SPI

The EC is uniquely positioned as a gateway between the neocortex and the hippocampus,

and recently much attention has been shown to how this brain region affects the hippocam-

pal circuits, which are crucial for spatial navigation, memory, and learning. The Up-Down

state oscillation presents a unique phenomena by which this link between the neocortex

and the hippocampus can be probed, as the events of SPA and SPI are exactly those when

the EC decouples from the rest of the cortex. During SPA, the EC is active while the

cortex is silent, and during SPI the EC is inactive while the cortex is active. By monitoring

the activity in the hippocampus and the dentate gyrus during these events, one can begin

deciphering the functional connectivity between these brain regions.

Given their important role in cognition, multiple anatomical studies have established

the circuits prevalent within the parahippocampal region. It is now well established that

layer two of the EC, both lateral and medial subdivisions, make monosynaptic connections

to granule cells in the dentate gyrus. These cells in turn synapse onto CA3 pyramidal

cells, which in turn synapse onto CA1 pyramidal cells. Thus, from layer 2 of EC there are

three synapses until the CA1 cell layer. On the other hand, layer 3 of EC, both lateral

and medial subdivisions, make monosynaptic connections with CA1 pyramidal cells. Thus,

only a single synapse separates layer 3 in EC from the CA1 cell layer. Given our theory of

SPA and SPI, and the fact that neurons in MECIII amplify afferent cortical activity during

these events, this differential connectivity should affect activity of CA1 and dentate gyrus

neural populations.
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Figure 4.18: SPA in MECIII amplifies cortical activity in CA1 layer during UDS. Continued
on next page.
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Figure 4.18: A) When comparing PAR LFP Down states which were coincident with
MECIII Down states (left) vs those that resulted in SPA (right), the gamma power in
the PAR LFP is slightly higher for the latter case (top, black). The MECIII gamma power
(blue) was significantly higher, reflecting amplification. Similarly, the gamma power in the
CA1 LFP was also significantly higher (purple), and so was the gamma power in the Den-
tate Gyrus. B) To see how specific bands were amplified by SPA, each relevant band was
analyzed separately. The frequency limits are shown on the left. To see modulation, the
ratio of power in each band during SPA to the power during normal Down states was taken,
and the log computed (see colorbar). All bands were significantly up-regulated during SPA.
C) The same procedure was done with MECIII membrane potential; all bands above theta
were up-regulated, much higher than the PAR LFP (note the different scale in the color-
bar). D) Similarly, the CA1 LFP was examined, showing positive fluctuation. the colorbar
is the same as in (A) to allow for comparison. E) Same as D, but for LFP in the dentate
gyrus. F) Average fluctuations within each band during SPA for all four brain regions in
(B-E) are shown, with error-bars reflecting standard deviation. All four regions experi-
enced positive fluctuation during SPA, with the Vm showing the highest fluctuation. The
Vm showed highest fluctuation within the gamma band, while the LFP showed the highest
fluctuation within low frequencies. G) To find the average amplification within each band,
the fluctuations in (F) within the PAR LFP were subtracted from the fluctuations in Vm,
CA1 LFP, and DG LFP. This showed that, for this particular example, while Vm and CA1
LFP activity was amplified greater than 1, there was no amplification in the dentate gyrus.

4.4.1 Spectral signatures of SPA and SPI

We begin by first quantifying how SPA and SPI affect each cortical oscillation band, as

these bands are thought to be unique in their function and origin. To compare between the

LFP from the parietal cortex, CA1 cell layer, and Dentate Gyrus, and the intracellular Vm,

we must first normalize all traces (as the Vm is by design orders of magnitude larger than

the extracellular voltages). These traces are then filtered in each of the following bands:

α : 1-4 Hz, θlow : 2-6Hz, θhigh : 5-10 Hz, βlow : 10-20 Hz, βhigh : 15-30 Hz, γlow : 30-45 Hz,

γmid : 55-90 Hz, γhigh : 80 − 120 Hz, the ripple band: 120-250 Hz, and the high-frequency

(HF) band: >250 Hz. Each of the β, θ, and γ bands were separated into subdivisions to

increase spectral resolution. The traces were then aligned with the parietal power traces

in their respective bands using the cross-correlation, and then analyzed on a state-by-state

basis using the universal parietal UDS clock.
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Figure 4.19: SPI amplifies cortical activity in the hippocampus during UDS. Continued on
next page. 109



Figure 4.19: A) When comparing PAR LFP Up states which were coincident with MECIII
Down states (left) vs those that resulted in SPI (right), the gamma power in the PAR LFP
is slightly lower for the latter case (top, black). The MECIII gamma power (blue) was
significantly lower, reflecting amplification. Similarly, the gamma power in the CA1 LFP
was also significantly lower (purple), and so was the gamma power in the Dentate Gyrus.
B) To see how specific bands were amplified by SPI, each relevant band was analyzed
separately. The frequency limits are shown on the left. To see modulation, the ratio of
power in each band during SPA to the power during normal Up states was taken, and the
log computed (see colorbar). All bands were significantly down-regulated during SPI. C)
The same procedure was done with MECIII membrane potential; all bands above theta were
down-regulated, much higher than the PAR LFP (note the different scale in the colorbar).
D) Similarly, the CA1 LFP was examined, showing positive fluctuation. the colorbar is the
same as in (A) to allow for comparison. E) Same as D, but for LFP in the dentate gyrus.
F) Average fluctuations within each band during SPI for all four brain regions in (B-E) are
shown, with error-bars reflecting standard deviation. All four regions experienced negative
fluctuation during SPI, with the Vm showing the highest fluctuation. The Vm showed highest
fluctuation within the gamma band, while the LFP showed the highest fluctuation within
low frequencies. G) To find the average amplification within each band, the fluctuations in
(F) within the PAR LFP were subtracted from the fluctuations in Vm, CA1 LFP, and DG
LFP. This showed that, for this particular example, while Vm and CA1 LFP activity was
amplified greater than 1, there was amplification in the dentate gyrus to a lesser extent.

As an initial analysis step, we first quantify the scale of fluctuations that occur within the

LFP from the cortex and hippocampus and the Vm within neurons during SPA and SPI. To

accomplish this, we first extract the power traces within each band, centered around cortical

Down states (for SPA) and around cortical Up states (for SPI). These Up and Down states

can be partiioned into two categories: those that were coincident in the efferent neuron,

and those that were “skipped” by the efferent neuron. The skipped states are the SPA and

SPI events. By taking the ratio of the powers between the skipped events vs. those that

were coincident, we can quantify the size of the fluctuation that occurs due to the network

decoupling. To ease analysis, we use the log-power as our measure; in this case, ratios

become differences. As described in Chapter 3, during SPA the cortical LFP power in all

bands is higher than during a synchronous Down state. Similarly, during SPI the cortical

LFP power in all bands is significantly weaker. These fluctuations are also present within

the LFP of CA1 cell layer and dentate gyrus. Unsurprisingly, the fluctuations are larger

within the Vm of the efferent neurons, where the SPA and SPI occur.
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Figure 4.20: SPA in MECII amplifies cortical activity in the dentate gyrus during UDS.
Continued on next page.
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Figure 4.20: A) When comparing PAR LFP Down states which were coincident with MECII
Down states (left) vs those that resulted in SPA (right), the gamma power in the PAR LFP
is slightly higher for the latter case (top, black). The MECII gamma power (blue) was
significantly higher, reflecting amplification. Similarly, the gamma power in the CA1 LFP
was also significantly higher (purple), and so was the gamma power in the Dentate Gyrus.
B) To see how specific bands were amplified by SPA, each relevant band was analyzed
separately. The frequency limits are shown on the left. To see modulation, the ratio of
power in each band during SPA to the power during normal Down states was taken, and
the log computed (see colorbar). All bands were significantly up-regulated during SPA. C)
The same procedure was done with MECII membrane potential; all bands above theta were
up-regulated, much higher than the PAR LFP (note the different scale in the colorbar).
D) Similarly, the CA1 LFP was examined, showing positive fluctuation. the colorbar is
the same as in (A) to allow for comparison. E) Same as D, but for LFP in the dentate
gyrus. F) Average fluctuations within each band during SPA for all four brain regions in (B-
E) are shown, with error-bars reflecting standard deviation. All four regions experienced
positive fluctuation during SPA, with the Vm showing the highest fluctuation. The Vm

showed highest fluctuation within the gamma band, while the LFP showed the highest
fluctuation within low frequencies. G) To find the average amplification within each band,
the fluctuations in (F) within the PAR LFP were subtracted from the fluctuations in Vm,
CA1 LFP, and DG LFP. This showed that, for this particular example, while Vm and DG
LFP activity was amplified greater than 1, there was no amplification in the CA1 cell layer.

