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Abstract 

Encoding and Decoding models of speech in human electrophysiology 

by 

Christopher R Holdgraf 

Doctor of Philosophy in Neuroscience 

Designated Emphasis in Computational and Data Science and Engineering 

University of California, Berkeley 

Professor Robert T. Knight, Chair 

 

It has long been thought that sensory systems operate by representing information in a 
hierarchy of sensory features, and that these features build upon one another. From low-level 
information such as spectral content, to high-level information such as word content, the 
sensory system must rapidly extract all of these features from the world. However, the precise 
nature of these levels of representation, as well as how they interact with one another, is not 
well-understood. In audition, intermediate sensory representations are often studied in 
animals, using techniques that treat neurons as a linear filter for incoming sensory inputs. If 
those inputs are spectro-temporal features (e.g., a spectrogram), then the result is a Spectro 
Temporal Receptive Field (STRF). This describes how the neural unit in question (e.g., a neuron) 
will respond to patterns in spectro-temporal space. It has been a crucial tool in understanding 
sensory processing in low-level neural activity. Using this approach it is also possible to study 
how this neural representation changes under different experimental conditions. STRF plasticity 
has been shown in both reward- and context-modulated experiments in animals. 

In recent years, it has been suggested that similar techniques may work in modeling the activity 
of neural signals recorded from humans. As we cannot generally record from single unit activity 
in humans, this approach relies on proxies for neural activity – specifically in the high-frequency 
activity (HFA) of electrocorticography electrodes. This poses a unique opportunity for two 
reasons: First, human language is a natural stimulus set for studying hierarchical feature 
representations in the brain. There are many ways to decompose speech into both auditory and 
linguistic components, and each of these could serve as inputs to the modeling technique 
described above. Second, humans are especially skilled at using high-level context such as their 
experience and assumptions about the world in order to change their behavior. This poses a 
unique opportunity to study the plasticity of speech representations in the brain. 

This thesis reports several new approaches towards studying the sensory representation of 
speech in the human brain, as well as how these representations may change due to 
experience. It aims to bridge the literature in rodents and songbirds with ideas in human 
electrophysiology in order to pursue new approaches to studying perception in humans.
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Chapter 1 – Introduction and background 
While the act of understanding speech seems simple, it is the product of an extremely complex 
system in the brain. From the initial vibrations on the ear’s tympanic membrane, one must infer 
a rich collection of information such as speaker identity, location, emotion, and semantic 
content. In addition, the auditory information that we receive from the world is often noisy, 
making it extremely difficult to extract features important for comprehension. The process of 
speech perception has been likened to guessing the class of a boat simply by observing the 
waves of water as they lap upon the shore. 

There are many ways to study how sound is represented in the brain. From single-unit 
recordings in songbirds to electrical signals recorded from the human brain, these approaches 
provide different advantages in studying this complex process. This document represents an 
attempt to join two of these fields. It adapts the machinery of receptive field modeling – a 
technique that has a long history of studying the tuning properties of neurons in animal cortex 
– with speech processing in the human brain. Establishing methodological connections between 
receptive field modeling in animals and human speech processing opens new avenues for 
asking questions about sensory representation in the human brain and allows the knowledge 
gained in the animal literature to inform new experiments in humans.  

Hierarchical representations of auditory information 

Auditory pathways 

While speech comprehension seems to occur effortlessly and automatically, it presents a 
demanding computational problem. Sound enters through the ears, causing a vibration on the 
tympanic membrane, a tiny sheet of tissue that transforms the vibrations in the air into firing 
patterns of the nearly 30,000 nerve fibers in the cochlear nerve. This signal is then passed 
through the superior olive and then the inferior colliculus of the midbrain, through the medial 
geniculate nucleus of the thalamus, and ultimately to auditory cortex. Remarkably, all of this 
processing occurs in 10-40 milliseconds (Nelken, Chechik, Mrsic-Flogel, King, & Schnupp, 2005). 

At each step of this pathway, the sound is transformed. For example, the cochlea decomposes 
the incoming air vibrations into a collection of sine waves. To the extent that vibrations in the 
sound occur with a particular frequency component, this information will be relayed out of the 
cochlear nerve and into the midbrain. At the next step, inputs are in the form of frequency 
components of sound (the spectrogram), and further processing is performed on this 
representation. 

As this signal passes through the auditory pathway, more complex features are built on top of 
simpler ones, and then passed along to the next step. As such, the auditory pathway is said to 
be hierarchically organized and can be thought of as a sequence of feature extraction steps, 
with increasingly complex acoustic features extracted at each stage of neural processing 
(Eggermont, 2001; Theunissen & Elie, 2014). This cascade of activity allows for complex features 
to iteratively build upon one another, making it possible to create rich representations of the 
acoustic world using the relatively impoverished information coming in through the ears. 
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Attempts at studying auditory representations 

A key question in perceptual neuroscience asks what particular form describes these 
intermediate representations of sound. Presumably the brain performs complex, linear and 
non-linear transformations on the original raw sound wave, and it is possible to probe the 
nature of this representation at various parts of the auditory pathway. Some studies have 
investigated this by creating stimuli that vary along one particular dimension of interest. For 
example, words vs. nonsense words (Vouloumanos, Kiehl, Werker, & Liddle, 2001). The brain 
activity between these two types of stimuli is contrasted, and any differences are attributed to 
the stimulus manipulation (in this case, whether a word has semantic meaning).  

While these attempts are important in that they describe the raw auditory stimuli with more 
complex features, they suffer from many drawbacks. Performing contrast-based studies often 
requires using auditory stimuli that are abnormal and non-representative of the sounds that are 
often heard in day-to-day life. They also often require presenting these stimuli in a manner that 
is not reflective of our natural experience with speech (e.g., stimuli are often required to have 
discrete onsets and offsets). In addition, the auditory system is adapted to extract these 
hierarchical features from sound, and studying this system by using stimuli that differ from the 
sounds one hears in everyday life means that we are observing the system outside of its core 
functionality. It is important to consider the environment in which the nervous system has 
evolved to function because studying a neural system in an atypical environment might lead to 
results that do not generalize to more natural conditions (Theunissen & Elie, 2014). 

In order to study the auditory system under more natural conditions, researchers have begun 
to use recordings from the natural world. Because these stimuli are continuously-varying and 
are not easily split into groups for the purposes of a contrast analysis, traditional contrast-based 
tests are no longer appropriate. In this case, the statistical technique of regression makes it 
possible to describe the stimulus as a collection of continuously-varying features, and then to 
subsequently determine which of those features tends to drive increases in neural activity. A 
complex stimulus can then be decomposed into many collections of features – perhaps 
representing different levels of the auditory pathway – making it possible to simultaneously 
probe the hierarchical nature of stimulus processing at many levels. 

Following this line of research, we now have a more nuanced picture of the hierarchical 
representation of auditory information. For example, at the level of auditory cortex, sounds are 
decomposed not only in frequency channels (as in the auditory periphery) but also in terms of 
joint spectral and temporal modulations. The filters in this modulation filter bank are referred 
to as the neurons’ spectro-temporal receptive field or STRF (Depireux, Simon, Klein, & Shamma, 
2001; L. M. Miller, Escabí, Read, & Schreiner, 2002; Theunissen, Sen, & Doupe, 2000). This 
decomposition of sounds into a modulation filter bank facilitates many tasks, including the 
discrimination of speech from non-speech(Mesgarani, Slaney, & Shamma, 2006) and the 
extraction of communication signals from noise (Moore, Lee, & Theunissen, 2013).  
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Interactions between hierarchical information 
We have thus far characterized perception in a one-directional manner. Information entering 
through the ears is decomposed into a collection of auditory features, and then propagates 
throughout the auditory pathway as more complex features are extracted. However, this 
implies that the way in which the brain extracts features is fixed. In reality we know that this is 
likely not true, as one of the primary features of any neural system (especially those in the 
cortex) is plasticity. 

Single neuron plasticity improves signal to noise 

There is much research suggesting that auditory neurons can change their behavior under 
different conditions. A simple example is gain control, in which a neuron will gradually adapt to 
the amplitude of an input stimulus such that a stimulus that once elicited a large response will 
now elicit a smaller one. This has been shown in a number of sensory systems, and is generally 
believed to improve the signal-to-noise ratio of the neural system, allowing the neuron to 
extract the relative changes in stimulus features rather than being overpowered by the each 
feature’s absolute value (Rabinowitz, Willmore, Schnupp, & King, 2011). Other studies have 
shown that this ability is useful in extracting a signal of interest from a noisy background (Ding 
& Simon, 2013). 

Other types of neuronal plasticity are due to the degree of high-level or contextual information 
present. For example, it has been shown that high-level object activations will change the firing 
patterns of neurons in V1 (Gilbert & Sigman, 2007). This behavior suggests that the 
representation of information in neural systems is dynamic and dependent on context. Put 
simply, high-level information (e.g. context) may influence the way in which low-level 
information is processed. This capacity is often referred to as “top-down”, rather than bottom-
up. 

Receptive field plasticity 

Several studies have examined STRF-based feature representations at different levels of the 
auditory hierarchy (Atencio, Sharpee, & Schreiner, 2012; L. M. Miller et al., 2002; Woolley, 
Fremouw, Hsu, & Theunissen, 2005). However it is not understood if and how these 
representations interact with each other. For example, the presence of a higher-level response 
(such as the recognition of task-relevant stimuli) may alter the way that stimulus features are 
represented at lower levels in the auditory processing stream (Gilbert & Sigman, 2007). It has 
been shown that the tuning of auditory neurons changes during behavioral tasks (Fritz, 
Shamma, Elhilali, & Klein, 2003; Rabinowitz, Willmore, King, & Schnupp, 2013; Rabinowitz et al., 
2011; Shamma & Fritz, 2014), revealing that the STRFs describing this tuning are plastic.  
Further, neuroanatomical (Atiani et al., 2014; Coull, Frith, Büchel, & Nobre, 2000; Davis & 
Johnsrude, 2007) and neurophysiological (David, Fritz, & Shamma, 2012; Yin, Fritz, & Shamma, 
2014) research has highlighted the importance of top-down mechanisms for inducing this task-
dependent STRF plasticity.  

This research suggests that plasticity can be found at the level of intermediate feature 
representations, and that this may be modulated by top-down processes in the brain. However, 
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these studies are largely performed in single units recorded from animals. While this represents 
a crucial first step in understanding the representation of auditory information in the brain, 
humans offer an intriguing possibility for studying hierarchical speech processing that may 
relate to the unique speech capacity of those reading this thesis.  

Encoding and decoding models in humans 

Receptive field modeling in humans 

Studying the hierarchical representation of information in humans has the natural benefit that 
we have an intuition for how language information is hierarchically organized. A rich history of 
linguistics gives us many different tools for decomposing a spoken sentence into linguistic 
features (both low- and high-level). Moreover, it is relatively simple to create an experiment in 
which high-level features are experimentally manipulated: natural language does this all the 
time. 

While the animal literature has a rich history of using encoding models to study perception, it 
has taken time for these methods to be adopted to the study of the human auditory system. 
This is partially a problem of signal-to-noise – the methods we have for recording human brain 
activity are significantly noisier than a single-unit recording. However, advances in our ability to 
record brain activity in humans, as well as improvements in our understanding of these 
statistical techniques and efforts to reduce noise in the signal, make it possible to use the same 
regression framework for studying natural speech processing in humans. 

In the last decade, we have seen the emergence of a new technique for recording brain activity 
in awake humans. Called electrocorticography (ECoG), this technique uses electrodes that are 
placed directly on the surface of the cortex in awake humans. While this is done for clinical 
purposes (usually in the treatment of epilepsy), it allows for a wide range of experiments to be 
conducted. Putting electrodes on the cortical surface (as opposed to the scalp, as in 
electroencephalography) has the benefit of increasing the signal-to-noise of the neural signal. 
Importantly, this makes it possible to resolve power differences in the “high-frequency” region 
of the spectral content of a signal, usually between 70 and 150Hz. This high frequency activity  
has been shown to reflect neural firing of neurons near the electrode with relatively high spatial 
(millimeter) and temporal (millisecond) resolution (Ray & Maunsell, 2011).  

Recent research has shown that STRF modeling may be applied to human ECoG to characterize 
the spectrotemporal tuning of electrodes in response to speech (Hullett, Hamilton, Mesgarani, 
Schreiner, & Chang, 2016; Martin et al., 2014; Pasley et al., 2012) and to investigate plasticity in 
the auditory cortical response (Mesgarani & Chang, 2012). In particular, the high-frequency 
broadband (HFB; 70-150 Hz) neural activity recorded with ECoG has both the spatial resolution 
to localize activity to discrete regions of the brain, and the temporal resolution to resolve the 
fine-grained spatio-temporal pattern of acoustic features in the human cortex. HFB is believed 
to reflect local cortical activity typically obtained with 4-10 mm electrode spacing (Wodlinger, 
Degenhart, Collinger, Tyler-Kabara, & Wang, 2011). HFB activity represent a broadband 
increase in power, most readily detected in frequencies centered from 70-150Hz (K. J. Miller, 
Zanos, Fetz, den Nijs, & Ojemann, 2009) and also provides a metric of local cortical single unit 
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activity (Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008). This permits using HFB activity 
obtained with ECoG recording to study the representation of spectro-temporal speech features 
in human auditory cortex and investigate how this representation changes during language 
processing. 

Context and speech plasticity in humans 

Human speech perception is an area in which top-down and bottom-up mechanisms are in 
constant interplay (Block & Siegel, 2013; Cusack, Deeks, Aikman, & Carlyon, 2004; Schroeder, 
Wilson, Radman, Scharfman, & Lakatos, 2010). The act of understanding speech requires that 
auditory information entering the auditory periphery is interpreted through the lens of 
previous experience with natural sounds and language. It is assumed that this experience plays 
a role in shaping the response to speech in the cortex. Recent research using human 
electrophysiology has shown that experience with sound or contextual information about its 
content corresponds to differing patterns of low-frequency activity in both auditory and 
premotor cortex. For example, activity in the theta band (4-8 Hz) of neural signals is reported to 
track the temporal structure in the speech envelope (Fontolan, Morillon, Liegeois-Chauvel, & 
Giraud, 2014; Giraud & Poeppel, 2012; Gross et al., 2013) and this tracking increases as noise 
levels are decreased in the speech stimulus (Peelle, Gross, & Davis, 2013). In addition, power in 
theta and beta (12-20 Hz) frequency bands has been implicated in top-down processing during 
speech perception (Fontolan et al., 2014). It has been suggested that these signals reflect the 
brain’s attempt to extract relevant information in the speech signal, and to filter out noise or 
competing auditory streams (Lakatos et al., 2013). While these approaches delineate differing 
patterns of neural activity that reflect top-down processes, they do not quantify changes in the 
spectro-temporal tuning of cortical activity, a feature representation that is believed to be 
encoded in auditory cortical neurons. 

This thesis describes recent attempts to utilize regression modeling in studying the sensory 
representation of speech in humans, as well as to investigate how this representation changes 
due to one’s experience with the world. The document is organized in the following sections: 
Chapter 2 discusses the methodology around using predictive models (regression and 
classification) for studying relationships between sensory features and brain activity. Chapter 3 
describes using this regression framework to predict the underlying linguistic content contained 
within recorded neural activity. Chapter 4 focuses on the topic of sensory plasticity, using 
receptive field models in human auditory cortex to study how experience allows us to perceive 
degraded speech. Finally, Chapter 5 discusses open questions and next steps in this line of 
questioning. 
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Chapter 2 – Methods for predictive modeling in cognitive 
electrophysiology 

Introduction 
While the modeling techniques of encoding and decoding have been used extensively in animal 
models of the brain, they have only recently been used to model neural activity in humans. This 
chapter is a comprehensive overview of the considerations and details necessary in order to 
effectively construct encoding and decoding models of the human brain. It serves as a 
methodological foundation for the remaining chapters, and a practical guide for researchers 
interested in pursuing this line of research.  

Citation 

Holdgraf, C.R., Martin, S., Micheli, C., Knight, R.T., Rieger, J., Theunissen, F.E. (2017). Encoding 
and decoding models in cognitive electrophysiology. Front. in Systems Neuroscience. In 
submission. 

Abstract 
Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from 
the human brain as well as in the computational tools available to analyze this data. This data 
explosion has resulted in an increased use of multivariate, model-based methods for asking 
neuroscience questions, allowing scientists to investigate multiple hypotheses with a single 
dataset, to use complex, time-varying stimuli, and to study the human brain under more 
naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus 
features are used to model brain activity, and “Decoding” models, in which neural features are 
used to generated a stimulus output. Here we review the current state of encoding and 
decoding models in cognitive electrophysiology and provide a practical guide towards 
conducting experiments and analyses in this emerging field. Our examples focus on using linear 
models in the study of human language and audition. We show how to calculate auditory 
receptive fields from natural sounds as well as how to decode neural recordings to predict 
speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction 
to using machine learning and applied statistics to build models of neural activity. The data 
analytic approaches we discuss may also be applied to other sensory modalities, motor 
systems, and cognitive systems, and we cover some examples in these areas. In addition, a 
collection of Jupyter notebooks is publicly available as a complement to the material covered in 
this paper, providing code examples and tutorials for predictive modeling in python. The aim is 
to provide a practical understanding of predictive modeling of human brain data and to 
propose best-practices in conducting these analyses. 
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Background 
A fundamental goal of sensory neuroscience is linking patterns of sensory inputs from the world 
to patterns of signals in the brain, and to relate those sensory neural representations to 
perception. Widely used feedforward models assume that neural processing for perception 
utilizes a hierarchy of stimulus representations in which more abstract stimulus features are 
extracted from lower-level representations, and passed along to subsequent steps in the neural 
processing pipeline. Much of perceptual neuroscience attempts to uncover intermediate 
stimulus representations in the brain and to determine how more complex representations can 
arise from these levels of representation. For example, human speech enters the ears as air 
pressure waveform, but these are quickly transformed into a set of narrow band neural signals 
centered on the best frequency of auditory nerve fibers. From these narrow-band filters arise a 
set of spectro-temporal features characterized by the spectro-temporal receptive fields (STRFs) 
of auditory neurons in the inferior colliculus, thalamus, and primary auditory cortex 
(Eggermont, 2001).  STRFs refer to the patterns of stimulus power across spectral frequency 
and time (spectro-temporal features). Complex patterns of spectro-temporal features can be 
used to detect phonemes, and ultimately abstract semantic concepts (DeWitt & Rauschecker, 
2012; Poeppel, Emmorey, Hickok, & Pylkkänen, 2012). It should also be noted that there are 
considerable feedback pathways that may influence this process (Fritz, Shamma, Elhilali, & 
Klein, 2003; Yin, Fritz, & Shamma, 2014). 

Cognitive neuroscience has traditionally studied hierarchical brain responses by crafting stimuli 
that differ along a single dimension of interest (e.g., high- vs. low-frequency, or words vs 
nonsense words). This method dates back to Donders, who introduced mental chronometry to 
psychological research (1969, orig 1868). Donders suggested crafting tasks such that they differ 
in exactly one cognitive process to isolate the differential mental cost of two processes. 
Following Donders, the researcher contrasts the averaged brain activity evoked by two sets of 
stimuli assuming that the neural response to these two stimuli/tasks is well-characterized by 
averaging out the trial-to-trial variability (Pulvermüller, Lutzenberger, & Preissl, 1999). One then 
performs inferential statistical testing to assess whether the two mean activations differ. While 
much has been learned about perception using these methods, they have intrinsic 
shortcomings. Using tightly-controlled stimuli focuses the experiment and its interpretation on 
a restricted set of questions, inherently limiting the independent variables one may investigate 
with a single task. This approach is time-consuming, often requiring separate stimuli or 
experiments in order to study many feature representations and may cause investigators to 
miss important brain-behavior findings. Moreover, it can lead to artificial task designs in which 
the experimental manipulation renders the stimulus unlike those encountered in everyday life. 
For example, contrasting brain activity between two types of stimuli requires many trials with a 
discrete stimulus onset and offset (e.g. segmented speech) so that evoked neural activity can 
be calculated, though natural auditory stimuli (e.g. conversational speech) rarely come in this 
time-segregated manner (Felsen & Dan, 2005; Theunissen & Elie, 2014). In addition, this 
approach requires a priori hypotheses about the architecture of the cognitive processes in the 
brain to guide the experimental design. Since these hypotheses are often based on simplified 
experiments, the results do not readily transfer to more realistic everyday situations. 
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There has been an increase in techniques that use computationally-heavy analysis in order to 
increase the complexity or scope of questions that researchers may ask. For example, in 
cognitive neuroscience the “Multi-voxel pattern analysis” (MVPA) framework utilizes a machine 
learning technique known as classification to detect condition-dependent differences in 
patterns of activity across multiple voxels in the fMRI scan (usually within a Region of Interest, 
or ROI: Hanke et al., 2009; Norman, Polyn, Detre, & Haxby, 2006; Varoquaux et al., 2016). 
MVPA has proven useful in expanding the sensitivity and flexibility of methods for detecting 
condition-based differences in brain activity. However, it is generally used in conjunction with 
single-condition based block design that is common in cognitive neuroscience. 

An alternative approach studies sensory processes using multivariate methods that allow the 
researcher to study multiple feature representations using complex, naturalistic stimuli. This 
approach entails modeling the activity of a neural signal while presenting stimuli varying along 
multiple continuous stimulus features as seen in the natural world. In this sense, it can be seen 
as an extension of the MVPA approach that utilizes complex stimuli and provides a more direct 
model of the relationship between stimulus features and neural activity. Using statistical 
methods such as regression, one may create an optimal model that represents the combination 
of elementary stimulus features that are present in the activity of the recorded neural signal. 
These techniques have become more tractable in recent years with the increase in computing 
power and the improvement of methods to extract statistical models from empirical data. The 
benefits over a traditional stimulus-contrast approach include the ability to make predictions 
about new datasets (Nishimoto et al., 2011), to take a multivariate approach to fitting model 
weights (Huth, Nishimoto, Vu, & Gallant, 2012), and to use multiple feature representations 
within a single, complex stimulus set (Di Liberto, O’Sullivan, & Lalor, 2015; Hullett, Hamilton, 
Mesgarani, Schreiner, & Chang, 2016). 

These models come in two complementary flavors. The first are called “encoding” models, in 
which stimulus features are used to predict patterns of brain activity. Encoding models have 
grown in popularity in fMRI (Naselaris, Kay, Nishimoto, & Gallant, 2011), electrocorticography 
(Mesgarani, Cheung, Johnson, & Chang, 2014), and EEG/MEG (Di Liberto et al., 2015). The 
second are called “decoding” models, which predict stimulus features using patterns of brain 
activity (Martin et al., 2014; Mesgarani & Chang, 2012; Pasley et al., 2012). Note that in the 
case of decoding, “stimulus features” does not necessarily mean a sensory stimulus – it could 
be an experimental condition or an internal state, though in this paper we use the term 
“stimulus” or “stimulus features”. Both “encoding” and “decoding” approaches fall under the 
general approach of predictive modeling, and can often be represented mathematically as 
either a regression or classification problem. 

We begin with a general description of predictive modeling and how it has been used to answer 
questions about the brain. Next we discuss the major steps in using predictive models to ask 
questions about the brain, including practical considerations for both encoding and decoding 
and associated experimental design and stimulus choice considerations. We then highlight 
areas of research that have proven to be particularly insightful, with the goal of guiding the 
reader to better understand and implement these tools for testing particular hypotheses in 
cognitive neuroscience. To facilitate using these methods, we have included a small sample 
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dataset, along with several scripts in the form of jupyter notebooks that illustrate how one may 
construct predictive models of the brain with widely-used packages in Python. These 
techniques can be run interactively in the cloud as a GitHub repository1. 

The predictive modeling framework. 
Predictive models allow one to study the relationship between brain activity and combinations 
of stimulus features using complex, often naturalistic stimulus sets. They have been described 
with varying terminology and approaches (Santoro et al., 2014; Wu, David, & Gallant, 2006; 
Yamins & DiCarlo, 2016), but generally involve the following steps which are outlined below 
(see Figure 1). 

1. Input feature extraction: In an encoding model, features of a stimulus (or experimental 
condition) are used as inputs. These features are computed or derived from “real world” 
parameters describing the stimulus (e.g. sound pressure waveform in auditory stimuli, 
contrast at each pixel in visual stimuli). The choice of input features is a key step in the 
analysis: features must be adapted to the level in the sensory processing stream being 
studied and multiple feature-spaces can be tried to test different hypotheses. This is 
generally paired with the assumption that the neural representation of stimulus 
features becomes increasingly non-linear as one moves along the sensory pathway. For 
example, if one is fitting a linear model, a feature space based on the raw sound 
pressure waveform could be used to predict the responses of auditory nerve fibers 
(Kiang, 1984), but would perform significantly worse in predicting activity of neurons in 
the inferior colliculus (Andoni & Pollak, 2011) or for ECoG signals recorded from 
auditory cortex (Pasley et al., 2012). This is because the neural representation of the 
stimulus is rapidly transformed such that neural activity no longer has a linear 
relationship with the original raw signal. While a linear model may capture some of this 
relationship, it will be a poor approximation of the more complex stimulus-response 
function. At the level of secondary auditory areas, the prediction obtained from higher-
level features such as word representations could be contrasted to that based on 
spectral features (as the alternative feature space) to test the hypothesis that these 
higher-level features (words) are particularly well-represented in this brain region (de 
Heer, Huth, Griffiths, Gallant, & Theunissen, 2017). Other examples of feature spaces for 
natural auditory signals are modulation frequencies (Mesgarani, Slaney, & Shamma, 
2006; Pasley et al., 2012; Santoro et al., 2014), phonemes (Khalighinejad, Cruzatto da 
Silva, & Mesgarani, 2017; Mesgarani et al., 2014), or words (Huth, Heer, Griffiths, 
Theunissen, & Gallant, 2016; Huth et al., 2012). For stimulus features that are not 
continuously-varying, but are either “present” or not, one uses a binary vector 
indicating that feature’s state at each moment in time. It may also be possible to 
combine multiple feature representations with a single model, though care must be 

                                                      

1 https://github.com/choldgraf/paper-encoding_decoding_electrophysiology 
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taken account for the increased complexity of the model and for dependencies between 
features (de Heer et al., 2017; Lescroart, Stansbury, & Gallant, 2015).  

2. Output feature extraction: Similarly, a representation of the neural signal is chosen as 
an output of the encoding model. This output feature is often a derivation of the “raw” 
signal recorded from the brain, such as amplitude in a frequency band of the time-
varying voltage of an ECoG signal (Holdgraf et al., 2016; Mesgarani et al., 2014; Pasley et 
al., 2012), pixel intensity in fMRI (Naselaris et al., 2011), and spike rates in a given 
window or spike patterns from single unit recordings (Fritz et al., 2003; Theunissen & 
Elie, 2014). Choosing a particular region of the brain from which to record can also be 
considered a kind of “feature selection” step. In either case, the choice of features 
underlies assumptions about how information is represented in the neural responses. In 
combination with the choice of derivations of the raw signal to use, as well as which 
brain regions to use in the modeling process, the predictive framework approach can be 
used to test how and where a given stimulus feature is represented. For example, the 
assumption that sensory representations are hierarchically organized in the brain 
(Felleman & Van Essen, 1991) can be tested directly.  

3. Model architecture and estimation: A model is chosen to map input stimulus features 
to patterns of activity in a neural signal. The structure and complexity of the model will 
determine the kind of relationships that can be represented between input and output 
features. For example, a linear encoding model can only find a linear relationship 
between input feature values and brain activity, and as such it is necessary to choose 
features that are carefully selected. A non-linear model may be able to uncover a more 
complex relationship between the raw stimulus and the brain activity, though it may be 
more difficult to interpret, will require more data, and still may not adequately capture 
the actual non-linear relationship between inputs and outputs (Ahrens, Paninski, & 
Sahani, 2008; Eggermont, Johannesma, & Aertsen, 1983; Paninski, 2003; Sahani & 
Linden, 2003). In cognitive neuroscience it is common to use a linear model architecture 
in which outputs are a weighted sum of input features. Non-linear relationships 
between the brain and the raw stimulus are explicitly incorporated into the model in the 
choice of input and output feature representations (e.g., performing a Gabor wavelet 
decomposition followed by calculating the envelope of each output is a non-linear 
expansion of the input signal).  Once the inputs / outputs as well we the model 
architecture have been specified, the model is fit (in the linear case, the input weights 
are calculated) by minimizing a metric of error between the model prediction and the 
data used to fit the model. The metric of error can be rigorously determined based on 
statistical theory (such as maximum likelihood) and a probability model for the non-
deterministic fraction of the response (the noise).  For example, if one assumes the 
response noise is normally distributed, a maximum likelihood approach yields the sum 
of squared errors as an error metric.  Various analytical and numerical methods are then 
used to minimize the error metric and, by doing so, estimate the model parameters 
(Hastie, Tibshirani, & Friedman, 2009; Naselaris et al., 2011; Wu et al., 2006). 

4. Validation: Once model parameters have been estimated, the model is validated with 
data which were not used in the fit: in order to draw conclusions from the model, it 
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must generalize to new data. This means that it must be able to predict new patterns of 
data that have never been used in the original model estimation. This may be done on a 
“held-out” set of data that was collected using the same experimental task, or on a new 
kind of task that is hypothesized to drive the neural system in a similar manner. In the 
case of regression with normally distributed noise, the variance explained by the model 
on cross-validated data can be compared to the variance that could be explained based 
on differences between single data trials and the average response across multiple 
repetitions of the same trial. This ratio fully quantifies the goodness of fit of the model. 
While this can be difficult to estimate, it allows one to calculate an “upper bound” on 
the expected model performance and can be used to more accurately gauge the quality 
of a model, see section What is a “good” model score? (Hsu, Borst, & Theunissen, 2004; 
Sahani & Linden, 2003).  

5. Inspection and Interpretation: If an encoding model is able to predict novel patterns of 
data, then one may further inspect the model parameters to gain insight into the 
relationship between brain activity and stimulus features. In the case of linear models, 
model parameters have a relatively straightforward definition – each parameter’s 
weight is the amount the output would be expected to change given a unit increase in 
that parameter’s value. Model parameters can then be compared across brain regions 
or across subjects (Hullett et al., 2016; Huth et al., 2016). It is also possible to inspect 
models by assessing their ability to generalize their predictions to new kinds of data. See 
section 6, Interpreting the model. 

This predictive modeling framework affords many benefits, making it possible to study brain 
activity in response to complex “natural” stimuli, reducing the need for separate experiments 
for each stimulus feature of interest, and loosening the requirement that stimuli have clear-cut 
onsets and offsets. Moreover, naturalistic stimuli are better-matched to the sensory statistics of 
the environment in which the target organism of study has evolved, leading to more 
generalizable and behaviorally-relevant conclusions. 

