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ABSTRACT OF THE DISSERTATION 

Associations between Perfluorooctanoic acid (PFOA), Monobenzyl phthalate (MBzP), and trace 

metals and hormones and breast density among adolescent girls in Santiago, Chile 

by 

Claire EuiYoung Kim 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2022 

Professor Karin B. Michels, Chair  

Introduction: Breast cancer is the most common cancer and the leading cause of cancer-

related deaths among women in the world. Yet, much of the variation of breast cancer incidence 

cannot be explained by known or suspected risk factors. Its etiology is comprised of several 

pathways, some of which point to origins during early life. Specifically, breast development and 

hormonal changes during puberty contribute to a ‘critical period’ that play an important role in 

affecting breast cancer risk. The heightened hormonal activity followed by rapid growth in breast 

tissues presents a window of susceptibility in which environmental exposures can cause 

significant changes that may or may not be reversible. Environmental exposures, such as 

endocrine disrupting chemicals (EDCs), have been purported to alter pubertal development, 

raising concerns about their impact on breast development and subsequently on breast cancer 

risk. Perfluorooctanoic acid (PFOA), monobenzyl phthalate (MBzP), and trace metals may 

mimic estrogen behavior and disrupt aspects of endocrine signaling. The central purpose of this 

research is to use epidemiologic methods to evaluate the effect of EDCs on mammary gland 

development and circulating hormone levels during puberty. Innovative computational methods 
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(e.g. G-methods) are used to identify and estimate causal effects of real-life exposures of “EDC 

mixtures” (i.e. accessing multiple EDCs together) and time-specific EDCs on breast density in 

the presence of time-varying confounders. The main objectives include: 1) to evaluate the 

impact of serum PFOA and urinary MBzP, individually and in combination, on breast 

composition during puberty; 2) to evaluate the impact of serum PFOA and urinary MBzP, 

individually and in combination, on hormonal levels during puberty; and 3) to evaluate the effect 

of trace metals on breast composition during puberty.  

Methods: This dissertation uses the longitudinal Growth and Obesity Cohort Study (GOCS) of 

Latina girls in Santiago, Chile. GOCS prospectively followed children from ages 3-4 and 

obtained data annually and bi-annually on biomarker, anthropometric, demographic, and breast 

composition data. Urinary MBzP and trace metals concentrations and serum PFOA 

concentrations were assessed by liquid chromatography mass spectrometry. Breast 

composition was measured using dual-energy x-ray absorptiometry and evaluated as percent 

fibroglandular volume (%FGV) and absolute fibroglandular volume (aFGV). Chapter 2 evaluates 

the relation between MBzP and PFOA and breast composition across three pubertal time points 

(Tanner breast stage 1 (B1), Tanner breast stage 4 (B4), and 1-year post menarche (1YPM)) 

and breast composition (%FGV and aFGV) measured at 2-years post-menarche. Chapter 3 

assesses the relation between MBzP and PFOA and hormones at 1YPM. Chapter 4 examines 

whether trace metals are associated with breast composition. All three chapters utilize 

parametric G-formula for analysis accounting for covariates that are identified a priori using 

directed acyclic graphs.  

Results: In Chapter 2, serum PFOA concentrations corresponded to a marginal increase in 

absolute FGV and decreased in % FGV, while no effect was observed between MBzP and 

breast density measures across pubertal WOS. In Chapter 3, MBzP was associated with insulin 

growth factor-1 (IGF-1) and 17-OH progesterone. PFOA was associated with IGF-1 (IGF-1), 17-
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OH progesterone and sex hormone binding globulin. Associations between MBzP and PFOA 

and hormones varied by pubertal time point, suggesting differential effects of EDC exposure by 

specific window of susceptibility on pubertal hormone levels. In Chapter 4, selected trace metals 

- barium, copper, lead, antimony, thallium, and vanadium – were associated with absolute 

breast density. Copper was also associated with percent FGV. 

Conclusions: Overall, PFOA, MBzP and trace metals were associated with breast density and 

hormones at varying pubertal windows of susceptibility. By using the framework of life course 

epidemiology, this dissertation contributes to an understanding of the variation in breast cancer 

risk associated with environmental exposures in puberty. Findings help identify the most 

effective and appropriate time period for breast cancer prevention. 
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Chapter 1. Introduction 
 

Epidemiology of breast cancer 

Breast cancer is estimated to be the most commonly diagnosed cancer (11.7% of total cancer 

cases) worldwide in 2020. It accounts for a quarter of cancers diagnosed among females, with 

approximately 2,261,419 estimated female incident breast cancer cases (hereafter simply 

‘breast cancer’). Approximately 684, 996 breast cancer deaths were estimated, with an age-

standardized incidence rate (aSIR) of 47.8 and age-standardized mortality (aSMR) rates of 13.6 

cases per 100,000, respectively.1  

In the United States (U.S.), breast cancer incidence rates have continued to increase about 

0.5% per year, while the decline in mortality rates slowed since 2009. Approximately 281,550 

incident breast cancer cases and 43,600 breast cancer deaths are estimated to occur in 2021, 

accounting for 30% of new cancer cases and 15% of cancer deaths among females.2 In 2020, 

U.S. is among the top 10 countries with the highest breast cancer aSIR, with 93.3 cases per 

100,000 females. In contrast, the aSMR was relatively low, with 12.4 cases per 100,000.1 Based 

on 2015-2017 SEER data, approximately 12.9 percent of women will be diagnosed with breast 

cancer during their lifetime.3 

In Chile, breast cancer is the second most diagnosed cancer (after prostate cancer), with an 

estimated 4,737 incident breast cancer cases and 1,256 breast cancer deaths in 2020. The 

estimated aSIR is 36 cases per 100,000 and aSMR 9.1 deaths per 100,000 women. Due to the 

aging population, the breast cancer incidence is predicted to increase by 35% and the breast 

cancer mortality is predicted to increase by 54.7% by 2040, respectively.4 

Breast cancer risk factors  

As with most chronic illnesses, the risk of breast cancer increases with older age. Women over 

the age of 55 years account for approximately 70% of all new breast cancers, with the median 
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age at diagnosis being 62 years.3 Inherited genetic mutations (e.g. breast. Cancer gene 1 

(BRCA1), breast cancer gene 2 (BRCA2), tumor protein (p53)) account for only 5 to 6 percent of 

all breast cancers.5 

Postmenopausal breast cancer risk factors include menopausal weight gain, bone mineral 

density, hormone replacement therapy, and delayed menopause.6–9 Both pre-and 

postmenopausal risk factors include body mass index (BMI), breast density, increased height, 

earlier age at menarche, nulliparity and multiparity, late age at first pregnancy, personal and 

family history of breast cancer, alcohol consumption, smoking, night-shift work, and ionizing 

radiation.10–17 Of note, ages at menarche, first pregnancy, lactation, parity and menopause all 

reflect period-specific exposure to ovarian hormones, underscoring the hormone-dependent 

nature of breast cancer.  

The importance of estrogen in breast tumorigenesis has been well-established. In post-

menopausal women, treatment with exogenous estrogen increased the risk of breast cancer.18 

Similarly, the use of tamoxifen, a selective estrogen receptor modulator, was associated with 

lower risk of primary invasive breast cancer in both pre- and postmenopausal women.19 On the 

other hand, surgical removal of ovaries in premenopausal women decreased the risk of breast 

cancer.20 

Breast density and composition 

 

Many hypothesized that both exogenous and endogenous hormones affect breast cancer risk 

partly mediated by breast density. Breast density is one of the strongest and well-established 

risk factors for breast cancer. Relative to other common risk factors, it has the highest 

population attributable fraction (28.9%; 95% Confidence Interval (CI) 25.3-32.5%) for breast 

cancer.21 Women with higher breast density have a 4-to 5 times higher risk of breast cancer 

compared to women with less or no dense breast tissue, adjusted for age.22–25 
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The breast is composed of three kinds of tissue- fibrous, glandular, and fatty tissues. Fibrous 

tissues are connective (stroma) tissue made up of collagen fiber bundles and provide structure 

of the breasts. Glandular (parenchyma) tissue contains lobules and ducts that are made of 

epithelial cells. The lobules are glands that produce milk and ducts are small tubes that carry 

the milk to the nipple. Fibrous and glandular tissues collectively make up the “fibroglandular” 

tissue which is considered the “dense” part of the mammary gland (hereafter termed ‘breast 

density’). Fatty tissues, composed of adipose cells, are specialized for lipid storage, act as filler 

tissue between the fibrous and glandular tissues, giving breasts their size and shape.26 

Critical periods and windows of susceptibility 

 

Developmental Origins of Health and Disease (DOHaD) emphasizes the importance of 

recognizing early life exposures and their influence on the presentation of disease during 

adulthood.27 This concept serves as the basis for the lifecourse approach which focuses on 

understanding the long-term effects of exposures during gestation, childhood, adolescence, 

young adulthood and later adult life on future health and disease risk.27 Epidemiologic evidence 

from observational studies indicates that the risk of lifelong adverse health effects is enhanced 

when exposure periods for disease factors coincide with the formation and differentiation of 

organ systems during early development.28 In other words, organ formation and differentiation 

represents periods of developmental plasticity that can be considered “critical periods” where an 

exposure can cause significant changes that may or may not be reversible.29 

This idea of critical periods in breast development was first alluded by Pike in 1983. Pike 

recognized that breast tissue does not age with chronological age, but with critical breast 

development and differentiation periods.30 As such, breast development is described by four 

distinct, critical periods:  in utero, pubertal, post-partum, and peri-menopause periods.31 These 

early life periods represent the windows of susceptibility (WOS) for environmental exposures.32 
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Unfortunately, methodological challenges exist in evaluating the effect of exposures at each 

WOS on breast cancer. Principally, the long induction period inevitably decreases the reliability 

and accuracy of our exposure measurement and increases the possibility of misclassification 

and confounding by later-life exposures making it difficult to make causal inference.33 However, 

evaluating environmental exposures for specific WOS will not only further our understanding of 

environmental influences during pubertal activity, but also help identify the most effective and 

appropriate time period for breast cancer prevention.   

Puberty and pubertal breast density 

 

Puberty is the period in which adolescents undergo major, rapid physical and physiological 

changes, reaching sexual maturity and achieving fertility.34 It is one of the critical periods for 

breast development during which substantial growth occurs in the epithelial, stromal and 

adipose tissues.35 After puberty, there is minimal development in the epithelial and stromal 

tissue, suggesting that much of the absolute dense volume observed during puberty is carried 

over to young women before their first pregnancy.36 This highlights the critical period of puberty 

and its window of susceptibility for breast development as alterations in the normal function of 

the endogenous hormone levels during puberty may have permanent and irreversible effects on 

breast development which may subsequently affect breast cancer susceptibility later in life.27,37 

Individual variation in pubertal timing may be influenced by genetic as well as external factors 

such as environmental exposures.38 A wide range of environmental chemicals during the early 

development periods are now being investigated as a driving force for epigenetic disruptions 

that enhance disease risk in later life, including cardiovascular, metabolic, endocrine, and 

mental disorders and even breast cancer.39  

Endocrine disrupting chemicals 
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Endocrine Disrupting Chemicals (EDCs) are defined as an “exogenous substance or mixture 

that alters function(s) of the endocrine system and consequently causes adverse health effects 

in an intact organism, or its progeny, or (sub)populations”.40 The complex mechanisms of EDCs 

depend on specific actions at the cellular and tissue levels as well as life stage and sex.41 

Instead of focusing on a unifying mechanistic characteristic, key characteristics were developed 

based on the knowledge of hormone actions and EDC effects. In brief, EDCs may interfere with 

the endocrine system through one or more of the following mechanisms42: 1) Interact with or 

activates hormone receptors, 2) Blocks hormone receptors, 3) Modifies hormone receptor 

expression, 4) Changes signal transduction in hormone-response cells, 5) Induces epigenetic 

modifications in hormone-producing or hormone-response cells, 6) Modify hormone synthesis, 

7) Changes hormone transport across cell membranes, 8) Alters hormone distribution or 

circulating levels of hormones, 9) Alters hormone metabolism or clearance, and/or 10) Alters the 

fate of hormone-producing or hormone-responsive cells. These ten key characteristics give 

guidance in evaluating EDCs, allowing researchers to gather evidence based on shared 

mechanistic information and to develop screening assays for potential EDCs as well as further 

targeted interventions at specific pathways of the endocrine system interference.  

Perfluorooctanoic Acid (PFOA) 

 

Perfluorooctanoic Acid (PFOA) is part of a larger chemical group called per- and polyfluoroalkyl 

substances (PFASs) which are highly fluorinated aliphatic molecules.43 PFOA and 

perfluorooctane sulfonate (PFOS) are the most widely used and studied subset of PFAS.44 

PFOA is a man-made surfactant in the emulsion polymerization of fluoropolymers and a 

principal component of polymeric materials. It is known for its highly persistent, bioaccumulative, 

toxic, and ubiquitous nature.45  
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PFOA is most commonly found in industrial products such as carpets, floor wax, firefighting 

foam, sealants, and stain-resistant sprays. It is extremely resistant to biodegradation in our 

environment (approximately 5 to 15 years) and in humans. It has been observed that PFOA can 

bioaccumulate in our bodies with an estimated half-life of 4 years.46 Due to its highly soluble 

property, PFOA water contamination is relatively common. 

Monobenzyl Phthalate (MBzP) 

 

Benzyl-Butyl Phthalate (BBP) is part of a larger group called phthalates which are diesters of 

phthalic acid. BBP is has two major monoester components, monobenzyl phthalate (MBzP) and 

monobutyl phthalate (MBuP). MBzP is the main metabolite measured in urine which is 

commonly used as a proxy to measure human BBP exposure, albeit it would be an 

underestimate.47,48 The expected half-life of BBP is less-than 24 hours.47 The toxicity of MBzP in 

humans has been documented, with estimated toxicity BBP by extension. 

Also known as the “plasticizers”, phthalates are everywhere- in consumer products and in the 

environment.49 Specifically, benzyl-butyl phthalate is used for vinyl flooring, adhesives and 

sealants, car care products, toys, food packing, synthetic leather, industrial solvents, glues, 

personal care products, and automobile products.50 The general population is exposed to 

phthalates through several routes: ingestion, inhalation, dermal or iatrogenic (“medical error and 

negligence”) exposure. They are easily ‘cross-contaminated’, with accidental releases from one 

packing material to another.49 Exposure to BBP is identified to be primarily through consumer 

products and indoor air.51 

Trace metals 

 

Approximately 20 elements are essential to the human body to maintain healthy biological 

processes and development. Roughly half of these essential elements are metal (“Trace 
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Metals”). Trace metals are present in the air, water, and food.52 They are found in very low 

concentrations in the human body and are inorganic micronutrients. Some of the trace metals 

that are considered necessary for health include: Co, Cu, Mg, Mn, Mo, Zn.53 

Certain metals are also classified as metalloestrogens, which are metals with the ability to 

produce estrogenic effect by mimicking physiological estrogens. They may modify the activity of 

estrogenic receptors, resulting in possible aberrant signals.54–56 Metalloestrogens are found in 

numerous consumer products such as household items and cosmetics.56 There has been 

growing industrial use of metalloestrogens, resulting in increasing levels in environment since 

the mid-20th century.56 Epidemiologic studies reported metalloestrogens to be associated with 

various negative health outcomes including intellectual impairment,57 and cancers of breast,58–60 

endometrium,61 lung62 and prostate.63 While the exact mechanistic actions of metalloestrogens 

on health are not well-known, the growing presence of metalloestrogens as a persistent 

environmental contaminant is of public health concern. 
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Chapter 2. Time-specific Impact of Perfluorooctanoic Acid (PFOA) and 
Monobenzyl Phthalate (MBzP) on Breast Density of Adolescent Latino Girls 
 
2.1 Abstract  
 

Introduction: Breast cancer is the most common cancer among women, accounting for 

30% of female cancers. High mammographic density is among the strongest and most 

established predictors for breast cancer risk. Puberty, the period during which breasts 

undergo exponential mammary growth, is considered one of the critical stages of breast 

development as well as a ‘window of susceptibility’ (WOS) for environmental exposures. 

Perfluorooctanoic acid (PFOA) and benzylbutyl phthalate (BBP) and are pervasive 

endocrine disrupting chemicals that may increase hormone-sensitive cancers such as 

breast cancer. Evaluating the potential impact of BBP (and its metabolite monobenzyl 

phthalate) and PFOA exposure on pubertal breast density is important to our 

understanding of early-life environmental influences on breast cancer etiology.  

Objective: To prospectively assess the effect of biomarker concentrations of PFOA and 

monobenzyl phthalate (MBzP) at specific pubertal WOS on adolescent breast density.  

