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I. PHILOSOPHICAL APPROACH 

A. Problem Definition 

Stated in its simplest form, the question addressed here is how to allocate instruc­
tional resources to achieve a desired objective. Broadly interpreted, this question 
could include the total educational resources of society and all possible learning 
situations. In practical terms, however, the setting is restricted to the structural 
educational system, because this is the only context in which decisions on the 
allocation of instructional resources may be implemented. 

When the question of allocating resources is examined in this setting, attention 
is usually focused on a well-defined subcomponent of the problem. Once the 
characteristics of one of these subcomponents are understood, their implications 
may be extended to a larger context. However, in general, the characteristics of 
many subcomponents must be synthesized before solutions can be derived for the 
problem of resource allocation. 

In the school setting, the principal resources to be allocated are the human 
resources of teachers and students. When the teaching function is augmented by 
nonhuman resources, such as computer-aided instruction, then the total instruc­
tional resources must be considered. The time spent by the students also must be 
included because there is frequently a trade-off between instructional resources to 
be allocated and speed of learning. 
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There are two basic questions in any resource allocation problem: (a) what are 
the alternatives and their implications, and (b) which alternative is preferred? The 
first question concerns the "system" and includes such questions as what is 
feasible, what happens if, and what is the cost? The second question has to do 
with the goals, objectives, and preferences of the decision-maker or the collec­
tion of people he represents. These are very difficult questions to answer; but 
they must be answered, at least implicitly, every time an allocation decision is 
made. In this chapter we review the development and application of mathemati­
cal models that help the decision-maker directly with the first question and 
indirectly with the question of identifying objectives and preferences. 

B. Empirical Approach versus Modeling Approach 

The core of any decision problem is the determination of the implications or 
outcomes of each alternative, that is, the determination of the answers to what 
happens if? The questions of feasibility and cost are ancillary to this central 
problem and are relatively uncomplicated. For example, consider the problem of 
determining optimal class size. For a particular situation, the question of feasibil­
ity might involve simply the availability of physical facilities and instructional 
resources. Analysis of the question of cost also would be reasonably straightfor­
ward. However, it would be very difficult to determine and quantify the expected 
results with sufficient accuracy to permit assessment of the cost-effective trade­
off. It is the quantitative analysis of the core of the decision problem that can be 
approached with empirical or modeling techniques. 

In the empirical approach, the input variables (class size, for example) and the 
output variables (amount learned, for example) are defined for the particular 
problem at hand, and then empirical data relating to these variables are collected 
and analyzed. From the analysis, it is hoped that a causal relationship can be 
determined and quantified. This relationship then serves to predict the output 
from the system for the range of alternatives under consideration. Once the 
expected output has been quantified and once the costs of the alternatives have 
been determined, the decision problem is reduced to an evaluation of prefer­
ences. 

The empirical approach has a natural appeal for several reasons. First, 
perhaps, is its simplicity. If a particular system has only a few variables that are 
amenable to quantification, then, given sufficient data, the relationships between 
them can be determined. The second reason for its appeal is that no a priori 
knowledge of the relationships among variables is necessary; the data simply 
speak for themselv.es. A third reason is that data analysis can never really be 
avoided completely, whatever approach is employed. Thus, if the problems of 
data collection, verification, and analysis must be encountered regardless, it may 
appear expeditious to rely on data analysis alone. 

There are, however, many problems with the application of the empirical 
approach, especially to situations that are as complicated as those that comprise 

the educational system. It is extremely diff 
Often surrogate variables must be used I 
suitably quantified. For example, teachin. 
quantifiable variables as years-of-experienc 
iables can be defined, the complexities of n 
These problems involve statistical sarnplin, 
of survey and interview techniques. 

In addition to definitional and measun 
controlling multiple variables and long time 
system of many variables, the relationship 
impossible to extract empirically because c 
or unquantified variables. Moreover, the fa 
time constants introduces complications 
analysis is required. Time series or "longi 
important when the objective is to study the 
system, whether it be an experimental or; 
long time constants in education, the eff 
slowly, and the detection of the change thn 
tenance of high quality data over a relativf 

The second method of analyzing the sy! 
approach is characterized by some assumpti 
that is, it assumes a particular form for re 
iables. It encompasses a spectrum of tech 
analysis to abstract theory. 

In its most abstract form, the model 
mathematical analysis with the capability o 
tives or parameter values. The models tl 
equations to empirical data also may be am 
often, because of their complexity, they 
analyze the effects of various alternatives a1 
possible to combine the abstract model f01 
deed, the optimal balance of model abstrac 
any model builder. This balance depends 
purpose of the model, the availability of apr 
of the decision-maker as well as the analys 
providing sufficient detail for the decision-1 
plexity than is required to portray adequate; 
ronment. 

C. Mathematical Models and Optimizal 

A particularly useful form of the modeling a 
is formulated within the framework of cont 
heart of this framework is the mathematical 



ICHARD C. ATKINSON 

in any resource allocation problem: (a) what 
tions, and {b) which alternative is preferred? 
·stem" and includes such questions as what 
Nhat is the cost? The second question has to 
preferences of the decision-maker or the 
hese are very difficult questions to answer; 
: implicitly, every time an allocation decision 
r the development and application of 
iion-maker directly with the first question 
identifying objectives and preferences. 

