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Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced 

by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), 

an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits 

following moderate and/or severe head trauma. However, this has been disputed, and its role in 

mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge 

in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT 
Val158Met polymorphism influences outcome on a cognitive battery 6 months following mTBI—

Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail 

Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second 

Edition Trial 1–5 Standard Score (CVLT-II). All patients had an emergency department Glasgow 

Coma Scale (GCS) of 13–15, no acute intracranial pathology on head CT, and no polytrauma as 

defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 

100 subjects aged 40.9 (SD 15.2) years (COMT Met158/Met158 29 %, Met158/Val158 47 %, 

Val158/Val158 24 %) show that the COMT Met158 allele (mean 101.6±SE 2.1) associates with 

higher nonverbal processing speed on the WAIS-PSI when compared to Val158/Val158 

homozygotes (93.8±SE 3.0) after controlling for demographics and injury severity (mean increase 

7.9 points, 95 % CI [1.4 to 14.3], p=0.017). The COMT Val158Met polymorphism did not 

associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, 

COMT Val158Met may preferentially modulate nonverbal cognition following uncomplicated 

mTBI.

Keywords

Traumatic brain injury; Genetic factors; Cognitive function; Outcome measures; Human studies

Introduction

Traumatic brain injury (TBI)—defined as an alteration in brain function, or other evidence 

of brain pathology, caused by an external force—is a comparatively common insult with 

variable outcomes [1, 2]. In the USA alone, at least 2.5 million people suffer TBIs annually 

[3], and it has been estimated that up to 5.3 million people are currently living with TBI-

related disability [4]. TBI is frequently subdivided on the basis of injury severity into severe, 

moderate, and mild injury categories as defined by a Glasgow Coma Scale (GCS) score of 8 

or less, 9-to-12, or 13-to-15, respectively [5, 6]. Although more severe injuries may 

disproportionately contribute to disability, the vast majority—70 to 90 %—of all TBI is 

characterized as “mild TBI” (mTBI) [7]. Within mTBI, considerable variability in outcome 

exists across individuals. Most make a complete recovery following mTBI [8, 9]; however, 

up to 20 % of patients experience persistent symptoms and/or cognitive or neuropsychiatric 

deficits [10]. Individuals with nearly identical injuries often manifest different symptoms, 

follow different clinical trajectories, and/or have varied functional outcomes [11]. Efforts are 

therefore needed to better identify those at greatest risk for posttraumatic sequela to better 

prognosticate and facilitate development of tailored therapy [1].

Studies have begun to investigate relationships between genetic variants within a number of 

candidate genes and outcome following TBI in an effort to elucidate such variability. One 
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form of this variance—called single nucleotide polymorphisms (SNPs)—is comprised of 

single nucleotide substitutions arising within a gene’s coding sequence and/or regulatory 

elements which may influence either protein structure/function or abundance, respectively. 

Numerous polymorphisms have been identified [12–14], but those arising within genes 

encoding important proteins underlying neurotransmission are thought to play an influential 

role in the preservation and/or impairment in cognition following TBI [15]. Catechol-O-

methyltransferase (COMT; encoded by the gene COMT on chromosome 22q11.2) represents 

one such molecule [16–18] and is an enzyme which inactivates catecholamine 

neurotransmitters, e.g., dopamine (DA), epinephrine, and norepinephrine, through 3-O-

methylation of the benzene ring [19]. In brain regions important to cognition, e.g., the 

prefrontal cortex (PFC), low expression of DA reuptake transporters makes COMT 

inactivation the predominant regulator of dopaminergic synaptic transmission [19–21].

A relatively common SNP arising within the coding sequence at codon 158—known as 

COMT Val158Met (rs4680)—results in substitution of a methionine for valine at this 

position [19]. This substitution lessens the activity of COMT resulting in higher levels of 

dopamine in the PFC [22], and it has been shown that Val158/Val158 individuals are up to 

four times more efficient at catabolizing catecholamines than Met158/Met158 homozygotes 

[23]. In turn, higher bioavailability of catecholamines in the PFC in Met158/Met158 subjects 

has been shown to confer a cognitive advantage over Val158-carriers [24], and the Met158 

allele is generally associated with an advantage in measures of memory, executive function, 

and tasks requiring attention [18, 25].