The fact that Vm fluctuations are larger than the fluctuations within the cortical LFP

is in conjunction with the theoretical predictions, since SPA and SPI events occur when

the network decouples from the afferent UDS, thereby either staying on or turning off while

the afferent network does the opposite. The non-trivial result here is the fact that this

fluctuation is also present in the hippocampus, in both the CA1 and DG cell layers. This

could be due to the fact that SPA and SPI in the efferent EC brain region is feeding forward

into the hippocampus population, and thus during SPA the excitatory currents are larger

than during a normal Down state, and similarly during SPI the excitatory currents are

smaller than during a normal Up state. Another possibility is that since the cortex, and

hence most afferent regions, are already undergoing positive or negative fluctuations during

SPA and SPI, these global fluctuations are simple coincident with the hippocampus, which

thus displays the same positive or negative change. To discern between these possibilities,

we must compare the scale of fluctuations within each population.
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Figure 4.21: SPI amplifies cortical activity in the hippocampus during UDS. Continued on
next page.
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Figure 4.21: A) When comparing PAR LFP Up states which were coincident with MECII
Down states (left) vs those that resulted in SPI (right), the gamma power in the PAR LFP
is slightly lower for the latter case (top, black). The MECIII gamma power (blue) was
significantly lower, reflecting amplification. Similarly, the gamma power in the CA1 LFP
was also significantly lower (purple), and so was the gamma power in the Dentate Gyrus.
B) To see how specific bands were amplified by SPI, each relevant band was analyzed
separately. The frequency limits are shown on the left. To see modulation, the ratio of
power in each band during SPA to the power during normal Up states was taken, and the
log computed (see colorbar). All bands were significantly down-regulated during SPI. C)
The same procedure was done with MECII membrane potential; all bands above theta were
down-regulated, much higher than the PAR LFP (note the different scale in the colorbar).
D) Similarly, the CA1 LFP was examined, showing positive fluctuation. the colorbar is the
same as in (A) to allow for comparison. E) Same as D, but for LFP in the dentate gyrus.
F) Average fluctuations within each band during SPI for all four brain regions in (B-E) are
shown, with error-bars reflecting standard deviation. All four regions experienced negative
fluctuation during SPI, with the Vm showing the highest fluctuation. The Vm showed highest
fluctuation within the gamma band, while the LFP showed the highest fluctuation within
low frequencies. G) To find the average amplification within each band, the fluctuations in
(F) within the PAR LFP were subtracted from the fluctuations in Vm, CA1 LFP, and DG
LFP. This showed that, for this particular example, while Vm and DG LFP activity was
amplified greater than 1, there was amplification in the CA1 cell layer to a lesser extent.

4.4.2 Amplification of activity in the Vm of Individual Neurons

As discussed in Ch. 3, during SPA and SPI, positive and negative fluctuations in the afferent

γ band power are amplified by the efferent network. We quantified this amplification by

taking the ratio of the size of fluctuations in the Vm to the size of the fluctuation within the

afferent LFP. If the size is the same, then afferent fluctuations are simply linearly passed

onto efferent regions, and there is no amplification. If the ratio is significantly larger than 1,

then the efferent network must necessarily have amplified the afferent fluctuation by either

sustaining its own activity or negating it. With our new spectral procedure, we can now

quantify the amplification within each brain region, within each band. To do this, we take

the difference in the log-fluctuation during SPA and SPI. If the difference is 0, then the

size of the fluctuation within the afferent parietal LFP and the efferent Vm is the same, and

there is no amplification. If, on the other hand, the difference is significantly greater than 0,

then the efferent network is indeed amplifying the fluctuations. During SPI, the difference
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must be significantly less than 0, since the fluctuations are negative.

We found that all networks which showed significant amounts of SPA amplified the

fluctuations above the θhigh band (Fig. 4.22). MECIII neurons showed the highest ampli-

fication in the γ band, while they showed significant de-amplification in the low frequency

bands α and θlow. MECII cells, on the other hand, showed highest amplification in the θ

band, while showing lower values of amplification in the higher frequencies. MECII cells,

unlike MECIII cells, did not show significant de-amplification in the low frequencies. Fi-

nally, both DG granule cells and CA1 interneurons showed highest amplification in the

θ bands, with lower amplification at higher frequencies. Interestingly, CA1 interneurons

showed de-amplification in the α band, similar to MECIII. DG granule cells, however, did

not. Across all spectra and all bands, MECIII cells showed the highest amplification, and

that too within the γ band. Above the ripple band, no cell population showed significant

amplification.

During SPI, all efferent regions showed amplification of the negative fluctuations in

the cortical LFP (Fig. 4.23). MECIII neurons showed the highest amplification in the γ

band, similar to its behavior during SPA. Unlike during SPA, there was no band where

MECIII showed de-amplification. MECII showed amplification during SPI as well, but not

to the magnitude of MECIII. In LEC, both LECII and LECIII showed amplification for all

frequency bands, but this amplification was highest for the lower frequencies and for the γlow

band within the higher frequencies. Finally, within hippocampus, both CA1 interneurons

and DG granule cells showed amplification, but DG amplification was significantly larger

than CA1 interneurons, for all bands except γhigh and the ripple band.

The variability of amplifications between brain regions highlighted in this quantitative

fashion show how the intrinsic properties of the networks differ. Within brain regions, there

are differences between the laminar structures. Our next focus will be on how these brain

regions affect downstream regions, thus giving us insights into the connectivity.
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Figure 4.22: SPA amplifies cortical activity fluctuations in the Vm. The amplification factor
within each subpopulation of neurons is plotted, averaged over the entire population, for
each frequency bin. The colors correspond to each population. MECII neurons show highest
amplification in the θ and β bands (α : −0.06 ± 0.04, θlow : +0.05 ± 0.05, θhigh : +0.15 ±
0.05, βlow : +0.14± 0.05, βhigh : +0.13± 0.05, γlow : +0.12± 0.05, γmid : +0.11± 0.03, γhigh :
+0.11 ± 0.04, ripple: +0.05 ± 0.04, 250Hz: −0.01 ± 0.01 ). MECIII neurons show highest
amplification in the γ bands (α : −0.16±0.05, θlow : −0.05±0.03, θhigh : +0.15±0.05, βlow :
+0.23 ± 0.05, βhigh : +0.26 ± 0.05, γlow : +0.30 ± 0.05, γmid : +0.31 ± 0.03, γhigh : +0.33 ±
0.04, ripple: +0.25 ± 0.04, 250Hz: +0.06 ± 0.03 ). Dentate gyrus neurons show highest
amplification in the θ and β bands (α : +0.05 ± 0.07, θlow : +0.13 ± 0.06, θhigh : +0.25 ±
0.08, βlow : +0.23 ± 0.07, βhigh : +0.23 ± 0.1, γlow : +0.22 ± 0.1, γmid : +0.15 ± 0.06, γhigh :
+0.13± 0.04, ripple: +0.04± 0.04, 250Hz: −0.01± 0.03 ). CA1 interneurons show highest
amplification in the θ bands (α : −0.07± 0.02, θlow : +0.02± 0.1, θhigh : +0.23± 0.08, βlow :
+0.21± 0.07, βhigh : +0.18± 0.1, γlow : +0.16± 0.1, γmid : +0.14± 0.06, γhigh : +0.13± 0.04,
ripple: +0.04± 0.01, 250Hz: −0.01± 0.01 ).
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Figure 4.23: SPI amplifies negative cortical activity fluctuations in the Vm. The amplifica-
tion factor within each subpopulation of neurons is plotted, averaged over the entire pop-
ulation, for each frequency bin. The colors correspond to each population. LECII neurons
show highest amplification in the α and θ bands (α : −0.51±0.12, θlow : −0.53±0.18, θhigh :
−0.45 ± 0.16, βlow : −0.39 ± 0.11, βhigh : −0.35 ± 0.14, γlow : −0.31 ± 0.15, γmid : −0.29 ±
0.1, γhigh : −0.26±0.15, ripple: −0.21±0.17, 250Hz: −0.01±0.1). LECIII neurons show high-
est amplification in the α and θ bands (α : −0.31± 0.12, θlow : −0.28± 0.18, θhigh : −0.26±
0.16, βlow : −0.20± 0.11, βhigh : −0.20± 0.14, γlow : −0.22± 0.15, γmid : −0.19± 0.1, γhigh :
−0.18±0.15, ripple: −0.21±0.17, 250Hz: −0.01±0.04). MECII neurons show highest ampli-
fication in the α and θ bands (α : −0.51±0.12, θlow : −0.53±0.18, θhigh : −0.45±0.16, βlow :
−0.39±0.11, βhigh : −0.35±0.14, γlow : −0.31±0.15, γmid : −0.29±0.1, γhigh : −0.26±0.15,
ripple: −0.21 ± 0.17, 250Hz: −0.01 ± 0.1). MECIII neurons show highest amplifica-
tion in the γ bands (α : −0.31 ± 0.12, θlow : −0.28 ± 0.18, θhigh : −0.26 ± 0.16, βlow :
−0.20±0.11, βhigh : −0.20±0.14, γlow : −0.22±0.15, γmid : −0.19±0.1, γhigh : −0.18±0.15,
ripple: −0.21± 0.17, 250Hz: −0.01± 0.04). Dentate gyrus neurons show highest amplifica-
tion in the θ and β bands (α : −0.05± 0.07, θlow : −0.13± 0.06, θhigh : −0.25± 0.08, βlow :
−0.23± 0.07, βhigh : −0.23± 0.1, γlow : −0.22± 0.1, γmid : −0.15± 0.06, γhigh : −0.13± 0.04,
ripple: −0.04 ± 0.04, 250Hz: −0.01 ± 0.03 ). CA1 interneurons show highest amplifi-
cation in the θ bands (α : −0.07 ± 0.02, θlow : −0.02 ± 0.1, θhigh : −0.23 ± 0.08, βlow :
−0.21± 0.07, βhigh : −0.18± 0.1, γlow : −0.16± 0.1, γmid : −0.14± 0.06, γhigh : −0.13± 0.04,
ripple: −0.04± 0.01, 250Hz: −0.01± 0.01 ).
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4.4.3 Amplification of downstream hippocampal activity

So far, we have been concerned with how afferent neocortical activity is amplified by efferent

networks localized within the entorhinal cortex and hippocampus. These efferent regions are

in turn afferent to the hippocampal subfields of the CA1 cell layer and the Dentate. Thus,

by quantifying how the neocortical fluctuations propagate to CA1 and DG, we can quantify

how the entorhinal regions feed-forward these fluctuations to downstream hippocampal

areas. We will analyze each region, the CA1 layer and the Dentate, separately.