us Modeling Approach 

lem is the determination of the implications 
hat is, the determination of the answers to what 
feasibility and cost are ancillary to this 
mplicated. For example, consider the problem 
For a particular situation, the question of feasibil­
~ailability of physical facilities and instructional 
tion of cost also would be reasonably straightfor­
"Y difficult to determine and quantify the expected 
to permit assessment of the cost-effective trade­

is of the core of the decision problem that can be 
nodeling techniques. 
e input variables (class size, for example) and the 
ted, for example) are defined for the particular 
irical data relating to these variables are collected 
;is, it is hoped that a causal relationship can be 
.is relationship then serves to predict the output 
~ of alternatives under consideration. Once the 
tified and once the costs of the alternatives have 
problem is reduced to an evaluation of prefer-

ts a natural appeal for several reasons. First, 
tarticular system has only a few variables that are 
n, given sufficient data, the relationships between 
second reason for its appeal is that no a priori 

s among variables is necessary; the data simply 
reason is that data analysis can never really be 
approach is employed. Thus, if the problems of 

td analysis must be encountered regardless, it may 
:lata analysis alone. 
problems with the application of the empirical 

ms that are as complicated as those that comprise 

8. OPTIMIZATION THEORY 299 

the educational system. It is extremely difficult to define real variables precisely. 
Often surrogate variables must be used because the real variables cannot be 
suitably quantified. For example, teaching ability can be represented by such 
quantifiable variables as years-of-experience and level-of-education. Even if var­
iables can be defined, the complexities of measurement introduce new problems. 
These problems involve statistical sampling, measurement error, and the choice 
of survey and interview techniques. 

In addition to definitional and measurement problems, difficulties arise in 
controlling multiple variables and long time constants or reaction times. Within a 
system of many variables, the relationships among only a few of them may be 
impossible to extract empirically because of the influence of other uncontrolled 
or unquantified variables. Moreover, the fact that educational systems have long 
time constants introduces complications when more than "snapshot" data 
analysis is required. Time series or "longitudinal" data analysis is particularly 
important when the objective is to study the effects resulting from a change in the 
system, whether it be an experimental or a permanent change. Because of the 
long time constants in education, the effects of change are manifested very 
slowly, and the detection of the change through data analysis requires the main­
tenance of high quality data over a relatively long time period. 

The second method of analyzing the system is the modeling approach. This 
approach is characterized by some assumptions about the structure of the system; 
that is, it assumes a particular form for relationships among some of the var­
iables. It encompasses a spectrum of techniques ranging from structured data 
analysis to abstract theory. 

In its most abstract form, the modeling approach offers the power of 
mathematical analysis with the capability of examining a wide range of alterna­
tives or parameter values. The models that result from fitting mathematical 
equations to empirical data also may be amenable to mathematical analysis; but 
often, because of their complexity, they require the power of computers to 
analyze the effects of various alternatives and parameter values. It is, of course, 
possible to combine the abstract model form with extensive data analysis. In­
deed, the optimal balance of model abstraction and data analysis is the goal of 
any model builder. This balance depends upon many factors, including the 
purpose of the model, the availability of appropriate data, and the characteristics 
of the decision-maker as well as the analyst. A good model is characterized by 
providing sufficient detail for the decision-maker while retaining no more com­
plexity than is required to portray adequately relationships within the real envi­
ronment. 

C. Mathematical Models and Optimization Theory 

A particularly useful form of the modeling approach is one in which the problem 
is formulated within the framework of control and optimization theory. At the 
heart of this framework is the mathematical model that is a dynamic description 



300 VERNE G. CHANT AND RICHARD C. ATKINSON 

of the fundamental variables of the system. For an alternative under considera­
tion, the model determines all the implications or outcomes over time resulting 
from the implementation of that particular alternative or policy. 

Once the implications of each alternative are known and the costs have been 
evaluated, preferences can be assigned to the various alternatives. In the 
framework of control and optimization theory, these alternatives for resource 
allocation are associated with settings of the control variables. The preferences 
over all possible alternatives are specified by an objective function that measures 
the trade-off between benefits and costs, which are defined in the model by the 
values of the control variables and the state variables. The control and state 
variables define, generally speaking, the inputs and outcomes of a system, re­
spectively. The problem of optimal resource allocation is thus the problem of 
choosing feasible control variable settings that maximize (or minimize) the objec­
tive function. 

The central dynamic behavior that must be modeled when considering prob­
lems of resource allocation in the educational setting is the interaction between 
the instructor-whether it be teacher, computer-assisted instruction or pro­
grammed instruction-and the individual learner. The effects of the environment 
(for example, the classroom) also are important. Models of these interactions are 
essential in order to predict the outcomes of alternative instructional policies. 
Once the cost components of the various alternatives have been evaluated, the 
optimization problem may take one of three forms. If the quantity of resources is 
fixed, then benefits can be maximized subject to this resource constraint. If there 
is a minimum level of performance to be achieved, then the appropriate objective 
is to minimize cost subject to this performance level. Finally, if performance and 
cost are both flexible and if the trade-off of benefit and cost can be quantified in 
an objective function, then both the optimal quantity of resources and the level of 
performance can be determined. 

II. PREVIOUS RESEARCH 

A. Overview 

The applications of learning models and opt1m1zation theory to problems of 
instruction fall into two categories: (a) individual learner oriented and (b) group 
of learners (classroom) oriented. In category a applications, instruction is given 
to one learner completely independently of other learners. These applications are 
typical of computer-assisted instruction and programmed instruction and also 
include the one-teacher/one-student situation. Within this category, many situa­
tions can be adequately described by an appropriate existing model from 
mathematical-learning theory. In such cases, as outlined below, the results of 
applying mathematical models have been encouraging. In other more complex 

situations, existing models must be modified 
to describe the instructor/learner interaction. 

In category b applications, instruction is g 
learners. This characteristic is typical of clas 
includes other forms of instruction, such as f 
more learners may be receiving instruction bl 
to instructor. In contrast to category a situal 
theory provides suitable models of instruc1 
comparable theory for the group of learners 
tions must therefore include model devel 
analysis. 

Most applications, whether in category a 

Step I is to isolate a particular learning 1 

situation is classified as category a orb, then 
the material to be learned is specified. 

Step 2 is to acquire a suitable model t1 
learning. This step may be as simple as the 
from mathematical-learning theory, as ment 
development of a new model for the particu 

Step 3 is to define an appropriate criterion 
tion possibilities, taking account of benefit 
model. 

Step 4 is to perform the optimization am 
optimal solution. These characteristics may i1 
solution to key variables of the model and the 
those of other solutions. In some situations th, 
difficult or impossible to solve. In this case,' 
identified whose results represent improve1 
lutions. 