Method: This study included 376 Chilean girls from the Growth and Obesity Cohort 

Study with survey data collection, physical examinations, breast density measurements, 

and urine and serum sample collection at four time points: Tanner breast stages 1 (B1) 

and 4 (B4), 1- year post menarche and 2-years post menarche. Dual-energy X-ray 

absorptiometry was used to assess the volume of dense breast tissue (absolute 

fibroglandular volume (FGV)) and percent breast density (%FGV) at 2YPM. Urine 

monobenzyl phthalate (MBzP) and serum PFOA concentrations were quantified using 

on-line solid phase extraction-liquid chromatography-isotope dilution-tandem mass 
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spectrometry. Parametric G-formula was used to estimate the time-specific effects of 

MBzP and PFOA on breast density. The models included body fat percentage as a 

time-varying confounder and age, birthweight, age of menarche, and maternal 

education as fixed covariates. 

Results: A doubling of serum PFOA concentration at B4 resulted in a non-significant 

increase in absolute FGV (β:11.25, 95% confidence interval (CI): -0.28, 23.49)), while a 

doubling of PFOA concentration at 1YPM resulted in a decrease in % FGV (β:-4.61, 

95% CI: -7.45, -1.78). We observed no associations between urine MBzP and breast 

density measures.  

Conclusion: In this cohort of Latina girls, PFOA serum concentrations corresponded to 

a marginal increase in absolute FGV and decreased % FGV. No effect was observed 

between MBzP and breast density measures across pubertal WOS.  
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2.2 Introduction 
 
 Breast cancer is the most common cancer among women, accounting for 30% of 

female cancers worldwide.4 The volume of dense, fibrous and glandular breast tissue is 

among the strongest and well-established risk factors for breast cancer. Women with 

higher breast density experience greater risk of breast cancer across all age groups.64 

Breast density is thought to peak during puberty following menarche and represents one 

of the few early life predictors of breast cancer risk that may be modified by exposure 

profile.65  

Endocrine Disrupting Chemicals (EDCs), defined as exogenous substances or 

mixtures that alter the endocrine system functioning, have been observed to be 

associated with an increased incidence of endocrine-related human diseases including 

various hormone-sensitive cancers such as breast cancer. 66 A potential mechanism 

between EDC and breast cancer is the interruption of the estrogen signaling pathway, 

which disrupts the proliferation of the stromal cells.67 Another proposed linkage is 

through the creation of a tumor-favorable microenvironment, which modifies the breast 

matrix composition by increasing collagen fibers in the tissue stroma, contributing to a 

higher proportion of breast density.68–70 Lastly, some EDCs are obesogenic, increasing 

total adiposity and reducing %FGV.71 This in effect, may misrepresent a person’s risk 

for breast cancer which is often screened through the BI-RADS breast density reporting 

system.72  

Phthalates and per- and polyfluoroalkyl substances (PFAS) are two classes of 

suspected EDCs that are of concern in relation to breast cancer development.73 

Exposure to phthalates results from their frequent use as plasticizers in adhesives and 
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sealants, paints and coatings, and vinyl floor tiling.74 Of particular interest are 

benzylbutyl phthalate (BBP) and its main metabolite monobenzyl phthalate (MBzP), 

which are classified as endocrine disrupters for their anti-androgenic75 and pro-

estrogenic effects.48,76–78 Several in vitro studies reported tumorigenic properties of BBP 

in increasing the proliferation of ER-positive breast cancer cells and inducing expression 

of oncogenes in ER-negative breast cancer cells.79–81 PFAS are commonly used in the 

production of non-stick pans, furniture, cosmetics, and packaged food containers,82 and 

have been extensively studied and shown to adversely influence women’s health by 

disrupting their reproductive system.83  PFAS are known to be highly persistent in the 

environment and some bioaccumulate, which may be attributed to their chemical and 

thermal stability, hydrophobic and lipophilic characteristics.84,85 Perfluorooctanoic acid 

(PFOA) is one of the more studied PFAS and has been purported to foster development 

and progression of breast cancer by disrupting the peroxisome proliferator activated 

receptor signaling pathways, consequently increasing hepatic aromatase and estrogens 

concentrations.86 

Breast tissue may be particularly sensitive to EDCs during puberty, a period of 

rapid growth and cellular differentiation of terminal end buds (TEBs).87 As such, puberty 

is considered as one of the critical stages of breast development as well as a ‘window of 

susceptibility’ (WOS) for environmental exposures.32,88,89 However, data on human 

exposure to EDCs on breast development during puberty remain scarce. The objective 

of our study is to estimate the effect of MBzP and PFOA at specific pubertal WOS on 

breast density in a cohort of pubertal Chilean girls. Evaluating environmental exposures 

for a specific WOS is important to our understanding of environmental influences during 
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pubertal activity and can also help identify appropriate time-periods for breast cancer 

prevention.  

2.3 Methods 
 
Study population  

In 2006, the prospective Growth and Obesity Chilean Cohort Study (GOCS), 

recruited children ages 3-4 years in low- and middle-income families from 54 National 

Nursery Schools Council Program (JUNJI) located in the southeast area of Santiago, 

Chile. The eligibility criteria consisted of the following: 1) singletons born at term (37-42 

weeks), 2) birthweight greater than or equal to 2500 grams (g) and less than 4500 g, 3) 

healthy with no physical or psychological conditions that could severely affect growth 

(e.g., skin burns, brain tumor, hyperthyroidism). Girls’ breast development was  

assessed through palpation and visual inspection by dietitians who were trained by a 

pediatric endocrinologist using the Tanner Staging rating scale.90 The study 

prospectively followed the girls annually up to age 7.5 years, then every 6 months until 

they reached Tanner stage 4 (B4), and then annually thereafter including at timepoints 1 

year post-menarche (1YPM) and 2 year post-menarche (2YPM). A total of 1,089 eligible 

children, of which 601 were girls, agreed to participate in the study.91  

Our study focused on girls who provided breast density measurement at 2YPM , 

urine samples at Tanner stage 1 (B1) and B4, and serum samples at B4 and 1YPM 

(Figure 1). The study protocol was approved by the Ethics Committee of the Institute of 

Nutrition and Food Technology, University of Chile, and the Institutional Review Board 

of the University of California, Los Angeles. Informed written consent was obtained from 
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all parents or guardians of study participants. The involvement of the Centers for 

Disease Control and Prevention (CDC) laboratory did not constitute engagement in 

human subjects’ research. 

Urine collection  

Urine samples were collected at B1 and B4. They were collected (at least 2mL) 

in non-polycarbonate sterile cups from fasting girls between 10 AM and 12 PM during 

visits to the INTA. Once collected, they were immediately vortexed and aliquoted. The 

processing of samples involved the homogenization and distribution of the samples into 

three separate aliquots to store them at -80 °C. 

Urine analysis - MBzP 

Urine samples collected at B1 (n=200) and B4 (n=200) were randomly selected 

and processed at the National Center for Environmental Health Laboratory at the 

Centers for Disease Control and Prevention (CDC) in Atlanta, GA using using on-line 

solid phase extraction-liquid chromatography-isotope dilution-tandem mass 

spectrometry.92 Creatinine quantification for all urine samples was performed at Mount 

Sinai.93 With additional funding, the remaining samples collected at B1 (n=93) and B4 

(n=133) were analyzed at the Children's Health Exposure Analysis Resource (CHEAR) 

Laboratory at the Icahn School of Medicine at Mount Sinai in New York, NY using a 

previously described protocol.94 The limit of detection (LOD) for MBzP was lab-specific 

(CDC,  0.3 ng/ml; Mt. Sinai,  0.1 ng/ml). MBzP concentrations below LOD were imputed 

a value equal to the lab-specific LOD/sqrt(2).95   
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A subset of 40 samples collected at B1 and B4 and initially analyzed at the CDC 

lab was also analyzed at the Mount Sinai lab for quality control (QC) followed by 

calculation of the QC intraclass correlation coefficient (ICC) using a one-way random 

effects model measuring absolute agreement with multiple raters/measurements to 

evaluate agreement between labs.96,97  

Prior to analysis, we standardized the distribution of EDC biomarker 

concentrations across assay batches. The QC samples analyzed by both labs were 

used to estimate the difference in the mean and relative standard deviation (SD) in 

biomarker concentrations between the two labs. These estimates were then used to 

shift the mean and scale the SD among the full sample group analyzed at CDC to that 

of the samples analyzed at Mount Sinai, assuming the true distribution of concentrations 

between the two labs was the same and there were no differences in participant 

characteristics for the samples analyzed at different labs. 

Blood collection  

Serum samples were collected at Tanner stage B4 and 1YPM. Fasting (at least 8 

to 12 hours prior to blood collection) venous samples were obtained before 8:30am at 

the INTA clinics. Study staff confirmed the state of fasting and whether the girls had a 

fever at the time of blood collection. \ 

Blood analysis – PFOA  

PFOA samples were analyzed using on-line solid phase extraction-liquid 

chromatography-isotope dilution-tandem mass spectrometry in the same manner at the 

CDC National Center for Environmental Health Laboratory. The LOD for PFOA 
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biomarker was 0.1 ng/mL. PFOA biomarker concentrations below LOD were imputed a 

value of LOD/sqrt(2).95 PFOA biomarker concentrations were log2-transformed prior to 

analyses. 

Assessment of breast density 

Dual-energy X-ray absorptiometry (DXA) was used to assess the volume of 

dense breast tissue (absolute FGV) at 2YPM in a process developed by Shepherd et al 

(version 5).98 Every girl was screened for pregnancy prior to DXA assessment. In short, 

the left and right breast were scanned with Prodigy DXA system software (version 13.6, 

series 200674; GE Healthcare). Quality control and calibration was obtained using 

reference breast density materials. DXA assessed absolute FGV (cm3) and total breast 

volume (cm3). The percent breast density (%FGV) represent the proportion of 

fibroglandular tissue volume relative to total breast volume (cm3) multiplied by 100. 

Breast density studies using the DXA method reported very precise and reproducible 

results in adolescent girls.98,99  

Covariates 

Covariates were selected a priori based on previous knowledge regarding 

biological relevance. Birthweight was obtained retrospectively from health records.  

Anthropometric measures (e.g., weight, height) were measured every 6 to 12 months by 

trained dietitians. Percent body fatness was measured using a bioimpedance device.  

Age of menarche was surveyed by study dieticians every 6 months prior to B4 and 

every 3 months after achieving B4. Menarche was differentiated from other potential 

causes of vaginal bleeding (e.g., vaginal infection, urinary infection) via questionnaire. 
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Maternal education was collected through interview with the girls’ mothers. Urine MBzP 

concentrations were adjusted for urinary creatinine. Urine samples with missing 

creatinine values were excluded (n=3). Other missing covariate data were imputed 

using mean (continuous variables) or median (categorical variables) imputation. 

Statistical analysis 

 Parametric G-formula (hereafter ‘G-formula’) was used to investigate the 

causality of MBzP and PFOA’s impact on breast density. G-formula, adjusting for both 

time-varying confounder and fixed covariates,100 allowed estimation of time-specific 

effects of MBzP and PFOA on breast density at 2YPM individually and collectively. 

Figure 1 represents a causal directed acyclic graph (DAG) constructed based on 

previous knowledge regarding biological relevance of the EDC exposures, breast 

density and covariates. Our DAG omits potentially relevant but unmeasured covariates 

for simplicity. EDCs (continuous) and fat percentage (continuous) are measured 

longitudinally at multiple timepoints, which places fat percentage as both a confounder 

and a mediator in the association between EDCs and breast density. G-formula allows 

for the adjustment of exposure-dependent confounders by fat percentage without 

blocking the indirect path of EDCs to breast density through fat percentage. Time-fixed 

covariates include age at 2YPM (continuous), birthweight (continuous), age at 

menarche (continuous), maternal education (categorical: secondary education or less, 

greater than secondary education). More details on the application of G-formula with 

time-varying confounders adjustment can be found in Supplementary File 1.  We used 

SAS 9.4 software (SAS Institute Inc.) for all analyses.  
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2.4 Results 
 
PFOA and breast density 

The current analysis of PFOA and breast density included two subsamples, 333 

girls with serum samples in B4 and 276 girls with serum samples with both B4 and 

1YPM (Table 1). In both subsamples, the mean age at B4 was 10.9 years, body fat 

percentage at B4 was 27.1%, age of menarche was12 years, and birthweight 3.3 kg. 

The proportion of maternal education was nearly the same in both subsamples, 78% 

with secondary education or less and 22% with greater than secondary education. In 

the B4 only subsample, the geometric mean concentration of PFOA at B4 was 

approximately 1.3 ng/ml, while In the sample with both B4 and 1YPM, the geometric 

mean PFOA concentration at B4 was 1.2 ng/ml and at 1YPM was 0.98 ng/ml, mean age 

at 1YPM of 12.5 years, and body fat percentage at 1YPM of 30%. Both subsamples had 

similar age at 2YPM of 13.5 years, and body fat percentage at 2YPM of 32.4%. Breast 

density measurements were similar in both subsamples, absolute FGV ranging from 

215.5-218.8 cm3 and %FGV approximately 51%.  

Under the hypothetical intervention of PFOA exposure at B4 only, a doubling of 

PFOA concentration at B4 resulted in a non-significant increase in absolute FGV (β: 

11.25, 95% confidence interval (CI): -0.28, 23.49). The joint total effect of PFOA 

exposure in doubling concentrations at both B4 and 1YPM resulted in non-significant 

effect of PFOA on absolute FGV (β: 20.64, 95% CI: -10.77, 49.35). On the other hand, a 

doubling of PFOA concentration at 1YPM resulted in a decrease in % FGV (β: -4.61, 

95% CI: -7.45, -1.78) (Table 2). 
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MBzP and breast density 

The current analysis of MBzP and breast density included two subsamples, 292 

girls with urine samples in B1 and 255 girls with samples in both B1 and B4 (Table 3). 

In both subsamples, the mean age at B1 was 7.4 years, body fat percentage at B1 of 

25%, age of menarche approximately 12 years old, birthweight 3.34 kg. The proportion 

of maternal education was nearly the same in both subsamples, 77% with secondary 

education or less and 23% with greater than secondary education. the geometric mean 

concentration of MBzP at B1 was 6.8 ng/ml. In the sample with both B1 and B4, the 

mean MBzP concentration at B1 was 6.83 ng/ml and at B4 was 3.54 ng/ml, mean age 

at B4 of 11 years, and body fat percentage at B4 of 27%. Both subsamples had similar 

age at 2YPM of 13.7 years, and body fat percentage at 2YPM of 32%. Breast density 

measurements were similar in both subsamples, absolute FGV ranging from 213.7-

215.9 cm3 and %FGV ranging from 50.2-51.5%.  

Overall, our results do not support a relation between MBzP and %FGV and 

absolute FGV, under all hypothetical interventions of specific WOS (Table 4). Under the 

hypothetical intervention of MBzP exposure at B1 only, a doubling of MBzP 

concentration resulted in minimal evidence of 0.84 cm3 decrease in absolute FGV at 

2YPM (β: -0.84, 95%CI: -6.19, 4.78). On the other hand, hypothetical interventions of 

MBzP exposure at B4 only (β: 3.39, 95% CI: -1.89, 8.88) and joint total effect of B1 and 

B4 resulted in minimal evidence of increase in absolute FGV at 2YPM (β: 2.88, 95% CI: 

-3.58, 9.99). A sensitivity analysis of MBzP at B4 only restricting to girls with both B1 
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and B4 urine measurements (n=255) but without adjusting for MBzP measurement at 

B1 did not appreciably alter the results (data not shown).  

Associations between both MBzP and PFOA and breast density 

In a subset of girls who provided both urine and serum samples at B4 (n=241), 

we analyzed the joint total effect of MBzP and PFOA at B4 on breast density at 2YPM 

(Table 5). Doubling both MBzP and PFOA concentrations at B4 resulted in a non-

significant increase in absolute FGV (β: 4.29, 95% CI: -4.14, 12.83), with no evidence of 

an interaction between MBzP and PFOA at B4 (p-value: 0.71), and a null effect on 

percent FGV (β: 0.11, 95% CI: -1.65, 1.77), with no evidence of an interaction between 

MBzP and PFOA at B4 (p-value: 0.32). 

2.5 Discussion 
 

Our study adds to the limited research evaluating the effect of selected EDCs on 

breast density at specific WOS. Of note, the current study is the first to use G-formula to 

assess effect estimates under hypothetical interventions of specific WOS timepoints as 

well as the joint total effect of these timepoints.  

The current study is part of the Breast Cancer and the Environmental Research 

Program (BCERP), a consortium evaluating the role of WOS and exposure to 

environmental chemicals in breast cancer etiology. In parallel to our study, a mice study 

in BCERP examined the effect of pubertal exposure to BBP, PFOA, and zeranol on 

mammary gland development.101 The study found PFOA + zeranol exposure to induce 

the most phenotypic and transcriptomic changes in the mammary gland, while no effect 

was observed in the BBP + PFOA exposure. As EDCs are more often present in 
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mixtures than single mixtures, it is possible that certain mixtures induce synergistic 

effects. 