Cognitive symptoms, including memory loss, inattention, and impulsivity, are relatively 

common in TBI and are among the most debilitating consequences of TBI and may 

influence functional outcome [26]. A number of prior studies have suggested that disruption 

and/or dysregulation of dopaminergic transmission in the PFC may contribute to the 

pathogenesis of posttraumatic cognitive impairment [27]. Conversely, it has been suggested 

in other studies that the dopaminergic system may be pharmacologically targeted to 

ameliorate persistent cognitive deficits following TBI [28]. Despite its importance in 

modulating PFC neurotransmission, studies examining the relationship between the COMT 
Val158Met polymorphism and cognitive deficits following TBI have largely been equivocal 

[16–18]. To date, these studies have been limited to more severe injury, and whether the 

COMT Val158Met polymorphism influences posttraumatic cognitive deficits following 

mTBI has yet to be studied.

Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain 

Injury Pilot (TRACK-TBI Pilot) dataset, a database of demographic history, biomarkers, 

neuroimaging, and neuropsychiatric and neurocognitive outcomes obtained at three clinical 

sites [29], to evaluate whether the COMT Val158Met polymorphism influences cognitive 

performance 6 months following mTBI on a battery of three standardized tests—Wechsler 

Adult Intelligence Scale Fourth Edition Processing Speed Index subscale, Trail Making Test, 

and the California Verbal Learning Test Second Edition. We hypothesized that the COMT 
Val158Met polymorphism is associated with improved cognitive performance following 

mTBI. Our data demonstrates that the COMT Val158Met polymorphism associates with 
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cognitive performance in select domains, e.g., nonverbal processing speed, but not others, 

e.g., mental flexibility or verbal learning.

Materials and methods

Study design

The TRACK-TBI Pilot Study is a multicenter prospective observational study conducted at 

three Level 1 trauma centers in USA—San Francisco General Hospital, University of 

Pittsburgh Medical Center, and University Medical Center Brackenridge (UMCB) in Austin, 

Texas [29]—using the National Institutes of Health (NIH) and National Institute of 

Neurological Disorders and Stroke (NINDS) common data elements (CDEs) [30–33]. 

Inclusion criteria for the pilot study were adult patients presenting to a Level 1 trauma center 

with external force trauma to the head and clinically indicated head computed tomography 

(CT) scan within 24 h of injury. Exclusion criteria were pregnancy, comorbid life-

threatening disease, incarceration, suicidal ideation/on psychiatric hold, and non-English 

speakers due to limitations in participation with outcome assessments. For the present study, 

our goal was to study the associations between COMT Val158Met and cognition after 

isolated and uncomplicated mTBI. Therefore, our analysis was restricted to a subset of 

patients with a GCS ≥13, no skull fracture, or acute intracranial pathology—defined as the 

absence of intraparenchymal contusions or hemorrhage, intraventricular hemorrhage, 

epidural hematoma, acute subdural hematoma, or traumatic subarachnoid hemorrhage—on 

non-contrasted head CT within 24 h of injury, no polytrauma as defined by an Abbreviated 

Injury Scale (AIS) score ≥3 in any extracranial body region [34, 35], as well as no prior 

history of cerebrovascular accident or transient ischemic attack, brain tumor, schizophrenia, 

learning disability or developmental delay.

Eligible subjects were enrolled through convenience sampling at all three sites. Institutional 

review board approval was obtained at all participating sites. Informed consent was obtained 

for all subjects prior to enrollment in the study. For patients unable to provide consent due to 

their injury, consent was obtained from their legally authorized representative (LAR). 

Patients were then reconsented if cognitively able at later inpatient and/or outpatient follow-

up assessments for continued participation in the study.