In addition, because a formal model describes a quantifiable means of transforming input 
values into output values, it can be “tested” in order to confirm that the relationship found 
between inputs / outputs generalizes to new data. Given a set of weights that have been 
previously fit to data, it is possible to calculate the “predictive power” for a given set of features 
and model weights. This is a reflection of the error in predictions of the model, that is, the 
difference between predicted outputs and actual outputs (also called the “prediction score”). 

While the underlying math is the same between encoding and decoding models when using 
regression, the interpretation and nature of model fitting differs between the two. The next 
section describes the unique properties of each approach to modeling neural activity. 

Encoding models 

Encoding models are useful for exploring multiple levels of abstraction within a complex 
stimulus, and investigating how each affects activity in the brain. For example, natural speech is 
a continuous stream of sound with a hierarchy of complex information embedded within it 
(Hickok & Small, 2015). A single speech utterance contains many representations of 
information, such as spectrotemporal features, phonemes, prosody, words, and semantics. The 
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neural signal is a continuous response to this input with multiple embedded streams of 
information in it due to recording the activity from many neurons spread across a relatively 
large region of cortex. The components of the neural signal operate on many timescales (e.g., 
responding to the slow fluctuations of the speech envelope vs. fast fluctuations of spectral 
content of speech (David & Shamma, 2013)) as information propagates throughout auditory 
cortex, and are not well-described by a single event-related response to a stimulus onset 
(Khalighinejad et al., 2017). Naturalistic stimuli pose a challenge for event-related analysis, but 
are naturally handled in a predictive modeling framework.  In the predictive modeling 
approach, the solution takes the form of a linear regression problem. (Hastie et al., 2009) 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡) = ∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖(𝑡) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑖

 

Where the neural activity at time 𝑡 is modeled as a weighted sum of N stimulus features. Note 
that it becomes clear from this equation that features that have never been presented will not 
enter the model and contribute to the sum. Thus, both the choice of stimuli and input feature 
space are critical and have a strong influence on the interpretation of the encoding model. It is 
also common to include several time-lagged versions of each feature as well, accounting for the 
fact that the neural signal may respond to particular feature patterns in time. In this case, the 
model formulation becomes: 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡) = ∑ ∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖(𝑡 − 𝑗) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 + 𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑖

𝑁𝑙𝑎𝑔𝑠

𝑗

 

In other words, this model describes how dynamic stimulus features are encoded into patterns 
of neural activity. It is convenient to write this in linear algebra terms: 

𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 = 𝑺𝒘 + 𝝐 

In this case 𝑺 is the stimulus matrix where each row corresponds to a timepoint of the 
response, and the columns are the feature values at that timepoint and time-lag (there are 
𝑁𝑙𝑎𝑔𝑠 ∗ 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 columns). 𝒘 is a vector of model weights (one for each feature * time lag), 

and 𝝐 is a vector of random noise at each timepoint (most often to be Gaussian for continuous 
signals or Poisson for discrete signals). The observed output activity can then be written as a 
single dot product assumed between feature values and their weights plus additive noise. This 
dot product operation is identical to explicitly looping over features and time lags separately 
(each “iteration” over lag/feature combinations becomes a column in 𝑺 and an single value in 
𝒘, thus the dot-product achieves the same result). 
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Figure 1 – Predictive modeling overview. The general framework of predictive models consists of three 

steps. First, input and output data are collected, for example during passive listening to natural speech 

sentences. Next, features are extracted; Traditional features for the neural activity can be the time-

varying power of various frequency bins, such as high frequency range (70-150 Hz, shown above). For 

auditory stimuli, the audio envelope or spectrogram are often used. Finally, the data are split into a 

training and test set. The training set is used to fit the model, and the test set is used to calculate 

predictive score of the model. 

As mentioned above, the details of neural activity under study (the output features), as well as 
the input features used to predict that activity, can be flexibly changed, often using the same 
experimental data. In this manner, one may construct and test many hypotheses about the 
kinds of features that elicit brain activity. For example to explore the neural response to 
spectro-temporal features, one may use a spectrogram of audio as input to the model 
(Eggermont et al., 1983; Sen, Theunissen, & Doupe, 2001). To explore the relationship between 
the overall energy of the incoming auditory signal (regardless of spectral content) and neural 
activity, one may probe the correlation between neural activity and the speech envelope  
(Zion Golumbic et al., 2013). To explore the response to speech features such as phonemes, 
audio may be converted into a collection of binary phoneme features, with each feature 
representing the presence of a single phoneme (de Heer et al., 2017; Leonard, Bouchard, Tang, 
& Chang, 2015). Each of these stimulus feature representations may predict activity in a 
different region of the brain. Researchers have also used non-linearities to explore different 
hypotheses about more complex relationships between inputs and neural activity, see section 
Choosing a modeling framework. 

In summary, encoding models of sensory cortex attempt to model cortical activity as a function 
of stimulus features. These features may be complex and applied to “naturalistic” stimuli 
allowing one to study the brain under conditions observed in the real world. This provides a 
flexible framework for estimating the neural tuning to particular features, and assessing the 
quality of a feature set for predicting brain activity. 

Decoding models 

Conversely, decoding models allow the researcher to use brain activity to infer the stimulus 
and/or experimental properties that were most likely present at each moment in time.  
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𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑡) = ∑ ∑ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖(𝑡 + 𝑗) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 + 𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

𝑖

𝑁𝑙𝑎𝑔𝑠

𝑗

 

which, in vector notation, is represented as the following: 

𝒔 = 𝑿𝒘 + 𝝐 

where 𝒔 is a vector of stimulus feature values recorded over time, and 𝑿 is the channel activity 
matrix where each row is a timepoint and each column is a neural feature (with time-lags being 
treated as a separate column each). 𝒘 is a vector of model weights (one for each neural feature 
* time lag), and 𝝐 is a vector of random noise at each timepoint (often assumed to be Gaussian 
noise).  Note that here the time lags are negative (“+𝑗” in the equation above) reflecting the 
fact that neural activity in the present is being used to predict stimulus values in the past. This is 
known as an acausal relationship because the inputs to the model are not assumed to causally 
influence the outputs. If the model output corresponds to discrete event types (e.g. different 
phonemes), then the model is performing classification. If the output is a continuously-varying 
stimulus property such as the power in one frequency band of a spectrogram, the model 
performs regression and can be used, for example, in stimulus reconstruction. 

In linear decoding, the weights can operate on a multi-dimensional neural signal, allowing the 
researcher to consider the joint activity across multiple channels (e.g. electrodes or voxels) 
around the same time (See Figure 3). By fitting a weight to each neural signal, it is possible to 
infer the stimulus or experiment properties that gave rise to the distributed patterns of neural 
activity.  

The decoder is a proof of concept: given a new pattern of unlabeled brain activity (that is, brain 
activity without its corresponding stimulus properties), it may be possible to reconstruct the 
most likely stimulus value that resulted in the activity seen in the brain (Naselaris, Prenger, Kay, 
Oliver, & Gallant, 2009; Pasley et al., 2012). The ability to accurately reconstruct stimulus 
properties relies on recording signals from the brain that are tuned to a diverse set of stimulus 
features. If neural signals from multiple channels show a diverse set of tuning properties (and 
thus if they contain independent information about the stimulus), one may combine the activity 
of many such channels during decoding in order to increase the accuracy and diversity of 
decoded stimuli, provided that they carry independent information about the stimulus 
(Moreno-Bote et al., 2014).  

Benefits of the predictive modeling framework 

As discussed above, predictive modeling using multivariate analyses is one of many techniques 
used in studying the brain. While the relative merits of one analysis over another is not black 
and white, it is worth discussing specific pros and cons of the framework described in this 
paper. Below are a few key benefits of the predictive modeling approach. 

1. Generalize on test set data. Classical statistical tests compare means of measured 

variables, and statements about significance are based on the error of the point estimates 

such as the standard error of the mean. When using predictive modeling, cross-validated 

models are tested for their ability to generalize to new data, and thus are judged against 

the variability of the population of measurements. As such, classical inferential testing 
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makes statements of statistical significance, while cross-validated encoding/decoding 

models make statements about the relevance of the model. This allows for more precise 

statements about the relationship between inputs and outputs. In addition, encoding 

models offer a continuous measure of model quality, which is a more subtle and complete 

description of the neural signal being modeled.  

2. Jointly consider many variables. Many statistical analyses (e.g., Statistical Parametric 

Mapping fMRI analysis (Friston, 2003)) employ massive parallel univariate testing in 

which variables are first selected if they pass some threshold (e.g., activity in response to 

auditory stimuli), and subsequent statistical analyses are conducted on this subset of 

features. This can lead to inflated family-wise error rate and is prone to “double-dipping” 

if the thresholding is not carried out properly. The predictive modeling approach 

discussed here uses a multivariate analysis that jointly considers feature values, 

describing the relative contributions of features as a single weight vector. Because 

multiple parameters are estimated simultaneously the parameters patterns should be 

interpreted as a whole. This gives a more complex picture of feature interaction and 

relative importance, and also reduces the amount of statistical comparisons being made. 

However, note that it is also possible to perform statistical inference on individual model 

parameters. 

3. Generate hypotheses with complex stimuli. Because predictive models can flexibly 

handle complex inputs and outputs, they can be used as an exploratory step in generating 

hypotheses about the representation of stimulus features at different regions of the brain. 

Using the same stimulus and neural activity, researchers can explore hypotheses of 

stimulus representation at multiple levels of stimulus complexity. This is useful for 

generating new hypotheses about sensory representation in the brain, which can be 

confirmed with follow-up experiments. 

4. Discover multivariate structure in the data. Because predictive models consider input 

features jointly, they are able to uncover structure in the input features that may not be 

apparent when testing using univariate methods. For example, spectro-temporal receptive 

fields describe complex patterns in spectro-temporal space that are not apparent with 

univariate testing (see Figure 5). It should be noted that any statistical technique will give 

misleading results if the covariance between features is not taken into consideration, 

though it is more straightforward to consider feature covariance using the modeling 

approach described here. 

5. Model subtle time-varying detail in the data. Traditional statistical approaches tend to 

collapse data over dimensions such as time (e.g., when calculating a per-trial average). 

With predictive modeling, it is straightforward to incorporate the relationship between 

inputs and outputs at each timepoint without treating between-trail variability as noise. 

This allows one to make statements about the time-varying relationship between inputs 

and outputs instead of focusing only on whether activity goes up or down on average. 

Researchers have used this in order to investigate more subtle changes in neural activity 

such as those driven by subjective perception and internal brain states (Chang et al., 

2011; Reichert et al., 2014). 

Ultimately, predictive modeling is not a replacement of traditional univariate methods, but 
should be seen as a complementary tool for asking questions about complex, multivariate 
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inputs and outputs. The following sections describe several types of stimuli and experimental 
setups that are well-suited for predictive modeling. They cover the general workflow in a 
predictive modeling framework analysis, as well as a consideration of the differences between 
regression and classification in the context of encoding and decoding.  

Identifying Input / Output Features 
The application of linear regression or classification models requires transforming the stimulus 
and the neural activity such that they have a linear relationship with one another. This follows 
the assumption that generally there is a non-linear relationship between measures of neural 
responses (e.g. spike rate) and those of the raw stimulus (e.g., air pressure fluctuations in the 
case of speech), but that the relationship becomes linear after some non-linear transformation 
of that raw stimulus (e.g., the speech envelope of the stimulus). The nature of this non-linear 
transformation is used to investigate what kind of information the neural signal carries about 
the stimulus. As such, when using the raw stimulus values, a linear model will not be able to 
accurately model the neural activity, but after a non-linear transformation that matches the 
transformations performed in the brain, the linear model is now able to explain variance in the 
neural signal. This is a process called linearizing the model (David, 2004; David & Gallant, 2005).  

As the underlying math of linear models is straightforward, picking the right set of input / 
output features is a crucial tool for testing hypotheses. Stimulus linearization can be thought of 
as a process of feature extraction / generation. Features are generally chosen based on 
previous knowledge or assumptions about a brain region under study, and have been used to 
investigate the progression of simple to complex feature representations along the sensory 
pathway.  

The following sections describe common feature representations that have been used for 
building linearized encoding and decoding models in cognitive electrophysiology. They reflect a 
restricted set of questions about stimulus transformations in the brain drawn from the 
literature and are not an exhaustive set of possible questions. Also note that it is possible to use 
other neural signals as inputs to an encoding model (for example, an autoregressive model uses 
past timepoints of the signal being predicted as input, which is useful for finding 
autocorrelations, repeating patterns, and functional connectivity metrics (Bressler & Seth, 
2011)). However, this article focuses on external stimuli. 
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Figure 2 – Feature extraction. Several auditory representations are shown for the same natural speech 

utterance. (A) Raw audio. Generally used as a starting point for feature extraction, rarely in linear 

models, though can be used with non-linear models (and sufficient amounts of data). (B) Speech 

envelope. The raw waveform can be rectified and low-pass filtered to extract the speech envelope, 

representing the amount of time-varying energy present in the speech utterance. (E) Spectrogram. A time-

frequency decomposition of the raw auditory waveform can be used to generate a spectrogram that 

reflects spectro-temporal fluctuations over time, revealing spectro-temporal structure related to higher-

level speech features. (F) Modulation Power Spectrum.  A two-dimensional Gabor decomposition of the 

spectrogram itself can be used to create the MPS of the stimulus, which summarizes the presence or 

absence (i.e., power) of specific spectro-temporal fluctuations in the spectrogram. (C) Phonemes. In 

contrast to previous features which are defined acoustically, one may also use linguistic features to code 

the auditory stimulus, in this case with categorical variables corresponding to the presence of phonemes. 

(D) Words. Another higher-order feature that is not directly related to any one spectrotemporal pattern, 

these types of features may be used to investigate higher-level activity in the brain’s response. 

Encoding models 

Encoding models define model inputs by decomposing the raw stimulus (be it an image, an 
audio stream, etc.) into either well-defined high-level features with both a direct relationship 
with the physical world linked with a particular percept (e.g. spectrogram modulations, center 
frequencies, cepstral coefficients) or statistical descriptions of these features (e.g., principal or 
independent components). This is in contrast to a classic approach that builds receptive field 
maps using spectrograms of white noise used for stimulus generation. The classic approach 
works well for neural activity in low-level sensory cortex (Marmarelis & Marmarelis, 1978) but 
results in sub-optimal models for higher-level cortical areas, due in part to the fact that white 
noise contains no higher-level structure (David, 2004). 

The study of sound coding in early auditory cortices commonly employs a windowed 
decomposition of the raw audio waveform to generate a spectrogram of sound – a description 
of the spectral content in the signal as it changes over time (see Figure 2). Using a spectrogram 
as input to a linear model has been used to create a spectro-temporal receptive field (STRF). 
This can be interpreted as a filter that describes the spectro-temporal properties of sound that 
elicit an increase in activity in the neural signal. The STRF is a feature representation used to 
study both single unit behavior (Aertsen & Johannesma, 1981; Depireux, Simon, Klein, & 
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Shamma, 2001; Escabi & Schreiner, 2002; Theunissen et al., 2001; Theunissen, Sen, & Doupe, 
2000) and human electrophysiology signals (Di Liberto et al., 2015; Holdgraf et al., 2016; Hullett 
et al., 2016; Pasley & Knight, 2012).  

It should be noted that spectrograms (or other time-frequency decompositions) are not the 
only way to represent auditory stimuli. Others researchers have used cepstral decompositions 
of the spectrogram (Hermansky & Morgan, 1994), which embed perceptual models within the 
definition of the stimuli features or have chosen stimulus feature representations that are 
thought to mimic the coding of sounds in the  sensory periphery (Chi, Ru, & Shamma, 2005; 
Pasley et al., 2012). Just as sensory systems are believed to extract features of increasing 
abstraction as they continue up the sensory processing chain, researchers have used features of 
increasing complexity to model higher-order cortex (Sharpee, Atencio, & Schreiner, 2011). For 
example, while spectrograms are used to model early auditory cortices, researchers often 
perform a secondary non-linear decomposition on the spectrograms to implement 
hypothesized transformations implemented in the auditory hierarchy such as phonemic, lexical, 
or semantic information. These are examples of linearizing the relationship between brain 
activity and the stimulus representation. 

In one approach, the energy modulations across both time and frequency are extracted from a 
speech spectrogram by using a filter bank of two-dimensional Gabor functions (see Sidenote on 
Gabors). This results extracts the Modulation Power Spectrum of the stimulus (in the context of 
receptive fields, also called the Modulation Transfer Function). This feature representation has 
been used to study higher-level regions in auditory cortex (Chi et al., 2005; Elliott & Theunissen, 
2009; Pasley et al., 2012; Santoro et al., 2014; Theunissen et al., 2001). There have also been 
efforts to model brain activity using higher-order features that are not easily connected to low-
level sensory features, such as semantic categories (Huth et al., 2016). This also opens 
opportunities for studying more abstract neural features such as the activity of a distributed 
network of neural signals. 

Alternatively, one could create features that exploit the stimulus statistics, for example features 
that are made statistically independent from each other (Bell & Sejnowski, 1995) or by 
exploiting the concept of sparsity of stimulus representation bases (Olshausen & Field, 1997, 
2004; Shelton, Sheikh, Bornschein, Sterne, & Lücke, 2015). Feature sparseness of can improve 
the predictive power and interpretability of models because the representation of stimulus 
features in active neural populations may be inherently sparse (Olshausen & Field, 2004). For 
example, researchers have used the concept of sparseness to learn model features from the 
stimuli set by means of an unsupervised approach that estimates the primitives related to the 
original stimuli (e.g. for vision: configurations of 2-D bars with different orientations). This 
approach is also known as “dictionary learning” and has been used to model the neural 
response to simple input features in neuroimaging data (Güçlü & van Gerven, 2014; Henniges & 
Puertas, 2010). It should be noted that more “data-driven” methods for feature extraction 
often discover features that are similar to those defined a priori by researchers. For example, 
Gabor functions have proven to be a useful way to describe both auditory (Lewicki, 2002) and 
visual (Touryan, Felsen, & Dan, 2005) structure, and are both commonly used in the neural 
modeling literature. In parallel, methods that attempt to define features using methods that 
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maximize between-feature statistical independence (such as Independent Components 
Analysis) also often discover features that look similar to Gabor wavelets (Olshausen & Field, 
1997) (see Sidenote on Gabors for more detail 2).   

It is also possible to select different neural output features (e.g., power in a particular frequency 
band of the LFP) to ask different questions about neural activity. The choice of neural feature 
impacts the model’s ability to predict patterns of activity, as well as the conclusions one may 
draw from interpreting the model’s weights. For example, encoding models in 
electrocorticography are particularly useful because of “high-frequency” activity (70-200 Hz) 
that reflects local neural processing (Ray & Maunsell, 2011). This signal has a high signal-to-
noise ratio, making it possible to fit models with more complicated features. Since it is tightly 
linked to ensembles of neurons, it is more straightforward to interpret how the stimulus 
features are encoded in the brain Hullett et al., 2016; Pasley et al. (2012) and to connect with 
the single-unit encoding literature (Theunissen & Elie, 2014). Researchers have also used more 
complex representations of neural activity to investigate the type of information they may 
encode. For example, in order to investigate the interaction between attention and multiple 
speech streams, (Zion Golumbic et al., 2013) computed a “temporal receptive field” of an 
auditory speech envelope for theta activity in ECoG subjects. A similar analysis has been 
performed with EEG (Di Liberto et al., 2015). It is also possible to describe patterns of 
distributed activity in neural signals (e.g., using Principle Components Analysis or network 
activity levels), and use this as the output being predicted (though this document treats each 
output (i.e. channel) as a single recording unit).  

An important development in the field of linear encoding models is loosening of the 
assumptions of stationarity to treat the input/output relationship as a dynamic process (Meyer, 
Williamson, Linden, & Sahani, 2017). While a single model assumes stationarity in this 
relationship, fitting multiple models on different points in time or different experimental 

                                                      

2 SIDENOTE ON GABORS: A Gabor function is a sinusoidal function windowed with a Gaussian 
density function (in either 1- or 2-D), and is commonly used to derive stimulus representations 
in both visual (Kay & Gallant, 2009; Lescroart, Kanwisher, & Golomb, 2016; Naselaris et al., 
2009; Nishimoto et al., 2011), and auditory cortex (Qiu, Schreiner, & Escabí, 2003; Santoro et 
al., 2014; Theunissen et al., 2001). For example, it is possible to create a spectro-temporal 
representation of sounds by constructing a collection of Gabor wavelets with linearly- or 
logarithmically-increasing frequencies, filtering the raw sound with each one, then calculating 
the amplitude envelope of the output of each filter. If the nature of the stimulus is 2-D (e.g., an 
image, movie, or spectro-temporal representation), a collection of 2-D Gabor wavelets may be 
created with successive frequencies and orientations (Frye et al., 2016). Gabor functions may 
also be a particularly efficient means of storing stimulus information, and studies that use a 
sparse coding framework to model the way that neurons represent information often result in 
Gabor-like decompositions (Olshausen & Field, 1997). 
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conditions allows the researcher to make inferences about how (and why) the relationship 
between stimulus features and neural activity changes. For example, Fritz et al recorded activity 
in the primary auditory cortex of ferrets during a tone frequency detection task (Fritz, Elhilali, & 
Shamma, 2005). The authors showed that spectro-temporal receptive fields of neurons 
changed their tuning when the animal was actively attending to a frequency vs. passively 
listening to stimuli, suggesting that receptive fields are more plastic than classically assumed 
(Meyer, Diepenbrock, Ohl, & Anemüller, 2014). Further support for dynamic encoding is 
provided by Holdgraf et al, who implemented a task in which ECoG subjects listened to 
degraded speech sentences. A degraded speech sentence was played, followed by an “auditory 
context” sentence, and then the degraded speech was repeated. The context created a 
powerful behavioral “pop-out” effect whereby the degraded speech was rendered intelligible. 
The authors compared the STRF of electrodes in the auditory cortex in response to degraded 
speech before and after this context was given, and showed that it exhibited plasticity that was 
related to the perceptual “pop-out” effect (Holdgraf et al., 2016). Our understanding of the 
dynamic representation of low-level stimulus features continues to evolve as we learn more 
about the underlying computations being performed by sensory systems, and the kinds of 
feature representations needed to perform these computations (Thorson, Liénard, & David, 
2015). 

Decoding models 

While decoding models typically utilize the same features as encoding models, there are special 
precautions to consider because inputs and outputs are reversed relative to encoding models. 
Speech decoding is a complex problem that can be approached with different goals, strategies, 
and methods. In particular, two main categories of decoding models have been employed: 
classification and reconstruction.  

In a classification framework, the neural activity during specific events is identified as belonging 
to one of a finite set of possible event types. For instance, one of six words or phrases. There 
are many algorithms (linear and non-linear) for fitting a classification model, such as support-
vector machines, Bayesian classifiers, and logistic regression (Hastie et al., 2009). All these 
algorithms involve weighting input features (neural signals) and outputting a discrete value (the 
class of a datapoint) or a value between 0 and 1 (probability estimate for the class of a 
datapoint). This may be used to predict many types of discrete outputs, such as the trial or 
stimulus “types” (e.g., consonant vs. dissonant chords), image recognition (Rieger et al., 2008), 
finger movements (Quandt et al., 2012), social decisions (Hollmann et al., 2011), or even 
subjective conscious percepts (Reichert et al., 2014). In this case, the experimental design 
requires a finite number of repetitions of each stimulus type (or class). In speech research, 
discrete speech features have been predicted above chance levels, such as vowels and 
consonants (Bouchard & Chang, 2014; Pei, Barbour, Leuthardt, & Schalk, 2011), phonemes 
(Brumberg, Wright, Andreasen, Guenther, & Kennedy, 2011; Chang et al., 2010; Mugler et al., 
2014), syllables (Blakely, Miller, Rao, Holmes, & Ojemann, 2008), words (Kellis et al., 2010; 
Martin et al., 2016), sentences (Zhang et al., 2012), segmental features (Lotte et al., 2015) and 
semantic information (Degenhart, Sudre, Pomerleau, & Tyler-Kabara, 2011).  

In a reconstruction approach, continuous features of the stimulus are reconstructed to match 
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the original feature set. For instance, upper limb movement parameters, such as position, 

velocity and force were successively decoded to operate a robotic arm (Hochberg et al., 2012). 
In speech reconstruction, features of the sound spectrum, such as formant frequencies 
(Brumberg, Nieto-Castanon, Kennedy, & Guenther, 2010), amplitude power and 
spectrotemporal modulations (Martin et al., 2014, 2016; Pasley et al., 2012), mel-frequency 
cepstral-coefficients (Chakrabarti, Krusienski, Schalk, & Brumberg, 2013), or the speech 
envelope (Kubanek, Brunner, Gunduz, Poeppel, & Schalk, 2013) have been accurately 
reconstructed. In a recent study, formant frequencies of intended speech were decoded in real-
time directly from the activity of neurons recorded from intracortical electrodes implanted in 
the motor cortex, and speech sounds were synthesized from the decoded acoustic features 
(Brumberg et al., 2010). 

While both encoding and decoding models are used to relate stimulus features and neural 
activity, decoding models have an added potential to be used in applications that attempt to 
use patterns of neural activity to control physical objects (such as robotic arms) or predict the 
stimulus properties underlying the neural activity (such as inner speech prediction). These are 
both examples of neural prosthetics, which are designed to utilize brain activity to help disabled 
individuals interact with the world and improve their quality of life. However, it is also possible 
(and preferable in some cases) to decode stimulus properties using an encoding model. In this 
case, encoding model parameters may be used to build probability distributions over the most 
likely stimulus properties that resulted in a (novel) pattern of brain activity (Kay, Naselaris, 
Prenger, & Gallant, 2008; Naselaris et al., 2011; Nishimoto et al., 2011). 

In summary, linearizing stimulus features allows one to use linear models to find non-linear 
relationships between datasets.  This approach is simpler, requires less computation, and is 
generally more interpretable than using non-linear models, and is flexible with respect to the 
kinds of features chosen (de Heer et al., 2017; Naselaris et al., 2011; Shamma, 2015). The 
challenge often lies in choosing these features based on previous literature and the hypothesis 
one wants to test, and interpreting the resulting model weights (see Interpreting Models 
section, as well as Figure 2 for a description of many features used in predictive modeling). 

Choosing and fitting the model 
After choosing stimulus features (as inputs to an encoding model, or outputs to a decoding 
model) as well as the neural signal of interest, one must link these two data sets by “fitting” the 
model. The choice of modeling framework will influence the nature of the inputs and outputs, 
as well as the questions one may ask with it. This section discusses common modeling 
frameworks for encoding and decoding (see Figure 3 for a general description of the 
components that make up each modeling framework). It focuses on the linear model, an 
approach that has proven to be powerful in answering complex questions about the brain. We 
highlight some caveats and best-practices. 
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Choosing a modeling framework 

The choice of modeling framework affects the relationship one may find between inputs and 
outputs. Finding more complex relationships usually requires more data and is prone to 
overfitting, while finding simpler relationships can be more straightforward and efficient, but 
runs the risk of missing a more complex relationship between inputs and outputs. 

While many model architectures have been used in neural modeling, this paper focuses on 
those that find linear relationships between inputs and outputs. We focus on this case because 
of the ubiquity and flexibility of linear models, though it should be noted that many other 
model structures have been used in the literature. For example, it is common to include non-
linearities on the output of a linear model (e.g., a sigmoid that acts as a non-linear suppression 
of output amplitude). This can be used to transform the output into a value that corresponds to 
neural activity such as a Poisson firing rate (Christianson, Sahani, & Linden, 2008; Paninski, 
2004), to incorporate knowledge of the biophysical properties of the nervous system 
(McFarland, Cui, & Butts, 2013), to incorporate the outputs of other models such as 
neighboring neural activity (Pillow, Ahmadian, & Paninski, 2011), or to accommodate a 
subsequent statistical technique (e.g., in logarithmic classification, see above). It is also possible 
to use summary statistics or mathematical descriptions of the receptive fields described above 
as inputs to a subsequent model (Thorson et al., 2015). 

It is possible to fit non-linear models directly in order to find more complex relationships 
between inputs and outputs. These may be an extension of linear modeling, such as models 
that estimate input non-linearities (Ahrens et al., 2008), spike-triggered covariance (Paninski, 
2003; Schwartz, Pillow, Rust, & Simoncelli, 2006), and other techniques that fit multi-
component linear filters for a single neural output (Meyer et al., 2017; Sharpee, Rust, & Bialek, 
2004). Note that, after projecting the stimulus into the subspace spanned by these multiple 
filters, the relationship between this projection and the response can be non-linear, and this 
approach can be used to estimate the higher-order terms of the stimulus-response function 
(Eggermont, 1993). While non-linear methods find a more complicated relationship between 
inputs and outputs, they may be hard to interpret (but see Sharpee, 2016), require significantly 
more data in order to generalize to test-set data, and often contain many more free-
parameters that must be tweaked to optimize the model fit (Ahrens et al., 2008). In addition, 
optimization-based methods for fitting these models generally requires traversing a more 
complex error landscape, with multiple local minima that do not guarantee that the model will 
converge upon a global minimum (Hastie et al., 2009). 

As described in Section 3, generalized linear models provide the complexity of non-linear 
feature transformations (in the form of feature extraction steps) with the simplicity and 
tractability of a linear model. For this reason linear modeling has a strong presence in 
neuroscience literature, and will be the focus of this manuscript. See (Meyer et al., 2017) for an 
in-depth review of many (linear and non-linear) modeling frameworks that have been used in 
neural encoding and decoding. 
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Figure 3 – Model fitting. An example of encoding (left panel) and decoding (right panel) models are 

depicted. In encoding models, one attempt to predict the neural activity from the auditory representation 

by finding a set of weights (one for each feature / time lag) that minimizes the difference between true 

(black) and predicted (red) values. In decoding with a classifier (right), brain activity in multiple 

electrodes is used to make a discrete prediction of the category of a stimulus. Note that decoding models 

can also use regression to predict continuous auditory feature values from brain activity, though only 

classification is shown above. 

The least-squares solution 

As described above, generalized linear models offer a balance between model complexity and 
model interpretability. While any kind of non-linear transformation can be made to raw input 
or output features prior to fitting, the model itself will then find linear relationships between 
the input and output features. At its core, this means finding one weight per feature such that, 
when each feature is weighted and summed, it either minimizes or maximizes the value of 
some function (often called a “cost” function). A common formulation for the cost function is to 
include “loss” penalties such as model squared error (Hastie et al., 2009) on both the training 
and the validation set of data. The following paragraphs describe a common way to define the 
loss (or error) in linear regression models, and how this can be used to find values for model 
coefficients. 