B. Individual Learner Setting 

1. Quantitative Approach for Automa1 
Devices 

An important application of mathematical 
was Smallwood's (1962) development of 
machines. Smallwood's goal was to prodw 
teaching machines that would emulate the tw( 
human tutor: (a) the ability to adjust instruct 
and (b) the ability to adapt instruction based 01 

decision system within this framework must 
response history, not only to the benefit of th1 
learners. 



~HARD C. ATKINSON 

he system. For an alternative under considera­
e implications or outcomes over time resulting 
particular alternative or policy. 
alternative are known and the costs have been 
assigned to the various alternatives. In the 
tization theory, these alternatives for resource 
tings of the control variables. The preferences 
:pecified by an objective function that measures · 
d costs, which are defined in the model by the 
md the state variables. The control and state 
ing, the inputs and outcomes of a system, re­
nal resource allocation is thus the problem of 
settings that maximize (or minimize) the objec-

that must be modeled when considering prob­
~ educational setting is the interaction between 
~acher, computer-assisted instruction or pro­
lividuallearner. The effects of the environment 
are important. Models of these interactions are 
outcomes of alternative instructional policies. 
various alternatives have been evaluated, the 

1e of three forms. If the quantity of resources is 
ized subject to this resource constraint. If there 
e to be achieved, then the appropriate objective 
performance level. Finally, if performance and 
ide-off of benefit and cost can be quantified in 
te optimal quantity of resources and the level of 

VIOUS RESEARCH 

dels and optimization theory to problems of 
;: (a) individual learner oriented and (b) group 
:n category a applications, instruction is given 
iently of other learners. These applications are 
uction and programmed instruction and also 
1t situation. Within this category, many situa­
'ed by an appropriate existing model from 
such cases, as outlined below, the results of 
ve been encouraging. In other more complex 

8. OPTIMIZATION THEORY 301 

situations, existing models must be modified or new models must be developed 
to describe the instructor/learner interaction. 

In category b applications, instruction is given simultaneously to two or more 
learners. This characteristic is typical of classroom-oriented instruction and also 
includes other forms of instruction, such as films and mass media, where two or 
more learners may be receiving instruction but there is no feedback from learner 
to instructor. In contrast to category a situations, where mathematical-learning 
theory provides suitable models of instructor/learner interaction, there is no 
comparable theory for the group of learners environment. Category b applica­
tions must therefore include model development as well as mathematical 
analysis. 

Most applications, whether in category a orb, follow a 4-step procedure. 
Step I is to isolate a particular learning situation. In this step, the learning 

situation is classified as category a orb, the method of instruction is defined, and 
the material to be learned is specified. 

Step 2 is to acquire a suitable model to describe how instruction affects 
learning. This step may be as simple as the selection of an appropriate model 
from mathematical-learning theory, as mentioned above, or as difficult as the 
development of a new model for the particular situation. 

Step 3 is to define an appropriate criterion for comparing the various instruc­
tion possibilities, taking account of benefits and costs as determined by the 
model. 

Step 4 is to perform the optimization and analyze the characteristics of the 
optimal solution. These characteristics may include the sensitivity of the optimal 
solution to key variables of the model and the comparison of its results relative to 
those of other solutions. In some situations the optimization problem may be very 
difficult or impossible to solve. In this case, various suboptimal solutions may be 
identified whose results represent improvements over those of previous so­
lutions. 

B. Individual Learner Setting 

1. Quantitative Approach for Automated Teaching 
Devices 

An important application of mathematical modeling and optimization theory 
was Smallwood's (1962) development of a decision structure for teaching 
machines. Smallwood's goal was to produce a framework for the design of 
teaching machines that would emulate the two most important qualities of a good 
human tutor: (a) the ability to adjust instruction to the advantage of the learner 
and (b) the ability to adapt instruction based on the learner's own experience. The 
decision system within this framework must therefore make use of the learner's 
response history, not only to the benefit of the current learner, but also for future 
learners. 
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The learning situation considered by Smallwood has three basic elements: (a) 

an ordered set of concepts that are to be taught, (b) a set of test questions for each 
concept to measure the learner's understanding, and (c) an array of blocks of 
material that may be presented to teach the concepts. Two additional elements 
are required to complete the framework for the design of a teaching machine: (d) 

a model with which to estimate the probability that a learner with a particular 
response history will respond with a particular answer to each question, and (e) a 
criterion for choosing which block to present to a learner at any given time. 

Having defined his model requirements in probabilistic terms, Smallwood 
(1962) considered three modeling approaches: correlation, Bayesian, and intui­
tion. He discarded the correlation model approach as not useful in this context. 
Then he developed Bayesian models, based on the techniques of maximum 
likelihood and Bayesian estimation (these models are too complex to review 
here). His intuition approach Jed to a relatively simple quantitative model based 
on four desired properties: representation of question difficulty and learner ability, 
together with model simplicity and experimental performance. The model is 

\ ~c b~a 

p 

=11 - (1-b)(l-c) b >a 
\ (l -a) 

where P is the probability of a correct response, b measures the ability of the 
learner, c measures (inversely) the difficulty of the question, and a is an average 
of the fraction of correct responses. All parameters are between zero and one. 

For a particular set of learners and a given set of questions, the parameter a is 
fixed. For an average learner (b = a), this model equates the probability of a 
correct response for a question of difficulty c to c itself. For Jess than average 
learners (b <a), the probability of a correct response varies linearly with c but is 
uniformly lower than for the average learner. Similarly, for better than average 
learners (b > a), this relationship is again linear but higher than that for the 
average learner. 

As an objective function for determining optimal block presentation strategies, 
Smallwood (1962) suggested two possibilities with variations. One was an 
amount-learned criterion, which measured the difference before and after instruc­
tion, and the other was a learning-rate criterion, which essentially normalized the 
first criterion over time. In the optimization process, these cirteria are used to 
choose among alternative blocks for presentation in a local, rather than global 
sense. 