Biospecimen acquisition and genotyping

Specimen acquisition was performed as previously described [29]. In brief, blood samples 

for DNA genotyping analysis were collected via peripheral venipuncture or existing 

peripheral venous indwelling catheters within 24 h of injury. Samples were collected in BD 

Vacutainer K2-EDTA vacutainer tubes, and subsequently aliquoted and frozen in cryotubes 

at −80 °C within 1 h of collection in accordance with recommendations from the NIH-CDE 

Biomarkers Working Group [Manley 2010]. DNA was extracted from isolated leukocytes 

using the Wizard® Genomic DNA Purification Kit as described by the manufacturer 

(Promega, Madison, WI) and reported in our previous work [36]. COMT Val158Met 
polymorphism (rs4680) was genotyped utilizing the TaqMan®SNP Genotyping Assay as 

described by the manufacturer (Applied Biosystems, Carlsbad, CA, Assay ID# 

C_25746809_50). For the purpose of evaluating a potential protective benefit of the Met158 
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allele, Met158/Met158 and Met158/Val158 were combined as a single group as previously 

described for COMT [37–40] and other genetic polymorphisms in TBI [41–43]. Therefore, 

for data reporting and all figures, this group is referred to as Met158.

Neuropsychiatric testing and outcome parameters

The NINDS defines measures of neuropsychological impairment as those “of 

neuropsychological functions, such as attention, memory, and executive function which are 

very sensitive to effects of TBI that affect everyday activities and social role participation 

[33].” To evaluate for neuropsychological impairment, all participants underwent outcome 

assessments at 6 months following TBI with a battery of NIH NINDS-designated “Core 

Measures”—those deemed most relevant and applicable across large TBI studies. For the 

current analysis, all three measures of the “Neuropsychological Impairment” domain of the 

outcome CDEs were included:

Wechsler Adult Intelligence Scale, fourth edition Processing Speed Index Subscale

The Wechsler Adult Intelligence Scale, fourth edition Processing Speed Index Subscale 

(WAIS-PSI) is a summary measure of nonverbal processing speed and is comprised of two 

non-verbal tasks (symbol search and coding) which require visual attention and motor speed 

[44]. In studies of TBI, it has been shown to predominately reflect impairment in perceptual 

processing speed with a small component attributable to working memory and only minimal 

contribution from motor speed [45]. The composite score is scalar, ranging from 50 to 150 to 

correspond to the 0.1st to 99.9th percentile of performance across age groups. Scores of ~90, 

100, and ~110 correspond to the 25th, 50th, and 75th percentiles, respectively [44].

Trail Making Test

The Trail Making Test (TMT) is a two-part timed test (TMT-A and TMT-B), and both scores 

are measured in number of seconds needed for the patient to complete the task. TMT-A 

assesses visual processing, and TMT-B assesses mental flexibility and processing speed 

[46]. In order to derive a purer index of executive control and mental flexibility separate 

from visual processing and motor speed, we used the difference score between the Trial B 

and Trial A (TMT B-A) as previously described [47–49]. In this test, a lower score suggests 

improved performance.

California Verbal Learning Test, second edition

The California Verbal Learning Test, second edition (CVLT-II) is a verbal learning and 

memory task in which five learning trials, an interference trial, an immediate recall trial, and 

a post-20 min recall trial are performed. The CVLT-II trials 1–5 Standard Score is a 

summative score of the first five learning trials normed for age and sex and provides a global 

index of verbal learning ability [50]. The CVLT-II was substituted for the Rey Auditory 

Verbal Learning Test (RAVLT) listed in the NIH NINDS outcome CDEs due to relevant 

revisions of the second edition and higher consistency on between-norm sets [51].
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Statistical analysis

Group differences in patient demographics and mechanism of injury across COMT Met158 

carriers versus Val158/Val158 homozygotes were assessed by Pearson’s chi-squared test (X2) 

for categorical variables and analysis of variance (ANOVA) for continuous variables. 

Fisher’s exact test was used to assess for differences in categorical variables with group 

counts ≤5. Means and standard deviations are reported for continuous descriptive variables. 