PFOA and breast density 

The observed PFOA concentrations in our study were comparable to PFOA 

concentrations in the U.S. general population of girls aged 12-19 years old (median 1.17 

ng/ml).102 For PFOA, we observed a non-significant increase in absolute FGV when 

doubling the PFOA concentration at B4 only and at B4 and 1YPM together (i.e. joint 

total effect). These findings suggest that breast development may have WOS to PFOA 

exposure throughout puberty, with heightened sensitivity during assessment at B4. The 

breast may be more susceptible to EDC exposure during the B4 stage, in which the 

breast tissue experiences exponential growth with rapid differentiation and proliferation 

of TEBs, compared to 1YPM when the breast is relatively mature.88 On the other hand, 

a doubling of PFOA concentration at 1YPM resulted in a decrease in % FGV (β:-5.63, 

95% CI: -8.29, -3.04). This may be due to residual confounding by fatty tissues in the 

breast that is not entirely captured by our fat percentage covariate. Overall, our results 

indicate a potential differential WOS of PFOA on breast density, though we cannot rule 

out significant findings by chance.  

A mice study by Tucker et. al. focused on prenatal PFOA exposure observed 

significant delays in mammary gland development which persisted into young adulthood 

but had no effect on pubertal timing onset.103 These experimental studies underscore 

the importance of exposure WOS, both prenatal and pubertal, as critical periods in 

which PFOA may alter breast development.  
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Most observational studies examining the effect of early life PFOA exposure 

focused on anthropometric indicators of adiposity including birthweight and BMI, 

waist:height ratio, and waist:hip ratio in children and adolescents. PFOA effects on 

adiposity measures varied by specific timepoints (e.g. prenatal, 2-week postpartum 

maternal, and adolescent) suggesting differential WOS for the relation with adiposity. 

The Healthy Start Study of 628 U.S. mother-infant pairs in Colorado assessed prenatal 

exposure to PFOA on birthweight. PFOA concentration from maternal serum collected 

at 27 weeks gestation was inversely associated with birthweight (PFOA highest tercile 

vs. lowest tercile: ß -92.4 g, 95%CI -166.2 g, -18.5g).104 A prospective study with 490 

mother-child pairs from the Faroe Islands found that 2-week postpartum maternal PFOA 

concentrations were significantly associated with increased risk of the child being 

overweight at 5 years old, adjusting for child sex, duration of breastfeeding, and 

maternal pre-pregnancy BMI (per log10 unit increase of PFOA ng/ml: ß 1.50, 95%CI 

1.01, 2.24).105 On the other hand, a cross-sectional study including girls 12-19 years old 

in Cincinnati and San Francisco Bay area found higher median PFOA concentrations in 

the sample compared to the average U.S. population PFOA concentrations (5.8-7.3 

ng/mL vs. 3.8 ng/mL), with log-transformed PFOA value having a strong inverse 

association with BMI z-score but not with waist: height nor with waist: hip ratio (per 

log10 unit increase of PFOA ng/ml: ß -0.264, 95%CI -0.416, -0.112).106 Collectively, 

these observational studies suggest an effect of PFOA on adiposity measures that 

varies with age at exposure assessment, which further highlights the importance of 

using G-formula to avoid adjusting for a potentially important mediator, fat percentage, 

in the association between PFOA and breast density.  
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MBzP and breast density 

The observed MBzP concentrations were lower in our study than the MBzP 

concentrations reported in previous analysis of adolescent girls data from the U.S. 

National Health and Nutrition Examination survey (median 9.2 ng/mL and 16.0 

ng/ml).107,108 This may have contributed to our null finding of MBzP on both absolute 

FGV and %FGV. This result is consistent with the finding in our previous GOCS study, 

which analyzed the association between MBzP urinary concentrations at B1 and B4 and 

breast density at B4 among a smaller subset of GOCS participants.109 Similarly, a 

longitudinal cohort study of girls aged 6-8 years from BCERP reported null findings of 

pubertal exposure to phthalates of high molecular weight (including BBP, the parent 

compound of MBzP) with breast development.110 However, a separate analysis of the 

same BCERP cohort observed a later age for breast development (Tanner Stage B2) 

for girls with higher pre-pubertal MBzP concentrations.111  

While the associations between MBzP and human adolescent breast 

development remain unclear, animal studies provide further evidence of the potential 

detrimental effect of BBP/MBzP on overall growth and pubertal development. A mice 

study found that a high dose of BBP and its monoester metabolite MBzP can produce 

developmental and reproductive toxicity in rodents.112 Another found neonatal and 

prepubertal exposure of BBP to affect gene expression profile in mammary gland tissue 

of mice. The study also reported, while there were no significant morphological changes 

of the mammary gland, there was an increase in proliferative index in TEBs and in 

lobule I.113 Similarly, it may be the case that our null findings were reflective of the 

unaffected morphology of the breast tissues.   
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Strengths and limitations  

A limitation of our study is the potential of exposure misclassification resulting 

from a single spot urine and serum collection at each timepoint, especially for MBzP 

which has a relatively short half-life (e.g., hours).114 However, studies suggest even a 

transient but consistent or repeated exposure to phthalates may result in adverse health 

outcomes.73 Given the ubiquitous nature of most phthalates, metabolite concentrations 

of phthalates were found to have moderate to good correlation over weeks or months in 

children.115,116 Conversely, PFOA has a much longer half-life of approximately 3.5 

years, meaning the PFOA measurement at 1YPM may also reflect PFOA exposure that 

happened at or before B4. Regardless, it is reasonable to assume that girls will have 

additional PFOA exposure at 1YPM resulting from drinking water serving as constant 

sources of PFOA. It is important to note that our study included biomarker 

concentrations at two different WOS timepoints across puberty, compared to a single 

time period in other cohorts, allowing for examination of EDCs and breast density 

across specific pubertal stages. Lastly, while we assessed MBzP and PFOA individually 

and together, we cannot fully assess the impact of chemical mixtures of other EDCs, 

which may have biased our results.  

Our study has several strengths including the prospective data collection and the 

ability to assess the critical periods of EDC exposure on pubertal breast density. The 

lack of randomization in observational studies limits casual interpretation of the results. 

However, the use of G-formula in conjunction with the identifiability assumptions, we 

assessed the effect of MBzP and PFOA on breast density as opposed to cross-

sectional associations. Additionally, the method permits the estimation of a single, 
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marginal effect estimate averaged across the observed distribution of the covariates. 

This way, we avoid overadjustment of the models by including covariates like fat 

percentage that serves as both a confounder and a mediator between the EDCs and 

breast density. Lastly, under the numerous hypothetical interventions developed based 

the casual DAG, we are able to estimate the effect of EDCs from a specific WOS (e.g. 

B1 only, B4 only for MBzP; B4 only, 1YPM only for PFOA) as well as the joint total 

effect of EDCs (e.g. both B1 and B4 for MBzP; both B4 and 1YPM for PFOA; both 

MBzP and PFOA at B4). Secondary analyses using standard linear regression were 

performed to explore whether our current results differed direction and strength (results 

not shown). While there were overlapping confidence intervals between our current 

results and standard analyses, all the secondary analyses resulted in null effects of 

MBzP and PFOA on breast density.  

2.6 Conclusion 
 

EDCs measured at different time points throughout puberty can have varying 

impacts on the pubertal breast density. In our study PFOA exposure evaluated at B4 

resulted in a non-significant increase in absolute FGV, while PFOA exposure assessed 

at 1YPM resulted in a decreased pubertal % FGV. We did not find an effect of MBzP on 

either absolute FGV and %FGV during puberty.  
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Figure 2. 1 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 
assessment of perfluorooctanoic acid and breast density 

 

 

Figure 2. 2 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 
assessment of monobenzyl phthalate and breast density. 

  

 

 

 

Figure 2. 3 Directed acyclic graph of the study showing the relation between perfluorooctanoic 
acid and breast density 

Girls with 2YPM DXA 
assessment 

N=376

Girls with serum sample at 1YPM
N=314

AND

Girls with serum sample at 1YPM 
and 2YPM DXA assessment

N=304

Girls with serum sample at B4 and 
1YPM and 2YPM DXA assessment

N=276

AND

Girls with serum sample at B4
N=340

AND

Girls with serum sample at B4
and 2YPM DXA assessment

N=333

Girls with 2YPM DXA 
assessment 

N=376

Girls with urine sample at B4
N=443

AND

Girls with urine sample at B4 
and 2YPM DXA assessment

N=329

Girls with urine sample at B1 
and B4 and 2YPM DXA 

assessment
N=255

AND

Girls with urine sample at B1
N=411

AND

Girls with urine sample at B1 
and 2YPM DXA assessment

N=292



 26 

  

Figure 2. 4 Directed acyclic graph of the study showing the relation between monobenzyl 
phthalate acid and breast density  

 

 

 

  

PFOA @B4

Breast Density

Body Fat % @B1

B1 B4 1YPM 2YPM

PFOA @1YPM

Age @ 2YPM

Age at menarche

Body Fat % @B4 Body Fat % @2YPMBody Fat % @1YPM

PFOA @B4 x PFOA @1YPM

Mother’s education

Birthweight

MBzP @B4

Breast Density

MBzP @B1

B1 B4 1YPM 2YPM

Age @ 2YPMAge at menarche

MBzP@B1 x MBzP @B4

Creatinine @B1

Body Fat % @B1 Body Fat % @B4 Body Fat % @2YPMBody Fat % @1YPM

Creatinine @B4

Mother’s education

Birthweight



 
 

 
 

27 

Table 2. 1 Characteristics of girls in the Growth and Obesity Cohort Study with breast density at 
2-years post menarche and serum sample at Tanner breast stage B4 and 1-year post menarche 

Characteristic Window of Susceptibility  

  B4 B4 and 1YPMa 

  (n=333) (n=276) 

Perfluorooctanoic Acid (PFOA), ng/ml (mean 
(SD)) 

  

    Tanner Stage B4 1.27 (0.79) 1.24 (0.76) 

    1 Year Post-Menarche - 0.98 (0.57) 

Age, years (mean (SD))  
 

    Tanner Stage B4 10.89 (0.93) 10.93 (0.91) 

    1 Year Post-Menarche -  12.54 (0.98) 

Body fat percentage (mean (SD))   

    Tanner Stage B4 27.06 (5.21) 27.11 (5.18) 

    1 Year Post-Menarche - 30.16 (5.14) 

Age at menarche, years (mean (SD)) 12.01 (0.93) 12.09 (0.88) 

Birthweight, kg (mean (SD)) 3.36(0.42) 3.34 (0.43) 

Maternal education (n (%))   

    Secondary education or less 262 (78.68) 215 (77.90) 

Greater than secondary education 71 (21.32) 61 (22.10) 

2 Year Post- Menarche (2YPM)   

Age at 2YPM 13.50 (1.06) 13.57 (1.03) 

Body fat percentage at 2YPM (mean (SD)) 32.46 (5.82) 32.42 (5.67) 

Absolute Fibroglandular Volume, cm3 (mean (SD)) 218.83 (77.23) 215.51 (78.17) 

Percent Fibroglandular Volume, % (mean (SD)) 50.76 (15.14) 50.70 (15.00) 
a Subsample of girls with serum samples at B4 and 1YPM. 
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Table 2. 2 Simulated relative changea in breast density associated with log2 (ng/ml) increase in 
serum perfluorooctanoic acid (PFOA) among Growth and Obesity Cohort Study participants  

Window of 
Susceptibility 

 Absolute Fibroglandular 
Volume 

Percent Fibroglandular Volume 

  Estimate 
of 

relative 
change 

SE 95% 
Confidence 

Interval 

Estimate 
of 

relative 
change 

SE 95% Confidence 
Interval 

Tanner Stage 
B4b 

N=333 11.25 6.03 (-0.28, 23.49) 1.20 1.14 (-1.03, 3.52) 

1 Year Post-
Menarche 
(1YPM)c 

N=276 -13.12 7.39 (-27.76, 2.16) -4.61 1.39 (-7.45, -1.78) 

Joint total 
effect of B4 
and 1YPMd 

N=276 20.64 14.82 (-10.77, 
49.35) 

-0.11 2.64 (-5.26, 4.93) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 
2YPM, age at menarche. 1YPM only analysis additionally accounted for B4 PFOA concentrations. 
b relative change in breast density when doubling PFOA concentration at Tanner Stage B4 only, 
regardless of subsequent concentration at 1YPM.   
c relative change in breast density when doubling PFOA concentration at 1YPM only, regardless of prior 
concentration at Tanner Stage B4.  
d relative change in breast density when doubling PFOA concentration at both Tanner Stage B4 and 
1YPM. 
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Table 2. 3 Characteristics of girls in the Growth and Obesity Cohort Study with breast density at 
2-years post menarche and urine sample at Tanner breast stage B1 and B4 

Characteristic Window of Susceptibility  

  B1 B1 and B4a 

  (n=292) (n=255) 

Monobenzyl Phthalate (MBzP), ng/ml (mean (SD)) 
  

    Tanner Stage B1 6.75 (15.72) 6.83 (16.49) 

    Tanner Stage B4 - 3.54 (6.76) 

Age, years (mean (SD))  
 

    Tanner Stage B1 7.40 (0.56) 7.40 (0.56) 

    Tanner Stage B4 -  11.02 (0.94) 

Body fat percentage (mean (SD))   

    Tanner Stage B1 25.60 (4.49) 25.27 (4.38) 

    Tanner Stage B4 - 26.71 (5.39) 

Age at menarche, years (mean (SD)) 12.15 (0.95) 12.18 (0.90) 

Birthweight, kg (mean (SD)) 3.34 (0.42) 3.34 (0.41) 

Maternal education (n (%))   

    Secondary education or less 225 (77.05) 197 (77.25) 

Greater than secondary education 67 (22.95) 58 (22.75) 

2 Year Post- Menarche (2YPM)   

Age at 2YPM 13.65 (1.09) 13.69 (1.05) 

Body fat percentage at 2YPM (mean (SD)) 32.52 (6.12) 32.08 (6.03) 

Absolute Fibroglandular Volume, cm3 (mean (SD)) 213.69 (81.07) 215.87 (78.07) 

Percent Fibroglandular Volume, % (mean (SD)) 50.24 (15.43) 51.47 (15.46) 
a Subsample of girls with urine samples at B1 and B4. 
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Table 2. 4 Simulated relative changea in breast density associated with log2 (ng/ml) increase in 
urine monobenzyl phthalate (MBzP) among Growth and Obesity Cohort Study participants  

Window of 
Susceptibili

ty 

 Absolute Fibroglandular 
Volume, cm3 

Percent Fibroglandular 
Volume, 

% 

  Estimate 
of 

relative 
change 

SE 95% Confidence 
Interval 

Estimate of 
relative 
change 

SE 95% Confidence 
Interval 

Tanner 
Stage B1b 

N= 
292 

-0.84 2.74 (-6.19, 4.78) 0.09 0.4
5 

(-0.78, 1.03) 

Tanner 
Stage B4c 

N= 
255 

3.39 2.73 (-1.89, 8.88) 0.22 0.5
0 

(-0.80, 1.18) 

Joint total 
effect of B1 
and B4d 

N= 
255 

2.88 3.52 (-3.58, 9.99) 0.27 0.6
9 

(-1.03, 1.65) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 
2YPM, age at menarche, creatinine. Tanner Stage B4 only analysis additionally accounted for B1 MBzP 
concentrations. 
b relative change in breast density when doubling MBzP concentration at Tanner Stage B1 only, 
regardless of subsequent concentration at Tanner Stage B4.   
c relative change in breast density when doubling MBzP concentration at Tanner Stage B4 only, 
regardless of prior concentration at Tanner Stage B1.  
d relative change in breast density when doubling MBzP concentration at both Tanner Stage B1 and B4.  
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Table 2. 5 Simulated relative changea in breast density associated with log2 (ng/ml) increase in 
urinary monobenzyl phthalate (MBzP) and serum perfluorooctanoic acid (PFOA) among Growth 
and Obesity Cohort Study participants  

Window of 
Susceptibility 

 Absolute Fibroglandular 
Volume 

Percent Fibroglandular Volume 

  Estimate 
of 

relative 
change 

SE 95% 
Confidence 

Interval 

Estimate 
of 

relative 
change 

SE 95% Confidence 
Interval 

Tanner Stage 
B4b 

N=241 4.29 4.31 (-4.14, 12.83) 0.11 0.86 (-1.65, 1.77) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 
2YPM, age at menarche, creatinine (MBzP only). 
b  joint total effect of MBzP and PFOA concentrations at Tanner Stage B4. Relative change in breast 
density when doubling both MBzP and PFOA at Tanner Stage B4 regardless of other WOS exposures.  
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Chapter 3. Time-specific Impact of Perfluorooctanoic Acid (PFOA) and 
Monobenzyl Phthalate (MBzP) on Hormone Levels of Adolescent Latino Girls 
 
 
3.1 Abstract  
 
Introduction: Endocrine disrupting chemcials (EDCs), such as monobenzyl phthalate (MBzP) 

and perfluorooctanoic acid (PFOA), have been observed to be associated with an increased 

incidence of hormone-sensitive diseases such as breast cancer. However, few epidemiologic 

studies have examined the effect of EDCs on hormones during puberty, an understudied critical 

period for breast cancer development. 

