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Abstract

Quantum Feedback and Traveling-wave Parametric Ampli�cation in Superconducting
Circuits

by

Christopher Stewart Macklin

Doctor of Philosophy in Physics

University of California, Berkeley

Irfan Siddiqi, Chair

Feedback control in classical systems is an indispensable, ubiquitous tool. The theoretical
basis for achieving optimal classical control is well understood, and crucially relies on a very
classical assumption: that measurements of the state of a system under control need not per-
turb that state. In a quantum context this assumption is fundamentally invalid. Although
many aspects of the theory of quantum feedback control are relatively well developed, the
technological basis for feedback control of a single quantum system has only very recently
matured. We demonstrate the experimental realization of a quantum feedback control pro-
tocol, perpetually stabilizing the coherent Rabi oscillations of a superconducting qubit. This
is the �rst utilization of quantum feedback control for stabilizing a dynamical process, and
the �rst application of quantum feedback in a solid-state system of any kind. This demon-
stration comprises the �rst half of this thesis. The feedback protocol is predicated on the
ability to make high-�delity quantum measurements, which are enabled by quantum-limited
Josephson parametric ampli�ers (JPAs). The design and realization of the novel Josephson
traveling-wave parametric ampli�er (JTWPA) comprises the second half of this thesis. The
JTWPA achieves order-of-magnitude improvements over state of the art JPAs in bandwidth
and signal power handling while providing quantum-limited noise performance, potentially
enabling the simultaneous readout of dozens of superconducting qubits and the generation
of broadband multi-mode squeezing in the microwave domain.
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Chapter 1

Introduction

Over the past several decades, the technology available for performing quantum physics
experiments has advanced to a point where isolating, controlling, and measuring individual
quantum degrees of freedom has become routine. Early in this process, much attention was
focused on creating techniques aimed at harnessing �naturally-occurring� quantum systems
into this regime. For example, precision measurement and manipulation of single electronic
state transitions in the spectra of individual highly excited or ionized atoms has resulted in
the direct observation of a number of fundamental quantum e�ects in experiments with a
high degree of conceptual simplicity and beauty1 [1, 2, 3, 4, 5, 6], and were the subject of
the 2012 Nobel prize in physics [7]. More recently, the type and variety of natural quantum
systems which can be manipulated at the single degree of freedom level have proliferated,
including cold atomic gasses trapped in optical lattices [8], single spins in diamond [9], the
nuclear and electronic spins of a single phosphorous donor in silicon [10], and the spin and
charge degrees of freedom of a single electron trapped in a quantum dot [11] (this list is not
exhaustive).

While these systems may not all be exactly �natural�, per se, the quantum degrees of
freedom are all fundamentally microscopic: single electron orbitals, the spins of single atoms
or electrons, or the motional degree of freedom of a single atom. Remarkably, there now exist
classes of coherent systems whose quantum degrees of freedom are macroscopic quantities
that have been specially engineered to express quantum behavior. In these systems, the
collective motion of a very large number of constituent particles constitute a single quantum
variable, with all of the same resulting richness and perplexing implications of the quantum
systems created by nature. Unlike natural systems, however, these engineered quantum
systems can re-arranged, twisted into di�erent shapes, mutated, and moved into obscure
and interesting nooks of their parameter spaces, in some cases permitting the observation
of quantum phenomena which are di�cult or impossible to observe in hitherto explored
systems.

1The experimental apparatuses themselves, however, are of course far from simple.
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ELECTRODYNAMICS 2

1.1 Superconducting qubits and circuit quantum electro-

dynamics

A rigorous proposition for searching for quantum-coherent behavior in a macroscopic
object came from Leggett in 1980 [12]; in this paper, he presciently observed that supercon-
ducting circuits were the most promising platform then known for observing such behavior.
Indeed, macroscopic quantum tunneling was observed in the phase di�erence across a current-
biased Josephson junction at UC Berkeley in 1987 [13]. This experiment set the stage for
the full consideration of the currents and voltages in superconducting circuits as quantum
degrees of freedom, eventually leading to the �rst observation of a coherent macroscopic
superposition state in a superconducting circuit called a Cooper pair box at NEC in 1999
[14]�the �rst demonstration of a superconducting quantum bit (qubit). This �rst device only
maintained quantum coherence over a timescale of about 1 ns. Sixteen years later, as of the
writing of this thesis, superconducting qubits routinely achieve coherence times of tens of
microseconds [15, 16], an improvement of more than four orders of magnitude, and there is
still no generally agreed-upon fundamental upper limit to these coherence times.

Superconducting qubits came into their own as a platform for testing quantum theory,
especially quantum measurement and feedback control, with the marriage of cavity quantum
electrodynamics [6] and superconducting circuits, resulting in the new paradigm of circuit
QED (or cQED) in pioneering experiments at Yale [17, 18]. The cQED architecture can
provide controllable strong coupling between a single microwave-frequency photon and a
superconducting qubit, as well as ideal, non-destructive measurement of the quantum state
of the qubit [19, 20] or the photon state of the cavity [21]. These properties permit, for
example, the controlled generation of exotic quantum optical states [22, 23], the monitoring
and reconstruction of the quantum trajectory of a qubit undergoing continuous measure-
ment [24, 25, 26], and the �rst observation of the enhancement of an atomic lifetime using
squeezed light [27]. The experiment which is the subject of the �rst half of this thesis,
the implementation of a quantum feedback control protocol, crucially relies on the exquisite
quantum measurement capability provided by cQED.

Besides their applicability to the study of quantum mechanics, superconducting qubits
and cQED have emerged as a viable platform on which to implement fault-tolerant quantum
computing protocols [28], such as the �surface code� protocol [29]. In the last two years, error
rates in multi-qubit devices have approached the minimum threshold necessary to implement
the surface code error correction procedures [30, 31, 32]. Many technological challenges
remain between these proof-of-principle experiments and a viable quantum computer. At
present, high-quality qubit state measurement�essential for the surface code�is performed
in these systems with the aid of ultra-low-noise microwave ampli�ers based on Josephson
junctions [33, 34, 35]. The performance of these ampli�ers is one of many obstacles which
stand in the way of realizing a large-scale quantum computer based on superconducting
qubits [36, 37]; the device which constitutes the subject of the second half of this thesis
directly addresses this need.
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1.2 Quantum feedback control

Feedback control schemes are ubiquitous in classical systems for stabilizing the state of
that system against disturbances. Thermostats, anti-lock brakes, pacemakers, and aircraft
�ight control systems all utilize the outcome of a measurement to automatically and au-
tonomously steer a system towards a desired state, and hold it there even in the presence
of �uctuations. The operation of these feedback protocols is predicated on the idea that
making a measurement of the state of the system need not alter that state. Of course, if we
apply feedback control to a quantum system, this predicate no longer holds: measurements
in quantum mechanics are fundamentally invasive [38]. Thus, quantum feedback control is
faced with an additional fundamental challenge: how can we hope to stabilize the state of a
quantum system using feedback control if our very measurement of that state disturbs it?

As in many areas of physics, theoretical development in the �eld of quantum control has
signi�cantly outpaced experimental demonstration. This is in large part due to the tech-
nological challenges associated with realizing controllable quantum systems discussed so far
in this chapter. Furthermore, in order to address the question at the end of the previous
paragraph, we require not just a controllable quantum system, but one which is capable of
realizing a nearly-ideal, minimally-invasive, continuous quantum measurement. The text-
book picture of the quantum measurement process involves the instantaneous projection of
the quantum system into one of its eigenstates; if we desire to utilize a feedback protocol to
stabilize, say, a superposition state of that system, then such a projective measurement is
in a sense maximally invasive. We require, instead, a measurement platform where we can
slow down the time scale associated with projecting the system into an eigenstate, until the
measurement is slower than the time scale over which feedback occurrs. Then, we can use
our knowledge of the measurement outcome and the action of the feedback loop to undo the
back-action of the measurement as well as correct for the e�ect of external disturbances on
the system.

The �rst demonstration of closed-loop feedback control of a single quantum system was
implemented by the cavity QED team at ENS in 2011 [39]. In this beautiful experiment, the
photon number state of a microwave cavity is weakly probed by a stream of atoms prepared in
highly excited Rydberg states. Each atom makes a very weak, non-destructive measurement
of the photon number, such that about 50-100 atoms must be detected to fully determine it.
Using a complex Bayesian model, a real-time computer applies a classical control correction
to the cavity �eld after the detection of each atom, with the target of stabilizing the cavity
into a particular highly-nonclassical de�nite photon number state (aka a Fock state). The
action of the feedback control quickly projects the cavity into the desired Fock state with
high �delity, and successfully stabilizes this state in the presence of decoherence associated
with the cavity decay lifetime.

Circuit QED provides another path towards realizing a faithful, weak quantum measure-
ment: the continuous weak measurement of the state of the qubit by the small phase shift
it induces in the photon �eld in the cavity [40, 41, 42]. By measuring the �eld escaping
from the cavity, a continuous tracking of the qubit state is possible, provided that all of the
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information carried by this �eld is faithfully recovered by the experimental apparatus. The
experiment which comprises the �rst half of the results in this thesis leverages this continu-
ous, weak measurement of the qubit state to perform a feedback stabilization of the coherent
Rabi oscillations of a superconducting qubit. The feedback protocol not only corrects for
external decoherence of the qubit, but also self-corrects the stochastic back-action of the
measurement process itself.

The power carried by the microwave �eld which conveys qubit state information away
from the cavity is extremely small, on the order of a few femtowatts. In contrast, the
electronics used to process this signal at room temperature typically expect milliwatts. As
such, to realize this experiment, we require an ultra-low-noise preampli�er which is itself
governed by (and ideally limited by) quantum mechanics.

1.3 Josephson parametric ampli�ers

In order to realize an ampli�er whose performance is limited by quantum mechanics, we
turn to the class of devices known as parametric ampli�ers. The operating principle of a
parametric ampli�er is based on the harmonic modulation of a parameter of a nonlinear
dynamical system by a strong drive called the pump. The nonlinear element in the system
provides one or more terms in the dynamical equation which couple energy between oscilla-
tions at di�erent frequencies; thus, when arranged correctly, a small initial signal oscillation
grows over time through the nonlinear interaction with the pump, realizing gain. The mech-
anism of parametric ampli�cation does not necessarily mandate any energy dissipation; a
lack of dissipation also implies a lack of additional �uctuations, implying that parametric
ampli�ers have the potential to realize quantum-limited noise performance [43].

The Josephson tunnel junction is a circuit element unique to superconducting circuits
which is both highly nonlinear and non-dissipative. Parametric ampli�ers utilizing the
Josephson nonlinearity were �rst demonstrated in 1975 [44], and development continued
through the 80s and 90s [45, 46, 47, 48], though the quantum limit proved elusive and
these devices did not see much practical use. More recently, the promising applications of
superconducting devices in the �elds of quantum measurement and quantum information
reignited interest in this type of ampli�er, and improved designs have demonstrated ro-
bustly quantum-limited noise performance with high gain and su�cient bandwidth for many
applications [33, 34, 35].

These Josephson parametric ampli�ers (JPAs) have been integral to realizing high-quality
measurements of superconducting qubits and have enabled many of the groundbreaking ex-
periments mentioned so far in this chapter. The development of this type of ampli�er has
been a central activity at the Quantum Nanoelectronics Laboratory (QNL) at UC Berkeley,
where the experiments described in this thesis took place. Improvements in JPA design at
QNL have led to the observation of quantum jumps in a superconducting qubit [19, 20], the
demonstration of high-�delity qubit readout and heralded state preparation [49], the obser-
vation and statistical analysis of quantum trajectories [24, 25, 26], and the demonstration of
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measurement-induced entanglement generation between remote qubits [50].
The circuit topology for essentially all JPAs involves embedding one or more junctions

in some kind of resonant circuit, consisting of one or more distributed-element transmission
line resonators or lumped-element LC resonators, with the nonlinear Josephson inductance
contributing some fraction of the total inductance. Although a variety of design improve-
ments have expanded the performance of these devices, the resonant topology fundamentally
introduces a limitation called the gain-bandwidth product : the product of the gain in ampli-
tude units and the bandwidth is limited to a constant, typically 10 MHz to 1 GHz or so. As
such, essentially all JPAs with amplitude gain of 10 are limited to bandwidths on the order
of 1-100 MHz, with most devices achieving about 10 MHz. Furthermore, the dynamics of
the nonlinear resonator restrict how much power can be used to pump the devices, which
limits the amount of signal power a JPA can faithfully amplify.

For many experiments this performance is su�cient; however, for the construction of
a large-scale quantum computer based on superconducting circuits, it would be desirable
to have an ampli�er with a much larger bandwidth, which is capable of handling multiple
input signals simultaneously, while still retaining quantum-limited noise performance. The
design and realization of a JPA based on a fundamentally di�erent circuit topology�a
nonlinear transmission line, rather than a nonlinear resonator�comprises the second half
of the results described in this thesis. The resulting device, dubbed the Josephson traveling-
wave parametric ampli�er (JTWPA), is not saddled with the same fundamental limitations
as a resonator-based JPA. The JTWPA is able to achieve large gain over gigahertz-scale
bandwidths, faithfully amplifying signal powers an order of magnitude larger than the best
JPAs yet demonstrated, while achieving nearly quantum-limited noise performance.

1.4 Thesis overview

I begin chapter 2 with the aim of providing an intuitive picture of how quantum limits
on measurement arise by discussing two classic thought experiments. Most of the remainder
of the chapter is dedicated to the description of various classes of quantum measurements,
focusing on those most relevant to the experiments performed in this thesis, including a
brief description of the quantum Bayesian approach to quantum measurement. I conclude
the chapter with a discussion of the theory of the quantum control protocol implemented in
the Rabi stabilization experiment, including the analytical derivation of the performance of
the feedback loop.

In chapter 3, I give an overview of how to construct a qubit from superconducting circuits.
Rather than following the historical approach of starting with the Cooper pair box, I take an
alternative approach which I �nd more intuitive: because modern superconducting qubits
are essentially weakly-anharmonic oscillators, I start with a general discussion of anharmonic
oscillators and then describe how such a device can be realized using superconducting circuit
elements. Finally, I introduce the basics of cavity QED and the circuit QED implementa-
tion, speci�cally addressing the parameter regime applicable to weak quantum measurement.
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Chapter 4 is the third and �nal chapter of background material, comprising a discussion of
quantum-limited amplifers. I begin the chapter with a general discussion of the origin of
quantum limits on ampli�cation, followed by a description of JPAs, their performance, and
the limitations to their performance. These limitations lead naturally to a brief discussion
of traveling-wave ampli�ers and the JTWPA as an alternative to the traditional JPA.

Chapters 5 and 6 comprise the experimental realization of the stabilization of Rabi os-
cillations using quantum feedback control. In chapter 5, I provide a thorough description of
the experimental apparatus, including a variety of important calibration and tuning experi-
ments necessary to demonstrate high-quality feedback and interpret the results. Chapter 6
is entirely dedicated to the experimental results attained in the quantum feedback experi-
ment, including frequency- and time-domain measurements of the stabilized state as well as
tomographic state reconstruction and validation. In addition to the results directly pertain-
ing to feedback stabilization of Rabi oscillations, this chapter includes a beautiful piece of
unpublished data related to variable-strength continuous quantum measurement.

Chapters 7 and 8 comprise the theory and experimental results for the JTWPA, respec-
tively. In chapter 7, I provide some background on nonlinear optics, as the theory of the
JTWPA is partially derived from it. I continue with a presentation of the derivation of the
continuum wave equation (the key link between the circuit-theory description of the JTWPA
and the nonlinear-optical description) and the requirements for realizing e�cient parametric
ampli�cation. Next, I discuss the derivation of the dispersion relation of the JTWPA and the
associated �resonant phase matching� dispersion-engineering technique we created to satisfy
the crucial nonlinear optical phase matching criterion needed for e�cient ampli�cation. I
close the chapter with a detailed presentation of the theoretical performance predicted for a
practical device.

In chapter 8, I describe a precise experimental assessment of a JTWPA device, validating
the theory presented in chapter 7. The ampli�er calibration experiments utilize a cQED
system in the weak measurement limit to enable high-precision noise measurements. I con-
clude the chapter with a discussion of the performance of the JTWPA in a projective qubit
measurement, and extrapolate those results to show that it could serve as the low-noise
preampli�er for the simultaneous readout of as many as 20 superconducting qubits. I close
the thesis with some future directions in quantum feedback control and JTWPA development
in chapter 9.

1.5 Summary of key results

The quantum feedback experiment presented in this thesis is the �rst realization of a
quantum feedback control protocol in a solid-state system, and also the �rst demonstration
of a quantum feedback protocol for stabilizing a dynamical quantum state. The protocol
stabilizes the target state with an e�ciency of about 45%, in excellent agreement with the
predictions from theory when the imperfections in the experiment are accounted for. As such,
this experiment constitutes a validation of a signi�cant body of quantum feedback control
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theory. To quote Howard Wiseman in his Nature News & Views article on the experiment,
�With [this] experiment, solid-state physics joins quantum optics at the forefront of quantum
feedback-control investigations.� [51]

The performance of the JTWPA device described in this thesis represents an improvement
on the state of the art by more than an order of magnitude in both bandwidth and signal
power handling, with a clear road towards further improvements in these metrics. The
noise performance of the ampli�er is essentially quantum-limited, providing a system noise
temperature comparable to those achieved with the lowest-noise JPAs yet demonstrated.
Furthermore, the agreement with theory predictions is remarkably close considering the
signi�cant complexity and nonlinearity of the device. This agreement implies that further
design revisions and device engineering can be reliably conducted on the basis of the existing
theory, with the expectation that new device designs should perform as expected. This
type of ampli�er will likely prove to be a key component in near-term demonstrations of
small-scale quantum computers based on superconducting qubits.
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Chapter 2

Quantum measurement and feedback

control

The measurement process in quantum mechanics is as full of surprises and unintuitive
conclusions as the rest of quantum theory. Unlike in classical physics, quantum physics
enforces intrinsic limitations in the precision with which certain classes of measurements can
be made. Furthermore, the e�ect of the measurement process on the system undergoing
measurement�the back-action of the measurement�is fundamental and unavoidable, and
measurements of a quantum system can and will strongly impact the future evolution of the
state of that system.

I will begin this chapter by describing two classic thought experiments which help elu-
cidate where quantum limits to measurements arise in an intuitive way. From this basis, I
will discuss several useful categorical distinctions between di�erent types of quantum mea-
surements which will serve to focus the discussion. This discussion leads to the concept of
the quantum e�ciency of a measurement, needed to describe experiments in which some of
the information extracted by a measurement is lost. I will then discuss the more concrete
case of a two-level system undergoing continuous measurement and describe how Bayesian
statistics can be employed to reconstruct the full quantum state of the system from a contin-
uous measurement record. This ability to track the quantum state of the system naturally
implies the possibility of attempting to steer the evolution of this state during measurement,
leading to a discussion of the quantum feedback control used to stabilize Rabi oscillations of
a qubit which will close the chapter.

2.1 Two classic thought experiments on quantum mea-

surement

The examples and discussion in this section follow the seminal text on quantum mea-
surement by Braginsky and Khalili [52]. This text was my �rst introduction to the subject;
although at this point in time the work is quite dated, it still stands as an excellent intro-
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Figure 2.1 : Heisenberg microscope apparatus.

duction to the subject. In order to understand at an intuitive level where quantum limits
on measurements arise, I will reproduce and comment on the discussions of two thought
experiments: the Heisenberg microscope and the ponderomotive probe for energy.

2.1.1 The Heisenberg microscope

The Heisenberg microscope is a thought experiment originally described by Werner
Heisenberg in 1930 [53]. Although the apparatus described is not at all practical, it does
capture all of the critical elements needed to understand the role of the uncertainty principle
in the determination of quantum quantities. Suppose we were interested in attempting to
measure the position x1 of a macroscopic object of mass m. We could imagine doing so
by scattering some light o� of this object and observing the position of the object using a
microscope. The apparatus to do so is shown in Figure 2.1. We imagine attaching a thin
rod to the object, whose diameter is less than an optical wavelength. Presuming we know
the approximate position of the object, we can arrange a lens and photographic plate near
the object, with the rod close to the focal plane of the lens. This lens-plate system provides
an optical ampli�cation factor of approximately L2/L1 where L1 is the focal length.

We send in a stream of photons to impinge on the rod, and wait for a single photon
to be scattered by the rod, pass through the lens' aperture a, and strike the photographic
plate, producing a small grain of silver. The position of this grain x2 can be determined to
an accuracy much better than an optical wavelength. From x2 we can infer the position of
the object x1 = −x2L1/L2. However, we cannot make this determination precisely due to
the wave nature of light. The position at which the photon scattered o� the rod is not well



2.1. TWO CLASSIC THOUGHT EXPERIMENTS ON QUANTUM

MEASUREMENT 10

determined below the spot size of the lens, resulting in an uncertainly in the position

∆xmeasure '
1

2π
λ
L1

a
. (2.1)

Additionally, because the photon possesses momentum P = ~ω/c and passed through the
lens' aperture a, it must have transferred to the rod (and thus the attached mass) a random
momentum in the x direction with unknown sign and a magnitude on the order of

∆Pperturb &
~ω
c

a

2L1

(2.2)

for a/L1 � 1. If we take the product of these two uncertainties, we recover the familiar-
looking result

∆xmeasure∆Pperturb &
~
2
. (2.3)

This example captures the essential features of any quantum measurement. We extract
information about some observable quantity to within some de�nite error. In the process of
doing so, we inevitably perturb at least one other quantity of the system�the measurement
has some �nite back-action. Finally, at some stage of the measurement something irreversible
occurs (in this case, the measurement photon ceases to exist and a grain of silver is created);
this irreversible event is related to crossing the fuzzy boundary between the quantum system
under measurement and the classical world we conduct our experiments from. It is important
to note that thismeasurement-disturbance relation is of a fundamentally di�erent nature than
the standard position-momentum Heisenberg uncertainty relation, which is the result of the
simultaneous measurement of two or more non-commuting quantities. Here, we only measure
one quantity, but the determination of that quantity implies some minimum disturbance to
the system under measurement.

One way of understanding the existence of an uncertainty principle for measurement
is as an implication of the uncertainty principle applied to the measurement system itself.
Unfortunately, we cannot simply compel a quantum system to reveal its state to us, no
matter how loudly we demand it. By necessity, to measure a quantum system, we must
couple that system to some auxiliary system which comprises part or all of a measurement
apparatus. That measurement system itself must also obey the laws of quantum mechanics,
which imply that the state of the measurement system must have some �nite uncertainty in
the preparation of its state. This uncertainty in the measurement apparatus results in the
�nite precision of the measurement ∆xmeasure, and the uncertainty principle then insists that
as we reduce the position uncertainty of the object under measurement, the uncertainty in
the momentum of the object must increase.

2.1.2 The ponderomotive probe for energy

In the case of the Heisenberg microscope, the back-action of the measurement fundamen-
tally in�uences the future evolution of the quantity we want to determine as the random
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Figure 2.2 : Apparatus for detecting the energy in a cavity resonator by measuring the ponderomo-

tive force on a movable wall.

momentum kick delivered by the photon mixes into the position coordinate through the con-
tinued Hamiltonian evolution of the motion of the free mass. Because of this relationship, if
we repeatedly measure the position of the mass by scattering many photons and measuring
their displacement, we will not be able to reduce the uncertainty in the position of the free
mass to arbitrary precision. This can be understood as the result of the fact that the eigen-
states of the measurement process and the eigenstates of the dynamical evolution of the free
mass are not the same. A state of de�nite position roughly corresponds to an eigenstate of
the measurement. However, the dynamical evolution of the free mass implies the spreading
of a wave packet of de�nite position.

There is an important class of quantum measurements, called quantum nondemolition1

(QND) measurements, that avoid this issue. If the observed quantity under measurement
is itself an eigenstate of the dynamical evolution of the measured system, then reductions
in the uncertainty in this quantity will not result in the dynamics of the system mixing
the measurement back-action into the measured quantity. A useful thought experiment
that demonstrates all of the important features of a QND measurement is the measurement
of the energy in an electrical cavity resonator by measuring the ponderomotive force (i.e.
electromagnetic/radiation pressure) that energy exerts on a movable wall of the cavity. This
thought experiment is discussed in Chapter 4 of reference [52]. A schematic of the setup for
this experiment is shown in Figure 2.2. We assume that the mass m of the movable wall is
large enough that the motion of the wall will be slow compared to the oscillation frequency of
the �eld inside the cavity; in other words, we assume the motion of the wall to be adiabatic.