In the case of least-squares regression, we define the predictions of a model as the dot product 
between the weight vector and the input matrix: 

𝒚̂ = 𝑿𝒘 

In this case, the cost function is simply the squared difference between the predicted values 
and the actual values for the output variable. It takes the following form: 

𝐶𝐹𝐿𝑆 = 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
(𝒚̂ − 𝒚)𝑇(𝒚̂ − 𝒚) 

In this case, 𝑿 is the input training data and 𝑤 are the model weights, and the term 𝒚̂ 
represents model predictions given a set of data. 𝒚 is the “true” output values, and 𝑛 is the 
total number of data points. Both y and 𝑦̂ are column vectors where each row is a point in time. 
 𝐶𝐹𝐿𝑆 stands for the “least squares” cost function. In this case it contains a single loss function 
that measures the average squared difference between model predictions and “true” outputs. 
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If there are many more data points than features (a rule of thumb is to have at least ten times 
more data points than features, though this is context-dependent), then finding a set of weights 
that minimizes this loss function (the squared error) has a relatively simple solution, known as 
the Least Squares Solution or the Normal equation.  It is the solution obtained by maximum 
likelihood with the assumption of Gaussian error.  The least square solution is: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑆 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚  

Where X is the (n time points or observations by m features) input matrix, and y is an output 

vector of length n observations. When 𝑿 and 𝒚 have a mean of zero, the expression (
𝑿𝑇𝒚

𝒏
) is the 

cross-covariance between each input feature and the output. This is then normalized by the 

auto-covariance matrix of the input features (
𝑿𝑇𝑿

𝒏
). The output will be a vector of length m 

feature weights that defines how to mix input features together to make one predicted output. 
It should be noted that while this model weight solution is straightforward to interpret and 
quick to find, it has several drawbacks such as a tendency to “overfit” to data, as well as the 
inability to impose relationships between features (such as a smoothness constraint). Some of 
these will be discussed further in section 4.3, Using regularization to avoid overfitting. 

From regression to classification 

While classification and regression seem to perform very different tasks, the underlying math 
between them is surprisingly similar. In fact, a small modification to the regression equations 
results in a model that makes predictions between two classes instead of outputting a 
continuous variable. This occurs by taking the output of the linear model and passing it through 
a function that maps this output onto a number representing the probability that a sample 
comes from a given class. The function that does this is called the link function.  

𝑝𝑐𝑙𝑎𝑠𝑠 = 𝑓−1(𝑿𝒘 + 𝒃) 

 

Where p is the probability of belonging to one of the two classes and 𝑓−1 is the inverse of the 
link function (called the inverse link function). For example, in logistic regression, f is given by 
the logistic function: 

𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) =  𝑿𝒘 + 𝒃 

𝑿𝒘 is the weighted sum of the inputs, and the scalar 𝒃 is a bias term. Taken together, this term 
defines the angle (𝒘) and distance from origin (𝒃) of a line in feature space that separates the 
two classes, often called the decision plane. 

Datapoints will be categorized as belonging to one class of another depending on which side of 
the line they lie. The quantity 𝑿𝐰 + 𝐛 provides a normalized distance from each sample in 𝑿 to 
the classifier’s decision plane (which is positioned at a distance, 𝑏, from the origin). This 
distance can be associated with a particular probability that the sample belongs to a class. Note 
that one can also use a step function for the link function, thus generating binary YES/NO 
predictions about class identity. 
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While the math behind various classifiers will differ, they are all essentially performing the 
same task: define a means of “slicing up” feature space such that datapoints in one or another 
region of this space are categorized according to that region’s respective class. For example, 
Support Vector Machines also find a linear relationship that separates classes in feature spaces, 
with an extra constraint that controls the distance between the separating line and the nearest 
member of each class (Hastie et al., 2009). 

Using regularization to avoid overfitting 

The analytical least-squares solution is simple, but often fails due to overfitting when there are 
a high number of feature dimensions (m) relative to observations (n). In overfitting, the weights 
become too sensitive to fluctuations in the data that would average to zero in larger data sets. 
As the number of parameters in the model grows, this sensitivity to noise increases. Overfitting 
is most easily detected when the model performs well on the training data, but performs poorly 
on the testing data (see section 5, Validating the model).  

Neural recordings are often highly variable either because of signal to noise limitations of the 
measures or because of the additional difficulty of producing a stationary internal brain state 
(Sahani & Linden, 2003; Theunissen et al., 2001). At the same time, there is increasing interest 
in using more complex features to model brain activity. Moreover, the amount of available data 
is often severely restricted, and in extreme cases there are fewer datapoints than weights to fit. 
In these cases the problem is said to be underconstrained, reflecting the fact that there is not 
enough data to properly constrain the weights of the model. To handle such situations and to 
avoid overfitting the data, it is common to employ regularization when fitting models. The basic 
goal of regularization is to add constraints (or equivalently priors) on the weights to effectively 
reduce the number of parameters (m) in the model and prevent overfitting.  Regularization is 
also called shrinking, as it shrinks the number or magnitude of parameters. A common way to 
do this is to use a penalty on the total magnitude of all weight values. This is called imposing a 
“norm” on the weights.  In the Bayesian framework, different types of penalties correspond to 
different priors on the weights. They reflect assumptions on the probability distribution of the 
weights before observing the data (Naselaris et al., 2011; Wu et al., 2006). 

In machine learning, norms follow the convention ℓ𝑁, where 𝑁 is generally 1 or 2 (though it 
could be any value in between). The ℓ𝑁 norm for a vector is defined as follows: 

||𝑥||
𝑛

= (∑|𝑥𝑖|𝑛

𝑖

)

1
𝑛

  

When applied to the model weights, the ℓ𝑁 norm reflects the magnitude of all weights 
combined. This can be added to the model’s cost function, supplementing the traditional least 
squares loss function. For example, using the ℓ2 norm (in a technique called Ridge Regression) 
adds an extra penalty to the squared sum of all weights, resulting in the following value for the 
regression cost function: 

𝐶𝐹𝑅𝑖𝑑𝑔𝑒 =
1

𝑛
(𝑿𝒘 − 𝒚)2 + 𝜆||𝒘||

2
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Where 𝒘 is the model weights, and 𝜆 is a hyper-parameter (in this case called the Ridge 
parameter) that controls the relative influence between the weight magnitude vs. the mean 
squared error.  Ridge regression corresponds to a Gaussian prior on the weight distribution with 

variance given by 
1

𝜆
. For small values of 𝜆, the optimal model fit will be largely driven by the 

squared error, for large values, the model fit will be driven by minimizing the magnitude of 
model weights.  As a result, all of the weights will trend towards smaller numbers. For Ridge 
regression, the weights can also be obtained analytically: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑅𝑖𝑑𝑔𝑒 = (𝑿𝑇𝑿 + 𝑰𝜆)−1𝑿𝑇𝒚  

There are many other forms of regularization, for example, ℓ1 regularization (also known as 
Lasso Regression) adds a penalty for the sum of the absolute value of all weights and causes 
many weights to be close to 0, while a few may remain larger (known as fitting a sparse set of 
weights). It is also common to simultaneously balance ℓ1 and ℓ2 penalties in the same model 
(called Elastic Nets, (Hastie et al., 2009)). 

In general, regularization tends to reduce the variance of the weights, restricting them to a 
smaller space of possible values and reducing their sensitivity to noise. In the case of ℓ𝑁 
regression, this is often described as placing a finite amount of magnitude that is spread out 
between the weights. The 𝑁 in ℓ𝑁 regression controls the extent to which this magnitude is 
given to a small subset of weights vs. shared equally between all weights. For example, in Ridge 
regression, large weights are penalized more, which encourages all weights to be smaller in 
value.  This encourages weights that smoothly vary from one to another, and may discourage 
excessively high weights on any one weight which may be due to noise. Regularization reduces 
the likelihood that weights will be overfit to noise in the data and improves the testing data 
score. ℓ2 regularization also has the advantage of having an analytical solution, which can 
speed up computation time. An exhaustive description of useful regularization methods and 
their effect on analyses can be found in Hastie et al., (2009). 

Parameters that are not directly fit to the training data (such as the Ridge parameter) are called 
hyper-parameters or free parameters. They exist at a higher level than the fitted model weights, 
and influence the behavior of the model fitting process in different ways (e.g., the number of 
non-zero weights in the model, or the extent to which more complex model features can be 
created out of combinations of the original features). They are not determined in the standard 
model fitting process, however they can be chosen in order to minimize the error on a 
validation dataset (see below). Changing a hyper-parameter in order to maximize statistics such 
as prediction score is called tuning the parameter, which will be covered in the next section. 

In addition, there are many choices made in predictive modeling that are not easily 
quantifiable. For example, the choice of the model form (e.g., ℓ2 vs ℓ1 regularization) is an 
additional free model parameter that will affect the result. In addition, there are often multiple 
ways to “fit” a model. For example, the least-squares solution is not always solved in its analytic 
form. If the number of features is prohibitively large, it is common to use numerical 
approximations to the above equation, such as gradient descent, which uses an iterative 
approach to find the set of weights that minimizes the cost function. With linear models that 
utilize enough independent data points, there is always one set of weight parameters that has 
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the lowest error, often described as a “global minimum”. In contrast, non-linear models have a 
landscape of both local and global minima, in which small changes to parameter values will 
increase model error and so the gradient descent algorithm will (incorrectly) stop early. In this 
way, iterative methods may get “stuck” in a local minimum without reaching a global minimum. 
Linear models do not suffer from the problem of local minima. However, since gradient descent 
often stops before total convergence, it may result in (small) variations in the final solution 
given different weight initializations. 

Note that for linear time-invariant models (i.e., when the weights of the model do not change 
over time) and when the second order statistical properties of the stimulus are stationary in 
time (i.e., the variance and covariance of the stimulus do not change with time), then it is more 
efficient to find the linear coefficients of the model in the Fourier domain. For stimuli with 

those time-invariant properties, the eigenvectors of the stimulus auto-covariance matrix (
𝑋𝑇𝑋

𝑛
 in 

the normal equation) are the discrete Fourier Transform. Thus, by transforming the cross-

correlation between the stimulus and the response (
𝑋𝑇𝑦

𝑛
) into the frequency domain, the 

normal equation becomes a division of the Fourier representation of 𝑋𝑇𝑦 and the power of the 
stimulus at each frequency. Moreover, by limiting the estimation of the linear filter weights to 
the frequencies with significant power (i.e., those for which there is sufficient sampling in the 
data), one effectively regularizes the regression. See (Theunissen et al., 2001) for an in-depth 
discussion. 

Validating the model 
After data have been collected, model features have been determined, and model weights have 
been fit, it is important to determine whether the model is a “good” description of the 
relationship between stimulus features and brain activity. This is called validating the model. 
This critical step involves making model predictions using new data and determining if the 
predictions capture variability in the “ground truth” of data that was recorded. 

Validating a model should be performed on data that was not used to train the model, including 
preprocessing, feature selection, and model fitting. It is common to use cross-validation to 
accomplish this. In this approach, the researcher splits the data into two subsets. One subset is 
used to train the model (a “training set”), and the other is used to validate the model (a “test 
set”). If the model has captured a “true” underlying relationship between inputs and outputs, 
then the model should be able to accurately predict data points that it has never seen before 
(those in the test set). This gives an indication for the stability of the model’s predictive power 
(e.g., how well is it able to predict different subsets of held-out data), as well as the stability of 
the model weights (e.g., placing confidence intervals on the weight values.) 

There are many ways to perform cross-validation. For example, in K-fold cross validation, the 
dataset is split into K subsets (usually between 5 and 10). The model is fit on K-1 subsets, and 
then validated on the held-out subset. The cross validation iterates over these sets until each 
subset was once a test set. In the extreme case, there are as many subsets as there are 
datapoints, and a single datapoint is left out for the validation set on each iteration. This is 
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called Leave One Out cross validation, though it may bias the results and should only be used if 
very little data for training the model is available (Varoquaux et al., 2016). Because 
electrophysiology data is correlated with itself (i.e., autocorrelated) in time, it is crucial when 
creating training/test splits to avoid separating datapoints that occur close to one another in 
time (for example, by keeping “chunks” of contiguous timepoints together, such as a single trial 
that consists of one spoken sentence). If this is not done, correlations between datapoints that 
occur close to one another in time will artificially inflate the model performance when they 
occur in both the training and test sets. This is because the model will be effectively trained and 
tested on the same set of data, due to patterns in both the signal and the noise being split 
between training / test sets. See Figure 4 for a description of the cross-validation process, as 
well as the Jupyter notebook “Prediction and Validation”, section “Aside: what happens if we 
don’t split by trials?”3. 

Determining the correct hyper-parameter for regularization requires an extra step in the cross-
validation process. The first step is the same: the full dataset is split into two parts, training data 
and testing data (called the “outer loop”). Next, the training data is split once more into training 
and validation datasets (called the “inner loop”). In the inner loop, a range of hyper-parameter 
values is used to fit models on a subset of the training data, and each model is validated on the 
held-out validation data, resulting in one model score per hyper-parameter value for each 
iteration of the inner loop. The “best” hyper-parameter is chosen by aggregating across inner 
loop iterations, and choosing the hyper-parameter value with the best model performance. The 
model with this parameter is then re-tested on the outer loop testing data. The process of 
searching over many possible hyper-parameter values is called a “grid search”, and the whole 
process of splitting training data into subsets of training / validation data is often called nested-
loop cross validation. Efficient hyper-parameter search strategies exist for some learning 
algorithms (Hastie et al., 2009). However, there are caveats to doing this effectively, and the 
result may still be biased with particularly noisy data (Varoquaux et al., 2016). 

  

                                                      

3http://beta.mybinder.org/v2/gh/choldgraf/paper-

encoding_decoding_electrophysiology/master?filepath=notebooks/Prediction%20and%20Valida

tion.ipynb 
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Figure 4 – Validation and prediction. A. Cross validation is used to tune hyperparameters and validate 

the model. In one iteration of the outer loop, the data is split into training and test sets. Right: an inner 

loop is then performed on the training set, with a different subset of training data (blue shades) held out 

as a validation set for assessing hyperparameter performance. The hyperparameter with the highest mean 

score across inner-loop iterations is generally chosen for a final evaluation on the test set. Lower:  The 

same neural timeseries across five iterations of the outer-loop. Each iteration results in a different 

partitioning of the data into training, test, and validation sets. Note that timepoints are grouped together 

in time to avoid overfitting during hyperparameter tuning. B. Examples of actual and predicted brain 

activity for various cross-validated testing folds. The overall prediction score is averaged across folds, 

and displayed on the surface of the subject’s reconstructed brain. C. In decoding models when 

performing stimulus reconstruction (regression), a model is fit for each frequency band. Model 

predictions may be combined to create a predicted spectrogram. The predicted and original auditory 

spectrograms are compared using metrics such as mean squared error. D. When using classification for 

decoding, the model predicts one of several classes for each test datapoint. These predictions are 

validated with metrics such as the Receiver Operating Characteristic (ROC, left) that shows the 

performance of a binary classifier system as its discrimination threshold is varied. The ROC curve is 

shown for each outer CV iteration (black) as well as the mean across CV iterations (red). If the classifier 

outputs the labels above chance level, the Area Under the ROC curve (AUC) will be larger than 0.5. 

Alternatively, the model performance can be compared across classes resulting in a confusion matrix 
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(right), which shows for what percent of the testing set a class was predicted (columns) given the actual 

class (rows). The ith row and jth column represents the percent of the time that a datapoint of class i was 

predicted to belong to class j.  

Metrics for regression prediction scores 

As described previously, inputs and outputs to a predictive model are generally created using 
one or more non-linear transformations of the raw stimulus and neural activity. The flexible 
nature of inputs and outputs in regression means that there are many alternative fitted models. 
In general, a model’s performance is gauged from its ability to make predictions about data it 
has never seen before (data in a validation or test set) requiring a criterion to perform objective 
comparisons among all those models. The definition of model performance depends on the 
type of output for the model (e.g., a time series in regression vs. a label in categorization). It will 
also depend on the metric of error (or loss function) used, which itself depends on assumptions 
about the noise inherent in the system (e.g., whether it is normally-distributed). Assumptions 
about noise will depend on both the neural system being studied (e.g., single units vs. 
continuous variables such as high-frequency activity in ECoG) as well as the kind of model being 
used (Paninski, 2004). The metric of squared error (described below) assumes normally-
distributed noise, and will be assumed for continuous signals in the remainder of the text.  

Coefficient of Determination (𝑹𝟐) 

Encoding models as well as decoding models for stimulus reconstruction use regression, which 
outputs a continuously varying value. The extent to which regression predictions match the 
actual recorded data is called model goodness of fit (GoF). A robust measure is the Coefficient 
of Determination (𝑅2), defined as the squared error between the predicted and actual activity, 
divided by the squared error that would have occurred with a model that simply predicts the 
mean of the true output data. 

 

𝑆𝑆𝐸𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

𝑖

 

𝑆𝑆𝐸𝑟𝑒𝑔 = ∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑖

 

𝑅2 = 1 −
𝑆𝑆𝐸𝑟𝑒𝑔

𝑆𝑆𝐸𝑡𝑜𝑡
 

 

where 𝑦̂𝑖 is the predicted value of 𝑦 at timepoint 𝑖, and 𝑦̅ is the mean value of 𝑦 over all 
timepoints. The first two terms are both called the sum of squared error. One is the error 
defined by the model (the difference between predicted and actual values), and the other is the 
error defined by the output’s deviation around its own mean (closely related to the output 
variance). Computing the ratio of errors provides an index for the increase in output variability 
explained by the regression model. If 𝑅2 is positive it means that the variance of the model’s 
error is less than the variance of the testing data, if it is zero then the model makes predictions 
no better than a model that simply predicts the mean of the testing data, and if it is negative 
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then the variance of the model’s error is larger than the variance of the testing data (this is only 
possible when the linear model is being tested on data on which it was not fit).  

The Coefficient of Determination, when used with a linear model and without cross-validation, 
is related to Pearson’s correlation coefficient, r, by 𝑅2 = 𝑟2. However, on held-out data 𝑅2 can 
be negative whereas the correlation coefficient squared (𝑟2) must be positive. Finally, 𝑅2 is 
directly obtained from the sum of square errors which is the value that is minimized in 
regression with normally-distributed noise.  Thus, it is a natural choice for GoF in the selection 
of the best hyper-parameter in regularized regression. 

Coherence and mutual information 

Another option for assessing model performance in regression is coherence. This approach uses 
Fourier methods to assess the extent to which predicted and actual signals share temporal 
structure. This is a more appropriate metric when the predicted signals are time series, and is 
given by the following form: 

𝛾(𝜔)2 =
〈𝑋(𝜔)𝑌∗(𝜔)〉〈𝑋∗(𝜔)𝑌(𝜔)〉

〈𝑋(𝜔)𝑋∗(𝜔)〉〈𝑌∗(𝜔)𝑌(𝜔)〉
 

where 𝑋(𝜔) and 𝑌(𝜔) are complex numbers representing the stimulus and neural Fourier 
component at frequency 𝜔, and 𝑋∗(𝜔) represents the complex conjugate. It is common to 
calculate the coherence at each frequency, 𝜔, and then convert the output into Gaussian 
Mutual Information (MI), an information theoretic quantity with units of 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 (also known 
as the channel capacity) that characterizes an upper bound for information transmission for 
signals with a particular frequency power spectrum, and for noise with normal distributions.  
The Gaussian MI is given by:  

𝑀𝐼𝑛𝑜𝑟𝑚(𝜔) = − ∫ 𝑙𝑜𝑔2(1 − 𝛾2(𝜔))𝑑𝜔
∞

0

 

While this metric is more complex than using 𝑅2, it is well-suited to the temporal properties of 
neural timeseries data.  In particular, it provides a data-driven approach to determining the 
relevant time scales (or bandwidth) of the signal and circumvents the need for smoothing the 
signal or its prediction before estimating GoF values such as 𝑅2 (Theunissen et al., 2001).   

Metrics for classification prediction scores 

Common statistics and estimating baseline scores 

It is common to use classification models in decoding, which output a discrete variable in the 
form of a predicted class identity (such as a brain state or experimental condition). In this case, 
there is a simple “yes/no” answer for whether the prediction was correct. As such, it is common 
to report the percent correct of each class type for model scoring. This is then compared to a 

percent correct one would expect using random guessing (e.g., 100 ∗
1

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
). If there are 

different numbers of datapoints represented in each class, then a better baseline is the 

percentage of datapoints that belong to the most common class (e.g. 100 ∗
𝑛𝐴

𝑛𝐴+𝑛𝐵
). It should be 

noted that these are theoretical measures of guessing levels, but a better guessing level can 
often be estimated from the data (Rieger et al., 2008). For example, it is common to use a 
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permutation approach to randomly distribute labels among examples in the training set, and to 
repeat the cross validation several hundred times to obtain an estimate of the classification 
rate that can be obtained with such "random" datasets. This classification rate then serves as 
the “null” baseline. This approach may also reveal an unexpected transfer of information 
between training and test data that leads to an unexpectedly high guessing level. 

ROC Curves 

It is often informative to investigate the behavior of a classifier when the bias parameter, 𝒃, is 
varied. Varying 𝒃 and calculating the ratio of “true-positive” to “false-positives”  creates the 
Receiver Operating Characteristic (ROC) curve of the classifier (Green & Swets, 1988). This 
describes the extent to which a classifier is able to separate the two classes. The integral over 
the ROC curve reflects the separability of the two classes independent of the decision criterion, 
providing a less-biased metric than percent correct (Hastie et al., 2009). 

A geometric interpretation may help to understand how the ROC curve is calculated. The 
classifier's decision surface is an oriented plane in the space spanned by the features (e.g., a 
line in a 2-D space, if there are only two features). In order to determine the class of each 
sample, the samples are projected onto the normal vector of the decision plane by calculating 
𝑿𝒘. Samples on one side of the place will result in a positive value for 𝑿𝒘, while samples on 
the other side of the plane will be negative. This corresponds to the two classes, and results in 
two histograms for the values of 𝑿𝒘, one for each class. The decision criterion 𝒃 can then be 
varied, resulting in different separations of the samples into two classes. By varying 𝒃 for a 
range of values, and comparing the predicted vs the true labels for each value of 𝒃, one 
calculates false positives (false alarms) and true positives (hits) for several decision planes with 
the same orientation but different positions. Calculating these values for many positions of the 
decision boundary constructs the ROC curve. A demonstration of the ROC curve and how it 
relates to the model’s hyperplane can be found in the provided jupyter notebooks. 

The Area Under the Curve (AUC) is simply the total amount of area under the ROC curve, and is 
often reported as a summary statistic of the ROC curve. If the classifier is performing at chance, 
then the AUC will be .5, and if it correctly labels all datapoints for all decision thresholds, then 
the AUC will be 1. More advanced topics relating to classifier algorithms are covered in Hastie 
et al. (2009) and Pedregosa, Grisel, Weiss, Passos, & Brucher (2011). 

The Confusion Matrix 

In the case of multi-class classification (e.g. multinomial logistic regression), it is common to 
represent the results using a confusion matrix. In this visualization, each row is the “known” 
class, and each column is a predicted class. The i, jth value represents the number of times that 
a datapoint known to belong to class i was predicted to belong to class j. As such, the diagonal 
line represents correct predictions (where 𝑐𝑙𝑎𝑠𝑠𝑡𝑟𝑢𝑒 = 𝑐𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑), and any off-diagonal 

values represent incorrect predictions (see Figure 4D). 

Confusion matrices are useful because they describe a more complex picture of how the model 
predictions perform. This makes it possible to account for more complex patterns in the 
model’s predictions. To capture information about systematic errors (for example if stimulus 
labels fall into subsets of groups between which the model cannot distinguish), one can use 
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confusion matrices to estimate the mutual information that fully describes the joint 
probabilities between the predicted class and the actual class (e.g., Chang et al., 2010; Elie & 
Theunissen, 2016). 

What is a “good” model score? 

Determining whether a model’s predictive score is “good” or not is not trivial. Many regression 
and classification scoring metrics are a continuously varying number, and deciding a cutoff 
point above which a score is not only “statistically significant” but also large enough in effect 
size to warrant reporting is a challenging problem. This is particularly critical for applications 
such as Brain Computer Interfaces. 

Statistical significance 

A common practice in model fitting is to determine which models pass some criteria for 
statistical “significance”. This usually means assessing whether the model is able to make 
predictions above chance (e.g., a coefficient of determination significantly different from zero 
in the case of regression, or an AUC greater than .5 in the case of classification). To assess 
importance and model generalizability, the researcher needs to compare the prediction of the 
new model to those obtained in other models (i.e. with other feature spaces or other, usually 
simpler, architectures).  If improvements in GoF are clearly observed, then the researcher may 
investigate the model properties (such as the model weights) to determine which features were 
most influential in predicting outputs.  

As mentioned above, there are multiple challenges with using predictive power to assess the 
performance of an encoding / decoding model. When fitting model parameters, most models 
assume that output signals have independent and either Gaussian- or Poisson-distributed noise. 
If this assumption does not hold (either because the signal and the noise are poorly estimated 
by the model, or because the noise is not actually Gaussian/Poisson), then the model 
parameters will be biased and the model less reliable, leading to considerations about whether 
the assumptions made by the model are valid. Note, however, that there have been recent 
efforts to fit non-linear models of the input/output function without explicitly assuming 
distributions of error (Fitzgerald, Sincich, & Sharpee, 2011). 

Moreover, as with any statistic of brain activity, metrics for predictive power can be artificially 
inflated. For example, signals that are averaged, smoothed, or otherwise have strong low-
frequency power will tend to give larger prediction scores, but may not represent the true 
relationship between stimuli and brain features. This is one reason to use metrics that are 
designed with time-series in mind, such as coherence, which does not depend on a particular 
level of smoothing applied to the data. 

Estimating the prediction score ceiling 

Another useful technique involves determining the highest possible prediction score one would 
expect given the variability in the data collected. A given 𝑅2 value may be interpreted as “good” 
or “bad” based off the maximum expected 𝑅2 possible for the dataset. This is called the “noise 
ceiling” of the data, and it allows one to calculate the percent of possible variance explainable 
by the model, instead of the percent of total variance explained by the model. 
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There is no guaranteed way to calculate the noise ceiling of a model, as it must be estimated 
from the data at hand. However, there have been attempts at defining principled approaches 
to doing so. These follow the principle that the recorded neural data is thought to be a 
combination of “signal” and “noise”. 

𝑑𝑎𝑡𝑎𝑠𝑡𝑖𝑚_𝑖 = 𝑠𝑖𝑔𝑛𝑎𝑙𝑠𝑡𝑖𝑚_𝑖 + 𝑛𝑜𝑖𝑠𝑒 

Note that in this case, only the signal component of the data is dependent on a given stimulus.  

One may estimate the noise ceiling of a model based off of the signal-to-noise ratio (SNR) of the 
neural response to repetitions of the same stimulus. In this case, one randomly splits these 
repetitions into two groups and calculates the mean response to each, theoretically removing 
the noise component of the response in each group. The statistic of interest (e.g., 𝑅2) is then 
calculated between each group. This process is repeated many times, and the resulting 
distribution of model scores can be used to calculate the noise ceiling. This process is explained 
in more detail in Hsu, Borst, & Theunissen, 2004 (section 4), and code for performing this is 
demonstrated in the Jupyter notebooks associated with this manuscript.  

It is possible to perform the same approach using different stimuli by assuming that signals and 
noise have particular statistics.  For example, the signal can be assumed to be restricted to low 
frequencies and the noise to have a normal distribution.  If these assumptions hold, then it may 
be possible to estimate the maximum prediction score, but this risks arriving at a conservative 
estimate of this value due to some parts of the signal being treated as noise and averaged out. 
It is also important to note that these approaches assume a linear, invariant neural response to 
the stimulus, and it is more difficult to assess the theoretical maximum prediction score of the 
non-linear relationship between inputs and outputs (Sahani & Linden, 2003).  

A note on multiple comparisons 

The ability to perform multivariate analyses is both a blessing and a curse. On one hand, one 
can relate the activity of many stimulus features to a neural signal within a single modeling 
framework. On the other, this introduces new considerations when controlling for multiple 
comparisons and statistical inference. 

The most notable benefit for multiple comparisons in the encoding / decoding model 
framework is the fact that input variables are considered jointly, meaning that it is not always 
necessary to run an independent test for each variable of interest. Instead, the researcher may 
inspect the pattern of activity across all model coefficients. For example, (Holdgraf et al., 2016) 
fit spectro-temporal receptive fields when electrocorticography patients heard degraded 
speech sentences. The authors compared the shape of the receptive field rather than 
performing inference on individual model coefficients. As such, relatively fewer statistical 
analyses were carried out by focusing on patterns in the receptive field rather than each 
parameter independently.  

While predictive modeling can reduce the number of statistical comparisons by considering the 
joint pattern of coefficients across features, it also introduces new challenges for statistical 
comparisons. For example, natural stimuli offer an opportunity to investigate the relationship 
between neural activity and many different sets of features (e.g., spectrotemporal features, 
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articulatory features, and words; de Heer et al., 2017). As new features are used to fit models, 
there is an increased likelihood of a type 1 error. In these cases, it is crucial to define well-
formulated hypotheses before fitting models with many different input features. Alternatively, 
one may use an encoding / decoding framework as an exploratory analysis step for the purpose 
of generating new hypotheses about the representation of stimulus features in the brain. These 
should then be confirmed on held-out data that has not yet been analyzed, or by follow-up 
experiments that are designed to test the hypotheses generated from the exploratory step. 
Ultimately it should be emphasized that while predictive models consider input features 
simultaneously, they are not a silver bullet for multiple comparisons problems, especially when 
performing statistical inference on individual model parameters (Bennett, Baird, Miller, & 
Wolfrod, 2009; Curran-Everett, 2000; Maris & Oostenveld, 2007). 

Another challenge for multiple comparisons comes with the choice of model and the 
parameters associated with this model. While this paper focuses on linear models with 
standard regularization techniques (Ridge regression), there are myriad architectures for linking 
input and output activity. It is tempting to try several types of encoding / decoding models 
when exploring data, and researchers should be careful that they are not introducing 
“experimenter free parameters” that may artificially inflate their Type 1 error rate. 

Finally, the model itself often also has so-called hyperparameters that control the behavior of 
the model and the kind of structure that it finds in the input data. These hyperparameters have 
a strong influence on the outcome of the analysis, and should be tuned so that the model 
performs well on held-out validation data. Importantly, researchers cannot use the same set of 
data to both tune hyperparameters and test their model. Instead, it is best practice to use an 
inner loop (see above). This reduces the tendency of the model to over fit to training data 
(Hastie et al., 2009; Naselaris et al., 2011; Wu et al., 2006). If performing statistical inference on 
model parameters, this should be done outside of the inner-loop, after hyperparameters have 
already been tuned. 