CA1 cell layer

Using a similar procedure as above, we calculated the CA1 amplification during region-

specific SPA (Fig. 4.24). The CA1 cell layer activity shows significant amplification during

MECIII SPA, but only in the γ band. In all other bands, there was no amplification,

meaning that the size of the positive fluctuation was the same as the positive fluctuation

exhibited by the cortical LFP. During MECII SPA, however, there was no amplification in

any band. This could be reflective of the fact that MECIII neurons are a single synapse

away from the CA1 cell layer, but MECII neurons are three synapses away.

When SPA occurred within CA1 interneurons, the amplification was large, sometimes

even larger than during MECIII SPA. This is not surprising given than CA1 interneurons

are within the CA1 cell layer, and thus embedded within the very network that we are

analyzing. During SPA in the DG granule cells, however, CA1 showed significant de-

amplification, especially in the β band. This is unexpected, given that DG granule cells

are only two synapses away from the CA1 cell layer. Finally, these amplifications were

significantly smaller than those found for the actual neuronal Vm, for all bands and regions.

During SPI, CA1 cell layer activity was significantly lower compared to neocortical

activity (Fig. 4.25). The CA1 cell layer activity shows significant amplification during

MECIII SPI, especially in the high γ band, just like during MECIII SPA. In all other

bands, there was no amplification, meaning that the size of the negative fluctuation was

the same as the negative fluctuation exhibited by the cortical LFP. During MECII SPI,
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however, there was no amplification in any band, just like during MECII SPA.

The CA1 cell layer activity shows significant amplification during LECIII SPI, especially

in the low γ band. At lower frequencies, the CA1 activity showed higher amplification than

during MECIII SPI. During LECII SPI, however, there was amplification only in the low

frequency band.

When SPI occurred within CA1 interneurons, the CA1 activity was significantly larger

than during normal Up states. This could be the result of dis-inhibition, since during SPI

interneurons would turn off, increasing the excitation within the CA1 cell layer. During

SPI in the DG granule cells, however, CA1 showed no effect whatsoever. Finally, these

amplifications were significantly smaller than those found for the actual neuronal Vm, for

all bands and regions.

Dentate Gyrus

The DG cell layer activity shows significant amplification during MECII SPA, but only

in the γ band (Fig. 4.26). In other bands, there was no amplification, meaning that the

size of the positive fluctuation was the same as the positive fluctuation exhibited by the

cortical LFP. In the low frequency band, however, the DG activity is de-amplified during

MECII SPA. During MECIII SPA, there was virtually identical amplification in all bands.

This could be reflective of the fact that MECIII neurons do not synapse onto DG, but do

innervate and influence MECII cells, which do connect to DG.

When SPA occurred within DG granule cells, the amplification in DG was large, some-

times even larger than during MECIII SPA. This is not surprising given that DG cells are

within the DG cell layer, and thus embedded within the very network that we are analyz-

ing. During SPA in the CA1 interneurons, however, DG showed significant amplification,

especially in the γ band. This is unexpected, given that CA1 cells are downstream from

the DG cell layer. Finally, these amplifications were significantly smaller than those found

for the actual neuronal Vm, for all bands and regions.

During SPI, DG cell layer activity was significantly lower compared to neocortical ac-

tivity (Fig. 4.27). The DG cell layer activity shows significant amplification during MECIII
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SPI, especially in the high γ band, just like during MECIII SPA. In all other bands, there

was no amplification, meaning that the size of the negative fluctuation was the same as the

negative fluctuation exhibited by the cortical LFP. During MECII SPI, however, there was

no amplification in any band, just like during MECII SPA.

The DG cell layer activity shows significant amplification during LECIII SPI, especially

in the low γ band. At lower frequencies, the DG activity showed higher amplification than

during MECIII SPI. During LECII SPI, however, there was amplification only in the low

frequency band.

When SPI occurred within CA1 interneurons, the DG activity was significantly larger

than during normal Up states. This could be the result of dis-inhibition, since during SPI

interneurons would turn off, increasing the excitation within the CA1 cell layer. During

SPI in the DG granule cells, however, CA1 showed no effect whatsoever. Finally, these

amplifications were significantly smaller than those found for the actual neuronal Vm, for

all bands and regions.

4.4.4 Functional Connectivity in the para-hippocampal circuit

Now that we have quantified the effect of region specific SPA and SPI on the activity of the

CA1 and DG cell layers, it possible to further compare how each efferent region, specifically

in the entorhinal cortex, influences the CA1 and DG populations. This can be done by

taking the difference in the amplification factor between the CA1 and DG cell layers for

each region, within each band.

The MECII stellate cell population is directly connected to the Dentate Gyrus, but not

to CA1. Thus, one would expect that when these cells underwent SPA or SPI, they would

preferentially influence the DG activity more than the CA1 activity. This is indeed the

case, for both SPA and SPI (Fig. 4.28, 4.29). Interestingly, this asymmetry is largest for

the γ and low γ bands, and nearly vanished for low frequencies. In the α and θ bands, there

is actually a CA1 bias.

MECIII cells are directly connected to the CA1 cell population, and this is also reflected