 

Objective: To prospectively evaluate the association between MBzP and PFOA and hormones, 

individually and collectively, during puberty. 

 

Method: This study included 330 Chilean girls from the Growth and Obesity Cohort Study in 

Santiago, Chile, with EDC biomarker collection at three timepoints: Tanner breast stages B1 

and B4 and 1-year post menarche (1YPM) and serum hormone samples at 1YPM. Hormones 

analyzed included dehydroepiandrosterone sulphate (DHEAS), androstenedione, 17 OH 

progesterone (17-OHP), testosterone, estradiol, sex hormone-binding globulin (SHBG), and 

insulin growth factor- 1 (IGF-1). Parametric G-formula was used to estimate the time-specific 

association between EDCs and hormones. The analyses accounted for the covariates age, 

body fat percentage, birthweight, age of menarche, maternal education, insulin levels, and 

creatinine (MBzP only).  
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Results: A doubling of MBzP concentration at B1 only resulted in a statistically significant 

decrease in IGF-1 (β:-5.84, 95% Confidence Interval (CI): -10.44, -1.58) and a slight increase in 

17-OHP (β:0.04, 95%CI: 0.01, 0.06). We also found a joint total effect of a doubling of MBzP at 

B1 and B4 with a significant decrease in IGF-1 (β:-8.42, 95% CI: -16.23, -0.21). A doubling of 

PFOA concentration resulted in a statistically significant increase in IGF-1 (β: 25.22, 95%CI: 

14.62, 35.91), 17-OHP (β: 0.13, 95%CI: 0.06, 0.19), and SHBG (β: 3.52, 95%CI: 0.38, 6.74). 

 

Conclusion: In this cohort of Latino girls, MBzP was associated with IGF-1 and 17-OHP. PFOA 

was associated with IGF-1, 17-OHP and SHBG, Associations between MBzP and PFOA and 

hormones varied by pubertal time point, suggesting differential effects of EDC exposure by 

specific window of susceptibility on pubertal hormone levels. 
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3.2 Introduction 
 

 Breast cancer etiology involves the synergistic interaction between hormonal influences 

and traditional carcinogenesis pathways involving random genetic mutation and DNA 

damage.117 The role of estrogen in breast tumorigenesis has been well established among adult 

women. For example, in post-menopausal women, exogenous estrogen treatment significantly 

increased the risk of breast cancer.18 Similarly, the use of tamoxifen, a selective estrogen-

receptor modulator, has been associated with lower risk of primary invasive breast cancer in 

both pre- and postmenopausal women.19 In reverse, surgical removal of ovaries, a major source 

of estrogen, production decreased the risk of breast cancer in premenopausal women.20 While a 

substantial number of breast cancer studies have focused on hormonal influences among 

adults, few studies have examined this during puberty, which is another distinct and critical 

period of breast development characterized by heightened hormonal activity and stromal-

epithelium modifications.31,32 

Specifically, the female sex hormones estradiol and progesterone directly, and 

androgens (e.g., testosterone, dehydroepiandrosterone sulfate (DHEAS), androstenedione) 

indirectly play pivotal roles in the female reproductive system and for secondary female sex 

characteristics including the growth of mammary glands. Other important hormone and protein 

structures include insulin-like growth factor 1 (IGF-1), known to be implicated in numerous 

processes with growth-promoting actions regulating cell proliferation, differentiation, apoptosis 

and angiogenesis in different tissues in an endocrine, paracrine and autocrine fashion118 and 

sex hormone-binding globulin (SHBG), the blood transport protein for estrogens and 

androgens.119 The concentration of sex hormones and related proteins during puberty are 

associated with several pubertal clinical milestones, including age at menarche and thelarche 

(i.e., breast budding).120,121  
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Growing evidence suggests that the age at thelarche worldwide have become 

increasingly earlier in recent years.122,123 Premature onset of thelarche has been linked to 

increased risk of breast cancer, raising concerns related to this trend.122,124,125 While the precise 

mechanisms underlying earlier pubertal onset is not fully known, it has been postulated that 

exposure to environmental chemicals during the early developmental periods may contribute to 

hormonal and homeostatic disruptions, suggesting puberty to be a window of susceptibility 

(WOS) for breast cancer.32,125,126 Further, epidemiologic studies have found exposure to 

environmental toxins to be associated with increased risk of metabolic and endocrine disorders 

and breast cancer, highlighting the potential long-term consequences of hormonal 

disruptions.39,127,128  

Among the environmental exposures that may increase breast cancer risk are endocrine 

disrupting chemicals (EDCs). EDCs are hormonally active exogenous substances that alter or 

interfere with the endocrine system.129 They mimic natural hormones by binding to endocrine 

nuclear receptors and disrupt the synthesis, transport, metabolism, and elimination of 

hypothalamic, pituitary, and peripheral hormones.42 Butyl-benzyl phthalate (BBP) and its main 

metabolite, mono-benzyl phthalate (MBzP), are EDCs of particular interest due to their potential 

role in altering pubertal outcomes and fostering cancer development in rats.81,130,131 BBP is a 

substance commonly used as a plasticizer and is not chemically bound to products, which 

allows it to be easily found in foods, dust, and air.50  Another EDC that may be relevant for 

understanding breast cancer risk is perfluorooctanoic acid (PFOA), which is found in household 

items such as carpets, clothes, frying pans, and cardboard packaging among others.45,46 Animal 

studies suggest that it can disrupt the peroxisome-proliferator-activated-receptor-signaling 

pathways, consequently increasing hepatic aromatase activity and estrogen concentrations.86,132 

Given, BBP and PFOA’s anti-androgenic and pro-estrogenic properties, their pervasiveness is 
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an important concern for breast cancer risk, specifically during critical periods of breast 

development.48,75–78,133 

While both MBzP and PFOA are commonly detected in humans, few epidemiologic 

studies have examined the effect of these EDCs on hormones related to the growth and 

development of girls during puberty, an understudied WOS for breast cancer development. 

Evaluation of the impact of MBzP and PFOA on hormones in this population may help clarify a 

potential molecular effect of EDCs on breast cancer etiology, The current study presents the 

first step towards understanding the effects of MBzP and PFOA exposure on hormone 

concentrations at specific pubertal WOS among Chilean adolescent girls.  

 

3.3 Methods 
 
Study population  

This study uses data from the prospective Growth and Obesity Chilean Cohort Study 

(GOCS), which was established in 2006 and recruited children ages 3-4 from low- and middle-

income families in Santiago, Chile. Eligibility criteria included: 1) singletons born at 37-42 

weeks, 2) birthweight greater than or equal to 2500 grams and less than 4500g, and 3) healthy 

with no physical or psychological conditions. Pubertal stages were evaluated by clinical 

examination based on Marshall and Tanner guidelines (Tanner Staging).90 Breast development 

was assessed through palpation and visual inspection by dietitians who were trained by a 

pediatric endocrinologist (VM). The study prospectively followed children annually up to age 7.5 

years, then every 6 months until they reached Tanner stage 4 (B4) and then annually thereafter 

including 1 year post-menarche (1YPM). A total of 1,195 eligible children agreed to participate in 

the study, of which 601 were girls.91 
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We focused our analyses on girls who provided urine samples at Tanner stage B1 and 

B4 and serum samples at B4 and 1YPM. For our urine and serum samples at B4, we excluded 

samples from girls who had already experienced menarche by B4 to account for the potential 

confounding by the menstrual cycle on the association between EDCs and hormones (Figure 

1). The study protocol was approved by the Ethics Committee of the Institute of Nutrition and 

Food Technology, University of Chile (INTA), and the Institutional Review Board of the 

University of California, Los Angeles. Participating girls gave assent and informed written 

consent was obtained from all parents or guardians of study participants.  

Urine collection  

Urine samples were collected at B1 and B4. They were collected (at least 2mL) in non-

polycarbonate sterile cups from fasting study participants between 10 AM and 12 PM during 

visits to the INTA clinics. The samples were immediately vortexed, aliquoted, and temporarily 

stored at -80°C before being shipped to a laboratory for MBzP and creatinine quantification.  

Urine analysis - MBzP 

Initial samples collected at B1 (n=200) and B4 (n=200) were analyzed at the National 

Center for Environmental Health Laboratory at the Centers for Disease Control and Prevention 

(CDC) in Atlanta, GA using on-line solid phase extraction-liquid chromatography-isotope 

dilution-tandem mass spectrometry.134 With additional funding, the remaining samples collected 

at B1(n=211) and B4 (n=242) were analyzed at the Children's Health Exposure Analysis 

Resource (CHEAR) Laboratory at the Icahn School of Medicine at Mount Sinai in New York, 

NY.94 The limit of detection (LOD) for MBzP biomarker was lab-specific; the value at CDC was 

0.3 ng/ml and Mount Sinai the value was 0.1ng/ml. MBzP concentrations below LOD were 

imputed a value of the lab-specific LOD/sqrt(2).95  
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A total of 40 MBzP urine samples analyzed at the CDC were also analyzed at Mount 

Sinai as duplicates to perform quality control and between-lab standardization. Before statistical 

analyses, CDC-analyzed MBzP biomarker data were normalized to the Mount Sinai-analyzed 

MBzP biomarker data using scaling parameters calculated with the 40 duplicate samples. We 

assumed no significant differences in study participant characteristics in the normalization step 

as samples were randomly chosen to be analyzed at the CDC. All urine creatinine 

concentrations were quantified at Mount Sinai.93 MBzP biomarker and creatinine concentrations 

were log2-transformed prior to analyses.  

Blood collection  

Serum samples were collected at Tanner stage B4 and 1YPM. The girls were asked to 

fast for at least 8 to 12 hours prior to blood collection. Venous samples were obtained before 

8:30am at the INTA clinics. Study staff confirmed the state of fasting and whether the girls had a 

fever at the time of blood collection. Serum samples at 1YPM were taken on the 2nd to 7th day of 

the follicular phase of the menstrual cycle.  

Blood analysis – PFOA and hormones 

PFOA levels were assessed at the CDC National Center for Environmental Health 

Laboratory. Standard serum solutions containing PFOA were prepared in water/methanol 

(50/50) by serial dilutions from commercial solutions (50 or 2 µg/mL in methanol) of PFOA. All 

prepared solutions were frozen (-70 °C) in 2.0mL polypropylene vials until use. Serum samples 

(50 µL) were dispensed into autosampler vials, added 50 µL of stable isotope-labeled internal 

and 0.1 M formic acid and vortexed before being analyzed using the on-line solid phase 

extraction-high performance liquid chromatography-isotope dilution-tandem mass spectrometry 

serum method. General approach used for this analysis is described previously.92 The LOD for 
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PFOA biomarker was 0.1 ng/mL and concentrations below LOD were imputed a value of 

LOD/sqrt(2).95 PFOA biomarker concentrations were log2-transformed prior to analyses. 

 Six hormone concentrations were analyzed at the Institute of Maternal and Child 

Research, University of Chile: dehydroepiandrosterone sulphate (DHEAS), androstenedione, 17 

OH progesterone (17-OHP), testosterone, estradiol, sex hormone-binding globulin (SHBG), and 

insulin growth factor- 1 (IGF-1). Concentrations of DHEAS, androstenedione, 17-OH 

progesterone (17-OHP), and testosterone were analyzed by liquid chromatography-mass 

spectrometry in a high-performance liquid chromatography (HPLC) Agilent system (Santa Clara, 

CA, USA) 1260 coupled to an AB Sciex 3200 Quantum ultratriple quadrupole mass 

spectrometer (Foster City, CA, USA). Further details on liquid chromatography separation are 

described elsewhere.135 The sensitivities for DHEAS, androstenedione, 17-OHP, and 

testosterone were 75, 0.03, 0.05, and 0.01 ng/mL, respectively. Serum estradiol was measured 

by RIA (Pantex, Santa Mónica, CA, USA). The sensitivity of this assay was 5.0 pg/mL. Sex 

hormone-binding globulin (SHBG) (sensitivity: 0.5 nmol/L) were performed using an 

immunoradiometric assay (Izotop Laboratories, Budapest, Hungary). IGF-1 levels were 

measured by RIA (sensitivity 5 ng/ml).  

Covariates 

Covariates were identified based on a priori review of published evidence and using 

directed acyclic graphs (DAGs) of the causal relation between EDCs and hormones. 

Anthropometric measures (e.g. weight, height) were collected bi-annually by study personnel, 

birthweight was obtained from health records and percent body fatness was measured using a 

bioimpedance device. Age of menarche was surveyed every 6 months prior to Tanner stage B4 

and every 3 months after achieving B4. Maternal education was collected through interviews 

with the girls’ mothers. Serum insulin concentration was measured by RIA (sensitivity 0.5 
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mUI/ml). All missing covariate data were imputed using mean imputation, except for maternal 

education which was imputed using median imputation.  

Statistical analysis 

 Parametric G-formula (hereafter ‘G-formula’) was used for the statistical analysis of 

MBzP and PFOA and hormone levels. Adjusting for both time-varying confounder and fixed 

covariates,100 G-formula estimated the time-specific effects of MBzP and PFOA on hormone 

levels at 1YPM individually and collectively. A directed acyclic diagram (DAG) representing the 

hypothesized causal relation between EDC exposures, hormones and covariates is represented 

in Figure 1. MBzP and PFOA concentrations (continuous) and fat percentage (continuous) are 

collected at multiple timepoints, which treats fat percentage as a confounder that is affected by 

the prior measurement of the EDC. G-formula allows for the adjustment of these exposure-

dependent confounders by fat percentage without blocking the indirect path of EDCs to breast 

density through fat percentage. Our models adjusted for time-fixed covariates include age at 

1YPM (continuous), insulin levels at 1YPM (continuous), birthweight (continuous), age at 

menarche (continuous), and maternal education (categorical: secondary education or less, 

greater than secondary education). More details on the application of G-formula with time-

varying confounders adjustment can be found in Supplementary File 1. We used SAS 9.4 

software (SAS Institute Inc.) for all analyses. 

 

3.4 Results 
 
MBzP and hormones 

In both subsamples, the mean age of our girl participants at B1 was 7.4 years, body fat 

percentage at B4 was 25%, age of menarche was 12.5 years and the mean birthweight was 

3.33 kg (Table 1). In both subsamples, majority of the girls’ mothers received a secondary 
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education or less (76.31% and. 77.70%). The mean concentration of MBzP at B1 was 5.73 

ng/mL and in the subsample of girls with both B1 and B4 without menarche, MBzP 

concentration was 7.03 ng/mL at B1 and 3.65 ng/mL at B4.  

Relative change in hormone levels at 1YPM associated with a doubling of MBzP 

concentrations at specific WOS is presented in Table 2. A doubling of MBzP concentration at 

B1 only resulted in a statistically significant decrease in IGF-1 (β:-5.84, 95% Confidence Interval 

(CI): -10.44, -1.58) and a slight increase in 17-OHP (β:0.04, 95%CI: 0.01, 0.06). We also found 

a joint total effect of a doubling of MBzP at B1 and B4 with a significant decrease in IGF-1 (β:-

8.42, 95% CI: -16.23, -0.21). We did not observe any effect in a doubling of MBzP concentration 

at B4 only. A sensitivity analysis of MBzP at B4 only restricting to girls with both B1 and 

B4 urine measurements (n=148) but without adjusting for MBzP measurement at B1 did 

not appreciably alter the results (data not shown). 

PFOA and hormones 

The analysis of PFOA and hormone levels included two subsamples, girls who had not 

yet reached menarche at B4 and with serum samples in B4 (n=226), and girls with serum 

samples from both B4 and 1YPM (n=264) (Table 3). In the analysis using  B4 values only, the 

mean age at B4 was 10.8 years, body fat percentage at  

B4 was 26.8%. In the subsample of both B4 and 1YPM, the mean age at B4 was 10.9 years 

and body fat percentage at B4 was 27%. In both subsamples, age of menarche approximately 

12 years, and the mean birthweight was 3.3 kg. In both subsamples, majority of the girls’ 

mothers received a secondary education or less (76.44% and. 78.03%). The mean 

concentration of PFOA at B4 among girls who had not yet reached menarche at B4 was 1.30 

ng/mL; in subsample of girls with both B4 and 1YPM serum samples, PFOA concentration was 

1.26 ng/mL at B4 and 1.00 ng/mL at 1YPM.   
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Relative change in hormone levels at 1YPM associated with a doubling of PFOA 

concentrations at specific WOS is presented in Table 4. Under the hypothetical intervention of 

PFOA exposure at 1YPM only, a doubling of PFOA concentration resulted in a statistically 

significant increase in IGF-1 (β: 25.22, 95%CI: 14.62, 35.91), 17-OH progesterone (β: 0.13, 

95%CI: 0.06, 0.19), and SHBG (β: 3.52, 95%CI: 0.38, 6.74). We did not observe any 

association between PFOA and hormone levels under hypothetical interventions of PFOA 

exposure at B4 only and joint total effect of B4 and 1YPM.  