Group differences are reported between COMT genotype and each outcome measure using 

ANOVA. Multivariable linear regression was performed for each of the three outcome 

measures to adjust for age and education years as recommended [44–46, 49, 50]; the WAIS-

PSI Composite Score and CVLT-II trials 1–5 Standard Score are already age-normed and 

thus further adjusted only for education years, while the TMT B-A score was further 

adjusted for age and education years. As this is a study of mTBI, the GCS was used to adjust 

for injury severity (GCS 15 vs. less than 15). The adjusted unstandardized coefficient of 

regression (B) and associated standard error (SE) was used to quantify mean increase or 

decrease in the outcome measure associated with a per-unit increase in a continuous 

predictor or a change in the subcategory of a categorical predictor. All multivariable 

regression models conformed to tests for goodness-of-fit. To account for race stratification, 

race was entered onto the multivariable regression with three subcategories to include the 

two largest race categories (Caucasian, African-American/African) as well as a third 

category of aggregated “other races” for races with small (<5) group counts. Significance 

was assessed at α=0.05. All analyses were performed using Statistical Package for the 

Social Sciences (SPSS) v.22 (IBM Corporation, Chicago, IL). Figures were constructed with 

GraphPad Prism v.6 (GraphPad Software, La Jolla, CA).

Results

Patient demographics and mechanisms of injury

In total, the present study included 100 subjects (Table 1). Overall, subjects had a mean age 

of 40.9 years (SD 15.2) and were 66 % male. The race distribution was 70 % Caucasian, 

14 % African American/African, 5 % Asian, 1 % American Indian/Alaskan Native, 1 % 

Hawaiian/Pacific Islander, and 9 % more than one race. Subjects had a mean of 14.2 years of 

education (SD 2.9). Mechanisms of injury were 33 % fall, 26 % motor vehicle crash, 22 % 

pedestrian versus auto, 15 % assault, and 4 % struck by/against object. GCS distribution was 

3, 20, and 77 % for GCS of 13, 14, and 15, respectively. Distribution of admission GCS did 

not change with respect to genotype. For injury severity classification, GCS of 13 and 14 

were combined into a single group of “GCS less than 15″. There was also no difference in 

posttraumatic amnesia—another important predictor for posttraumatic cognitive impairment

—across genotypes [11, 52–54]. In total, 66 subjects were discharged from the emergency 

department (ED), 30 were admitted to the hospital ward, and 4 were admitted to the 

intensive care unit (ICU). No statistically significant difference in ED disposition was 

observed across genotypes (Table 1).

COMT genotype distribution was 29 % Met158/Met158 (n= 29), 47 % Met158/Val158 (n=47), 

and 24 % Val158/Val158 (n= 24). COMT allelic frequencies (A=0.53, G=0.47) were not 

found to deviate significantly from Hardy-Weinberg equilibrium (X2=0.33, p=0.566). Years 
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of education were higher for Met158 carriers than for Val158/Val158 homozygotes (p=0.016), 

and a higher prevalence of Val158/Val158 homozygotes was noted in African-American/

African subjects (p=0.042). No other significant differences were observed in the 

distribution of each demographic and clinical descriptor across COMT Met158 and 

Val158/Val158 genotypes (Table 1).

Outcome measures

We first assessed whether the COMT Val158Met polymorphism was associated with 

divergent performance on three primary cognitive measures—WAIS-PSI, TMT B-A, and 

CVLT-II—following isolated, uncomplicated mTBI. COMT Met158 carriers showed 

significantly higher nonverbal processing speed on WAIS-PSI when compared to COMT 
Val158/Val158 homozygotes (Met158 103.8±13.3; Val158/ Val158 94.1±15.7; p=0.004) (Table 

2). COMT Met158 subjects did not associate with a task requiring mental flexibility on TMT 

B-A (Met158 46.6±51.5; Val158/Val158 63.8±42.0, p=0.139) (Table 2). COMT Val158Met 
polymorphism did not associate with verbal learning and fluency as measured by the CVLT-

II Trial 1–5 Standard Score (Met158 54.5±11.1; Val158/Val158 53.7±9.4, p=0.740) (Table 2).