in our analysis. MECIII cells show nearly non-existent bias between CA1 and DG activities,
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Figure 4.24: When SPA occurs within MEC or hippocampal neurons, the activity feeds-
forward to the CA1 cell layer. The amplification factor within CA1 due to each sub-
population of neurons is plotted, averaged over all experiments, for each frequency bin.
The colors correspond to each population. CA1 showed virtually no amplification during
SPA in MECII neurons (α : −0.06 ± 0.04, θlow : −0.02 ± 0.05, θhigh : −0.02 ± 0.05, βlow :
−0.1±0.05, βhigh : −0.03±0.05, γlow : −0.02±0.05, γmid : −0.01±0.03, γhigh : −0.01±0.04,
ripple: −0.01 ± 0.04, 250Hz: −0.01 ± 0.01 ). On the other hand, CA1 showed signifi-
cant amplification during SPA in MECIII neurons, especially in the γ and ripple bands
(α : −0.16±0.05, θlow : −0.05±0.03, θhigh : +0.15±0.05, βlow : +0.23±0.05, βhigh : +0.26±
0.05, γlow : +0.30±0.05, γmid : +0.31±0.03, γhigh : +0.33±0.04, ripple: +0.25±0.04, 250Hz:
+0.06 ± 0.03 ). During SPA in the dentate gyrus, CA1 LFP showed de-amplification
(α : +0.05±0.07, θlow : +0.13±0.06, θhigh : +0.25±0.08, βlow : +0.23±0.07, βhigh : +0.23±
0.1, γlow : +0.22± 0.1, γmid : +0.15± 0.06, γhigh : +0.13± 0.04, ripple: +0.04± 0.04, 250Hz:
−0.01 ± 0.03 ). Finally, during SPA in CA1 interneurons, CA1 showed significant pos-
itive amplification (α : −0.07 ± 0.02, θlow : +0.02 ± 0.1, θhigh : +0.23 ± 0.08, βlow :
+0.21± 0.07, βhigh : +0.18± 0.1, γlow : +0.16± 0.1, γmid : +0.14± 0.06, γhigh : +0.13± 0.04,
ripple: +0.04± 0.01, 250Hz: −0.01± 0.01 ).
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Figure 4.25: When SPI occurs within LEC, MEC, or hippocampal neurons, the activity
feedsforward to the CA1 cell layer. The amplification factor within CA1 due to each sub-
population of neurons is plotted, averaged over all experiments, for each frequency bin.
The colors correspond to each population. CA1 showed significant amplification during
SPI in LECII neurons, but only in the low frequency bands (α : −0.51 ± 0.12, θlow :
−0.53 ± 0.18, θhigh : −0.45 ± 0.16, βlow : −0.39 ± 0.11, βhigh : −0.35 ± 0.14, γlow :
−0.31 ± 0.15, γmid : −0.29 ± 0.1, γhigh : −0.26 ± 0.15, ripple: −0.21 ± 0.17, 250Hz:
−0.01 ± 0.1). During SPI in LECIII neurons, CA1 shows highest amplification in the
γ bands (α : −0.31 ± 0.12, θlow : −0.28 ± 0.18, θhigh : −0.26 ± 0.16, βlow : −0.20 ±
0.11, βhigh : −0.20 ± 0.14, γlow : −0.22 ± 0.15, γmid : −0.19 ± 0.1, γhigh : −0.18 ± 0.15,
ripple: −0.21±0.17, 250Hz: −0.01±0.04). During SPI in MECII neurons, CA1 shows virtu-
ally non-existent amplification (α : −0.51±0.12, θlow : −0.53±0.18, θhigh : −0.45±0.16, βlow :
−0.39±0.11, βhigh : −0.35±0.14, γlow : −0.31±0.15, γmid : −0.29±0.1, γhigh : −0.26±0.15,
ripple: −0.21±0.17, 250Hz: −0.01±0.1). During SPI in MECIII neurons, CA1 show highest
amplification in the γ bands (α : −0.31±0.12, θlow : −0.28±0.18, θhigh : −0.26±0.16, βlow :
−0.20±0.11, βhigh : −0.20±0.14, γlow : −0.22±0.15, γmid : −0.19±0.1, γhigh : −0.18±0.15,
ripple: −0.21 ± 0.17, 250Hz: −0.01 ± 0.04). Finally, during SPI in dentate gyrus neu-
rons, CA1 shows virtually no amplification (α : −0.05 ± 0.07, θlow : −0.13 ± 0.06, θhigh :
−0.25 ± 0.08, βlow : −0.23 ± 0.07, βhigh : −0.23 ± 0.1, γlow : −0.22 ± 0.1, γmid : −0.15 ±
0.06, γhigh : −0.13± 0.04, ripple: −0.04± 0.04, 250Hz: −0.01± 0.03 ). During SPI in CA1
interneurons, CA1 actually shows positive amplification, possibly because of dis-inhibition
(α : −0.07± 0.02, θlow : −0.02± 0.1, θhigh : −0.23± 0.08, βlow : −0.21± 0.07, βhigh : −0.18±
0.1, γlow : −0.16± 0.1, γmid : −0.14± 0.06, γhigh : −0.13± 0.04, ripple: −0.04± 0.01, 250Hz:
−0.01± 0.01 ).
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Figure 4.26: When SPA occurs within MEC or hippocampal neurons, the activity feeds-
forward to the Dentate gyrus granule cell layer. The amplification factor within DG due
to each subpopulation of neurons is plotted, averaged over all experiments, for each fre-
quency bin. The colors correspond to each population. DG showed amplification dur-
ing SPA in MECII neurons, especially in the γ bands (α : −0.06 ± 0.04, θlow : −0.02 ±
0.05, θhigh : −0.02± 0.05, βlow : −0.1± 0.05, βhigh : −0.03± 0.05, γlow : −0.02± 0.05, γmid :
−0.01 ± 0.03, γhigh : −0.01 ± 0.04, ripple: −0.01 ± 0.04, 250Hz: −0.01 ± 0.01 ). Simi-
larly, DG showed significant amplification during SPA in MECIII neurons, especially in
the γ and ripple bands (α : −0.16 ± 0.05, θlow : −0.05 ± 0.03, θhigh : +0.15 ± 0.05, βlow :
+0.23±0.05, βhigh : +0.26±0.05, γlow : +0.30±0.05, γmid : +0.31±0.03, γhigh : +0.33±0.04,
ripple: +0.25 ± 0.04, 250Hz: +0.06 ± 0.03 ). During SPA in the dentate gyrus, DG LFP
showed amplification (α : +0.05 ± 0.07, θlow : +0.13 ± 0.06, θhigh : +0.25 ± 0.08, βlow :
+0.23± 0.07, βhigh : +0.23± 0.1, γlow : +0.22± 0.1, γmid : +0.15± 0.06, γhigh : +0.13± 0.04,
ripple: +0.04± 0.04, 250Hz: −0.01± 0.03 ). Finally, during SPA in CA1 interneurons, DG
LFP showed significant positive amplification (α : −0.07 ± 0.02, θlow : +0.02 ± 0.1, θhigh :
+0.23 ± 0.08, βlow : +0.21 ± 0.07, βhigh : +0.18 ± 0.1, γlow : +0.16 ± 0.1, γmid : +0.14 ±
0.06, γhigh : +0.13± 0.04, ripple: +0.04± 0.01, 250Hz: −0.01± 0.01 ).
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Figure 4.27: When SPI occurs within LEC, MEC, or hippocampal neurons, the activity
feedsforward to the Dentate cell layer. The amplification factor within DG due to each
subpopulation of neurons is plotted, averaged over all experiments, for each frequency bin.
The colors correspond to each population. DG LFP showed significant amplification during
SPI in LECII neurons, but only in the low frequency bands (α : −0.51±0.12, θlow : −0.53±
0.18, θhigh : −0.45± 0.16, βlow : −0.39± 0.11, βhigh : −0.35± 0.14, γlow : −0.31± 0.15, γmid :
−0.29± 0.1, γhigh : −0.26± 0.15, ripple: −0.21± 0.17, 250Hz: −0.01± 0.1). During SPI in
LECIII neurons, DG shows highest amplification in the γ bands (α : −0.31 ± 0.12, θlow :
−0.28 ± 0.18, θhigh : −0.26 ± 0.16, βlow : −0.20 ± 0.11, βhigh : −0.20 ± 0.14, γlow : −0.22 ±
0.15, γmid : −0.19 ± 0.1, γhigh : −0.18 ± 0.15, ripple: −0.21 ± 0.17, 250Hz: −0.01 ± 0.04).
During SPI in MECII neurons, DG shows virtually non-existent amplification (α : −0.51±
0.12, θlow : −0.53± 0.18, θhigh : −0.45± 0.16, βlow : −0.39± 0.11, βhigh : −0.35± 0.14, γlow :
−0.31±0.15, γmid : −0.29±0.1, γhigh : −0.26±0.15, ripple: −0.21±0.17, 250Hz: −0.01±0.1).
During SPI in MECIII neurons, DG show highest amplification in the γ bands (α : −0.31±
0.12, θlow : −0.28± 0.18, θhigh : −0.26± 0.16, βlow : −0.20± 0.11, βhigh : −0.20± 0.14, γlow :
−0.22± 0.15, γmid : −0.19± 0.1, γhigh : −0.18± 0.15, ripple: −0.21± 0.17, 250Hz: −0.01±
0.04). Finally, during SPI in dentate gyrus neurons, DG shows virtually no amplification
(α : −0.05±0.07, θlow : −0.13±0.06, θhigh : −0.25±0.08, βlow : −0.23±0.07, βhigh : −0.23±
0.1, γlow : −0.22± 0.1, γmid : −0.15± 0.06, γhigh : −0.13± 0.04, ripple: −0.04± 0.04, 250Hz:
−0.01± 0.03 ). During SPI in DG interneurons, DG actually shows positive amplification,
possibly because of dis-inhibition (α : −0.07 ± 0.02, θlow : −0.02 ± 0.1, θhigh : −0.23 ±
0.08, βlow : −0.21 ± 0.07, βhigh : −0.18 ± 0.1, γlow : −0.16 ± 0.1, γmid : −0.14 ± 0.06, γhigh :
−0.13± 0.04, ripple: −0.04± 0.01, 250Hz: −0.01± 0.01 ).
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most likely because when MECIII express SPA or SPI, it propagates through the MECII

cells into DG, thus influencing both CA1 and DG populations.

During SPI, LECII and LECIII both show DG bias, but, as predicted by theory and the

known anatomical connections, LECII has a stronger influence on DG compared to LECIII,

across the spectra. The highest bias, however, occurs in the γlow band, for both LECII and

LECIII.

Finally, SPA in the DG shows high bias toward the DG activity, which is expected given

that the SPA is occuring within the DG cell layer. However, CA1 interneurons do not show

a marked influence on CA1 cell layer, and show virtually no bias towards either DG or CA1.

This could be reflective of the fact that MECIII synapses onto CA1 but also only MECII

cells. During SPI, this remains unchanged. No matter the band, SPI within DG cells leads

to a shut down of the DG cell layer activity.

4.5 Discussion

Neocortical-hippocampal interactions lay the foundation of information processing for many

different kinds of memory [184, 185]. During slow-wave-sleep, when memory consolidation is

thought to occur, neocortical networks spontaneously fluctuate at low frequencies between

Up states and Down states [26, 93, 94]. The hippocampus, however, is only weakly tied to

this Up-Down state-related neocortical activity. Thus, a key question is: how might activity

be synchronized and coordinated across circuits which are inherently asynchronous? In this

present study, we propose that this dialogue occurs during the Up-Down state oscillation

through a gating mechanism within the entorhinal cortex. We identify instances of spon-

taneous persistent activity within several populations of the medial and lateral entorhinal

cortex, which are known to provide the majority of input into the hippocampal formation.