Interpreting the model 
If one concludes that the model is capturing an important element of the relationship between 
brain activity and stimulus properties, one may use it to draw conclusions about the neural 
process under study. While encoding and decoding models have similar inputs and outputs, 
they can be interpreted in different, and often complementary ways (Weichwald et al., 2015). 
The proper method for fitting and interpreting model weights is actively debated, and the 
reader is urged to consult the current and emerging literature focused on predictive models of 
brain function (Naselaris et al., 2011; Varoquaux et al., 2016). In the following sections, we 
describe some challenges and best-practices in using predictive power to make scientific 
statements about the brain. 

Encoding models  

The simplest method for interpreting the results of a model fit is to investigate its weights. In a 
linear model, a positive weight for a given feature means that higher values of that feature 
correspond to higher values in the neural signal (they are correlated), a negative weight 
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suggests that increases in the feature values are related to a decrease in the neural signal (they 
are anti-correlated). If the magnitude of a weight is zero (or very small) it means that 
fluctuations in the values for that feature will have little effect on the neural signal. As such, 
investigating the weights amounts to describing the features that a particular neural signal will 
respond to, presumably because that feature (or one like it) is represented within the neural 
information at that region of the processing hierarchy. Note that the values of the different 
features have to be appropriately normalized during model training so that differences in the 
scale of features does not influence the magnitude of feature weights. This is typically done by 
z-scoring the values of each feature separately by subtracting its mean and dividing by its 
standard deviation. 

If stimulus features have been chosen such that they have an interpretable meaning, then it is 
straightforward to assess meaning to the weight of each feature. In addition, if the features 
have a natural ordering to them (such as increasing frequency bands of a spectrogram, along 
with multiple time lags for each band), then the pattern of weights represents a receptive field 
for the neural signal. For example, spectrotemporal receptive fields have been shown to map 
onto higher-order acoustic features (Woolley, Gill, Fremouw, & Theunissen, 2009) and to 
increase in complexity as one moves through the auditory pathway (Miller, Escabí, Read, & 
Schreiner, 2002; Sen et al., 2001; Sharpee et al., 2011). This approach has also been used in 
humans to investigate the tuning properties as one moves across the superior temporal gyrus 
(Hullett et al., 2016). It is also possible to use statistical methods to find patterns in model 
coefficients across large regions of cortex. For example, (Huth et al., 2016, 2012) fit semantic 
word models (where each coefficient corresponded to one word) to each voxel in the human 
cortex. The authors then used Principle Components Analysis to investigate model coefficient 
covariance across widely distributed regions of the brain, finding consistent axes along which 
these coefficients covaried with one another. 

Finally, another approach towards interpreting encoding models entails comparing model 
performance across multiple feature representations. For example, in de Heer et al. (2017), the 
authors investigated the representation of three auditory features (spectral, articulatory, and 
semantic features) across the cortical surface. They accomplished this by partitioning variance 
explained by each feature set individually, as well as by joint models incorporating 
combinations of these features. This enabled them to determine the extent to which each 
feature is represented across the cortex. 

 

Decoding models 

In a decoding approach, model weights are attached to each neural signal. Higher values for a 
signal mean that it is more important in predicting the output value of the stimulus / class used 
in the model. Interpreting the weights of decoding models can be challenging, as weights with a 
large amplitude do not necessarily mean that the neural signal encodes information about the 
stimulus (See “7. Differences between encoding and decoding models” for a more thorough 
discussion of this idea). It is important to rely on the statistical reliability of the model weight 
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magnitudes (e.g., low variance across random partitions of data) to extract interpretable 
features (Reichert et al., 2014).  

Finally, it should be noted that in some cases, decoding models are used purely for making 
optimal predictions about stimulus values. For instance, in neurorehabilitation, decoding 
models have been used to predict 3D trajectories of a robotic arm for motor substitution 
(Hochberg et al., 2012). In this case, decoding is approached as an engineering problem, 
wherein the goal is to obtain the highest decoding predictions and interpreting model weights 
is of less importance. 

General comments on interpretation 

It is possible to use the predictive power of either encoding models (e.g., the 𝑅2 of a model) or 
decoding models (e.g., the AUC calculated from an ROC curve) to make statements about the 
nature of stimulus feature representations in the brain. For example, if two models are fit on 
the same neural data, each with a different set of input features, one may compare the 
variance explained in the testing data by each model. By fitting multiple models, each with a 
different feature representation, and comparing their relative prediction scores, one may 
investigate the extent to which each of these feature representations are a “good” description 
of the neural response (Huth et al., 2016). However, comparing models with different types or 
numbers of features is not straightforward, as there are often relationships between the 
features used in each model, as well as difference in the number of parameters used.  In this 
case, a variance partitioning approach can also be used to distinguish the variance exclusively 
explained by two (or more) models from the one exclusively explained by one and not the 
other. This is done by comparing the prediction scores of each model separately, as well as a 
joint model that includes all possible parameters (de Heer et al., 2017; Lescroart et al., 2015). 

It is also possible to investigate the weights and predictive power across models trained in 
different regions of the brain to investigate how the relationship between stimulus features and 
brain activity varies across cortex. By plotting a model’s predictive power as a function of its 
neural location, one may construct a tuning map that shows which brain regions are well-
predicted by a set of features (Huth et al., 2016). Moreover, by summarizing receptive fields by 
the feature value that elicits the largest response in brain activity, and plotting the “preferred 
feature” for each region of the brain, one may construct a tuning map that describes how the 
neural response within a particular set of features is distributed in the brain (Hullett et al., 
2016; Huth et al., 2016; Moerel et al., 2013).  

By choosing the right representations of features to include in the model, it may be possible to 
reliably predict all of the variability in brain activity that is dependent on the controlled 
experimental parameters. Note that the activity that arises from non-experimental factors, e.g. 
from internal states not controlled in the experiment or from neural and measurement noise, 
cannot be predicted. This goal requires special considerations for choosing stimuli and 
experimental design, which will be discussed in the final section. 
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Differences between encoding and decoding models 

Differences in terminology and causality 

While it is tempting to treat encoding and decoding models as two sides of the same coin, there 
are important differences between them in an experimental context. Encoding and decoding 
models have different assumptions about the direction of causality that may influence the 
possible interpretations of the model depending on the experiment being conducted. 

Encoding models are often called Forward models, reflecting the direction of time from 
stimulus to neural activity. Conversely, decoding models are often called Backward or Inverse 
models, as they move “backwards” in time in a traditional sensory experiment (Crosse, Di 
Liberto, Bednar, & Lalor, 2016; Thirion et al., 2006). However, it should be noted that this is not 
always the case, as sometimes a decoded value (e.g., a movement) is actually driven by neural 
activity. For this reason we prefer the more specific terminology of encoding and decoding. 

The nature of the experiment may also influence the terminology employed.  For example, in 
an experimental paradigm in which stimuli in the world give rise to recorded brain activity (e.g., 
an experiment where subjects listen to speech), an encoding model naturally models the 
direction of causality from stimuli to brain activity. As such, it is called a causal model. On the 
other hand, in this experiment a decoding model operates in the opposite direction, inferring 
properties of the world from the neural activity. This is often called an acausal model. 

The importance of specifying the direction of causality, and accounting for this in model choice 
and interpretation, is discussed in greater detail in Weichwald et al., (2015). The following 
sections describe some important considerations. 

Differences in regression 

It is possible for decoding models to be constructed with a regression framework, similarly to 
how encoding models operate. For example, in Mesgarani & Chang, (2012) and Pasley et al. 
(2012), the experimenters fit one model for each stimulus feature being decoded. This amounts 
to simply reversing the terms in the standard regression equations: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 
𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔 = (𝑌𝑇𝑌)−1𝑌𝑇𝑥 

It is tempting in this case to collect the coefficients of each decoding model and interpret this as 
if they came from an encoding model. However, it’s important to note that a primary role of 
regression is to account for correlations between input features when estimating model 
coefficients. As explained in detail in Weichwald et al., (2015), if a stimulus feature 𝑋𝑖 causally 
influences a neural feature 𝑌𝑖, and if the stimulus feature 𝑋𝑖 is correlated with another stimulus 
feature 𝑋𝑗 (for example, if they share correlated noise, or if the stimulus features are naturally 

correlated), the decoder will give significant weights for both 𝑋𝑖 and 𝑋𝑗, even though it is only 

𝑋𝑖 that influences the neural signal. This fact has important implications in the interpretation of 
model weights. 
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Figure 5– Comparing encoding and decoding weights. An example of how using an encoding or a 

decoding framework can influence model results. In this case, we attempt to find the relationship between 

spectral features of sound and the neural activity. Left, upper: Using an encoding model, we naturally 

control for the covariance of the stimulus. Because the stimulus is natural speech, the correlations 

between lags and frequencies are accounted for, and the correct receptive field is recovered. Left, lower: 

In a decoding model, the X and y terms are reversed, and we instead control for the covariance of the 

neural activity. Because we have only one neural channel, the covariance term becomes a scalar (the 

variance of the neural signal). The decoded model weights are smeared in time and frequency. This is 

because of correlations that exist between these stimulus features. Right, upper/lower: The same 

approach applied to white noise stimuli instead of natural speech. In this case, there are no correlations 

between stimulus features, and so the covariance matrix becomes the identity matrix, making the 

receptive field in the encoding and decoding approach roughly the same. While this example is shown for 

receptive field modeling, the same caveat applies to any modeling framework where there are 

correlations between either inputs or outputs. 

Consider the case of receptive field modeling, in which auditory stimuli are presented to the 
individual, and a model is fit to uncover the spectral features to which the neural activity 
responds. In the encoding model, correlations between stimulus features are explicitly 
accounted for (𝑋𝑇𝑋), while in the decoding model, correlations between the neural features 
are accounted for (𝑌𝑇𝑌). While it is possible to retrieve a receptive field using a decoding 
paradigm (e.g., by fitting one decoding model for each frequency / time-lag and collecting 
coefficients into a STRF), correlations in the stimulus features will skew the distribution of 
model coefficients. This might result in a STRF that is smoothed over a local region in delay / 
frequency. An encoding model should (theoretically) take these stimulus correlations into 
account, and only assign non-zero coefficient values to the proper features (see Figure 5). In 
this case it is important to consider the regularizer used in fitting the model, as there are 
differences in how regularization techniques distribute model weights with correlated features 
(Mesgarani, David, Fritz, & Shamma, 2009).  
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Differences in classification 

The direction of causality also has important implications in the interpretation of classifiers. It is 
common to fit a classifier that predicts a stimulus type or neural state using neural features as 
inputs. In this case, it is tempting to interpret the magnitude of each weight as the extent to 
which that neural signal carries information about the state being decoded. However, this may 
not be the case. Following the logic above, if a neural signal with no true response to a stimulus 
is correlated with a neural signal that does respond to a stimulus, the classifier may (mistakenly) 
give positive magnitude to each. As such, one must exercise caution when making inferences 
about the importance of neural signals using model coefficients in an Acausal decoding model 
(Haufe et al., 2014; Mesgarani et al., 2009). 

For example, monitoring the activity of brain regions not involved in representing stimulus 
features but instead reflecting some internal state (e.g. attention) may improve the quality of 
the decoder performance if attention is correlated with stimulus presentation. Such an effect 
would be due to the multivariate nature of the decoding model and could, in principle, be 
detected with additional univariate analyses.  This is true of many decoding models, and may 
cause erroneous conclusions about an electrode’s role in processing sensory features. However, 
as explained in Weichwald et al. (2015), the potential difficulty for causal interpretations in 
decoding approaches does not negate their usefulness: encoding and decoding models can be 
used in a complementary fashion to describe potential causal relationships between stimulus 
and corresponding neural activity in different brain regions. 

Experimental Design 
While much of this paper has covered the technical and data analytic side of predictive 
modeling, it is also important to design experiments with predictive models in mind. Fitting 
encoding and decoding models effectively requires particular considerations for the 
experimental manipulations and stimulus choices. We will discuss some of these topics below.  

Task Design 

While traditional experiments manipulate a limited number of independent variables between 
conditions, the strength of predictive modeling lies in using complex stimuli with many 
potential features of interest being presented continuously and overlapping in time. This has 
the added benefit that complex stimuli are generally closer to the “real world” of human 
experience. This adds to the experiment’s external validity, which can be difficult to achieve 
with traditional experimental designs(Campbell & Stanley, 2015). 

The simplest task for an encoding model framework is to ask the subject to passively perceive a 
stimulus presented to them. For example, Huth et al asked subjects to listen to series of stories 
told in the podcast The Moth (Huth et al., 2016). There was no explicit behavioral manipulation 
required of the subjects, other than attending to the stories. Using semantic features extracted 
from the audio, as well as BOLD activity collected with fMRI, the researchers were able to build 
encoding models that described how semantic categories drove the activity across wide regions 
of the cortex. 
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The use of complex stimuli does not preclude performing experimental manipulation. For 
example, Holdgraf et al. (2016) presented a natural speech stimulus to ECoG subjects, who  
were asked to passively listen to the sounds. These sentences came in triplets following a 
degraded -> clean -> degraded structure. By presenting the same degraded speech stimulus 
before and after the presentation of a non-degraded version of the sentence, the 
experimenters manipulated the independent variable of comprehension, and tested its effect 
on the neural response to multiple speech features. 

It is also possible to ask subjects to actively engage in the task to influence how their sensory 
cortex interacts with the stimuli. Mesgarani et al used a decoding paradigm to predict the 
spectrogram of speech that elicited a pattern of neural activity (Mesgarani & Chang, 2012). 
They asked the subject to attend to one of two natural speech streams, the classic cocktail 
party effect. Thus, they experimentally manipulated the subject’s attention, while the natural 
speech stimuli were kept the same. They compared the decoded spectrogram as a function of 
which speaker the subject was attending to, suggesting that attention modulates the cortical 
response to spectro-temporal features. 

Stimulus construction 

Choosing the proper stimuli is a crucial step in order to properly construct predictive models. A 
model’s ability to relate stimulus features to brain activity is only as good as the data on which 
it is trained. For a model to be interpretable, it must be fit with a rich set of possible feature 
combinations that cover the stimulus statistics that are typical for the individual under study, 
and for the feature representations of interest. For example, it is difficult to make statements 
about how the brain responds to semantic information if the stimuli presented do not broadly 
cover semantic space. 

There are many stimulus sets that are commonly used in predictive modeling of the auditory 
system. For example, the TIMIT corpus is a collection of spoken English sentences that are 
designed to cover a broad range of acoustic and linguistic features (Zue, Seneff, & Glass, 1990). 
This may be appropriate for studying lower-order auditory processes, though it is unclear 
whether stimuli such as these are useful for more abstract semantic processes, as the 
sentences do not follow any high-level narrative. Efforts have been made to construct more 
semantically rich stimuli (e.g., Huth et al, 2016), though it is difficult to properly tag a stimulus 
with the proper timing of linguistic features (e.g. phoneme and word onsets). A database with 
many types of linguistic / auditory stimuli can be found at catalog.ldc.upenn.edu. 

How much data to collect? 

The short answer to this question is always “as much as you possibly can”. However, in practice 
many studies are time-limited in their ability to collect large quantities of data. One should take 
care to include enough stimuli such that the model has the right amount of data to make 
predictions on test set data. It is not possible to know exactly how much data is needed as this 
depends on both the number of parameters in the model as well as the noise in the signal being 
predicted. However, it is possible to estimate the amount of training samples required to 
achieve a reasonable predictive score given further assumptions about the complexity of the 
model and the expected noise variance (similar to traditional statistical power estimation).  
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Ideally, one should conduct pilot studies in order to determine the minimum number of trials, 
time-points, and other experimental manipulations required to model the relationship between 
inputs / outputs to some degree of desired accuracy. It is useful to plot a model’s predictive 
score on testing data as a function of the number of data points included in fitting the model, 
this is called a Learning Curve. At some point, increasing the amount of data in the model fit will 
no longer result in an improvement in prediction scores. One should collect at least enough 
data such that predictive scores remain stable as more data is added. For insight into what is 
meant by “stable”, see the simulation performed by Willmore and Smyth on a spiking neuron. 
These authors showed the shape of the reconstruction error curve for a number of fitting 
procedures and as a function of the number of stimulus presentations, finding that error 
decreases as the number of presentations goes up, and eventually bottoms-out (Willmore and 
Smyth, 2003, Fig. 5). 

Finally, it is also advised to include multiple repetitions of stimuli that will be used purely for 
validating the model. This has two substantial benefits. First, having multiple instances of the 
brain’s response to the same stimulus makes it easier to estimate the ceiling on model 
performance (see section Metrics for regression prediction scores). Second, if these repetitions 
happen at different points throughout the experiment, it is possible to use them to assess the 
degree of stationarity in the neural response. Most models assume that the relationship 
between the stimulus features and the brain activity will be stable over time. This is often not 
the case as brains are inherently plastic (e.g., Holdgraf et al., 2016; Meyer et al., 2014), and may 
change their responsiveness to stimuli based on experimental manipulations or broader 
changes such as levels of internal or external attention. Recording the neural response to the 
same stimulus throughout the experiment provides a metric of whether the assumption of 
stationarity holds. 

Conclusions 
Predictive modeling allows researchers to relate neural activity to complex and naturalistic 
stimuli in the world. Encoding models provide an objective methodology to determine the 
ability of different feature representations to account for variability in the neural response. 
Decoding models play a complementary role to encoding models, and allow for the 
reconstruction of stimuli from ensembles of neural activity, opening the door for future 
advancements in neuroprosthetics. Both approaches have been successfully used to model the 
neural response of single units (e.g. Theunissen et al., 2001), high-frequency electrode activity 
(e.g., Stephanie Martin et al., 2016; Stéphanie Martin et al., 2014; Mesgarani & Chang, 2012), 
and BOLD responses to low-level stimulus features (Nishimoto et al., 2011). They have also 
been used to investigate the neural response to higher-level stimulus features (e.g. Çukur, 
Nishimoto, Huth, & Gallant, 2013; Huth et al., 2016), as well as to investigate how this response 
changes across time or condition (e.g. J. Fritz, Shamma, Elhilali, & Klein, 2003; Meyer et al., 
2014; Slee & David, 2015). 

There are many caveats that come with a predictive modeling framework, including 
considerations for feature extraction, model selection, model validation, model interpretation, 
and experimental design. We have discussed many of these issues in this review and have 
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provided python tutorials to guide the reader in implementing these methods. We urge the 
reader to examine the citations provided for further details and to follow advances in this field 
closely as our understanding of its drawbacks and its potential continues to evolve.  
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Chapter 3 – Decoding models for speech reconstruction 

Introduction 
A promising use of regression models for modeling neural activity is their ability to predict 
patterns of stimulus features that elicited the recorded neural activity. This is called decoding, 
and allows one to reconstruct a new stimulus, given a pattern of brain activity. This chapter 
describes attempts at performing speech decoding using electrocorticography in order to study 
the neural representation of spoken (overt) and imagined (covert) speech.  

Citation 

Martin, S., Brunner, P., Holdgraf, C., Heinze, H.-J., Crone, N. E., Rieger, J., Schalk, G., Knight, R.T., 
& Pasley, B.N. (2014). Decoding spectrotemporal features of overt and covert speech from the 
human cortex. Front. Neuroeng. 7, 14. doi:10.3389/fneng.2014.00014. 

Abstract 
Auditory perception and auditory imagery have been shown to activate overlapping brain 
regions. We hypothesized that these phenomena also share a common underlying neural 
representation. To assess this, we used electrocorticography intracranial recordings from 
epileptic patients performing an out loud or a silent reading task. In these tasks, short stories 
scrolled across a video screen in two conditions: subjects read the same stories both aloud 
(overt) and silently (covert). In a control condition the subject remained in a resting state. We 
first built a high gamma (70-150 Hz) neural decoding model to reconstruct spectrotemporal 
auditory features of self-generated overt speech. We then evaluated whether this same model 
could reconstruct auditory speech features in the covert speech condition. Two speech models 
were tested: a spectrogram and a modulation-based feature space. For the overt condition, 
reconstruction accuracy was evaluated as the correlation between original and predicted 
speech features, and was significant in each subject (p<10-5; paired two-sample t-test). For the 
covert speech condition, dynamic time warping was first used to realign the covert speech 
reconstruction with the corresponding original speech from the overt condition. Reconstruction 
accuracy was then evaluated as the correlation between original and reconstructed speech 
features. Covert reconstruction accuracy was compared to the accuracy obtained from 
reconstructions in the baseline control condition. Reconstruction accuracy for the covert 
condition was significantly better than for the control condition (p< 0.005; paired two-sample t-
test). The superior temporal gyrus, pre- and post-central gyrus provided the highest 
reconstruction information. The relationship between overt and covert speech reconstruction 
depended on anatomy. These results provide evidence that auditory representations of covert 
speech can be reconstructed from models that are built from an overt speech data set, 
supporting a partially shared neural substrate. 
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Introduction 
Mental imagery produces experiences and neural activation patterns similar to actual 
perception. For instance, thinking of moving a limb activates the motor cortex, internal object 
visualization activates the visual cortex, with similar effects observed for each sensory modality 
(Kosslyn, Ganis, & Thompson, 2001; Kosslyn & Thompson, n.d.; Roth et al., 1996; Stevenson & 
Case, 2005). Auditory imagery is defined as the mental representation of sound perception in 
the absence of external auditory stimulation. Behavioral and neural studies have suggested that 
structural and temporal properties of auditory features, such as pitch (Halpern, 1989), timbre 
(Halpern, Zatorre, Bouffard, & Johnson, 2004; Pitt & Crowder, 1992), loudness (Intons-Peterson, 
1980) and rhythm (Halpern, 1988) are preserved during music imagery (Hubbard, 2013). 
However, less is known about the neural substrate of speech imagery. Speech imagery (inner 
speech, silent speech, imagined speech, covert speech or auditory verbal imagery) refers to our 
ability to “hear” speech internally without the intentional movement of any extremities, such as 
the lips, tongue, hands or auditory stimulation (Brigham & Kumar, 2010). 

The neural basis of speech processing has been a topic of intense investigation for over a 
century (Hickok & Poeppel, 2007). The functional cortical organization of speech 
comprehension includes Heschl’s gyrus (primary auditory cortex), the superior temporal gyrus 
(STG) and sulcus (STS; e.g., Wernicke’s area). Speech production depends on premotor, motor 
and posterior inferior frontal regions (e.g., Broca’s area; Heim, Opitz, & Friederici, 2002; Duffau 
et al., 2003; Billingsley-Marshall et al., 2007; Towle et al., 2008; Price, 2012). How these brain 
areas interact to encode higher-level components of speech such as phonological, semantic, or 
lexical features, as well as their role in covert speech, remains unclear. Increasing evidence 
suggests that speech imagery and perception activate the same cortical areas. Functional 
imaging studies have reported overlapping cortical regions during overt and covert speech 
generation in inferior frontal lobes, sensorimotor cortex regions, supplementary motor areas, 
and anterior cingulate gyri. Some regions commonly associated with motor aspects of speech 
production were not active during the silent task (Palmer et al., 2001; Rosen, Ojemann, 
Ollinger, & Petersen, 2000; Yetkin et al., 1995). Transcranial magnetic stimulation over motor 
sites and inferior frontal gyrus induced speech arrest in both overt and covert speech 
production (Aziz-Zadeh, Cattaneo, Rochat, & Rizzolatti, 2005). Finally, brain lesion studies have 
shown high correlation between overt and covert speech abilities, such as rhyme and 
homophones judgment (Geva, Bennett, Warburton, & Patterson, 2011) for patients with 
aphasia. 

Imagery-related brain activation could result from top-down induction mechanisms including 
memory retrieval (Kosslyn, 2005; Kosslyn et al., 2001) and motor simulation (Guenther, Ghosh, 
& Tourville, 2006; Price, 2011; Tian & Poeppel, 2012). In memory retrieval, perceptual 
experience may arise from stored information (objects, spatial properties and dynamics) 
acquired during actual speech perception and production experiences (Kosslyn, 2005). In motor 
simulation, a copy of the motor cortex activity (efference copy) is forwarded to lower sensory 
cortices, enabling a comparison of actual with desired movement, and permitting online 
behavioral adjustments (Jeannerod, 2003). Despite findings of overlapping brain activation 
during overt and covert speech (Aleman, 2004; Aziz-Zadeh et al., 2005; Geva, Correia, & 
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Warburton, 2011; Hinke et al., 1993; McGuire et al., 1996; Palmer et al., 2001; Rosen et al., 
2000; Yetkin et al., 1995), it is likely that covert speech is not simply overt speech without 
moving the articulatory apparatus. Behavioral judgment studies showed that aphasic patients 
indicated inner speech impairment, while maintaining relatively intact overt speech abilities, 
while others manifested the reverse pattern (Geva, Bennett, et al., 2011). Similarly, imaging 
techniques showed different patterns of cortical activation during covert compared to overt 
speech, namely in the premotor cortex, left primary motor cortex, left insula, and left superior 
temporal gyrus (Huang, Carr, & Cao, 2002; Pei et al., 2011; Shuster & Lemieux, 2005). This 
suggests that brain activation maps associated with both tasks are dissociated at least in some 
cases (Aleman, 2004; Feinberg, Gonzalez Rothi, & Heilman, 1986; Geva, Jones, Crinion, Baron, & 
Warburton, 2011; Shuster & Lemieux, 2005). The extent to which auditory perception and 
imagery engage similar underlying neural representations remains poorly understood. 

To investigate similarities between the neural representations of overt and covert speech, we 
employed neural decoding models to predict auditory features experienced during speech 
imagery. Decoding models predict information about stimuli or mental states from recorded 
neural activity (Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991). This technique has 
attracted increasing interest in neuroscience as a quantitative method to test hypotheses about 
neural representation (Kay, Naselaris, Prenger, & Gallant, 2008; Naselaris, Kay, Nishimoto, & 
Gallant, 2011; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Pasley et al., 2012; Warland, 
Reinagel, & Meister, 1997). For instance, decoding models have allowed predicting continuous 
limb trajectories (Carmena et al., 2003; Hochberg et al., 2006, 2012) from the motor cortex. In 
the visual domain, visual scenes can be decoded from neural activity in the visual cortex 
(Warland et al., 1997; Kay et al., 2008). Similarly, this approach has been used to predict 
continuous spectrotemporal features of speech. We used this approach to compare decoding 
accuracy during overt and covert conditions in order to evaluate the similarity of speech 
representations during speech perception and imagery.   

We hypothesized that speech perception and imagery share a partially overlapping neural 
representation in auditory cortical areas. We reasoned that if speech imagery and perception 
share neural substrates, the two conditions should engage similar neural representations. Thus, 
a neural decoding model trained from overt speech should be able to predict speech features in 
the covert condition. (Pasley et al., 2012) showed that auditory spectrotemporal features of 
speech could be accurately reconstructed, and used to identify individual words during various 
listening tasks. In this study, we used a similar neural decoding model trained on sounds from 
self-generated overt speech. This model was then used to decode spectrotemporal auditory 
features from brain activity measured during a covert speech condition. Our results provide 
evidence for a shared neural representation underlying speech perception and imagery. 

To test these hypotheses we used electrocorticography (ECoG), which provides high 
spatiotemporal resolution recordings of non-primary auditory cortex (Leuthardt, Schalk, 
Wolpaw, Ojemann, & Moran, 2004). In particular, the high gamma band (HG, ~70-150 Hz) 
reliably tracks neuronal activity in all sensory modalities (Lachaux, Axmacher, Mormann, 
Halgren, & Crone, 2012) and correlates with the spike rate of the underlying neural population 
(Lachaux et al., 2012; Miller et al., 2007; Boonstra, Houweling, & Muskulus, 2009). HG activity in 
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auditory and motor cortex has been linked to speech processing (Towle et al., 2008; Pasley et 
al., 2012), and served as the input signal for all tested neural decoding models. 

Materials and methods 

Subjects and data acquisition  

Electrocorticographic (ECoG) recordings were obtained using subdural electrode arrays 
implanted in 7 patients undergoing neurosurgical procedures for epilepsy (Table 1). All patients 
volunteered and gave their informed consent (approved by the Albany Medical College 
Institutional Review Board) before testing. The implanted electrode grids (Ad-Tech Medical 
Corp., Racine, WI; PMT Corporation, Chanhassen, MN) consisted of platinum–iridium electrodes 
(4 mm in diameter, 2.3 mm exposed) that were embedded in silicon and spaced at an inter-
electrode distance of 0.6-1cm. Grid placement and duration of ECoG monitoring were based 
solely on the requirements of the clinical evaluation (see Figure 6).  
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Subject Age Sex 
Handed-
ness FSIQ VIQ PIQ LL 

Seizure 
Focus 

Grid/Strip Locations and 
Contact Numbers 

S1 30 M Right 74 64 90 Bi-
later
al 

Left 
tempora
l 

Left temporal (35) 

Left temporal pole (4) 

Left fronto-parietal (48) 

Left occipital pole (4) 

S2 29 F Right 90 91 90 Left Left 
tempora
l 

Left temporal (35) 

Left fronto-parietal (56) 

Left temporal (4) 

Left occipital pole (4) 

S3 26 F Right 112 106 11
7 

Left Left 
tempora
l 

Left temporal (35) 

Left fronto-parietal (64) 

Left temporal (4) 

Left occipital pole (4) 

S4 56 M Right 84 82 87 Left Left 
tempora
l 

Left temporal (35) 

Left fronto-parietal (56) 

Left occipital pole (4) 

S5 26 M Right 102 103 10
0 

Left Right 
tempora
l 

Right temporal (35) 

Right fronto-parietal 
(64) 

Right frontal pole (6) 

Right occipital pole (6) 

S6 45 M Right 98 93 10
5 

Left Left 
frontal 

Left front-temporal (54) 

Left temporal (4) 

S7 29 F Right 84 111 95 Bi-
later
al 

Left 
tempora
l 

Left temporal (68) 

Left fronto-parietal (40) 

Left frontal pole (4) 

Left parietal (4) 

Left temporal (4) 

Table 1. Clinical profiles of subjects. All of the subjects had normal cognitive capacity and were 
functionally independent. Full scale (FSIQ), verbal (VIQ) and performance (PIQ) intelligence has 
was based on the Wechsler Adult Intelligence Scale (WAIS-III) test. Language lateralization (LL) 
was based on the Wada test. 
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Figure 6 - Electrode locations. Grid locations for each subject are overlaid on cortical surface 

reconstructions of each subject’s MRI scan. 

ECoG signals were recorded at the bedside using seven 16-channel g.USBamp biosignal 
acquisition devices (g.tec, Graz, Austria) at a sampling rate of 9600 Hz. Electrode contacts 
distant from epileptic foci and areas of interest were used for reference and ground. Data 
acquisition and synchronization with the task presentation were accomplished using BCI2000 
software (Schalk, 2010; Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004). All 
channels were subsequently downsampled to 1,000 Hz, corrected for DC shifts, and band pass 
filtered from 0.5 to 200 Hz. Notch filters at 60 Hz, 120 Hz and 180 Hz were used to remove 
electromagnetic noise. The time series were then visually inspected to remove the intervals 
containing ictal activity as well as channels that had excessive noise (including broadband 
electromagnetic noise from hospital equipment or poor contact with the cortical surface). 
Finally, electrodes were re-referenced to a common average. The high gamma frequency band 
(70-150 Hz) was extracted using the Hilbert transform. 