COMT Val158Met is associated with nonverbal processing speed after mTBI

To further assess the association between COMT Val158Met and nonverbal processing speed 

as measured by the WAIS-PSI composite score, multivariable regression was performed to 

control for education years, race, and injury severity (Table 3). COMT Met158 carriers 

demonstrated higher adjusted mean scores on WAIS-PSI (101.6±2.1) compared to their 

Val158/Val158 counterparts (93.8±3.0), which corresponds to a mean increase of 7.9 points 

(95 % CI [1.4 to 14.3], p=0.017) (Fig. 1). Consistent with prior reports [55–57], education 

years associated with WAIS-PSI (B=1.4, 95 % CI [0.4 to 2.3], p=0.005). Greater injury 

severity also associated with a decrease in nonverbal processing speed (GCS 15, 101.6±1.9; 

GCS <15, 93.8±3.0; B=−7.9, 95 % CI [−14.1 to −1.7], p= 0.013). Race did not show a 

significant association with WAIS-PSI (p=0.539) on multivariable analysis. Further, 

multivariable subgroup analysis performed in the Caucasian group—the largest group—

demonstrated a statistical trend between the COMT Val158Met polymorphism and 

performance on WAIS-PSI (B=7.5, 95 % CI [−1.1 to 16.0], p= 0.086). Future studies are 

needed to confirm this finding in a larger population.

COMT Val158Met is not associated with mental flexibility after mTBI

To further assess the association between COMT Val158Met and mental flexibility as 

measured by the TMT B-A time, multivariable regression was performed to control for 

education years, race, and injury severity. Since the TMT B-A has not been intrinsically 

adjusted for age, we further adjusted for age in the current analysis. COMT Val158Met did 

not demonstrate an association with TMT B-A after adjustment (Met158 47.7±7.1; 

Val158/Val158 58.8±10.2; B=−11.1, 95 % CI [−33.0 to 10.8], p=0.318) (Table 3). Consistent 

with prior reports [58, 59], both age years (B=1.2, 95 % CI [0.6 to 1.8], p<0.001) and 

education years (B=−5.2, 95 % CI [−8.4 to −2.0], p=0.002) associated with decreased and 

increased performance on mental flexibility, respectively. Injury severity did not show a 

significant association with TMT B-A (GCS 15 47.5±6.5; GCS <15 59.0±10.3; B=11.5, 
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95 % CI [−9.7 to 32.6], p=0.284). Race did not show a significant association with TMT B-

A (p=0.492) on multivariable analysis.

COMT Met158 is not associated with verbal learning after mTBI

To further assess the association between COMT Val158Met and verbal learning as measured 

by the CVLT-II, multivariable regression was performed to control for education years, race, 

and injury severity. COMT Val158Met did not demonstrate an association with CVLT-II after 

adjustment (Met158 50.9±1.6; Val158/Val158 51.6±2.4; B=−0.7, 95 % CI [−5.8 to 4.3], 

p=0.771) (Table 3). Consistent with prior reports [60], education years (B=0.6, 95 % CI 

[−0.1 to 1.4], p=0.098) showed a borderline association with verbal learning. Greater injury 

severity also associated with a decrease in verbal learning (GCS 15 53.7±1.5; GCS <15 

48.7±2.4; B=−5.0, 95 % CI [−9.9 to −0.1], p=0.044). Race showed a borderline significant 

association with CVLT-II (p=0.068) on multivariable analysis, driven primarily by a 

difference between the Caucasian subgroup and the heterogeneous “other races” subgroup 

(B=−5.9 [−11.5 to −0.2], p=0.042).

Discussion

In the present study, we sought to investigate whether the COMT Val158Met polymorphism 

is associated with cognitive performance at 6 months following mild closed head injury in 

an isolated, uncomplicated mTBI population. We found that subjects with the COMT Met158 

allele showed higher performance on a measure of nonverbal processing speed compared to 

Val158/Val158 homozygotes at 6 months following injury independent of injury severity and 

race. We also demonstrate that the COMT Val158Met polymorphism is not associated with a 

measure of executive control and mental flexibility or a measure of verbal learning after 

controlling for injury severity and race. We confirm that greater injury severity is associated 

with poorer nonverbal processing speed and verbal learning. Further, racial stratification was 

not found to significantly associate with nonverbal processing speed, mental flexibility, or 

verbal learning after uncomplicated mTBI in the current patient population.