We provide evidence that these desynchronization events within the entorhinal cortex are

the key instances when neocortical information can be either enhanced or suppressed while

on its way to the hippocampus. Furthermore, we show that the UDS across the cortex has

its own fine temporal structure which is determined by the strength of excitatory afferent
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Figure 4.28: When SPA occurs within MEC or hippocampal neurons, the activity feedsfor-
ward to both the Dentate gyrus granule cell layer and the CA1 cell layer. The amplification
factor within DG can be compared with that within CA1 due to each subpopulation of
neurons. This is splotted, averaged over all experiments, for each frequency bin. The col-
ors correspond to each population. During SPA in MECII neurons, DG was preferentially
amplified compared to CA1, especially in the γ bands (α : −0.06 ± 0.04, θlow : −0.02 ±
0.05, θhigh : −0.02± 0.05, βlow : −0.1± 0.05, βhigh : −0.03± 0.05, γlow : −0.02± 0.05, γmid :
−0.01±0.03, γhigh : −0.01±0.04, ripple: −0.01±0.04, 250Hz: −0.01±0.01 ). On the other
hand, DG and CA1 showed similar amplification during SPA in MECIII neurons, with no
preferential amplification (α : −0.16 ± 0.05, θlow : −0.05 ± 0.03, θhigh : +0.15 ± 0.05, βlow :
+0.23±0.05, βhigh : +0.26±0.05, γlow : +0.30±0.05, γmid : +0.31±0.03, γhigh : +0.33±0.04,
ripple: +0.25 ± 0.04, 250Hz: +0.06 ± 0.03 ). During SPA in the dentate gyrus, DG LFP
showed amplification more than CA1 LFP (α : +0.05 ± 0.07, θlow : +0.13 ± 0.06, θhigh :
+0.25 ± 0.08, βlow : +0.23 ± 0.07, βhigh : +0.23 ± 0.1, γlow : +0.22 ± 0.1, γmid : +0.15 ±
0.06, γhigh : +0.13 ± 0.04, ripple: +0.04 ± 0.04, 250Hz: −0.01 ± 0.03 ). Finally, during
SPA in CA1 interneurons, DG LFP showed significant positive amplification, but CA1
LFP showed even more. (α : −0.07 ± 0.02, θlow : +0.02 ± 0.1, θhigh : +0.23 ± 0.08, βlow :
+0.21± 0.07, βhigh : +0.18± 0.1, γlow : +0.16± 0.1, γmid : +0.14± 0.06, γhigh : +0.13± 0.04,
ripple: +0.04± 0.01, 250Hz: −0.01± 0.01 ).
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Figure 4.29: When SPI occurs within LEC, MEC, or hippocampal neurons, the activity
feedsforward to the Dentate cell layer and CA1 layer. The amplification factor within DG
due to each subpopulation of neurons can be compared with the amplification in CA1,
and the difference is plotted, averaged over all experiments, for each frequency bin. The
colors correspond to each population. DG LFP showed significant amplification during
SPI in LECII neurons, significantly more than CA1 LFP (α : −0.51 ± 0.12, θlow : −0.53 ±
0.18, θhigh : −0.45± 0.16, βlow : −0.39± 0.11, βhigh : −0.35± 0.14, γlow : −0.31± 0.15, γmid :
−0.29 ± 0.1, γhigh : −0.26 ± 0.15, ripple: −0.21 ± 0.17, 250Hz: −0.01 ± 0.1). During SPI
in LECIII neurons, DG shows highest amplification in the γ bands, more than CA1 layer
(α : −0.31±0.12, θlow : −0.28±0.18, θhigh : −0.26±0.16, βlow : −0.20±0.11, βhigh : −0.20±
0.14, γlow : −0.22±0.15, γmid : −0.19±0.1, γhigh : −0.18±0.15, ripple: −0.21±0.17, 250Hz:
−0.01 ± 0.04). During SPI in MECII neurons, DG shows more amplification than CA1
(α : −0.51±0.12, θlow : −0.53±0.18, θhigh : −0.45±0.16, βlow : −0.39±0.11, βhigh : −0.35±
0.14, γlow : −0.31±0.15, γmid : −0.29±0.1, γhigh : −0.26±0.15, ripple: −0.21±0.17, 250Hz:
−0.01 ± 0.1). During SPI in MECIII neurons, DG show highest amplification in the γ
bands, but CA1 shows similar amount (α : −0.31± 0.12, θlow : −0.28± 0.18, θhigh : −0.26±
0.16, βlow : −0.20± 0.11, βhigh : −0.20± 0.14, γlow : −0.22± 0.15, γmid : −0.19± 0.1, γhigh :
−0.18 ± 0.15, ripple: −0.21 ± 0.17, 250Hz: −0.01 ± 0.04). Finally, during SPI in dentate
gyrus neurons, DG shows amplification but CA1 does not (α : −0.05± 0.07, θlow : −0.13±
0.06, θhigh : −0.25 ± 0.08, βlow : −0.23 ± 0.07, βhigh : −0.23 ± 0.1, γlow : −0.22 ± 0.1, γmid :
−0.15 ± 0.06, γhigh : −0.13 ± 0.04, ripple: −0.04 ± 0.04, 250Hz: −0.01 ± 0.03 ). During
SPI in DG interneurons, DG actually shows positive amplification, along with CA1 layer
(α : −0.07± 0.02, θlow : −0.02± 0.1, θhigh : −0.23± 0.08, βlow : −0.21± 0.07, βhigh : −0.18±
0.1, γlow : −0.16± 0.1, γmid : −0.14± 0.06, γhigh : −0.13± 0.04, ripple: −0.04± 0.01, 250Hz:
−0.01± 0.01 ).
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current being provided by the neocortical network to the entorhinal network.

To investigate the nature of the Up-Down state oscillation within the cortex and hip-

pocampus, we conducted experiments involving simultaneous recording of four neural sub-

populations: the neocortical LFP, the CA1 layer LFP, the DG LFP, and the Vm from

specific identified neurons embedded within its own network. Previous studies have shown

the presence of spontaneous persistent activity within MECIII pyramidal neurons [94]. The

previous chapter provided evidence for why a simple attractor mechanism involving the bal-

ance of excitation, inhibition, and adaptation can replicate not only SPA but also propose

a new way of encoding memories, namely SPI.

We found that SPA and SPI are found ubiquitously across the entorhinal and para-

hippocampal region, especially among those subpopulations which were modulated by cor-

tical UDS. We are the first to report the behavior of MEC layer 2 cells and LEC layer 2

cells during in vivo UDS; previous studies did not differentiate between the two subdivisions

of the EC [93]. This is a crucial distinction, given that the two entorhinal regions differ

starkly from one another in both structure and function [89]. We developed a new method

of detecting SPA and SPI that did not require the bimodality condition needed earlier to

classify Vm traces into a binary sequence [145].

We found that SPA was robustly expressed in not only MECIII pyramidal cells but also

MECII stellate cells. These events, where the neuron, and thus the network in which it is

embedded, remains depolarized while the rest of the cortex shuts down, has profound conse-

quences on downstream hippocampal neural populations. Indeed, within the hippocampus,

both cell populations which were modulated by UDS (the dentate granule cells and CA1

interneurons) showed significant amounts of SPA. These SPA events are most likely due to

synchronous SPA events within the MEC, as neither the CA1 layer nor the DG granule cell

population have significant recurrent excitatory connections, and pyramidal cells in CA1

are not phase locked to neocortical UDS [105, 106, 186]. Further, the SPA events within

MECII cells are most likely themselves the result of the MECIII SPA, since MECII cells

cannot support their own UDS oscillations, but MECIII cells can[187]. Related, the fact

that MECII has fewer recurrent connections compared to MECIII cells is in agreement with
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the theoretical idea that excitatory recurrent connections are crucial in the maintenance and

initiation of Up states in the cortex, and can lead to higher rates of SPA [169]. Addition

support for this notion comes from the fact that SPA in MECIII involves Vm depolariza-

tion of the same magnitude as a “normal” Up state, while in MECII the SPA events are

significantly less depolarized compared to synchronous Up states.

We found that SPI was expressed by not only MECIII and LECIII cells, but also MECII

and LECII cells. Again, this phenomena is most likely not endogenous of the layer 2

architecture, as both cell populations are dominated by interneurons and inhibition, and

rarely form monosynaptic connections between other cells of the same identity [188–190].

SPI was found further down the stream of information in the hippocampus, again in the

dentate granule cell population and the CA1 inhibition. Again, these are likely due to

a “trickle-down” effect, wherin SPI from the layer 3 EC either directly inhibits CA1 or

indirectly moves through layer 2 into dentate gyrus and subsequently CA1 cell layer.

During SPA, previous work has shown that hippocampal circuits are excited, with sig-

nificantly higher MUA when compared to “normal” Up and Down states [94]. It has thus

been suggested that MECIII may gate the information needed for the consolidation of dif-

ferent types of memories. The hippocampus recieves highly processed information from

the neocortex and can therefore act as a hub for certain types of memories. It is thought

that the hippocampus coordinates memory consolidation by replaying information obtained

during the awake state during sleep [25]. Given that the hippocampus indirectly recieves

input from most parts of the neocortex, one would expect coordinated neocortical firing

to correspond to different levels of hippocampal activity. This however, in not the case.

Although Up-Down state fluctuations represent the dominant neocortical network pattern

during slow-wave-sleep, the hippocampus exhibits only brief periods of excitation which are

only weakly tied to the cortical Up state. These questions were posed by previous studies,

which shows that SPA occured within the entorhinal cortex layer 3, especially the medial

subdivision, and caused hippocampal MUA to become highly active. The functional role of

this release was still unclear.

We found that during SPA in MECII and MECIII and SPI in MECII, MECIII, LECII,
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and LECIII, the hippocampal substructures were profoundly affected. The feedforward

nature of these connections between the entorhinal and hippocampal structures were also

specific to certain bands of oscillations. This is in line with recent findings which suggest

that LEC uses the low gamma band to preferentially drive information transfer to the

hippocampus, while MEC uses preferentially the high gamma band [191]. Given the differ-

ences in the architecture and behavioral functions of the lateral and medial subdivisions,

this could indicate that different bands are used for different modes of information about

the external world when building memories within the hippocampus.