The ponderomotive force acting on the movable wall of the resonator is F = E/d where
E is the resonator's energy and d is a length that is proportional to the size of the resonator
and also depends on which resonant mode is excited. The force F during a measurement of
�nite time τ changes the momentum of the wall by δP = Eτ/d; thus, a measurement of the

1The term quantum nondemolition is perhaps a bit unfortunate and is tangled up with historical ideas of
quantum measurements using photons. Many classes of traditional measurements of quantum systems�for
example, detecting photons by absorbing them in a dissipative process such as a photomultiplier tube�
literally destroy the system under measurement. Though physically preserving the system undergoing mea-
surement is a necessary condition for a measurement to be QND, it is hardly su�cient.
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change in momentum of the wall amounts to a measurement of the energy. The uncertainty
in our determination of the energy of the resonator is proportional to the uncertainty in the
initial momentum of the wall, such that

∆Emeasure =
d

τ
∆P. (2.4)

However, the smaller we make the initial uncertainty in momentum, the larger the corre-
sponding uncertainty in the position of the wall ∆x must be. An uncertainty in the position
of the wall implies an uncertainty in the size d and thus of the resonant frequency of the
resonator ∆ω = ω∆x/d which in turn produces a random change in the resonator's phase
during the measurement

∆φperturb = ∆ωτ = ωτ
∆x

d
. (2.5)

Combining (2.4), (2.5), and the uncertainty principle ∆x∆P ≥ ~/2, we obtain the measure-
ment uncertainty relation

∆Emeasure∆φperturb ≥
~ω
2
. (2.6)

We have once again derived an uncertainty relation for the minimum product of our knowl-
edge of the state of the system and the magnitude of the back-action on that system: the
more precisely we measure the energy in the resonator, the more uncertain the phase of the
oscillation must become.

Unlike in the case of the free particle in the Heisenberg microscope, the observable mea-
sured in this experiment (energy) is also a constant of motion of the Hamiltonian of the
system under measurement. The Hamiltonian for the resonator is

H = ~ωN (2.7)

where N is the number of quanta in the resonator. Eigenstates of the Hamiltonian are
of course eigenstates of de�nite energy, and since the motion of the wall is assumed to be
adiabatic, the number of quanta in the resonator does not change. Thus, by measuring the
momentum of the wall for longer and longer times τ we can reduce the uncertainty in the
energy to arbitrary precision.

This measurement possesses all of the properties constituting an ideal quantum measure-
ment. There is no fundamental constraint on the precision with which we can determine the
measured quantity. Furthermore, the measurement need not itself perturb the quantity under
measurement. The measurement must, however, perturb the quantity which is canonically
conjugate to the measured observable in accordance with the uncertainty principle.

2.2 Classes of quantum measurements

In this section I will elaborate some useful distinctions between di�erent classes of quan-
tum measurements. Specifying which classes of measurements are most relevant to the



2.2. CLASSES OF QUANTUM MEASUREMENTS 13

quantum measurement protocols used in the experiments described in this thesis will serve
to focus the remainder of the discussion in the chapter to the theoretical techniques most
useful for this subset.

2.2.1 Direct and indirect measurements

Roughly speaking, we can divide any quantum measurement into one of two categories:
direct and indirect measurements. The di�erence between the two amounts to where the
fuzzy boundary between the classical and quantum worlds is crossed. In any measurement
performed by a laboratory experimenter, some part of the measurement apparatus must obey
the laws of classical physics.2 The distinction between a direct and indirect measurement is
essentially related to how well the quantum system of interest remains safely isolated in the
quantum domain.

In a direct measurement, the quantum system undergoing measurement is directly cou-
pled to one or more classical degrees of freedom in the measurement apparatus. An example
of such a measurement is the detection of a photon using a photomultiplier tube. The arrival
of a photon immediately triggers a highly classical cascade of current in the tube, and the
quantum system directly sustains any classical back-action from the measurement apparatus
(in this case, being completely destroyed). Since the measurement apparatus is classical and
likely contains a large number of degrees of freedom, the back-action of a direct measurement
is typically much larger than any minimum bounds set by quantum mechanics.

In contrast to direct measurements, indirect measurements place some auxiliary quantum
probe system between the quantum system of interest and the classical measurement appa-
ratus. The probe system and the main system are brought into contact with one another,
allowed to interact for some time, and then decoupled. The probe system is then brought
into contact with the rest of the measurement apparatus, and a direct measurement of the
probe is made. In this way, the excess back-action of the classical measurement is absorbed
by the probe system, e�ectively isolating the main system. This technique directly permits
repeated, minimally-invasive measurements of the main system, using the following proce-
dure. We �rst create an ensemble of identically-prepared probe systems. Each probe system
is brought into contact with the main system in series and is then directly measured. We dis-
card the probe systems after the direct measurement, also discarding the extra back-action
of the rest of the measurement apparatus.

There are certain measurements in mesoscopic systems that do not neatly �t into these
two categories of direct and indirect measurement. These are cases where the probe system
cannot be described as being �rmly classical or �rmly quantum. Even though a measurement
may be sensibly described as a direct measurement, the back-action of that measurement may
in fact be relatively minimal and non-invasive. The measurement of a superconducting qubit
using a Josephson bifurcation ampli�er (JBA) [54] is an example of a direct measurement
that may not neatly be described as indirect. The operating principle of the JBA is based on

2At least, as far as we are presently aware.



2.2. CLASSES OF QUANTUM MEASUREMENTS 14

the physics of a nonlinear oscillator; when driven with a very strong drive near the resonant
frequency, the dynamics of the oscillator bifurcate into two stable states of very di�erent
oscillation amplitude which are quite classically distinguishable. Moreover, it is not known
if the process of switching between these states is reversible or not. Several experiments
[55, 56] have been performed on this measurement process and have determined that the
back-action may be relatively gentle for a measurement which could be considered a direct
measurement.

For the remainder of this chapter I will focus exclusively on measurements that fall into
the category of indirect measurements.

2.2.2 Quantum nondemolition measurements

Virtually all of the measurements described in the main results of this thesis are quan-
tum nondemolition measurements. As such, it is important to brie�y describe a precise and
pleasingly concise de�nition of the requirements on a measurement process for the measure-
ment to be QND. The ponderomotive energy probe described in section 2.1.2 introduced a
rough qualitative de�nition of a QND measurement, namely, that the state of the system
corresponding to increasing measurement precision must also correspond to a dynamically
stable state of the system's Hamiltonian. In this section I introduce the most generally used
criterion for a measurement to be QND, following the discussion in Chapter 4 of reference
[52].

If we measure some generic observable quantity q of a quantum system, and express the
action of the measurement as an operator U which acts on the joint state of the system
under measurement and the probe system, we require that the measurement not perturb the
quantity undergoing measurement; that is, we require the evolution operator to commute
with the measured quantity:

[q, U ] = 0. (2.8)

In other words, the operator U corresponds to the operator for the system we would compute
by solving for the full Hamiltonian evolution in time of the coupled system over the entire
measurement interval. This task is in general quite non-trivial, so a slightly less general and
more stringent condition for de�ning a QND measurement is normally used. Namely, that
the Hamiltonian describing the joint evolution of the system and the probe commutes with
the measured observable,

[q,Htot] = 0. (2.9)

This condition is more stringent than (2.8), as it implies that q does not change at any point
during the measurement, while (2.8) implies that q can evolve during the measurement period
but that by the end of the measurement it has returned to its original value.

We can further simplify this criteria by expressing Htot in the very general form

Htot = Hobj +Hprobe +Hint (2.10)
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where Hobj and Hprobe are free evolution Hamiltonians of the measured system and the
probe, respectively, and Hint is their interaction Hamiltonian. Since q is an observable of the
measured system and not the probe,

[q,Hprobe] = 0. (2.11)

If we assume that q is a constant of motion of Hobj, then

i~
∂q

∂t
+ [q,Hobj] = 0. (2.12)

If q has no explicit time dependence, ∂q
∂t

= 0, and by combining (2.9), (2.11), and (2.12), we
arrive at the most common and illuminating de�nition for a measurement to be QND:

[q,Hint] = 0. (2.13)

For the remainder of this chapter, I will focus the discussion on measurement theory relevant
to QND measurements.

2.2.3 Discrete and continuous quantum measurements

In any physical realization of a quantum measurement, the measurement process will
occur over some �nite time scale. This time scale could be the duration of the interaction
between the probe system and the main system in an indirect measurement, for example,
which results in a single measurement outcome. We could also imagine a case where we
perform many indirect measurements in rapid succession and the cumulative duration of
all of these measurements constitute the measurement time scale, compounding the results
of all the measurements into a single outcome. In this latter case, we could also imagine
considering the stream of serial measurements as producing a time series of measurement
outcomes. As we continuously integrate these individual measurements, our knowledge of
the quantity being measured improves. Alternatively, we could consider this time series of
measurement outcomes as describing a record of the evolution of the measured observable
during the measurement period, presuming we have some information about the value of
that observable at the beginning of the measurement.

The primary distinction between a discrete measurement and a continuous measurement
is essentially a matter of interpretation. A discrete measurement, resulting in a single es-
timate of the quantity under measurement, can also be constructed as the integration of
a continuous measurement over some �nite time to produce a single value. A continuous
measurement can also then be constructed as the continuous limit of a series of rapid discrete
measurements performed on a time scale much faster than the evolution time of the quantity
being measured. The measurements comprising the experimental results of this thesis fall
into both of these categories.
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a db c

Figure 2.3 : Thought-experimental protocol for an ideal projective measurement. a Bloch sphere

representation of a qubit initially prepared in the equal superposition state (|0〉 + |1〉)/
√

2. b An

ideal projective measurement is made of the state of the qubit, swinging a classical meter to either

the state 0 or 1. c The state of the qubit after the measurement is made is the eigenstate corre-

sponding to the measurement outcome. d Histogram of many iterations of the thought experiment,

showing probability distributions for the angular coordinate of the classical meter. The �nite width

of each histogram σθ is the result of unavoidable quantum or classical �uctuations of the measure-

ment apparatus. So long as the separation ∆θ is much greater than the histogram width, we can

unambiguously map the qubit state to the angular coordinate of the meter, and the measurement

is still ideal.

2.3 Ideal and imperfect projective measurements

The standard textbook description of a quantum measurement involves the instantaneous
transition of the quantum state of the measured system from an arbitrary superposition state
into a single eigenstate of the measured operator. The action of the measurement is thus to
�magically� coerce the system into the joint eigenbasis of the measurement operator and the
system. Repeated textbook measurements yield the same eigenvalue for all measurements
after the �rst measurement. This process is assumed to be perfect, and always yields a single
eigenvalue with certainty, though which eigenvalue is non-deterministic and probabilistically
depends on the square of the corresponding eigenvector component of the state vector.

It is useful to formulate a picture of an ideal projective measurement for a more realistic
case than the straightforward textbook de�nition. To simplify the discussion, I will speci�-
cally discuss the case of the ideal projective measurement of a two-state quantum system (a
qubit). For some initial coherent qubit state

|Ψ〉 = α|0〉+ β|1〉 (2.14)

where α and β are complex amplitudes with the normalization condition |α|2 + |β|2 =
1, an ideal projective measurement of the qubit returns the eigenvalue 0 with probability
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a b

Figure 2.4 : a Diagram showing the possible permutations of mappings between qubit and meter

states, including the error terms in purple. b Ideal measurement histograms, showing the e�ect of

the state mapping errors on measured histograms for the qubit states.

|α|2, and the eigenvalue 1 with probability |β|2. Furthermore, the qubit state following the
measurement should be the eigenvector corresponding to the measured eigenvalue.

Without introducing any technical details about the exact nature and form of the overall
measurement apparatus, we can construct a fairly general picture of what it means in practice
to realize an ideal measurement. An outline of this measurement is shown in Figure 2.3.
I will assume that the measurement apparatus is su�ciently precise and optimal to realize
a perfect QND measurement with no excess back-action. The output of the measurement
is the angular de�ection of a classical, continuous, one-dimensional meter, with two states
labelled 0 and 1.

If we repeatedly prepare some initial qubit state�for example, the equal superposition
state |Ψ〉 = (|0〉 + |1〉)/

√
2�and then histogram the results of each measurement, we will

recover a set of histograms that look something like the plot shown in Figure 2.3d. The
histograms corresponding to each state will in general have some �nite width due to intrinsic
�uctuations (be they classical or quantum) in the measurement apparatus; so long as these
�uctuations are signi�cantly smaller than the separation between the histograms, we can
unambiguously map the qubit states |0〉 and |1〉 onto the meter states 0 and 1.

Real quantum measurements can deviate from this ideal behavior in a variety of di�erent
ways, essentially corresponding to the ways in which the transitions between the panels of
Figure 2.3 can go wrong. First, the mapping between the qubit and meter states could
involve non-idealities, schematically shown in Figure 2.4. This type of error could be due
to some fundamental limitation in the measurement technique which does not produce the
ideal state map, thus leaving the qubit and meter in an inconsistent con�guration (this
fundamentally makes the measurement not perfectly QND). This type of error could also
be the result of imperfections which are not fundamental to the measurement process itself,
such as undesired state transitions in the qubit during the measurement, which may or may
not leave the qubit and meter in an inconsistent state.

Second, the measurement apparatus itself may be of poor quality and not satisfy the
requirement that ∆θ � σθ, resulting in measurement histograms that partially overlap, as
shown in Figure 2.5. This type of error is assumed to be entirely related to the function of
the measurement apparatus, such that the extra measurement uncertainty is uncorrelated
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Figure 2.5 : If the measurement apparatus is noisy, the measurement histograms may be broadened.

If this broadening is large enough to make the histograms overlap, a clear distinction between meter

states is no longer possible, introducing a measurement error in the overlap region and possibly

making the meter state inconsistent with the qubit state.

with any quantum measurement uncertainty in the state measurement itself.
Overall, the extent to which a projective qubit measurement accurately captures the

quantum state is called the measurement �delity, and is de�ned based on the action of the
measurement on a qubit prepared in one or the other eigenstate. The �delity is de�ned as

F = 1− P (1|0)− P (0|1) (2.15)

where P (i|j) is the probability that the measurement apparatus returned the state i when
the qubit was prepared in the state j. A perfect measurement with no errors corresponds to
a �delity of unity. The worst possible assignment of states in a measurement would be fully
random, where P (0|1) = P (1|0) = 0.5 and thus F = 0.

2.4 Ideal and imperfect partial measurements

Consider for a moment the ideal projective measurement process depicted in Figure 2.3.
Suppose we have mastered the theory of quantum measurement and we have designed a
qubit measurement apparatus that we are very convinced is ideal. We know for a fact that
it performs a QND measurement, applies no excess back-action to the qubit, and the noise
in the measurement apparatus is completely limited by minimum bounds set by quantum
mechanics.

We prepare the qubit in the equal superposition state |Ψ〉 = (|0〉+|1〉)/
√

2 and then make
a single measurement. We repeat this state preparation many times, histogramming the
results of all of the measurements, resulting in the histogram shown in Figure 2.6. Because
we have assumed that the measurement apparatus adds no classical noise, this case does
not correspond to the noise-broadened projective readout distributions shown in Figure 2.5.
How are we to interpret this distribution? Moreover, how are we to interpret the outcome
of any of the single measurements that make up this distribution? The answers to these
questions lie beyond the textbook de�nition of quantum measurement.

The measurement just described constitutes a partial quantum measurement (sometimes
called a weak quantum measurement). Since the histograms for the |0〉 and |1〉 states at
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Figure 2.6 : Histogram of the output of the classical meter for an ideal measurement of an ensemble

of identically prepared qubit equal superposition states. The histogram overlap in this case is only

due to fundamental quantum �uctuations of the measurement system, not added classical noise.

least partially overlap, we cannot precisely determine which eigenstate the qubit has been
projected into. However, since the overlap is exclusively due to the quantum �uctuations of
the measurement apparatus, this uncertainty in the state determination is not merely the
result of our crude, classical ineptness�no observer in the universe is able to completely
determine that the qubit has been projected into one or the other eigenstate, and, thus, it
hasn't been completely projected at all!

The state of the qubit has, in fact, evolved as a result of the measurement, in some
manner consistent with the measurement outcome (just as in a projective measurement).
However, unlike in a perfect projective measurement, we are now faced with a continuum
of possible measurement outcomes, where each possible value is correlated with a particular
measurement back-action on the qubit state. For a projective measurement, this back-
action is the usual act of projecting the qubit into the eigenstate consistent with the meter
outcome. To determine the equivalent mapping between this new continuous spectrum of
meter outcomes and the resulting back-action, we will need to �rst develop some statistical
tools.

It could of course be possible that all of the histogram overlap is not due to the intrin-
sic quantum �uctuations of the measurement apparatus. If some of the overlap is due to
additional classical noise in the measurement, as in Figure 2.5, we cannot disentangle the
added �uctuations from the intrinsic �uctuations and our measurement is no longer perfect.
In this case, we will not be able to create an ideal mapping between measurement outcomes
and back-action on the qubit, but rather some of this back-action must be expressed as a
decrease in the purity of the ensemble qubit state as a result of the measurement. The qual-
ity of a measurement apparatus in this case is described by a quantum e�ciency η, where η
is qualitatively given as the ratio of the size of the quantum �uctuations to the size of the
total �uctuations in the measurement apparatus. This concept will be made more concrete
shortly.
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2.4.1 Quantum Bayesian inference

Partial quantum measurements, where we acquire some �nite and incomplete information
about the state of a quantum system from a measurement, are a natural �t for analysis using
Bayesian statistics. We start with some initial estimate of the density matrix describing
the system under measurement; if we have no initial information, this density matrix will
be essentially a maximum-entropy placeholder. We perform a partial measurement, and
then use the result of that measurement to update our best estimate of the new density
matrix conditioned on the measurement outcome. If we have realized a perfect quantum
measurement apparatus, then the measurement outcome should perfectly correlate with the
coherent evolution of the density matrix as a result of the measurement, enabling the perfect
tracking of a known initial state.

The quantum Bayesian (QB) approach [57, 41] is relatively modern compared to other
more traditional theoretical frameworks for understanding partial measurements such as
positive operator-valued measures (POVM) . The QB approach has the advantage of being
relatively straightforward to calculate compared to POVMs, and I personally �nd it to
provide more illuminating insight into how our state of knowledge evolves as the result of a
partial measurement. All of the experimental results described in this thesis are well modeled
in the QB framework, and as such I will not explicitly discuss POVMs but rather refer to a
excellent treatment on the subject for further reading [58].

If we presume that we begin the experiment described in Figure 2.6 with an ensemble of
qubits identically prepared in the state |Ψ〉 = (|0〉 + |1〉)/

√
2, we can describe the state of

that ensemble with the density matrix

ρ(t = 0) =
1

2

(
1 1
1 1

)
(2.16)

in the σz basis. The diagonal entries in this matrix represent the classical probability for
�nding the system in one or the other eigenstate, while the o�-diagonal elements indicate the
extent to which the ensemble exists in a superposition of eigenstates. Because the diagonal
elements can be naturally interpreted as classical probabilities, we can apply Bayes' rule to
update these values following a partial measurement, calculating the probability to �nd the
qubit in one or the other eigenstate conditioned on the Bayesian estimate of that probability.
Bayes' rule captures the essential procedure for updating our state of knowledge of a system
based on some new (incomplete) piece of information acquired about that system:

P (A|β) =
P (β|A)P (A)

P (β)
(2.17)

where the conditional probability to �nd the system in the state A given some new measure-
ment result β is equal to the probability of having gotten the outcome β if the state is in
fact A multiplied by our current best estimate for the probability of the system being in the
state A. The denominator is a normalization factor.
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In the measurements described in this thesis, the coordinate that represents the output of
our classical meter will be a voltage V rather than an angle θ, so I will use V for consistency.
Applying 2.17 to the situation at hand results in the following update to the density matrix
diagonal elements following a measurement which produces the outcome V :

P (i|V ) = ρii(t) =
P (V |i)P (i)

P (V )
(2.18)

where P (i) is the probability to measure the state |i〉, given by ρii(t = 0), and P (V ) is the
probability to have observed the measured outcome V , given by a weighted prior probabil-
ity distribution conditioned on our knowledge of the initial state ρ and the distribution of
measurement outcomes for the states 0 and 1 (P (V ) is the distribution plotted in Figure
2.6). If we assume that the probabilities of measuring a particular value V when the qubit
is prepared in the ground or excited state are normalized Gaussian distributions of width σ
centered around ±∆V/2, then

ρ11(t) =
ρ11(0)

P (V )
exp

(
−(V −∆V/2)2

2σ2

)
(2.19)

ρ00(t) =
ρ00(0)

P (V )
exp

(
−(V + ∆V/2)2

2σ2

)
(2.20)

where P (V ) is given by our prior knowledge of the qubit state

P (V ) = ρ00(0) exp

(
−(V + ∆V/2)2

2σ2

)
+ ρ11(0) exp

(
−(V −∆V/2)2

2σ2

)
(2.21)

and the width σ is assumed to be the result of averaging a white noise background with
power spectral density S for the measurement time t such that σ2 = S/2t [41].

We can now interpret the experimental distribution from Figure 2.6. With ρ00(0) =
ρ11(0) = 1/2, P (V ) is the equally weighted sum of the two Gaussian distributions. If the
measurement value V is exactly equal to 0, P (V ) is equal to the exponential term in (2.19)
and ρ11(t) = ρ11(0). Remarkably, in this case, we have made a partial measurement of the
state of the qubit which has provided us with exactly zero information about which state it is
in! Because we have learned nothing new about the state, there should be no corresponding
back-action due to this measurement, re�ected in the fact that the density matrix elements
have not changed.

If V > 0, the exponential term in (2.19) will be larger than the exponential term in (2.20),
so ρ11(t) > ρ11(0). In other words, because this value of V corresponds to an outcome which
is more likely if the qubit is in the excited state, the back-action of the measurement must
have kicked the state towards |1〉. Also note that if ρii(0) = 1, ρii(t) = 1 regardless of the
measurement outcome. This is exactly what we expect for a QND measurement: if the qubit
is in an eigenstate, the back-action of the measurement should not disturb this eigenstate.
Furthermore, a repeated measurement of an initial superposition state will eventually drive
the qubit into one or the other eigenstate, realizing a projective measurement.
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If the only back-action of the measurement process is the evolution of the qubit towards
one of its eigenstates (leaving the phase of the qubit state unchanged), and we have realized
an ideal measurement, then the resulting change in the o�-diagonal elements of the density
matrix must be completely speci�ed by the change in the diagonal elements:

ρ01(0) = eiφ
√
ρ00(0)ρ11(0) ρ01(t) = eiφ

√
ρ00(t)ρ11(t) (2.22)

implying

ρ01(t) = ρ01(0)

√
ρ00(t)ρ11(t)√
ρ00(0)ρ11(0)

. (2.23)

This Bayesian state update procedure and the resulting ability to track a qubit state under-
going measurement has been extensively tested experimentally at QNL [25, 24, 26], demon-
strating excellent agreement with theoretical predictions.

It might seem unintuitive at �rst that we can write down such a simple and seemingly
deterministic set of equations for the evolution of the qubit state as the result of a measure-
ment. The measurement result V is of course still stochastic and unpredictable; however,
because we have presumed a perfect, quantum-limited measurement apparatus, and we begin
with a known density matrix, the purity of the qubit state need not change as a result of the
measurement as no information about the qubit state has been lost or discarded. Thus, the
back-action on the qubit state is perfectly correlated with the measurement result, and the
only e�ect of quantum uncertainty is the unpredictable nature of which measurement result
we �nd.

The ensemble dephasing rate associated with this measurement process, obtained by
averaging (2.23) [41], is

Γ =
(∆V )2

4S
. (2.24)

The term �dephasing� here is something of a misnomer, as we just asserted that the action
of this measurement does not change the phase of a superposition state. In the ensemble
picture, the stochastic evolution of a superposition state towards one of the eigenstates
is indistinguishable from stochastic evolution of a superposition state around the equator
of the Bloch sphere, so this process is still called dephasing. At the level of a particular
measurement, however, the two processes are fundamentally di�erent, as we will see in a
speci�c example in section 3.3.4. This rate can also be naturally interpreted as the �strength�
of a measurement; a stronger measurement projects a superposition state into an eigenstate
more rapidly, and thus the apparent ensemble dephasing rate is larger.