In addition to the ECoG signals, we acquired the subject’s voice through a dynamic microphone 
(Samson R21s) that was rated for voice recordings (bandwidth 80-12000 Hz, sensitivity 2.24 
mV/Pa) and placed within 10 cm of the patient’s face. We used a dedicated 16-channel 
g.USBamp to amplify and digitize the microphone signal in sync with the ECoG data. Finally, we 
verified the patient’s compliance in the covert task using an eye-tracker (Tobii T60, Tobii 
Sweden).  

Experimental paradigms 

The recording session included three conditions. In the first condition, text excerpts from 
historical political speeches or a children’s story (i.e., Gettysburg Address (Roy & Basler, 1955), 
JFK’s Inaugural Address (Kennedy, 1961), or Humpty Dumpy (“Mother Goose’s Nursery 
Rhymes,” 1867) were visually displayed on the screen moving from right to left at the vertical 
center of the screen. The rate of scrolling text ranged between 42-76 words/min, and was 
adjusted based on the subject's attentiveness, cognitive/verbal ability, and comfort prior to 
experimental recordings. In the first condition, the subject was instructed to read the text aloud 
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(overt condition). In the second condition, the same text was displayed at the same scrolling 
rate, but the subject was instructed to read it silently (covert condition). The third condition 
served as the control and was obtained while the subject was in a resting state condition 
(baseline control). For each condition, a run lasted between 6 and 8 min, and was repeated 2-3 
times depending on the mental and physical condition of the subjects.  

Auditory speech representations 

We evaluated the predictive power of a neural decoding model based on high gamma signals 
(see section 2.4 for details) to reconstruct two auditory feature representations: a spectrogram-
based and a modulation-based representation. The spectrogram is a time-varying 
representation of the amplitude envelope at each acoustic frequency. This representation was 
generated by an affine wavelet transform of the sound pressure waveform using a 128 channel-
auditory filter bank mimicking the frequency analysis of the auditory periphery (Taishih Chi, Ru, 
& Shamma, 2005). The 128 acoustic frequencies of the initial spectrograms were subsequently 
downsampled to 32 acoustic frequency bins – with logarithmically spaced center frequencies 
ranging from 180-7,000 Hz. 

The modulation representation is based on a non-linear transformation of the spectrogram. 
Spectral and temporal fluctuations reflect important properties of speech intelligibility. For 
instance, comprehension is impaired when temporal modulations (<12 Hz) or spectral 
modulations (4 cycles/kHz) are removed (Elliott & Theunissen, 2009). In addition, low and 
intermediate temporal modulation rates (< 4 Hz) are linked with syllable rate, whereas fast 
modulations (> 16 Hz) are related to syllable onsets and offsets. Similarly, broad spectral 
modulations are associated with vowel formants, whereas narrow spectral modulations are 
associated with harmonics (Shamma, 2003). The modulation representation was generated by a 
2-D affine wavelet transform of the 128 channel auditory spectrogram. The bank of 
modulation-selective filters spanned a range of spectral scales (0.5–8 cycle/octave) and 
temporal rates (1–32 Hz), and was estimated from studies of the primary auditory cortex (T Chi, 
Gao, Guyton, Ru, & Shamma, 1999). The modulation representation was obtained by taking the 
magnitude of the complex-valued output of the filter bank, and subsequently reduced to 60 
modulation features (5 scales x 12 rates) by averaging along the frequency dimension. These 
operations were computed using the NSL Matlab toolbox 
(http://www.isr.umd.edu/Labs/NSL/Software.htm). In summary, the neural decoding model 
predicted 32 spectral frequency features and 60 rate and scale features in the spectrogram-
based and modulation-based speech representation, respectively. 

http://www.isr.umd.edu/Labs/NSL/Software.htm
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Figure 7 - Decoding approach. (A) The overt speech condition was used to train and test the accuracy of 

a neural-based decoding model to reconstruct spectrotemporal features of speech. The reconstructed 

patterns were compared to the true original (spoken out loud) speech representation (spectrogram or 

modulation-based). (B) During covert speech, there is no behavioral output, which prevents building a 

decoding model directly from covert speech data. Instead, the decoding model trained from the overt 

speech condition is used to decode covert speech neural activity. The covert speech reconstructed 

patterns were compared to identical speech segments spoken aloud during the overt speech condition 

(using dynamic time warping realignment). 

Decoding model and reconstruction procedure 

Overt speech decoding 

The decoding model was a linear mapping between neural activity and the speech 
representation (Figure 7A). It modeled the speech representation (spectrogram or modulation) 
as a linear weighted sum of activity at each electrode as follows: 

 𝑆̂(𝑡, 𝑝) = ∑ ∑ 𝑔(𝜏, 𝑝, 𝑛)𝑅(𝑡 − 𝜏, 𝑛),

𝑛𝜏

 (1) 

where R(t − τ, n) is the high gamma activity of electrode n at time (t − τ), where τ is the time 

lag ranging between -500ms and 500ms. Ŝ(t, p) is the estimated speech representation at time 
t and speech feature p , where p is one of 32 acoustic frequency features in the spectrogram-
based representation (Figure 10B) or one of 60 modulation features (5 scales x 12 rates) in the 
modulation-based representation (Figure 12B; see section 2.3 for details). Finally, g(τ, p, n) is 
the linear transformation matrix, which depends on the time lag, speech feature, and electrode 
channel. Both speech representations and the neural high gamma response data were 
synchronized, downsampled to 100 Hz, and standardized to zero mean and unit standard 
deviation prior to model fitting. 



52 

 

Model parameters, the matrix g described above, were fit using gradient descent with early 
stopping regularization – an iterative linear regression algorithm. We used a jackknife 
resampling technique to fit separately between 4 and 7 models (Efron, 1982), and then 
averaged the parameter estimates to yield the final model. To deal with auto-correlated neural 
activity and speech features, the data were first divided into 7-second blocks. Then, 90% of the 
data were randomly partitioned into training set and 10% into testing set. Within the training 
set, 10% of the data were used to monitor out-of-sample prediction accuracy to determine the 
early stopping criterion and minimize overfitting. The algorithm was terminated after a series of 
30 iterations failing to improve performance. Finally, model prediction accuracy (see section 2.5 
for details) was evaluated on the independent testing set. Model fitting was performed using 
the STRFLab MATLAB toolbox (http://strflab.berkeley.edu/).  

Covert speech decoding 

Decoding covert speech is complicated by the lack of any measurable behavioral or acoustic 
output that is synchronized to brain activity. In other words, there is no simple ground truth by 
which to evaluate the accuracy of the model when a well-defined output is unavailable. To 
address this, we used the following approach. First, the decoding model was trained using data 
from the overt speaking condition. Second, the same model (equation 1) was applied to data 
from the covert condition to predict speech features imagined by the subject (Figure 7B), as 
follows: 

 𝑆̂𝑐𝑜𝑣𝑒𝑟𝑡(𝑡, 𝑝) = ∑ ∑ 𝑔(𝜏, 𝑝, 𝑛)𝑅𝑐𝑜𝑣𝑒𝑟𝑡(𝑡 − 𝜏, 𝑛),

𝑛𝜏

 (2) 

where 𝑆̂𝑐𝑜𝑣𝑒𝑟𝑡(t, p) is the predicted covert speech representation at time t and speech feature 
p, and R𝑐𝑜𝑣𝑒𝑟𝑡(t − τ, n) is the high gamma neuronal response of electrode n at time (t − τ), 
where τ is the time lag ranging between -500ms and 500ms. Finally, g(τ, p, n) is the linear 
model trained from the overt speech condition. To evaluate prediction accuracy during covert 
speech, we made the assumption that the covert speech representation should match the 
spectrotemporal content of overt speech. In this sense, overt speech is used as the “ground 
truth”. Because subjects read the same text segments in both overt and covert conditions, we 
computed the similarity between the covert reconstructions and the corresponding original 
speech sounds recorded during the overt condition. To account for timing differences between 
conditions, we used dynamic time warping to realign the covert reconstruction to the original 
overt speech sound, as described in the next section. 

http://strflab.berkeley.edu/
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Figure 8 - Speech realignment. (A) Overt speech analysis – the overall reconstruction accuracy for the 

overt speech condition was quantified by computing directly the correlation coefficient (Pearson’s r) 

between the reconstructed and original speech representations (B) Covert speech analysis – the covert 

speech reconstruction is not necessarily aligned to the corresponding overt speech representation due to 

speaking rate differences and repetition irregularities. The reconstruction was thus realigned to the overt 

speech stimuli using dynamic time warping. The overall reconstruction accuracy was then quantified by 

computing the correlation coefficient (Pearson’s r) between the covert speech reconstruction and the 

original speech representation. (C) Baseline control analysis – a resting state (baseline control) 

condition was used to assess statistical significance of covert speech reconstruction accuracy. Resting 

state activity was used to generate a noise reconstruction and dynamic time warping was applied to align 

the noise reconstruction to overt speech as in (B). Because dynamic time warping has substantial degrees 

of freedom, due to its ability to stretch and compress speech segments, the overall reconstruction 

accuracy for the baseline control condition is significantly higher than zero. However, direct statistical 

comparisons between the covert and baseline conditions are valid as equivalent analysis procedures are 

applied to both covert and resting state neural data. 

Dynamic time warping 

We used a dynamic time warping (DTW) algorithm to realign the covert speech reconstruction 
with the corresponding spoken audio signal from the overt condition, allowing a direct estimate 
of the covert reconstruction accuracy (Figure 8B). For the overt speech reconstructions, 
dynamic time warping was not employed (Figure 8A), unless otherwise stated. DTW is a 
standard algorithm used to align two sequences that may vary in time or speed (Sakoe & Chiba, 
1978); Giorgino 2009). The idea behind DTW is to find the optimal path through a local 
similarity matrix d, computed between every pair of elements in the query and template time 
series, X ∈ ℝP x N and Y ∈  ℝP x M as follows: 

 𝑑(𝑛, 𝑚) = 𝑓(𝑥𝑛, 𝑦𝑚) , 𝑑 ∈ ℝ𝑁𝑥𝑀, (3) 

where d is the dissimilarity matrix at time n and m, f can be any distance metric between 
sequence x and y at time n and m, respectively. In this study, we used the Euclidean distance, 

defined as d(n, m) = √∑ (𝑥𝑛𝑝 − 𝑦𝑚𝑝)2𝑃
𝑝 . Given φ, the average accumulated distortion between 

both warped signals is defined by: 

 
𝑑𝜑(𝑥, 𝑦) =  ∑

𝑑(𝜑𝑥(𝑘), 𝜑𝑦 (𝑘))

𝐶𝜑

𝐾

𝑘=1

, 
(4) 
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where φx and φy are the warping functions of length K (that remap the time indices of X and Y, 

respectively), and Cφ is the corresponding normalization constant (in this case N+M), ensuring 

that the accumulated distortions are comparable along different paths. The optimal warping 
path φ, chooses the indices of X and Y in order to minimize the overall accumulated distance.  

 𝐷(𝑋, 𝑌) =  𝑚𝑖𝑛
𝜑

𝑑𝜑(𝑋, 𝑌), (5) 

where D is the accumulated distance or global dissimilarity. The alignment was computed using 
Rabiner-Juan step patterns (type 3; . This step pattern constrained the sets of allowed 
transitions between matched pairs to: 

 [𝜑𝑥(𝑘 + 1) − 𝜑𝑥(𝑘),  𝜑𝑦(𝑘 + 1) − 𝜑𝑦(𝑘)] ∈  {(1, 2), (2, 1), (1, 1)} (6) 

In addition, we assumed that the temporal offsets between covert speech and original overt 
speech would be less than 2 sec, and thus introduced a global constraint – the Sakoe-Chiba 
band window (Sakoe & Chiba, 1978), defined as follows: 

 |𝜑𝑥(𝑘) −  𝜑𝑦(𝑘)|  ≤ 𝑇 (7) 

where T = 2 sec was the chosen value that defines the maximum-allowable width of the 
window. Finally, to reduce computational load, the entire time series was broken into 30 sec 
segments, and warping was applied on each individual pair of segments (overt, covert, or 
baseline control reconstruction warped to original speech representation). The warped 
segments were concatenated and the reconstruction accuracy was defined on the full time 
series of warped data. The DTW package in R (Giorgino, 2009) was used for all analyses.  

Baseline control condition (resting state) 

To assess statistical significance of the covert reconstruction accuracy, we applied the same 
decoding steps (sections 2.4.2 – 2.4.3) to a baseline control condition taken from data recorded 
during a separate resting state recording session. The overt speech decoding model was applied 
to neural data from the baseline control, as follows: 

 𝑆̂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑡, 𝑝) = ∑ ∑ 𝑔(𝜏, 𝑝, 𝑛)𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑡 − 𝜏, 𝑛),

𝑛𝜏

 (8) 

where 𝑆̂𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(t, p) is the predicted baseline reconstruction at time t and speech feature p, 
and R𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(t − τ, n) is the high gamma neural response during resting state. Finally, g(τ, p, n) 
is the linear model trained from the overt speech condition. We also used DTW to realign the 
baseline control reconstruction with the spoken audio signal from the overt condition, allowing 
a direct estimate of the control condition decoding predictions (Figure 3.C). 
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Figure 9 - Brain mapping and electrode localization. (A) Post-operative CT scans (1 mm slices) and (C) 

pre-operative structural MRI scans (1.5 mm slices, T1-weighted) were acquired for each subject. From 

these scans, grid position (B) and the cortical surface (D) were reconstructed providing a subject-specific 

anatomical model (E) (see section 2.7 for details). 
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Figure 10 - Overt speech reconstruction accuracy for the spectrogram-based speech representation. (A) 

Overall reconstruction accuracy for each subject using the spectrogram-based speech representation. 

Error bars denote standard error of the mean (SEM). Overall accuracy is reported as the mean over all 

features (32 acoustic frequencies ranging from 0.2-7 kHz).  The overall spectrogram reconstruction 

accuracy for the overt speech was greater than baseline control reconstruction accuracy in all 

individuals (p<10-5; Hotelling’s t-test). Baseline control reconstruction accuracy was not significantly 

different from zero (p>0.1; one-sample t-test; grey dashed line) (B) Reconstruction accuracy as a 

function of acoustic frequency averaged over all subjects (N=7) using the spectrogram model. Shaded 

region denotes SEM over subjects. 
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Figure 11 - Overt speech reconstruction and identification. (A) Top panel:  segment of the original 

sound spectrogram (subject’s own voice), as well as the corresponding text above it. Bottom panel: same 

segment reconstructed with the decoding model. (B) Identification rank. Speech segments (5 sec) were 

extracted from the continuous spectrogram. For each extracted segment (N=123) a similarity score 

(correlation coefficient) was computed between the target reconstruction and each original spectrogram 

of the candidate set. The similarity scores were sorted and identification rank was quantified as the 

percentile rank of the correct segment. 1.0 indicates the target reconstruction matched the correct 

segment out of all candidate segments; 0.0 indicates the target was least similar to the correct segment 

among all other candidates; (dashed line indicates chance level = 0.5; median identification rank = 0.87; 

p<10-5; randomization test). 

Evaluation 

In the overt speech condition, reconstruction accuracy was quantified by computing the 
correlation coefficient (Pearson’s r) between the reconstructed and original speech 
representation using data from the independent test set. For each cross-validation resample, 
we calculated one correlation coefficient for each speech feature over time – leading to 32 
correlation coefficients (one for each acoustic frequency features) for the spectrogram-based 
model and 60 correlation coefficients (5 scale x 12 rate features) for the modulation-based 
model. Overall reconstruction accuracy was reported as the mean correlation over resamples 
and speech components (32 and 60 for the spectrogram and modulation representation, 
respectively). Standard error of the mean (SEM) was calculated by taking the standard deviation 
of the overall reconstruction accuracy across resamples. To assess statistical significance (see 
section 2.6 for details), overt speech reconstruction accuracy was compared to the accuracy 
obtained from the baseline control condition (resting state). 

In the covert speech condition, we first realigned the reconstructions and original overt speech 
representations using dynamic time warping (Figure 3.B). Then, we computed the overall 
reconstruction accuracy using the same procedure as in the overt speech condition. To evaluate 
statistical significance (see section 2.6 for details), DTW was also applied to the baseline control 
condition prior to assessing the overall reconstruction accuracy (Figure 3.C).  

To further assess the predictive power of the reconstruction process, we evaluated the ability 
to identify specific blocks of speech utterances within the continuous recording (Figure 16). 
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First, 24-140 segments of speech utterances (5 sec duration) were extracted from the original 
and reconstructed spectrogram representations. Second, a confusion matrix was constructed 
where each element contained the similarity score between the target reconstructed segment 
and the original reference segments from the overt speech spectrogram. To compute the 
similarity score between each target and reference segment, DTW was applied to temporally 
align each pair and the mean correlation coefficient was used as the similarity score. The 
confusion matrix reflects how well a given reconstructed segment matches its corresponding 
original segment versus other candidates. The similarity scores were sorted, and identification 
accuracy was quantified as the percentile smaller than the rank of the correct segment (Pasley 
et al., 2012). At chance level, the expected percentile rank is 0.5, while perfect identification is 
1.0.  

To define the most informative areas for overt speech decoding accuracy, we isolated for each 
electrode its corresponding decoding weights, and used the electrode-specific weights to 
generate a separate reconstruction for each electrode. This allowed calculating a reconstruction 
accuracy correlation coefficient for each individual electrode. We applied the same procedure 
to the baseline condition. Baseline reconstruction accuracy was subtracted from the overt 
values to generate subject-specific informative area maps (Figure 13). The same technique was 
used in the covert speech condition, except that DTW was applied to realign separately each 
electrode-specific reconstruction to the original overt speech. Similarly, baseline reconstruction 
accuracy (with DTW realignment) was subtracted from the covert values to define the 
informative areas (Figure 17).  

Statistics 

To assess statistical significance for the difference between overt speech and baseline control 
reconstruction accuracy, we used Hotelling’s t statistic with a significance level of p<10-5. This 
test accounts for the dependence of the two correlations on the same group (i.e. both 
correlations are relative to the same original overt speech representation; ; (Birk, 2013). It 
evaluates whether the correlations between overt speech reconstruction accuracy and baseline 
reconstruction accuracy differed in magnitude taking into account their intercorrelation, as 
follows:  

 

 
(9) 

where  is the correlation between original overt speech and reconstruction,  is the 

correlation between original overt speech and baseline reconstruction and  is the correlation 

between overt speech reconstruction and baseline reconstruction; df = n – 3 is the effective 
sample size (Kaneoke et al., 2012) and where 

 
 

(10) 

t =
(rjk - rjh ) (n - 3)(1+ rkh )

2 R

rjk rjh

rkh

R =1+ 2rjkrjhrkh - rjk
2 - rjh

2 - rkh
2
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At the population level (Figure 10A), statistical significance was performed using Student’s t-
tests (p<10-5) after first applying Fisher’s Z transform to convert the correlation coefficients to a 
normal distribution (Fisher, 1915). 

 

 

Figure 12 - Overt speech reconstruction accuracy for the modulation-based speech representation. (A) 

Overall reconstruction accuracy for each subject using the modulation-based speech representation. 

Error bars denote SEM. Overall accuracy is reported as the mean over all features (5 spectral and 12 

temporal modulations ranging between 0.5-8 cyc/oct and -32-32 Hz, respectively). The overall 

modulation reconstruction accuracy for the overt speech was greater than baseline control 

reconstruction accuracy in all individuals (p<10-5; Hotelling’s t-test). Baseline control reconstruction 

accuracy was not significantly different from zero (p>0.1; one-sample t-test; grey dashed line). (B) 

Reconstruction accuracy as a function of rate and scale averaged over all subjects (N=7). 
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Figure 13 - Overt speech informative areas. Reconstruction accuracy correlation coefficients were 

computed separately for each individual electrode and for both overt and baseline control conditions (see 

section 3.1.3 for details). The plotted correlation values are calculated by subtracting the correlation 

during baseline control from the overt condition. The informative area map was thresholded to p<0.05 

(Bonferroni correction) (A) Spectrogram-based reconstruction accuracy (B) modulation-based 

reconstruction accuracy. 

Test of significance in the covert speech condition was equivalent to the overt condition 
(equation 9; p<0.05; Hotelling’s t test), except that the reconstructions and original overt 
speech representations were first realigned using dynamic time warping. Since DTW induces an 
artificial increase in correlation by finding an optimal warping path between any two signals 
(including potential noise signals), this procedure causes the accuracy for baseline 
reconstruction to exceed zero correlation. However, because the equivalent data processing 
sequence was applied to both conditions, any statistical differences between the two 
conditions were due to differences in the neural input signals.  

At the population level (Figure 14), we directly compared the reconstruction accuracy in all 
three conditions (overt, covert and baseline control).  DTW realignement to the original overt 
speech was first applied separately for each condition. Reconstruction accuracy was computed 
as the correlation between the respective realigned pairs. Statistical significance was performed 
using Fisher’s Z transform and one-way ANOVA (p<10-6), followed by post hoc t-test (p<10-5 for 
overt speech; p<0.005 for covert speech). 

For individual subjects, significance of identification rank was computed using a randomization 
test (p<10-5 for overt speech ; p<0.005 for covert speech ; p>0.5 for baseline control). We 
shuffled the segment label in the candidate set 10,000 times to generate a null distribution of 
identification ranks under the hypothesis that there is no relationship between target and 
reference speech segments. Time-varying speech representations are auto-correlated. To 
maintain temporal correlations in the data, and preserve the exchangeability of the trial labels, 
the length of the extracted segments was chosen sufficiently long (5 seconds). The proportion 
of shuffled ranks greater than the observed rank yields the p-value that the observed accuracy 
is due to chance. Identification accuracy was assessed for each of the three experimental 
conditions (overt reconstruction, covert reconstruction, baseline control reconstruction). At the 
population level, significant identification performance was tested using a one-sided, one-
sample t-test (p<10-5 for overt speech ; p<0.05 for covert speech ; p>0.5 for baseline control). 
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For the informative electrode analysis, statistical significance of overt speech reconstruction 
was determined relative to the baseline condition using Hotelling’s t statistic (equation 9; 
Hotelling’s t test). Electrodes were defined as “informative” if the overt speech reconstruction 
accuracy was significantly greater than baseline (p<0.05; Hotelling’s t test with Bonferroni 
correction). The same procedure was used for covert speech informative areas (equation 9; 
p<0.05; Hotelling’s t test with Bonferroni correction), except that DTW was used in both covert 
speech and baseline control condition. 

To investigate possible anatomical differences between overt and covert informative areas, all 
significant electrodes (either overt, covert or both conditions; p<0.05; Bonferroni correction) 
were selected for an unbalanced two-way ANOVA, with experimental condition (overt and 
covert) and anatomical region (superior temporal gyrus, pre- and post-central gyrus) as factors. 
Figure 18 shows significant electrodes in these regions across subjects, co-registered with the 
Talairach brain template (Lancaster et al., 2000). 

Coregistration 

Each subject had postoperative anterior–posterior and lateral radiographs (Figure 9), as well as 
computer tomography (CT) scans to verify ECoG grid locations. Three-dimensional cortical 
models of individual subjects were generated using pre-operative structural magnetic 
resonance (MR) imaging. These MR images were co-registered with the post-operative CT 
images using Curry software (Compumedics, Charlotte, NC) to identify electrode locations. 
Electrode locations were assigned to Brodmann areas using the Talairach Daemon 
(http://www.talairach.org, (Lancaster et al., 2000). Activation maps computed across subjects 
were projected on this 3D brain model, and were generated using a custom Matlab program 
(Gunduz et al., 2012).  

Results  

Overt Speech 

Spectrogram-based reconstruction 

The overall spectrogram reconstruction accuracy for overt speech was significantly greater than 
baseline control reconstruction accuracy in all individual subjects (p<10-5; Hotelling’s t-test, 
Figure 10A). At the population level, mean overall reconstruction accuracy averaged across all 
subjects (N = 7) was also significantly higher than baseline control condition (r=0.41, p<10-5; 
Fisher’s Z transform followed by paired two-sample t-test). The baseline control reconstruction 
accuracy was not significantly different from zero (r=0.0, p>0.1; one-sample t-test; dashed line; 
Figure 10A). Group averaged reconstruction accuracy for individual acoustic frequencies ranged 
between r=~0.25 – 0.5 (Figure 10B). An example of a continuous segment of the original and 
reconstructed spectrogram is depicted for a subject with left hemispheric coverage in Figure 
11A. In this subject, the reconstruction quality permitted accurate identification of individual 
decoded speech segments (Figure 11B). The median identification rank (0.87, N=123 segments) 
was significantly greater than chance level (0.5, p<10-5; randomization test). Identification 
performance was significant in each individual subject (p<10-5; randomization test). Across all 
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subjects, identification performance was significant for overt speech reconstruction (Figure 16; 
rankovert=0.91 > 0.5, p<10-6; one-sided one-sample t-test), whereas the baseline control 
condition was not significantly greater than chance level (rankbaseline = 0.48 > 0.5, p>0.5 one-
sided one-sample t-test). 

Modulation-based reconstruction 

We next evaluated reconstruction accuracy of the modulation representation. The overall 
reconstruction accuracy was significant in all individual subjects (p<10-5; Hotelling’s t-test Figure 
12A). At a population level, mean overall reconstruction accuracy averaged over all patients 
(N = 7) was also significantly higher than the baseline reconstruction (r=0.55, p<10-5; Fisher’s Z 
transform followed by paired two-sample t-test). The baseline control reconstruction accuracy 
was not significantly different from zero (r=0.02, p>0.1; one-sample t-test; dashed line; Figure 
12A). Group averaged reconstruction accuracy for individual rate and scale was highest for 
temporal modulations above 2 Hz (Figure 12B). 

Informative Areas 

Figure 13 shows the significant informative areas (map thresholded at p<0.05; Bonferroni 
correction), quantified by the electrode-specific reconstruction accuracy (see section 2.5 for 
details). In both spectrogram and modulation-based representations the most accurate sites for 
overt speech decoding were localized to the superior temporal gyrus, pre and post central 
gyrus, consistent with previous spectrogram decoding studies (Pasley et al., 2012). 
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Covert Speech 

 

Figure 14 - Overall reconstruction accuracy using dynamic time warping realignment. Overall 

reconstruction accuracy for each subject during overt speech, covert speech and baseline control 

conditions after dynamic time warping realignment. (A) Spectrogram-based representation (B) 

Modulation-based representation. 

Spectrogram-based reconstruction 

Figure 14A shows the overall reconstruction accuracy for overt speech, covert speech, and 
baseline control after DTW realignment to the original overt speech was applied separately for 
each condition. The overall reconstruction accuracy for covert speech was significantly higher 
than the control condition in 5 out of 7 individual subjects (p<0.05; Hotelling’s t-test; p>0.05 for 
the non-significant subjects). At the population level, there was a significant difference in the 
overall reconstruction accuracy across the three conditions (overt, covert and baseline control; 
F (2, 18) = 35.3, p<10-6; Fisher’s Z transform followed by one-way ANOVA). Post-hoc t-tests 
confirmed that covert speech reconstruction accuracy was significantly lower than overt speech 
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reconstruction accuracy (rcovert = 0.34 < rovert = 0.50, p<10-5; Fisher’s Z transform followed by 
paired two-sample t-test), but higher than the baseline control condition (rcovert = 0.34 > rbaseline 
= 0.30, p<0.005; Fisher’s Z transform followed by a paired two-sample t-test). Figure 15A 
illustrates a segment of the reconstructed covert speech spectrogram and its corresponding 
overt segment (realigned with DTW). We next evaluated identification performance (N=123 
segments) for covert speech and baseline control conditions in this subject (Figure 15B). In the 
covert speech condition, the median identification rank equaled 0.62, and was significantly 
higher than chance level of 0.5 (p<0.005; randomization test), whereas the baseline control 
condition was not significant (median identification rank = 0.47, p>0.5; randomization test). 
Several of the remaining subjects exhibited a trend toward higher identification performance, 
but were not significant at the p<0.05 level (Figure 16; randomization test). At the population 
level, mean identification performance across all subjects was significantly greater than chance 
for the covert condition (rankcovert = 0.55 > 0.5, p<0.05; one-sided one-sample t-test), and not 
significant for the baseline control (rankbaseline = 0.48 > 0.5, p>0.5; one-sided one-sample t-test). 
These results provide preliminary evidence that neural activity during auditory speech imagery 
can be used to decode spectrotemporal features of covert speech. 

 

Figure 15 - Covert speech reconstruction. (A) Top panel: a segment of the overt (spoken out loud) 

spectrogram representation. Bottom panel: the same segment reconstructed from neural activity during 

the covert condition using the decoding model. (B) Identification rank. Speech segments (5 sec) were 

extracted from the continuous spectrogram. For each target segment (N=123) a similarity score 

(correlation coefficient) was computed between the target reconstruction and each original spectrogram 

in the candidate set. The similarity scores were sorted and identification rank was quantified as the 

percentile rank of the correct segment. 1.0 indicates the target reconstruction matched the correct 

segment out of all candidate segments; 0.0 indicates the target was least similar to the correct segment 

among all other candidates. (dashed line indicates chance level = 0.5; median identification rank = 0.62; 

p<0.005; randomization test). 

Modulation-based reconstruction 

Reconstruction accuracy for the modulation-based covert speech condition was significant in 4 
out of 7 individuals (p<0.05; Hotelling’s t-test; p>0.1 for non-significant subjects; Figure 14B). At 
the population level, the overall reconstruction accuracy across the three conditions (overt, 
covert and baseline control) was significantly different (F (2, 18) = 62.1, p<10-6; one-way ANOVA). 
Post-hoc t-tests confirmed that covert speech reconstruction accuracy was significantly lower 
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than overt speech reconstruction accuracy (rcovert = 0.46 < rovert = 0.66, p<10-5; Fisher’s Z 
transform followed by a paired two-sample t-test), but higher than the baseline control 
condition (rcovert = 0.46 > rbaseline = 0.42, p<0.005; Fisher’s Z transform followed by a paired two-
sample t-test).  

 

Figure 16 - Overt and covert speech identification. Median identification rank for each subject during 

overt speech, covert speech and baseline control conditions (see section 2.5 for more details). At the 

group level, rankovert = 0.91 and rankcovert = 0.55 are significantly higher than chance level (0.5; 

randomization; grey dashed line), whereas rankbaseline=0.48 is not significantly different. 