In our current analysis, COMT Met158 carriers showed an adjusted mean score of 101.6 on 

the WAIS-PSI, while Val158/ Val158 homozygotes showed 93.8—these scores correspond to 

the ~55th percentile and the ~34th percentile of nonverbal processing speed performance in 

the normal population, respectively [44]. We also find that the adjusted mean scores (~50 s) 

on the CVLT-II correspond to the general mean of the normal population for both COMT 
Val158Met groups [50]. Further, the adjusted TMT B-A times for both COMT groups fall 

within the means reported in literature (~40 to ~60) for the normal/uninjured population [49, 

61, 62]. Thus, it is worth noting that a subgroup of patients with isolated uncomplicated 

mTBI demonstrates heightened risk for decreased performance on nonverbal processing, but 

not verbal learning or executive function at 6 months postinjury, and this subgroup 

associates with the common SNP COMT Val158Met.

It is generally accepted that acute physiologic recovery occurs by 6 months post-mTBI on 

imaging studies [9, 63, 64], and studies report that most cognitive symptoms resolve by 

within the first 3 months in mTBI [65, 66]. To our knowledge, this is the first study of the 

association between COMT Val158Met and cognitive performance at an extended time point 
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of recovery, such as 6 months following mTBI. Prior reports examining the potential 

influence of the COMT Val158-Met polymorphism on TBI cognitive outcomes have been 

conducted during acute and subacute recovery with a mean time of collection within 2 

months postinjury and have been predominately limited to patients with moderate and/or 

severe injuries [17, 18, 67]. For example, in a cohort of 113 TBI rehabilitation patients 

assessed at a mean of 2 months postinjury,17 Val158/Val158 homozygotes were found to score 

lower on a measure of cognitive flexibility—the ability to alter a behavioral response against 

changing contingencies [68]—and to have a greater number of perseverative errors. In 

another sample of 32 moderate-to-severe TBI patients with 40 health controls, COMT 
Met158 was found to associate with preserved strategic control of attention at 2 months 

postinjury [67]. In the largest study of COMT and moderate-to-severe TBI to date, Willmott 

et al. did not find an association between COMT and measures of cognition at roughly 1 

month postinjury [18]. However, this study evaluated cognitive performance at a time point 

that was not standardized and closer to the time of injury (mean 29 days); the authors 

suggest that cognitive assessment at 6–12 months postinjury may be more likely to detect 

subtle group differences as demonstrated in the present report.

There is physiological evidence in support of a potential modulatory role of the COMT 
Met158 allele in cognitive performance following TBI. The PFC is a key center for overall 

executive function, attention, and strategic planning [69–71], in which its rich dopaminergic 

pathways are more dependent on COMT for regulation and modulation at the synaptic cleft 

[19–21]. Prior studies have demonstrated that the COMT Val158Met polymorphism is 

associated with differences in cognitive performance in the absence of brain injury [23, 72]. 

Given the absence of measures of baseline preinjury performance in our population or 

neuropsychiatric data in appropriately uninjured age-matched controls, we cannot conclude 

whether our results reflect the maintenance of preexisting cognitive differences between 

genotypes and/or an altered trajectory of recovery or impairment following mTBI.

There are also several additional limitations to the present study. Our data was obtained for a 

relatively small sample size (n=100) in a predominately Caucasian male population and did 

not conform to known HapMap Phase III subpopulations; therefore, there is a need for 

studies of confirmation in similar populations and of validation in larger and more diverse 

study populations. We also included patients only with isolated mTBI in the absence of 

intracranial findings on CT and a limited period of diminished consciousness and/or 

posttraumatic amnesia; thus, the generalizability of our results is limited. We also include no 

neuroimaging outside of 24 h or magnetic resonance imaging. Therefore, it is possible that a 

subset of the subjects developed delayed pathology on neuroimaging and would no longer be 

classified as uncomplicated. We pursued analyses designed to investigate a hypothesized 

relationship between the COMT Val158Met polymorphism and cognitive outcome and did 

not explore the structure-function implications of COMT with specific brain pathology or 

variables important to the trajectory of recovery such as treatment and support. There is also 

a need to examine gene-gene interaction with other susceptibility loci in the context of mTBI 

to better elucidate complex interactions and mechanisms through which the COMT 
molecular pathway may influence response and recovery to TBI. Finally, all of our findings 

must be considered preliminary until they are formally replicated.
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Conclusions

