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Abstract

Over the last 20 years, causal-model theory has produced much
knowledge about causal-based categorization. However, per-
sistent violations to the normative causal-model theory are
prevalent. In particular, violations to the Markov condition
have been repeatedly found. These violations have received
different explanations. Here, we develop a model that starts
from generally accepted cognitive phenomena (e.g., process-
ing limitations, the relevance of inference in cognitive process-
ing) and assumes that people are not fully causal nor fully asso-
ciative when performing causal-based categorization, offering
a new explanation for Markov violations.
Keywords: causal-based categorization; causal-model theory;
causal inference; Markov condition

Introduction
Causal-model theory has taught us much about causal cogni-
tion (see Rehder, 2017; Sloman & Lagnado, 2015). However,
problematic violations of the theory’s predictions persist. The
most important violation is that of the Markov condition. This
condition states that when the state of a variable’s immediate
causes is known, then that variable is rendered conditionally
independent of all its non-descendants (Pearl, 2000). Illustra-
tive examples of violations are found in Rehder and Burnett
(2005), and in Puebla and Chaigneau (2014). There, partici-
pants needing to infer the state of an unknown variable used
information about other properties, even if those properties
were conditionally independent from the unknown variable.

Some authors explain these violations by arguing that they
are only apparent, because subjects do not necessarily use the
same causal model specified by experimenters (Park & Slo-
man, 2013). Other authors argue that people may resort to
associationist thinking and interpret directed causal links as
bidirectional associations (Rehder, 2014). In contrast, here
we hypothesize that violations occur because people may
combine a partial understanding of causality with underly-
ing similarity-based processing. In what follows, we present
a process model of causal categorization, use it to make spe-
cific predictions about properties’ conceptual weights, and fit
it to empirical data.

Informed probabilities influence property-weights
Prior research consistently reports that when people need to
infer a central property for categorization (i.e., because they
lack information about the state of that property), properties
that are causally related to the absent property increase their

relevance for categorization proportionately to their informa-
tiveness about the missing property (Chaigneau, Barsalou, &
Sloman, 2004; Puebla & Chaigneau, 2014; Rehder & Kim,
2009). In the current work we extend these findings to condi-
tions in which the central property’s state is explicitly known.

We hypothesize that even if a central property’s state is
made explicit, there may still remain some uncertainty re-
garding the property’s true state. Thus, other causally related
properties may acquire their weight depending on their con-
tribution to decreasing that uncertainty. This idea is discussed
in Rehder and Burnett (2005), and preliminary evidence for
it can be found in Chaigneau et al. (2004, Exp. 7). In causal-
model research, information about a property’s inferential
contribution is generally provided in the form of probabilities
of effects given causes (i.e., p(effect|cause)). Consequently,
we assume that when cues indicate that a given property is
central, other causally linked conceptual properties acquire
their weight as a function of how informative they are of the
central property. In particular, in our Exp. 1 we used a causal
chain model (A→B→C; with an additional D property which
was not causally linked to other variables), and told partic-
ipants that property C was central (i.e., it gave the category
its name), with the expectation that its directly linked proper-
ties (i.e., B) would acquire their weight proportional to their
p(effect|cause), and that its indirectly linked properties (i.e.,
A) would be weighted proportional to their probabilistic con-
tribution to the central property’s direct causes (i.e., B). Note
here that we are assuming that people are intransitive when
using causal models to categorize (Johnson & Ahn, 2015).

Making the last property in a causal chain the central prop-
erty is representative of many categories that are defined by
their functions. For artifacts (Carrara & Mingardo, 2013;
Chaigneau et al., 2004) and for functionally conceptualized
natural kinds (e.g., Barsalou, Sloman, & Chaigneau, 2005;
Lombrozo & Rehder, 2012), the goals that they achieve in
their normal settings are central for their classification (e.g.,
an artificial heart is believed to belong to the heart category
depending on it being able to pump blood to a greater extent
than on it using any particular physical mechanism to achieve
that goal).