Hippocampal sharp wave ripples have been implicated in the reactivation of waking fir-

ing patterns and memory consolidation [192]. Given our findigns about how activity can be

amplified during Down states and suppressed during Up states when the entorhinal popu-

lation expresses SPA and SPI, hippocampal sharp wave ripples could provide the substrate

by which these momentary activations coordinate memory consolidation in parts of the neo-

cortex, especially the prefrontal cortex [137]. The fact that SPA only occurs in the MEC,

famous for spatially modulated cells, could mean that sharp wave ripples which occur in the

Down state preferentially activate spatially modulated memories at these decoupling times.

In contrast, sharp wave ripples that occur during Up states could be involved in encoding

non-spatial information.
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Chapter 5

3-Hz Rhythm in neurons of LEC
Layer 2 and Hippocampal

Inhibition

5.1 Introduction: Rhythms During Anesthesia

Hippocampal theta oscillations are of major significance in various cognitive and behavioral

processes, such as arousal, attention, exploration of the environment, voluntary locomotion,

learning and memory, sensorimotor processing, and REM sleep [71, 193, 194]. Anatomically,

the minimal structure needed to trigger and sustain theta activity is the hippocampus and

the medial septum. The entorhinal cortex is a major source of input for the hippocampus,

and the two divisions of the entorhinal cortex, the lateral (LEC) and medial (MEC), show

differential theta modulation. In studies comparing the two regions, the LFP in LEC showed

significantly fewer theta oscillations than those in MEC; similarly, single neurons in LEC

were significantly less modulated by the theta rhythm than MEC neurons.

Recent studies in sub-gamma (¡30 Hz) oscillations within the hippocampus have shown a

new emergent oscillation that is almost half the frequency of theta, called eta (2-4Hz), that

emerges within the hippocampus during virtual reality but not during normal behavior.

This eta rhythmicity was higher in interneurons than pyramidal neurons within CA1. A

prominent rhythm within the same frequency band is also prevalent in hippocampal CA2

pyramidal neurons, but not CA1 pyramidal neurons [195]. Stimulation of the rhythmic

neurons at the oscillation frequency showed that the rhythm was not being sustained by
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the CA2 neuron or the network in which it was embedded, but instead was coming from

upstream, postsynaptic sources.

In this study, we show a new 3-Hz rhythm within the LEC which is not present in the

MEC during urethane anesthesia, distinguishing it from the well studies theta rhythms.

This rhythm is also present in dentate gyrus neurons and CA1/CA3 inhibition, but not

CA1/CA3 excitation. Our results suggest a possible origin for the 3-Hz eta rhythm found

in recent studies, and could hint at a larger role for the LEC during navigation of virtual

spaces.

5.2 The 3-Hz Rhythm in Membrane Potential

Mice were anesthetized with light urethane dose and simultaneous LFP from the parietal

cortex and membrane potential from individual neurons in the para-hippocampal circuit

were extracted using methods previously described. Robust Up-Down states were found,

along with a conspicuous 3-Hz rhythm that would spontaneously arise and subside, some-

times lasting as long as 100 seconds. These sub-threshold oscillations were found in all

regions of LEC, including layer 2 fan cells (N=5), layer 2 multi-form cells (N=6), and layer

3 pyramidal cells (N=12) (Fig. 5.1). These oscillations were also found in hippocampal

inhibition, within the CA1 and CA3 interneurons (N=11,12 respectively), but not in hip-

pocampal excitation (Fig. 5.2).

Figure 5.1: Example of prevalent 3Hz rhythm in the membrane potential of an LEC Layer
2 fan cell, under different resolutions on the time axis. Top panel shows entire experiment.
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Figure 5.2: Top panel: Same as Fig 5.1, but for a detate gyrus granule cell. Bottom panel:
A CA1 interneuron. Both examples show prominent eta oscillation, that is distinguishable
from the underlying Up-Down states.

5.2.1 Detection and Quantification

Oscillations are usually detected using autocorrelations, as any prominent rhythmicity will

be singled out in this method (Fig. 5.3). This technique exaggerated the prominent Up-

Down states which occur during anesthesia, sometimes washing out the 3-Hz rhythm or

reducing it only into small bumps riding on top of the larger amplitude 0.5-2 Hz rhythm.

To extract this smaller amplitude, higher frequency oscillation, we smoothed the original

autocorrelation (Gaussian kernel, s.t.d. 0.1s) and took the second derivative, which effec-

tively enhances oscillations with a factor of ω2, where ω is the frequency. This resulted in

the 3-Hz rhythm getting picked out, and allowed for its unequivocal detection. The noise

band was computed using 50 random shuffles, and if the first peak in the 2-4Hz range was

larger than 2 s.t.d of the noise distribution, the cell was deemed eta-rhythmic.

133



Figure 5.3: Detection of eta-rhythmic cells. To detect the eta rhythm, the following proce-
dure was used. The membrane potential (top row) was used for an auto-correlation (middle
row) between lags ±4 seconds. The most prominent oscillation was almost always the Up-
Down states, with a frequency between 0.5 and 2 Hz. To detect the higher eta frequency,
we took the second derivative of the smoothed auto-correlation (window of 0.1s). The first
peak at positive lag was found, and the cell was classified as a 3Hz-rhythmic cell. Here,
the LECII fan cell (left column) and Dentate Gyrus granule cell (middle column) show eta
rhythmicity, but the MECII stellate cell does not.

5.2.2 Prevalence of 3-Hz Rhythm in Brain Regions

Using this second derivative technique, we identified neurons with rhythmicity in the 2-4

Hz band. No cells in the neocortex showed significant rhythmicity, and virtually no cells

within the MEC (Fig. 5.4). The LEC, on the other hand, showed significant rhythmicity,

especially in layer 2 (LECII MF: 4/5, LECII fan: 5/6, LECIII pyr: 4/12). In hippocampal

areas, the Dentate gyrus granule cells showed rhythmicity (11/12), and the interneurons

of CA1 (6/11) and CA3 (8/9) showed rhythmicity. 3Hz rhythm was virtually absent in

excitatory neurons (CA1 pyr: 1/15, CA3 pyr: 2/13). The rhythm was incredibly stable

across brain regions, with virtually all cells showing the same average frequency (Fig. 5.5).
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Figure 5.4: Prevalence of 3Hz rhythm within brain regions. The 3-Hz rhythmicity was
present in LEC neurons, specially layer 2 (LECII MF: 4/5, LECII fan: 5/6, LECIII pyr:
4/12). The rhythm was completely absent in neocortical areas (PAR, PRE, FRO) and
virtually absent in all MEC areas. In hippocampal areas, the Dentate gyrus granule cells
showed rhythmicity (11/12), and the interneurons of CA1 (6/11) and CA3 (8/9) showed
rhythmicity. 3Hz rhythm was virtually absent in excitatory neurons (CA1 pyr: 1/15, CA3
pyr: 2/13).

Figure 5.5: Average Eta frequency within brain regions among rhythmic neurons. Only
regions of LEC and DG, CA1 interneurons, and CA3 interneurons had significant amounts
of rhythmic cells, shown by the vertical arrows. All regions showed very similar rhythms
(LEC II MF: 3.1± 0.2 Hz, LECII fan: 3.2± 0.3 Hz, LECIII pyr: 3.1± 0.3 Hz, MECII ste:
3.1Hz, MECV pyr: 3.1Hz, DG gra: 3.1±0.1Hz, CA3 int: 3.1±0.1Hz, CA3 pyr 3.1±0.1Hz,
CA1 int: 3.3± 0.3Hz, CA1 pyr: 3.23 Hz ).
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5.3 Eta Epochs

To identify individual oscillating events, we used two approaches. First, the auto-

correlogram was computed within 10 second windows, with 5s overlap, and visualized

in a matrix (Fig. 5.6). Clear instances of eta-rhythm could be visually detected. To

supplement this visual approach quantitatively, we used the wavelet transform. Any given

time period was defined as a ’3Hz’ oscillation epoch if the mean absolute value of its

wavelet coefficient between 2-4 Hz exceeded the mean ±2 s.t.d. of the values between 1-100

Hz. The detected events were scrutinized and confirmed by eye and manually rejected if

they were erroneously detected.

Figure 5.6: Detection of Eta Epochs. The entire experimental trace was first z-scored (top
row). The auto-correlogram was taken, and the results visualized (second row). Clear time
windows of strong eta rhythmicity is evident. The wavelet transform was also taken to
supplement the auto-correlogram (third row). The power in the 2-4 Hz band was used as a
measure of eta strength, and eta epochs were identified when it crossed a threshold (fourth
row). The detected events were scrutinized and confirmed by eye (using the autocorrelo-
gram) and manually rejected if they were erroneously detected.
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Figure 5.7: Amplification of Eta within Eta epochs. A)An example CA3 interneuron,
showing the power spectra within the eta epoch (black) and outside the eta epoch (colored).
B) The ratio between the power spectra gives the amplification of each band within the
epoch. There is significant amplification in the 2-4 Hz eta band. C) Examples from other
brain regions, showing significant amplification of nearly all frequencies during the eta
band, but especially eta itself. D) Amplification factors across populations with significant
rhythmicity. LEC region showed highest amplification, especially in LEC layer 2 multi-form
cells (LECII MF: 4.5± 1.4, LECII fan: 3.8± 0.8, LECIII pyr: 3.8± 0.8). DG granule cells
also showed significant amplification, and CA3 and CA1 interneurons showed the lowest
amount of amplification (DG: 4.1± 1.1, CA3 int: 2.1± 0.7, CA1 int: 2.1± 0.7)
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Figure 5.8: Duration of Eta epochs. A) Combined Eta event durations across all cell
populations. The durations as a whole is log-normally distributed (mean: 54s, std: 35s).
There is a hint of a bimodal distribution. B) Duration of eta epochs within each brain
region.