The COMT Val158Met polymorphism (rs4680) is associated with nonverbal cognitive 

performance following uncomplicated mTBI without polytrauma. More specifically, the 

COMT Met158 allele is associated with increased performance in nonverbal processing 

speed, while no associations were seen on mental flexibility or verbal learning. Larger 

studies in similar populations will be of value to confirm the role of COMT Val158Met 
polymorphism in these domains and to explore its effects in other cognitive domains 

following mTBI. Whether COMT Val158/Val158 homozygotes would benefit from 

heightened clinical surveillance and/or pharmacologic and cognitive behavior therapy 

remains to be determined and may represent an important direction of future studies.
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Fig. 1. 
COMT Val158Met and 6-month WAIS-PSI Composite Score after mild traumatic brain 

injury. The COMT Val158Met polymorphism is associated with statistically greater 

preservation of nonverbal processing speed 6 months following mild traumatic brain injury 

after adjusting for race, years of education, and injury severity. Means and standard errors on 

the WAIS-PSI Composite Score are shown for Met158 and Val158/Val158 genotype groups. 

COMT, Catechol-O-Methyltransferase, WAIS-PSI Wechsler Adult Intelligence Scale Fourth 

Edition—Processing Speed Index. *p<0.05.
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Table 1

Demographic and clinical information of included subjects with mild traumatic brain injury

Variable COMT Met158 (N=76) COMT Val158/Val158 (N=24) Sig. (p)

Age (years)

 Mean±SD 40.5±15.7 42.2±14.1 0.643

Gender

 Male 49 (65 %) 17 (71 %) 0.566

 Female 27 (35 %) 7 (29 %)

Race

 Caucasian 57 (81 %) [a] 13 (19 %) [a] 0.042

 African-American/African 7 (50 %) [a] 7 (50 %) [b]

 Other races 12 (75 %) [a] 4 (25 %) [a]

Education (years)

 Mean±SD 14.6±2.7 13.0±3.1 0.015

Mechanism of injury

 Motor vehicle crash 24 (32 %) 2 (8 %) 0.110

 Pedestrian versus auto 17 (22 %) 5 (21 %)

 Fall 23 (30 %) 10 (42 %)

 Assault 9 (12 %) 6 (25 %)

 Struck by/against object 3 (4 %) 1 (4 %)

Posttraumatic amnesia

 No 30 (40 %) 11 (46 %)

 Yes 42 (55 %) 10 (42 %) 0.310

 Unknown 4 (5 %) 3 12 %)

GCS—fielda

 <15 21 (36 %) 6 (35 %) 0.982

 =15 38 (64 %) 11 (65 %)

GCS—ED arrival

 <15 19 (25 %) 4 (17 %) 0.579

 =15 57 (75 %) 20 (83 %)

ED disposition

 ED discharge 53 (70 %) 13 (54 %) 0.284

 Hospital ward admission 20 (26 %) 10 (42 %)

 ICU admission 3 (4 %) 1 (4 %)

Race distributions are reported as row percentages. All other distributions reported as column percentages. The race subgroup “other races” was 

combined due to individual small sample sizes of Asian (N=5; Met158 =4, Val158 /Val158 =1), American Indian/Alaskan Native (N=1; Met158 

=1), Hawaiian/Pacific Islander (N=1; Met158 =1), and more than one race (N=9; Met158 =6, Val158 /Val158 =3)

COMT catechol-O-methyltransferase, ED emergency department, GCS Glasgow Coma Scale, ICU intensive care unit, SD standard deviation

a
Data for GCS—Field was only available for 76 patients
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Table 2

Distribution of performance on 6-month cognitive outcome measures following mild traumatic brain injury by 