Cognitive limitations
In typical causal classification experiments participants need
to integrate several pieces of information, e.g., information
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about the direct causal links and their associated probabilities
(p(effect|cause)), the indirect causal links (two-way relations
that are mediated by other properties), and also the particu-
lars of the materials provided. Researchers generally assume
that people are able to integrate all this information. In fact,
as discussed in (Rehder, 2003a), the causal-model theory as-
sumes that people classify entities as category members to
the extent that the entity’s distribution of properties would be
expected from the category’s ideal causal model.

In contrast, in our model we hypothesize that people sim-
plify their task by analyzing information in a piecemeal fash-
ion (thus, we call it the Piecemeal Strategy Model or PSM).
In particular, we assume that they only evaluate pairs of di-
rectly connected properties, and that unconnected properties
are considered in isolation (e.g., in the causal chain model
A→B→C, with D as an isolated property, subjects would sep-
arately evaluate A→B, B→C and D). Regarding the type of
computation subjects perform, we assume that they consider
each directly connected pair (and each isolated property) in
the ideal model presented to them, as a separate prototype
with which to compare the particular instances they need to
judge. To implement these ideas, we used Nosofsky (1992)
Multiplicative Prototype model (MPM). This implies com-
puting a distance, as given by,

δXY =
Y

∑
i=X

( pi

pX + pY

)
|xi−Mi| (1)

where X and Y are two directly connected properties in the
causal model, pi is the inferential contribution of a property,
xi corresponds to the state of the ith property in the currently
considered instance, and Mi corresponds to the ideal state of
the ith property in the causal model (i.e., the prototype). Note
that the denominator inside the parenthesis allows Eq. 1 to
comply with the MPM requirement that the weights (pi) in
the distance computation all add to one. For isolated prop-
erties (D in our scenarios), the corresponding distance is de-
fined to be,

δD = pD|xD−MD| (2)

where pD is a free parameter estimated from the data, re-
flecting the inferential weight of the isolated property (0 ≤
pD ≤ 1), xD is the state of the D property in the currently
considered instance, and MD corresponds to the ideal state of
the D property in the causal model (i.e., the prototype).

Distances cannot be considered by themselves, because
they are linear. Similarity, in general, behaves like a gener-
alization gradient (Shepard, 1987). For this reason, distances
in Eqs. 1 and 2 need to be transformed into similarities by,

SXY = e−b(δXY ) (3)

where sXY is similarity, and b is a sensibility parameter that
determines the rate at which similarity falls with distance. In
our model fitting, we fixed b = 1 (i.e., b was not estimated

from the data). To compute the similarity sD for the isolated
D property, δXY is substituted by δD in Eq. 3.

Finally, we assume that the similarities from all the par-
tial models under consideration are averaged to obtain an es-
timate of the overall similarity of the instance being judged
relative to the prototype (i.e., the received causal model) by,

So =
1
n

n

∑
i=1

si (4)

where so is the overall similarity of the instance being
judged, n is the total number of separate pieces of information
being considered (A→B, B→C, D), and si is the similarity ac-
cording to Eq. 3. Because the PSM implies considering some
properties twice (property B in the causal chain model), for
modeling purposes we introduced an adjustment to pi simply
by dividing it by 2 to reflect that those properties were being
taken into account twice.

In summary, we propose that pairs of features that are
causally related (and any features that are causally unrelated)
are treated as features in separate multiplicative similarity
prototype models, with classification ratings being a func-
tion of the averaged similarity of those feature pairs to their
corresponding prototypes. A closely related model was pro-
posed and tested by (Rehder, 2003a), but he concluded that
the model failed to account for the data. In the Discussion
section we will consider possible explanations for why our
results suggest a different conclusion.

Experiments
Participants were trained on a causal model representing a
given category, until they were able to answer correctly a set
of 9 conditional and counterfactual questions. They then re-
ceived the set of all possible combinations of present and ab-
sent properties involved in the causal model and were asked to
rate how representative each combination was of the trained
category.