Remarkably, this fairly straightforward picture actually corresponds very closely to the
quantum measurements realized in this thesis. The primary departure from this idealized
picture is that the measurements are not entirely perfect, but rather involve some �nite
information collection e�ciency η < 1. This loss of information looks exactly like an extra
dephasing of the qubit state characterized by a rate γ which depends on η and other factors
speci�c to a particular measurement apparatus; to include this e�ect we simply multiply
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Figure 2.7 : Block diagram of a generic feedback control system. The control portion of the system

is drawn in blue, the interface between the control and the plant in green, and the plant itself in

black.

(2.23) by an exponentially decaying term e−γt and add γ to the right side of (2.24). We can
write a simple functional form for the e�ciency as

η = Γm/Γtot (2.25)

where Γm is the ideal dephasing rate associated with a perfect quantum measurement, while
Γtot is the total dephasing measured in a given experiment. A perfect quantum measurement
thus corresponds to Γtot = Γm; additional dephasing from other sources (be it imperfect
information collection or dephasing intrinsic to the non-ideal quantum system itself) increases
Γtot and thus reduces η.

2.5 Continuous quantum feedback control

With the Bayesian framework in place to track the evolution of a quantum state under-
going measurement, we can consider utilizing the record of this evolution to actively steer
the state towards some desired value using feedback. The basic idea of feedback control is
predicated on the assumption that we can measure the state of a system precisely, compare
that state to some desired target state, and use our measurement to condition a control
signal to steer the system towards the desired state and stabilize it against disturbances. In
classical feedback control this process is relatively straightforward, as our measurement of
the system need not disturb the state of that system. In quantum feedback control, this
assumption is fundamentally violated by the measurement-disturbance relations which have
been the subject of much of the rest of this chapter.

A generic diagram of a feedback control scheme is shown in Figure 2.7. Consider a sys-
tem (usually called the plant, in a reference to the broad industrial applicability of feedback
control) with one or more sensors which measure some outputs of the system. The sensor
outputs are subtracted from some reference values, producing an error signal that param-
eterizes the di�erence between the target state of the system and the current state of the
system. This error is fed into a controller which applies some control law to the error sig-
nal, producing a set of control signals which are fed to one or more actuators which apply
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the control signals to the plant. Some generic questions control theory asks and answers
about this type of system are, for instance, is a particular control law unstable, stable for
some parameters, or unconditionally stable? What control law provides the best control
performance, and can a particular control law be shown to be optimal in some sense?

In classical control theory, there is no fundamental reason that the precision with which
a property of the plant is measured should be of relevance to the dynamical evolution of the
plant. There may be unavoidable noise in the measurements of the plant, but increasing the
strength of a measurement should have no result besides increasing the size of the signal rela-
tive to this noise. In quantum measurement, performing a stronger measurement inevitably
increases the disturbance on the plant. Therefore, quantum control theory is faced with
additional complexity in analyzing the performance of control laws, especially with regards
to optimality. Measuring a system more strongly may increase the disturbance to such a
level that the resulting �uctuations are beyond the ability of the actuators to compensate,
for example. Explicit details on the general methods of quantum control are beyond the
scope of relevance for this thesis; see reference [38] for further reading on the subject.

Besides the additional theoretical complexity of the measurement-disturbance tradeo�,
demonstrating quantum feedback control is a signi�cant technological challenge. We require
a system which implements a nearly ideal, variable strength partial quantum measurement,
as we will be interested in assessing theoretical items of interest such as the measurement
strength which produces optimal control. If the aim of our feedback control is, for example,
the stabilization of an arbitrary qubit state, a projective measurement would immediately
destroy the stabilized state. Experimental systems that meet this demand have only recently
been realized, and as such the �rst two demonstrations of quantum feedback control did not
occur until 2011: the stabilization of photon number states in a microwave cavity [39], and
the experiment described in this thesis.

2.5.1 Stabilization of Rabi oscillations of a qubit

I will not attempt to lay out some general framework in which to pose the particular
quantum control experiment realized in this thesis; I will instead launch into speci�cs. The
plant will be a qubit described by a density matrix ρ(t), and our control law will aim to
stabilize the dynamics of the density matrix in the presence of dephasing. Speci�cally,
we will continuously drive Rabi oscillations of the qubit and aim to stabilize the phase of
these oscillations. Without yet going into details of the experimental implementation, the
sensor output corresponds to a continuous partial measurement of 〈σz〉. The actuator will
correspond to the frequency at which we drive Rabi oscillations Ωr; to correct the phase of
the qubit oscillations, we brie�y adjust Ωr to speed or slow the oscillations. Our reference
signal will be a high-quality classical oscillator oscillating at a target frequency Ω0, and the
error signal will be the phase di�erence between this reference and the measured phase of the
oscillations of 〈σz〉. This setup can be intuitively thought of as a phase-locked loop, though
here we are stabilizing the phase of a quantum oscillator.

The theory for this control scheme was formulated by Korotkov in reference [59]. It is
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worth nothing that this work was published in 2002 yet it took another 9 years for quantum
measurement technology to advance su�ciently to realize it. My discussion here will more
closely follow the discussion in our publication on the experiment [60]; speci�cally, section
IV of the supplementary materials.

We will �rst consider the case where the detector is ideal (η = 1). The qubit evolution
during the process of continuous measurement can be described using stochastic equations
[61] for the qubit density matrix ρ. Stochastic equations are required because the mea-
surement outcome V (t) will fundamentally involve a random variable corresponding to the
quantum �uctuations of the measurement apparatus; these expressions are essentially the
result of taking the time derivatives of (2.19) and (2.20). The measurement output signal
V (t) is given by

V (t) =
∆V

2
[ρ11 − ρ00] + ξid(t) (2.26)

where ξid is the white noise of an ideal detector characterized by the (one-sided) spectral
density Sid. The strength of the measurement, characterized by the measurement induced
dephasing rate (2.24), is given by

Γϕ =
(∆V )2

4Sid

. (2.27)

For a resonant Rabi drive, the stochastic equations describing the evolution of the density
matrix under simultaneous driving and measurement (in Stratonovich form) are given by

ρ̇11 = −ρ̇00 = −ΩRImρ01 + ρ11ρ00
2∆V

Sid

V (t)− Γ1ρ11, (2.28)

ρ̇01 = i
ΩR

2
(ρ11 − ρ00)− ∆V

Sid

ρ01 (ρ11 − ρ00)V (t)− (Γenv +
Γ1

2
)ρ01, (2.29)

where Γenv is the environmental dephasing rate and Γ1 is the qubit energy relaxation rate
[59].

The terms in (2.28) can be understood as follows. The �rst term describes the deter-
ministic state rotation due to the Rabi drive. The second term describes the stochastic
back-action of the measurement on the qubit state. The prefactor ρ00ρ11 is maximal when
ρ00 = ρ11 = 1/2, and decreases to zero when either term is zero. Thus, the measurement
has no e�ect if the qubit is already in an eigenstate, exactly what we expect for a QND
measurement. Otherwise, the measurement stochastically drives the state towards one or
the other eigenstate. The third term models spontaneous energy relaxation from the excited
state to the ground state. The terms in (2.29) are similar. Note that the factor (ρ11 − ρ00)
enforces the evolution described by (2.23). The third term describes the decoherence of the
state due to both intrinsic environmental dephasing Γenv and energy relaxation Γ1.

To obtain a closed form expression for the action of feedback control, it is possible to
reduce the number of qubit degrees of freedom down to only one. First, because a resonant
Rabi drive rotates the qubit about the x-axis and our measurement does not alter the
phase of a superposition state, the qubit state is restricted to the x = 0 plane. Second,
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by neglecting energy relaxation, we can consider the qubit state as pure, ascribing any
measurement ine�ciency (η < 1) to some additional noise at the detector output [62]. We
set Γenv = 0 in equation (2.29) and model both environmental dephasing and detector
ine�ciency by adding a noise term ξadd(t) to equation (2.26), resulting in the measurement
outcome

V (t) =
∆V

2
[ρ11 − ρ00] + ξid(t) + ξadd(t), (2.30)

where ξadd(t) has a spectral density Sadd = Sout−Sid, where Sout = Sid/η is the total output
noise. Therefore, the qubit state evolution can be described by only one parameter, the polar
(zenith) angle θ(t) on the Bloch sphere:

〈σz〉(t) = cos[θ(t)], 〈σy〉(t) = sin[θ(t)], 〈σx〉(t) = 0. (2.31)

The goal of the feedback is to stabilize the Rabi oscillation to the form θ(t) = Ω0t with
a �xed frequency Ω0. We characterize the feedback e�ciency D [59] as

D = cos[θerr(t)], θerr(t) = θ(t)− Ω0t, (2.32)

which corresponds to the time-averaged scalar product of the desired and actual state vectors
on the Bloch sphere. The qubit �phase shift error� θerr evolves as [59]

θ̇err = −∆V

Sid

sin θ

(
∆V

2
cos θ + ξid

)
. (2.33)

In order to compensate this dephasing-induced phase shift, we now apply feedback by mod-
ulating the frequency of the Rabi drive with a feedback term Ωfb(t) as

ΩR(t) = Ω0 + Ωfb(t). (2.34)

The control law is a simple proportional control, which Korotkov refers to as the �direct
feedback� control law:

Ωfb(t)

Ω0

= F
4

∆V
sin(Ω0t)V (t− τdelay). (2.35)

Here F is the dimensionless feedback gain and the choice of the normalization factor 4/∆V
corresponds to Ωfb/Ω0 = −F sin θerr on average. The extra term τdelay in the argument of V
accounts for the fact that in general our measurement and feedback control will have some
�nite bandwidth, so that the control correction we apply to the system at time t actually
corresponds to a measurement made at some earlier time, delayed by τdelay. For the moment
we assume this delay to be negligibly small.

The qubit evolution (2.33) is written in the Stratonovich form; converting it into the
Itô form (for averaging) we obtain the extra term [(∆V )2/4Sid] sin θ cos θ, which comes from
the measurement part of (2.33). However, this extra term in the Itô form is not important
because we average the evolution of the phase shift θerr over the Rabi period. The averaging
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is simple when θerr evolves slowly, so that θerr is uncorrelated with θ. Thus, we need to
assume weak coupling, Γ � Ω0 and weak feedback, F � 1. Averaging cancels the product
sin θ cos θ and replaces sin(Ω0t) cos θ with −(sin θerr)/2; thus we obtain

θ̇err =

(
4FΩ0

∆V
sin(Ω0t)−

∆V

Sid

sin(Ω0t+ θerr)

)
ξid

+
4FΩ0

∆V
sin(Ω0t) ξadd − FΩ0 sin θerr. (2.36)

In this equation, the last term attracts the phase shift θerr to zero, while the noise terms
cause di�usion of θerr. Examining the term in large parentheses, it is clear why there is an
optimum value of the feedback gain F . For example, for an ideal detector (ξadd = 0), the
e�ect of the noise ξid can be compensated when 4FΩ0/∆V = ∆V/Sid, leading asymptotically
to full synchronization, θerr(t) = 0. This compensation has been studied previously [63, 64]
in the context of stabilizing the qubit state on a �xed point on the Bloch sphere.

Next, we average the noise in (2.36) over a Rabi period to eliminate the oscillatory com-
ponents. We can replace sin(Ω0t) ξadd with ξ̃add/

√
2, where ξ̃add is white noise with the same

spectral density as ξadd. Averaging the term with ξid is similar, but slightly more cumber-
some. We �rst rewrite it as [A cos(Ω0t)+B sin(Ω0t)]ξid with A = −(∆V/Sid) sin θerr and B =
4FΩ0/∆V − (∆V/Sid) cos θerr. Averaging over a Rabi period then gives

√
(A2 +B2)/2 ξ̃id

with a similar white noise, Sξ̃id = Sid. We now add the uncorrelated contributions from

the noises ξ̃id and ξ̃add, and convert the result into a noise C ξ̃out, where ξ̃out has the same
spectral density Sout as the output noise and C

2 = η(A2 + B2)/2 + (1 − η)(4FΩ0/∆V )2/2.
This allows us to replace (2.36) with

θ̇err = −FΩ0 sin θerr + C ξ̃out, Sξ̃out = Sout, (2.37)

C2 =
2FΩ0

Sout

(
1

η

F

Γ/Ω0

+
Γ/Ω0

F
− 2 cos θerr

)
. (2.38)

This is a Langevin equation, and the corresponding Fokker-Planck equation for the prob-
ability distribution P (θerr, t) is

∂P

∂t
=
∂(FΩ0 sin θerr P )

∂θerr

+
1

4

∂2(C2SoutP )

∂θ2
err

, (2.39)

where P (θerr) is 2π periodic and is normalized as
∫ π
−π P (θerr) dθerr = 1. The stationary

solution Pst(θerr) then satis�es the equation

d(C2SoutPst)

dθerr

+ 4FΩ0 sin θerr Pst = const = 0, (2.40)

where the constant is zero because of the symmetry between θerr and −θerr. Using the C
2(θerr)

dependence from (2.38), we get

Pst(θerr) = p0

(
1

η

F

Γ/Ω0

+
Γ/Ω0

F
− 2 cos θerr

)−2

, (2.41)
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where p0 is a normalization constant.
Finally, from the stationary probability distribution for the phase shift θerr, we calculate

the feedback e�ciency asD =
∫ π
−π cos θerr Pst(θerr) dθerr and thus obtain the analytical formula

D =
2

1

η

F

Γ/Ω0

+
Γ/Ω0

F

. (2.42)

From (2.42) it is straightforward to calculate the optimal value of the feedback gain F and
corresponding maximum value for D:

Fopt =
√
η

Γ

Ω0

, Dmax =
√
η. (2.43)

Notice that Fopt � 1 for weak coupling (Γ� Ω0) so the assumption of weak feedback F � 1
is satis�ed.

The existence of an optimal feedback strength is quite intuitive. Intrinsically, the goal
of the feedback loop is to correct for the (partially) known stochastic back-action of the
measurement process. In the ideal case η = 1, Fopt is just given as the ratio of the total
dephasing rate and the Rabi frequency. From (2.35) we can think of F as parameterizing
the strength of the feedback in terms of the fractional shift in Ω0. Considering that Γ/Ω0 is
essentially the fractional disturbance, it makes sense that the size of the feedback correction
should be identical to the size of the disturbance. In the non-ideal case η < 1, only the
fraction of the feedback amplitude

√
η actually corresponds to the quantum back-action of the

measurement, while the remainder is uncorrelated classical noise. Thus, a reduced feedback
strength is necessary to re-scale the total correction to properly correct the fraction of the
�uctuations which are correlated with the qubit state. However, because the uncorrelated
part of the signal is still applied to the qubit, the e�ciency of the feedback is limited by the
same fractional correlation

√
η.
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Chapter 3

Superconducting qubits and circuit

quantum electrodynamics

Having discussed the framework of partial, continuous, idealized quantum measurements,
I will now describe the physical system we use to realize such measurements. Rather than
utilize a natural quantum system (such as an atom or single spin), we utilize engineered
superconducting circuits which are described by the same quantum mechanics as natural
quantum systems. These circuit platforms have some signi�cant advantages, especially the
design �exibility in choosing various coupling strengths (created here through structures such
as capacitors rather than natural dipole moments or spin-spin couplings).

3.1 Quantization of electrical circuits

The fact that electrical circuits can behave as coherent quantum variables is somehow
simultaneously surprising and obvious. It is standard practice to �nd a quantum description
of a mechanical system by writing down the classical Lagrangian and Hamiltonian descrip-
tions of the system, introducing commutation relations to the canonically conjugate degrees
of freedom, and �nally promoting these degrees of freedom to quantum operators.

For mechanical systems of rigid bodies it feels somewhat natural to consider these bodies
as �particles" and write down a quantum Hamiltonian and wavefunction for their motion,
as their rigid-ness implies we can imagine all of their microscopic degrees of freedom moving
together. Of course, for large, classical objects, this description would in reality break down
due to decoherence at some level. Still, experiments are continuously pushing the quantum
description of mechanical rigid bodies to larger and larger objects, consisting of billions of
atoms all moving together coherently in one mechanical mode [65, 66, 67]. Electrical circuits,
on the other hand, consist of a large number of charge carriers, and in general there is no
particular reason to believe that the quantum motion of these charge carriers should be
strongly correlated to enable a similar description of their collective motion as a rigid body.
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Figure 3.1 : LC oscillator quantities and coordinates.

3.1.1 Superconductivity

Electrical circuits composed of superconducting materials provide a context in which it
makes perfect sense to consider the motion of all of the charge carriers together as analogous
to a mechanically rigid body. Below the transition temperature in a conventional supercon-
ductor, the electrons pair to form bosonic composite particles known as Cooper pairs [68].
At very low temperature, all of these bosonic particles cool into a single collective ground
state. The excitation spectrum of the system then has a large energy gap 2∆ between the
ground state and the �rst excited state, corresponding to the energy needed to dissociate a
Cooper pair back into two electrons.

This gapped excitation spectrum is the origin of the most well known phenomenological
behavior of superconductors: current �ow without resistance. The microscopic origin of
resistance in a normal metal conductor is the scattering of electrons o� of defects in the metal
into other conduction states, corresponding to energy exchange with the lattice. Because
of the large energy gap in the spectrum of a superconductor, there are no nearby states
available for Cooper pairs to scatter into, enabling the ideal �ow of current without the
charge carriers exchanging energy with defects in the metal. Thus, it becomes perfectly
natural to model the collective behavior of all Cooper pairs occupying the ground state as a
single wavefunction.

3.1.2 Quantization of an LC oscillator

For the purposes of this thesis, a derivation of quantum circuit operators in the context
of an LC oscillator will su�ce. For a more general discussion of the subject see reference
[69].

A circuit schematic of an LC oscillator is shown in Figure 3.1. The classical equations
of motion for an LC oscillator are usually derived using the voltage and current as the
generalized coordinates. For a quantum treatment of an LC oscillator and for quantum
circuits in general it turns out to be more convenient to use the charge on the capacitor
and the �ux threading the inductor as the coordinates. Fundamentally, this is because in
some circuits the number of charge-carrying quanta on a metal island turns out to be a



3.2. SUPERCONDUCTING QUBITS 31

good quantum number, and in some others the total number of superconducting �ux quanta
threading some loop turns out to be a good quantum number. We can write the total energy
in the oscillator in the standard way as

E =
1

2
CV 2 +

1

2
LI2. (3.1)

Converting to charge and �ux using the relations Q = V C and Φ = LI, we can write the
classical Hamiltonian of the LC oscillator as

H =
Φ2

2L
+
Q2

2C
. (3.2)

Writing Hamilton's equations of motion

∂H

∂Φ
= Φ/L = I = −Q̇ ∂H

∂Q
= Q/C = Lİ = −Φ̇ (3.3)

we can immediately identify Φ as a generalized position and Q as a generalized momentum,
promote them to quantum operators Φ̂ and Q̂, and write their commutation relation

[Φ̂, Q̂] = i~. (3.4)

Thus, the quantum dynamics of an LC oscillator are those of a quantum harmonic oscillator
with raising and lowering operators a†, a. We can re-express the Hamiltonian in terms of
raising and lowering operators as

H = ~ωa†a = ~ωn̂ (3.5)

where ω = 1/
√
LC and n̂ corresponds to the number operator. States of de�nite energy

for the system correspond to a de�nite number state. Driving the LC oscillator with a
classical drive at the resonant frequency results in a coherent state, where the expectation
values of the quantum operators 〈Φ̂〉 and 〈Q̂〉 obey the classical equations of motion and the
uncertainty in the coordinate and momentum in normalized units are equal and saturate the
uncertainty principle.

3.2 Superconducting qubits

An LC oscillator, when cooled to the quantum ground state and operated in a regime
where there is no energy dissipation (ie when the impedance of the oscillator is purely
imaginary), is a completely quantum system. In principle, highly nonclassical states of
the oscillator such as number states could be created, but in general this requires quantum
control over the degrees of freedom of the oscillator. In other words, to prepare a nonclassical
state of the oscillator, we need to couple it to some other quantum system.

We would like to be able to create highly nonclassical states of a circuit using only
straightforward classical drives; however, as mentioned previously, driving an LC oscillator
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a b c

Figure 3.2 : a Harmonic oscillator potential and energy levels, showing equal level spacing of ~ω.
b Harmonic potential (dashed black line) with a softening correction (solid black line), showing

decreasing energy level spacing by the anharmonicity parameter α with increasing energy level. A

sti�ening potential would produce a positive anharmonicity rather than a negative one, increasing

the frequency of higher level transitions. c Rough schematic of the potential of a highly anharmonic

system such as a hydrogen atom. In general the anharmonicity in an atomic system is quite large

as the potential is far removed from that of a harmonic oscillator; for the three lowest-lying states

of the simple hydrogen atom, E12 ≈ 0.15E01, a fractional anharmonicity of order unity.

with a classical signal results in a coherent state of the oscillator, a highly classical state
with essentially no interesting intrinsic quantum properties. If we wanted to create, say, a
state of de�nite excitation number (also known as a Fock state), or a explicit superposition
between two of these number states, and only utilize classical controls, we need to consider
a circuit with more complex dynamics than a simple harmonic oscillator.

Traditionally, superconducting qubits are introduced by discussing the Cooper pair box
(aka charge qubit) and RF SQUID (aka �ux qubit) circuits, as these are the simplest circuits
that demonstrate behavior where the charge or �ux in the circuit are a good quantum number
[70]. However, modern superconducting qubits have moved away from these relatively simple
and pure designs towards an intermediate regime where neither charge nor �ux are good
quantum numbers. As such, I will instead introduce how to make a qubit by starting with a
harmonic oscillator and introducing a weak anharmonicity rather than starting with a highly
anharmonic system.

3.2.1 Anharmonic oscillator as a qubit

The limitation of a harmonic oscillator as a controllable quantum system, as I mentioned
in the previous section, is that any classical control �eld applied to the oscillator will produce
a classical state of the oscillator. The intrinsic reason for this is the equally spaced energy
levels of the harmonic oscillator, illustrated in Figure 3.2a. A classical �eld will cause the
ground state wave packet to climb the ladder, resulting in a coherent state consisting of
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a weighted superposition of every number state with some mean excitation number n̄. To
prevent this from occurring, we must introduce some amplitude-dependent shift in the energy
levels of the oscillator. To make a mechanical analogy, we require the spring constant of the
oscillator to either increase or decrease as a function of the displacement of the spring from
equilibrium. We will focus on a case where the spring constant decreases with increasing
displacement, also known as a �softening potential� as the spring becomes less sti� with
increasing displacement.

A softening potential is shown in Figure 3.2b along with the �rst few energy levels.
At small amplitude, the potential is essentially quadratic, so the �rst level splitting E01

remains unchanged as ~ω. The second level splitting E12, however, is decreased by an
amount α, the anharmonicity. Higher level splittings are still further decreased. The typical
anharmonicity in the circuits described in this thesis is relatively small, on the order of 10%.
This is in contrast to many anharmonic systems described in quantum mechanics, such as
the hydrogen atom. A cartoon of a atomic-type potential is shown in Figure 3.2c, showing
far more anharmonic level spacings than a simple softening potential.

For an anharmonic oscillator initially in the ground state, a coherent drive at frequency
ω has the e�ect of driving Rabi oscillations between the �rst two states. For a purely
monochromatic excitation (or at least an excitation with bandwidth much smaller than the
anharmonicity) the oscillator cannot climb out of the {|0〉, |1〉} manifold. We now have a
system capable of demonstrating highly quantum behavior using only simple classical control
�elds.