Informative Areas 

Significant informative areas (map thresholded at p<0.05; Bonferroni correction), quantified by 
the electrode-specific reconstruction accuracy (see section 2.5 for details) are shown in Figure 
17. As observed in the overt condition, brain areas involved in covert spectrotemporal decoding 
were also concentrated around STG, pre and post central gyri.  

Anatomical differences between overt and covert informative areas were assessed for 
significant electrodes (either overt, covert or both conditions; p<0.05; Bonferroni correction), 
using an unbalanced two-way ANOVA, with experimental condition (overt and covert speech) 
and anatomical region (superior temporal gyrus, pre- and post-central gyrus) as factors. Figure 
18 shows significant electrodes across subject, co-registered with the Talairach brain template 
(Lancaster et al., 2000). The main effect of experimental condition was significant for the 
spectrogram-based (F (1, 116) =19.6, p<10-6) and modulation-based reconstructions (F (1, 156) =16.9, 
p<10-4), indicating that the magnitude of reconstruction accuracy for overt speech 
(spectrogram: mean difference with baseline (r) = 0.06; modulation: mean difference = 0.1) was 
higher than for covert speech (spectrogram: mean difference = 0.006; modulation: mean 
difference = 0.01) at the level of single electrodes. The main effect of anatomical region was 
also significant (spectrogram: F (2, 116) =3.22, p<0.05, and modulation: F (2, 156) =3.4, p<0.05). 
However, post hoc t-tests with Bonferroni correction indicated no differences in accuracy at the 
level of p=0.05: STG (spectrogram: mean difference = 0.05; modulation: mean difference = 
0.07), pre (spectrogram: mean difference = 0.02; modulation: mean difference = 0.05), and 
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post-central gyrus (spectrogram: mean difference = 0.02; modulation: mean difference = 0.01). 
The interaction between gyrus and experimental condition was significant for the modulation-
based reconstruction (F (2, 156) =3.6, p<0.05) and marginally significant for the spectrogram (F (2, 

116) =2.92, p=0.058). In the modulation representation, the overt condition resulted in 
significantly higher accuracy than the covert condition for the STG (mean difference = 0.12; 
p<10-5), but not for the pre-central (mean difference = 0.06; p>0.05) or the post-central gyrus 
(mean difference = 0.02; p>0.05). This suggests that STG is the cortical area where the 
spectrotemporal representations of overt and covert speech have the largest absolute 
difference in reconstruction accuracy. Understanding the differences in the neural 
representations of overt and covert speech within STG is therefore a key question toward 
improving the spectrotemporal decoding accuracy of covert speech.  

 

Figure 17 - Covert speech informative areas. Reconstruction accuracy correlation coefficients 
were computed separately for each individual electrode and for both covert and baseline 
control conditions (see section 3.1.3 and 3.2.3 for details). The plotted correlation values are 
calculated by subtracting the correlation during baseline control from the covert condition. The 
informative area map was thresholded to p<0.05 (Bonferroni correction)(A) Spectrogram-based 
reconstruction accuracy (B) modulation-based reconstruction accuracy.  
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Figure 18 - Region of interest analysis of significant electrodes. Significant electrodes (either overt, 

covert or both; p<0.05; Bonferroni correction) in STG, Pre- and Post-central gyrus across subjects, co-

registered with the Talairach brain template (Lancaster et al., 2000). 

Discussion 
We evaluated a method to reconstruct overt and covert speech from direct intracranial brain 
recordings. Our approach was first to build a neural decoding model from self-generated overt 
speech, and then to evaluate whether this same model could reconstruct speech features in the 
covert speech condition at a level of accuracy higher than expected by chance. This technique 
provided a quantitative comparison of the similarity between auditory perception and imagery 
in terms of neural representations based on acoustic frequency and modulation content. Our 
results indicated that auditory features of covert speech could be decoded from models trained 
from an overt speech condition, providing evidence of a shared neural substrate for overt and 
covert speech. However, comparison of reconstruction accuracy in the two conditions also 
revealed important differences between overt and covert speech spectrotemporal 
representation. The predictive power during overt speech was higher compared to covert 
speech and this difference was largest in STG sites consistent with previous findings of a partial 
overlap of the two neural representations (Geva, Jones, et al., 2011; Huang et al., 2002; Pei et 
al., 2011; Shuster & Lemieux, 2005). In addition, we compared the quality of the 
reconstructions by assessing how well they could be identified. The quality of overt speech 
reconstruction allowed a highly significant identification, while in the covert speech condition, 
the identification was only marginally significant. These results provide evidence that 
continuous features of covert speech can be extracted and decoded from ECoG signals, 
providing a basis for development of a brain-based communication method for patients with 
disabling neurological conditions.  

Previous research demonstrated that continuous spectrotemporal features of auditory stimuli 
could be reconstructed using a high gamma neural-based decoder (Pasley et al., 2012). In this 
study, we analyzed auditory stimuli from self-generated speech as opposed to external auditory 
stimulation. During self-produced speech, neural activity in human auditory cortex is reported 
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to be suppressed (Creutzfeldt, Ojemann, & Lettich, 1989) (Flinker et al., 2010) which has been 
attributed to the effect of efference copy or corollary discharge sent from the motor cortex 
onto sensory areas (Jeannerod, 2003). Despite this effect, we observed that high gamma 
activity in the superior temporal gyrus, pre- and post-central gyrus during vocalization was 
sufficient to reliably reconstruct continuous spectrotemporal auditory features of speech.  

There is accumulating evidence that imagery and perception share similar neural 
representations in overlapping cortical regions (Palmer et al. 2001; Yetkin et al. 1995; Rosen et 
al. 2000; Aziz-Zadeh et al. 2005; Cichy et al. 2012; Geva et al., 2011c) . It has been proposed 
that an efference copy is generated from the motor cortex through motor simulation and sent 
to sensory cortices enabling a comparison of actual with desired movement and permitting 
online behavioral adjustments (Jeannerod 2003). Similar accounts have been proposed in 
speech processing (Guenther et al., 2009; Hickok, 2001; Price, 2011; Tian & Poeppel, 2012). 
Higher order brain areas internally induce lower level sensory cortices activation, even in the 
absence of actual motor output (covert). The anatomical results reported here are in 
agreement with these models. The relationship between overt and covert speech 
reconstruction depended on anatomy. High gamma activity in the superior temporal gyrus, pre- 
and post-central gyrus provided the highest information to decode both spectrogram and 
modulation features of overt and covert speech. However, the predictive power for covert 
speech was weaker than for overt speech. This is in accordance with previous research showing 
that the magnitude of activation was greater in overt than in covert speech in some perisylvian 
regions (Palmer et al., 2001; Partovi et al., 2012; Pei et al., 2011) possibly reflecting a lower 
signal-to-noise ratio (SNR) for HG activity during covert speech. Future work is needed to 
determine the relative contributions of SNR vs. differences in the underlying neural 
representations to account for discrepancies between overt and covert speech reconstruction 
accuracy. 

A key test of reconstruction accuracy is the ability to use the reconstruction to identify specific 
speech utterances. At the group level, using covert reconstructions, identification performance 
was significant, but at a weaker level (p=0.032) than overt speech identification (p<10-4). At the 
individual level, covert speech reconstruction in one subject (out of seven) was accurate 
enough to identify speech utterances better than chance level. This highlights the difficulty in 
applying a model derived from overt speech data to decode covert speech. This also indicates 
that the spectrotemporal neural mechanisms of overt and covert speech are partly different, in 
agreement with previous literature (Aleman, 2004; Basho, Palmer, Rubio, Wulfeck, & Müller, 
2007; Pei et al., 2011; Shuster & Lemieux, 2005). Despite these difficulties, it is possible that 
decoding accuracy may be improved by several factors. First, a major difficulty in this approach 
is the alignment of covert speech reconstructions to a reference speech segment. Variability in 
speaking rate, pronunciation, and speech errors can result in suboptimal alignments that may 
be improved by better alignment algorithms or by more advanced automatic speech 
recognition techniques (e.g., Hidden Markov Models). Second, a better scientific understanding 
of the differences between overt and covert speech representations may provide insight into 
how the decoding model can be improved to better model covert speech neural data. For 
example, the current study uses a simple model that assumes the auditory representation of 
covert speech imagery is equivalent to that of overt speech. If systematic differences in 
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spectrotemporal encoding can be identified during covert speech, then the spectrotemporal 
tuning of the decoding model can be biased to reflect these differences in order to optimize the 
model for covert speech data. Further investigation of the differences in overt and covert 
spectrotemporal neural representation offers a promising avenue for improving covert speech 
decoding.  
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Chapter 4 – Encoding models reveal tuning plasticity in human 
auditory cortex 

Introduction 
In this chapter we move from the world of decoding towards encoding. This is a process by 
which we attempt to uncover the subset of stimulus features that elicit patterns of recorded 
neural activity. It is possible to use this approach to describe the tuning properties of neural 
activity. This chapter describes an attempt to use this encoding modeling framework in 
electrocorticography electrodes for the purposes of studying tuning plasticity in response to 
degraded speech. 

Citation 

Holdgraf, C. R., de Heer, W., Pasley, B., Rieger, J., Crone, N., Lin, J. J., Knight, R.T., Theunissen, F.E. 
(2016). Rapid tuning shifts in human auditory cortex enhance speech intelligibility. Nat. 
Commun. 7, 13654. doi:10.1038/ncomms13654. 

Abstract 
Experience shapes our perception of the world on a moment-to-moment basis. This robust 
perceptual effect parallels a change in the neural representation of stimulus features, though 
the nature of this representation and its plasticity are not well-understood. Spectrotemporal 
receptive field (STRF) mapping describes the neural response to acoustic features, and has been 
used to study contextual effects on auditory receptive fields in animal models. We performed a 
STRF plasticity analysis on electrophysiological data from recordings obtained directly from the 
human auditory cortex. Here we report rapid, automatic plasticity of the spectrotemporal 
response of recorded neural ensembles, driven by previous experience with acoustic and 
linguistic information and with a neurophysiological effect in the sub-second range. This 
plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of 
more speech-like features from a degraded stimulus and providing the physiological basis for 
the observed “perceptual enhancement” in understanding speech.  
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Introduction 
Auditory perception encompasses a sequence of feature extraction steps, with increasingly 
complex acoustic features extracted at each stage of neural processing (Eggermont, 2001; 
Theunissen & Elie, 2014). Auditory neuroscientists have used synthetic and natural sounds as 
stimuli while recording the neural activity of single auditory neurons to investigate the nature 
of these computations. This research has led to an understanding of cortical auditory 
processing as a modulation filter bank (Chi, Ru, & Shamma, 2005). At the level of auditory 
cortex, sounds are decomposed not only in frequency channels (as in the auditory periphery) 
but also in terms of join spectral and temporal modulations. The filters in this modulation filter 
bank are the neurons’ spectro-temporal receptive fields or STRFs (Depireux, Simon, Klein, & 
Shamma, 2001; L. M. Miller, Escabí, Read, & Schreiner, 2002; Theunissen, Sen, & Doupe, 2000). 
The decomposition of sounds into a modulation filter bank facilitates many tasks, including the 
discrimination of speech from non-speech (Mesgarani, Slaney, & Shamma, 2006) and the 
extraction of communication signals from noise (Moore, Lee, & Theunissen, 2013). 

Several studies have examined a STRF based feature representation at different levels of the 
auditory hierarchy (Atencio, Sharpee, & Schreiner, 2012; L. M. Miller et al., 2002; Woolley, 
Fremouw, Hsu, & Theunissen, 2005), but it is less understood if and how these representations 
interact with each other. For example, the presence of a higher-level response (such as the 
recognition of task-relevant stimuli) may alter the way that stimulus features are represented 
at lower levels in the auditory processing stream (Gilbert & Sigman, 2007). It has been shown 
that the tuning of auditory neurons change during behavioral tasks (Fritz, Shamma, Elhilali, & 
Klein, 2003; Rabinowitz, Willmore, King, & Schnupp, 2013; Rabinowitz, Willmore, Schnupp, & 
King, 2011; Shamma & Fritz, 2014), revealing that the STRFs describing this tuning are plastic.  
Further, neuroanatomical (Atiani et al., 2014; Coull, Frith, Büchel, & Nobre, 2000; Davis & 
Johnsrude, 2007) and neurophysiological (David, Fritz, & Shamma, 2012; Yin, Fritz, & Shamma, 
2014) research have highlighted the importance of top-down mechanisms for inducing such 
task-dependent STRF plasticity.  These results were all obtained from single-unit recordings in 
animal models, and top-down manipulation was generally modulated with active attentional 
manipulations or task-relevant demands.  

Human speech perception is another area in which top-down and bottom-up mechanisms are 
in constant interplay (Block & Siegel, 2013; Cusack, Deeks, Aikman, & Carlyon, 2004; Schroeder, 
Wilson, Radman, Scharfman, & Lakatos, 2010). The act of understanding speech requires that 
auditory information entering the auditory periphery is interpreted through the lens of 
previous experience with natural sounds and language. It is assumed that this experience plays 
a role in shaping the response to speech in the cortex. Recent research using human 
electrophysiology has shown that experience with sound or contextual information about its 
content corresponds to differing patterns of low-frequency activity in both auditory and 
premotor cortex. For example, activity in the theta band of neural signals is reported to track 
the temporal structure in the speech envelope (Fontolan, Morillon, Liegeois-Chauvel, & Giraud, 
2014; Giraud & Poeppel, 2012; Gross et al., 2013) and this tracking increases as noise levels are 
decreased in the speech stimulus (Peelle, Gross, & Davis, 2013). In addition, power in theta and 
beta frequency bands have been implicated in top-down processing during speech perception 
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(Fontolan et al., 2014). It has been suggested that these signals reflect the brain’s attempt to 
find relevant information in the speech signal, and to filter out noise or competing auditory 
streams (Lakatos et al., 2013). While these approaches delineate differing patterns of neural 
activity that reflect top-down processes, they do not quantify changes in the spectro-temporal 
tuning of cortical activity, a feature representation that is believed to be encoded in auditory 
cortical neurons.  

To investigate how contextual effects modulate auditory cortical activity, it is necessary to 
investigate the feature representations that are encoded in auditory brain areas.  STRF models 
have been used as a standard for characterizing the tuning of neurons in primary auditory 
cortex (Theunissen & Elie, 2014).  Recent research has shown that STRF modeling may be 
applied to human electrocorticography (ECoG) in order to characterize the spectrotemporal 
tuning of electrodes in response to speech  (Hullett, Hamilton, Mesgarani, Schreiner, & Chang, 
2016; Martin et al., 2014; Pasley et al., 2012) and to investigate plasticity in the auditory cortical 
response  (Mesgarani & Chang, 2012). In particular, the high-frequency broadband (HFB; 70-
150 Hz) component recorded with ECoG has both the spatial resolution to localize activity to 
discrete regions of the brain, and the temporal resolution to resolve the fine-grained pattern of 
acoustic features. HFB is believed to reflect local cortical activity typically obtained with 4-10 
mm electrode spacing  (Wodlinger, Degenhart, Collinger, Tyler-Kabara, & Wang, 2011). HFB 
activity is felt to represent a broadband increase in power, most readily detected in frequencies 
centered from 70-150Hz (K. J. Miller, Zanos, Fetz, den Nijs, & Ojemann, 2009). This permits 
using HFB activity in ECoG to study the representation of spectro-temporal speech features in 
human auditory cortex and investigate how this representation changes during language 
processing. 

Here, we perform a passive listening speech task in electrocorticography subjects. In this task, 
subjects hear degraded speech before and after experience with an unfiltered speech context. 
We first document that perceptual enhancement to the degraded sound is boosted after 
experience with the unfiltered speech, enabling speech comprehension. We then use STRF 
modeling techniques to investigate if this perceptual enhancement coincides with a shift in 
auditory cortical tuning to spectrotemporal speech features. We use regularized regression 
techniques to estimate a STRF for each recoding electrode. It is estimated that the HFB activity 
of a single electrode reflects the activity of hundreds of thousands of neurons (Crone, 
Korzeniewska, & Franaszczuk, 2011; Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008). Thus, we 
effectively calculate an ensemble spectrotemporal receptive field, which we refer to as an 
eSTRF. We subsequently use this acronym to explicitly distinguish our results from those 
obtained with single auditory units. We show that providing an unfiltered speech context prior 
to a degraded speech stimulus causes an automatic, rapid shift in auditory cortical eSTRFs, 
enhancing their sensitivity to speech features. These findings provide evidence of an automatic 
mechanism in which experience with a contextually appropriate speech sentence causes 
behavioral perceptual enhancement for subsequent degraded speech signals, along with a 
tuning shift towards speech-specific spectrotemporal auditory features in auditory cortical 
areas. 
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Figure 19 - Stimulus Creation By Filtering Modulation Power Spectrum 

(A) The modulation power spectrum describes the oscillatory patterns present in a time-frequency 

representation of sound. Left, the spectrogram of unfiltered speech is shown. Right, the modulation power 

spectrum (MPS, calculated from a 2-D FFT) is shown. Patterns in the spectrogram are reflected as 

power in temporal or spectral axes of the MPS. Rapid spectral fluctuations (e.g., harmonic stacks from 

pitch, 1) are represented near the middle/top of the MPS. Rapid temporal fluctuations (e.g., plosives, 2) 

are represented near the bottom/sides of the MPS. Joint spectral/temporal fluctuations (e.g., rising pitch 

and phoneme changes, 3) are represented in the upper corners of the MPS. (B) Left column: Filtered 

speech was created by filtering either spectral (top) or temporal (bottom) regions of the MPS space. 

MIDDLE column: spectrograms of the resulting filtered speech is shown. Right column: re-calculating 

the MPS on the filtered speech spectrogram shows that the MPS is now lacking power in the filtered 

regions. 
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Results 

ECoG Behavioral Task 

A passive listening filtered-speech task was used to study the neural response to degraded 
speech before and after hearing an unfiltered speech context. Filtered speech stimuli were 
created by filtering out portions of the Modulation Power Spectrum (MPS) of each sentence 
(see Figure 1, Methods and Supplementary Audio File 1) with low-pass filters. The corner 
frequency of each filter was chosen to render speech unintelligible by removing key spectral or 
temporal modulations (Elliott & Theunissen, 2009).  Electrocorticography subjects (n=7) heard a 
filtered version of a speech utterance (hereafter described as the BEFORE condition), followed 
by an unfiltered version of the sound (MIDDLE condition), and finally by a repetition of the 
filtered version (AFTER condition). The first filtered speech presentation is incomprehensible, 
while the second filtered speech presentation is understandable due to experience with the 
unfiltered speech context. See Figure 20 for a description of task design. 

Behavioral Control Study 

Due to limitations of the ECoG recording environment, it was not possible to obtain behavioral 
response data from ECoG patients, and a separate task was performed on control subjects to 
validate and quantify the perceptual effects generated in our stimuli sequences. In one task, 
subjects heard a single filtered version of each stimulus (with no unfiltered speech context), 
and were asked to type any words that they understood.  The percent correct was calculated 
for each sentence. Without any unfiltered speech context, subjects recognized 3.5 +/- 0.4% of 
filtered speech words, replicating previous studies with the same filtering technique (Elliott & 
Theunissen, 2009).  In a second task, subjects listened to filtered speech sentences along with a 
number of different context sentences, mimicking the “filtered-unfiltered-filtered” structure of 
the behavioral task that the patients performed. Subjects typed out any words that they 
understood after the second presentation of the filtered speech sentence. Without any context, 
subjects understood 4.53 +/- .82% words. When they were given a contextual sentence that 
was different from the filtered speech sentence, subjects understood 10.5 +/- 1.3% words, 
representing the perceptual enhancement due to stimulus repetition or general activation of 
auditory streams involved in the processing of intact speech. When the contextual sentence 
was the same sentence as the filtered speech, subjects understood 77.7 +/- 1.5% of words. As 
such, there was a roughly 67.2% increase in comprehension relative to hearing a different 
contextual sentence, representing the perceptual enhancement we focus on in this paper (two-
sample t-test, p=1e-5, df=16).  This perceptual enhancement reflects multiple speech processes, 
including the recent activation of the auditory stream in response to clean speech (as in the 
different sentence case) as well as the activation of cognitive areas involved in language 
processing resulting from speech comprehension (see Figure 20 and Supplementary Figure 1). 
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Figure 20 - Behavioral task and speech intelligibility results (A) Trials consisted of three steps: 

BEFORE, MIDDLE, AFTER. In the first step called BEFORE (left column), subjects heard a filtered 

speech stimulus that lacked the key modulations for speech intelligibility. Stimuli were filtered either with 

a spectral modulation filter (top), removing spectral envelope modulations above 0.5 cycles/kHz or a 

temporal modulation filter (bottom), removing temporal envelope modulations above 3 Hz (see methods). 

In the second step called MIDDLE (center column), subjects heard the unfiltered version of the spoken 

sentence. A subset of 3 subjects had a 50% chance of hearing either the unfiltered version or pink noise 

with a matched frequency power spectrum. In the third step called AFTER (right column), the same 

filtered speech stimulus was repeated. Subjects attended to a fixation cross presented during each 

stimulus and passively listened to the presented sounds. (B) In a separate behavioral task, non-clinical 

subjects were asked to type any words they heard after the first filtered speech presentation (BEFORE 

and here labelled No Context), after a filtered speech sentence that followed a different unfiltered 

sentence (AFTER with Wrong Context), or after a filtered speech sentence that followed the matching 

unfiltered sentence (AFTER with Right Context). Mean +/- standard error % words correct is shown. 

More details and results obtained using other contextual stimuli to further explore the stimulus 

information required for the perceptual enhancement can be found in Supplementary Figure 1 and 

methods. 

High-Frequency Broadband Activity 

All analyses in this study were based on the on high-frequency broadband activity (HFB; 70-
150Hz) of Electrocorticographic (ECoG) recordings. This HFB signal is characterized by increase 
in power across a large range of frequencies, and reflects local neuronal firing within ~2mm of 
each electrode, representing the combined activity of ~500,000 cortical neurons (Crone et al., 
2011; Wodlinger et al., 2011). HFB can provide low-noise single-trial evoked responses (see 
Figure 24, as well as Supplementary Movie 1 and 2) that has been used for speech decoding 
and encoding models in humans (Mesgarani & Chang, 2012; Pasley et al., 2012), making it a 
good candidate for STRF modeling (see Supplementary Figure 4). 

To define speech-selective electrodes, the mean post-stimulus HFB activity was first calculated 
for every speech trial.  For each electrode, we used standard bootstrapping methods to 
calculate a bootstrap distribution of its mean evoked HFB activity across trials. The .5th 
percentile of this distribution was then calculated as a lower bound on post-stimulus activity 
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(corresponding to a 99% confidence interval). This process was repeated for each electrode, 
and electrodes with a lower bound greater than 0 were defined as speech selective. A subset of 
electrodes in each subject had significant responses to speech stimuli over baseline (confidence 
interval test across trials, see Figure 21), generally centered around perisylvian regions. These 
electrodes are subsequently called speech-responsive (Speech-R) and made up 92 of 468 total 
electrodes (19.6%, see Supplementary Figure 2). 

For all Speech-R electrodes on temporal and perisylvian cortex, the mean difference in HFB 
activity between the BEFORE and AFTER conditions was estimated. There was a significant 
increase in HFB activity in the AFTER condition (cluster-based permutation test, p=.003, see 
Figure 2B). This increase in activity could reflect sentence independent changes in arousal (e.g., 
increased HFB activity to any auditory stimuli), or changes due to the activation of speech and 
language network resulting in a shift in gain or tuning of speech features in the degraded signal.  
However, only changes in tuning would lead to sentence specific (and in our experimental 
paradigm, trial by trial) effects. In subjects that also had pink noise control trials, there was no 
difference in evoked HFB activity between the AFTER and BEFORE conditions (see 
Supplementary Figure 3A). 

 

Figure 21 - Evoked High Frequency Broadband (HFB) activity - (A) Mean HFB activity for each 

condition (BEFORE filtered - orange; MIDDLE unfiltered - grey; AFTER filtered - green). Individual 

traces are mean for each temporal lobe electrode. Shaded color traces are grand mean +/- standard 

error across all electrodes. Units are z-scores over baseline. (B) Grand mean +/- standard error for all 
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active temporal lobe electrodes in each condition. The difference between AFTER and BEFORE 

conditions is shown in purple. Shaded regions represent significant differences between BEFORE and 

AFTER conditions (cluster-based permutation test, p=.003, n=92,  see methods). (C) Electrode coverage 

and average HFB activity for each subject. Electrode colors/sizes represent the mean evoked HFB 

activity. Dark outlines show electrodes with HFB activity significantly different from zero (two-tail 

permutation test , p<0.01), called Speech-R electrodes.  These electrodes had reliable increases in 

activity in response to speech stimuli. Speech-R electrodes located on the temporal lobe and perisylvian 

regions were included in eSTRF analyses. 

Between-condition HFB Coherence 

We next investigated whether the difference between the BEFORE and AFTER condition was 
only reflected in an overall increase in HFB amplitude or if there was also a difference in the 
time-varying details of each response. We hypothesized that HFB activity in the AFTER 
condition would be more similar to the activity in the MIDDLE condition (AFTER/MIDDLE) 
compared with the BEFORE condition (BEFORE/MIDDLE) on a trial by trial basis (i.e. for 
individual sentences). This would provide evidence that speech-responsive electrodes 
responded to features in the filtered speech stimulus that were also present in the unfiltered 
speech context stimulus. 

The time-varying coherence between the BEFORE/MIDDLE and AFTER/MIDDLE HFB activity in 
each trial was estimated in order to quantify the similarity in the responses. The between-
condition coherence for successive windows of 400ms was calculated to evaluate the time 
course of evoked HFB similarity for each trial, then averaged across trials to calculate the 
coherence for each time bin between the BEFORE/MIDDLE and AFTER/MIDDLE conditions for 
each electrode over peri-sylvian cortex. The coherence between AFTER/MIDDLE was higher 
than the coherence between BEFORE/MIDDLE, indicating it was not only the mean amplitude, 
but also the time-varying activity that was changing from BEFORE to AFTER (permutation test, 
p=.006, n=78; see Figure 3, bottom row for all comparisons).  These differences in coherences 
could still be due to an overall change: the time-varying response averaged across all 
trials/sentences could be more similar to the MIDDLE (clean speech) condition in the AFTER 
than the BEFORE condition.  This could happen if speech intelligibility resulted in simple 
changes in gain or if the response as measured in the HFB to intelligible clean speech was 
invariant across sentences. This increase in similarity would then be reflected in individual trial 
responses and result in increases in our coherence estimates. However, in electrodes for which 
the HFB response is sensitive to spectro-temporal features of sounds, one could expect to find 
an additional time-varying response that is sentence specific. To distinguish global changes 
from changes in sentence specific responses, the same between-condition coherence analysis 
was performed after subtracting the time-varying averaged HFB response across all 
trials/sentences for each electrode. After subtracting this global response in each electrode, a 
significant increase in coherence between the responses in the AFTER/MIDDLE conditions 
remained (see Figure 22). This finding shows that the time-varying and sentence specific 
response in each trial in the AFTER condition becomes more similar to the corresponding 
response to the unfiltered speech found in the MIDDLE condition and the effects are not simply 
due to global enhancement in neural activity. 
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Figure 22 - HFB Similarity Between Conditions (A) Upper plot, time-varying integrated coherence (in 

bits/s, see methods) in the evoked HFB response was calculated between pairs of conditions. Coherence 

was calculated for 400ms windows in 200ms steps. BEFORE/MIDDLE condition is shown in the left 

subpanels (mean +/- standard error across active electrodes), AFTER/MIDDLE condition in the middle 

subpanels, and the difference (AFTER/MIDDLE - BEFORE/MIDDLE) is shown on the right subpanels. 

Lower plot, average coherence values are shown for three time periods of interest: -1 to 0 seconds (left), 

0 seconds to 1 second (middle), and 1 second to 2.5 seconds (right). Color and size of points represent the 

difference AFTER - BEFORE. Inactive electrode values are shown in gray, p-value reflects the difference 

of condition (AFTER/MIDDLE – BEFORE/MIDDLE). Histograms below show the distribution of AFTER 

- BEFORE for active electrodes (red) and inactive electrodes (grey). Trial to trial coherence is higher 

between the AFTER/MIDDLE condition for both post-stimulus windows. (B). Same as in (A), but after 

subtracting the average evoked response for each electrode. This compares coherence after accounting 

for global effects in evoked activity that are observed for all stimuli (see main text). Post-stimulus 

coherence is larger between the AFTER/MIDDLE conditions (permutation test for all comparisons, see 

bottom histograms for p-values). 

eSTRF Modeling 

If the changes in the pattern of high-frequency activity in the AFTER condition relative to the 
BEFORE condition are related to increased speech comprehension, the AFTER activity should be 
more similar to the one found in response to clean speech, just as was observed. To further 
investigate this hypothesis, we next calculated the eSTRFs of all active temporal cortex 
electrodes in order to detect if they exhibited tuning plasticity related to an increase in speech 
comprehension.  We estimated eSTRFs from stimulus-response (HFB) signals in each condition 
(BEFORE, MIDDLE, and AFTER). We hypothesized that, relative to the BEFORE condition, eSTRFs 
in the AFTER condition would shift to be more responsive to unfiltered speech features, 
providing a potential mechanism for extracting speech-like features from sound and the 
perceptual enhancement.  

eSTRF models were fit for each electrode using a jackknife approach. On each iteration one trial 
was left out and the model was fit on the remaining trials.  The held-out trial was then used to 
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estimate a goodness of fit (here the coefficient of determination, 𝑅2) and its 99% confidence 
intervals. Electrodes with a confidence interval that did not overlap with 0 were considered to 
be electrodes “well-modeled” by the STRF and called STRF-Responsive (STRF-R) electrodes. This 
yielded 53 of 468 total electrodes (11.3%, see Supplementary Figure 2). The STRF-R electrodes 
were also generally localized on perisylvian temporal lobe regions (see Figure 23 for anatomy 
and Figure 24 for model score distribution).  

 

Figure 23 - eSTRF model fitting and goodness of fit across electrodes (A) Example of model fitting 

procedure. Auditory spectrograms of sound and evoked HFB activity (top, first/second columns) is used 

to fit a linear regression model, resulting in a set of model coefficients (eSTRF, lower left). This eSTRF is 

convolved with a held out auditory spectrogram (top, third column) to generate a predicted HFB activity 

trace (lower right). The goodness of fit (cross-validated R2) is calculated between the predicted response 

and the actual HFB activity in the held out trial (top, fourth column). This process is repeated, leaving 

out a different trial, until all trials have been included in the test set. (B) Average goodness of fit of the 

eSTRF model across subjects and electrodes. Size and color of each electrode represents the average 

model score. Electrodes with black outlines had model scores significantly above 0 (confidence interval 

test across trials) and are designated STRF-responsive (STRF-R) and were included in further eSTRF 
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analyses if they also showed increased HFB activity (Speech-R, see Figure 3). See Supplementary Figure 

2 for a comparison of Speech-R and STRF-R electrodes).  Negative values of cross-validated R2 can 

occur if parts of the neural signal that are not correlated with the stimulus spectrogram are overfit.  Note 

that negative values of 𝑅2 are small and not significantly different from zero as expected, see Figure 24 

for distribution of all 𝑅2 values. 