Ratings were analyzed using the regression method
(Rehder & Hastie, 2001). In this method, participants provide
category membership ratings for all possible combinations of
m properties in two possible states (present or absent), pro-
ducing a total of 2m combinations. For each combination,
subjects provided a categorization rating on a 1 to 7 scale.
When present and absent properties are coded respectively as
1 and -1 (i.e., effect coding), these values can be entered into
individualized regression equations to predict a participant’s
categorization ratings. Furthermore, 2-way and higher-order
interaction terms can be computed by entering the product
of the corresponding property coded values as predictors into
the equations. The corresponding regression coefficients can
then be used as individual data points reflecting, across par-
ticipants, the contribution of each predictor variable to the
ratings.

Subjects were randomly assigned to one of two between-
subjects conditions (domain: living things, artifacts) and pro-
vided data for two within-subjects conditions (information:
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complete, incomplete). In the complete information condi-
tion, subjects received descriptions containing information
about all properties (A, B, C, and D). In the incomplete infor-
mation condition, subjects received descriptions lacking in-
formation about property C. Because prior research suggests
that, in the context of causal classification the incomplete in-
formation condition promotes using other properties to infer
the state of the unknown property (e.g., Puebla & Chaigneau,
2014), this design allowed us to compare conceptual proper-
ties’ regression weights across the within-subjects condition.
An increase in regression weights in the incomplete infor-
mation relative to the complete information condition, would
show that participants used a given property to infer the state
of the unknown property C.

Predictions
The PSM makes the following predictions. Due to the piece-
meal strategy, we predicted higher regression coefficients for
directly connected properties interaction terms than for not
directly connected properties. Furthermore, Eq. 3 predicts
the type of interaction that we will find. People will prefer in-
stances where properties X and Y are both in the same state as
in the received model (e.g., X = 1, Y = 1), and any deviation
(e.g., X = 1, Y = -1) will produce a large decrease in similarity
(due to the b parameter). Note that all this means small inter-
action coefficients (i.e., smaller than main effect coefficients).
This contrasts with predictions from the causal-model theory,
where people are predicted to produce large interaction terms
that are as large as main effects.

The PSM predicts that independent properties in our causal
models will not interact. This is the same result that the
causal-model theory would lead us to expect (i.e., properties
A and C in the causal chain are independent conditional on
the state of B). However, the PSM predicts this pattern of
interactions, not because people conform to conditional inde-
pendence principles, but because of the piecemeal simplifi-
cation strategy. Thus, we expect our data from the complete
information condition to only mimic adherence to the causal
Markov condition. This should become evident in partici-
pants’ performance in the incomplete information condition.
When comparing regression weights across the information
factor, the lack of information about the central C property
should produce an increase in the regression weights of the
independent properties (A and D in the causal chain) due to
those properties being associated to the unknown property C.
This is a violation of the Markov condition because only di-
rect causes are normatively relevant to predict the state of the
unknown property C. Thus, we predict an apparent adherence
to Markov in the complete information condition, and a fail-
ure to adhere in the incomplete information condition.

Regarding the main effects, the PSM predicts that proper-
ties’ conceptual weights will follow their inferentially derived
weights (pi). For the chain model in Exp. 1, we predict that
regression coefficients for C will be greater than the average
of A and B; D will be smaller than the average of A, B and C;
and A will not be different from B.

Experiment 1

Design and Participants Exp. 1 followed a mixed fac-
torial 2 (domain: living things, artifacts) x 2 (information:
complete, incomplete) design, with the last being a within-
subjects factor. Property D served as an inbuilt control condi-
tion for each subject and provided a baseline regression coef-
ficient to which properties in the causal model could be com-
pared. Also, D’s interaction with other properties (AD, BD
and CD) also provided a baseline for interaction terms’ re-
gression coefficients. Subjects (N = 66) were Adolfo Ibáñez
University undergraduates (N = 41, males = 16) who partic-
ipated for course credit, and undergraduate volunteers from
other local universities (N = 25, males = 7).

Materials and Procedures The materials were verbal and
graphical descriptions of two categories characterized by a
chain causal structure. In the living things condition, materi-
als described the structure of a fictional biological cell. In the
artifacts condition, materials described the structure of a fic-
tional particle accelerator. Stimuli were presented on screen
by means of a locally programed software.