3.2.2 Superconducting anharmonic oscillators

To realize an anharmonic LC oscillator we require a nonlinear circuit element. There
is no fundamental reason to prefer to make the capacitance or the inductance nonlinear,
and classical electronics have utilized both as nonlinear elements. To ensure that our os-
cillator behaves quantum-mechanically, however, we require a circuit element that is not
only nonlinear but also nondissipative. Conveniently, there is a circuit element unique to
superconducting circuits that �ts the bill: the Josephson tunnel junction [70]. Physically, a
Josephson junction is a thin non-superconducting (usually insulating) material sandwiched
between two superconducting electrodes. The insulating barrier must be thin enough that
Cooper pairs can readily tunnel through the barrier. When a supercurrent tunnels through
the barrier it acquires a phase shift δ due to the �rst Josephson relation

I = I0 sin δ (3.6)

where I0 is the critical current of the junction, the maximum current that can �ow through
the junction without a �nite voltage appearing across it. For a time-varying signal, the
second Josephson relation relates the voltage across the junction to the time evolution of the
phase shift

V =
Φ0

2π
δ̇ (3.7)
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I0 CJ

Figure 3.3 : Circuit model for a Josephson junction including the intrinsic geometric parallel-

plate capacitance. The symbol at right is the circuit symbol for a junction including its intrinsic

capacitance.

where Φ0 = h/2e is the superconducting magnetic �ux quantum [68].
From the de�nition of inductance L = V/İ and equations (3.6) and (3.7), we �nd that

the impedance of the Josephson junction is that of an inductor whose value depends on the
current �owing through it,

LJ =
Φ0

2πI0 cos δ
=

LJ0√
1− I2/I2

0

(3.8)

where LJ0 = Φ0/2πI0 is the �linear� inductance of the junction for very small current. For
any physical Josephson junction, the thin metal-insulator-metal sandwich also forms an
e�ective parallel-plate capacitor, usually modeled as an extra capacitance in parallel with
the ideal Josephson element as shown in Figure 3.3. Thus, a Josephson junction is itself
intrinsically a nonlinear LC oscillator. Due to the form of (3.8), the inductance of the
junction increases with increasing current, and thus the resonant frequency of the Josephson
nonlinear oscillator decreases. For moderate excitations, this looks much like the softening
potential drawn previously in Figure 3.2b.

Because the critical current and the junction capacitance scale linearly with the area of
the junction, the self-resonant frequency (also called the plasma frequency) of the junction

ωJ =

√
2πI0

Φ0C
(3.9)

is �xed for a given junction fabrication process. This frequency is typically many tens
of gigahertz, and is usually reduced by adding an additional shunt capacitance in parallel
with the junction to bring the plasma frequency down into the few gigahertz regime for
convenience of operation. The full form of the potential can be calculated by expressing the
energy in the junction U as the time integral of the voltage across the junction multiplied by
the current. Assuming zero initial energy at t = −∞ and applying the Josephson relations,
the junction energy can be calculated as [20]

U = EJ(1− cos δ) (3.10)

where EJ is the characteristic Josephson energy scale EJ = Φ0I0/2π = ~I0/2e. Thus, we
see that the full potential is a cosine function with a characteristic scale determined by the
junction critical current.
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3.2.3 Transmon qubits

The circuit implementation of the anharmonic oscillator I described in the previous sec-
tion is called a transmon qubit [71, 72]. This circuit design was created at Yale and has
become the superconducting qubit of choice for many research e�orts in the �eld, and for
good reason. The transmon is a straightforward device to design, fabricate, and control, and
is conceptually easy to think about. Furthermore, the transmon consistently achieves long
coherence times in the 10 to 100 microsecond range [73, 15], very long compared to 10 to 50
nanoseconds, the typical time required to do an arbitrary rotation of the qubit state [74].

The circuit schematic for the transmon qubit is, remarkably, no di�erent from that of a
Josephson junction with intrinsic shunt capacitance; the main di�erence is the presence of
an additional, large external shunting capacitance across the junction. The purpose of this
large capacitance is to reduce the single-electron charging energy associated with the total
capacitance EC = e2/2C. This e�ectively �attens the dispersion of the energy eigenstates in
the charge dimension, ensuring that the transmon qubit is essentially immune to dephasing
due to charge noise. To ensure the qubit is deep in this regime, we generally target EC to
be about 1% of EJ . For an extensive theoretical discussion of the theory of the transmon,
see reference [72].

The transition frequency between the two lowest energies of the transmon is approxi-
mately equal to the plasma frequency (3.9); re-expressing this in terms of EJ and EC yields
ω01 ≈

√
8EJEC/~. With the constraint EC ∼ EJ/100 and the requirement that the qubit

frequency be experimentally convenient�say, 6 GHz�implies that EJ ∼ 3.5 ~ω01 ∼ h× 20
GHz, and thus EC ∼ h × 200 MHz, with junction critical current I0 ∼ 50 nA and total
capacitance C ∼ 100 fF. The primary limitation of the transmon qubit is the fact that the
anharmonicity α is approximately −EC , and thus the transition frequency ω12 is just a few
percent lower than ω01. To ensure that the transmon state remains in the {|0〉, |1〉} manifold,
the bandwidth of the control pulses used to induce qubit state transitions must be smaller
than the anharmonicity [75].

3.3 Cavity quantum electrodynamics

With the transmon qubit in hand, we have a controllable, coherent quantum circuit
with which we can perform experiments requiring a quantum two-level (or few-level) system.
However, we have not yet developed any description of how to couple these qubits to other
quantum systems or to the outside world to enable the measurement of their quantum state.
In this section I will introduce the paradigm of cavity quantum electrodynamics (cavity QED)
[76], an approach which has been extremely fruitful in the study of real atoms [6, 77] and
more recently quantum circuits [17, 78].

A simpli�ed picture of a cavity QED system is shown in Figure 3.4. The reasons for
enveloping an atomic system of interest in a resonant cavity are several. For atomic systems,
perhaps most importantly, the presence of the cavity �lters the radiative density of states
seen by the atom. A free excited atom in the continuum has a very large density of states
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Figure 3.4 : A simpli�ed picture of a cavity QED setup. An atom is placed inside a cavity resonator.

A particular transition of the atom is coupled to the standing mode inside the cavity with a coupling

strength g. The cavity �lters the radiative density of states seen from the perspective of the atom,

ideally reducing the atomic decay rate to the environment Γenv to a negligible value. One of the

mirrors of the cavity is partially transmissive, allowing photons in the cavity mode to controllably

leak out of the resonator at a rate κ.

to radiate into, and as a result atomic excited states tend to decay very quickly. If the
atomic transition of interest is tuned into resonance with the cavity, then the excited state
will preferentially radiate into this mode. However, because the resulting photon remains
in the cavity for a long time, the atom has many opportunities to re-absorb it. A more
precise quantum picture of this process is simply that atomic excitation will be coherently
exchanged with the resonator according to the coupling rate g. If the coupling rate g can
be made much larger than the environmental decay rate Γenv and the cavity decay rate κ,
a cavity QED system can thus achieve strong coupling between a single atomic mode and a
single photon, probing the most fundamental interaction diagrams in QED.

3.3.1 Jaynes-Cummings Hamiltonian

In the limit Γenv → 0, and for now ignoring the cavity decay κ, a cavity QED system is
described by the Hamiltonian [79]

H = Hq +Hr +Hint (3.11)

=
1

2
~ωqσz + ~ωra†a+ ~g(a+ a†)(σ+ + σ−), (3.12)

where on the �rst line we have broken up the Hamiltonian into terms describing the free
evolution of the qubit and resonator (Hq and Hr, respectively) and their interaction (Hint),
and ωq is the transition frequency of the two-level atom, ωr is the cavity resonant frequency,
a† and a are the cavity creation and annihilation operators, and σ+ and σ− are the qubit
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Figure 3.5 : A circuit diagram which implements the same Hamiltonian as a cavity QED system. A

transmon qubit, at left, is capacitively coupled with strength g to an LC resonator. The resonator is

capacitively coupled to the environment with rate κ. It is also quite possible to replace one or both

capacitive couplings with inductive couplings. The circuit as drawn contains an explicit ground

reference, though this is not necessary and cQED systems are often implemented as partially or

fully di�erential circuits to reject common-mode interference.

raising and lowering operators given by (σx ± iσy)/2. We can simplify this expression by
ignoring the interaction terms that don't conserve excitation number (the �rotating wave
approximation�), resulting in the Jaynes-Cummings (JC) Hamiltonian

HJC =
1

2
~ωqσz + ~ωra†a+ ~g(aσ+ + a†σ−). (3.13)

The interaction term can now be interpreted in a straightforward manner as the exchange
of an excitation between the atom and cavity. The elegant simplicity of this Hamiltonian is
one of the reasons for the remarkable success of cavity QED systems in implementing highly
coherent control of single atomic quantum degrees of freedom.

3.3.2 Circuit implementation of cavity quantum electrodynamics

I have already introduced all of the components necessary to realize an electrical circuit
which is entirely analogous to a cavity QED system. This paradigm is known as circuit QED
(cQED); a circuit schematic for such a system is shown in Figure 3.5. A superconducting
transmon qubit plays the role of a single atom, and an electrical resonator plays the role of
the cavity. However, there are several important di�erences between atomic cavity QED and
cQED. Atomic systems are limited in the magnitude of g by the size of the intrinsic dipole
moment of the atomic transition of interest. In circuit-based systems, g can be adjusted
independently of the other parameters by altering the size of the coupling capacitor, and
schemes have even been demonstrated to dynamically tune this parameter on the same time
scale as coherent qubit state rotations [80].

Additionally, circuits do not su�er from the intrinsic free-space radiative problem of real
atoms, as they need not have any true geometric dipole moment. Thus, for cQED systems,
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reduction of Γenv is not a primary motivation for coupling the qubit to a cavity. Furthermore,
this also implies that the qubit need not be placed �inside� the cavity, permitting the use of
�exible circuit topologies. For cQED systems, the real reason for the cavity is to permit the
non-invasive measurement of the qubit state, which is the subject of the next section. In
some multi-qubit experiments, several qubits are coupled to the same cavity which is then
used as a �quantum bus� to allow the controllable coherent exchange of energy between the
qubits [81, 82].

Although the system described so far is entirely composed of circuit elements, a exper-
imentally practical hybrid system called the �3D transmon� architecture is commonly used
as well [15]. The circuit comprising the transmon qubit is essentially the same, but rather
than being capacitively-coupled to a circuit-style resonator, the qubit is coupled to a mode
of a 3D waveguide cavity with a pair of large antenna paddles. This architecture provides
very long qubit coherence times by minimizing the interaction between the quantum modes
of the qubit and any defects in the materials on which it is fabricated. All of the experiments
described in this thesis use this 3D transmon architecture.

3.3.3 Dispersive regime and QND measurement

Though the JC Hamiltonian generally describes the behavior of cQED systems for a large
range of parameter regimes, the most relevant regime for the experiments described in this
thesis is the so-called dispersive regime, where the magnitude of the qubit-cavity detuning
∆ = ωq − ωr is much larger than the coupling rate g. Since excitations are quantized, in
this regime the qubit and cavity cannot e�ciently exchange energy with one another. By
expanding Hint to second order in the small parameter g/∆ we �nd a revised interaction
term

Hint = −χa†aσz (3.14)

where we've introduced the dispersive coupling rate χ = g2/∆. Because Hq ∝ σz and
Hr ∝ a†a, the interaction term now commutes with the qubit and resonator terms, satisfying
the requirement for a QND measurement (2.13). This can be made more explicit by rewriting
(3.11) with the dispersive interaction Hint and re-grouping the terms as

Hdisp =
1

2
~ωqσz + ~ (ωr + χσz) a

†a. (3.15)

We can interpret the second term as the Hamiltonian of a quantum harmonic oscillator
with a resonant frequency shifted by ±χ depending on the qubit state operator σz. Thus, a
measurement which probes the resonant frequency of the cavity realizes a QND measurement
of the state of the qubit.

Our choice of the grouping of the terms in (3.15) was entirely arbitrary; we could have
instead lumped the interaction term into Hq, realizing the Hamiltonian

Hdisp =
1

2
~(ωq + 2χa†a)σz + ~ωra†a. (3.16)
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Figure 3.6 : Re�ected phase shift vs. normalized frequency for the case 2χ = κ where χ is negative.

Measuring the phase of a re�ected probe signal at a frequency where the re�ected phase di�ers

constitutes a measurement of the state of the qubit.

Now we can interpret the �rst term as a qubit whose transition frequency is shifted1 by 2χ
times the photon number operator a†a, and thus a measurement which probes the transition
frequency of the qubit realizes a QND measurement of the cavity photon number. In reality,
both of these e�ects occur simultaneously, and which form of the Hamiltonian we consider
is largely a matter of convenience dictated by which quantity is measured in an experiment.
None of the experiments performed in this thesis involve the frequency-selective measurement
of the qubit state, and thus I will focus the discussion to how measurement is performed
within the context of (3.15).

How is a measurement of the cavity frequency performed in practice? A probe signal is
injected into the cavity; this signal becomes entangled with the qubit state, and subsequently
leaks out of the cavity at the rate κ. A measurement of some property of this signal that
di�ers for the two qubit states consumes the entanglement and delivers some information
about that state. Generally speaking, the signals used for measurement are coherent states,
classically represented as a complex phasor aeiφ. If the amplitude or phase of this vector
di�ers between the two qubit states, a measurement of this quantity amounts to a measure-
ment of the qubit state. The details of this scheme depend on the parameter regime of the
experimental realization. For simplicity in this discussion I will only consider a cQED system
measured in re�ection [40, 42], and I will also assume the cavity has no important internal
losses.

When a cavity is measured in re�ection, the probe signal acquires a frequency-dependent
phase shift plotted in Figure 3.6. The total phase shift is zero at the resonant frequency ωr
and ±π at large detunings. If the qubit is in the |0〉 (|1〉) state, the cavity resonance is shifted
by −χ (+χ). Thus, a measurement signal at an intermediate frequency acquires a di�erent
re�ected phase for the two states. Whether or not this measurement constitutes a projective

1This frequency shift can be interpreted as an incarnation of the AC Stark e�ect.



3.3. CAVITY QUANTUM ELECTRODYNAMICS 40

Figure 3.7 : Simulated histograms for qubit-state-dependent IQ shifts. The �nite spatial extent of

the histograms is due to quantum and classical noise in the two quadratures of the �eld. a Well-

separated histograms for ∆θ = π/2. b Signi�cantly overlapping histograms for the same coherent

state amplitude, but with ∆θ = π/6. c Increased histogram separation can be achieved for small

phase shifts by increasing the coherent state amplitude.

or partial measurement of the state depends on a variety of system parameters, including
the magnitude of the coherent state n̄, the amount of time the output signal is integrated
for, and the magnitude of the phase shift. For the case of a transmission measurement the
picture is essentially the same, though the phase shift is reduced by a factor of 2 and the two
signals will have a di�erence in amplitude as well as phase if the measurement frequency is
not at exactly ωr.

For a single set of measurement parameters, we can qualitatively determine the strength
of the measurement by plotting histograms of the measurement outcomes for the di�erent
qubit states in terms of the two cartesian coordinates (real and imaginary) which make up
the complex phasor. In the language of microwave electronics, these two coordinates are
called the in-phase and quadrature components of the signal, or I and Q. These histograms
are depicted in Figure 3.7. For a single measurement, if the histograms are well-separated as
in Figure 3.7a, this constitutes a projective measurement of the qubit state (corresponding to
Figure 2.3). If the histograms are signi�cantly overlapping, we realize a partial measurement
of the qubit state (corresponding to Figure 2.6). Keeping all other parameters �xed, we
can increase the histogram separation by increasing the length of the coherent state vector.
However, there are practical limits to the maximum signal which can be utilized in a disper-
sive cQED measurement. The dispersive approximation itself supplies a rough upper limit,
as the validity of the dispersive approximation relies on the condition n̄ < n̄crit = ∆2/4g2

[20]. In practice this is not a hard limit, and relatively high-quality qubit readout has been
performed with n̄ ∼ 3n̄crit or so [83]. At these large photon numbers, the measurement is
typically no longer perfectly QND, but for short measurement times the error rate can be
negligibly small.
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It is important to note that because the transmon is only a weakly anharmonic system, the
higher level transitions will also couple to the cavity mode, which signi�cantly complicates the
simple picture of a two-level system coupled to the cavity with a strength g. The dispersive
shift χ is no longer simply given as g2/∆, but will rather be a sum over all of the coupling
strengths gij for the various state transitions ωij. For the experiments conducted in this
thesis, this additional complexity can be entirely absorbed as a rescaling of the circuit QED
parameters; in general the coupling strength g is not directly important, and the dispersive
shift χ01 due to the �rst level transition is directly measured in experiment anyway. For a
full treatment of the multi-level transmon in circuit QED, see references [20, 26].

3.3.4 Back-action of cQED measurement

Most of the results in this thesis were made with cQED systems in the dispersive weak
measurement limit. As discussed previously, the strength of a measurement depends not only
on the �xed system parameters but also on the signal magnitude used in the measurement;
thus, a vast range of measurement strengths can be accessed in a single apparatus. However,
the �xed system parameters result in a intrinsic scale of measurement strength corresponding
to the state-dependent phase shift ∆θ = 2 tan−1(2χ/κ), and several equations of interest take
on a relatively intuitive and simple form in the limit ∆θ � 1.

To elucidate some of the interesting and unintuitive details of the back-action of the
cQED measurement, I will follow the very good discussion in reference [41]. For a cQED
setup in the dispersive limit with ω = ωr, the ensemble dephasing due to the presence of a
measurement coherent state with mean photon number n̄ is given by

Γ =
8χ2n̄

κ
. (3.17)

This coherent state corresponds to the oscillation of the �eld expectation value 〈F (t)〉 =
2
√
n̄σgr cos(ωt), where σgr is the ground state amplitude width due to quantum �uctuations

which here serves to re-scale the coherent state amplitude into �uncertainty units� (note that
σgr = 1/4). Interaction with the qubit then creates a phase shift of ±2χ/κ depending on the
qubit state. Decomposing the resulting phasor into quadrature components results in

〈F (t)〉 = I cos(ωt) + Q sin(ωt)

I = 2
√

n̄σgr Q = 2
√

n̄σgr(2χ/κ)〈σz〉 (3.18)

We can now explicitly see the information contained in each quadrature. The large I quadra-
ture contains information about the photon number �uctuations in the resonator, while the
small Q quadrature contains information about the qubit state. If we use an interferomet-
ric apparatus to selectively measure only the Q quadrature (this will be a phase-sensitive
parametric ampli�er; see section 4.2.2), by emptying the resonator of its contents we can
measure the Q quadrature with imprecision σgr. In the limit of a continuous-time measure-
ment, we achieve an imprecision in Q of σgr/

√
κt, or, equivalently, an imprecision in 〈σz〉 of
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√
κ/t/(4χ

√
n̄). Linking back to the discussion in section 2.4.1, the full swing of our detector

between σz = ±1 is thus
∆V = 8(χ/κ)

√
n̄σgr, (3.19)

and the imprecision σ in the output signal V (t) is

σ =

√
κ

t

(
∆V

8χ
√
n̄

)
. (3.20)

Thus, we can express the power spectral density of the output noise as

S = 2tσ2 =
(∆V )2κ

32χ2n̄
. (3.21)

From (2.24), we calculate the dephasing rate associated with this measurement as

Γ =
(∆V )2

4S
=

8χ2n̄

κ
. (3.22)

This is an important result; because the dephasing rate associated with measuring only
the Q quadrature of the output signal accounts for all of the ensemble qubit state dephasing,
this measurement process can have no back-action besides the Bayesian evolution described
in section 2.4.1. Thus, the only back-action of this measurement process is the stochastic
evolution of the Bloch vector towards one of the poles, with no accompanying evolution
in the phase of an initial superposition. In other words, if the Bloch vector begins on a
particular meridian of the Bloch sphere, the action of the measurement is to drive stochastic
evolution of the state vector along this meridian only.

What if we were to instead measure the I quadrature? For a measurement time t, we
measure I with an imprecision σgr/

√
κt, which can be understood as a measurement of

the �uctuation of the number N of emitted photons in that time var(N) = n̄κt, which
follows from the fact that the variance of the photon number in a coherent state is equal
to the mean photon number n̄, the photons are leaking from the cavity at the rate κ,
and we capture them for a time t. Because the correlation function of photon number in
the resonator depends on time as exp(−κt/2) [43], the e�ect of detecting an amplitude
�uctuation corresponding to one photon2 implies that that �uctuation on average spent a
time 2/κ in the resonator (this is the lifetime of the �eld amplitude; the power of course has
the lifetime 1/κ), resulting in an evolution of the qubit phase by 4χ/κ. Thus, the variance in
the qubit phase is var(φ) = (4χ/κ)2n̄κt, implying a dephasing rate Γ = var(φ)/2t = 8χ2n̄/κ.
We have once again recovered the standard result for the total ensemble dephasing, implying
that the resulting �pure dephasing� associated with measuring the I quadrature represents
the entire back-action of the measurement.

2Because our detector output is a continuous �eld variable and not a photon-counting detector, thinking
of the output �eld in terms of individual photon detection events is not formally correct, but the intuition
it provides is essentially correct if we're careful about factors of 2.
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What if we were to measure both the I and Q quadratures simultaneously? The mea-
surement simultaneously acquires information about both the qubit state and the photon
number �uctuations, and both kinds of back-action occur simultaneously. It turns out (see
section 4.2.1) that due to the �eld commutation relations, an ideal measurement of both
quadratures implies doubling the size of the uncertainty compared to the single-quadrature
case. Because the power spectral density of the noise has been increased by a factor of two,
the dephasing rate for each back-action process is reduced by a factor of two, both then
contributing an equal half of the total dephasing rate Γ in (3.17). An in-depth discussion of
how both single-quadrature and two-quadrature measurements are made in practice is the
subject of the next chapter.
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Chapter 4

Quantum-limited ampli�ers

Thus far, I have discussed idealized quantum measurements, and the paradigm of circuit
QED in which we can in practice realize coupled quantum systems which implement these
measurements. What I have not yet discussed, however, is how we build the bridge from
this quantum world to the classical world in which we interpret our experimental outcomes.
In general, quantum measurements at some point involve one or more stages of signal am-
pli�cation. This is necessary because the energy and power scales of quantum systems are
usually much, much smaller than the energy and power scales of our classical experimental
apparatus. To bridge this gap, we must create some highly sensitive nonlinear coupling be-
tween the quantum degree of freedom and a classical degree of freedom. A classic example
of such a coupling is a photomultiplier tube, a device capable of measuring the arrival time
and energy of a single optical photon to high precision. The arrival of a photon creates an
ionization event which cascades down a series of metal plates biased with very high voltage,
resulting in a very large current pulse. Considering that the initial photo-ionization event
produces a single electron, the total current pulse is equivalent to a signal gain of 70 dB or
more [84].

In the context of superconducting circuits, most all signals are continuous-value mi-
crowave �elds, usually Gaussian coherent states. The signal powers are typically quite weak:
the resonant frequency and bandwidth of a typical circuit QED cavity are on the other of
5 GHz and 5 MHz, respectively, and the cavity is typically driven with a intracavity �eld
corresponding to a mean cavity occupation n̄ on the order of 1 or so. This corresponds to
an output power of P = ~ωκn̄ ∼ 1 × 10−16 W = −130 dBm. The typical powers used in
analog microwave signal processing in the classical regime at room temperature are on the
order of 10−3 W = 0 dBm, so we require about 13 orders of magnitude of ampli�cation to
bridge these disparate scales. However, unlike for destructively detecting the incidence of
a single optical photon, we require this ampli�cation to produce a faithfully ampli�ed copy
of the continuous-valued input signal while adding as little noise to this signal as possible.
This type of ampli�cation is usually called linear ampli�cation, as the output signal Vout(t)
should obey the relation

Vout(t) =
√
GVin(t) + ε(t) (4.1)
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a

bandwidth

b c

Figure 4.1 : a A generic ampli�er, characterized by its power gain G. The ampli�er output contains

an ampli�ed copy of the signal as well as some additional noise ε(t). b The bandwidth of an ampli�er

is commonly de�ned as the frequency band over which the ampli�er delivers a gain at least as large

as G/2. c The input signal power at which the gain is reduced to approximately 80% (-1 dB) of the

small-signal gain is a common �gure of merit for ampli�er input power handling ability, called the

1 dB input compression power or P1dB.

where G is the real-valued ampli�er power gain, Vin(t) is the input signal, and ε(t) is addi-
tional uncorrelated noise added by the ampli�cation process.

4.1 Ampli�er �gures of merit

There are several parameters of interest in characterizing the performance of a generic
linear ampli�er, illustrated in Figure 4.1. Ideally, the ampli�er faithfully creates an ampli�ed
copy of the input signal, increasing the power of that signal by a factor of the power gain
G. In the process of ampli�cation, the ampli�er also adds some extra noise to the output
signal ε(t). We usually make the approximation that this added noise is independent of
the input signal, uncorrelated with itself (white noise), and Gaussian-distributed. This is a
good approximation for thermal noise sources such as Johnson noise and also describes the
character of the quantum vacuum noise [43].

We express this noise in power units over some reference bandwidth B, usually taken to
be 1 Hz. We can use Boltzmann's constant k to convert the resulting power into a noise
temperature

TN =
PN
Bk

. (4.2)

The output noise temperature of an ampli�er is usually referred to the input of the ampli�er
by dividing the output noise temperature by G, permitting a straightforward comparison to
any relevant noise scales in the input signal. In general we wish for the input noise of an
ampli�er to be much smaller than the input signal, permitting a faithful recovery of the input
signal from the output. An extensive discussion of how to measure the noise temperature
of a cryogenic ampli�er is given in [20]. I will also describe a high-precision technique for
making this measurement in chapter 8.