At any branch point in the presentational strategy where more than one block 
or set of blocks could be presented to the learner, the learner's response history is 
used to calculate a current estimate for the parameter b. The other parameters are 
estimated previously making use of all available learner-response histories. Each 
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alternative branch from this point can then be evaluated using one of the above 
mentioned criteria and the best branch for immediate gain is chosen for presenta­
tion. 

A simple teaching machine was constructed based on the concepts of this 
decision structure. The experimental evidence verified that the machine distin­
guished between learners and presented them with different combinations of 
blocks of material. It also verified that different decisions were taken at different 
times under similar circumstances, indicating that the machine was adaptive. 

2. Order of Presentation of Items from a Ust 

The task of learning a list of paired-associate items has practical applications in 
many areas of education, notably in reading and foreign language instruction 
(Atkinson, 1972). It is also a learning task for which models of mathematical­
learning theory have been very successful at describing empirical data. It is 
therefore not surprising that the earliest and most encouraging results of the 
application of optimization techniques have come in this area. Although the 
learning models employed in these studies are extremely simple, the results are 
valuable for three reasons: (a) the applications are practical, (b) these results lead 
to further critical assessment of the basic learning models, and (c) the general 
analytical procedure is transferable to more complex situations. 

The applic~tion of mathematical models and optimization theory to the prob­
lem of presenting items from a list can be illustrated by three examples from the 
literature. The first is a short paper by Crothers ( 1965) that derives an optimal 
order of item presentation when two modes of presentation are available. The 
second is an in-depth study by Karush and Dear ( 1966) of a simple learning 
model that leads to an important decomposition result. The third example is a 
paper by Atkinson and Paulson (1972) that derives optimal presentational 
strategies from three different learning models and presents some experimental 
results. These three papers are described briefly. 

In the Crothers ( 1965) paper there are two modes of presentation of the items 
from the list; the total number of presentations using each mode is fixed, but the 
order of presentation is to be chosen. Since the order of presentation does not 
affect the cost of the instruction, the objective is simply to maximize the expected 
proportion of correct items on a test after all presentations have been made. 

Two models of the learning process are studied in this paper. The random trial 
increment model (described in detail later in this section) predicts that the ex­
pected proportion of correct items is independent of the order of presentation of 
items; therefore, any order is an optimal solution. The second learning model, 
the long-short learning and retention model, predicts different results from dif­
ferent presentation orders, and so a meaningful application of optimization 
exists. This model depicts the learner as being in one of three states: a learned 
state, a partial-learning state, and an unlearned state. The learner responds with a 
correct response with probability, 1, p, or g, respectively, depending upon his state 
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of learning, and his transition from state-to-state is defined by the probabilistic 
transition matrix 

0 

-a 

c 

This model simplifies into the two-element model by setting b equal to 0 and 
further into the ali-or-none model by dropping the partial-learning state. This 
model is assumed to describe the learning process for each mode of presentation, 
so that the response probabilities for each state are identical for all modes, but the 
parameters a, b, and c are different for each mode. For a discussion of these 
models, see Atkinson, Bower, and Crothers (1965). 

The result of the optimization step in this application is contained in two 
theorems. The first theorem states that the ranking of presentation schedules 
based on the expected proportion of correct responses (which is the defined 
objective) is identical to the ranking based on the probability of occupying the 
learned state. The second theorem states that the ranking of two presentation 
schedules is preserved if the schedules are either prefixed or suffixed by identical 
strings of presentations. These theorems are sufficient to conclude that moving 
one presentation mode to the right of another in a schedule always has the same 
(qualitative) effect on the terminal proportion correct and, hence, that optimal 
presentation schedules have all presentations of one mode together. 

In the learning situation described by Karush and Dear (1966), there are n 
items of equal difficulty to be learned, and the problem is to determine which 
item out of then to present for study at any given time. The strategy for choosing 
items for presentation is to take into account the learner's response history up to 
the current time. The ali-or-none model is used to describe the learning process, 
and it is assumed that the single model parameter has the same value for each 
item. 

In order to formulate an objective function, it is assumed that all presentational 
strategies have the same cost so that the objective can be defined in terms of the 
state of learning at the termination of the strategy. Assuming that all items are 
weighted equally, an expected loss function is defined in terms of the prob­
abilities Pk that at the terminal node exactly k items are still unlearned. The 
expected loss for a particular terminal node is given by 

where bk is the value (weight) of the loss if k items are still unlearned. The 
overall expected loss, which is to be minimized, is therefore 
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where q(h) is the probability of occupying terminal node h, and the first summa­
tion is over all possible terminal nodes. For the particular values bk = 1, the 
objective function above is equivalent to the maximization of the probability that 
all items are learned; and for bk = k it is equivalent to the maximization of the 
expected sum of the probabilities of being in the learned state for each item. All 
of the results that are derived in the paper are not dependent on the values for the 
bb and so they are quite general. 

The optimization is accomplished using the recursive formulation of dynamic 
programming. The principal result is that, for arbitrary initial probabilities of 
being in the learned state for each item, an optimal strategy is to present the item 
for which the current probability of learning is the least. The most practical 
application of the results is for the case where these initial probabilities are zero, 
in which case the optimal strategy can be implemented simply by maintaining 
counts of correct and incorrect responses on each item. Also in this case, the 
optimal strategy is independent of both model parameters: the probability of 
transition and the probability of guessing. 