The coefficients of each eSTRF model (i.e. the specific spectrotemporal gains) were analyzed in 
order to investigate the nature of the specific spectro-temporal tuning of each electrode. To be 
included in subsequent analyses, an electrode had to: 1) show evoked HFB activity in response 
to speech (Speech-R, described above and shown in Figure 21); 2) be well-modeled by 
spectrotemporal features (STRF-R, described above and shown in Figure 23), and 3) be located 
on the temporal lobe or perisylvian cortex, regions traditionally associated with 
spectrotemporal auditory processing (Mesgarani & Chang, 2012; Pasley et al., 2012; Zatorre, 
Belin, & Penhune, 2002). This yielded 41 of 468 total electrodes (8.76%, see Supplementary 
Figure 2). 

 

Figure 24 - Single-trial high-frequency broadband activity and relation to model scores (A) Sample 

HFB activity for three active STG electrodes. Plots show stacked epoch plots of HFB activity, sorted by 

activity onset time. An increase in HFB activity is seen at the single trial level. Below, HFB activity from 

each trial (z-score over baseline) is shown. Temporal electrodes with high HFB activity and high model 

scores are plotted in red, and were included in eSTRF analyses (see methods). Electrodes that did not 

meet these criteria are plotted in grey. (B) Top: Mean HFB activity (z-score over baseline, x-axis) are 

plotted against Model scores (Cross-validated Coefficient of Determination, 𝑅2, y-axis) for each 

electrode. Bottom: Bar graph showing the number of electrodes that had significant eSTRF predictions 

per subject. Color represents anatomical location, with most electrodes lying on the temporal lobe. 
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Peaks in the eSTRFs were distributed across a wide range of frequencies, and eSTRFs were not 
well-characterized by simple shapes (e.g. Gabor functions) as seen in typical single unit STRFs  
(L. M. Miller, Escabí, Read, & Schreiner, 2001; Woolley, Gill, Fremouw, & Theunissen, 2009). 
This is likely due to the fact that the HFB activity represents the combined firing of ensembles of 
many thousands of neurons in cortical columns (Crone et al., 2011)  (see Figure 25 for 
examples). Sparser eSTRFs have also been obtained from ECoG and single unit data using 
different regularization techniques (David, Mesgarani, & Shamma, 2007; Hullett et al., 2016). 

 

Figure 25 - Sample ensemble spectrotemporal receptive fields (eSTRFs) (A) eSTRFs for multiple 

conditions (columns) and electrodes are shown (rows). The right column shows the change in eSTRF 

(AFTER - BEFORE). The gain of all eSTRFs shown has a color scale in z-score units, where the standard 

deviation is obtained across cross-validation folds. Subsequent analyses compare the similarity between 

the BEFORE/MIDDLE eSTRFs (orange) and the AFTER/MIDDLE eSTRFs (green). 

Shifts in eSTRF Modulation Related to Speech Intelligibility 

To compare the spectral-temporal features present in speech with those extracted by the 
eSTRF, we next estimated the gain of the eSTRF in the spectral and temporal modulation 
domain: the eSTRF Modulation Transfer Function (MTF).  The MTF shows which temporal 
amplitude modulations, which spectral envelope modulations, and which joint spectro-
temporal modulations are emphasized (and equivalently attenuated) in the neural response.  
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The MTF can be compared to the MPS of speech to evaluate the match in tuning between the 
stimulus (here speech) and the neural filters (see Methods as well as  (Singh & Theunissen, 
2003; Woolley et al., 2009)).   The average MTF functions obtained over all of our electrodes for 
the BEFORE and AFTER condition are shown in Figure 26. Qualitatively, one can observe that 
these MTFs are matched to the speech MPS shown in the figure.  Moreover, the MTF of the 
shift in eSTRF (AFTER – BEFORE) averaged across all electrodes emphasizes the region of the 
MTF that was both preserved in the filtered speech and shown to be essential for speech 
intelligibility (Elliott & Theunissen, 2009), suggesting that the observed eSTRF plasticity could 
facilitate speech perception (see Figure 26). 

 

Figure 26 - Modulation Transfer Function (MTF) of eSTRFs The modulation transfer function (or 

modulation gain) of each eSTRF was calculated, then averaged across conditions. eSTRFs were 

estimated separately for temporal-filtered stimuli and for spectral-filtered stimuli. (A) The mean MTF for 

eSTRFs is shown for the BEFORE (1st column) and AFTER (2nd column), condition. Lines represent 5th, 

15th, 85th, and 95th percentiles. The difference in eSTRF was calculated, and the MTF of this difference is 

shown in the 3rd column. The MPS of the actual filtered speech stimuli is shown in the 4th column for 

comparison. Top row are eSTRFs fit on temporal-filtered stimuli, bottom row are eSTRFs fit on spectral-

filtered stimuli. (B) The difference in the MTF for the two filter types (Temporal - Spectral) was 

calculated for each electrode. Z-scores for this difference are shown for each condition. The MTF of each 

eSTRF matches its respective filter type (cluster-based permutation t-test across electrodes, n=41, 

BEFORE p=.001, AFTER p=.003, AFTER-BEFORE p=.001), suggesting that tuning changes emphasize 

spectro-temporal modulation that are present in the degraded speech sound and are crucial for speech 
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intelligibility. Note that these features were also present in the BEFORE stimulus (since BEFORE and 

AFTER stimuli were identical) and in the BEFORE eSTRF (as shown in the MTF for the eSTRF 

BEFORE, left column). This suggests that neural tuning in the BEFORE condition does match filtered 

speech features, and that this is accentuated after hearing the unfiltered speech. 

Filtered Speech eSTRFs Increase Response to Speech Features 

We conducted two additional analyses to quantitatively determine whether the AFTER eSTRFs 
became more sensitive to unfiltered speech features. First, we assessed whether the eSTRF in 
the AFTER condition was more sensitive to unfiltered speech features than the eSTRF in the 
BEFORE condition. Each filtered speech eSTRF (BEFORE and AFTER) was used to calculate a 
predicted response to unfiltered speech. The magnitude of this predicted response reflects the 
extent to which the eSTRF extracts spectrotemporal features that are present in the input 
stimulus, in this case unfiltered speech. The root-mean-squared power of the output in the 
BEFORE and AFTER condition was calculated and compared for each electrode: the power in 
the AFTER condition was higher than power in the BEFORE condition (mean RMS increase 
.12+/- .03, p=.0001, n=41; see Figure 27). 

Next, we used the eSTRFs fit on the unfiltered speech MIDDLE condition to predict HFB activity 
in the BEFORE and AFTER conditions. The predicted HFB activity was compared to the true HFB 
activity to assess how well the unfiltered eSTRF characterized the mapping from acoustic 
features to neural activity. Larger goodness of fit (𝑅2) values indicate that the mapping of 
sound features onto HFB activity is more similar to that of the unfiltered speech condition. 
Goodness of fit scores were higher for the AFTER condition compared with the BEFORE 
condition (mean 𝑅2 improvement .05 +/- .01, p=.0001, n=41; see Figure 27). 

Taken together these results together show that the tuning of electrodes in the AFTER 
condition becomes more similar to tuning acquired in response to unfiltered speech. Moreover, 
this shift in tuning causes the eSTRF to be more responsive to speech-like features of the 
stimulus. 



84 

 

 

Figure 27 - eSTRF changes overlap with speech features Top: Spectrograms of unfiltered speech (A) 

was convolved with the eSTRF fit on each filtered speech condition (B). The size of the predicted response 

(C, left) depends on the overlap between the eSTRF and the unfiltered speech features. Scatterplot (C, 

right) shows the predicted response power between BEFORE and AFTER conditions. Size and color 

represent the difference (AFTER - BEFORE), and inset histogram shows the distribution of differences. 

Bottom: Spectrograms of filtered speech (D) were convolved with the eSTRF fit on unfiltered speech (E), 

resulting in a predicted HFB amplitude for that spectrogram (F, left side, grey trace). This was compared 

with the true HFB activity in each condition (green and orange traces). Correlation between the 

predicted and actual trace reflects the extent to which an unfiltered eSTRF is predictive of the neural 

response. The scatterplot shows the comparison between Predicted and True AFTER vs. Predicted and 

True BEFORE (F, right). Size and color of points represent the difference (AFTER - BEFORE), and inset 

histogram shows the distribution of this difference. 

Filtered Speech eSTRF Shifts Overlap with MIDDLE eSTRFs 

Finally, to directly compare the spectrotemporal tuning between conditions, we calculated the 
similarity between eSTRFs obtained in each condition using partial correlation (see Methods). 
Partial correlation measures the correlation between two variables after removing the linear 
relationship with a third variable.  The partial correlation between the eSTRFs in the 
BEFORE/MIDDLE conditions was estimated after taking into account the eSTRF from the AFTER 
condition, and vice-versa. Partial correlations between AFTER/MIDDLE were higher than 
between BEFORE/MIDDLE (Figure 28A; mean partial correlation improvement .18 +/- .001; 
p=.001, n=41, permutation test) indicating that eSTRFs obtained with degraded speech shifted 
to become more like the eSTRFs obtained with intelligible speech. The majority of the increase 
in partial correlation is located around the STG (see Figure 28C), a region shown in previous 
research to respond to spectrotemporal features in many sounds (Martin et al., 2014; 
Mesgarani & Chang, 2012; Pasley et al., 2012; Zatorre et al., 2002). For subjects that also had 
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pink noise control trials, there was no difference in partial correlation between the BEFORE and 
AFTER condition (see Supplementary Figure 3B). 

 

Figure 28 - eSTRF Similarity Analysis (A) Linear similarity (partial correlation) is shown between 

eSTRFs for the BEFORE/MIDDLE conditions after regressing out the AFTER Condition (x-axis) and the 

AFTER/MIDDLE condition after regressing out the BEFORE condition (y-axis). Electrode color and size 

represent the difference in partial correlations (AFTER/MIDDLE in green, BEFORE/MIDDLE in 

orange). (B) Top: Median (+/- 75th and 25th percentiles) partial correlations between MIDDLE eSTRF 

and the BEFORE (left bar) and AFTER (middle bar) condition, as well as difference in partial 

correlation between AFTER/MIDDLE and BEFORE/MIDDLE conditions (right bar). Bottom: The 

change in partial correlation (AFTER/MIDDLE - BEFORE/MIDDLE) increases as a function of the 

electrode’s goodness of fit with the eSTRF model (Pearson’s r, see figure for stats). (C) Partial 

correlation differences for each subject and each electrode. Model results are restricted to electrodes 



86 

 

located on the temporal lobe. Greener colors reflect a higher partial correlation between eSTRFs in the 

AFTER/MIDDLE conditions. Size of the electrode represents the magnitude of the difference. 

Connectivity Analysis  

We also examined whether the observed eSTRF plasticity was correlated with changes in 
functional connectivity measured across electrodes, providing initial clues for whether the 
tuning shifts could be driven by top-down effects.  For this purpose, we calculated the 
coherence of the HFB amplitude between the electrodes included in the eSTRF analysis and 
groups of electrodes either in temporal or frontal/premotor cortex. There was a small 
significant increase in coherence in the AFTER condition relative to the BEFORE condition.  
Moreover, the coherence in the AFTER condition was closer to that obtained with the unfiltered 
speech (see Supplementary Figure 5A and Supplementary Methods).  These results suggest that 
there may be changes in functional connectivity that are consistent with a state in the AFTER 
condition that is closer to the one found during the perception of intelligible speech, potentially 
explaining the observed changes in the tuning eSTRF for speech like features.  This amplitude 
coherence analysis does not, however, reveal the direction of the effect and it is also possible 
that the changes in auditory tuning cause the observed changes in functional connectivity.  

To examine potential directional effects, we also calculated the Phase Amplitude Coupling 
(PAC) between the phase of the ECoG signal in the 3-8Hz from electrodes in frontal / premotor 
regions and the HFB amplitude for electrodes included in the eSTRF analysis in auditory cortex 
(see Supplementary Fig 5B). We used frequencies from 3 to 8 Hz for the phase calculation as it 
has been suggested that phase in this frequency range may track the envelope of a perceived 
speech stimulus and that the low frequency signal could drive responses in higher frequencies 
(Ding & Simon, 2014; Giraud & Poeppel, 2012; Peelle et al., 2013).  In this analysis, however, we 
did not find significant inter-region cross-frequency activity that was modulated by task 
condition.  

Thus, although changes in functional connectivity were measured both within the temporal 
lobe and between the frontal cortex and the temporal lobe, we are unable at this point to 
distinguish top-down from local or bottom up effects. Additional experiments with greater 
coverage of frontal neural activity and additional analyses are required to determine the 
direction of the information flow that drives the observed plasticity in the temporal lobe and 
perisylvian region. 

Discussion 
After hearing an intact sentence, subjects understand a subsequent noisy version of the same 
sentence that was previously unintelligible. This robust perceptual enhancement is 
characterized by an increase in HFB amplitude, onsetting within 300 milliseconds and sustained 
throughout the speech utterance.  Moreover, the time-varying HFB activity becomes more 
similar to activity during passive listening to unfiltered, intact speech, providing evidence that 
auditory electrodes shift how they track the time-varying properties of the filtered speech. 
Finally, a spectrotemporal analysis of human auditory cortical speech responses (eSTRFs) shows 
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that the perceptual enhancement due to exposure with intact speech is paralleled by a shift in 
spectrotemporal tuning in auditory cortical areas. This shift in tuning overlaps with speech 
features, making the cortical population more responsive to unfiltered speech. 

These results provide novel evidence that experience with language rapidly and automatically 
alters auditory representations of spectrotemporal features in the human temporal lobe. 
Rather than a simple increase or decrease in activity, it is the nature of that activity that 
changes via a shift in receptive fields. This has implications for encoding models of sound 
features in human/animal models, as well as in theories of top-down auditory processing. There 
have been attempts to characterize the neural response to speech under attention-based 
manipulations. For example, Mesgarani and Chang used a decoding approach to estimate the 
spectral representation of sound in the auditory cortex during a task in which subjects attended 
to one of two utterances being played simultaneously (Mesgarani & Chang, 2012). The authors 
reported that the decoded spectrogram became more similar to the speech stream that was 
being attended to, suggesting plasticity in the information encoded in cortical electrodes. This 
effect may be due to enhancing the gain of specific filter channels in the auditory cortex, as we 
have observed here.  The tuning shift can be interpreted as a “spectrotemporal prior” over 
incoming sounds, priming auditory cortical neurons to respond to particular speech-like 
qualities. This interpretation is compatible with higher-level theories of categorical (or 
probabilistic) speech representation, such as such as perceptual warping  (Feldman, Griffiths, & 
Morgan, 2009) 

Relatively rapid changes in auditory STRFs have also been demonstrated in animal models. 
Research that showed task-dependent plasticity in auditory STRFs was initially performed in 
ferrets who were trained to detect target pitches in a go/no-go task (Fritz et al., 2003). More 
recently, it was shown that these auditory STRFs were dynamic and shifted due to concurrent 
top-down and bottom-up demands that depended on particular behavioral tasks (David et al., 
2012). This idea is supported in the current study, which revealed rapid cortical plasticity due to 
the knowledge of high-level auditory features. There have also been studies in animal models 
that report an invariance to signals embedded in different levels of background noise. For 
example, Rabinowitz et al showed that neurons higher in the cortical hierarchy were more 
invariant to noise levels (Rabinowitz et al., 2013). They proposed two separate adaptive gain 
mechanisms by which neurons separate signal from noise in order to be more sensitive to 
relevant stimulus features.  Similarly, in our study, the perceptual enhancement coming from 
experience with unfiltered speech could be thought of as a kind of “signal enhancement” in 
which high-level information causes neurons to vary their gain in order to experience a signal 
with less noise.  

How single-unit STRFs combine to form an ECoG electrode eSTRF is an important next step to 
bridge the gap between the animal and human literature and advance our understanding of the 
neural mechanisms that can drive this cortical STRF plasticity.  Given the dependence of the 
behavioral effect on linguistic attributes, we predict that this rapid, automatic shift in the eSTRF 
originates at least in part from top-down signals in higher-level regions that are part of the 
language network such as auditory association areas (Bornkessel-schlesewsky & Schlesewsky, 
2013; DeWitt & Rauschecker, 2012; Leaver & Rauschecker, 2010; Wassenhove & Schroeder, 
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2012), or in “non-auditory” regions such as the inferior frontal gyrus or premotor cortices 
(Horwitz & Braun, 2004).  

A prior ECoG study suggested that delta-theta power entraining may provide a mechanism for 
using temporal structure of the sound to “chunk” relevant auditory streams and facilitate 
speech processing (Arnal & Giraud, 2012).  This theta power entraining might originate in 
prefrontal cortex and affect lower auditory areas.   Although we found functional connectivity 
effects that were modulated by the task condition, we did not detect inter-regional PAC 
changes that could provide more substantial evidence for direction of the information flow. 
Future research with joint frontal/temporal coverage will be needed to explicate the origin of 
putative top-down processes (e.g. from frontal regions) that might contribute to eSTRF 
plasticity. 

In summary, in this study we demonstrate rapid spectro-temporal plasticity while subjects 
listened to both normal and degraded speech.  We show that the human auditory cortical map 
is highly dynamic and context dependent, and highlight the importance of studying sensory 
cortical responses with behaviorally relevant, naturalistic stimuli (Theunissen & Elie, 2014).   
The dynamical changes observed in these sensory maps are dependent on a spectrotemporal 
prior related to high-level speech features that increases speech signal identification, enabling 
perception of a stimulus that was previously incomprehensible. 

Methods 

Participants and data acquisition  

Electrocorticographic (ECoG) recordings were obtained using subdural electrode arrays 
implanted in 7 patients undergoing neurosurgical procedures for epilepsy (age 22-51; 4F/3M). 
Recordings took place at the University of California at Irvine (UCI), Columbia University (CU), 
and John Hopkins University (JH). All patients volunteered and gave their informed consent 
before testing, and this research was approved by the Committees for the Protection of Human 
Subjects at UC Berkeley, UC Irvine and the Johns Hopkins Medical School. Grid placement was 
determined entirely by clinical criteria (see Figure 21 for reconstructions of subjects). Electrode 
grids had spacing from 5-10mm (Adtech grids), with the following numbers of channels: JH: (48, 
64), IR: (68, 68, 62), CM: (110, 104). 

Multi-channel ECoG data were amplified, analog-filtered above .01Hz, and digitally recorded 
with a sampling rate of 1KHz (JH, CU) or 5KHz (UCI). All channels were subsequently down-
sampled to 1KHz, corrected for DC shifts, and band pass filtered from 0.5 to 200 Hz. Notch 
filters at 60 Hz, 120 Hz and 180 Hz were used to remove electromagnetic line noise. All filters 
were zero-phase IIR filters implemented with the MNE-python toolbox (Gramfort et al., 2013). 
The time series were then visually inspected to remove time intervals containing periodic 
spiking discharges and generalized spiking due to ictal activity. All epileptic channels, as well as 
channels that had excessive noise including broadband electromagnetic noise from hospital 
equipment and poor contact with the cortical surface, were removed from analysis. Finally, 
electrodes were re-referenced to a common average. 
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Brain Mapping of Electrodes 

Each subject had postoperative anterior–posterior and lateral radiographs, as well as computer 
tomography (CT) scans to verify grid locations. Three-dimensional cortical models of individual 
subjects were generated using pre-operative structural magnetic resonance (MR) imaging. 
These MR images were co-registered with the post-operative CT images using Curry software 
(Compumedics, Charlotte, NC) to identify electrode locations. Cortical activation maps were 
generated using custom Python software. 

ECoG filtered speech passive listening task 

ECoG subjects performed a passive listening task that consisted of 50-60 trials. In a single trial, 
the subject fixated on a cross in the middle of a laptop screen. Three sounds were played 
successively through laptop speakers. These followed the pattern “filtered speech (BEFORE)-> 
unfiltered speech (MIDDLE)-> filtered speech (AFTER)”, and the speaker/content of the 
sentence was always the same within a single trial. However, no sentence was repeated within 
the same subject. Each stimulus was 2-5 seconds long. The inter-stimulus interval was randomly 
chosen between .5 and 1.5 seconds on each presentation, resulting in a trial length of 12-16 
seconds. 

In three ECoG subjects, a pink-noise control trial was added to test for the effect of filtered 
speech repetition on electrode tuning. In these trials, the unfiltered speech context (middle 
sound presentation) sentence was replaced with energy-matched pink noise. This trial type 
made up 50% of trials in these subjects. Trials were conducted using the PsychoPy open-source 
toolbox (Peirce, 2008). 

Behavioral Controls for Filtered Speech  

Time constraints in the epilepsy ICU environment precluded detailed behavioral assessment of 
ECoG patients, though post-test, patients typically reported a perceptual enhancement after 
hearing the unfiltered speech stimuli.  An additional behavioral experiment was conducted to 
assess the degree of perceptual enhancement after hearing the unfiltered speech using 
different kinds of MIDDLE context sentences. Subjects were divided into three groups. Each 
subject was asked to listen to speech sentences (explained below) and to type out any words 
they understood. The mean percentage of words for each sentence was calculated for each 
subject, and then compared across groups with an unpaired t-test. The first group (n=5) 
replicated previous intelligibility experiments using the same stimulus set (Elliott & Theunissen, 
2009). Filtered sentences were presented to subjects. AFTER each presentation, subjects were 
asked to type any words that they could understand, and the percent correct of sentence words 
detected was calculated.  

The second group (n=9) was used to control for the effect of stimulus repetition, as well as 
general changes in arousal due to hearing unfiltered speech. Subjects were presented with the 
same trial structure used in the ECoG recordings. The BEFORE/AFTER stimuli were always the 
same filtered speech sentence, and the MIDDLE stimuli was either an unfiltered version of the 
same sentence or of a different sentence. Using a different sentence in the MIDDLE tests for an 
effect of filtered speech repetition, as no linguistic or acoustic context matches the filtered 
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speech sentence. Using the same sentence in the MIDDLE elicits the same perceptual 
enhancement effect reported in ECoG subjects. Subjects were again asked to type as many 
words as they understood and the mean percent correct is reported. The third group of 
subjects (n=15) was used to test linguistic vs acoustic stimulus features on the perceptual 
enhancement effect. Subjects performed the same task as group 2. However, now the filtered 
speech context sentence was either the same sentence spoken by a different-gendered 
speaker, or a different sentence spoken by the same speaker. This provides a coarse split 
between acoustic context (same speaker, different sentence) and linguistic context (same 
sentence, different speaker). Subjects were again asked to type any words they understood. 

Filtered Speech Sound Creation 

Filtered speech was created using a Modulation Transfer Function applied to the joint Spectral-
Temporal Modulation Spectrum of the individual speech sentences as described in  (Elliott & 
Theunissen, 2009). This filtering allows one to remove particular frequencies in the joint 
spectrotemporal envelope of the sound.  Briefly, the raw sound waveform is first converted into 
a time-frequency representation (a spectrogram). Then, a two-dimensional Fourier transform of 
the sound spectrogram converts this representation into a domain that describes the spectral 
and temporal modulations that are present in the spectrogram.  

The temporal modulations correspond to fluctuations of the amplitude envelope of the sound 
such as those produced by words and syllables, while the spectral modulations correspond to 
both coarse (such as speech formants) and fine (such as the harmonics from glottal pulse) 
repeated structures found along the frequency axis (see Figure 19 for a visual explanation).  

Once the sound has been transformed to this space, the gain of a large portion of frequency 
modulations (spectral filter) or temporal modulations (temporal filter) is set to 0 (the phase 
modulation spectrum is left untouched, see Figure 19 for filtering procedure examples and 
Figure 20 for spectrogram examples).  This filtered MPS is converted  to a spectrogram using an 
inverse 2-D Fourier transform, and finally back into a time-varying sound wave using a recursive 
algorithm that selects the appropriate phase shift for each frequency band and recovers the 
unique sound that corresponds to that spectrogram (Elliott & Theunissen, 2009). The result is a 
stimulus that sounds speech-like, but is incomprehensible to the naïve listener. Note that the 
overall frequency power spectrum of the modulation-filtered sounds is unchanged: it is the 
same as the unfiltered sound. 

In this study, two filters were used: a low-pass filter of spectral modulations (.5 cycles / kHz), 
and a low-pass filter of temporal modulations (3 cycles / Hz). The parameters of these filters 
were chosen to remove respectively the spectral structure or the temporal structure that is key 
for speech comprehension (Elliott & Theunissen, 2009). 

Neural and Auditory Feature Extraction 

Our primary analysis consisted of fitting a linear model that predicted patterns of ECoG High 
Frequency Broadband (HFB) amplitude as a function of spectral features. Auditory features 
(inputs to each model) consisted of time and frequency varying amplitudes based on 
psychoacoustic and physiological studies of language processing  (Chi et al., 2005). This 
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“auditory spectrogram” was obtained by estimating the amplitude envelope for 128 narrow-
bands generated by a bank of erb-spaced gammatone filters ranging from 180-7,000 Hz. To 
obtain the envelope of each narrow-band signal, the output of the filter is half-wave rectified, 
followed by a non-linear compression, and spectral sharpening. Finally, the output of each 
frequency band was passed through a leaky integrator with a time constant of 8ms (details on 
the feature extraction can be found in  Chi et al., (2005)). The 128 acoustic frequencies of the 
initial spectrograms were subsequently down sampled to 32 frequency bands to reduce 
dimensionality and computational load.  

Neural activity (outputs of the model) consisted of the envelope of the HFB activity of each 
electrode. A window around 21 center frequencies were defined from 70Hz to 140Hz, with the 
width of each window increasing semi-logarithmically with frequency, following previous 
studies in ECoG encoding models (Bouchard & Chang, 2014). The raw ECoG signal was first 
bandpass filtered for each window using a zero-phase IIR filter. Then, the amplitude of the 
band-passed signal was calculated as the modulus of the Hilbert transform of the signal. Finally, 
the amplitude for each center frequency was averaged together to attain a single time-varying 
estimate of HFB activity (Bouchard & Chang, 2014). Before estimating the linear filter, the audio 
spectral representation and the neural HFB response were downsampled to 50 Hz. 

Evoked HFB and Speech Responsive Electrodes  

For electrode selection, we baselined each trial using times -800 to -100ms relative to sound 
onset. We then calculated the mean post-stimulus activity in each trial. This yielded a single 
value for evoked HFB activity per trial/condition. For each condition,  99% confidence intervals 
on mean evoked activity across all trials were obtained by bootstrapping. Electrodes whose 
lower bound (bootstrapped .5th percentile) were greater than 0 in response to unfiltered 
speech were considered Speech-R electrodes. 

To test for differences in mean HFB activity between conditions, the difference in time-varying 
HFB activity in each trail was calculated and then averaged across trials to obtain a single 
“difference time-varying HFB activity pattern” per electrode. Significance (the null hypothesis 
being no difference AFTER – BEFORE) was estimated using a cluster-based permutation test 
that corrects for multiple comparisons and computes statistics at the cluster level (Maris & 
Oostenveld, 2007). 

Between-condition Coherence 

The similarity in HFB activity between each filtered speech condition (BEFORE/AFTER) and the 
unfiltered speech condition (MIDDLE) was assessed by the measure of coherence. Coherence 
was chosen instead of the cross-correlation coefficient because of its robustness to high-
frequency noise and invariance to systematic phase delays between signals.  Similar results 
were obtained with correlation coefficient analysis (results not shown) but the correlation 
coefficient calculation requires additional assumptions on the relevant temporal scale of 
analysis related to the low-pass filtering needed to extract the lower frequency signals from the 
higher frequency noise.  In the coherence calculation, the estimation of this relevant time scale 
is implicitly performed in a data driven fashion, as the signal to noise is estimated for each 
frequency.  The integral of the coherence (expressed here in bits/s and shown in Figure 22) 
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yields then a measure of overall similarity for two time varying signals  (Hsu, Borst, & 
Theunissen, 2004).  For each stimulus, the time varying coherence between the 
BEFORE/MIDDLE conditions, and between the AFTER/MIDDLE conditions was estimated using a 
multi-taper windowing function (Slepian, 1978) and all the trials.  The coherence was calculated 
for a sliding window of 400ms moving in 200ms steps from -500ms to 2500ms, relative to 
stimulus onset. Unbiased estimates of the coherence for each window were obtained using a 
jackknife method. To compare overall coherence across electrodes, coherence was converted 
to normal mutual information (in bits/second), an information theoretic representation that 
allows for the integration of the coherence across frequency bands (Hsu et al., 2004), which 
takes the following form: 

𝑀𝐼𝑛𝑜𝑟𝑚(𝑓) = −𝑙𝑜𝑔2(1 − 𝑐𝑜ℎ(𝑓)) 

The mean +/- standard error time-varying integrated coherence (in bits/s) was calculated across 
electrodes for each pair of conditions (BEFORE/MIDDLE and AFTER/MIDDLE). Statistics are 
performed for windows of interest on the mean difference in coherence between 
AFTER/MIDDLE and BEFORE/MIDDLE (See Figure 22).  Code for performing the trial-to-trail 
coherence can be found in the Data Availability section. 

eSTRF Model Formulation 

Three eSTRFs were fit from the data obtained from each electrode: one using audio from the 
BEFORE trials, one using MIDDLE trials, and one using AFTER trials. This allowed for the 
comparison of eSTRFs coefficients from one trial type to the next. 

The eSTRF is an encoding model that describes the linear mapping between the speech 
spectrogram and the HFB activity. It models the HFB signal as a weighted sum of the amplitude 
at each frequency band and for a range of points in time as follows: 

𝑅̂(𝑡, 𝑛) = ∑ ∑ 𝑔(𝜏, 𝑝, 𝑛)𝑆(𝑡 − 𝜏, 𝑝)

𝑝𝜏

 

where S(𝑡 − 𝜏, 𝑝) is the estimated speech representation for the frequency band p at time lag 

(𝑡 − 𝜏), with τ being a time lag ranging between 0ms and 400ms. R̂(𝑡, 𝑛) is the estimated HFB 
neuronal response of electrode n at time 𝑡. Finally, g(𝜏, 𝑝, 𝑛) is the linear transformation matrix 
(or set of eSTRFs), which depends on the time lag, feature of interest, and the electrode being 
predicted. 