Exposure to both MBzP and PFOA and hormones 

In a subset of girls who provided both urine and serum samples at B4 (n=225), we 

analyzed the joint total effect of MBzP and PFOA exposure at B4 prior to menarche on hormone 

levels at 1YPM (Table 5). We did not find significant change in hormone levels when doubling 

both MBzP and PFOA at B4 prior to menarche regardless of other WOS exposures. 

 

3.5 Discussion 
 

In our cohort of Chilean pubertal girls, we evaluated the impact of PFOA and MBzP, 

individually and in combination, on sex hormones, SHBG and IGF-1. We found IGF-1 and 

progesterone to be associated with both PFOA and MBzP and SHBG to be associated with 

PFOA only. These results contribute to the growing evidence evaluating the impact of 

environmental factors during puberty, by highlighting the differential effect of PFOA and MBzP 

on specific hormones.  

MBzP and hormones  

 In our study, we found MBzP exposure to be associated with IGF-1 and progesterone 

but varied by exposure WOS. A decrease in IGF-1 at 1YPM was observed when doubling MBzP 
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at B1 only and at B1 and B4 jointly, while an increase in progesterone at 1YPM was observed 

for doubling MBzP at B1 only. Previous epidemiological studies report mixed results regarding 

phthalate exposure and IGF-1. A cross-sectional study assessed phthalate exposure in relation 

to thyroid and growth hormones among Taiwanese children aged 2-18 years old. They found 

mono-ethyl phthalate (MEP) to be negatively associated with IGF-1 (ß: -0.027; p-value: 0.029), 

but a null effect with MBzP.136 In another cross-sectional study, urinary monocarboxyisoocctyl 

phthalate (MCiOP) and di(2-ethylhexyl)phthalate (DEHP) metabolites were inversely associated 

with serum IGF-1 concentrations among Danish boys aged 4-9 years old, while no association 

was found with MBzP. In the same study, no association was observed between phthalates and 

IGF-1 among girls.137 One explanation for this difference may be that the effect of MBzP on IGF-

1 is age- and sex-specific. The Taiwan study included both sexes with ages ranging from 2-18 

years old while the Dutch study included prepubertal girls with a lower baseline IGF-1 

concentration than that of the girls in our study. Another explanation might be the cross-

sectional study designs used in previous studies compared to the present cohort study which 

prospectively collected MBzP concentrations prior to the girls’ hormone measurements.  

 To date, longitudinal assessment of pubertal phthalate exposure and sex hormones 

relation remains scarce. A pilot study of the Taiwan Maternal and Infant Cohort Study followed 

children from ages 2 to 11 years old to examine pre- and post-natal phthalate exposure on sex 

hormones.138 At ages 8 and 11 years, the girls in the Taiwanese cohort shared similar MBzP 

concentration levels to our study (median: 7.74 mg/dL and 2.92 mg/dL, respectively) but found 

no association between MBzP and progesterone. The study also reported null associations 

between MBzP and testosterone and estradiol, similar to the results of our study. Conversely, 

an Australian study of adolescent girls age 14-16 years old did not observe any associations 

between MBzP (median: 1.26 ng/ml) and androgens.139 The mixed results between our study 

and these cohort studies may be attributable to the different analyses methods used (e.g., G-



 44 

formula vs. generalized estimating equation linear regression analysis) and the varying 

covariate adjustments.  

PFOA and hormones  

In our study, we observed statistically significant increases in 17OHP, SHBG, and IGF-1 

with a doubling of PFOA at 1YPM. PFOA’s anti-androgenic and pro-estrogenic properties may 

have resulted in an uptake of SHBG while decreasing the estradiol levels.133 A cross-sectional 

study using the National Health and Nutrition Examination Survey (NHANES) among 12-19 year 

old girls in the US reported similar PFOA concentration levels as our GOCS cohort (mean: 1.00 

ng/mL, 95%CI: 0.70, 1.40). The study reported a null association between PFOA and 

testosterone and SHBG levels but found a linear negative association with estradiol (p-trend: 

0.027).140 Conversely, in a cohort study of Taiwan females aged 12-17 years old with a higher 

serum PFOA levels (geometric mean: 2.73 ng/mL; SD: 2.97) than our population. observed an 

inverse association between PFOA and serum levels of SHBG (p-trend: <0.05).141  Previous 

studies also addressed the impact of prenatal exposure of PFOA on hormones and related 

proteins, another sensitive WOS.128 A UK cohort study observed a null effect between prenatal 

PFOA exposure (maternal 3rd tercile: >4.1 ng/ml) and SHBG but a positive association with 

testosterone among girls with an mean age of 15 (ß: 0.24; 95%CI: 0.05, 0.43).142 Jensen et al. 

found among girls with a mean age 3.8 years old, a doubling of prenatal PFOA exposure 

resulted in null effect of androstenedione and DHEAS (% change: 4.8; 95%CI: -7.3, 18.5 and % 

change: 0.4; 95%CI: -15.5, 19.3).143 Several factors may contribute to the differences in results 

between our study and previous studies including different exposure window period, age of the 

girls at the time of hormone measurement, variation in covariate adjustments, use of different 

log transformations of PFOA and the differences in the hormones studied.  
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Strengths and limitations 

 An important limitation of our study is the single measurement of both EDCs and 

hormones at a given pubertal timepoint. Given the dynamic nature of hormones, there is 

difficulty in fully interpreting the latent effect of prior EDC exposures at B1 and B4 and 

subsequent hormone levels at 1YPM. Hormone levels are constantly changing, and we cannot 

rule out the possibility of natural pubertal growth and its associated hormonal changes affecting 

EDC dilution and excretion rates. This may attribute to the non-significant findings of PFOA 

exposure at B4 with hormones at 1YPM, while a cross-sectional assessment of PFOA and 

hormones measured at 1YPM resulted in significant findings. To account for this potential 

growth effect, we accounted for body fat percentage and insulin (both markers of growth) to the 

models. Additionally, PFOA’s long half-life of 3.5 years suggest a relatively stable and 

consistent PFOA exposure between B4 and 1YPM.144 Conversely, the short half-life of MBzP 

biomarker may be subject to a greater fluctuation and may not represent the long-term pattern 

of MBzP exposure.114 However, studies have found even consistent, low-dose phthalate 

exposures to be associated with adverse health outcomes.73  

Despite these limitations, our study has several strengths. Our study is the first to 

prospectively collect EDC exposure and subsequent hormone levels during pubertal timepoints. 

Puberty is an established WOS for EDCs to interfere with hormone regulation that may 

potentially lead to long-term adverse health outcomes. We also assessed the effect of EDCs on 

several important sex hormones, SHBG and IGF-1 which highlighted the specific impact of 

PFOA and MBzP on IGF-1 and progesterone at varying pubertal WOS. To date, there are no 

other studies evaluating PFOA and MBzP in combination on hormones. Moreover, with the use 

of G-formula, we were able to estimate the effect of EDCs from specific pubertal WOS (e.g. B1 

only, B4 only for MBzP; B4 only for PFOA) as well as the joint total effect of EDCs (e.g. both B1 

and B4 for MBzP; both B4 and 1YPM for PFOA; both MBzP and PFOA at B4) on hormones at 
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1YPM. Based on the causal DAG, we considered fat percentage as both a mediator and a 

confounder in our models, which limited bias from covariate overadjustment.  

 

3.6 Conclusion 
  

A doubling of MBzP exposure at B1 only was associated with changes in IGF-1 and 17-

OHP while a doubling of MBzP exposure at both B1 and B4 was associated with a decrease in 

IGF-1 only. Similarly, PFOA exposure at 1YPM resulted in an increase in IGF-1, 17-OHP and 

SHBG, while no effect was observed in doubling PFOA concentrations at B4 only and at both 

B4 and 1YPM. These results suggest differential effects of EDC exposure by specific WOS on 

pubertal hormone levels.  
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Figure 3A. 1 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 
assessment of monobenzyl phthalate and hormones 

 

 

Figure 3A. 2 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 
assessment of perfluorooctanoic acid at B4 and hormones 
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Figure 3A. 3 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 
assessment of perfluorooctanoic acid at B4 and 1YPM and hormones 
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Figure 3B. 1 Directed acyclic graph of the study showing the relation between monobenzyl 
phthalate and hormones 

 

Figure 3B. 2 Directed acyclic graph of the study showing the relation between perfluorooctanoic 
acid and hormones 

 
 

 

MBzP @B4

Hormones 
@1YPM

Body Fat % 
@B1

MBzP @B1

B1 B4 1YPM

Mother’s education Age @1YPM
Age at menarche

Insulin @1YPM

Creatinine @B1

MBzP @B1 x MBzP @B4

Body Fat % 
@B4

Body Fat % 
@1YPM

Creatinine @B4

Birth weightBirthweight

Hormones 
@1YPM

Body Fat % 
@B4

Body Fat %
@1YPM

B4

PFOA @B4

Mother’s education
Age at menarche

1YPM

Insulin @1YPM

PFOA @B4 x PFOA @1YPM

PFOA @1YPM

Birthweight

Age @1YPM



 50 

Table 3. 1 Characteristics of girls in the Growth and Obesity Cohort Study included in the 
present analysis assessed for monobenzyl phthalate at Tanner Stage B1 and B4 

Characteristic Window of Susceptibility 

 B1 B4a 

 Menarche Status 

   No Yes 

  (n=249) (n=148) (n=29) 

Monobenzyl Phthalate, ng/ml (mean (SD))   
 

    Tanner Stage B1 5.73 (13.46) 7.03 (16.73) 6.06 (8.63) 

    Tanner Stage B4 - 3.65 (7.93) 2.29 (2.02) 

Age, years (mean (SD))   
 

    Tanner Stage B1 7.39 (0.56) 7.39 (0.58) 7.45 (0.51) 

    Tanner Stage B4 - 11.14 (0.86) 11.86 (0.58) 

Body fat percentage (mean (SD))    

    Tanner Stage B1 25.52 (4.26) 25.04 (4.05) 26.28 (4.05) 

    Tanner Stage B4 - 26.66 (5.36) 28.61 (4.88) 

Age at menarche, years (mean (SD)) 12.07 (0.87) 12.44 (0.72) 12.21 (0.53) 

Birthweight, kg (mean (SD)) 3.33 (0.41) 3.33 (0.41) 3.24 (0.43) 

Maternal education (n (%))    

    Secondary education or less 190 (76.31) 115 (77.70) 23 (79.31) 

Greater than secondary education 59 (23.69) 33 (22.30) 6 (20.69) 

Insulin (mIU/ml)	 

 

10.97 (5.65) 9.36 (3.30) 8.99 (2.69) 

Serum Hormone Levels at 1YPM    

Dehydroepiandrosterone Sulfate, ng/ml 
(mean (SD)) 

90.24 (48.71) 97.88 (52.41) 82.59 (39.66) 

Insulin-like growth factor 1, ng/ml (mean 
(SD)) 

246.33 (58.83) 240.16 (59.66) 265.52 (49.31) 

Testosterone, ng/ml (mean (SD)) 0.19 (0.07) 0.20 (0.08) 0.19 (0.017) 

Estradiol, pg/ml (mean (SD)) 30.04 (28.43) 30.36 (23.10) 25.03 (11.27) 

17 OH progesterone, ng/ml (mean (SD)) 0.54 (0.34) 0.55 (0.36) 0.50 (0.35) 
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Androstenedione, ng/ml (mean (SD)) 0.89 (0.35) 0.95 (0.35) 0.86 (0.38) 

Sex hormone-binding globulin, nmol/L 
(mean (SD)) 

40.77 (17.71) 41.95 (17.76) 36.24 (17.02) 

a Subsample of girls with urine samples at B1 and B4. 
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Table 3. 2 Simulated relative changea in hormone levels at 1 year post-menarche associated with log2 (ng/L) increase in urine 
monobenzyl phthalate among Growth and Obesity Cohort Study participants  

Window of 
Susceptibility 

Tanner Stage B1 
 

N= 249 

Tanner Stage B4 
(prior to menarche) 

N= 148 

Joint total effect of B1 and B4 
(prior to menarche) 

N= 148 

 Estimate 
of 

relative 
changeb 

SEb 95% 
Confidence 

Intervalb 

Estimate 
of 

relative 
changec 

SEc 95% Confidence 
Intervalc 

Estimate 
of 

relative 
changed 

SEd 95% 
Confidence 

Intervald 

DHEAS, ng/ml -0.77 1.79 (-4.43, 2.78) 1.75 2.42 (-2.66, 6.30) -1.61 3.68 (-8.33, 6.04) 

IGF-1, ng/ml -5.84 2.20 (-10.44, -1.58) 0.52 2.76 (-4.72, 5.93) -8.42 4.08 (-16.23, -0.21) 

Testosterone, 
ng/ml 

0.002 0.003 (-0.004, 0.007) -0.0005 0.0036 (-0.0069, 0.0063) 0.003 0.005 (-0.006, 0.014) 

Estradiol, pg/ml 0.82 1.06 (-1.37, 2.86) -0.24 1.10 (-2.28, 1.88) 1.68 1.56 (-1.26, 4.89) 

17 OH 
progesterone, 
ng/ml 

0.04 0.01 (0.01, 0.06) -0.019 0.017 (-0.050, 0.013) 0.04 0.03 (-0.01, 0.09) 

Androstenedione, 
ng/ml 

0.008 0.013 (-0.020, 0.032) -0.009 0.017 (-0.040, 0.023) 0.009 0.024 (-0.038, 0.060) 

Sex hormone 
binding globulin, 
nmol/L 

1.01 0.66 (-0.35, 2.32) -0.54 0.85 (-2.13, 1.06) 0.12 1.27 (-2.29, 2.59) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 1YPM, age at menarche, insulin at 1YPM, creatinine. 
Tanner Stage B4 only analysis additionally accounted for B1 MBzP concentrations. 
b relative change in hormone levels when doubling MBzP exposure at Tanner Stage B1 only, regardless of subsequent exposure at Tanner Stage B4.   
c relative change in hormone levels when doubling MBzP exposure at Tanner Stage B4 only, regardless of prior exposure at Tanner Stage B1.  
d relative change in hormone levels when doubling MBzP exposure at both Tanner Stage B1 and B4.  
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Table 3. 3 Characteristics of girls in the Growth and Obesity Cohort Study included in the 
present analysis assessed for perfluorooctanoic acid at Tanner Stage B4 and 1-year post 
menarche 

Characteristic Window of Susceptibility  

 B4 
B4 and 1YPMa 

Menarche Status 

  No Yes 
(n=264) 

  (n=226) (n=39) 

Perfluorooctanoic Acid, ng/mL (mean (SD))  
 

 

    Tanner Stage B4 1.30 (0.80) 1.03 (0.59) 1.26 (0.78) 

    1 Year Post-Menarche - - 1.00 (0.58) 

Age, years (mean (SD))  
 

 

    Tanner Stage B4 10.82 (0.88) 11.49 (0.79) 10.92 (0.90) 

    1 Year Post-Menarche 12.50 (0.93) 12.23 (0.81) 12.46 (0.92) 

Body fat percentage (mean (SD))    

    Tanner Stage B4 26.82 (5.02) 28.87(4.98) 27.12 (5.06) 

    1 Year Post-Menarche 30.05 (5.11) 30.85 (4.76) 30.17 (5.06) 

Age at menarche, years (mean (SD)) 12.07 (0.86) 11.82 (0.77) 12.03 (0.85) 

Birthweight, kg (mean (SD)) 3.33 (0.42) 3.31 (0.49) 3.33 (0.43) 

Maternal education (n (%))    

    Secondary education or less 172 (76.44) 34 (87.18) 206 (78.03) 

Greater than secondary education 53 (23.56) 5 (12.82) 58 (21.97) 

Insulin at 1YPM (mIU/ml)  11.36 (5.96) 11.55 (6.10) 11.39 (5.97) 

Serum Hormone Levels at 1YPM    

Dehydroepiandrosterone Sulfate, ng/ml (mean 
(SD)) 

95.07 (50.69) 74.22 (38.36) 91.99 (49.56) 

Insulin-like growth factor 1, ng/ml (mean (SD)) 246.69 (57.19) 251.90 (43.15) 247.46 (55.30) 

Testosterone, ng/ml (mean (SD)) 0.20 (0.08) 0.17 (0.06) 0.20 (0.08) 

Estradiol, pg/ml (mean (SD)) 33.96 (42.26) 27.62 (13.01) 33.02 (39.37) 

17 OH progesterone, ng/ml (mean (SD)) 0.54 (0.33) 0.51 (0.32) 0.53 (0.33) 

Androstenedione, ng/ml (mean (SD)) 0.92 (0.37) 0.75 (0.31) 0.90 (0.37) 

Sex hormone-binding globulin, nmol/L (mean (SD)) 39.33 (16.52) 39.82 (18.78) 39.41 (16.83) 
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a Subsample of girls with serum PFOA samples at B4 and 1YPM.