In the learning phase, participants were trained in the
causal chain graph. Subjects learned that causes produced
their effects with a 0.75 probability. Regarding property D,
participants were informed that it occurred in category mem-
bers with a probability of 0.75. Thus, property D was pre-
dictive of the category, but not causally related to the other
properties. By keeping property D’s probability equal to the
conditional probabilities for the other properties, we kept ev-
erything other than belonging or not to the causal model con-
stant for property D as compared to properties A, B and C.
Importantly, subjects learned that property C gave the cate-
gory its name (i.e., C was the central property).

In the classification phase, subjects had the causal graph
in full view. In the complete information condition, partici-
pants received descriptions containing information about all
properties either present or absent (16 combinations). In the
incomplete information condition, participants received de-
scriptions which lacked information about the state of the
central property C (8 combinations). In total, participants
classified 24 descriptions, presented in random order. For
each description, subjects had to respond whether it was or
not a member of the focal category using a 6-point rating
scale.

Results Effect coding variables representing 10 variables
per subject (4 main factors and 6 interactions, see Fig. 1)
were entered as predictors in individualized regression equa-
tions with rating as dependent variable. The resulting indi-
vidualized regression coefficients were submitted to a mixed
2 (domain: living things, artifacts) × 10 (coefficients) mixed
ANOVA. The mixed ANOVA showed there was no effect of
the domain factor (F(1, 64)=1.37, MSe=.04, p=.25, ηp2=.02,
power=.21) and it did not interact with the coefficients fac-
tor (F(9, 576)=1.02, MSe=.16, p=.39, ηp2=.02, power=.30).
Consequently, we collapsed this factor.
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Figure 1: Regression weights for individual features and in-
teractions of Exp. 1. Fits for the PSM (blue) and the GM
(red) are superimposed on the data. Error bars are standard
errors.

In accordance with our predictions for the main effects, or-
thogonal planned comparisons showed that the average co-
efficient for C was significantly greater than the average of
coefficients for A and B (F(1, 65)=40.19, MSe=.98, p<.001,
ηp2=.38, power>.99); the average coefficient for D was sig-
nificantly lower than the average of coefficients for A, B and
C (F(1, 65)=74.87, MSe=.21, p<.001, ηp2=.54, power>.99);
and there was no difference between coefficients for A and B
(F<1). This pattern of results for main effects suggests that
subjects did indeed take information about p(effect|cause) as
cue to properties inferential value, and that being in a causal
structure increases inferential value beyond that of probabilis-
tically related variables (property D).

Regarding the interaction coefficients, our predictions for
the causal chain model were that the average of the AC in-
teraction coefficients would be lower than the average of the
AB and BC interaction coefficients (A and C are not directly
connected in the causal graph); and that the average of the
AB and BC interaction coefficients (directly connected prop-
erties) would be greater than the average of the AD, BD,
and CD coefficients (i.e., our baseline conditions). As pre-
dicted, two non-orthogonal planned comparisons showed that
the AC interaction was significantly smaller than the aver-
age of the AB and BC interactions (F(1, 65)=4.8, MSe=.10,
p=.03, ηp2=.07, power=.58), and that the average of AB and
BC interactions was significantly greater than the average of
the AD, BD, and CD interactions (F(1, 65)=30.1, MSe=1.81,
p<.001, ηp2=.32, power>.99).

Note that the low AC coefficient (which in fact was
not significantly different from the interactions found for
AD, BD and CD; F(1, 65)=3.8, MSe=.07, p=.06, ηp2=.06,
power=.48), could be interpreted as participants complying
with the Markov condition. However, analysis of the incom-
plete information condition reveals a different story. Under
this condition, participants did not comply with Markov, us-
ing information about the state of property A (the screened-
off property) and of property B (C’s direct cause) to make
inferences about the state of the missing C central property.
Paired samples t tests revealed coefficients for properties A
and B increased significantly when comparing the complete

information condition with the incomplete information condi-
tion (respectively, complete information mean=0.60, incom-
plete information mean=0.79; t(65)=3.09, p=.003; complete
information mean=0.55, incomplete information mean=1.16;
t(65)=7.43, p<.001). In contrast, property D did not show
evidence of being used to perform inferences about the state
of property C (complete information mean=0.3485, incom-
plete information mean=0.3447; t(65)=.07, p=.94). Thus,
data supported our hypothesis that subjects’ performance in
the complete information condition would mimic adherence
to Markov.