Atkinson and Paulson ( 1972) reported empirical results employing the aU-or­
none-based optimal strategy derived by Karush and Dear (1966) and compared it 
with strategies based on other learning models. In one experiment, the aU-or­
none-based strategy is compared with the optimal strategy derived from the linear 
model. In the derivation of this latter optimal strategy, it is assumed that the 
model parameters are identical for all items. For the objective of maximizing the 
expected number of correct responses at the termination of the experiment, it is 
shown that all items should be presented the same number of times. Con­
sequently, a random-order strategy is employed in which all items are presented 
once, then randomly reordered for the next presentation and so on. The experi­
mental results show that during the learning experience the all-or-none-based 
strategy produces a lower proportion of correct responses than the linear-based 
(random) strategy, but that on two separate postexperiment tests, the aU-or­
none-based strategy yields a higher proportion of correct responses. From these 
results it can be concluded that the lower proportion of correct responses during 
the learning experience for the ali-or-none-based strategy indicates that this 
strategy is emphasizing those items that are not yet learned. The superior perfor­
mance on the postexperiment test for this strategy relative to the linear-based 
strategy confirms that for this particular objective it is preferable to stress un­
learned rather than learned items during the learning experience. In this sense, it 
can be concluded that in this learning situation and for the stated objective, the 
ali-or-none model is superior to the linear model. 

In another experiment, the all-or-none-based strategy and the linear-based 
strategy are compared with a strategy based on the random trial increment (RTI) 
model. The RTI model is a compromise between the all-or-none and the linear 
models. Defined in terms of the probability p of an error response, at trial n this 
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probability changes from p(n) to p(n + I) according to 

( 
1
) = \ p(n) with probability 1 - c 

p n + ap(n) with probability c 

where a is a parameter between 0 and I , and c is a parameter that measures the 
probability that an "increment" of learning takes place on any trial. This model 
reduces to the all-or-none model if a = 0 or to the linear model if c = 1. 

This application of the RTI model differs in two ways from the earlier studies 
outlined above. First, because of the complexity of the optimization problem, 
only an approximation to the optimal strategy is used. The items to be presented 
at any particular session are chosen to maximize the gain on that session only, 
rather than to analyze all possible future occurrences in the learning encounter. 
Second, the parameters of the model are not assumed to be the same for all times. 
These parameters are estimated in a sequential manner, as described in the 
Atkinson and Paulson paper; as the experiment progresses and more data become 
available regarding the relative difficulty of learning each item, refined estimates 
of the parameter values are calculated. 

The results of the experiment show that the RTI-based strategy produces a 
higher proportion of correct responses on posttests than either the aU-or-none­
based or linear-based strategies. The favorable results are due partly to the more 
complex model and partly to the parameter differences for each item. This 
conclusion is supported by the fact that the relative performance of the RTI-based 
strategy improves with successive groups of learners as better estimates of the 
item-related parameters are calculated. 

3. Interrelated Learning Material 

In many learning environments, the amount of material that has been mastered 
in one area of study affects the learning rate in another distinct but related area, 
for example, the curriculum subjects of mathematics and engineering. In situa­
tions such as this, the material in two related areas may be equally important, and 
the problem is to allocate instructional resources in such a way that the maximum 
amount is learned in both areas. In other situations, the material in one area may 
be a prerequisite for learning in another rather than a goal in itself. Here, even 
though the objective may be to maximize the amount of material learned in just 
one area, it may be advantageous in the long run to allocate some instructional 
resources to the related area. This problem of allocating instructional effort to 
interrelated areas of learning has been studied by Chant and Atkinson (1973). In 
this application, a mathematical model of the learning process did not exist, and 
so one had to be developed before optimization theory could be applied. 

The learning experience from which the model was developed was a 
computer-assisted instructional program for teaching reading (Atkinson, 1974). 
This program involved two basic interrelated areas (called strands) of reading, 
one devoted to instruction in sight-word identification and the other to instruction 
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in phonics. It has been observed that the instantaneous learning rate on one strand 
depended on the student's position on the other strand. 

In the development of the learning model, it was assumed that the interdepen­
dence of the two strands was such that the instantaneous learning rate on either 
strand is a function of the difference in achievement levels on both strands. 
Typical learning-rate characteristics are shown in Figure I. If the achievement 
levels on the two strands at timet are represented by x1(t) and x2(t), then the 
instantaneous learning rates are the derivatives of x1 and x2 with respect to time; 
these rates are denoted as .:t1 and .:t2 • By defining u(t) as the relative amount of 
instructional effort allocated to strand one, the model of learning can be ex­
pressed in differential equation form as 

.:t1 (t) = u(t'f1 (xl (t) - Xz(t)), 

x 2(t) = [I - u(t)]f2(xlt) - x 2(t)), 

where/1 and/2 are the learning-rate characteristic functions depicted in Figure I. 
In this formulation of the problem, the total time, T, of the learning encounter is 
fixed, and the objective is to maximize a weighted sum of the achievement levels 
on the two strands at the termination of the encounter. The objective is therefore 
to maximize 

c1x1(T) + CzX2(T), 

where c1 and c2 are given nonnegative weights. This maximization is with respect 
to u subject to the constraint 0 os:; u(t) os:; I for all t such that 0 os:; t os:; T. 
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The optimization is carried out, not for the nonlinear learning-rate characteris­
tic functions of Figure 1, but for linearized approximations to them. From the 
form of the optimal solutions, it is clear that the analysis applies equally well to 
the nonlinear functions. The optimization is performed by means of the Pon­
tryagin Maximum Principle. It is shown that the opti~al solution is_ characterized 
by a "turnpike" path in thex1x2 plane. On the turnpike pa~h the difference~! -
x between the achievement levels on the two strands remams constant. Optimal 
t:ajectories are such that initially all of the instructional eff~rt is all_ocated to o~e 
of the strands until the turnpike path is reached. Then the mstructwnal effort IS 

apportioned so as to maintain a constant difference bet":'een strands, that i_s, so as 
to remain on the turnpike path. Near the end of the leammg encounter, the mstruc­
tional effort is again allocated to just one strand, depending on the relative val~es 
of the weights c 1 and c2 of the objective function. Figure 2 shows the turnptke 
path and typical optimal trajectories starting from tw_o d~fferent i~itial P?ints and 
terminating according to two different values of obJeCtive functiOn weights. 

It is also shown that of all the stable paths, the turnpike path is the one on 
which the average learning rate is maximized. A stable path is the steady state 
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path that is approached if the relative allocation of instructional effort between 
strands is held constant. It can be shown that stable paths are such that the 
difference between achievement levels on the two strands is constant. 