 
 

 
55 

Table 3. 4 Simulated relative change a in hormone levels at 1 year post-menarche associated with log2 (ng/mL) increase in serum 
perfluorooctanoic acid among Growth and Obesity Cohort Study participants  

Window of 
Susceptibility 

Tanner Stage B4 
(prior to menarche) 

N= 226 

1 Year Post Menarche 
 

N= 264 

Joint total effect of B4 and 1YPM 
(prior to menarche) 

N= 264 

 Estimate 
of 

relative 
changeb 

SEb 95% 
Confidence 

Intervalb 

Estimate 
of relative 
changec 

SEc 95% 
Confidence 

Intervalc 

Estimate 
of 

relative 
changed 

SEd 95% Confidence 
Intervald 

DHEAS, ng/ml 1.65 4.62 (-7.11, 10.86) 0.47 4.95 (-8.94, 10.10) -5.21 9.35 (-23.23, 12.91) 

IGF-1, ng/ml 6.12 5.35 (-4.37, 16.94) 25.22 5.57 (14.62, 35.91) 9.92 10.58 (-10.85, 30.56) 

Testosterone, 
ng/ml 

-0.008 0.007 (-0.023, 0.007) -0.001 0.008 (-0.016, 0.014) -0.006 0.015 (-0.036, 0.024) 

Estradiol, pg/ml 1.59 3.93 (-6.15, 9.56) 5.03 4.15 (-3.08, 12.76) -0.20 8.17 (-16.20, 15.18) 

17 OH 
progesterone, 
ng/ml 

-0.030 0.031 (-0.091, 0.032) 0.13 0.03 (0.06, 0.19) 0.02 0.06 (-0.10, 0.15) 

Androstenedione, 
ng/ml 

0.011 0.034 (-0.054, 0.079) -0.03 0.04 (-0.10, 0.04) 0.01 0.07 (-0.13, 0.14) 

Sex hormone 
binding globulin, 
nmol/L 

-2.24 1.50 (-5.16, 0.68) 3.52 1.66 (0.38, 6.74) -2.00 3.15 (-8.00, 4.27) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 1YPM, age at menarche, insulin at 
1YPM. 1YPM only analysis additionally accounted for B4 PFOA concentrations. 
b relative change in hormone levels when doubling PFOA exposure at Tanner Stage B4 only, regardless of subsequent exposure at 1YPM.   
c relative change in hormone levels when doubling PFOA exposure at 1YPM only, regardless of prior exposure at Tanner Stage B4.  
d relative change in hormone levels when doubling PFOA exposure at both Tanner Stage B4 and 1YPM. 
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Table 3. 5 Simulated relative change
a
 in hormone levels associated with log2 increase in both 

urine mono-benzyl phthalate (MBzP) and serum perfluorooctanoic acid (PFOA) at Tanner Stage 

B4 

Window of Susceptibility Tanner Stage B4 
(prior to menarche) 

N= 225 

 Estimate of 
relative 
changeb 

SE 95% Confidence Interval 

DHEAS, ng/ml 0.91 3.28 (-5.39, 7.28) 

IGF-1, ng/ml -1.00 3.90 (-8.74, 6.46) 

Testosterone, ng/ml 0.001 0.005 (-0.010, 0.009) 

Estradiol, pg/ml -1.27 2.12 (-5.42, 3.06) 

17 OH progesterone, ng/ml -0.037 0.021 (-0.076, 0.004) 

Androstenedione, ng/ml -0.012 0.022 (-0.056, 0.031) 

Sex hormone binding 
globulin, nmol/L 

-1.26 1.06 (-3.30, 0.88) 

a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 
1YPM, age at menarche, insulin at 1YPM, and creatinine (MBzP only). 
b Joint total effect of MBzP and PFOA exposure at Tanner Stage B4 prior to menarche. Relative change 
in hormone levels when doubling both MBzP and PFOA at Tanner Stage B4 prior to menarche regardless 
of other window of susceptibility. 
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Chapter 4. Time-specific Impact of Trace Metals on Breast Density of Adolescent 
Latino Girls  

 
4.1 Abstract  
 
Introduction: Breast cancer is the leading cause of cancer deaths in women worldwide. Among 

the strongest predictors of breast cancer is high mammographic density, measured as percent 

and absolute fibroglandular volume. Epidemiologic studies have suggested that trace metals 

may be related to breast cancer. However, whether trace metals may modify breast density 

during critical developmental stages such as puberty remains unclear.  

  

Objective: To prospectively evaluate the association between trace metals at specific pubertal 

time points on adolescent breast density.  

 

Method: This study included Chilean girls from the Growth and Obesity Cohort Study with urine 

sample collection at Tanner breast stage B1 (n=291) and at stages both B1 and B4 (n=253) and 

breast density measurements at 2 years post menarche. Dual-energy X-ray absorptiometry was 

used to assess the volume of dense breast tissue (absolute fibroglandular volume (FGV)) and 

percent breast density (%FGV). Urine trace metals analyzed included arsenic, barium, 

cadmium, cobalt, cesium, copper, magnesium, manganese, molybdenum, nickel, lead, 

antimony, selenium, tin, thallium, vanadium, and zinc. Parametric G-formula was used to 

estimate the time-specific association between trace metals and breast density. The analyses 

accounted for the covariates age, body fat percentage, birthweight, age of menarche, maternal 

education, and creatinine.  
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Results: At B1, a doubling of thallium concentration resulted in 13.69 cm
3 
increase in absolute 

FGV (β: 13.69, 95% confidence interval (CI): 2.81, 24.52), while a doubling of lead 

concentration was associated with a 7.76 cm
3 
decrease in absolute FGV (β: -7.76, 95%CI: -

14.71, -0.73). At B4, a doubling of barium concentration was associated with a 10.06 cm
3
 

increase (β: 10.06, 95% CI: 1.44, 18.60), copper concentration with a 12.29 cm
3
 increase (β: 

12.29, 95% CI: 2.78, 21.56) lead concentration with a 9.86 cm
3 
increase (β: 9.86, 95% CI: 0.73, 

18.98), antimony concentration with a 12.97 cm
3
 increase (β: 12.97, 95% CI: 1.98, 23.79) and 

vanadium concentration resulted in a 13.14 cm
3
 increase in absolute FGV (β: 13.14, 95% CI: 

2.73, 23.58). 

 

Conclusion: In this cohort of Latino girls, selected trace metals - barium, copper, lead, 

antimony, thallium, and vanadium – were associated with absolute breast density. We also 

observed an association between copper and percent FGV. 
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4.2 Introduction 
 
 Breast cancer is the leading cause of cancer deaths in women worldwide.

145
 Among the 

strongest predictors of breast cancer is high mammographic density, which is determined by the 

percent dense fibroglandular volume relative to total breast size (%FGV).
146

 Epidemiologic 

studies have underscored the important role of hormonal and reproductive factors as well as 

family history that may increase breast density and subsequently, breast cancer risk.
147–149

 

Anthropometric measures such as high body mass index and body fat distribution are also 

related to breast density, exerting direct and indirect influence on breast composition.
150

 

Recently, evidence from clinical and animal studies have suggested environmental exposures, 

including trace metals, to be associated with breast cancer risk.
58

 However, whether exposure 

to trace metals is related to breast cancer incidence by affecting breast density remains unclear.  

Trace metals are a subset of trace elements found naturally in the environment and are 

detected in minute amounts in the human body. Human exposure to trace metals occurs by 

ingestion of contaminated food or water, or inhalation of polluted air. In “trace” amounts, some 

trace metals (cobalt, copper, chromium, iron, magnesium, manganese, molybdenum, nickel, 

selenium, and zinc) are considered essential to humans, serving important functions in 

metabolic and other biologic processes.
151,152

 For example, copper is required in 

hemopoiesis;
153

 molybdenum in amino acid, uric acid, sulfuric acid metabolism;
154

 manganese in 

bone, carbohydrate, lipid metabolism as well as reproductive and immune function processes;
155

 

and selenium in antioxidant and anti-cancer actions.
156

 However, an abnormal concentration of 

these trace metals – both in excess and in deficit - has been associated with adverse health 

outcomes including cancer.
157

 Epidemiologic and clinical studies have identified several metals 

(“metalloestrogens”) mimicking estrogen and binding to estrogen receptors to be particularly 

harmful and linked with breast cancer risk.
58–60,158

 Some of the known metalloestrogens include 

arsenic, barium, cadmium, cobalt, nickel, lead, selenium, and tin.
58
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Given trace metals’ potential involvement in the pathogenesis of breast cancer, it is 

important to assess whether these metals may modify breast density during critical 

developmental stages. Puberty, a period of exponential growth of breast tissues, is an 

understudied window of susceptibility (WOS) during which stromal cells in the mammary gland 

are particularly sensitive to environmental exposures such as trace metals that may disrupt 

endocrine functions and interfere with proper pubertal development.
32,88

 For example, cadmium 

and arsenite, well-studied metalloestrogens, induce cell division, and thus increase the 

expression of estrogen-regulated genes.
159–161

 This increase in breast cell proliferation can lead 

to greater breast density.
161,162

 A careful analysis of other highly prevalent trace metals in 

relation to breast density is needed to understand their potential role in breast cancer etiology.  

The current study addresses key questions about the influence of trace metals on 

pubertal breast density. We evaluate the impact of trace metals on pubertal breast density at 

varying pubertal WOS in a cohort of adolescent Latino girls in Chile.  

4.3 Methods 
 
Study population 

In 2006, the Growth and Obesity Chilean Cohort Study (GOCS) recruited children ages 

3-4 years from low- and middle-income families in Santiago, Chile. The eligibility criteria 

consisted of the following: 1) singletons born at term (37-42 weeks), 2) birthweight greater than 

or equal to 2500 grams (g) and less than 4500 g, 3) healthy with no physical or psychological 

conditions that could severely affect growth (e.g., skin burns, brain tumor, hyperthyroidism). A 

total of 1,089 eligible children agreed to participate in the study, of which 601 were girls; a 

subset of these girls is included in the current study.
91

 Girls’ breast development was assessed 

through palpation and visual inspection by dietitians who were trained by a pediatric 

endocrinologist using the Tanner Staging rating scale.
90

 The study prospectively followed the 
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girls annually up to age 7.5. years, then. every 6 months until they reached Tanner stage 4 (B4) 

and then annually thereafter including 2 year post-menarche (2YPM) timepoint.  

Our study focused on girls who provided urine samples at Tanner stages B1 and B4 and 

breast density measurement at 2YPM (Figure 1). Our analysis of trace metals and breast 

density included two subsamples: 1) girls with urine samples collected at B1 and breast density 

measured at 2YPM (N=291) 2) girls with urine samples collected both at B1 and B4 and breast 

density at 2YPM (N=253). The study protocol was approved by the Ethics Committee of the 

Institute of Nutrition and Food Technology, University of Chile (INTA), and the Institutional 

Review Board of the University of California, Los Angeles. Informed written consent was 

obtained from all parents or guardians of the study participants. 

Urine collection  

At least 2mL of urine samples were collected from fasting study participants between 10 

AM and 12 PM during visits to the clinic at INTA. They were collected in non-polycarbonate 

sterile cups and were immediately vortexed and aliquoted. The urine was temporarily stored at 

4°C before processing for homogenization of the sample, followed by aliquoting and storage at -

80°C before being shipped to a laboratory for biomarker quantification.   

Urine analysis - trace metals 

 A panel of 17 trace metals was measured in fasting spot urine samples collected at B1 

and B4. Samples were analyzed using tight quality control (QC) measures including analysis of 

the initial calibration, initial calibration verification, and continuing calibration verification 

standards: NIST traceable mixed-element standard solution at two concentration levels, 

procedural blanks and repeated analysis of 2% of samples. Matrix-appropriate SRMs were 

analyzed once in three months. Samples (200µL) were diluted 10 mL with diluent solution 

containing 0.05% Triton X-100, 0.5% Nitric acid and mixed internal standard. Samples were 
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mixed thoroughly analyzed using inductively coupled plasma – mass spectrometer – Triple 

quadrupole (ICP-MS) (Agilent 8900-QQQ) at the Mount Sinai Children's Health Exposure 

Analysis Resource (CHEAR) Network Laboratory Hub.
94

 Trace metals analyzed included 

arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), copper (Cu), magnesium 

(Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), 

tin (Sn), thallium (Tl), vanadium (V), and zinc (Zn). Recoveries were determined from analyses 

of matrix appropriate CHEAR-QC pools. Recoveries were 90-110% for As, Ba, Cd, Co, Cs, Cu, 

Mg, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn; 80-120% for Mn and Mo. Data for all QC analysis 

including interday CV and intraday CVs were determined in each batch for internal urine pools 

fortified at mid- and high-level concentrations analyzed after initial calibration and every ten 

study samples. Interday CV range from 8 to 20% for most of the elements except for Mn at 

37%. Intraday CV range from 1 to 12% for all elements. The limit of detection (LOD) for each 

trace metal is listed in Supplementary Table 1. For biomarker concentrations below LOD a 

value of the lab-specific LOD/sqrt(2) was imputed.  

Urine creatinine was measured using a well-established colorimetric method with a LOD 

of 0.3125 mg/dL
93

 and quantified in proficiency testing program conducted by G-EQUAS (The 

German External Quality Assessment Scheme for analyses in biological materials, http://www.g-

equals.de/).
163

 Quality control measures for the CHEAR lab assays have been previously 

described in detail.
164

 Trace metal biomarkers missing creatinine values were excluded.  

Trace metal and creatinine concentrations were log2 transformed for statistical analysis. 

Assessment of breast density 

Dual-energy X-ray absorptiometry (DXA) was used to assess the volume of dense 

breast tissue (absolute FGV) at 2YPM in a process developed by Shepherd et al (version 5).
98

 

Prior to DXA assessment, the girls were screened for pregnancy. In short, the left and right 
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breasts were scanned with Prodigy DXA system software (version 13.6, series 200674; GE 

Healthcare). Quality control and calibration were obtained using reference breast density 

materials. DXA assessed absolute FGV (cm
3
) and total breast volume (cm

3
). The %FGV was 

calculated as the proportion of fibroglandular tissue volume relative to total breast volume (cm
3
) 

multiplied by 100. Breast density studies using the DXA method reported very precise and 

reproducible results in adolescent girls.
98,99

  

Covariates 

Covariates were selected a priori based on biological relevance of the trace metal-breast 

density relation (i.e., mother’s education, birthweight, body fat%, age at 2YPM, age at 

menarche) based on biological relevance. A directed acyclic graph (DAG) was used to 

represent the relevant confounders and covariates utilized in the current analysis (Figure 2). 

Birthweight was obtained from health records. Anthropometric measures (e.g., weight, height) 

were measured every 6 to 12 months by trained dietitians. Percent body fatness was measured 

using a bioimpedance device. Age of menarche was surveyed by study dieticians every 6 

months prior to B4 and every 3 months after reaching B4. Maternal education was collected 

through interviews with the girls’ mothers. Missing covariate data were imputed using mean 

(continuous variables) or median (categorical variables) imputation. 

Statistical analysis 

Parametric G-formula (hereafter ‘G-formula’) was used for the statistical analysis of trace 

metals and breast density. G-formula, adjusting for both time-varying confounder and fixed 

covariates,
100

 estimated time-specific associations of trace metals on breast density at 2YPM. 

Trace metals (continuous) and fat percentage (continuous) are measured longitudinally at 

multiple timepoints, which places fat percentage as both a confounder and a mediator in the 

association between trace metals and breast density. G-formula adjusts for body fat percentage, 
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an exposure-dependent confounder, without blocking the indirect path of trace metals to breast 

density through body fat percentage. Time-fixed covariates included age at 2YPM (continuous), 

birthweight (continuous), age at menarche (continuous), maternal education (categorical: 

secondary education or less, greater than secondary education). We used non-creatinine-

adjusted trace metal biomarker concentrations and included creatinine as covariate in the 

models.
165

 More details on the application of G-formula with time-varying confounders 

adjustment can be found in Supplementary File 1.  

4.4 Results 
 
 The current analysis of trace metals and breast density include two subsamples, 291 

girls with urinary samples in B1 and 253 girls with urinary samples with both B1 and B4 (Figure 

1). Participants were on average 7.4 years old (SD 0.56) at B1, 11.0 years old (SD 0.94) at B4, 

and 13.7 years old (SD 1.1) at 2YPM (Table 1). In both subsamples, age of menarche was 

approximately 12.2 years and birthweight was 3.34 kg. Overall, girls’ mean body fat percentage 

increased from 25% at B1 to 32% at 2YPM. The majority of participants’ mothers (77%) 

reported secondary education or less.  

The geometric means of the 17 trace metal biomarkers by study timepoint are listed in 

Table 2. For the majority of the biomarkers, concentrations at B1 were slightly higher than those 

of B4. The Spearman correlation coefficients between timepoints B1 and B4 for each trace 

metal ranged between 0.002 and 0.45. Almost all trace metals were positively correlated with 

each other, with no specific correlation patterns by element type (Supplemental Figure 1).  