To obtain the eSTRF, a regularized linear regression algorithm was used. Linear regression 
attempts to find parameter values that capture the relationship between the input and output 
(in this case, stimulus features, and brain activity). It accomplishes this by finding parameters 
that minimize the squared difference between model fit and training data, the minimum square 
error (MSE). The MSE solution is the solution that maximizes the likelihood for Gaussian noise 
distributions.   However, when the number of model parameters is large in comparison to the 
fitting data size, the MSE solution can yield parameter values that are determined by the 
particular data set rather than the underlying relationship (called overfitting). To control for 
this, regression is paired with regularization, a technique that minimizes the tendency of a 
model to overfit data by effectively shrinking the magnitude of parameters.  Shrinkage is 
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obtained by implementing prior distributions on parameters centered at zero.  This prior results 
in an additional penalty term that is added to the MSE. 

In the case of linear Ridge Regression, a single parameter (here referred to as the Ridge 
parameter) controls the penalty incurred by large parameter values. Specifically, Ridge 
Regression includes a penalty term for the L2-norm of parameter weights.  This type of penalty 
corresponds to a Gaussian prior centered at zero for the model parameters, with the Ridge 
Parameter specifying the variance of this distribution. To choose a value of the Ridge 
parameter, experimental trials were repeatedly split into training and test sets using a jackknife 
approach. On each iteration, one trial was left out for model validation. Models were fit on the 
training data for multiple values of the Ridge parameter. All training inputs/outputs were 
standardized to zero mean and unit standard deviation (i.e. z-scored) before model fitting. For 
each model, the goodness of fit was calculated using the coefficient of determination (𝑅2) 
between the predicted HFB response and the actual response in the validation trial. This cross-
validation was performed for all electrodes / conditions, and repeated until all trials had been 
used in the test set, resulting in a distribution of selected ridge parameters yielding the 
maximum 𝑅2. 

To ensure that the prior over model coefficients was the same in all conditions, the mode of the 
distribution of ridge parameters for active electrodes was selected, and all models were re-fit 
with this single value for the ridge parameter using the same cross-validation described above. 
Model coefficients were averaged across all splits for final coefficient estimates. The cross-
validation procedure was also used to calculate t-values of model coefficients by taking the 
mean divided by the standard deviation across CV splits. Code for performing encoding model 
fitting and cross-validation across trials can be found in the Data Availability section. 

It should be noted that eSTRFs reported in this study visually have a slightly greater temporal 
extent than those in a recently published article that used a different (but related) approach to 
electrode receptive field analysis using maximally informative dimensions (Hullett et al., 2016). 
Receptive fields derived from models are sensitive to the assumptions and constraints of that 
model, and one would expect differences in STRF shape when using different models. This 
paper used 𝐿2 regularization (Ridge regression) due to its interpretability, computational 
efficiency, and robustness and prevalence in the literature. Other alternatives such as 
maximally informative dimensions, boosting, or L1 (Lasso) regularization may yield sparser 
STRFs  (David et al., 2007; Hastie, Tibshirani, & Friedman, 2009; Hullett et al., 2016). 

All model fitting was performed with custom code that relied on the Python libraries scikit-learn  
(Pedregosa, Grisel, Weiss, Passos, & Brucher, 2011) and MNE-python  (Gramfort et al., 2013), 
which are built on top of the scipy/numpy stack  (Van Der Walt, Colbert, & Varoquaux, 2011). 

Modulation Transfer Function of eSTRFs 

To investigate whether the eSTRF gain was tuned for spectrotemporal features found in speech 
stimuli, the modulation power spectrum (MPS) of the sounds was compared to the modulation 
transfer function (MTF) estimated for each eSTRF. Similar to a frequency power density 
spectrum, the MPS is obtained from the amplitude of the 2d Fourier transform of the 
spectrogram (Singh & Theunissen, 2003).   It shows the spectro-temporal modulations (in cycles 
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per log-kHz for spectral modulation and in Hz for temporal modulations) that have high and low 
power in a given signal (corresponding to high occurrence and low occurrence).  The MPS is 
invariant to translation and, unlike a spectrogram, can be averaged across samples of a signal to 
describe average properties.  In a similar fashion, the Modulation Transfer Function (MTF) can 
be obtained from the 2d Fourier Transform of a spectrotemporal filter (here the STRF) and, 
without averaging, shows the tuning gain of the filter in the same space as the MPS. 

STRF-Responsive Electrode Selection 

We focused our analyses on electrodes located on the temporal lobe (particularly covering the 
Superior Temporal Gyrus (STG) and Superior Temporal Sulcus (STS). These regions of the brain 
respond to acoustic and linguistic features, and represent the best candidates for detecting a 
shift in spectrotemporal tuning. Responses then underwent several steps to exclude electrodes 
based on their non-significant and/or poorly fit responses. 

The predictive score of all eSTRF models fit on unfiltered (MIDDLE) speech trials was calculated 
as the coefficient of determination (𝑅2) between predicted and actual HFB amplitude on held-
out test data. For each electrode, we calculated the 99th percentile of model score across cross-
validation splits. Electrodes whose lower-bound was greater than 0 were considered 
spectrotemporally-responsive (STRF-R, see Figure 24 and Supplementary Figure 2). 

To be included in the analysis, an electrode had to be Speech-R and STRF-R, and had to be 
located on the temporal lobe and in perisylvian regions (see Supplementary Figure 2). 

eSTRF Comparisons 

To detect an eSTRF tuning shift from the BEFORE to the AFTER condition, several analyses were 
carried out. The goal behind each was to compare the eSTRF properties in the BEFORE and 
AFTER conditions to the neural response in the MIDDLE speech condition. The primary aim of 
all analyses is to determine whether the subjective perceptual enhancement effect corresponds 
to a shift in spectrotemporal tuning to filtered speech. 

MIDDLE Condition Coefficients Generalization 

To assess the extent to which eSTRF plasticity improved the response to the speech signal, we 
estimated the extent to which coefficients fit in the MIDDLE condition (on unfiltered speech) 
generalized to the BEFORE and AFTER conditions. The eSTRF estimated in the MIDDLE condition 
was used to make predictions about the HFB activity in the BEFORE and AFTER condition. In this 
manner, one can determine the extent with which the spectrotemporal tuning estimated from 
unfiltered speech was a valid characterization of the tuning in each filtered condition. 
Predictions were obtained by convolving the eSTRF filter with the spectrogram in each filtered 
speech condition. We then compared the goodness of fit (𝑅2) between the predicted and 
actual HFB activity in the BEFORE and AFTER conditions. 

eSTRF Unfiltered Speech Output Power Analysis 

Next, the extent to which eSTRFs in the BEFORE and AFTER condition are responsive to 
spectrotemporal features of unfiltered speech was assessed. For this purpose, the predicted 
HFB response to unfiltered speech using the eSTRF in the BEFORE and AFTER conditions, and 
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calculated the output power of these predictions. This power reflects the extent to which the 
eSTRF overlapped with unfiltered speech features and, thus, is able at extract unfiltered speech 
sounds. To account for possible changes in the overall signal-to-noise ratio of eSTRFs in all 
condition, each eSTRF was standardized to zero mean and unit standard deviation before 
convolution. Then, the unfiltered speech spectrograms were passed through the eSTRF of the 
BEFORE and AFTER condition. Finally, the root-mean-squared amplitude of the output was 
calculated for each, and compared between the BEFORE and AFTER conditions (See Figure 27). 

eSTRF Linear Overlap Partial Correlation Analysis 

For each electrode in included in this analysis, the ensemble spectrotemporal receptive field 
(eSTRF) in each condition was calculated as the z-score for each spectro-temporal feature 
across CV splits.  To test the hypothesis that spectrotemporal tuning shifts after hearing the 
unfiltered context speech, the partial correlation was calculated between sets of conditions. 
Partial correlation allows one to determine the correlation between two variables, conditioned 
on one or more other variables. It reflects the extent to which two variables are related in a 
manner that is linearly orthogonal to the conditioned variables, and can be represented in the 
following equation: 

𝑝𝑐𝑜𝑟𝑟(𝑎, 𝑏|𝑐) = 𝑐𝑜𝑟𝑟(𝑎𝑐̂ − 𝑎, 𝑏) 

where 𝑎𝑐̂ is the predicted value of variable 𝑎 regressed against variable 𝑐. In other words, one 
calculates partial correlation by regressing out all conditional variables, and then calculating the 
correlation between the residuals and the variable of interest. Partial correlation was calculated 
between the BEFORE/MIDDLE models and the AFTER/MIDDLE models with the following 
convention:  

𝑠𝑖𝑚(𝑏𝑒𝑓,𝑚𝑖𝑑) = 𝑝𝑐𝑜𝑟𝑟(𝑏𝑒𝑓𝑜𝑟𝑒, 𝑚𝑖𝑑𝑑𝑙𝑒 | 𝑎𝑓𝑡𝑒𝑟) 
𝑠𝑖𝑚(𝑎𝑓𝑡,𝑚𝑖𝑑) = 𝑝𝑐𝑜𝑟𝑟(𝑎𝑓𝑡𝑒𝑟, 𝑚𝑖𝑑𝑑𝑙𝑒 | 𝑏𝑒𝑓𝑜𝑟𝑒) 

One would expect to find many similarities between the brain activity in response to the 
BEFORE and AFTER condition. As such, one wants to control for these similarities when 
calculating the correlation between before/after and the unfiltered condition. Partial 
correlation allows one to determine the extent to which one condition is correlated with the 
unfiltered condition, after removing the linear relationship with the other condition.  

Between Condition Permutation Test Statistics 

The following permutation-based procedure was used to compare a statistic for the difference 
between conditions. For each electrode, the statistic of choice (e.g., HFB amplitude or partial 
correlation) was computed for each condition. Then, the difference between conditions for 
each electrode was calculated. A null condition effect of condition would have values 
distributed around 0. Because of the paired nature of this design, one may simulate a permuted 
null distribution by randomly flipping the sign of all difference values, effectively randomizing 
values to condition A or B. The mean of the permuted difference vector was calculated as a 
single point in the null distribution. This procedure was repeated 10, 000 times to construct a 
null distribution against which the “true” difference vector mean is compared. Reported p-
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values are the quantile for the difference vector mean with respect to this null distribution. All 
statistical tests are two-sided. 

Data Availability 

Raw data is stored in the Collaborative Research in Computational Neuroscience (CRCNS) 
database at UC Berkeley (crcns.org). It can be accessed with a free CRCNS account at 
crcns.org/data-sets. 

This manuscript relied heavily on the Python packages MNE-python, scikit-learn, numpy, scipy, 
pandas, and matplotlib. Analyses were conducted using these packages, and the large majority 
have been aggregated as a python package hosted on github.  

Code for performing statistical permutation tests is found in the MNE-python statistics module. 
Code for model fitting, feature extraction, statistics, and visualization can be found at 
github.com/choldgraf/ecogtools. 
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Chapter 5 – Concluding remarks and future work 
This thesis describes an attempt to join methodology from the single unit and animal literature 
to study questions that are well-suited for human neuroscience. The goal is to provide a 
framework for modeling and statistical analysis into the world of electrocorticography, in the 
hopes that this allows one to ask more complex questions about the relationship between the 
human brain and how it interacts with the world around it. This approach uncovers a subtle 
relationship between the brain and sensory information, making it possible to construct a 
mathematical model that can generate predictions about new datapoints in our quest to 
understand how we communicate. 

The thesis first described the considerations that one must take in applying these methods to 
cognitive neuroscience, as there are many nuances to doing predictive modeling properly. This 
section was written up as a publication in the open access journal Frontiers in Systems 
Neuroscience along with a collection of jupyter notebooks that are aimed at making these 
techniques more accessible to the scientific community and easy to implement on real data. 
Next, this predictive modeling approach was used to investigate its potential for speech 
decoding, a technique in which we attempt to predict the speech features that are currently 
represented in the brain, using only neural activity. We showed that using decoding models of 
neural activity, it is possible to reconstruct spectral features of sound as the brain responds to 
speech features. Moreover, we show that it may be possible to reconstruct the spectral content 
of imagined speech features that did not result from any external stimulus. These are the 
critical first steps necessary for future developments in the field of neural prosthetics. Finally, 
the paper described a use of the predictive modeling approach toward studying the plasticity of 
feature representations in the brain. This is one of the first attempts at explicitly describing the 
relationship between human brain activity and spectral features, and how this relationship 
changes due to previous experience with sound. We showed that regions of the auditory cortex 
change the way that they parse spectral features of sounds, and that this may help the brain 
find meaningful information in noisy signals. 

Taken together, this work is the beginning of what will hopefully become a broader line of 
questioning in cognitive neuroscience. The encoding / decoding approach is an extremely 
flexible and powerful method of asking questions about how the human brain processes 
perceptual information, and there are many ways in which these studies could be extended. 
The following section details areas for future study in this line of questioning. 

Future work 
There are many advances to be made in using encoding and decoding models for understanding 
human brain activity. First, as discussed above a key goal of the predictive modeling approach is 
that it allows one to use and understand naturalistic stimuli. However, what constitutes 
“natural” in the context of stimuli? This question is often answered on a subjective basis, and 
there is not a satisfying and rigorous definition of “naturalness” in stimuli. It would be beneficial 
to define the stimulus qualities that together define a spectrum from “artificial” to “natural” 
stimuli. Moreover, there is not currently a single set of stimuli that have the properties (e.g., 
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naturalistic, well-annotated) necessary for encoding and decoding models. As a result, 
researchers tend to pick and choose from existing corpora, which introduces variability due to 
the choice of stimulus set. TIMIT is “near-natural”, but it is far from the experience of listening 
to everyday speech. These sentences are disjointed and semantically unrelated to one another, 
making it a suboptimal stimulus set for exploring interactions between high-level features and 
low-level representation that unfold in natural speech. It will be important for the field to agree 
upon a standard collection of stimuli for certain kinds of tasks in order to allow for comparisons 
between experiments. 

It is also important to consider how models that are fit with different stimulus features can be 
compared with one another (ideally on the same dataset). The work discussed in this thesis 
focused on one particular representation of stimuli (spectro-temporal features), but there are 
many other options for use in encoding models. Future work should more explicitly address 
how a single acoustic stimulus may be represented in parallel at many different levels of 
complexity in the brain.  This will make it possible to reveal the hierarchical representation of 
auditory features across a wide range of cortex. 

Another useful line of study will be to consider relationships between neural units instead of 
treating them as independent sources of information. Most encoding models are fit one per 
electrode, and the model parameters have no concept of interactions between electrodes. 
Future work should explicitly study how interactions between electrodes or brain regions 
underlie the plasticity in sensory representations reported in this manuscript. This may reveal 
details about the neural mechanism that underlies top-down sensory plasticity. It may also be 
possible to treat patterns of neural activity not as individual units (e.g., electrodes), but as 
coordinated patterns of activity across multiple regions simultaneously. Studying how these 
network-level patterns of activity relate to different stimulus features will help clarify how 
information is distributed throughout the brain, particularly with respect to more abstract, 
high-level features. 

Finally, while the advances above address basic research in studying auditory perception in 
humans, they may also improve attempts at leveraging neural activity for the purposes of 
neuroprosthetic devices. There are many diseases and conditions which render an individual 
unable to communicate with the outside world, or which impair their ability to manipulate the 
world around them. For example, locked-in syndrome is a condition in which subjects maintain 
consciousness, but lack the ability to control any muscle movement, making traditional forms of 
communication impossible. Advances in relating neural activity to the outside world via 
predictive modeling may make it possible to generate actions in the world (for example, 
displaying a word on a screen) using neural signals generated by the patient and recorded with 
electrodes implanted in the brain. This will be an exciting new area of research with the 
potential to impact tens of thousands of lives. 
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Supplemental Material 
This material was created for the work described in Chapter 4. Among other things, it contains 
preliminary attempts at investigating interactions between regions of the brain during the 
reported speech enhancement. It also investigates the role of spectral content outside of the 
HFA region, and gives more detail about the findings described in Chapter 4. 
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Supplementary Figures 

 

Supplementary Figure 1 - Behavioral task and controls 

A behavioral task was conducted to assess the effect of filter type and context type on perceptual 

enhancement. We ran a sentence comprehension test with several groups of undergraduate students at 

UC Berkeley. All participants listened to combinations of filtered speech sentences and contextual 

sentences, and were asked to type out all words that they understood. Comparisons were made between 

the percentage of words correct in each group. (A) Bar plots show speech comprehension for various 

combinations of high/low context. First plot: a group of subjects responded to a single presentation of a 

filtered speech sentence, this is denoted the “no context” condition, and serves as a baseline for 

comprehension (corresponding to the BEFORE condition). Remaining plots, from left to right: different 

sentence/different speaker (to test the effect of repetition and potentially global arousal/activation of 

language network caused by speech), different sentence/same speaker (voice overlap that enhances the 

similarity with phonemes but not words and word order), same sentence/different speaker (phonemic and 

spectrally different, but with the same word identities spoken), and same sentence/same speaker (with 

spectral, phonemic, and word identity/rate overlap). Percentage reported correct are as follows. No 

Context: 4.5 +/- 0.8%. Diff Sentence, Diff Speaker: 10.4 +/- 1.2%. Diff Sentence, Same Speaker: 18.9 +/- 

1.7%. Same Sentence, Different Speaker: 79.6 +/- 1.5%. Same Sentence, Same Speaker: 77.7 +/- 1.5%. 

Horizontal lines show significance values, and the following comparisons are all relative to the Different 

Speaker, Different Sentence condition:  there was a main increase for Same Sentence, Different Speaker 

(t=9.65, df=22; showing the main perceptual enhancement effect). There is a small but significant 

increase of Same Speaker, Different Sentence (t=2.39, df=22; suggesting that acoustic properties of the 

speaker’s voice is helpful in understanding the noisy stimulus). There is a much larger increase for the 

Same Sentence, Different Speaker condition (t=9.74, df=28; suggesting that linguistic properties of the 

speech are more important than acoustic properties in the speaker’s voice). Finally, there is no 

significant difference between Same Sentence / Same Speaker and Same Sentence / Different Speaker 

(t=0.26, df=22; suggesting that the linguistic information shared between the two is responsible for the 

perceptual enhancement effect). (B) Shows the effect of filter type on perceptual enhancement in each 

context condition (means in each group +/- standard error). A linear mixed effects model (n 

observations=96 and n individuals=23) was used to calculate main effects of filter type and context on 

perceptual enhancement (as well as their interaction). There was a small and nonsignificant main effect 

of filter type (spectral > temporal, p=.082, confidence interval -41.61 to 2.47), and no significant 

interaction between filter type and context type, suggesting that the perceptual enhancement effect is 

similar across stimulus filters (interaction term, p=.61, confidence interval -5.64 to 10.73).  
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Supplementary Figure 2 - Comparison of Speech-R and STRF-R electrodes 

Electrodes were characterized as responsive to speech (Speech-R) if their evoked HFB activity was 

significantly greater than 0 (z-score over baseline, confidence interval test across trials). Electrodes were 

characterized as well-modeled by spectro-temporal features (STRF-R) if their goodness of fit on held-out 

data was greater than 0 (confidence interval test across CV splits). Anatomical distribution of Speech-R 

electrodes (orange), STRF-R electrodes (purple) and electrodes responsive to both (split colors) are 

shown above. 
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Supplementary Figure 3 - Analysis during pink noise trials 

A subset of subjects (n=3) performed a pink noise control on half of their trials. Instead of an unfiltered 

speech context in the MIDDLE condition, energy-matched pink noise was played. (A) HFB activity (mean 

+/- standard error across all electrodes included in the analysis) is shown. The difference (AFTER - 

BEFORE) is plotted in purple. See Figure 3 for details. (B) eSTRFs were calculated for electrodes during 

pink-noise conditions. The similarity between BEFORE/MIDDLE, and AFTER/MIDDLE eSTRFs was 

estimated using partial correlation coefficients (see methods and text) and these are shown in the middle 

scatterplot. There was no significant difference in partial correlation for BEFORE/MIDDLE vs. 

AFTER/MIDDLE conditions (permutation test, n=12). See Figure 10 for additional details. 
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Supplementary Figure 4 - Time Frequency Response and Frequency Band Selection 

For each electrode, the ECoG signal was convolved with 100 log-spaced Morlet wavelets (number of 

cycles fixed at 5) to create a time-varying power in each frequency band. Power was averaged within 

anatomical region and compared across conditions. (A) Mean TFR for Frontal (Top) and Temporal 

(Bottom) electrodes across conditions. (B) Evoked TFR in post-stimulus time points was averaged for 

frequency band selection. The mean +/- standard error is shown for each frequency. A cluster-based 

permutation test was used to find frequency-specific differences in power between the BEFORE and 

AFTER condition. Power in the high-frequency broadband (HFB) range significantly increased in the 

AFTER condition in both frontal and temporal electrodes (frontal, p=.001, n=75; temporal, p=.002, 

n=217). There was also a decrease in frequencies below 25 Hz in frontal electrodes (p=.001, n=75). This 

prompted further investigation of the HFB signal.  
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Supplementary Figure 5 - Connectivity Analyses 

(A) Coherence was calculated between electrodes in regions of interest. Mean +/- standard error are 

shown across electrodes. We defined a set of “seed” electrodes in the temporal lobe that were Speech-R 

and STRF-R. For each seed, the coherence in the HFB amplitude was calculated between it and all other 

electrodes in the frontal (left, i) or temporal (right, ii) lobe.  For each seed electrode, coherence values 

were averaged across targets and, converted into bits/second, and integrated across frequencies. These 

values are plotted in the scatterplots to the right along with p-values for the difference between AFTER 

and BEFORE (paired permutation test, n=39). We measured a small but significant increase in 

coherence for both temporal-frontal electrodes (p=.025), and temporal-temporal electrodes (p=.043).  

(B) Phase-Amplitude Coupling was calculated the regions described in A. The time-varying phase of 

theta-range frequencies (2 - 12Hz, .5Hz spacing) along with the mean amplitude of HFB frequencies (70 - 

140Hz, 10Hz spacing) was calculated using band-pass filters followed by a Hilbert transform (and 

averaging frequency bands together in the case of the high-frequency amplitude). The strength of 

coupling was calculated using the Phase Amplitude Coupling measure defined in Ozkurt and Schnitzler, 

2011 (see supplemental methods). The large line plots on the left show the mean +/- standard error PAC 

as a function of the frequency of the phase in the theta-range region. The smaller line plots below show 

the mean +/- standard error of the difference in PAC (AFTER - BEFORE).  The scatterplots on the right 

show the mean PAC for the 4-8Hz phase in each condition. There was no significant change in PAC 
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between frontal and temporal electrodes in the AFTER condition relative to the BEFORE condition 

(paired permutation t-test).  
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Supplementary Figure 6 - Coherence with Speech Envelope 

Since prior studies have shown that low frequencies in the ECoG signal tracked the speech envelope and 

that this tracking was modulated by attentional processes(Zion Golumbic et al., 2013), we also examined 

whether we could detect a similar effect in our study.  The envelope of speech in each condition was 

calculated in each condition by averaging across power from 64 wavelets log-spaced from frequencies 

500 to 2000Hz. Post-stimulus coherence (0s to 3s) between the raw ECoG signal and the speech envelope 

was calculated for all electrodes with HFB activity (Speech-R). Top row: mean +/- standard error 

coherence is plotted for frontal (left) and temporal (right) electrodes. Bottom row: the difference in 

condition (MIDDLE - BEFORE) is plotted (mean +/- standard error) across active electrodes. In the 

temporal lobe, there was a significant increase in theta coherence during unfiltered speech relative to the 

BEFORE condition (permutation cluster test, p=.001, n=72), but no significant difference between 

BEFORE and AFTER conditions. There were no significant effects in frontal electrodes. Other 

neurophysiological studies have correlated the signals detected in the lower frequencies of ECoG, MEG, 

or EEG with the envelope of human speech(Peelle et al., 2013). While our study confirms that the neural 

encoding of speech features changes with intelligibility, we found no change in coherence between theta 

activity and the speech envelope. This may be due to the different spectrotemporal properties of our 

filtered speech stimuli, and the fact that ECoG records signal from a different distribution of neural 

sources than MEG. It should be noted that these effects have generally been described in 

premotor/frontal regions, which did not have extensive electrode coverage in this study.  
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Supplementary Figure 7 - Behavioral and HFB change over trials 

(A) In behavioral control subjects, the percent correct words are plotted as a function of trial number for 

subjects that heard either no context, or a Different Subject, Different Sentence context (testing the effect 

of repeated exposure to the filtered speech stimuli, n=14). We used a bootstrap technique to calculate 

confidence intervals on the slope of the line relating the percent words correct to the trial number. 

Bootstrapped regression coefficients found a slightly positive relationship between percent correct and 

trial number, suggesting a small effect of session duration on perceptual enhancement. (B) The same 

bootstrapped regression approach was applied to mean HFB activity in ECoG subjects, using electrodes 

that showed an increase in HFB activity to speech (Speech-R). Bootstrapped coefficients show a non-

significant relationship between HFB activity and trial number. 
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Supplementary Methods 

Connectivity between frontal/temporal electrodes 

To assess putative top-down signals underlying the reported eSTRF plasticity, we conducted 
several connectivity analyses between frontal/premotor cortex and temporal cortex. We tested 
whether there was an increase in frontal/temporal coherence in the AFTER condition, whether 
delta-theta activity in the frontal and temporal lobes was phase-locked to the speech envelope, 
and whether directional Phase-Amplitude Coupling between delta-theta and HFB activity was 
increased in the AFTER condition. Connectivity results did not yield any conclusive findings. As 
electrode coverage for this study was based on temporal lobe coverage, not frontal/motor 
coverage, this data is not well suited for answering questions about intra-cortical connectivity 
and how it pertains to eSTRF plasticity. Further details for these connectivity analysis and 
results are found below. 

Inter- and Intra-regional Coherence Analysis 

To investigate putative higher-level regions that may be involved in eSTRF plasticity, we 
conducted connectivity analyses between anatomical regions of interest. Analyses were 
conducted with the HFB activity of electrodes included in eSTRF analysis as seeds (Speech-R and 
STRF-R, located on the temporal lobe, hereafter called Temporal seeds). We performed a 
separate analysis for two groups of target electrodes: all other temporal lobe electrodes 
(Temporal targets), and electrodes located on frontal/premotor regions (hereafter, Frontal 
targets). It should be noted that there was generally sparse electrode coverage in 
frontal/premotor regions, as grid cases were primarily selected for temporal lobe coverage. 

To calculate the coherence between electrodes, we used a multi-taper windowing method 
similar to that described above. For each trial, the coherence was calculated between pairs of 
electrodes with seeds/targets based on anatomical regions of interest (and only including 
electrodes included in the eSTRF analysis as seeds). For each seed, coherence was averaged 
across target electrodes. Next, the mean coherence was converted to normal mutual 
information by integrating across frequencies. The difference in condition (AFTER – BEFORE) 
was calculated for each electrode, and a permutation t-test was conducted across electrodes to 
test for a difference in condition. Coherence calculation was performed with the MNE-toolbox 
(see Data Availability in the main manuscript for information about how to access this code). 

The coherence was first calculated between Temporal seeds and Frontal targets. The results are 
shown in Supplementary Figure 5A. There was a frequency peak around 9-10Hz, and a weak 
general increase in coherence in the AFTER condition over the BEFORE condition. For Temporal 
seeds and Temporal targets, there was a broadband increase in coherence across frequencies 
greater than 5Hz. (permutation test, see Supplementary Figure 5A for discussion).  

Theta Connectivity Phase-Amplitude Coupling Analysis 

Next, we investigated the role of the theta band in modulating HFB activity. It has been 
suggested that the phase of theta activity may modulate the amplitude of HFB activity, 
representing a neural mechanism by which associative cortical areas influence the processing 
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occurring in sensory cortex(Canolty et al., 2006; Voytek et al., 2015). We calculated the Phase-
Amplitude Coupling (PAC) between electrodes included in the eSTRF analysis and groups of 
electrodes either in temporal or frontal/pre-motor regions. 

To test for cross-frequency effects between theta phase and HFB amplitude, we split electrodes 
into groups to be analyzed for phase and for amplitude. To calculate phase, we band-pass 
filtered the signal from each electrode, then calculated the time-varying phase of the Hilbert 
transform of each of the band-limited signals. We calculated the phase for frequencies from 
3Hz to 10Hz in increments of 0.5Hz. To calculate the HFB amplitude of each signal, we again 
performed a band-pass filter of the raw signal for 10 logarithmically-spaced bands from 70-
140Hz. For each band we calculated the modulus of the Hilbert transform and averaged the 
bands together. 

We calculated the Phase-Amplitude Coupling using the method described in Ozkurt and 
Schnitzler, 2011. This is form of the Modulation Index that is normalized by the amplitudes of 
the two filtered signals(Ozkurt and Schnitzler, 2011). For each condition, we concatenated the 
phases/amplitudes of the pair of electrodes across trials, then calculated a single value for PAC 
between electrodes. To test for a difference in condition (AFTER – BEFORE), we took the 
average PAC for phases from 3-8Hz, and the amplitude from the HFB signal, and calculated the 
difference AFTER – BEFORE.  For each HFB amplitude electrode, we averaged the PAC value 
across all other theta phase electrodes to calculate a single value of PAC for each HFB 
amplitude electrode. Significance for the difference in condition (AFTER – BEFORE) was 
assessed with a permutation t-test for a difference from 0 (see Data Availability in the main 
manuscript for information about how to access this code). 

As previously mentioned this study did not include dense coverage over premotor/frontal 
regions, and the reported effect sizes are small, precluding a conclusive result. Future studies 
should investigate the putative link between frontal and temporal electrodes in top-down 
mechanisms of speech perception. 

Electrode coherence with speech envelope  

There have been several studies suggesting a role of theta band activity in parsing speech 
utterances, especially in noise(Ding and Simon, 2014; Peelle et al., 2013). Previous studies have 
suggested that coherence between neural activity and the speech envelope increases in the 
theta band during intelligible speech. This entrainment has been interpreted as the tracking of 
the rhythmic structure of an attended speech stimulus by associative cortex, which facilitates 
speech processing. To investigate whether these effects are modulated by experience with 
intact speech, we calculated the coherence between the raw electrode signal and the speech 
envelope. 

For each trial, we calculated the envelope of the speech stimulus by first performing a time-
frequency decomposition of the audio waveform using 64 log-spaced frequency Gabor wavelets 
with center frequencies from 500 to 2000Hz.  The 64 band-passed signals were rectified and 
then averaged across frequencies. 
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To calculate the coherence between ECoG activity and the envelope of each speech stimulus, 
we again used a multi-taper windowing method. For each trial, we calculated the coherence 
between electrodes of interest and the speech envelope. We converted this value to normal 
mutual information. To find particular frequencies that showed a difference in electrode-
envelope coherence between conditions, we calculated the difference between conditions for 
each frequency band. We tested the difference in condition (AFTER – BEFORE, and MIDDLE – 
BEFORE) by conducting a cluster-based permutation t-test for a difference from 0 (see 
Supplementary Figure 6). 
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