C. Group of Learners Setting 

1. A Descriptive Model Structure 

Carroll (1965) developed a structure for describing learning in the school or 
classroom setting. This model involves five variables; four are defined in a 
quantitative sense, but one is difficult to quantify. The relationships among these 
variables are not precisely defined, but the potential interactions are identified 
and described. 

The five variables are aptitude, perseverance, ability to comprehend instruc­
tion, quality of instruction, and opportunity to learn. The aptitude variable is 
defined as a reference learning rate for a learner for a given task. Aptitude is to be 
measured by the reciprocal of the time required to master the given task to a 
given criterion under optimal learning conditions. The perseverance variable is 
defined by the length of time that the learner is willing to spend learning the task 
involved. Carroll suggests that this variable will change significantly over time 
and that it can be affected by external factors. The variable ability-to­
comprehend-instruction is assumed to be primarily represented by verbal intelli­
gence, and so measures of verbal intelligence are considered adequate for quan­
tification purposes. It is suggested that this variable will demonstrate less rapid 
changes over time then, for example, perseverance and that it is determined to a 
large extent by the individual's early life environment. Carroll's fourth variable, 
quality of instruction, is defined imprecisely as the degree to which content and 
method of instruction are structured so that material is easily learned. There is an 
important joint relationship between quality of instruction and ability to com­
prehend instruction on the learning rate. This relationship is such that low-quality 
instruction more severely hinders the learner with limited ability to comprehend 
instruction than the learner with greater ability. The final variable, opportunity to 
learn, is defined as the time actually allowed for learning in the particular situa­
tion. It is recognized that in the classroom not all learners have a continuous 
opportunity to learn since the class must learn together. 

Without more explicit elaboration of the relationships among these variables, 
and in some cases more precise definitions, this model cannot be used in a 
quantitative sense. It has been very useful, nevertheless, to help identify the 
salient features of the learning process in the classroom. 

2. Normative Models 

Restle ( 1964) made an early contribution to the application of learning models 
and optimization theory to the classroom or group of learners setting. He has 
studied two situations, each of which involves a group of identical learners. In 
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the first situation, the problem is to determine the optimal class size for a large 
number of identical learners. The objective function is expressed in cost terms, 
including both instructor and learner costs, and the amount to be learned is fixed. 
In the second situation, the problem is to determine the optimal pace of instruc­
tion for a curriculum consisting of a sequence of identical items in which further 
learning progress for any learner is terminated if an item is not mastered. The 
pace of instruction is determined by the amount of time allocated to each item, 
assuming equal time for each item and a fixed total amount of time. The objec­
tive is to maximize the expected number of items learned by the group or, 
equivalently, by any learner of the group. 

The continuous-time ali-or-none model is used to describe the learning process 
in both situations. This version of the ali-or-none model is essentially the same as 
the discrete (learning trial) version introduced earlier and is defined by the 
cumulative distribution function 

which gives the probability that learning on an item takes place before time t, 
where A is the reciprocal of the mean time until learning occurs. 

For the optimal class-size situation, Restle (1964) chooses to minimize the 
expected total (weighted) time cost of both instructors and learners, subject to the 
constraint that instruction be given until all learners have mastered the item. 
Based on the model, the expected time M (n) for a group of n learners to learn an 
item is given by 

1 
M(n) =I 

II 

I 
k=! 

I 
k' 

Letting r represent the ratio of the value of instructor time to the value of learner 
time leads to the expression 

NM(n) + rNM(n)/n 

for expected total time cost in learner-time units where N is the total number of 
learners and n the size of each subgroup (assuming that N is large enough that the 
integrality error is negligible). Using a continuous approximation for M (n), this 
optimization is easily performed to yield the relationship shown in Figure 3 
between optimal class size and r, the relative value of instructor and learner time. 

For the situation involving optimal pace of instruction, the total amount of 
time (T) is allocated equally to each item in order to maximize the expected 
number of items mastered by a learner. If t units are allocated to each unit, then, 
based on the model, the mean number of items learned is 

eM _ 1 _ eM(l _ e-M)<T + ntt. 

Rather than calculate the maximum of this expression with respect to t, Restle 
(1964) shows the function graphically for various values of the basic parameter 
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TA.. With this learning model, TA. represents the expected number of items 
learned for an individual learner who is allowed to proceed to the next item as 
soon as he has mastered the current item. On the basis of the graphs, Restle 
concludes that for a short course where TA. = 3, the optimal pace for a group is 
instruction on 2 items. For a medium-length course ofTA. = 12, the group should 
receive instruction on 4 items; and for a long course with TA. = 144, the group 
takes 30 items. Thus, for long sequences of items in which a learner is blocked if 
he misses only one item, the group pace must be very slow compared to the 

tutored pace. 
In a paper by Chant and Luenberger (1974), a mathematical theory of instruc­

tion has been developed that describes certain aspects of the classroom environ­
ment. This model is developed in two stages; the first models the instructor/ 
learner interaction for an individual learner situation, and the second extends this 
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model to a group of learners situation. In the first stage, the principal problem 
under investigation is the optimal matching of instruction to the characteristics of 
the learner. In the second stage, the analysis is concerned with the problem of 
instruction pacing, which is an important question in the classroom situation. 

Motivated by a differential equation formulation of the learning curve by 
Thurstone (1930), Chant and Luenberger (1974) assume that the relationship 
between learning rate, instructional input, and state of the learner can be repre­
sented by 

p(t) = u(t)gjp(t)] 

where p(t) is the achievement level of the learner at time t relative to total 
learning. In this equation p(t) represents learning rate, u(t) is an instructional 
input variable, andg-the characteristic learning function-describes how learn­
ing rate depends on the achievement level for a particular learner in a particular 
situation. Restrictions are placed on the function g, so that for a constant instruc­
tional input u(t) the learning curve has the familiar S-shape. 