The dynamics and ampli�cation mechanism of an ampli�er usually provide linear opera-
tion only over some �nite range of signal frequencies, the bandwidth of the ampli�er. De�ning
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bandwidth is somewhat arbitrary, but a commonly-used metric is the frequency band over
which the ampli�er produces gain at least as large as half of the peak gain, as depicted in
Figure 4.1b. For gain pro�les that are more complex that a simple hump, this de�nition may
not make sense, but it is generally applicable to the ampli�ers discussed in this thesis.

Finally, because any ampli�er has a �nite reservoir of energy to use for ampli�cation, if
an input signal becomes too large, the ampli�er may not be able to faithfully reproduce it.
This is called input compression, and is depicted in Figure 4.1c. Generally, when an ampli�er
becomes compressed, it is no longer able to deliver the full gain G but instead the e�ective
gain starts to decrease as a function of increasing input signal power. The standard metric
for input compression is the input signal power at which the gain of the ampli�er is reduced
by 1 dB (to approximately 0.8G), and is the metric discussed in the remainder of this thesis.

4.2 Quantum limits on ampli�cation

Ampli�cation is essentially a form of measurement, as an ampli�er is a device that inter-
acts with an input signal and produces an output signal which is correlated with the input
signal. It should be obvious that we wish to minimize the term ε(t) in (4.1), as this added
ampli�er noise distorts the output signal and prevents us from recovering the exact input
signal. Considering that quantum mechanics places intrinsic lower bounds on the uncertainty
of making various types of measurements, it should come as no surprise that ampli�cation
must satisfy some minimum uncertainty relation which constraints just how faithfully the
output signal of the ampli�er can correlate with the input signal. The seminal work on
deriving a general quantum limit for a linear ampli�cation process was done by Caves in
reference [85], though earlier work dates back to 1962 [86, 87]. In this section, I will follow
a more modern review of the subject which I �nd somewhat more illuminating [43].

For a continuous, narrowband classical signal V (t) centered at frequency ω, we can write
V (t) in terms of a complex number a, de�ning the amplitude and phase of the signal

V (t) ∝ i(ae−iωt − a∗e+iωt). (4.3)

Since we are concerned with the quantum properties of this signal, we must promote a, a∗ to
the level of quantum ladder operators a→ â, a∗ → â†. For simplicity I'll not bother with the
hats for the remainder of the section. Equivalently, we could instead use the two quadrature
amplitude operators I and Q, with functional form

I =
1√
2

(a† + a) Q =
i√
2

(a† − a) (4.4)

with the commutation relation [I,Q] = i. Since the �eld quadratures are canonically con-
jugate quantities, we cannot expect to be able to measure both simultaneously to arbitrary
precision.
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Figure 4.2 : a IQ diagram of an input coherent state vector, including an uncertainty �blob� at the

end of the vector representing the vacuum �uctuations. b The output state, following ampli�cation

by a phase-preserving ampli�er with gain G (note axis rescaling). The action of the ampli�er has

ampli�ed the input vector while maintaining the phase, but has also added some extra noise (dashed

purple circle) onto the noise present at the input (black dashed circle).

4.2.1 Phase-preserving ampli�cation

An ampli�er which linearly ampli�es both quadratures of the input signal is known as a
phase-preserving (or phase-insensitive) ampli�er, as the ampli�ed copy of the signal preserves
the phase of the input signal (or, equivalently, the ampli�cation process is insensitive to the
phase of the input signal and thus treats both quadratures equally). A IQ diagram of the
action of such an ampli�er is shown in Figure 4.2.

We consider �rst the case where an ampli�er has just one mode at the input, ain, and
one at the output, aout. In the usual way, we de�ne the uncertainty in the input �eld as

(∆ain)2 ≡ 1

2
〈{ain, a

†
in}〉 − |〈ain〉|2 (4.5)

with an analogous de�nition for (∆aout)
2, where the curly brackets { , } indicate anticommu-

tation. The input and output operators must obey the usual bosonic commutation relations

[ain, a
†
in] = 1, [aout, a

†
out] = 1. (4.6)

We are seeking a faithful linear relationship between the input and output �elds, thus im-
plying that

aout =
√
Gain, a†out =

√
Ga†in. (4.7)

However, it is immediately clear that we cannot simultaneously satisfy (4.6) and (4.7), so
the simple linear relationship in (4.7) cannot be correct. We are thus forced to write

aout =
√
Gain + F , a†out =

√
Ga†in + F †. (4.8)

What does F represent, physically speaking? It cannot be correlated with a, else we would
violate the commutation relation (4.6). Thus we conclude that F must represent extra
noise added by the ampli�er. What is the physical source of this noise? Since the ampli�er
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provides a power gain G, the energy needed to increase the signal power by Gmust come from
somewhere, so these extra �uctuations represented by F are associated with this reservoir
of power.

Since F is uncorrelated with the input signal mode ain, [F , ain] = [F , a†in] = 0 and
〈Fain〉 = 〈Fa†in〉 = 0. By enforcing the commutation relation (4.6) for the output �eld aout,
we �nd that

[F ,F †] = 1−G. (4.9)

What does this say about (∆aout)
2, the noise in the output �eld? Combining (4.5) and (4.8),

(∆aout)
2 = G(∆ain)2 + (1/2)〈{F ,F †}〉
≥ G(∆ain)2 + (1/2)〈[F ,F †]〉
≥ G(∆ain)2 + |G− 1|/2. (4.10)

In the limit of no gain (G = 1), (∆aout)
2 = (∆ain)2, and the ampli�er need not add any

noise. However, for any gain larger than unity, the output noise must be strictly larger than
the ampli�ed input noise. It is somewhat more illuminating to express this output noise on
the same scale as the input noise:

(∆aout)
2/G ≥ (∆ain)2 + |1− 1/G|/2. (4.11)

It is clear that in the case where G� 1, the �nal term will be very small, and so we make the
approximation G→∞ and �nd a standard and beautiful result in quantum ampli�cation:

(∆aout)
2/G ≥ (∆ain)2 + 1/2. (4.12)

Since we are working in units of photon number, the interpretation of this equation is straight-
forward. Much as the ground state of the electromagnetic �eld intrinsically �uctuates at the
level of half a quantum, a general phase-preserving ampli�er in the large gain limit must
necessarily add �uctuations at the level of half a quantum to the input.

We can go a bit further in understanding this added noise by �nding a more detailed form
for the extra noise operator F . From (4.9), we see that for any G > 1 the RHS is negative. If
we introduce one additional bosonic mode d, corresponding to a mode from which we draw
the energy needed for ampli�cation, we can express the extra noise operator as

F =
√
G− 1d†, F † =

√
G− 1d. (4.13)

This expression satis�es (4.11) as an equality, so an ampli�er that realizes this type of
operation could potentially add only the minimum half-quantum of noise at high gain. With
this de�nition for F , we can write the ampli�er scattering relation (4.8) as

aout =
√
Gain +

√
G− 1d†. (4.14)
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Figure 4.3 : a IQ diagram of an input coherent state vector, including an uncertainty �blob� at the

end of the vector representing the vacuum �uctuations. b The output state, following ampli�cation

by a phase-sensitive ampli�er with gain G aligned with the Q quadrature (note axis rescaling). The

action of the ampli�er has ampli�ed the input vector along the Q quadrature while de-amplifying

the I quadrature. The resulting �squeezing� of the noise is visible in the shape of the noise blob,

which has been stretched along Q by
√
G and compressed along I by 1/

√
G; this compression along

I implies the translation of the output state vector to the Q axis.

4.2.2 Phase-sensitive ampli�ers

The extra half-quantum of input noise for a phase-preserving ampli�er fundamentally
arose from our assertion that the ampli�er should linearly amplify both quadratures of the
signal. Since these two quadratures do not commute, we could not simultaneously satisfy
the commutation relation and the naive requirement of linear ampli�cation. However, if we
relax the linear ampli�cation requirement and limit ourselves to amplifying only one input
quadrature, say, the Q quadrature,

Qout =
√
GQin, Iout = Iin/

√
G, (4.15)

then the output �elds clearly satisfy the commutation relation.
An ampli�er that has an action of this form is known as a phase-sensitive (or phase-

nonpreserving) ampli�er, as the ampli�cation process is di�erent depending on the phase of
the input signal (or, equivalently, the ampli�cation process does not preserve the input phase
of the signal). Physically speaking, for the action of the ampli�er to be di�erent depending
on the input phase of the signal implies that the input signal mode and the mode used to
supply ampli�cation energy must have a �xed phase relationship. Here we now speak of Q
as the ampli�ed quadrature and I as the deampli�ed (or squeezed) quadrature. If the input
mode a is a vacuum state, Qout will have �uctuations

√
G times larger than the vacuum

�uctuations, while Iout will have �uctuations
√
G times smaller than the vacuum! This is

shown schematically in the IQ plane in Figure 4.3.
These are fundamentally quantum states of light, as they require correlations between

signal components larger than the limits imposed by classical physics [88]. Because (4.15)
satis�es the �eld quadrature commutation relation, a phase-sensitive ampli�er need not
intrinsically add any additional noise to the input signal. In other words, because we are
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pres. beamsplitter I

Q

Figure 4.4 : A schematic representation of how to create a phase-preserving ampli�er with gain G

as the combination of two phase-sensitive ampli�ers with gain 2G and one beam splitter. We can

physically understand the origin of the extra half-quantum of noise in this type of phase-preserving

ampli�er as the result of adding the second port on the beamsplitter, introducing another vacuum

mode d. Note that I have employed the large-gain limit to set
√
G− 1 =

√
G and eliminate the

squeezed quadratures from the outputs of the phase-sensitive ampli�ers.

only measuring one half of a pair of non-commuting observables, there is no fundamental
limit to how well we can measure that observable, so no added noise term need appear to
satisfy such a limit.

4.2.3 Quantum e�ciency of phase-preserving ampli�ers

The result that a linear phase-preserving ampli�er must add an additional half-quantum
of noise has led to a great deal of confusion and misunderstanding about the quantum
measurement performance of these types of devices. Since the intrinsic �uctuations of the
input mode a correspond to half a quantum, the quantum limit of measuring this mode is
often expressed as this same half-quantum. Thus, if we consider the total input-referred noise
of a phase-preserving ampli�er to be this half-quantum plus an additional half-quantum, at
face value it appears as if a phase-preserving ampli�er is forever limited to operating with
a quantum e�ciency of 0.5. However, this amounts to a fundamental misunderstanding of
the quantum measurement process.

This understanding would be correct if we should place the added half-quantum of noise
on the same footing as additional, uncorrelated classical noise in the measurement system.
However, this interpretation is not correct, and can be understood in terms of environmental
correlations. Classical noise ε(t) added by the measurement system is intrinsically part of
the incoherent, dissipative classical environment associated with the imperfect measurement
apparatus. If we had perfect control over all of this environment, we could keep track of the
exact form of this noise and simply subtract it from the output signal to perfectly recover
the underlying signal plus quantum noise. Thus, any additional classical noise that we do
not have an independent record of spoils our perfect quantum-limited measurement.
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The extra minimum noise fundamentally associated with the extra mode needed in a
phase-preserving ampli�er, however, is not of this form. Ideally, there is no record of these
�uctuations imprinted in an environment beyond our control, so this noise is fundamentally
indistinguishable from the intrinsic quantum noise of the input mode. Thus, these added
�uctuations do not spoil the e�ciency of our measurement. We can loosely de�ne the
measurement e�ciency η as

η =
the information we collect

the information we collect + the information we lost
. (4.16)

Since the added quantum �uctuations in the extra mode are not correlated with any unmea-
sured degrees of freedom, we have not lost any information, and a perfect phase-preserving
ampli�er still has a quantum e�ciency of unity once the quantum limit is correctly de�ned.

This idea can be made more clear by introducing a simple model for a phase-preserving
ampli�er by combining two phase-sensitive ampli�ers, as shown in Figure 4.4. It is clear in
this setup that at no point do we lose any information from the mode a, nor do we introduce
any extra uncorrelated classical noise. The only di�erence is the introduction of a beam
splitter, adding an extra vacuum port through which the mode d enters the system. One
way to understand the e�ect of the extra input vacuum mode is that the additional half-
quantum of noise does not decrease the e�ciency of the measurement, but merely reduces
the strength of that measurement by a factor of two. Note that we have had to employ
phase-sensitive ampli�ers with gain 2G to model a phase-preserving ampli�er of gain G.
This implies that regardless of which type of ampli�er we use, we will still achieve quantum-
limited measurement back-action as described in section 3.3.4.

4.3 Practical ultra-low-noise microwave-frequency ampli-

�ers

Realizing microwave-frequency ampli�ers that saturate these lower bounds on added
noise is a very nontrivial task. The input signals are very weak, and, moreover, the energy
corresponding to the vacuum �uctuations at the input of the ampli�er is extremely small.
We can use Boltzmann's constant to convert the characteristic energy scale of the vacuum
�uctuations to a noise temperature T = ~ω/2k = 144 mK at 6 GHz. For the �elds to be in
their ground state, the thermal temperature of the environment must be about an order of
magnitude lower than this still, implying an ampli�er capable of operating at temperatures
of a few tens of millikelvin.

The general design approach for building low-noise microwave ampli�ers for operation at
cryogenic temperatures utilizes high-quality microwave-frequency semiconductor transistors
[89] made from high-electron-mobility transistors (HEMTs). HEMT ampli�ers are capable of
operation at temperatures as low as a few kelvin, and the best devices achieve input-referred
noise temperatures as low as 2 or 3 K. This is still about an order of magnitude larger
than the quantum limit! We therefore need a di�erent type of ampli�er entirely, capable
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of operating at temperatures much lower than the quantum noise temperature. We will
still need HEMT ampli�ers in our measurements, as they provide an intermediate stage of
ampli�cation to build the bridge to room temperature, providing about 40 dB of gain over
a large bandwidth (as large as 10 GHz or more) with a very high input compression power
(on the order of 0.1 mW).

In the same way that we turned to superconductors in Chapter 3 to realize electrical
circuits that behaved as coherent quantum systems, we likewise turn to superconductors
once again to realize nearly ideal quantum ampli�ers. To build an ampli�er, we require
an element in our system which behaves in a nonlinear fashion, permitting the modulation
created by a small input signal to produce a very large change in the system, realizing gain.
Furthermore, if we wish to couple two modes of the electromagnetic �eld, we require some
term in the wave equation that mixes these di�erent modes, which a purely linear wave
equation does not achieve. In the same way that we utilized Josephson junctions to make
harmonic LC oscillators into anharmonic oscillators that behaved more like atoms, we will
employ the Josephson nonlinearity once again, this time to create circuits that e�ciently
couple di�erent electromagnetic modes.

4.3.1 Parametric ampli�ers

The operating principle for the lowest-noise superconducting ampli�ers is the paradigm
of parametric ampli�cation. The idea is that rather than directly adding energy to the signal
mode, a source of energy is instead used to modulate a parameter of a dynamical system,
producing ampli�cation of a signal mode incident on the system. A classic example of this
process is a playground swingset. The motion of a person swinging on the swing can be
driven by walking up and pushing them at the right moment, directly adding energy into
the swing's motion. Alternatively, the person on the swing can modulate the moment of
rotational inertia of the entire swing by slightly increasing and decreasing the length of the
swing at the right moments, �pumping� the swing, and thus adding energy to the swing's
motion and amplifying the initial conditions.

In a general parametric process, we supply energy from a pump wave (ωp) which couples
to at least two other modes, traditionally called the signal (ωs) and the idler (ωi). The
relationship between these quantities is essentially a statement of energy conservation, and
comes in two minimal �avors: three-wave mixing, where one pump photon is converted to
one signal and one idler photon as

ωp = ωs + ωi; (4.17)

and four-wave mixing, where two pump photons are converted to one signal and one idler
photon as

ωp + ωp = ωs + ωi. (4.18)

If the signal and idler modes are the same (ωs = ωi), the process is called a degenerate
process, and ωp will be an integer multiple of ωs. This type of degenerate process implies
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Figure 4.5 : Circuit model for a Josephson nonlinear resonator operated as a LJPA. The nonlinear

resonator is formed from the junction and capacitor at left, loaded by a transmission line modeled

as a lumped impedance Z0 and driven by an ideal current source I(t).

a well-de�ned phase relationship between the pump and signal modes and thus realizes a
phase-sensitive process. I will focus on four-wave mixing processes, as none of the devices
described in this thesis operate in a three-wave mixing mode1.

4.3.2 Lumped-element Josephson parametric ampli�ers

The Josephson junction provides a convenient nonlinear circuit element with which to
realize a parametric process. When the junction is driven with a strong pump wave ωp, the
Josephson inductance is modulated by the current in this wave roughly as Ip(t)

2; since this
quantity is always positive, the inductance is e�ectively modulated at 2ωp. To utilize this
nonlinear modulation as an ampli�er, the junction is embedded in an LC resonator; in fact,
the circuit diagram for a simple lumped-element Josephson parametric ampli�er (LJPA) is
identical to that for a transmon qubit [90] but with a much weaker anharmonicity, resulting
in a classical nonlinear oscillator.

The precise physics behind the operation of the LJPA is beyond the scope of relevance
for this thesis, and has already been treated extensively in other works. The general method
to solve for the behavior of the LJPA is to start from the circuit model shown in Figure 4.5.
Applying Kircho�'s laws permits the derivation of a di�erential equation for the junction
phase di�erence δ(t), which will involve a nonlinear term proportional to sin[δ(t)] due to
the Josephson current-phase relation (3.6). Approximating this term to the lowest nonlinear
order of δ(t)3 results in the equation of motion of a classical Du�ng oscillator, which can be
explicitly solved for δ(t) in the presence of a strong drive. This approach is described in detail
in references [20, 91]. Another approach, interesting for explicitly treating the quantum noise
performance of the device, begins from the Hamiltonian for a �rst-order nonlinear harmonic
oscillator, and is extensively described in reference [92].

1Parametric ampli�ers based on the Josephson Parametric Converter are an example of a three-wave
mixing device [34].
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4.3.3 Performance and limitations of LJPAs

We can consider a LJPA as a black box ampli�er and characterize it using the �gures
of merit described in section 4.1. JPAs are generally operated with a gain of about 20 dB,
su�ciently high to ensure that ampli�ed input quantum �uctuations are much larger than
the noise added by the following HEMT ampli�er. The input-referred noise temperatures
can be close to the quantum limit, often within a factor of 2. The main limitations for LJPAs
are bandwidth and input power saturation, both of which are fundamentally related to the
use of a nonlinear resonator as the geometry of the ampli�er.

The need for a resonant geometry is essentially to enhance the coupling between the signal
wave and the modulation of the Josephson junction. The small-signal resonant frequency of
this circuit is given by

ω0 =
1√
LJC

=

√
2πI0

Φ0C
. (4.19)

The bandwidth B in the small-signal regime is related to the inverse of the quality factor,
given simply by the standard equation for a LC oscillator damped by the coupling to a
feedline of real impedance Z0

Q = ω0Z0C (4.20)

where B ∼ ω0/Q. This is a good approximation for large values of Q, but not entirely correct
for small Q. As the resonator is driven near resonance by a strong pump, the parametric
process leads to gain as well as a reduction in bandwidth. This tradeo� is known as the
gain-bandwidth product, and is roughly expressed as

B
√
G ∝ 1

Q
. (4.21)

Typical gain-bandwidth products for LJPAs are on the order of 100 MHz, implying
B = 10 MHz with 20 dB gain [93, 34, 35]. Some devices have been demonstrated with
gain-bandwidth products on the order of 1 GHz [36].

The input compression power is determined by the amount of pump power available for
ampli�cation. Roughly speaking, for the ampli�er to remain linear, the fraction of the energy
in the pump transferred to the signal should be very small, on the order of 1% or -20 dB. For
an ampli�er with 20 dB gain, this implies that the 1 dB compression power will be about
40 dB smaller than the pump power. The maximum pump power than can be utilized is
limited by the nonlinear dynamics of the resonator and is typically constrained to be 5-10%
of the critical current [20]. For typical parameters, the 1 dB compression power is about
-130 dBm [35], though improved devices have enhanced this by as much as 20 dB [94, 36].

The gain-bandwidth product is the most challenging design constraint in improving the
performance of LJPAs. To increase both the gain of the ampli�er and the bandwidth simul-
taneously, we can decrease Q. We cannot make Q arbitrarily small, however, as eventually
higher-order nonlinear processes become important and prevent stable ampli�er operation.
An approximate requirement for stability is

Qp & 5 (4.22)
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where p = LJ/Ltot is the participation ratio of the Josephson inductance to the total induc-
tance [26]. In general there will always be some stray inductance which constrains p < 1.

We typically wish to keep the center frequency ω0 of the ampli�er �xed at some speci�c
value, requiring that we maintain a �xed ratio I0/C. Thus, if we decrease Q by making
C smaller, we must also reduce the junction critical current, thus reducing the input com-
pression power. One possible way to avoid this problem is by decreasing the environmental
loading impedance Z0 instead of C by utilizing an impedance transformer to convert the stan-
dard 50 Ω environment to a lower value. One device has been demonstrated with Z0 = 15 Ω
and realized a remarkably large bandwidth, though much of this improvement was related
to a coincidental frequency dependence in Z0 formed by the long propagation length of the
impedance transformer rather than the reduction in Z0 itself [36].

One �nal constraint intrinsic to LJPA operation is the necessity of a separate non-
reciprocal circuit element. A resonator-based ampli�er is intrinsically a 1-port device; this
can be intuitively understood by the simultaneous need to e�ciently couple the input signal
to the resonator and e�ciently couple the ampli�ed �eld back out. For a simple geometry,
due to the reciprocal nature of the circuit topology, any port into the device that functions
as an input will function just as e�ectively as an output. Thus, the ampli�ed output �eld
leaves the ampli�er through the same port through which it entered. We must then use a
non-reciprocal element to separate the outgoing signal mode from the incoming mode. Mi-
crowave circulators are usually employed for this purpose, and do the job quite e�ectively.
However, these components are large, magnetic, expensive, and lossy. Josephson-based para-
metric ampli�ers with intrinsic directionality have been realized using a much more exotic
circuit topology [95], though the bandwidth and dynamic range of these devices are quite
limited.

4.4 Traveling-wave ampli�ers

For several applications of interest, the design constraints inherent in the LJPA are
simply too stringent to realize an ampli�er that simultaneously achieves large gain, large
bandwidth, and large dynamic range. For example, one common approach utilizing one
ampli�er and one transmission line to readout several qubits simultaneously is frequency-
division multiplexing, which requires a bandwidth on the order of 50 MHz per qubit and
power handling corresponding to about -110 dBm per qubit [30, 31]. Furthermore, there
are applications such as fault-tolerant quantum computing where the need for a circulator
is a major impediment to scaling up the measurement system to thousands of qubits. These
constraints are inherent to the resonant geometry of the ampli�er, so a natural question
arises: is it possible to realize a Josephson ampli�er that does not intrinsically utilize a
resonant mode?

The inspiration for such a device comes from the optical domain. Optical �bers have
a weak, intrinsic nonlinearity which is exploited to make ampli�ers [96]. The general idea,
then, is to exchange the enhanced coupling between the incident modes and the nonlinear
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Figure 4.6 : �LC ladder" lumped-element transmission line, and equivalent nonlinear lumped-element

transmission line utilizing the Josephson inductance.

element provided by the resonator for a very long co-propagation length through an extended
nonlinear medium. Because the pump and signal waves are now propagating in a single
spatial direction, the gain provided by the ampli�er is intrinsically directional and thus
naturally operates as a 2-port device, eliminating the need for a external non-reciprocal
element to separate the input and output modes. The propagation length required in these
optical �ber parametric ampli�ers (OFPAs) is on the order of 100 m or more, owing to the
very weak nonlinearities intrinsic to nonlinear optical systems.