The sub-threshold membrane potential of the neuron showed prominent eta oscillation

during the detected epochs. To quantify this effect, we took the ratio of the power spectra

(1-100 Hz) between the membrane potentials during the eta epochs and outside the eta

epochs (Fig. 5.7). This yielded an amplification factor for each neuron within the eta band.

Comparing across brain regions, our analysis showed that the amplification was highest

among the population of eta rhythmic LECII multi-form cells, but all LEC regions showed

high amplification. DG granule cells also showed similar amplification factors. CA1 and

CA3 interneurons, on the other hand, showed significantly decreased amplification during

eta epochs. The duration of the epochs was also investigated. Across all cell types and

populations, the event durations were log-normally distributed (Fig. 5.8). Within each

population, the durations showed a multi-modal distribution, with the events preferentially

lasting either 1-10 seconds or 50-100 seconds long. This could be hinting at two different

mechanisms for eta generation.
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5.4 Discussion

In the present study, we observed a novel 3-Hz rhythm in LEC neurons, Dentate Gyrus

granule cells, and interneurons of the hippocampus using whole-cell patch clamp of indi-

vidual identified neurons. A majority of neurons in the LEC showed rhythmicity, but this

was virtually absent in MEC. This rhythm was also present in hippocampal inhibition and

Dentate Gyrus granule cells, but not in hippocampal excitatory neurons.

The 3-Hz oscillation found in this study is in close proximity to the minimum frequency

of the theta oscillation range [196]. But is the rhythm we found really theta? Given that this

rhythm was completely absent in MEC but highly prevalent in LEC, the rhythm we found

is most likely not the traditional theta described in previous studies. Theta oscillations

comprise large-scale events that recruit the entire hippocampal network, including CA1

and CA3 pyramidal neurons, MEC II stellate cells, and Dentate Gyrus. The rhythm we

found here was absent in MEC and hippocampal excitation.

Recent studies have shown a prominent 3-Hz rhythm in CA2 neurons subthreshold

membrane potential during urethane anesthesia, but not in CA1 pyramidal neurons [195].

The authors of the study further showed that this rhythm did not occur concurrently with

hippocampal theta rhythm in LFP, and that the CA2 pyramidal neurons did not resonate

to a 3-Hz current injection. They suggested that the origin of the rhythm lay in circuits

upstream from CA2. Taken together with our results, this suggests a close connection

between LEC neurons, especially layer 2, and the CA2 circuit, and could be confirmed by

future anatomical studies.

Recent studies in behaving animals have shown that while theta is prevalent in real world

exploration, a new rhythm, deemed ”eta” is prevalent during random foraging in body-fixed

virtual reality [71]. The rhythm is further prominent in CA1 interneurons more so than

CA1 pyramidal neurons, while the theta rhythm is prominent in both cell populations. The

similarity between this rhythm and the one found in our present study suggests that the

eta rhythm originates in LEC layer, not MEC. Further studies are needed to support or

refute this claim.
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Appendix A

Experimental Protocols

A.1 Animals, Surgery, and Histology

Methods were similar to those described previously (15). Briefly, data were obtained from

136 C57BL6 mice aged postnatal day (p)25-43 (p32±1) weighing 12-21 g (17.5±0.4 g). Mice

were anesthetized with urethane (1.64± 0.03 g urethane / kg body weight intraperitoneal).

Body temperature was maintained at 37◦C with the help of a heating blanket. The animals

were head-fixed in a stereotaxic apparatus and the skulls exposed. A metal plate was

attached to the skull and a chamber formed with dental acrylic, which was filled with warm

cerebrospinal fluid. Two 1-mm diameter holes, one for the LFP recordings and one for the

whole-cell recordings, were drilled over the left hemisphere and the underlying dura mater

was removed.

After electrophysiological recordings, mice were euthanized by transcardial perfusion

with 0.1 M phosphate buffer, followed by 4% formaldehyde solution, and 150-200 µm thick

brain sections were processed with the avidin-biotin-peroxidase method. Sometimes, a sub-

sequent Nissl stain was applied before embedding. Visualization of biocytin filled neurons

allowed for the determination of cell type and recording site (Fig A.1). Unidentified neurons

were excluded from analysis. All experimental procedures were carried out according to the

animal welfare guidelines of the Max-Plank-Society.
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A.2 Electrophysiology and Data Acquisition

Local field potentials (LFPs) were recorded with an 8 site single-shank multisite probe (Neu-

roNexus Technologies). LFP from layer 2/3 of posterior parietal cortex (2 mm posterior to

bregma, 1.5 mm lateral) was used to characterize parietal cortex Up-Down states. In vivo

intracellular membrane potential (Vm) was recorded in whole-cell configuration by using

borosilicate glass patch pipettes with DC resistances of 4-8 MΩ and filled with a solution

containing 135 mM potassium gluconate, 10 mM HEPES, 4 mM Potassium Chloride, 10

mM phosphocreatine, 4 mM MgATP, 0.3 mM Na3GTP (adjusted to pH 7.2 with KOH),

and 0.2% biocytin for subsequent histological identification. Whole-cell recording configu-

ration was achieved as described previously(89). Relative to bregma, the anteroposterior

(AP), mediolateral (ML) and dorsoventral (DV) coordinates of the craniotomies for the Vm

recordings were made around -4.5 mm AP and 4 mm ML for MEC; -3.5 to -4 mm AP, 4.5

mm ML and 4 mm DV for LEC; -1.5 to -2 mm AP and 1 mm ML for parietal cortex; 1

to 1.5 mm AP and 1 mm ML for frontal cortex; 2 to 3 mm AP and 0.5 to 1 mm ML for

prefrontal cortex.

The average initial series resistance was 46 MΩ, and Vm values were corrected for the

estimated junction potential of approximately +7 mV.

The Vm was acquired by Axoclamp-2B (Axon Instruments) and fed into a Lynx-8 ampli-

fier (Neuralynx). The Vm and LFP were recorded by an HS16 preamplifier (Neuralynx) for

about 20-40 minutes. The complete recording was used for subsequent statistical analysis.

The LFP were sampled at 2 kHz, low-pass filtered below 475 Hz, and amplified 1000-5000

times. The membrane potential was low-pass filtered below 9 kHz, sampled at 32 kHz, and

amplified 50-150 times. Simultaneously, the DC value of Vm was recorded by an ITC18

interface (Instrutech) under the control of Pulse software (Heka) or by a Micro1401 with

Spike2 software (CED). Some of these DC-coupled data were recorded in discontinuous

sweeps of 7 or 10 s, separated by 5 or 2 s, respectively.
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A.3 Data preprocessing

All analysis was restricted to subthreshold fluctuations in the membrane potential by re-

moving spikes as follows. The temporal derivative of the bandpass-filtered (100 Hz - 8

kHz) membrane potential signal was computed, and times when this derivative exceeded 10

standard deviations above the mean were taken as spike times. Spike waveforms were then

removed by replacing 3 ms of data following the onset of each spike by linear interpolation of

adjacent values. To remove the 50 Hz mains hum and its many harmonics, 8-pole bandstop

filters were used at 45-55 Hz, 95-105 Hz, 145-155 Hz, 195-205 Hz, 245-255 Hz, and 295-305

Hz.
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Figure A.1: Histological reconstructions of patched cells allowed for identification of cell type
and brain location. A) Prefrontal Cortex Pyramidal Neuron. B) Pareital Cortex Pyramidal
Neuron. C) Frontal Cortex Pyramidal Neuron. D) Medial Entorhinal Cortex Layer 3
(MECIII) pyramidal neuron. E) Lateral Entorhinal Cortex Layer 3 Pyramidal Neuron.
Scalebars for low and high magnifications are 500 and 100 micrometers, respectively.
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Appendix B

Details of Data Analysis

B.1 Explicit-duration Hidden Markov Model detection of Up

and Down states

Synchronized epochs, wherein the LFP and cortical Vm undergoes synchronous transitions of

Up and Down states (UDS), were selected by locating and eliminating periods of data with

desynchronized activity where UDS are absent. Methods from (41) were closely followed.

Briefly, the spectrogram of the signal was computed in 15-s overlapping windows using

multi-taper methods (Chronux Matlab toolbox) with a time-bandwidth product of 4, and

seven tapers. The maximum log power in the range of 0.05-2 Hz and the integral of the log

power in the 4-40 Hz range we then used to locate and remove desynchronized epochs in the

data. The remaining data exhibited UDS. UDS of both membrane potential and parietal

LFP were classified using two state explicit-duration hidden Markov models (EDHMMs).

The Vm and LFP were first filtered in the low frequency (0.05-2 Hz) range, and a gaussian

observation EDHMM was fit to the filtered signal, with inverse gaussian models of the state

duration distributions. The means of the state-conditional gaussians were slowly varying

functions of time, where the parameters were estimated over a 50 second window length.