Model fitting We fit the PSM to the classification ratings
of Exp. 1. For comparison, we also fit the generative model
(GM) of causal-based categorization (Rehder, 2003a; Rehder
& Kim, 2009) (see Fig. 1). In the GM representation, a cate-
gory k establishes a set of causal mechanisms. Each mecha-
nism relates a feature j with its parent i operating with prob-
ability mi j when i is present. Other background causes of
j operate collectively with probability b j. When j’s parents
operate independently, j’s parents and the background causes
produce j in members of category k conditional on the state
of j’s parents with probability,

pk( fi | Pak( f j)) = 1− (1−b j) ∏
fi∈Pak( fi)

(1−mi j)
ind( fi) (5)

where ind(i) is an indicator variable that evaluates to 1
when i is present and 0 otherwise. The model assumes that
root causes are independent of one another and the probabil-
ity of each is represented with its own parameter c j. The GM
predicts that categorization judgments are a monotonic func-
tion of the joint distribution associated with the category’s
causal model,

pk( fk,i, . . . , fk,N) = ∏
j=1...N

pk( fi | pak( fi)) (6)

Participants ratings were predicted as follows:

ratingPSM(oi) = sk(oi; pA, pB, pC, pD)/β

ratingGM(oi) = 6pk(oi;cA,bB,bC,bD,mAB,mBC)
γ

where β and γ are free parameters. We fit both models by
searching for the parameter values that minimized the squared
difference between the predicted ratings and the empirical
ones. In the complete information condition both models
achieved a high correlation with the ratings: rPSM = .85, rGM
= .90. We used the Akaikes information criterion (AIC1) to
compare the degree of fit of both models controlling for the
different number of parameters. The bigger AIC for the GM
(15.2) in comparison to the PSM (12.1) indicates that, in fact,
the PSM provides a slightly better characterization of the data

1AIC = ln(SEE/n)+2(p+1) where SSE is the sum of squared
error for a participant, n is number of data points fit, and p is the
model’s number of parameters.
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in this condition. The best-fitting parameters for the PSM
were: pA = 0.325, pB = 0.243, pC = 0.775, pD = 0.238, β =
0.094 and for the GM: cA = 0.871, bB = 0.802, bC = 0.951,
bD = 0.765, mAB = 0.558, mBC = 0.327, γ = 0.565. Note that
while both models achieve a similar level of fit to the data,
the GM achieves this by assigning values to the causal re-
lation parameters lower than participants were taught during
training (0.75).

In the incomplete information condition (see Fig. 2), we
adjusted both the PSM and the GM to take into account the
unknown state of C. We did this by inferring the probability
of C being present given the state of its parent B using the
GM equations: p(E = 1 | C = 1) = 1− (1−mCE)(1− bE)
and p(E = 1 |C = 0) = bE . We treated this probability as the
state of C and then proceeded as before for both models. In
this condition the models achieved a high correlation with the
ratings: rPSM = .89, rGM = .92. Again, we obtained a bigger
AIC for the GM (15.0) in comparison to the PSM (12.7). The
best-fitting parameters for the PSM were: pA = 0.347, pB =
0.297, pD = 0.264, bC = 0.463, mBC = 0.392, β = 0.083 and for
the GM: cA = 0.865, bB = 0.884, bC = 0.933, bD = 0.687, mAB
= 0.552, mBC = 0.617, γ = 0.505. Note that the causal relation
parameter for the relation between B and C was higher in this
condition.

B, C -B, C B, -C -B, -C
0

1

2

3

4

5

6
Empirical
GM
PS

Figure 2: Average ratings for objects with different combina-
tions of states (present or absent) for features B and C in Exp.
1, complete information condition. Fits for the PSM (blue)
and the GM (red) are superimposed on the data. Error bars
are standard errors.