The instructional input variable u(t) is thought of as a measure of the intensity 
of instruction in the sense that the larger the value of u(t), the greater the learning 
rate and the cost of instruction. The relationship between instruction cost and 
learning rate( for a given achievement level) forms the basis of the precise defini­
tion of u(t) such that the total cost of instruction fort = 0 tot = T is 

T 

f t[u(t)]dt 
0 

where t[u(t)] defines the rate of expenditure of instructional resources for in­
struction of intensity u(t), 0 ~ t ~ T. 

In formulating an objective function, both the learner's achievement level and 
the cost of the learning encounter are considered. The learner's achievement 
level at the end of the encounter is represented by p(T) and the cost of the 
learner's time by bT. The objective function is defined as the net benefits, that is 

1' 

p(T) - bT - f t[u(t)]dt. 
0 

The relative importance of achievement level and instruction cost is assumed to 
be included in the loss function e. 

The optimization problem is to choose the instructional input u (t) for 0 ~ t ~ T 
and the duration T of the learning encounter so as to maximize the above objec­
tive function. It is shown in the paper that the optimal instructional input function 
u is constant throughout the learning encounter and is determined by the solution 
of 

ut'(u) - f(u) - b = 0. 

The optimal value of T is given by the larJ 
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The optimal value of T is given by the larger of the two values that satisfy 

gfp(T)] = f '(u). 

The result that the optimal instructional input is constant throughout the learning 
encounter is quite general in that it does not depend on the particular characteris­
tic learning function or the particular loss function. 

In the second stage of their development of a mathematical theory of instruc­
tion, Chant and Luenberger (1974) first define a learner aptitude parameter that is 
used to characterize the diverse nature of a nonhomogeneous group of learners. 
Aptitude is defined in a relative sense by comparing the learning times of two 
learners under identical situations. One learner is said to have an aptitude twice 
as great as another if he learns the same amount in half the time. This definition is 
similar to Carroll's (1965) mentioned above. Using this concept of aptitude, the 
characteristic learning function g is redefined such that the aptitude component is 
separated from the other components. The basic instructor/learner model now 
becomes 

p(t) = u(t)agfp(t)]. 

The above optimization is unchanged with this modification, so that the optimal 
instructional input is still constant over time. 

The development of the group-learning model for the purpose of deiermining 
the optimal pace begins with an analysis of the relationship between pace and 
aptitude for an individual learner. To model the effect of instruction pacing, a 
body of sequential learning material is divided into a sequence of blocks. The 
basic instructor/learner model outlined above is used to describe the learning 
process on each block. The sequential nature of the material is captured by 
specifying how the learner's performance on one block depends on his achieve­
ment on preceding blocks. This interblock dependence is defined by the block 
interaction function h, which relates the initial state on a block to the final 
achievement level on the preceding block. For analytical purposes, an infinite 
sequence of similar blocks is considered. Blocks are similar if the learning 
performance for them can be described with identical characteristic learning 
functions and block-interaction functions. The infinite sequence is considered in 
order to eliminate transient effects and to concentrate on steady state relation­
ships. An inifinite sequence of similar blocks is illustrated in Figure 4. 

~0"''~k2J~' 
FIGURE 4 Infinite sequence of similar blocks. 
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FIGURE 5 Illustration of steady state condition. 

The steady state learning behavior of a learner on an infinite sequence of 
similar blocks is characterized by allocating an equal amount of instructional 
time to each block and determining the achievement level that the learner ap­
proaches on each block as the number of blocks increases towards infinity. The 
pace of instruction is defined as the amount of timeT that is spent on each block. 
In the limit, the initial state on each block is the same, the final achievement level 
on each block is the same and the pace is such that the learner progresses from 
this initial state to this final level. This steady state condition is illustrated in 
Figure 5. 

For an individual learner with a particular S-shaped learning curve and block­
interaction function, the correspondence between pacing T and the steady state 
final achievement level is defined as the steady state response function Ps. With 
suitable assumptions, it can be shown that Ps (T) is 0 for T < T c, where Tc is 
defined as the critical pace, that Ps is concave and increasing forT > T c and has 
infinite slope at T = T c. 

For determining the optimal pace of instruction, the objective function of 
steady state achievement level on a block per unit of time on the block is defined. 
This ratio, called gain and denoted 'Y, is given by 

'Y(T) = Ps(T)/T. 

The maximization of gain implies that 

p8 (T) = Tp;(T). 

This relationship is illustrated in Figure 6. 
The steady state response reference functionpr is defined as the functionp8 but 

for a learner with unity aptitude. In view of the definition of aptitude as the 

't'c 't'o 

FIGURE 6 Illustration of optimal pace conditio1 
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FIGURE 6 Illustration of optimal pace condition for individual learner. 

reciprocal of learning time, the response of a learner with aptitude a for pacing T 

is simply Pr(GT ). 
A nonhomogeneous group of learners is characterized by the aptitudes of the 

learners in the group with the assumption that all the learners have identical 
characteristic learning functions and block interaction functions. The objective 
function for the group' called ''group gain'' and denoted r ' is defined by 

N 

f(T) = (liT) ~ Pr(aiT) 
i=l 

where the N learners of the group have aptitudes ai, i = 1 to N. The optimal 
group pace is defined by the maximization of this group gain. It is shown that for 
widely diverse groups, the optimal pace is such that the lower aptitude part of the 
group has a zero steady state response; that is, these learners are dropped from 
the group because of the fast pace. In addition, for homogeneous groups, the 
optimal group pace is the same as the optimal individual learner pace for that 
aptitude. 

Ill. AREAS OF FURTHER RESEARCH 

This concluding section is intended to highlight a few areas in the field of 
application of learning models to problems of instruction that require further 
work. In addition, suggestions are given as to the research directions that may be 
most effective for making these applications more practical. 
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A. Problems of Measurement 

Problems of measurement exist when we cannot quantify exactly what we want 
quantified. In order to verify a quantitative model empirically or to apply it in 
real-world situations, the variables of the model must be measurable. The mea­
surement process can be complicated at either of two levels: the variables of the 
model may not be satisfactorily quantifiable or, if quantifiable, there may be 
estimation problems; that is, there may be no satisfactory method of determining 
a unique value for the defined variable. 