In addition to the energy conservation criteria described previously (4.18), the traveling
waves now also carry nonzero momentum, ascribed to the dispersion relation intrinsic to the
waveguide in which the waves propagate. For e�cient mixing to occur, the process must
conserve momentum; for four-wave mixing, we require

2kp = ks + ki (4.23)

where kx is the wavevector for mode x ∈ {p, s, i}. This condition combined with (4.18)
amounts to a constraint on the shape of the dispersion relation k(ω). Since the spatial
phase evolution of the modes is proportional to k, this momentum-matching constraint
is generally called phase matching in the literature of nonlinear optics. Achieving phase
matching is a central problem in nonlinear optical systems, and is likewise crucial to the
e�cient functioning of traveling-wave ampli�ers. I will leave a detailed discussion of this
problem and its solution for chapter 7.

4.4.1 Josephson traveling-wave ampli�ers

Creating a superconducting ampli�er analogous to a OFPA is not a new idea; a theoretical
proposal for this type of device was made in 1985 [97], and an experimental realization of the
device was created at Bell Labs in 1996 by Yurke et al [48]. These works entirely ignored the
issue of phase matching; furthermore, the Yurke device was created by loading the center
trace of a co-planar waveguide (CPW) structure with 1000 Josephson junctions, producing
a nonlinear transmission line with an impedance of 430 Ω. Because of this poor matching to
the environment, the device was operated with one end shorted as a re�ection ampli�er and
did not produce a compelling demonstration of traveling-wave performance. The bandwidth
of the ampli�er was also quite small, only 125 MHz at a gain of 12 dB, comparable to a
standard LJPA.
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Figure 4.7 : A quasi-microstrip geometry to realize a low-impedance JTWPA. The overall geome-

try looks something like a microstrip, with a center conductor (light yellow) situated on top of a

ground plane (gray) with an intermediate dielectric layer (light blue). Here, the center conductor is

periodically interrupted by a Josephson junction (green). A inter-layer via (orange) is used to make

electrical contact with the bottom of the junction trilayer.

Early attempts to produce a Josephson traveling-wave parametric ampli�er (JTWPA)
at QNL were performed by Ofer Naaman and Dan Slichter following the existing literature
on the subject. At this point in time the phase matching issue was not well understood, so
early device designs looked much like straightforward nonlinear lumped-element transmission
lines with Josephson junctions providing the inductance, as shown in Figure 4.6. The main
innovation at this point in time was the introduction of a new physical geometry for the
transmission line; rather than utilizing a CPW structure as in the Bell Labs device, we
created a kind of quasi-microstrip geometry shown in Figure 4.7. By employing a parallel-
plate capacitor geometry, the capacitance to ground per junction can be made much larger
than in a CPW, allowing for the transmission line to be well matched to 50 Ω.

Due to fabrication di�culties, these early devices never delivered breathtaking ampli�er
performance and were plagued by large, unknown losses; parametric gain was observed,
however, encouraging continued development. These results are described in Slichter's thesis
[20]. To understand what might be limiting this performance, we embarked on a major
theoretical e�ort to understand the JTWPA, �nally culminating in the practical device
described in this thesis. The full theory of the JTWPA and extensive experimental results
are the subject of chapters 7 and 8, respectively.
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Chapter 5

Stabilization of Rabi oscillations:

experimental setup

With superconducting qubits, circuit QED, and nearly-quantum-limited parametric am-
pli�ers in hand, we have all the tools needed to implement a quantum control protocol:
namely, the stabilization of coherent Rabi oscillations of a qubit. In this chapter I will de-
scribe the important aspects of the apparatus speci�c to the quantum feedback experiment;
for excellent descriptions of the many important details in a general cQED apparatus, I refer
the reader to Slichter's thesis [20] and Weber's thesis [26]. The apparatus used for this ex-
periment is a direct descendent from the setup described in Slichter's thesis, with relatively
minimal modi�cations. The weak dispersive regime of cQED�the relevant regime for this
quantum feedback experiment�is also the basis for the experiments described in Weber's
thesis.

5.1 Relevant circuit QED parameter regime

The scheme for demonstrating feedback control is explicitly an analog, continuous-time
technique, which intrinsically creates an important hierarchy of rates in the cQED system and
measurement apparatus. We desire to create pure, sinusoidal Rabi oscillations of the qubit
state, which implies that the Rabi rotation frequency Ωr should be the fastest continuous
rate in the system. The time scale over which a measurement projects the qubit state
should be much longer than one period of these oscillations, implying Γm � Ωr. To ensure
reliable operation of the feedback technique, we require that the rates corresponding to
spontaneous relaxation and dephasing of the qubit are small compared to the measurement
rate, (Γ1,Γenv)� Γm.

Furthermore, since the feedback technique stabilizes the phase of qubit oscillations in a
single plane through the Bloch sphere, we require that the back-action of the measurement
correspond only to disturbances in the phase of this oscillation, not in any rotations of the
qubit state in the equatorial plane. As discussed previously in section 3.3.4, this implies that
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we should work in the limit of small phase shift, 2χ � κ, and selectively measure only the
signal quadrature containing qubit state information. Satisfying 2χ � κ is straightforward
by making the qubit-cavity coupling rate g relatively small and the qubit-cavity detuning
∆ relatively large. To selectively measure the signal quadrature containing qubit state in-
formation, we use a LJPA operating in a phase-sensitive mode and align the ampli�cation
axis to this quadrature. The result is that the photon number �uctuations in the cavity are
squeezed, implying no measurement-induced pure dephasing of the qubit state due to the
lack of photon number �uctuations. This ensures that the measurement back-action does
not cause the qubit state to diverge from the relevant plane of the Bloch sphere, allowing
for an e�cient single-parameter feedback.

5.2 Experimental setup

A fairly complete schematic of the experimental setup for the feedback experiment is
shown in Figure 5.1. The primary missing element not shown is the trigger cascade used to
control the timing in the experiments; however, the exact trigger con�guration is not entirely
constant across di�erent experiments and is not as important as the signal routing. Also
omitted are low-frequency cryogenic control lines, as they are mostly used for DC biasing
and are not changed during a particular experimental run.

5.2.1 Qubit and parametric ampli�er

At the bottom of Figure 5.1, the primary elements of interest are the 3D transmon
qubit system, at left, and the LPJA (paramp), at right. The 3D transmon consists of
a single-junction transmon qubit with transition frequencies ω01/2π = 5.4853 GHz and
ω02/2π = 10.7382 GHz. From these values, we calculate EJ = 19.274 GHz and EC = 0.211
GHz giving EJ/EC = 91. The transmon is fabricated on a bare high-resistivity Si wafer
using electron beam lithography and double-angle aluminum evaporation with an intervening
oxidation step. For additional details on qubit fabrication, see references [20, 26]. The
transmon is antenna-coupled to an aluminum waveguide cavity with resonant frequency
ωc/2π = 7.2756 GHz when the qubit is in the ground state. The strongly coupled output
port sets the cavity linewidth κ/2π = 13.4 MHz while control and measurement signals
are injected via the weakly coupled input port. We use relay switches to multiplex several
di�erent 3D transmon systems in a single cooldown, though we only used one device in the
feedback experiment so the others are not drawn.1 The 3D transmon resides in a single-layer
cryoperm magnetic shield. Qubit control pulses are straightforward square-envelope pulses
sourced from a Tektronix AWG 520 driving the IQ inputs of a Agilent E8267C vector signal
generator.

1In some calibration experiments in this dilution refrigerator, the presence of the relay switches seemed
to reduce qubit T2 times, though this was likely due to a lack of �ltration on the switch wiring as well as the
fact that the backs of the switch bodies were open and thus a potential source of stray infrared light.
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The paramp is di�erentially excited using a 180◦ rat-race hybrid; the ampli�er center
frequency is tuned by a variable �ux induced by a nearby superconducting coil. The paramp
is pumped using a single tone degenerate with the cavity frequency, enabling phase-sensitive
detection of the qubit measurement signal. This tone is sourced from a single microwave
generator and split several ways, ensuring a stable phase relationship between the mea-
surement tones. Because there are �ve di�erent arms in what amount to a interferometric
arrangement, at least 4 phases must be independently tuned. This is accomplished with
analog phase shifters on each signal arm besides the pump for the paramp; because the �rst
step in the experiment is tuning the paramp bias conditions, we want these conditions to
remain �xed, and the phase shifters do not have �at insertion loss as the phase is adjusted.
The paramp is biased up for 24 dB gain with a large bandwidth of about 80 MHz FWHM,
due to a fortuitous ripple in the environmental impedance. A room-temperature variable
attenuator sets the pump amplitude.

The qubit measurement signal is shaped by a low-frequency Agilent 33220A arbitrary
waveform generator driving one port of a mixer. This signal is injected into the fridge
on the same signal line as qubit control pulses. This line is heavily attenuated and then
connected to the weakly coupled port of the 3D cavity. The coupling of this port is designed
to be approximately -20 dB, ensuring that virtually all of the measurement signal leaves
the cavity through the strongly coupled port. The measurement signal is routed to the
LJPA where it undergoes phase-sensitive ampli�cation. This signal is then routed back to
room temperature via the HEMT ampli�er and into one or two stages of room temperature
ampli�cation. This signal is then demodulated in a homodyne measurement setup using an
IQ mixer, and the I and Q quadratures are �ltered and digitized at 100 MS/s. The relative
phase of the measurement signal and paramp pump are aligned so that the ampli�cation axis
corresponds to the IQ axis containing qubit state information. The phase of the homodyne
local oscillator is adjusted to place the ampli�ed axis entirely in the Q quadrature of the
digitizer. This eliminates any need to calibrate the two quadratures of the homodyne setup,
which in general have di�erent gain and represent axes which are not perfectly orthogonal
to each other. This is done in practice by adjusting the local oscillator phase and measuring
the noise power detected in each output quadrature. Minimizing the noise power in the I
quadrature corresponds to aligning the ampli�cation axis with Q.

5.2.2 Feedback circuit

The feedback portion of the circuit is quite straightforward. Because the demodulated
output signal from the experiment can be directly interpreted as a noisy estimate of 〈σz〉,
no complex digital signal processing is required to give physical signi�cance to the output
signal. This is in contrast to more complex feedback schemes that rely on reconstructing the
density matrix in real time and conditioning a feedback signal based on the error between
the reconstructed density matrix and the target state [98, 99], which requires complex digital
electronics (typically implemented in an FPGA).

The key component needed to implement the direct feedback protocol is an analog mul-



5.3. CALIBRATION EXPERIMENTS 62

tiplier. At low frequencies, inexpensive integrated circuits that perform a true analog multi-
plication are available. In this experiment, the analog multiplier is made by Analog Devices,
part number AD835a. This chip has a large -3 dB bandwidth of 250 MHz, ensuring very
linear operation at our feedback frequency of 3 MHz. The multiplier is housed on a small
custom PCB. Over the course of the experiment we explored several arrangements of �l-
ters at the input and output of the feedback controller, including various single-pole and
multi-pole �lters implemented in a commercial tunable �lter (Krohn-Hite 3945). We even-
tually removed all of this �ltering, as the intrinsic bandwidth of the LJPA combined with
the �lters at the output of the demodulation stage provided more than enough rejection of
uncorrelated noise. We did keep the Krohn-Hite in the input to the feedback circuit, but
exclusively used as high-pass �lter with a very low frequency cuto� to e�ectively AC-couple
the multiplier input circuit. This is critical, as the demodulation setup includes a large DC
o�set which can drift over time. Although the feedback routine is continuous, any given
experiment takes place over a relatively �nite and short time scale so true DC response is
not necessary. Adding this AC coupling stage ensures that the signal corresponding to the
qubit oscillations and ampli�ed quantum noise remains centered about V = 0.

The reference signal for the feedback loop was originally sourced by a low-frequency
RF signal generator. This was adequate for assessing the performance of feedback in the
frequency domain, but insu�cient for time-domain analysis as the phase of the reference
signal at the start of the experiment was uncorrelated between iterations. Instead, we create
a synthesized 3 MHz reference signal using a Tektronix AWG 615 triggered as part of the
trigger cascade. This ensures a stable reference phase for the feedback reference signal. The
total feedback gain F is adjusted by controlling the amplitude scale on the output of this
AWG.

5.3 Calibration experiments

Interpreting the results of the feedback control loop in the context of the theoretical
description demands a precise calibration of both the typical cQED and ampli�er parameters.
Additionally, there are several parameters of direct interest to the feedback control theory
which must be separately measured or inferred.

5.3.1 Dispersive shift and cavity photon number occupation

Many qubit and cavity parameters can be directly measured through spectroscopic means.
The cavity frequency and linewidth are measured by �tting the transmission spectrum to a
Lorentzian function. The qubit transition frequencies are measured spectroscopically. The
coherence times of the qubit are also easily measured using standard pulse sequences. We
measure T1 = 20 µs using a π-pulse with a variable delay, and T2 = 8 µs using a standard
one-pulse spin echo sequence.
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Figure 5.2 : Measurements of AC Stark shift and measurement-induced dephasing rate vs. weak
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In order to determine the dispersive shift χ, we use a combination of the AC Stark shift

∆ωac = 2χn̄ (5.1)

and measurement induced dephasing of the qubit

Γϕ = 8χ2n̄/κ, (5.2)

where n̄ is the average photon occupation of the readout cavity [100]. To measure these
quantities precisely, we perform a Ramsey fringe experiment where the free evolution period
between the two π/2 pulses is modi�ed by exciting the cavity with a �xed power P̄ at the
readout frequency ωr. By �tting the Ramsey fringes to an exponentially decaying sinusoidal
function, we measure ∆ωac by extracting the Ramsey frequency and Γϕ = ΓRamsey − Γ∗2
by extracting the decay constant. Here T ∗2 = 1/Γ∗2 is the decay constant of the Ramsey
fringes in the absence of any photons in the cavity. This technique is signi�cantly faster
than conventional spectroscopy [100] and provides better precision in extracting ∆ωac and
Γϕ. We repeat this process for di�erent P̄ ; since n̄ ∝ P̄ , a plot of ∆ωac vs P̄ and ΓRamsey vs
P̄ gives two straight lines with slopes mac and mϕ (Figure. 5.2). The ratio mϕ/mac = 4χ/κ
then allows us to determine the dispersive shift 2χ/2π = 1.375 MHz. We use this value of
2χ and the Stark shift data to calibrate the mean photon number n̄ in the cavity.

5.3.2 Paramp pump cancellation

Because the strong pump for the paramp is degenerate with the measurement frequency,
the cavity must be well-isolated from this signal. Stray photons from the paramp pump
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which leak backwards into the cavity result in measurement-induced dephasing even in the
absence of a measurement signal. Adding additional isolation elements between the cavity
and paramp will improve the isolation by approximately 20 dB per isolator, at the expense of
about 1 dB of signal insertion loss in each isolator. Because we aim to realize a highly e�cient
measurement apparatus, we must take great pains to minimize the signal loss between the
cavity and paramp.

Due to the re�ection geometry of the paramp, we require at least one circulator to
separate input and output modes. Furthermore, from the discussion in section 4.3.3, the
pump power must be about 40 dB larger than the input signal, implying that 40 dB of
isolation (two isolator elements) would still result in a large stray signal in the cavity, on the
order of our largest measurement signal. We aim to make the dephasing due to the stray
pump leakage much smaller than the intrinsic environmental dephasing rate Γenv. From
(5.2), for Γleakage < 0.1Γenv, that places an upper limit on the photon number in the cavity
n̄leakage < 0.007, or a power incident on the cavity of less than Pleakage < −175 dBm. Typical
pump powers are on the order of -90 dBm, implying a need for about 80 dB of isolation.
The ∼4 dB loss from using four circulators would imply a maximum measurement e�ciency
η = 0.4, much smaller than unity.

To avoid this issue, we use two circulators rather than four, providing ∼40 dB of isolation.
To achieve the additional isolation needed, we connect another signal line to the third port of
the �rst circulator as shown in Figure 5.1. At room temperature, we tap o� a small portion
of the paramp pump using a directional coupler, and pass this signal through a variable
attenuator and a phase shifter and inject it into this extra signal line. The circulator directs
this signal back towards the strongly coupled port of the cavity and is thus co-propagating
with any pump leakage. By carefully tuning the attenuation and phase shift with the paramp
pump energized, this extra pump cancellation signal interferes destructively with the leakage
signal.

The pump cancellation attenuation and phase is tuned by hand while Ramsey oscillations
of the qubit are continuously measured, using the AC Stark shift of the qubit as a very
sensitive power meter. When the AC Stark shift is nearly zero compared to the value
measured with the pump o�, the pump signal has been well cancelled. This is also re�ected in
the dephasing rate extracted from the same experiment. Due to the linearity of the microwave
injection lines and the fact that the pump cancellation signal is split from the pump after the
attenuator which controls the pump amplitude, once the attenuation and phase are set for the
pump cancellation signal, the cancellation remains perfect even when the pump amplitude
is adjusted. Changing the pump frequency requires re-tuning the cancellation signal.

Shortly after this experiment concluded, an alternative pumping technique known now
as �double-pumping� came into favor, where the paramp is driven by two strong pump
tones symmetrically detuned above and below the center frequency [101]. This technique
signi�cantly eases the issue of pump cancellation, as the drive tones can be detuned by
several hundred megahertz, ensuring that the total power leaking back towards the cavity is
well-�ltered by the cavity response function. For details on the experimental implementation
of this technique, see reference [26].
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Figure 5.3 : a IQ vector diagram showing the coherent state vectors for the ground state (pale blue)

and excited state (pale red), and the decomposition of those vectors into the qubit state components

(dark red and dark blue) and the component which contains no qubit state information (green), the

dumb signal. b A coherent tone phase-shifted by 180 degrees with identical amplitude to the dumb

signal. c The coherent addition of these vectors results in only the pure qubit state component

without the large extra signal power associated with the dumb signal.

5.3.3 Dumb signal cancellation

Because this experiment is conducted in the limit where χ� κ, the phase shift between
the output signals is quite small. Thus, to achieve large signal-to-noise ratio in a projective
measurement of the qubit, the cavity occupation n̄ must be increased to separate the qubit
state histograms. In the IQ plane, we can decompose this signal into two components: the
component in the quadrature which contains qubit state information, and the component
in the other quadrature which will be squeezed by the parametric ampli�er. This vector
decomposition is shown in Figure 5.3. The vast majority of the power in the signal is in the
quadrature which contains no information about the qubit state; we call this the dumb signal
as it �knows nothing� about the qubit state. Ideally, the paramp will squeeze this quadrature
away. However, the alignment between the paramp and signal phase is never perfect, and
this extra power can cause input compression if the phase angle is slightly misaligned and
part of this power ends up in the ampli�ed quadrature.

We avoid this problem by tapping o� a portion of the qubit measurement signal at room
temperature using a directional coupler, passing this signal through a variable attenuation
and phase shifter, and adding it to the paramp pump signal. With the paramp pump o�, the
amplitude and phase shift of this dumb signal cancellation signal is adjusted by hand to draw
the IQ histograms for the qubit ground and excited states back towards the origin. This
optimization is relatively easy compared to the paramp pump cancellation tuning procedure,
as the cancellation does not need to be particularly precise. Actual measured IQ trajectories
for the ground and excited states are shown in Figure 5.4a. This type of plot is used to
adjust the amplitude and phase of the dumb signal cancellation signal until the steady-
state trajectories are centered at the origin, as shown in Figure 5.4b. With the dumb
signal component well cancelled, small phase mismatches between the signal and paramp
pump no longer result in paramp compression during projective readout. Just like for pump
cancellation, because of the circuit topology and the linearity of the intermediate circuit
components, once the amplitude and phase are adjusted, the cancellation works well for
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Figure 5.4 : a Measured IQ trajectories for the ground state (blue) and excited state (red), showing

the large dumb signal component. Axes have a square aspect ratio with arbitrary units. Trajectories

start and end at the origin, so the loops correspond to the ring-up and ring-down of the resonator.

b The same trajectories with the addition of the optimized dumb signal cancellation path. The

separation at steady-state is the same, but the large extra signal power has been cancelled. Axes

have the same scaling as in a.

any pulse amplitude or duration. There are still some transient e�ects during ring-up and
ring-down due to the �nite resonator bandwidth, but these are not important for good
steady-state readout performance.

5.3.4 Detector and measurement e�ciency

The overall measurement e�ciency relevant for feedback is given by η = ηdet ηenv. The
�rst term ηdet accounts for the noise added by the ampli�cation chain. To measure this
noise, we use the qubit-cavity system as a calibrated signal power source. As discussed in
section 5.3.1, we can excite the cavity with a precise average photon occupation n̄. This
corresponds to an RMS power radiated from the cavity Prad = ~ωrκn̄, where ωr is the
frequency of excitation. We send this signal to the paramp and measure the signal-to-noise
ratio (SNR) at the output. This allows us to extract the noise �oor of the entire measurement
chain referred to the output plane of cavity, which includes dominant contributions from the
signal loss between the cavity and paramp and imperfections in the paramp itself, as well as
a smaller contribution from the noise added by the HEMT ampli�er.

The noise �oor referred to the input of the ampli�cation chain is given by Pn = ~ωrB/ηdet,
where B is the integration bandwidth (in Hz). The signal-to-noise ratio can then be expressed
as

SNR =
Prad

Pn

. (5.3)

Substituting in the expressions for Prad and Pn, we can solve for the detector e�ciency in
terms of the measured SNR, yielding the expression

ηdet =
(SNR)

n̄

B

κ
. (5.4)
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This de�nition of ηdet is consistent with phase-sensitive operation of the paramp and measures
the departure from the best SNR we could possibly obtain when amplifying at the quantum
limit. We measure the SNR for a range of frequencies within the paramp bandwidth and
extract an average detector e�ciency ηdet = 0.46. Using cryogenic switches, separately
measure the attenuation between the cavity and the paramp to be roughly 2.5 dB, implying
that signal attenuation is the dominant source of reduction in detector e�ciency.

The �nal contribution to the overall measurement e�ciency is due to environmental
decoherence via pure dephasing. The e�ciency ηenv = (1 + Γenv/Γϕ)−1 characterizes how
much of the total dephasing is due to measurement. In principle we could improve this
e�ciency by increasing n̄ (and thus Γϕ), but there are two practical constraints. First, the
measurement must be weak enough that it is not projective on the timescale of the Rabi
period Ω−1

R , ensuring the qubit evolution remains mostly oscillatory. Second, the required
feedback bandwidth increases with Γϕ. Since the e�ective feedback bandwidth is �xed by
the measurement chain, the feedback e�ciency D decreases with increasing measurement
strength if Γϕ becomes too large. Dephasing due to low frequency noise does not a�ect the
feedback e�ciency because the system can track any slow variations in the qubit frequency
(and consequently in the Rabi frequency). Hence, we set Γenv = 1/T2 measured from echo
experiments giving us Γenv/2π = 0.02 MHz, and ηenv = 0.87. This de�nition includes the
dephasing contribution from qubit relaxation (Γ1/2).

5.3.5 Projective measurement and qubit temperature

Because we realize a high-quantum-e�ciency measurement chain, making a faithful pro-
jective measurement is simply a matter of acquiring su�cient SNR to separate the histograms
corresponding to the ground state and excited state in a time much shorter than the qubit
relaxation time. We use a photon number n̄ = 11 and an integration time of 800 ns to
acquire well-separated histograms. This integration time is not negligible compared to T1, so
the �delity of the readout is primarily constrained by this. For most experiments of interest,
this reduction in �delity from unity is not important so long as the �delity remains high,
on the order of 90% or more, such that SNR remains high. A discussion of how imperfect
readout �delity is calibrated out of the results appears in section 5.3.6.

Since the cQED system is optimized to the weak measurement regime where the phase
shift between qubit states is small, it is possible to measure more than just the {|0〉, |1〉}
manifold. An IQ diagram showing the coherent state vectors corresponding to several qubit
states in an idealized representation is shown in Figure 5.5. Each qubit state above |1〉
shifts the resonant frequency of the cavity by (approximately) an additional amount 2χ,
such that the signal phase can be adjusted to observe the readout histograms for several
states simultaneously. The actual shift for the higher states is somewhat smaller than 2χ,
but this detail is not important here.

Due to the high single-shot �delity of the readout, we can measure the temperature
of the qubit in thermal equilibrium simply by measuring an ensemble of qubits with no
explicit state preparation. After each measurement, we wait for approximately 10 T1 to
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Figure 5.5 : IQ vector diagram showing the coherent state vectors for the �rst four qubit states.