Two things are noteworthy from these results. First, as
shown in Fig. 1, the GM consistently overestimates the mag-
nitude of the coherence effect (i.e., the 2-way interactions),
while the PSM shows clearly better fits. Additionally, as
shown in Fig. 2, the PSM is better able to predict the con-
sequences of inconsistent information on participants ratings,
as compared to the GM. This relates to similarity gradients
implied by eq. (3).

Experiment 2
Because results like those of Exp. 1 are difficult to recon-
cile with causal-model theory, in particular the lack of a co-
herence effect, Rehder (2017) proposed that small property
interactions in results like those of Exp. 1, occur because in-
structions and materials emphasized a single almost defining
property (property C in Exp. 1). Had traditional category la-
bels been used (i.e., a category name, such as “dog”), large

interactions would emerge, as expected by causal-model the-
ory. To test Rehder’s (2017) hypothesis, in Exp. 2 we used the
causal chain model, but subjects were not told that there was
a central property that gave the category its name. Instead, an
arbitrary category label was provided.

As there should be no inferential processes in this task, we
predicted that all properties in the causal model would show
about the same weight, and on average they would produce
a greater regression weight than the isolated property D. Re-
garding the interactions, the PSM predicts that, because of the
piecemeal strategy, directly connected properties (AB, BC)
would exhibit a larger regression weight than the indirectly
connected properties (AC), and that the AB and BC terms
would show a higher regression weight than the interactions
of not connected properties (AD, BD, CD).

Design and Participants Exp. 2’s design was identical to
that of Exp. 1. Subjects (N = 64) were Adolfo Ibáñez Univer-
sity undergraduates (males = 21) who participated for course
credit.

Materials and Procedures Materials were identical to
those used in Exp. 1. However, arbitrary names were used
to label categories, and no property was described as central
or described the category’s function. Except for the arbitrary
category name, procedures were identical to Exp. 1.

Results Results Individualized regression coefficients were
submitted to a mixed 2 (domain: living things, artifacts) ×
10 (coefficients) mixed ANOVA (see Fig. 3). The mixed
ANOVA showed there was no effect of the domain factor
(F<1) and it did not interact with the coefficients factor
(F<1). Consequently, for all subsequent analyses we col-
lapsed this factor.

a b c d ab ac bc ad bd cd
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Figure 3: Regression weights for Exp. 2’s individual features
and interactions. Fits for the PSM (blue) and the GM (red)
are superimposed on the data. Error bars are standard errors.

As predicted by the PSM, orthogonal planned comparisons
showed that the average coefficient for D was significantly
lower than the average of coefficients for A, B and C (F(1,
63)=44.72, MSe=.19, p<.001, ηp2=.42, power>.99); but that
there were no significant differences between C versus A and
B (F(1, 63)=3.46, MSe=.24, p=.068, ηp2=.05, power=.45),
or A versus B (F<1). This pattern of results for main effects
suggests that our subjects did indeed judge all properties to
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be about equally central. This result contrasts with Exp. 1,
where inference induced differential property weights. How-
ever, as in Exp. 1, property D was judged to be less central
than properties belonging to the causal model. Again, this
shows that participants are sensitive to causal information and
are not disregarding it by using a pure associative strategy.

As predicted by the PSM, two non-orthogonal planned
comparisons showed that the AC interaction was significantly
smaller than the average of the AB and BC interactions (F(1,
63)=7.02, MSe=.42, p=.01, ηp2=.10, power=.74), and that
the average of AB and BC interactions was significantly
greater than the average of the AD, BD, and CD interactions
(F(1, 63)=15.05, MSe=2.52, p<.001, ηp2=.19, power=.97).

As in Exp. 1, the low AC coefficient suggests that par-
ticipants are complying with the causal Markov condition.
At odds with Exp. 1, participants did not use property A
(the screened-off property) to infer the state of property C
(complete information mean=0.82, incomplete information
mean=0.89; t(63)=1.2, p=.24), but used property B (Cs di-
rect cause) (complete information mean=0.79, incomplete in-
formation mean=1.0; t(63)=3.95, p<.001). Furthermore, in
the incomplete information condition, participants relied less
on the isolated property D to make inferences (complete in-
formation mean=0.38, incomplete information mean=0.25;
t(63)=2.16, p=.04). These results are broadly consistent with
the hypothesis that using an arbitrary category label would
promote causal classification.