To illustrate these two kinds of problems, consider a situation where it is 
required to have a measurement on the state of a learner with respect to some set 
of material. At the outset, the first kind of problem is evident since a precise 
definition of the variable concerned is not available. A satisfactory solution to 
this problem is perhaps to define a surrogate variable that represents the real 
variable. In this situation, a proportional measure of the learner's knowledge of 
the material as indicated by his score on some test may be an adequate surrogate 
variable. The second kind of problem has to do with the variability of tests 
themselves and the learner's performance on them. Different tests that are in­
tended to measure equivalently the set of material involved will yield different 
results and the results on a particular test are affected by the testing environment, 
by guessing and by numerous other factors. 

In experimental situations, these problems can be alleviated to a certain extent 
by careful design. In these situations, the set of material that is to be learned is 
chosen so that it may be described precisely and simply, for example, in paired­
associate learning experiments. This simplifies both the knowledge definition 
problem as well as the estimation problem. However, in real applications these 
problems can be severe. 

These problems of measurement can be be attacked during the formulation and 
modeling phases of the analysis of problems of instruction. It is of limited use to 
have a model that cannot be investigated experimentally. It is of no practical 
value to have an experimentally verified instructional technique that requires 
such extensive measurement and data analysis that implementation is not cost 
effective. These measurement problems must be considered during the overall 
analysis. In some cases, they may be alleviated at implementation by having an 
estimation model incorporated as part of the technique to be applied. 

B. Individual Learner Setting 

Optimizing the performance of individual learners is an area that has tremendous 
potential for impact, even though it has already received some attention. The 
application of mathematical models and optimization theory to learning problems 
in computer-aided instruction is likely to prove increasingly useful in the future. 
Complex models of learning must be developed, and they should be designed for 
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to describe adequately the particular 1( 
such complexity is manageable provid 
computer implementation. What is neec 
ultimate application of the model so tt 
quirements of implementation. 

C. Classroom Setting 

Developments in the classroom setting 
than those for individual learner setting. 
be developed that cover broad categori 
models must be extended and new me 
group-learning phenomena that so far h 
To accomplish this, theoretical and en 
supplement each other. Similarly, work 
ogy must be continually synthesized. ( 
respect would be to engage in model-e 
using an existing model or by developin: 
be investigated, data gathering experim( 
carried out to verify or refute these moe 
the empirical research by imposing a 5 

relationships or conclusions to be tested 
that comprise an educational system cc 
more easily understood. 

REFER 

Atkinson, R. C. Ingredients for a theory of instruc 
Atkinson, R. C. Teaching children to read usin1 

169-178. 
Atkinson, R. C., Bower, G. H., & Crothers, E. J 

New York: John Wiley & Sons, 1965. 
Atkinson, R. C., & Paulson, J. A. An approacl 

Bulletin, 1972, 78, 49-61. 
Carroll, J. B. School learning over the long ha 

educational process. Chicago: Rand McNally, 
Chant, V. G., & Atkinson, R. C. Optimal alloca 

strands. Journal of Mathematical Psychology, 
Chant, V. G., & Luenberger, D. G. A mathematic 

tion and instruction pacing. Journal of Mathe~ 
Crothers, E. J. Learning model solution to a 1 

Mathematical Psychology, 1965, 2, 19-25. 



.AD C. ATKINSON 

n we cannot quantify exactly what we want 
1titative model empirically or to apply it in 
>f the model must be measurable. The mea­
i at either of two levels: the variables of the 
antifiable or, if quantifiable, there may be 
ay be no satisfactory method of determining 
1ble. 
problems, consider a situation where it is 
ne state of a learner with respect to some set 
kind of problem is evident since a precise 
is not available. A satisfactory solution to 
surrogate variable that represents the real 

onal measure of the learner's knowledge of 
: on some test may be an adequate surrogate 
em has to do with the variability of tests 
nance on them. Different tests that are in­
set of material involved will yield different 
test are affected by the testing environment, 
factors. 
roblems can be alleviated to a certain extent 
;, the set of material that is to be learned is 
recisely and simply, for example, in paired­
s simplifies both the knowledge definition 
'Obi em. However, in real applications these 

m be be attacked during the formulation and 
~oblems of instruction. It is of limited use to 
igated experimentally. It is of no practical 
:rified instructional technique that requires 
ta analysis that implementation is not cost 
ems must be considered during the overall 
! alleviated at implementation by having an 
rt of the technique to be applied. 

dual learners is an area that has tremendous 
has already received some attention. The 

nd optimization theory to learning problems 
y to prove increasingly useful in the future. 
developed, and they should be designed for 

8. OPTIMIZATION THEORY 317 

implementation in particular situations. These models have to be complex so as 
to describe adequately the particular learning phenomena in the situation; but 
such complexity is manageable provided that the models can be adapted for 
computer implementation. What is needed, then, is a clear understanding of the 
ultimate application of the model so that its development is guided by the re­
quirements of implementation. 

C. Classroom Setting 

Developments in the classroom setting are much farther from implementation 
than those for individual learner setting. For the classroom, general models must 
be developed that cover broad categories of learning and instruction. Existing 
models must be extended and new models must be developed to account for 
group-learning phenomena that so far have been ignored or not even identified. 
To accomplish this, theoretical and empirical research must complement and 
supplement each other. Similarly, work by researchers in education and psychol­
ogy must be continually synthesized. One promising avenue to pursue in this 
respect would be to engage in model-directed data analysis; that is, either by 
using an existing model or by developing a model appropriate for the situation to 
be investigated, data gathering experiments and analyses should be designed and 
carried out to verify or refute these models. In this approach, the model directs 
the empirical research by imposing a structure on the system or by proposing 
relationships or conclusions to be tested. In this way, the complex relationships 
that comprise an educational system can be more readily isolated and, hence, 
more easily understood. 
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