COMT genotype

Outcome Measure Met158 (N=76) Val158/Val158 (N=24) Sig. (p)

WAIS-PSI Composite Scorea 103.8±13.3 94.1±15.7 0.004

TMT Trail B minus A Timeb 46.6±51.5 63.8±42.0 0.139

CVLT-II Trial 1–5 Standard Scorea 54.5±11.1 53.7±9.4 0.740

Distributions are reported as mean±standard deviation

COMT catechol-O-methyltransferase, CVLT-II California Verbal Learning Test, second edition, TMT Trail Making Test, WAIS-PSI Wechsler 
Adult Intelligence Scale, fourth edition, Processing Speed Index

a
Higher scores suggest improved performance

b
Lower scores suggest improved performance
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Table 3

Multivariable analysis of the COMT Val158Met polymorphism and 6-month cognitive outcome following mild 

traumatic brain injury

WAIS-PSI Composite Scorea Mean±SE B [95 % CI] Sig. (p)

COMT Val158Met 0.017

 Val158/Val158 93.8±3.0 Reference –

 Met158 101.6±2.1 7.9 [1.4, 14.3]

GCS 0.013

 GCS=15 101.6±1.9 Reference –

 GCS <15 93.8±3.0 −7.9 [−14.1, −1.7]

Race 0.539

 Caucasian 96.8±2.1 Reference –

 African-American/African 95.8±3.6 −1.1 [−9.0, 6.9] 0.790

 Other 100.5±3.5 3.7 [−3.5, 10.9] 0.312

Education (years) – 1.4 [0.4, 2.3] 0.005

TMT Trail B minus A Timeb Mean±SE B [95 % CI] Sig. (p)

COMT Val158Met 0.318

 Val158/Val158 58.8±10.2 Reference –

 Met158 47.7±7.1 −11.1 [−33.0, 10.8]

GCS 0.284

 GCS=15 47.5±6.5 Reference –

 GCS <15 59.0±10.3 11.5 [−9.7, 32.6]

Race 0.492

 Caucasian 59.2±7.1 Reference –

 African-American/African 43.0±12.3 −16.2 [−43.1, 10.7] 0.235

 Other 57.4±12.2 −1.8 [−27.0, 23.4] 0.888

Education (years) – −5.2 [−8.4, −2.0] 0.002

Age (years) – 1.2 [0.6, 1.8] <0.001

CVLT-II Trial 1–5 Standard Scorea Mean±SE B [95 % CI] Sig. (p)

COMT Val158Met 0.771

 Val158/Val158 51.6±2.4 Reference –

 Met158 50.9±1.6 −0.7 [−5.8, 4.3]

GCS 0.044

 GCS =15 53.7±1.5 Reference –

 GCS <15 48.7±2.4 −5.0 [−9.9, −0.1]

Race 0.068

 Caucasian 54.7±1.6 Reference –

 African-American 50.1±2.8 −4.7 [−10.9, 1.5] 0.139

 Other 48.9±2.8 −5.9 [−11.5, −0.2] 0.042

Education (years) – 0.6 [−0.1, 1.4] 0.098
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The WAIS Processing Speed Index (WAIS-PSI) Composite Score and the CVLT-II Trial 1–5 Standard Score are adjusted for education years, race 
(Caucasian, African-American/African, other races), and GCS (15 vs. less than 15). The TMT Trail B minus ATime is adjusted for age, education 

years, race, and GCS. Distributions are reported as adjusted mean±standard error. The mean difference (B) between COMT Met158 and COMT 

Val158 /Val158 and associated 95 % CI is reported for each outcome measure CVLT-II, California Verbal Learning Test, Second Edition; TMT, 
Trail Making Test; WAIS, Wechsler Adult Intelligence Scale, Fourth Edition.

CI confidence interval, COMT catechol-O-methyltransferase, CVLT-II California Verbal Learning Test, second edition, GCS Glasgow Coma Scale, 
TMT Trail Making Test, WAIS Wechsler Adult Intelligence Test

a
Higher scores suggest improved performance

b
Lower scores suggest improved performance
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