We found the maximum likelihood parameter estimates of the EDHMM, and computed the

resulting “Viterbi” sequence, which was used to define UDS oscillations.

144



B.2 Assignment of corresponding neocortical-entorhinal state

transitions

Given two UDS sequences, one for the parietal cortex LFP (or network 1 in the simulation)

and one for the entorhinal Vm (network 2), the fine temporal relationships and quantized

duration was calculated by first assigning each Up/Down state in the Vm to its corresponding

set of trigger states in the LFP. This was done through a greedy search algorithm, where

in each iteration of the algorithm, the Up/Down state initiations were linked to the closest

Up/Down state initiations in the corresponding LFP. Note that this does not guarantee a

one-to-one mapping from Vm states to LFP states; those Vm states which map onto more

than one LFP state are termed “persistent.” The quantized duration of a Vm state was

calculated as the number of total LFP states (both Up and Down) that would fit inside a

particular Vm state, with each Up and Down state in the cycle contributing to 0.5 units of

time (Fig B.1).

B.3 Generalized method of detecting SPA and SPI within

membrane potential

While MECIII and LECIII neurons are clearly bimodal, many cells within the larger

parahippocampal region are not. This makes detection of clean Up-Down states within

the membrane potential trace challenging, thus impeding detection of SPA and SPI events.

To address this issue, we sought an alternative method that relied only the UDS sequence

in the parietal LFP (B.2).

Up-Down states were detected in the parietal cortex LFP using the same method as

described above, and the binary switching defined a universal clock throughout the entire

experiment. The lag between the the parietal LFP and the target neuron’s Vm was cal-

culated using the peak of the cross-correlation. The Vm trace was then aligned with the

parietal LFP, and the LFP and Vm sequences around each Up and Down state were ex-

tracted. To detect SPA, all LFP Down states and the previous Up states were selected, and

the behavior of the aligned Vm was analyzed. In most cases, the Vm also started in the Up
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Figure B.1: Counting membrane potential state durations in terms of parietal UDS cycles.
A) ‘Down’ states in the membrane potential (blue trace) are first aligned with the near-
est parietal ‘Down’ state, and the number of LFP ‘Down’ and ‘Up’ states this particular
membrane potential ‘Down’ state lasts is counted. Each ‘Down’ and ‘Up’ state receives a
time length of 0.5 units, a full UDS cycle is thus 1-unit long. The ‘Down’ states in red
represent those that are considered “spontaneous persistent inactivity,” since they last for
longer than one full UDS cycle. B) Same as A, but for ‘Up’ states. Those ‘Up’ states that
were identified as persistent activity are highlighted in green.
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Figure B.2: (Continued on the following page.)

state and transitioned to a Down state, evident by the amplitude of the Vm during those

time points. In some cases, the Vm started in the Up state and stayed there; this is SPA.

The cases where the Vm started instead in the Down state are discarded.

Similarly, to detect DPI all LFP Up states and the previous Down states were selected,

and the behavior of the aligned Vm was analyzed. In most cases, the Vm also started in

the Down state and transitioned to a Up state. In some cases, the Vm started in the Down

state and stayed there; this is SPI. The cases where the Vm started instead in the Up state

are discarded.
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Figure B.2: Generalized detection method for SPA and SPI. A) Using the time-lag obtained
from the cross-correlation, the membrane potential of the neuron is aligned with the LFP
in the parietal cortex, and the Up-Down state sequence in the parietal cortex is used as
a universal clock. Up states in the parietal cortex that are accompanied and preceded by
hyperpolarization in the Vm are termed SPI, and Down states in the parietal cortex that are
accompanied and preceded by depolarization are termed SPA. To detect these states, every
Down-Up transition in the parietal cortex is analyzed. The amplitude of the B) parietal
LFP and the C) Vm of the target neuron are plotted, with the Down state amplitude on
the x-axis and the following Up state amplitude on the y-axis. The target neuron usually
does one of three things: it can either undergo a synchronous Down-Up transition (blue),
continue in the Down state (red), or have started in the Up state and simply stayed in the
Up state (green). The fourth possibility occurs if the Vm is simply out of phase from the
parietal UDS (orange). D) To visualize these classes of events, we use the global parietal
clock, centered on the UP state. The instances where the Vm persisted in the Down state
during a parietal Up state (i.e. the red events) are identified as persistent inactivity (SPI)
E) The same procedure was used for the Up-Down transitions. In this case, amplitude
of parietal LFP is plotted for Up states (x-axis) and the following down state (y-axis).
F) When the Vm is plotted using the same procedure, there are again three prominent
possibilities: a synchronous Up-Down transition (blue), a persistent activity state (green),
or a completion of SPI. In rare cases, the Vm is out of phase (orange). G) These events can
again be visualized using the global PAR UDS clock.

B.4 LFP Amplitude and Gamma Power during Up and Down

states

To extract the gamma power in the LFP during UDS, each LFP trace was filtered in

the gamma band (40-120 Hz) using 8-pole bandpass filters(90, 91). The amplitude of the

Hilbert transform of the signal was used as the gamma amplitude, and was smoothed with

a gaussian-convolution of width 100 ms. For every Up and Down state, the gamma power in

that state was assigned as the mean value of the power during the middle 80% of the state,

thereby removing artifacts from the sharp Up-Down and Down-Up transitions that flank

each state. Gamma power in the membrane potential was found by first removing spikes

and then using the same technique and parameters. In figures where z-scored amplitude is

used, both the broadband and gamma amplitude were z-scored across the entire experiment

where UDS was detected.
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B.5 In silico simulation of LFP and gamma-band activity

using mean-field model

To confirm that the activity traces of our mean field model are a realistic approximation

of cortical dynamics during UDS, we simulated the LFP using previously established tech-

niques(92). This also allowed us to clarify how activity fluctuations from the UO-process

would affect gamma band activity in the LFP. Briefly, the LFP was assumed to be a linear

summation of total excitatory and inhibitory currents. Poisson spike trains from an excita-

tory population (NE = 1000) and inhibitory population (NI = 4000) were generated with a

time-varying mean rate parameter for each network, given by the output of the mean-field

model described earlier. The excitatory neurons had a peak rate of 3 Hz, and the inhibitory

neurons had a peak rate of 10 Hz. Each spike train was convolved with their respective

conductance profiles, modeled as a difference of exponentials defined by the rise and decay

time constants of AMPA (excitatory, rise time 0.1 ms, decay time 2 ms) and GABA (in-

hibitory, rise time 0.5 ms, decay time 10 ms) receptors. The resulting time series represent

aggregate excitatory and inhibitory conductances. To calculate the current, conductances

were multiplied by the difference between the time-varying membrane potential of each

neuron (-70 mV in the Down state, -50 mV in the Up state) and the reversal potential of

AMPA (0mV) and GABA (-80 mV) receptors. The LFP was the sum of these two currents

(Fig S10). The gamma-band activity of the simulated network was then found using the

same techniques employed for the in vivo data.

B.6 Sigmoid dependence of SPA/SPI w.r.t. Gamma Power

We followed standard statistical procedures in modeling a dependent Bernoulli random

process. As a first order approximation, we assumed a linear relationship between the

gamma power in a given state and the log-odds of that particular state being skipped

(resulting in persistence) or being synchronously followed. The linear relationship can be

written in mathematical form as
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log
p

1− p
= β0 + β1γ (B.1)

Where p is the probability that a particular state with afferent gamma content γ is

skipped by the efferent network. The “threshold” of this relationship is where the probability

of persistent and synchronous transitions are equally likely, i.e. p = 0.5, which occurs at

γθ = −β0/β1. Note that for SPA, β1 > 0, since positive fluctuations in the Down state lead

to SPA. On the other hand, β1 < 0 for SPI, since negative fluctuations in the Up state lead

to inactivity.

B.7 Statistics and Hypothesis Testing

Central Tendencies and variability is reported as mean plus/minus standard deviation,

unless otherwise noted. All hypothesis tests were performed using two-sided nonparametric

Wilcoxon rank-sum tests for equal medians. Wilcoxon signed rank tests were used for

paired comparisons or one-sample tests. Correlations were computed using Spearman’s

rank correlation coefficient. A p-value of less than 0.05 was used for statistical significance.
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[36] Rümeysa İnce, Saliha Seda Adanır, and Fatma Sevmez. The inventor of electroen-

cephalography (EEG): Hans berger (1873–1941). Child's Nervous System, March

2020.

[37] G. Buzsaki. Neuronal oscillations in cortical networks. Science, 304(5679):1926–1929,

June 2004.

[38] Rafael Yuste, Jason N. MacLean, Jeffrey Smith, and Anders Lansner. The cortex as

a central pattern generator. Nature Reviews Neuroscience, 6(6):477–483, June 2005.
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and Sleep: A High-Density EEG Study. Sleep, 34(3):283–291, 03 2011.

[40] Yousheng Shu, Andrea Hasenstaub, Mathilde Badoual, Thierry Bal, and David A.

McCormick. Barrages of synaptic activity control the gain and sensitivity of cortical

neurons. The Journal of Neuroscience, 23(32):10388–10401, November 2003.

[41] M Steriade, A Nunez, and F Amzica. A novel slow ( 1 hz) oscillation of neocorti-

cal neurons in vivo: depolarizing and hyperpolarizing components. The Journal of

Neuroscience, 13(8):3252–3265, August 1993.
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