By aligning the phase of the measurement signal to be roughly centered on the phase between the

states |1〉 and |2〉, the total phase shifts are small enough to be measured simultaneously without

compressing the paramp.
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allow the qubit to re-thermalize. Histograms of this measurement are shown in Figure 5.6.
The distribution of state occupation probabilities does not obey a Boltzmann distribution,
so it is not precisely a thermal state. However, if we approximate the system by only
considering the �rst two levels, we can approximate the distribution as thermal and assign
a temperature of approximately 140 mK, much higher than the thermal temperature of the
dilution refrigerator (about 30 mK). This type of spurious excited state population has been
observed in other experiments [49, 102, 103] and was common for superconducting qubits of
this era. It is now reasonably well understood that that these large spurious populations are
due to quasiparticle excitations created by stray infrared photons. Enhancing the degree to
which the qubits are shielded from stray light has been shown to enhance coherence times
and signi�cantly reduce the spurious thermal population [104].

Because the readout is QND, we can use the readout itself to arti�cially create an ensem-
ble of qubits which are perfectly prepared in the ground state through post-selection. The
protocol is to insert a projective measurement pulse at the start of the experiment, and then
perform the experiment as usual. When the data is analyzed, any experimental records in
which the qubit did not start in the ground state are thrown out, creating a post-selected
ensemble in the ground state at the cost of throwing away the fraction of the data corre-
sponding to the spurious excited state population. The �rst application of this post-selection
cooling technique was the subject of a separate work published in Physical Review Letters
[49]. The technique of purifying ensembles using post-selection and the QND nature of the
cQED readout is quite useful for removing experimental imperfections in general, and is
applied in numerous places in the work in this thesis.

5.3.6 Quantum state tomography

Fully reconstructing the quantum state of a qubit requires measuring an ensemble of
identically-prepared qubits along at least three di�erent qubit measurement axes. The cQED
measurement naturally probes the qubit state in the σz basis, so an ensemble of measurements
provides 〈σz〉. To measure 〈σx〉 (〈σy〉) we must �rst rotate the qubit state by an angle π/2
about the ŷ (−x̂) axis (respectively). These expectation values de�ne the Bloch vector
components and thus the density matrix of the qubit state.

To ensure accurate tomographic results, the measurement and qubit manipulation pulses
must be precisely calibrated. After single-shot measurement is tuned up (mostly a matter
of aligning the signal and paramp phase and tuning the measurement power and integration
time), we can precisely calibrate a π-pulse by adjusting the pulse amplitude until we maximize
P (|1〉). Because of the �nite measurement �delity due to qubit relaxation during readout,
P (|1〉) will never go all the way to 1; this implies that even if we prepare the excited state, we
would not measure 〈σz〉 = −1. This e�ect is easy to correct for by measuring the values of
P (|1〉) for the ground state (Pg) and the excited state (Pe). Then, when we measure P (|1〉)
for an experimental ensemble, we re-scale it as

P (|1〉)′ = P (|1〉)− Pg
Pg + Pe

. (5.5)



5.3. CALIBRATION EXPERIMENTS 70

Since P (|2+〉) is not negligible, we use post-selection to eliminate experimental records where
the qubit was found outside the {|0〉, |1〉} manifold. Because none of the control pulses are
resonant with any transition involving the higher qubit states, this post-selection essentially
eliminates the e�ect of thermal excitation out of the {|0〉, |1〉} manifold on the tomographic
reconstruction of the target state, improving both the tomographic quality as well as the
quality of the measured state itself.

We utilize a series of combination pulses to calibrate the π/2 pulses on ŷ and −x̂. We
calibrate the amplitude of the π/2 pulses by adjusting the pulse amplitudes until P (|1〉)′ = 0.5
for each. We verify that the π and π/2 pulses are balanced by measuring P (|1〉)′ for a π pulse
immediately followed by a π/2 pulse, and ensuring that P (|1〉)′ is still maximized for π while
P (|1〉)′ = 0.5 for the bare π/2 and the π + π/2 sequence. We then check the orthogonality
of the ŷ and −x̂ axes by measuring two sequences that have two π/2 pulses in sequence,
one on each axis. Deviations from P (|1〉)′ = 0.5 indicate that the two axes are not perfectly
orthogonal. We utilize the vector generator's built-in quadrature skew correction feature to
null this e�ect to the couple-percent level. This entire optimization sequence is somewhat
challenging, as the quadrature skew correction also e�ects the balance of the I and Q inputs,
requiring the absolute and relative amplitudes of the pulses to be re-adjusted. All in all
this procedure is iterated a few times until all of the pulses are in balance; at this point,
the system is essentially stable aside from overall RF level �uctuations, which are easily
controlled. In reality, all of these pulses are programmed into a single AWG sequence along
with a given experiment of interest, thus monitoring the quality of tomography during the
experiment.

We make no attempt to include any error ampli�cation or self-consistency techniques
in the calibration sequence [105, 106, 107]; as such, this calibration technique is somewhat
�rough and ready,� but insu�cient to achieve calibration better then the few percent level.
Because the measurement e�ciency in this experiment is about 0.4 and the feedback ef-
�ciency D and thus the stabilized Bloch vector amplitude is constrained to be less than√
η = 0.63, a few percent error in the pulse calibrations is tolerable to reasonably well

characterize D. Contemporary experiments in the lab utilize more sophisticated calibration
techniques, including error ampli�cation by repeated pulses. Furthermore, we now typically
use single-sideband modulators instead of IQ mixers, sidestepping the issue of quadrature
skew correction entirely and allowing full Bloch sphere control of one qubit from a single
AWG channel by utilizing �nite-frequency pulses.

5.3.7 Loop delay

The quality of the feedback control will depend on the total round trip delay time τdelay

between a measurement signal leaving the cavity and the corresponding feedback correction
entering the cavity. This delay can be broken into two pieces: the delay in the microwave-
frequency part of the system and the delay in the low-frequency part of the system. The
microwave delay includes the propagation time through the transmission lines into and out
of the experiment, and also implicitly includes the bandwidth of the microwave cavity and
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paramp. Because the cavity has a relatively large bandwidth, 1/κ ∼ 10 ns, and only con-
tributes to the measured value of τdelay at the few percent level. We measure the microwave
delay by injecting a π-pulse into the fridge while the qubit is being weakly measured. We
tap o� a portion of the voltage envelope that drives the IQ mixer, and feed it to the I chan-
nel of the digitizer (properly accounting for extra cable length for signal routing). We then
measure the delay between the arrival of this pulse at the digitizer and the arrival of the
leading edge of the shift in resonator phase on the Q channel, resulting in τ = 200 ns (± 10
or 20 ns or so). Measuring the delay in the low-frequency portion of the measurement chain
is a straightforward matter of measuring pulse propagation delay using an oscilloscope, a
total delay of about 80 ns, for a grand-total loop delay of about 280 ns.

5.3.8 Feedback strength calibration

The theory for feedback stabilization is expressed using a dimensionless feedback strength
parameter F which takes into account all of the relevant gain stages in the system. To com-
pare to theory, we must calibrate the feedback loop to determine the gain in normalized
units. First, we use the digitizer to measure the full voltage swing ∆V in the output of the
demodulation setup between the qubit being in the ground state vs. the excited state for
a given measurement strength. We use post-selection on an initial and �nal strong mea-
surement pulse to prepare an ensemble of very pure ground and excited-state preparations,
then integrate an intermediate weak measurement pulse to get ∆V (see section 8.3.4 for
additional details on this technique).

We use a low-frequency signal generator to create a pure sine wave at Ωr with peak-to-
peak amplitude ∆V , and feed this signal into the feedback circuit in place of the demodulator
output. By measuring the voltage swing at the output of the feedback loop, where the
feedback signal is re-combined with the voltage which sets the Rabi frequency, we measure
the gain of the feedback loop. Because we know the voltage applied at this point to set a
particular Rabi frequency Ωr, we can express the feedback gain as the non-dimensional ratio
of the voltage scale of the feedback correction and the voltage which sets the Rabi frequency
Ωr.
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Chapter 6

Stabilization of Rabi oscillations: results

The demonstration of the stabilization of Rabi oscillations was published in Nature [60],
with an associated News & Views article by Howard Wiseman [51]. Rather than follow the
�ow of the published manuscript, I will instead take a slightly historical approach that more
closely follows how the experiment was originally conducted chronologically. This will make
it more clear how the e�ect was �rst observed, and elucidate some of the steps taken to
improve the data acquisition and experimental setup.

6.1 Frequency-domain measurements

The theory for stabilizing Rabi oscillations was primarily developed in the frequency do-
main, and rests on a somewhat surprising observation. For an ensemble of qubits undergoing
continuous Rabi driving and weak continuous measurement, the time domain average of the
measurement will be a completely �at line, as the phase of the qubit oscillations in each
portion of the ensemble will be randomized due to dephasing by the measurement. This
interpretation rests on the idea that the density matrix describing the ensemble is a com-
pletely mixed state, where the Bloch vector has zero length. In any given iteration of the
experiment, however, if our measurement e�ciency is unity, then the measurement-induced
dephasing need not convert an initial pure state of the qubit into a mixed state, as all of the
information corresponding to the dephasing has been collected in the measurement. Thus,
although it may make sense to think of the ensemble as being in a mixed state overall, this
is only the case if we throw away the dephasing information collected in each individual
measurement. For any given iteration of the experiment, the qubit remains in a pure state
undergoing continuous oscillations, with phase kicks corresponding to the quantum noise
record acquired by the measurement. For sub-unity measurement e�ciency, this picture
is still applicable, though the imperfect measurement implies an extra ensemble dephasing
attributed to the measurement, and the qubit state will not remain completely pure.
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Figure 6.1 : a CW Rabi spectra for a variety of measurement powers, from fairly weak measurement

(red trace) to an optimal measurement power (magenta), and �ts of the FWHM. At the highest

measurement power we observe a saturation in the height of the peak with increasing measurement

strength. This set of measurements was taken with a slightly odd paramp gain pro�le resulting in a

sloping noise �oor; this noise �oor has been subtracted from the measured peaks for clarity and to

improve the quality of the �ts. b AC stark shift (from Ramsey measurements, not shown; plotted

in red, left axis) and the FWHM dephasing from a (plotted in purple, right axis), showing the linear

relationship with measurement power.

6.1.1 CW Rabi spectrum and peak-to-pedestal ratio

The purity of the qubit state in a single measurement can be revealed by averaging the
ensemble in a di�erent way. Time-domain averaging for noisy oscillations will only work if
the phase of the oscillations is essentially constant across every iteration of the experiment.
Instead, we can take the noisy experimental record from each individual experiment, convert
it to a power spectrum using an FFT algorithm, and then average the power spectra together.
Korotkov calls this averaged power spectrum the CW Rabi spectrum. For high measurement
e�ciency and in the limit where the dephasing is dominated by the measurement, we should
then clearly resolve a spectral peak corresponding to the measurement-dephased Rabi os-
cillations, centered at the Rabi frequency Ωr and with a spectral width related to the total
dephasing rate Γ and a peak height above the noise �oor related to the quantum e�ciency
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Figure 6.2 : Measured CW Rabi spectra for several calibrated measurement powers, showing the

saturation of the peak due to the measurement-disturbance tradeo�. The ratio of the peak height

to the noise �oor provides a measurement of the total measurement e�ciency η.

η. From reference [108], the functional form of this peak is

S(ω) =
ΓΩ2

r(∆V )2

(ω2 − Ω2
r)

2 + Γ2ω2
. (6.1)

The maximum occurs when ω = Ωr and has the value Smax = (∆V )2/Γ.
Much of the most thorough CW Rabi spectrum data was taken in a cooldown prior to that

corresponding to the published data set. In this cooldown the measurement setup was not
quite as well optimized as in the �nal data set, but the plots are illustrative so I will use them
in this and the next section. An example set of CW Rabi spectra are shown in Figure 6.1a.
For relatively weak measurement, the peak height is small. As the measurement strength is
increased, the peak height and width both grow due to the increased signal amplitude and
measurement-induced dephasing rate.

Eventually, we reach an optimal measurement strength at which point increasing the
magnitude of the signal does not increase the height of the peak. This can be interpreted as an
optimal trade-o� between measurement accuracy and back-action. Although the magnitude
of the signal is increasing with increasing signal strength, the back-action of the measurement
is broadening the peak such that even though the total power in the peak increases, the peak
height remains �xed. The slight rightward drift in the center frequency of the peaks is due
to the power-dependent AC stark shift of the qubit which was not corrected for in this
particular experiment.

From (2.24), the spectral density of the noise �oor of the CW Rabi spectrum for an ideal
measurement is S0 = (∆V )2/4Γm. The ratio of the peak height to the noise �oor (referred to
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as the peak-to-pedestal ratio or P2P ratio for short) is then calculated as Smax/S0 = 4Γm/Γ.
From (2.25), we identify the ratio of dephasing rates as the quantum e�ciency, allowing
us to write P2P = 4η. Thus, measuring the P2P ratio at the optimal measurement power
described in the last paragraph provides another estimate of the total measurement e�ciency
η, complementing the Ramsey fringe technique discussed in section 5.3.4. An example of
this extraction is shown in Figure 6.2 with η = S/4N = 0.32 in this particular experiment.

6.1.2 Quantum Zeno e�ect

As seen in Figure 6.2, the cavity photon number at which the measurement-disturbance
tradeo� is saturated corresponds to a fairly small measurement power, whereas the power
used for strong measurement is about 5 to 10 times larger. What happens to the CW Rabi
spectrum when the measurement is increased beyond the saturation point? Qualitatively
speaking, at some point the dephasing rate will exceed the Rabi frequency, and the qubit
evolution will go from being something that looks like a noisy oscillation to something that
looks mostly like random �uctuations with some weakly oscillating component. There is no
particular sharp transition which characterizes this changeover.

Measurements of the CW Rabi spectrum covering this entire regime are shown in Figure
6.3. At very strong measurement powers, the frequency of the peak begins to shift towards
zero and becomes dramatically non-Lorentzian. This transition from �nite-frequency oscil-
lations to a noisy spectrum centered at zero-frequency can be understood as an incarnation
of the quantum Zeno e�ect. Because the projective measurement time scale becomes short
compared to the Rabi period, the strong measurement e�ectively pins the qubit state to one
or the other eigenstate even though the dynamics of the system's free evolution should be
oscillatory.

6.1.3 Needles

The aim of the feedback scheme is to stabilize the phase of the Rabi oscillations to that
of some high-quality reference oscillator. Or, equivalently, because phase �uctuations and
small frequency �uctuations are interchangeable, we aim to stabilize the frequency of the
Rabi oscillations to a precise value. In the spectral domain, for a perfect reference oscillator,
this type of oscillation corresponds to a δ-function in frequency (any real oscillator will of
course have a �nite spectral width). Thus, the signature of e�ective feedback control of the
qubit is the appearance of a sharp, narrow peak on top of the CW Rabi spectrum. Because
the linewidth of the classical oscillator is sub-hertz and out experiments last for at most a
millisecond or so, our FFT point spacing will always be larger than the width of this peak,
implying that the signal in the experiment is literally one elevated point in the FFT. Because
of the extreme narrowness, we often refer to this peak as a needle.

Successful feedback was �rst measured on September 24, 2011, at about 5:30pm. It was
quite an exciting moment, not least of all because it was extremely unclear if we had really
seen an e�ect at �rst. The needle was barely visible above the top of the CW Rabi peak, and



6.1. FREQUENCY-DOMAIN MEASUREMENTS 76

a
b

12

10

8

6

4

2

6543210
frequency (MHz)

Figure 6.3 : a CWRabi traces taken over a broad range of measurement strengths, smoothly covering

the evolution from lightly-perturbed oscillations to telegraph-like measurement pinning of the qubit

state. b Theoretical curves for the same e�ect, showing beautiful qualitative agreement with the

measured data. Note that the parameter regime in this theory plot is not the same as that for the

experimental data. In fact the parameters in the plot are described in the language for a quantum

dot qubit read out with a quantum point contact, though the physics for the two systems is identical

in the relevant regime. Reproduced from reference [108].



6.2. TIME-DOMAIN MEASUREMENTS 77

0.12

0.10

0.08

0.06

0.04

po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (a

rb
.)

4.03.53.02.52.0
frequency (MHz)

 feedback loop open
 feedback loop closed

Figure 6.4 : The �rst con�rmed feedback needle.

worse, because it is always exactly one point wide, it was di�cult to determine if we were
seeing a signal or just a small �uctuation in the noise. After a bit of tuning of the feedback
parameters, we were able to bring the needle conclusively above the peak. The data taken
at this moment are shown in Figure 6.4. Cheers went up, �quantum feedback!�

Because the needle has essentially zero spectral width while the CW Rabi spectrum
itself is continuous, the needle can be more clearly observed by reducing the FFT point
spacing, reducing the absolute power spectral density for every point except the needle. A
set of spectra with feedback from the �nal published data set are shown in Figure 6.5. The
black trace is taken with the feedback loop open. The red trace shows a low feedback gain,
where most of the oscillation power remains unsynchronized. The purple trace represents
the optimum feedback strength for this measurement power, with about half of the total
Rabi peak power contained in the needle. The blue and green traces show feedback gains
which are above the optimum, where the feedback correction applied to the system is larger
than the correction needed to undo the e�ect of the measurement dephasing. In this regime,
characteristic �wings� in the spectrum appear, particularly visible in the green trace. This
can be intuitively understood as the feedback �oversteering� the qubit oscillation frequency;
the actual correction needed to stabilize the qubit is a relatively small frequency shift, but
because the gain is large, the frequency correction becomes large, developing two peaks at a
detuning proportional to the feedback gain.

6.2 Time-domain measurements

The needles alone are conclusive evidence of successful quantum feedback, and provide
a complete quantitative picture of the feedback quality. However, they do not impressively
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Figure 6.5 : An assortment of CW Rabi spectra with feedback needles. Each trace is taken with the

same measurement power, with feedback strength increasing for each trace moving vertically up the

plot, starting with no feedback in black. Traces are o�set for clarity.
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Figure 6.6 : a A typical averaged time-domain Rabi oscillation, showing the characteristic exponen-

tial decay associated with dephasing. b Feedback-stabilized time domain Rabi oscillations. Adapted

from reference [60].

demonstrate the result because Rabi oscillations are not usually analyzed in the frequency
domain. Time domain measurements of the stabilized state viscerally demonstrate the feat
accomplished in this experiment, because the time-domain equivalent of a needle is a coherent
oscillation that does not decay. As long as the phase of the reference oscillator is stable with
respect to the rest of the experiment, time-domain averaging is possible.

Time-domain-averaged Rabi oscillations are shown in Figure 6.6. A weak measurement
is constantly on, while the Rabi drive turns on at t = 0. Figure 6.6a shows the typical
exponentially-decaying oscillations for a qubit with a �nite decoherence rate. In this case,
the dephasing is dominated by the measurement, so the oscillations decay relatively quickly.
Without a measurement, the oscillations decay on a timescale of about 10 µs. In Figure 6.6b,
the feedback loop is closed when the Rabi drive turns on. The oscillations show an initial
transient period while the qubit phase evolves to match that of the reference oscillator, and
then stabilize to a �nite contrast which does not decay in time. The feedback e�ciency is
related to the contrast of the stabilized oscillations compared to the full-scale oscillations;
the contrast here is about 50%. Here two measurements are stitched together, showing an
initial 15 µs of stabilized oscillation, and another 20 µs after leaving the feedback loop closed
for about 1 ms. In this data, no post-selection has been done to remove the e�ect of thermal
excitations out of the {|0〉, |1〉} manifold, which is visible as a slight upwards drift after the
Rabi drive turns on.

Because the weak measurement extracts information about the phase of the qubit, the
feedback stabilization will work regardless of the initial phase of the qubit oscillations. Fur-
thermore, because the feedback locking mechanism occurs in each individual iteration of the
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Figure 6.7 : Time domain Rabi trace, showing the e�ect of delayed activation of the feedback control.

The contrast is reduced compared to Figure 6.6b because this data was taken on a prior cooldown

under di�erent, less-optimized parameters.

experiment, the feedback loop will still lock the oscillation phase even if the qubit's phase
is completely randomized. In other words, if we start with an ensemble of qubits in a com-
pletely mixed state, and then turn the feedback on, the ensemble will be re-cohered into a
pure state (with a purity set by the feedback e�ciency). This e�ect is shown in Figure 6.7,
where we have delayed closing the feedback loop until 20 µs after the Rabi drive is turned
on.

6.3 Tomographic validation

In order to validate the quantum nature of the stabilized qubit state and precisely as-
sess its purity, we stop the feedback after a time (80 µs) + τtomo and perform a complete
tomographic reconstruction of the state of the qubit. By repeating this experiment with a
range of τtomo covering one fully stabilized oscillation, we can �t the resulting reconstruc-
tion of the Bloch vector components to sinusoids and extract the feedback e�ciency D as
the length of the Bloch vector. By repeating this experiment for a variety of feedback and
measurement strengths, we can �nd the best global performance of the feedback. Tomo-
graphic reconstruction of a feedback-stabilized oscillation is shown in Figure 6.8a for the
experimentally-determined optimal conditions n̄ = 0.47 (corresponding to a measurement-
induced dephasing rate Γϕ/2π = 134 kHz) and F = 0.032. The reconstructed state is a
coherent oscillation in the x − z plane at the Rabi frequency with a Bloch vector length of
0.45, corresponding to D = 0.45.

In order to compare these results to the theoretical prediction for the feedback e�ciency,
we examine the dependence of the e�ciency on the feedback gain F , shown in Figure 6.8b.
The e�ciency quickly rises as the feedback strength is turned up, peaks, and then more
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Figure 6.8 : a Tomographic validation of the feedback-stabilized qubit state, showing the measured

Bloch vector components as a function of τtomo. The Bloch vector components 〈σx〉 and 〈σz〉 are, as
expected, sinusoidal oscillations with a π/2 phase shift, and an amplitude of 0.45, corresponding to

a feedback e�ciency D = 0.45. The 〈σy〉 component is essentially zero, as expected for driven Rabi

oscillations in the x− z plane. b Tomographically-measured feedback e�ciency D versus feedback

strength F . The dashed line corresponds to the simple analytical theory, while the solid black line

is based on numerical analysis including the e�ect of �nite loop delay. Adapted from reference [60].
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gently slopes back down as the feedback correction being applied to the system becomes too
large. Plotted along with the data are the predictions for the simple analytic result

D = 2

(
1

η

F

Γ/Ω0

+
Γ/Ω0

F

)−1

(6.2)

as well as the results of a complete numerical calculation which includes the e�ect of the �nite
loop delay, using the measured e�ciency η = 0.4 and the total dephasing rate Γ/2π = 154
kHz. Details on the numerical calculation can be found in the supplementary information of
reference [60].
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Chapter 7

JTWPA theory

The theoretical treatment of the Josephson traveling-wave parametric ampli�er (JTWPA)
has gone through several iterations, starting with relatively back-of-the-envelope calculations
and evolving into a very complete description of the full nonlinear behavior of the device,
including multiple non-idealities corresponding to the reality of the physical implementation.
I will begin this chapter with a discussion of the basic problem of phase matching in nonlinear
optical devices as well as the general theory of four-wave mixing. Next, I will lay out a
rigorous theory of the JTWPA, and then describe our solution to the phase matching problem
and exactly solve the dispersion relation using a standard technique from microwave network
analysis. Finally, I will present theoretical predictions for the ampli�er gain, bandwidth, and
input compression power.

7.1 Nonlinear refraction, phase modulation, and four-

wave mixing

The language of circuit theory is appropriate to describe the behavior of lumped-element
microwave networks, including lumped nonlinearities such as transistors and Josephson junc-
tions. Distributed networks generally consist of series of linear waveguides and lumped ele-
ment components. The literature of microwave networks in general does not treat the case of
propagation in nonlinear waveguides; this is largely because high-quality, highly nonlinear,
lumped-element components are commonplace in microwave electronics and are relatively
straightforward to model. At optical frequencies, however, the wavelength is so small that
virtually every component in the system must be treated in the distributed limit, and thus a
rich theory of continuum nonlinear wave propagation has been developed to model nonlinear
optical systems. The junction-loaded transmission line which comprises the JTWPA can be
considered in this regime, as the lumped elements are in the deep-subwavelength limit and
the transmission line is well approximated as a continuum. Thus, it is natural to introduce
the language of continuum nonlinear optics, and apply this existing rich theory to understand
the behavior of the JTWPA. In this section I will brie�y introduce a few of the fundamental
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physical e�ects present in nonlinear optical systems, following chapters 1 and 10 of reference
[109]. This section will be expressed in the language of single spatial mode optics, which is
essentially analogous to the microwave case except for the additional polarization degree of
freedom present in the optical case.