Under the hypothetical intervention of trace metal exposures at B1 only, a doubling of 

thallium concentration resulted in a 13.69 cm
3
 increase in absolute FGV (β: 13.69, 95% 

Confidence Interval (CI): 2.81, 24.52) (Table 3). In contrast, a doubling of lead concentration 

was associated with a 7.76 cm
3 
decrease in absolute FGV (β: -7.76, 95%CI: -14.71, -0.73). 
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Under the hypothetical interventions of trace metal exposure at B4 only, a doubling of barium 

concentration was associated with a 10.06 cm
3
 increase (β: 10.06, 95% CI: 1.44, 18.60), copper 

concentration with a 12.29 cm
3
 increase (β: 12.29, 95% CI: 2.78, 21.56) lead concentration with 

a 9.86 cm
3 
increase (β: 9.86, 95% CI: 0.73, 18.98), antimony concentration with a 12.97 cm

3
 

increase (β: 12.97, 95% CI: 1.98, 23.79) and vanadium concentration resulted in a 13.14 cm
3
 

increase in absolute FGV (β: 13.14, 95% CI: 2.73, 23.58). No other significant associations were 

observed.  

Under the hypothetical intervention of trace metal exposures at B4 only, a doubling of 

copper concentration resulted in a 1.92% unit increase in percent. We did not observe a relation 

between trace metal exposure and %FGV, under hypothetical interventions at B1 only (Table 

4). We observed no joint total effect of trace metal exposures at B1 and B4 on breast density at 

2YPM. 

A sensitivity analysis of MBzP at B4 only restricting to girls with both B1 and B4 

urine measurements (n=253) but without adjusting for MBzP measurement at B1 did not 

appreciably alter the results (data not shown). 

4.5 Discussion 
 
 To date, this is the first study to consider the relation between trace metals and pubertal 

breast density at varying pubertal WOS. We observed that selected trace metals (barium, 

copper, lead, antimony, thallium, and vanadium) were associated with breast density among 

pubertal Chilean girls. Most of these associations were not consistent through pubertal 

timepoints, suggesting that breast development may have differential WOS for trace metals 

during puberty. With the except of copper, these results were not observed with the relative 

measure of breast density, %FGV, across all timepoints. In regard to temporal variability of trace 
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metal biomarkers, our results found low to moderate correlation between B1 and B4, which may 

depend on the biomarker’s half-life as well as the commonness of the exposures. 

 In this study, known metalloestrogens, barium and lead were associated with absolute 

breast density. While our study is the first to suggest an association between these trace metals 

and breast density, previous mouse studies found barium and lead to disrupt estrogen function. 

One study found acute barium exposure to result in decreased ovary weight 
166

 and while 

another reported lead-water fed rats to have higher levels of docosahexaenoic acid 

concentration which are directly associated with estradiol concentrations.
167

 Animal studies 

investigating metalloestrogens and breast density included cadmium and arsenic. Mouse 

studies by Parodi et al. examined the relation between in utero treatment to cadmium and 

arsenic dissolved in water and mammary gland development and found that cadmium and 

arsenic advanced puberty onset and mammary gland development prior to its effect on the 

onset of puberty. This important temporal relation was hypothesized to be induced by the 

metalloestrogens increasing the number of mammosphere-forming cells, epithelia cells, branch 

points and ultimately, breast density before its effect on the hypothalamic-pituitary-gonadal 

axis.
168,169

 While we did not find an association between cadmium and breast density, it may be 

that different metals have different WOS (e.g., in utero and pubertal) for human breast 

development.  

In contrast to our null finding between cadmium and breast density, a Polish study 

including women at 40-60 years of age and who were majority parous reported urine cadmium 

concentration to be inversely associated with %FGV (ß: -0.077, 95%CI: -0.142, -0.013), but not 

with absolute FGV.
170

 In another study of premenopausal women ages 40-45 years, a doubling 

of urinary cadmium was associated with Breast Imaging- Reporting and Data System (BI-

RADS) category of “extremely dense” breast (OR: 1.75, 95%CI: 1.14, 2.70).
171

 The reasons for 

the mixed results in all of these studies are unclear. It is possible that our null finding is 
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attributable to our study population’s lower mean cadmium concentrations as well the distinctly 

younger population of pubertal girls and the accompanying differences in covariates including 

parity and menopausal status.  

Although we did not find any association between magnesium levels and breast density, 

a cross-sectional study of women aged 40-65 years with comparable mean urinary magnesium 

levels to our study found a doubling of urinary magnesium concentration to have greater breast 

density (OR: 1.36, 95%CI: 1.16, 1.59).
172

 Magnesium deficiency has been reported to be 

associated with breast cancer, hypothesizing chronic and systematic inflammation as a 

underlying mechanism.
173

 However, other studies have noted magnesium’s favorable role in 

tumorigenesis.
174

 The duality of magnesium’s role in our bodies coupled with its potential 

heterogenous effect on pubertal girls and adult women may explain the discrepancy in study 

results.  

Lastly, a study by White et al. evaluated the association between air toxics and breast 

density by using residential air assessment based on the Environmental Protection Agency 

National Air Toxic Assessment. The authors found that women living in areas with high 

concentrations of lead and cobalt were more likely to have dense breasts (OR: 1.60, 95%CI: 

1.56, 1.64; OR:1.56, 95%CI: 1.52, 1.64, respectively).
175

 It is important to note, however, the 

measured residential levels of air toxins may not necessarily reflect the actual individual 

exposure levels of the women in the study. In our study, both lead and cobalt exposures at B1 

were associated with a decreased absolute FGV, but with an increased absolute FGV with 

exposures at B4. Different collection methods for trace metals (e.g. urine vs. toxic levels in air) 

as well as residual confounding or differences in underlying characteristics of the study 

populations may have accounted for the discrepancies in outcome. 
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Strengths and limitations  

 A limitation of our study is the collection of trace metals from a single urine sample. 

Trace metals are also commonly measured in blood, hair and toenails, all representing different 

exposure sources (e.g., diet, water, air) as well as varying affinity for specific metals. Studies 

have suggested analysis of trace metals in hair to be more representative of long-term exposure 

and stable levels.
176

 Regardless, urinary biomarkers are a good, objective indicator of trace 

metal exposures that our study utilizes as a non-invasive, procedure to collect many analytes of 

interest at once.
177

  Lastly, trace metals are present in mixtures, in which not all metals have 

homogenous effects on health outcomes. This makes it particularly challenging to interpret 

individual metal’s impact on breast development, an outcome without clear disease 

manifestation.  

A strength of our study is the longitudinal design which establishes a temporal relation 

between our trace metal exposures and our breast density outcome. Specifically, our study 

cohort was followed through critical pubertal periods, with data collected at clinically relevant 

breast developmental periods. Prior epidemiologic research on trace metals and breast density 

mostly used cross-sectional study designs with adult women participants which limits 

interpretation of the results. Additionally, our novel use of G-formula allowed estimation of the 

impact of trace metals on breast density at specific pubertal WOS while accounting for both 

fixed and time-varying covariates. This statistical approach reduces potential bias from over-

adjusting for covariates that are both confounders and mediators. 

4.6 Conclusion 
 

Our evaluation of environmental exposures in relation to breast density provides 

important insights into the potential biological mechanisms of carcinogenesis in the breast 

during the critical period of puberty. In this cohort of Latino girls, trace metals -barium, copper, 
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lead, antimony, thallium, and vanadium – were associated with absolute breast density. We also 

observed an association between copper and percent FGV.  
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Figure 4. 1 Flow diagram of Growth and Obesity Cohort Study (GOCS) study population in the 

assessment of trace metals and breast density 

 

 
 

 

Figure 4. 2 Directed acyclic graph of the study showing the relation between trace metals and 

breast density 

 
 

Girls with 2YPM DXA 
assessment 
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Girls with urine sample at B4
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Girls with urine sample at B4 
and 2YPM DXA assessment
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Girls with urine sample at B1 and B4 
and 2YPM DXA assessment
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Table 4. 1 Characteristics of participants from the Growth and Obesity Cohort Study with breast 

density at 2-years post menarche and urine sample at Tanner breast stage B1 and B4 

Characteristic Trace Metal 
Window of Susceptibility  

  B1 only B1 and B4a 

  (n=291) (n=253) 

Age, years (mean (SD))  
 

    Tanner Stage B1 7.40 (0.56) 7.41 (0.56) 

    Tanner Stage B4 -  11.02 (0.94) 

Body fat percentage (mean (SD))   

    Tanner Stage B1 25.57 (4.47) 25.24 (4.36) 

    Tanner Stage B4 - 26.72 (5.38) 

Age at menarche, years (mean (SD)) 12.15 (0.95) 12.18 (0.90) 

Birthweight, kg (mean (SD)) 3.34 (0.42) 3.34 (0.41) 

Maternal education (n (%))   

    Secondary education or less 224 (76.98) 195 (77.08) 

Greater than secondary education 67 (23.02) 58 (22.92) 

2 Year Post- Menarche (2YPM)   

Age at 2YPM 13.65 (1.10) 13.70 (1.06) 

Body fat percentage at 2YPM (mean (SD)) 32.49 (6.12) 32.08 (6.02) 

Absolute Fibroglandular Volume, cm3 (mean (SD)) 213.90 (81.13) 214.46 (74.11) 

Percent Fibroglandular Volume, % (mean (SD)) 50.28 (15.44) 51.37 (15.25) 

a subsample of girls with urine samples at both B1 and B4.  
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Table 4. 2 Urinary trace metal biomarkers (ng/ml) geometric means (95% confidence interval) 

by study time point among Growth and Obesity Cohort Study participants 

  Tanner Stage B1 Tanner Stage B4 Spearman 
correlation 

coefficients  

 
n = 291 n = 253a  

Trace Metals       

Arsenic (As) 10.51 (9.66, 11.43) 9.29 (8.38, 10.29) 0.002 

Barium (Ba) 2.47 (2.30, 2.66) 2.33 (2.11, 2.56) 0.22 

Cadmium (Cd) 0.10 (0.09, 0.10) 0.08 (0.08, 0.09) 0.17 

Cobalt (Co) 0.19 (0.17, 0.20) 0.21 (0.19, 0.23) 0.17 

Cesium (Cs) 23.37 (21.72, 25.14) 16.52 (15.18, 17.97) 0.11 

Copper (Cu) 10.36 (9.57, 11.21) 9.67 (8.85, 10.55) 0.10 

Magnesium (Mg) 58030.80 (52919.10, 63636.20) 60076.90 (53386.80, 66362.40)  0.20 

Manganese (Mn) 2.05 (1.94, 2.17) 1.61 (1.52, 1.69) 0.38 

Molybdenum (Mo) 38.40 (35.24, 41.83) 33.95 (29.81, 36.71) 0.09 

Nickel (Ni) 5.91 (5.55, 6.30) 5.30 (5.02, 5.58) 0.25 

Lead (Pb) 2.18 (1.96, 2.42) 0.71 (0.65, 0.78) 0.16 

Antimony (Sb) 0.12 (0.11, 0.13) 0.10 (0.09, 0.11) 0.11 

Selenium (Se) 33.96 (31.60, 36.49) 33.91 (31.32, 36.71) 0.45 

Tin (Sn) 1.24 (1.11, 1.40) 1.10 (0.96, 1.23) 0.22 

Thallium (Tl) 0.38 (0.35, 0.41) 0.30 (0.28, 0.33) 0.14 

Vanadium (V) 0.14 (0.13, 0.14) 0.12 (0.12, 0.13) 0.11 

Zinc (Zn) 282.00 (256.70, 309.80) 346.3 (307.00, 390.60) 0.25 

a subsample of girls with urine samples at both B1 and B4.  
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Table 4. 3 Simulated relative changea in absolute FGV (cm3) associated with log2 (ng/ml) increase in urinary trace metal biomarkers 
among Growth and Obesity Cohort Study participants  

Window of 
Susceptibility 

Tanner Stage B1 only 

N= 291 

Tanner Stage B4 only 

N= 253 

Joint total effect of B1 and B4 

N= 253 

 Estimate 
of 

relative 
changeb 

SEb 95% Confidence 
Intervalb 

Estimate 
of relative 
changec 

SEc 95% Confidence 
Intervalc 

Estimate 
of 

relative 
changed  

SEd 95% Confidence 
Intervald 

Arsenic (As) 8.50 4.49 (-0.39, 17.50) 1.73 3.95 (-6.22, 9.62) 10.64 22.58 (-34.14, 54.51) 

Barium (Ba) -1.71 5.16 (-11.80, 8.61) 10.06 4.21 (1.44, 18.60) 8.17 9.62 (-10.74, 26.40) 

Cadmium (Cd) -3.22 6.51 (-15.99, 9.80) 0.01 5.69 (-11.44, 11.44) 74.87 63.91 (-39.86, 203.22) 

Cobalt (Co) -2.04 4.40 (-10.69, 6.84) 5.88 4.04 (-2.11, 13.87) 17.24 21.99 (-23.49, 63.44) 

Cesium (Cs) 5.11 5.17 (-5.13, 15.52) -4.71 4.85 (-14.36, 4.88) -11.83 42.44 (-96.00, 68.28) 

Copper (Cu) -0.40 4.79 (-9.81, 9.22) 12.29 4.64 (2.78, 21.56) -11.74 27.90 (-67.49, 41.00) 

Magnesium (Mg) -5.01 4.09 (-13.05, 3.15) -7.10 4.14 (-15.50, 1.13) -48.92 115.82 (-273.07, 174.90) 

Manganese (Mn) -1.71 6.58 (-14.69, 11.55) 14.08 7.62 (-0.61, 30.04) 8.61 12.37 (-16.26, 32.74) 

Molybdenum (Mo) -5.62 4.39 (-14.31, 3.11) 3.45 4.11 (-4.70, 11.82) 10.89 35.81 (-60.39, 77.93) 

Nickel (Ni) -5.78 5.95 (-17.50, 6.06) -3.50 7.69 (-18.65, 11.82) -21.58 42.85 (-107.22, 59.53) 

Lead (Pb) -7.76 3.55 (-14.71, -0.73) 9.86 4.53 (0.73, 18.98) 3.93 5.49 (-6.94, 14.79) 

Antimony (Sb) -2.41 5.24 (-12.69, 8.12) 12.97 5.41 (1.98, 23.79) 48.12 44.96 (-35.75, 139.50) 

Selenium (Se) -7.58 5.24 (-17.95, 2.82) 8.22 5.16 (-1.95, 18.54) -122.80 52.05 (-224.51, -25.56) 

Tin (Sn) -1.47 3.17 (-7.67, 4.87) -0.23 3.30 (-6.83, 6.27) 1.51 4.58 (-7.43, 10.80) 

Thallium (Tl) 13.69 5.49 (2.81, 24.52) 0.61 5.06 (-9.47, 10.75) 11.95 25.51 (-36.18, 62.40) 

Vanadium (V) 4.37 6.59 (-8.60, 17.48) 13.14 5.16 (2.73, 23.58) 29.66 50.62 (-63.50, 132.16) 

Zinc (Zn) -4.66 4.00 (-12.46, 3.36) -3.28 3.39 (-10.03, 3.45) -93.09 46.86 (-185.02, -3.71) 
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a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 2YPM, age at menarche, and creatinine. Tanner Stage B4 only analysis 
additionally accounted for B1 trace metal concentrations. 
b relative change in breast density when doubling trace metal exposure at Tanner Stage B1 only, regardless of subsequent exposure at Tanner Stage B4.   
c relative change in breast density when doubling trace metal exposure at Tanner Stage B4 only, regardless of prior exposure at Tanner Stage B1.  
d relative change in breast density when doubling trace metal exposure at both Tanner Stage B1 and B4. 
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Table 4. 4 Simulated relative changea in percent FGV (%) associated with log2 (ng/ml) increase in urinary trace metal biomarkers 
among Growth and Obesity Cohort Study participants  

Window of 
Susceptibility 

Tanner Stage B1 only 

N= 291 

Tanner Stage B4 only 

N= 253 

Joint total effect of B1 and B4 

N= 253 

 Estimate 
of 

relative 
changeb 

SEb 95% Confidence 
Intervalb 

Estimate of 
relative 
changec 

SEc 95% Confidence 
Intervalc 

Estimate 
of 

relative 
changed 

SEd 95% Confidence 
Intervald 

Arsenic (As) 0.56 0.85 (-1.14, 2.21) -1.15 0.79 (-2.69, 0.41) -2.05 4.65 (-11.13, 7.12) 

Barium (Ba) 0.53 0.98 (-1.45, 2.42) -0.12 0.83 (-1.76, 1.47) 0.90 1.90 (-2.79, 4.55) 

Cadmium (Cd) -0.60 1.24 (-3.11, 1.74) 0.91 1.12 (-1.28, 3.14) -1.04 12.95 (-26.06, 24.25) 

Cobalt (Co) 0.38 0.84 (-1.29, 2.00) 1.25 0.79 (-0.27, 2.79) 5.61 4.44 (-3.15, 14.12) 

Cesium (Cs) 0.67 0.98 (-1.29, 2.56) -0.72 0.96 (-2.61, 1.17) -0.20 8.65 (-17.14, 16.41) 