Model fitting We fit the PSM and the GM to the classifica-
tion ratings of Exp. 2 in the same ways as in Exp. 1 (Fig. 3).
In the complete information condition both models achieved
a high correlation with the ratings: rPSM = 0.83, rGM = 0.84.
The bigger AIC for the GM (15.8) in comparison to the PSM
(11.9) indicates that the PSM provides a slightly better char-
acterization of the data in this condition. The best-fitting pa-
rameters for the PSM were: pA = 0.529, pB = 0.455, pC =
0.577, pD = .293, β = 0.096 and for the GM: cA = 0.921, bB
= 0.925, bC = 0.887, bD = 0.801, mAB = 0.537, mBC = 0.158,
γ = 0.908. As in Exp. 1, while fits for both models are sim-
ilar, the GM achieves this by assigning values to the causal
relation parameters lower than participants were taught.

For the incomplete information condition, we adjusted the
PSM and the GM as in Exp. 1. The models achieved a high
correlation with the ratings: rPSM = 0.88, rGM = 0.90. Again,
we obtained a bigger AIC for the GM (14.6) in comparison
to the PSM (13.0). The best-fitting parameters for the PSM
were: pA = 0.316, pB = 0.204, pD = 0.236, bC = 0.527, mBC
= 0.312, β = 0.230 and for the GM: cA = 0.889, bB = 0.847,
bC = 0.937, bD = 0.640, mAB = 0.439, mBC = 0.592, γ = 0.431.
Note that, as in Exp. 1, the causal relation parameter for the
relation between B and C was higher in this condition.

Just as for Exp. 1, in Exp. 2 the GM consistently overes-
timates the magnitude of the coherence effect (i.e., the 2-way
interactions in Fig. 3, particularly in Panel A), while the PSM
shows clearly better fits. Finally, as shown in Fig. 4, the PSM
is better able to predict the consequences of inconsistent in-

formation on participants ratings, as compared to the GM.
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Figure 4: Average ratings for objects with different combina-
tions of states (present or absent) for features B and C in Exp.
2. Fits for the PSM (blue) and the GM (red) are superimposed
on the data. Error bars are standard errors.

General Discussion
In our experiments, the PSM was able to predict the pattern of
results for main effects and interactions. Importantly, in both
experiments the size of interaction coefficients remained low,
and were not as high as those of main effects, as predicted
by the GM. Furthermore, as would be expected if subjects
were using associative mechanisms, the PSM was better able
to predict ratings for objects with inconsistent information
(Figs. 2 and 4). However, our results were not as clear re-
garding the mimicking Markov hypothesis. Exp. 1 produced
data that is consistent with it, but Exp. 2 did not. In this
latter experiment, participants appear to have complied with
Markov both in the complete (i.e., low interaction coefficient
for conditionally independent features) and in the incomplete
information condition (i.e., appropriate screening-off of the
conditionally independent distal cause). This pattern of re-
sults is consistent with the hypothesis that using an arbitrary
category label enhances causal classification (Rehder, 2017).
However, as in neither experiment did we obtain coherence
effects, evidence for this hypothesis is mixed.

Prior research has found coherence effects in conditions
similar to ours (e.g., in Rehder, 2003b, Fig. 4). The ques-
tion then arises of how to account for these different results.
In our experiments, we strove to use procedures as close as
possible to those used by other researchers, so we tend to be-
lieve that differences do not lie in materials and procedures.
Instead, we think it is possible that there are differences in
how different populations handle causal information for cate-
gorization as well as for other tasks. Recently, using a causal
inference task, (Rehder, 2018) found substantial variability
in how individuals perform inferences (i.e., a single model
was not able to account for the pattern of inferences of all
participants, with a substantial minority behaving close to the
predictions of an associative model). In a similar vein, we be-
lieve that no current model of causal cognition comfortably
handles this variability and that future research should look
to identify parameters that characterize tasks, individuals and
populations in such a way that they are able to account for
differences in causal categorization, and causal cognition in
general.
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