Copper (Cu) -0.14 0.91 (-1.96, 1.62) 1.92 0.92 (0.15, 3.72) 0.13 5.87 (-11.22, 11.52) 

Magnesium (Mg) 0.71 0.78 (-0.84, 2.21) -1.29 0.82 (-2.90, 0.32) -12.50 23.05 (-57.95, 32.30) 

Manganese (Mn) -0.01 1.25 (-2.50, 2.43) 1.07 1.51 (-1.89, 4.07) 0.44 2.57 (-4.74, 5.33) 

Molybdenum (Mo) 0.77 0.84 (-0.89, 2.39) -1.24 0.81 (-2.86, 0.39) -1.95 7.38 (-16.23, 11.87) 

Nickel (Ni) -0.47 1.13 (-2.76, 1.69) 2.16 1.51 (-0.81, 5.08) 7.54 8.60 (-9.14, 24.14) 

Lead (Pb) -0.09 0.69 (-1.47, 1.23) 1.04 0.90 (-0.72, 2.82) 0.86 1.21 (-1.41, 3.24) 

Antimony (Sb) 0.12 1.00 (-1.87, 2.06) 1.10 1.07 (-0.99, 3.17) 15.45 9.15 (-2.56, 33.35) 

Selenium (Se) -1.01 1.00 (-2.99, 0.88) -1.00 1.03 (-3.04, 1.04) -17.35 11.28 (-39.13, 4.47) 

Tin (Sn) -0.42 0.60 (-1.65, 0.73) 0.002 0.65 (-1.28, 1.29) -0.02 0.93 (-1.75, 1.78) 

Thallium (Tl) 0.48 1.04 (-1.60, 2.52) -0.19 1.00 (-2.15, 1.75) 0.44 5.16 (-9.85, 10.38) 

Vanadium (V) 1.27 1.25 (-1.22, 3.69) -0.45 1.04 (-2.48, 1.56) 3.60 10.56 (-18.02, 24.15) 

Zinc (Zn) -0.03 0.76 (-1.52, 1.48) -0.66 0.67 (-2.00, 0.67) -11.50 9.68 (-30.42, 6.68) 
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a Estimates of relative change accounted for covariates mother’s education, birthweight, body fat%, age at 2YPM, age at menarche, and creatinine. Tanner Stage 
B4 only analysis additionally accounted for B1 trace metal concentrations. 
b relative change in breast density when doubling trace metal exposure at Tanner Stage B1 only, regardless of subsequent exposure at Tanner Stage B4.   
c relative change in breast density when doubling trace metal exposure at Tanner Stage B4 only, regardless of prior exposure at Tanner Stage B1.  
d relative change in breast density when doubling trace metal exposure at both Tanner Stage B1 and B4. 
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Chapter 5. Conclusions and Public Health Relevance 

 
This dissertation examines the impact of endocrine disrupting chemical exposures 

(PFOA, MBzP, and trace metals) on breast density and hormones during puberty. The first 

study prospectively assessed the association between biomarker concentrations of BBP and 

PFOA at specific pubertal WOS and adolescent breast density. PFOA serum concentrations 

corresponded to a marginal increase in absolute FGV and decreased in % FGV, while no effect 

was observed between MBzP and breast density measures across pubertal WOS. The second 

study prospectively evaluated the association between MBzP and PFOA and hormones, 

individually and collectively, during puberty. In this study, MBzP was associated with insulin 

growth factor-1 (IGF-1) and 17-OH progesterone. PFOA was associated with IGF-1, 17-OH 

progesterone and sex hormone binding globulin. Associations between MBzP and PFOA and 

hormones varied by pubertal time point, suggesting differential effects of EDC exposure by 

specific window of susceptibility on pubertal hormone levels. The third study prospectively 

evaluated the association between trace metals at specific pubertal time points and adolescent 

breast density. Selected trace metals - barium, copper, lead, antimony, thallium, and vanadium 

– were associated with absolute breast density. Copper was also associated with percent FGV. 

Most of these associations were not consistent through pubertal timepoints, suggesting that 

breast development may have differential WOS for EDCs during puberty. 

In all three studies, a novel computational method, G-formula was used to assess the 

association between EDCs and breast density and hormones. With additional identifiability 

assumptions, G-formula allows estimation of causal effect of these exposures on hormones and 

breast density in a longitudinal cohort of adolescent Latina girls. Additionally, this method permits 

the estimation of a single, marginal effect estimate averaged across the observed distribution of 

the covariates. This way, we avoid overadjustment of the models by including covariates like fat 
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percentage that serve as both confounders and a mediators between the EDCs and breast 

density. Lastly, under the numerous hypothetical interventions developed based on causal DAGs, 

we are able to estimate the effect of EDCs from a specific WOS (e.g. Tanner Stage B1 only, B4 

only) as well as the joint total effect of EDCs (e.g. both B1 and B4 for MBzP; both B4 and 1YPM 

for PFOA; both MBzP and PFOA at B4). 

In conclusion, by using the framework of life course epidemiology, this research 

contributes to an understanding of the variation in breast cancer risk associated with 

environmental exposures in childhood to help identify the most effective and appropriate time 

period for breast cancer prevention.   
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Appendix 1. Supplemental content for Chapter 2 
 

Supplementary File 1. G-formula application 

 

We considered four ‘hypothetical interventions’, two reflecting potential WOS (B1 and 

B4 separately for MBzP; B4 and 1YPM separately for PFOA) timepoints, one estimating 

the joint total effect of EDCs in both WOS timepoints (B1 and B4 for MBzP; B4 and 

1YPM for PFOA), and one estimating the joint total effect of both MBzP and PFOA at 

B4 on breast density (Supplementary Figure 1).  

Here we describe a simplified application of the G-formula:   

1) Obtain empirical parameters: a. Breast density at 2YPM is regressed on all 

potential time-fixed covariates, time-varying confounder and exposure of interest (e.g. 

E(Breast Density2YPM|MBzPB1, body fat percentageB1, time-fixed covariates)) to obtain 

the regression coefficients and root mean square error (RMSE); b. Obtain observed 

marginal EDCs distributions at each timepoint and their standard deviations; c. Estimate 

the conditional distributions of each time-varying body fat percentage by regressing 

body fat percentage on observed EDC and relevant covariates to obtain the regression 

coefficients and RMSE. 

2) Simulate the potential outcomes: a. We created 1000 copies of the original 

sample and simulated age at 2YPM, age at menarche, birthweight, maternal education 

that followed the same distributions as the observed variables; b. We simulated MBzP 

and PFOA variables at each timepoint that followed the observed MBzP and PFOA 

prevalence but was marginally independent of all simulated covariates; c. We simulated 

each potential body fat percentage as a function of the EDC intervention, birthweight, 
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maternal education, age of menarche, and age of the same timepoint, using the 

regression coefficient and RMSE from step 1c; d. We simulate the potential breast 

density outcome at 2YPM as a function of the EDC intervention, potential body fat 

percentage from step 2c, product term between EDC intervention and potential body fat 

percentage, age at 2YPM, age at menarche, birthweight, maternal education using the 

regression coefficients from and RMSE from step 1a.  

3) Fitting final marginal structural models (MSMs): We regressed each different 

potential breast density outcome on the EDC interventions to obtain point estimates of 

each marginal effect using the pooled sample. We repeat step 2-3 on 1000 

bootstrapped samples of the same size taken at random with replacement from the 

original data to obtain Wald type 95% confidence interval (CI).   

Log2 transformations of both MBzP and PFOA biomarker concentrations were 

used to account for the skewness of the variables. Accordingly, beta coefficients can be 

interpreted as a relative increase in breast density outcome when the EDC 

concentrations are doubled.  

It is important to note that causal interpretation of the results is only possible 

under the necessary set of identifiability assumptions: 1) no unmeasured or residual 

confounding between EDCs and breast density, 2) positivity assumption, 3) 

consistency, 4) no measurement error, and 5) no model misspecification. Further 

explanations on these assumptions can be found elsewhere.47,48 
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Supplementary Figure 1. 1 Directed acyclic graph of the study showing the hypothetical 
interventions of monobenzyl phthalate (MBzP) at B1 only and breast density  

 

 

Supplementary Figure 1. 2 Directed acyclic graph of the study showing the hypothetical 
interventions of monobenzyl phthalate (MBzP) at B4 only and breast density 
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Supplementary Figure 1. 3 Directed acyclic graph of the study showing the hypothetical 
interventions of the joint total effect of monobenzyl phthalate (MBzP) at B1 and B4 and breast 
density  
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Supplementary Figure 1. 4 Directed acyclic graph of the study showing the hypothetical 
interventions of perflourooctanoic acid (PFOA) at B4 only and breast density  

 

Supplementary Figure 1. 5 Directed acyclic graph of the study showing the hypothetical 
interventions of perflourooctanoic acid (PFOA) at 1YPM only and breast density 
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Supplementary Figure 1. 6 Directed acyclic graph of the study showing the hypothetical 
interventions of the joint total effect of perflourooctanoic acid (PFOA) at B4 and 1YPM and 
breast density  
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Appendix 2. Supplemental content for Chapter 3 
 
Supplementary File 2. G-formula application 

 

We considered two ‘hypothetical interventions’ for MBzP at B1 and B4 

separately, two for PFOA at B4 and 1YPM, one estimating the joint total effect of EDCs 

in both WOS timepoints (B1 and B4 for MBzP; B4 and 1YPM for PFOA), and one 

estimating the joint total effect of both MBzP and PFOA at B4 on hormones 

(Supplementary Figure 2).  

 

Here we describe a simplified application of the G-formula:   

1) Obtain empirical parameters: a. Hormones at 1YPM is regressed on all 

potential time-fixed covariates, time-varying confounder and exposure of interest (e.g. 

E(Hormones1YPM|MBzPB1, body fat percentageB1, time-fixed covariates)) to obtain the 

regression coefficients and root mean square error (RMSE); b. Obtain observed 

marginal EDCs distributions at each timepoint and their standard deviations; c. Estimate 

the conditional distributions of each time-varying body fat percentage by regressing 

body fat percentage on observed EDC and relevant covariates to obtain the regression 

coefficients and RMSE. 

2) Simulate the potential outcomes: a. We created 1000 copies of the original 

sample and simulated age at 1YPM, age at menarche, birthweight, maternal education, 

insulin at 1YPM that followed the same distributions as the observed variables; b. We 

simulated EDC variables at each timepoint that followed the observed EDC prevalence 

but was marginally independent of all simulated covariates; c. We simulated each 
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potential body fat percentage as a function of the EDC intervention, birthweight, 

maternal education, age of menarche, and age and insulin of the same timepoint, using 

the regression coefficient and RMSE from step 1c; d. We simulate the potential 

hormones outcome at 1YPM as a function of the EDC intervention, potential body fat 

percentage from step 2c, product term between EDC intervention and potential body fat 

percentage, age at 1YPM, age at menarche, birthweight, maternal education, insulin at 

1YPM, using the regression coefficients from and RMSE from step 1a.  

3) Fitting final marginal structural models (MSMs): We regressed each different 

potential breast density outcome on the EDC interventions to obtain point estimates of 

each marginal effect using the pooled sample. We repeat step 2-3 on 1000 

bootstrapped samples of the same size taken at random with replacement from the 

original data to obtain Wald type 95% confidence interval (CI).   

Log2 transformations of EDC biomarker concentrations were used to account for 

the skewness of the variables. Accordingly, beta coefficients can be interpreted as a 

relative increase in hormone outcome when the EDC concentrations are doubled.  

It is important to note that causal interpretation of the results is only possible 

under the necessary set of identifiability assumptions: 1) no unmeasured or residual 

confounding between trace metals and breast density, 2) positivity assumption, 3) 

consistency, 4) no measurement error, and 5) no model misspecification.  
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Supplementary Figure 2. 1 Directed acyclic graph of the study showing the hypothetical 
interventions of perflourooctanoic acid (PFOA) at B4 only and hormones 

 

 

Supplementary Figure 2. 2 Directed acyclic graph of the study showing the hypothetical 
interventions of perflourooctanoic acid (PFOA) at 1YPM only and hormones 
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Supplementary Figure 2. 3 Directed acyclic graph of the study showing the hypothetical 
interventions of the joint total effect of perflourooctanoic acid (PFOA) at B4 and 1YPM and 
hormones 
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Supplementary Figure 2. 4 Directed acyclic graph of the study showing the hypothetical 
interventions of monobenzyl phthalate (MBzP) at B1 only and hormones 

 

 

Supplementary Figure 2. 5 Directed acyclic graph of the study showing the hypothetical 
interventions of monobenzyl phthalate (MBzP) at B4 only and hormones 
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Supplementary Figure 2. 6 Directed acyclic graph of the study showing the hypothetical 
interventions of the joint total effect of monobenzyl phthalate (MBzP) at B1 and B4 and 
hormones  
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Appendix 3. Supplemental content for Chapter 4 

 
Supplementary Table 1. 1 Trace metal limit of detection values at the Mount Sinai CHEAR 
Network Laboratory Hub 
 

Analyte Average Limit of Detection (LOD), 
ng/ml 

Arsenic (As) 0.166 

Barium (Ba) 0.333 

Cadmium (Cd) 0.0421 

Cobalt (Co) 0.138 

Cesium (Cs) 0.240 

Copper (Cu) 1.15 

Magnesium 
(Mg) 

6.73 

Manganese 
(Mn) 

1.15 

Molybdenum 
(Mo) 

0.156 

Nickel (Ni) 2.24 

Lead (Pb) 0.0745 

Antimony (Sb) 0.0427 

Selenium (Se) 0.834 

Tin (Sn) 0.0451 

Thallium (Tl) 0.0461 

Vanadium (V) 0.0272 

Zinc (Zn) 39.8 
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Supplementary File 1. G-formula application 

 

We considered three ‘hypothetical interventions’, reflecting potential WOS (B1 and B4 

timepoints) and one estimating the joint total effect of trace metals in both WOS 

timepoints (B1 and B4) (Supplementary Figure 1 and 2). 

 

Here we describe a simplified application of the G-formula:   

1) Obtain empirical parameters: a. Breast density at 2YPM is regressed on all 

potential time-fixed covariates, time-varying confounder and exposure of interest (e.g. 

E(Breast Density2YPM|Trace MetalB1, body fat percentageB1, time-fixed covariates)) to 

obtain the regression coefficients and root mean square error (RMSE); b. Obtain 

observed marginal trace metal distributions at each timepoint and their standard 

deviations; c. Estimate the conditional distributions of each time-varying body fat 

percentage by regressing body fat percentage on observed trace metal and relevant 

covariates to obtain the regression coefficients and RMSE. 

2) Simulate the potential outcomes: a. We created 1000 copies of the original 

sample and simulated age at 2YPM, age at menarche, birthweight, maternal education 

that followed the same distributions as the observed variables; b. We simulated trace 

metal variables at each timepoint that followed the observed trace metal prevalence but 

was marginally independent of all simulated covariates; c. We simulated each potential 

body fat percentage as a function of the trace metal intervention, birthweight, maternal 

education, age of menarche, and age of the same timepoint, using the regression 

coefficient and RMSE from step 1c; d. We simulate the potential breast density outcome 
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at 2YPM as a function of the trace metal intervention, potential body fat percentage from 

step 2c, product term between trace metal intervention and potential body fat 

percentage, age at 2YPM, age at menarche, birthweight, and maternal education, using 

the regression coefficients from and RMSE from step 1a.  

3) Fitting final marginal structural models (MSMs): We regressed each different 

potential breast density outcome on the trace metal interventions to obtain point 

estimates of each marginal effect using the pooled sample. We repeat step 2-3 on 1000 

bootstrapped samples of the same size taken at random with replacement from the 

original data to obtain Wald type 95% confidence interval (CI).   

Log2 transformations of trace metal biomarker concentrations were used to 

account for the skewness of the variables. Accordingly, beta coefficients can be 

interpreted as a relative increase in breast density outcome when the trace metal 

concentrations are doubled. We used SAS 9.4 software (SAS Institute Inc.) for all 

analyses. 

It is important to note that causal interpretation of the results is only possible 

under the necessary set of identifiability assumptions: 1) no unmeasured or residual 

confounding between trace metals and breast density, 2) positivity assumption, 3) 

consistency, 4) no measurement error, and 5) no model misspecification.  
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Supplementary Figure 3. 1 Directed acyclic graph of the study showing the hypothetical 
interventions of trace metals at B1 only and breast density 

 

 

 

Supplementary Figure 3. 2 Directed acyclic graph of the study showing the hypothetical 
interventions of trace metals at B4 only and breast density  
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Supplementary Figure 3. 3 Directed acyclic graph of the study showing the hypothetical 
interventions of the joint total effect of trace metals at B1 and B4 and breast density 
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Supplementary Figure 3. 4 Spearman correlation coefficients for trace metals between 
timepoints B1 and B4  

 

a) Trace metal correlations at B1 timepoint 

 
b) Trace metal correlations at B4 timepoint 
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