For a purely linear dielectric medium, we can write the polarization vector P of the
material as

P = ε0χ · E (7.1)

where χ is the material susceptibility. In general, the polarization response of any material
will become nonlinear if |E| is made large enough. In that case, we can express the material
polarization vector as a series expansion in increasing orders of E

P = ε0

(
χ(1) · E + χ(2) : EE + χ(3) ... EEE + · · ·

)
(7.2)

where χ(j) is the jth order susceptibility (a rank j + 1 tensor) and the vertical dots indicate
tensor multiplication. The second order susceptibility χ(2) vanishes for a material with
spatial inversion symmetry, which will hold for our nonlinear junction-loaded transmission
line. Thus, χ(3) is the �rst nonlinear order to contribute, and it is this term that brings
about virtually all nonlinear e�ects of interest, including the four-wave mixing process used
in parametric ampli�cation.

Though χ(3) is a rank-four tensor, we are only interested in one component of that tensor,
the nonlinear index of refraction

n2 =
3

8n
Re(χ(3)

xxxx). (7.3)

This term involves no mixing between polarization states of the electric �eld. Since our
microwave system lacks a polarization degree of freedom anyway, we can lump all of the
e�ect of the χ(3) nonlinearity into this one number. This allows us to write a simple form
for the nonlinear index of refraction as

ñ(|E|2) = n+ n2|E|2 (7.4)

where |E|2 is the optical intensity. The phase of a wave that propagates through this medium
for a length L evolves as

φ = ñk0L = (n+ n2|E|2)k0L (7.5)

where k0 = 2π/λ. We can re-express this equation as the sum of two terms

φ = ϕ0 + φNL = nk0L+ n2k0L|E|2; (7.6)

the �rst term is the familiar linear phase shift, while the second term is known as self-phase
modulation (SPM) as the wave generates in itself an extra intensity-dependent phase shift.
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What about a case where we have more than one wave co-propagating in this nonlinear
medium? Assuming the two waves have the same polarization, the total electric �eld can be
written as

E =
1

2
(E1e

−iω1t + E2e
−iω2t + c.c.). (7.7)

We plug this equation into the expression for φNL and neglect terms rotating at any frequency
besides ω1 and ω2; the resulting nonlinear phase shift for the wave at ω1 is

φNL = n2k0L(|E1|2 + 2|E2|2). (7.8)

We identify the �rst term as the same SPM e�ect we found for single-wave propagation. The
second term is now a phase shift induced in the wave at ω1 by the wave at ω2 and known
as cross-phase modulation (XPM). Compensating these nonlinear phase shifts will be the
primary challenge in realizing e�cient four-wave mixing in a traveling-wave ampli�er.

The physical origin of four-wave mixing is the nonlinear dependence on the electric �eld
in the χ(3) term of (7.2). For four waves of the same polarization oscillating at ωj where
j ∈ {1, 2, 3, 4}, we can write the total electric �eld as

E =
1

2

4∑
j=1

Ej exp [i(kjz − ωjt)] + c.c. (7.9)

where the propagation constant kj = ñjωj/c and ñj is the nonlinear index of refraction for
mode j. Substituting this form into (7.2), we �nd a large number of terms involving the
product of three electric �elds. If we express the result as a series in the same form as (7.9),
we can for instance express the total material polarization oscillating at ω4 as

P4 =
3ε0
4
χ(3)
xxxx[|E4|2E4 + 2(|E1|2 + |E2|2 + |E3|2)E4

+ 2E1E2E3 exp (iΘ+) + 2E1E2E
∗
3 exp (iΘ−) + . . .] (7.10)

where Θ+ and Θ− are de�ned as

Θ+ = (k1 + k2 + k3 − k4)z − (ω1 + ω2 + ω3 − ω4)t, (7.11)

Θ− = (k1 + k2 − k3 − k4)z − (ω1 + ω2 − ω3 − ω4)t. (7.12)

We can immediately identify the term proportional to |E4|2E4 as SPM, and the term fol-
lowing it as XPM. The remaining two terms are proportional to sum and di�erence frequency
combinations of the waves. When Θ± have a nonzero value, the latter terms in (7.10) are
oscillatory and cannot build up a large e�ect over the length of the device; however, when
Θ is close to zero, they can contribute at the same order as the SPM and XPM terms. In
this regime these frequency-mixing terms can contribute a large e�ect to the total nonlin-
ear propagation and create signi�cant exchanges of energy in length, realizing an e�cient
multi-wave mixing process.
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The term containing Θ+ expresses energy conservation of the form

ω4 = ω1 + ω2 + ω3 (7.13)

where three photons combine to produce one photon. This process is responsible for e�ects
such as third-harmonic generation when ω1 = ω2 = ω3. The term containing Θ−, on the
other hand, destroys two photons while creating two photons, such that

ω3 + ω4 = ω1 + ω2. (7.14)

We are primarily interested in the case of degenerate four-wave mixing, where ω1 = ω2. For
this process to not be oscillatory in space, we require the satisfaction of the condition ∆k = 0
where

∆k = k3 + k4 − k1 − k2. (7.15)

The propagation constants kj are themselves dependent on frequency through the dispersion
relation k(ω) and also to the total �eld intensity through ñj.

7.2 Derivation of the continuum wave equation for the

JTWPA

In order to link to the continuum nonlinear optical theory developed in the last section,
we need to �nd a continuum description of the lumped-element nonlinear transmission line
forming the heart of the JTWPA. The original derivation of the continuum nonlinear wave
equation for the JTWPA was performed by Friedland and Yaakobi in our publication in
Physical Review Letters [110]. The circuit model for a unit cell of the junction-loaded
transmission line is shown in Figure 7.1. The basic idea is to apply Kircho�'s laws to one
unit cell and its neighbors, use the translational symmetry of the transmission line to create
a discrete wave equation, and then �nd the continuum approximation by converting �nite
di�erence relations to derivatives.

Current conservation at each node implies

In = I(CJ ),n + IL,n. (7.16)

The current in capacitor CJ , n is related to the voltages Vn and Vn+1 by the derivative

I(CJ ),n = −CJ
d

dt
(Vn+1 − Vn) . (7.17)

We de�ne the magnetic �ux as the time integral of the voltage across the inductor, expressed
here as a di�erence equation

Vn+1 − Vn = −dΦn

dt
, (7.18)
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Figure 7.1 : Circuit model for junction-loaded transmission line. The bottom wire is connected to

ground, and the conventions for voltage drop and current �ow are indicated.

and we write the expression for the junction current-phase relation

IL,n = I0 sin

[
Φn

ϕ0

]
, (7.19)

where ϕ0 = Φ0/2π is the reduced �ux quantum. Di�erentiation of the last equation yields

dIL,n
dt

=
I0

ϕ0

(
cos

[
Φn

ϕ0

])
dΦn

dt
. (7.20)

Then
dΦn

dt
=
dIL,n
dt

ϕ0

I0

(
1− sin2

[
Φn

ϕ0

])− 1
2

, (7.21)

which, upon using Eq. (7.19), becomes

dΦn

dt
=
ϕ0

I0

(
1−

[
IL,n
I0

]2
)− 1

2
dIL,n
dt

. (7.22)

For the weakly nonlinear regime IL,n/I0 � 1, we approximate the nonlinear contribution to
�rst order as

dΦn

dt
=
ϕ0

I0

(
1 +

1

2

[
IL,n
I0

]2
)
dIL,n
dt

. (7.23)

Since the current through capacitor Cn is

IC,n = −C d

dt
(0− Vn) = C

dVn
dt

, (7.24)

current conservation yields

In − In−1 = −CdVn
dt

. (7.25)
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Next, we use equations (7.18) and (7.23) to get

Vn+1 − Vn = −LdIL,n
dt
− ϕ0

6I3
0

d

dt
(IL,n)3 , (7.26)

where L = ϕ0/I0. Introducing the node �uxes φn as

Vn ≡
dφn
dt

(7.27)

and integrating (7.26), we obtain

φn+1 − φn = −LIL,n −
L

6I2
0

I3
L,n (7.28)

where we have set the integration constant to zero. Rearranging the last equation yields

IL,n = − 1

L
(φn+1 − φn)− 1

6I2
0

I3
L,n. (7.29)

Assuming that the nonlinear term is small, we can approximate this to lowest (linear) order

IL,n ≈ −
1

L
(φn+1 − φn) . (7.30)

Then, by plugging this expression back into (7.28), we get the �rst-order nonlinear approxi-
mation

IL,n = − 1

L
(φn+1 − φn) +

1

6I2
0L

3
(φn+1 − φn)3 . (7.31)

Finally, combining equations (7.16), (7.17), (7.25), (7.27) and (7.31), we obtain the �rst-order
nonlinear system

−Cd
2φn
dt2

=− CJ
d2

dt2
[φn+1 + φn−1 − 2φn]

− 1

L
[φn+1 + φn−1 − 2φn]

+
1

6I2
0L

3

[
(φn+1 − φn)3 − (φn − φn−1)3] . (7.32)

At this point we could numerically solve this equation for an arbitrary number of unit
cells, but this does not provide any further intuition. We would like to make a link to
the existing theory of continuum nonlinear optics; if we assume that the wavelength of a
propagating mode is much larger than one unit cell (a/λ � 1), we can replace the discrete
n by a continuous position x and replace the �nite di�erences in the discrete equations by
their continuous counterparts to second order in (a/λ):

φn+1 − φn ≈ a
∂φ

∂x
+

1

2
a2∂

2φ

∂x2
(7.33)

φn − φn−1 ≈ a
∂φ

∂x
− 1

2
a2∂

2φ

∂x2
(7.34)
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φn+1 + φn−1 − 2φn ≈ a2∂
2φ

∂x2
. (7.35)

Then, to lowest signi�cant order in a/λ,

(φn+1 − φn)3 − (φn − φn−1)3 ≈ 3a4

(
∂2φ

∂x2

)(
∂φ

∂x

)2

, (7.36)

and we arrive at the continuous counterpart of (7.32):

C
∂2φ

∂t2
− a2

L

∂2φ

∂x2
− CJa2 ∂4φ

∂t2∂x2
+

a4

2I2
0L

3

(
∂2φ

∂x2

)(
∂φ

∂x

)2

= 0. (7.37)

The �rst three terms in this expression describe weakly dispersive linear waves, while the
fourth term represents the nonlinearity due to the junctions.

7.3 E�cient parametric ampli�cation

With the continuum wave equation for the JTWPA in hand, we can attempt to �nd an
approximate analytical solution for the behavior of several coupled waves. This derivation
is analogous to the technique used in nonlinear optics, described in chapter 10 of reference
[109]; the only major di�erences for this system are the presence of the weakly dispersive
term due to the junction self-capacitance, and the simplicity of a purely one-dimensional
problem. This calculation was performed by Kevin O'Brien and appears as Appendix 1
in our publication in Physical Review Letters [111]. I reproduce the full details of this
calculation in Appendix A.

By making the ansatz that the solutions are traveling waves, taking the slowly varying
envelope approximation, and neglecting pump depletion (that is, assuming the energy of the
pump wave remains constant over the length of the transmission line), we obtain a set of
coupled wave equations which describe the energy exchange between the pump, signal, and
idler:

∂as
∂x
− iκsa∗i ei(∆kL+2αp−αs−αi)x = 0 (7.38)

∂ai
∂x
− iκia∗sei(∆kL+2αp−αs−αi)x = 0 (7.39)

where as and ai are the slowly-varying signal and idler amplitudes, ∆kL = 2kp − ks − ki is
the phase mismatch in the low pump power limit, and the coupling factors αp, αs, and αi
represent the change in the wave vector of the pump, signal, and idler due to SPM and XPM
induced by the pump. The coupling factors depend on the circuit parameters and scale
quadratically with the pump current. The lack of an equivalent equation for the spatial
variation of ap is explicitly due to the undepleted pump approximation.



7.4. DISPERSION RELATION AND RESONANT PHASE MATCHING 90

Maximum parametric gain is achieved when the exponential terms are constant, rather
than oscillating, implying that the phase mismatch ∆k = ∆kL + 2αp − αs − αi must then
be zero. The coupled wave equations (7.38), (7.39) are similar to the coupled amplitude
equations for an optical parametric ampli�er [112] and have the solution

as(x) = as(0)

(
cosh gx− i∆k

2g
sinh gx

)
ei∆kx/2 (7.40)

with the gain coe�cient
g =

√
κsκ∗i − (∆k/2)2. (7.41)

For ai(0) = 0 and perfect phase matching ∆k = 0, this expression implies exponential gain,
as(x) ≈ as(0)egx/2. For poor phase matching g is imaginary and the power gain scales
quadratically with length rather than exponentially.

With a purely linear dispersion relation k(ω) ∝ ω, the parametric process is phase
matched at zero pump power, but rapidly loses phase matching as the pump power in-
creases due pump power dependence in the coupling coe�cients α. If we neglect the small
dispersion due to CJ and the small frequency dependence of the wave impedances, the exact
expression for the phase mismatch (A.22) can be simpli�ed to yield

∆k ≈ 2kp − ks − ki − 2kpκ, (7.42)

where

κ =
a2k2

p |Z|
2

16L2ω2
p

(
Ip
I0

)2

. (7.43)

We have now arrived at the central challenge of building a practical ampli�er: satisfying the
phase matching condition to achieve exponential gain. We can see from the form of (7.42)
that as the pump power increases, ∆k becomes negative. Thus, to compensate this e�ect,
we could either decrease ks and ki or increase kp, as κ is generally much smaller than unity.
Because we aim to realize a broadband ampli�er and ωs is not �xed, it makes more sense to
attempt to locally modify the dispersion relation near ωp to increase kp.

7.4 Dispersion relation and resonant phase matching

To derive the small-signal dispersion relation k(ω) of the JTWPA, I will employ a stan-
dard formalism from microwave engineering called the ABCD matrix formalism, described
in chapter 4 of reference [113]. The ABCD matrix, also known as the transmission matrix, is
quite useful in this situation as cascading several 2-port microwave networks is equivalent to
taking the product of their ABCD matrices. This formalism is somewhat more heavyweight
than required for the following calculation, but it applies nicely to more complex cases such
as the cascade of several dissimilar unit cells forming a supercell which is then repeated. It is
also straightforward to numerically compute the dispersion relation for a �nite rather than
in�nite line in this formalism using matrix multiplications.
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Z1

Z2Vin

Iin

Vout

Iout

Figure 7.2 : General two-port network under consideration, with one series impedance Z1 and one

shunt impedance Z2. Note current and voltage conventions.

For an arbitrary 2-port network with input voltage Vin and input current (�owing into
port 1) Iin, we can express the output voltage Vout and output current (�owing out of port
2) Iout as the product of a 2 × 2 matrix, creatively named the ABCD matrix:(

Vout
Iout

)
=

(
A B
C D

)(
Vin
Iin

)
(7.44)

For a reciprocal network, AD−BC = 1. For a lossless, reciprocal network, A and D are
real while B and C are imaginary. For a transmission line formed from an in�nite chain of
repeated unit cells of physical length a, we can derive the dispersion relation by imposing
translation symmetry on the input and output voltages of a single unit cell(

Vout
Iout

)
= eika

(
Vin
Iin

)
. (7.45)

Combined with (7.44) we now have an eigenvalue problem wherein a solution must satisfy

det

(
A− e−ika B

C D − eika
)

= 0. (7.46)

For a reciprocal network we know that AD − BC = 1, which reduces this relation to the
very simple form

A+D = 2 cos(ka). (7.47)

A and D will include factors of ω from the various impedances in the network, so this is the
dispersion relation of the transmission line.

We can easily derive the ABCD matrix for the general network shown in Fig. 7.2 using
Kircho�'s laws. This network is general enough to cover lots of interesting cases. The voltage
and current at the output are

Vout = Vin − IinZ1 (7.48)
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Figure 7.3 : Dispersion relations for various ratios of plasma frequencies. The case where the

inductance has no parallel capacitance is plotted in red. As the junction plasma frequency is reduced

(�nite shunt capacitance across the inductor), the cuto� frequency decreases and the curvature of

the band increases.

Iout = Iin − Vout/Z2 = (−1/Z2)Vin + (1 + Z1/Z2)Iin (7.49)

so the ABCD matrix of this network is(
1 −Z1

−1/Z2 1 + Z1/Z2

)
. (7.50)

Thus, from (7.47), for arbitrary series and shunt impedances the dispersion relation of this
network is

ka = cos−1(1 + Z1/2Z2). (7.51)

For a simple LC ladder transmission line, Z1 = iωL and Z2 = 1/iωC so the dispersion
relation is

ka = cos−1

(
1− ω2

(2ω0)2

)
, (7.52)

where ω0 = 1/
√
LC. A plot of this equation is shown as the red trace in Figure 7.3, in

normalized units. The characteristic frequency ω0 is called the plasma frequency of the
transmission line, corresponding to the resonance frequency of each rung of the LC ladder.
Above twice the plasma frequency, the dispersion relation is imaginary and there is no
solution to the wave equation that permits a traveling mode, implying the existence of a
very opaque stop-band above 2ω0. At frequencies much smaller than ω0, the dispersion
relation is well-approximated as linear.

For the junction-loaded transmission line from Figure 7.1, the Josephson inductance is
shunted by the intrinsic capacitance of the junction, so Z1 is the parallel combination of ZL
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Figure 7.4 : Shunt resonator topologies: a series LC shunt; b capacitively-coupled parallel LC shunt.

and ZCj
. This leads to a slightly more complex form

ka = cos−1

(
1− ω2

2ω2
0(1− ω2/ω2

J)

)
(7.53)

where we have introduced another characteristic frequency ωJ = 1/
√
LCJ , the plasma fre-

quency of the Josephson junction. The net e�ect on the dispersion relation is to introduce
an additional curvature into the band, and also modify the location of the edge of the stop
band. The cuto� frequency is now given by

ωC =
2ω0√

1− 4ω2
0/ω

2
J

. (7.54)

In the small-signal regime, the phase matching condition 2kp = ks + ki will be satis�ed
for a perfectly linear dispersion. The curvature of the band introduced by the two plasma
frequencies serves to spoil this linearity for frequencies at an appreciable fraction of the cuto�
frequency, and it is this band curvature that will be partially responsible for determining the
ampli�cation bandwidth of the JTWPA.

It is at this point that we must determine some method to create a local modi�cation
in the dispersion relation to satisfy (7.42). There are many techniques known in nonlinear
optical system to accomplish this [112, 109]; however, all of those systems are generally faced
with the constraint of a very short optical wavelength, requiring schemes that work on the
basis of distributed geometry. Because the JTWPA is a microwave metamaterial and is
already composed of deep-subwavelength elements, we can take a completely di�erent and
new approach to the problem.

Because we seek a narrowband modi�cation to the dispersion relation, we can start with
the most common narrowband circuit topology: a resonator. The most straightforward way
to add a resonance is the addition of a series LC resonator in parallel with the capacitance to
ground as shown in Figure 7.4a. This con�guration can be understood as a common circuit
topology for implementing a notch �lter. Nearby but outside the stop-band of this �lter
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the linear wave propagation will be slightly altered, leading to an increase in wavevector.
An alternative to the series LC shunt resonator is to add a capacitvely-coupled parallel LC
resonator, shown in Figure 7.4b. By introducing the coupling capacitor Cc, this topology has
an extra degree of freedom compared to the series LC resonator, allowing the impedance of
the resonator and the coupling to the transmission line to be adjusted independently. This
extra freedom will turn out to be crucial in fabricating a realistic device, so we will focus
only on the parallel LC con�guration.

To �nd the dispersion relation of these networks all we need to do is calculate Z1 and Z2

and plug it into (7.51). For the parallel LC shunt,

Z1 = ZL||ZCj
=

(
1

iωL
+ iωCj

)−1

(7.55)

Z2 = ZC ||Zres (7.56)

where

Zres = (ZCc + (ZCr ||ZLr)) =
1− ω2Lr(Cr + Cc)

iωCc(1− ω2LrCr)
(7.57)

Usually, identifying LrCr = 1/ω2
r would simplify this expression, but the presence of the

coupling capacitor e�ectively pulls the resonance frequency and makes this substitution
somewhat less helpful. Expanding (7.51) delivers the dispersion relation for the junction-
loaded, capactively-coupled-parallel-LC-resonator-shunted (whew) transmission line:

ka = cos−1

(
1− ω2L(C(1− ω2Lr(Cr + Cc)) + Cc(1− ω2LrCr))

2(1− ω2/ω2
J)(1− ω2Lr(Cr + Cc))

)
(7.58)

We can make the small-angle approximation in ka to reduce the complexity of the problem
somewhat. This is a reasonable approximation to provide a more intuitive expression, as
we expect to need a very small fractional shift in the wavevector to compensate the power-
dependent phase shift. We approximate the dispersion relation to second order in ka as
2 cos(ka) ≈ 2 − (ka)2. Additionally, we can assume that the junction plasma frequency
ωJ is large compared to ω. This eliminates the �rst term in the denominator of (7.58).
Rearranging some terms, this gives a form in which it is easier to identify the e�ect of the
resonator:

(ka)2 ≈ ω2

ω2
0

+
ω2LCc(1− ω2LrCr)

1− ω2Lr(Cr + Cc)
(7.59)

The �rst term is the linear dispersion of the unloaded transmission line, while the second term
is the loading e�ect of the resonator. We identify the loaded frequency of the resonator as the
center frequency of the dispersion feature at ωr = 1/

√
Lr(Cr + Cc) where the denominator

in the second term goes to zero. Note that for frequencies slightly below ωr, the second
term is positive, and we have achieved the desired local shift in the wavevector needed
to achieve phase matching. We have named this new phase matching technique �resonant
phase matching� (RPM). A plot of the resulting dispersion relation is shown in Figure 7.5,
demonstrating the creation of the stop band and showing the divergence of the dispersion
relation near ωr.
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with RPM
without RPM

Figure 7.5 : Plot of the exact JTWPA dispersion relation for Cj=329 fF, L=100 pH, C=39 fF,

Cc=10 fF, Cr=7.036 pF, Lr=100 pH, and I0=3.29 µA. The dispersion relation without RPM

loading resonators is plotted as a dashed line and is approximately linear, though a slight curvature

can be seen above 8 GHz. The e�ect of the RPM loading resonators is plotted in cyan; in a very

narrow band around the resonance frequency at 6 GHz, the dispersion relation diverges. This is

more clearly seen in the inset plot. The colored labels and arrows indicate the pump frequency at

which the power-dependent phase shift (proportional to κ ∝ (Ip/I0)2) is perfectly compensated,

enabling perfect phase matching. Adapted from reference [111].

7.5 Ampli�er performance with resonant phase matching

7.5.1 Gain and bandwidth

Now that we have created a dispersion relation that exactly satis�es (7.42), we expect
to achieve gain which grows exponentially in the length of the device. To understand the
frequency dependence of the gain, we need to examine the exact form of the exponential
gain coe�cient (7.41). From Appendix A, the frequency and wavevector dependence of the
coupling coe�cients κs and κi are

κs ∝
(2kp − ki)kski

ω2
s

(7.60)

κi ∝
(2kp − ks)kski

ω2
i

. (7.61)

Re-expressing ωs = ωp + ∆, ωi = ωp −∆, and assuming for the moment an approximately
linear dispersion relation k ∝ ω, we can write the frequency dependence of g for ∆k = 0 as

g ∝
√
ω2
p −∆2. (7.62)

Thus, even for perfect phase matching, we expect the gain to decrease as the pump-signal
detuning increases. Due to the �nite curvature of the dispersion relation, the phase matching
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with RPM:

Figure 7.6 : Gain of a 2000 unit cell JTWPA with and without RPM loading structures. a The gain

as a function of signal frequency in dB with RPM (cyan) and without (black dashed) for a pump

current of 0.5I0 and a pump frequency of 5.97 GHz. The plot below shows the phase mismatch

with RPM (cyan) and without (black dashed). The device with RPM is perfectly phase matched at

zero detuning, and becomes poorly phase matched due to the curvature of the dispersion relation

as the detuning is increased. b The peak gain as a function of pump current without RPM (black

dashed) and with RPM for three di�erent pump frequencies, which phase match the parametric

ampli�cation process for pump currents of 0.3 I0 (green), 0.5 I0 (purple), and 0.7 I0 (cyan). The

plot below shows the phase mismatch as a function of pump current. The dots mark the pump

current where perfect phase matching is achieved. Adapted from reference [111].
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Figure 7.7 : Ampli�er gain as a function of input signal current, normalized to the pump current,

for a small signal gain of 10, 15, and 20 dB obtained with a pump current of 0.5I0 and device

lengths of 1150, 1530, and 1900 unit cells. The approximation for the gain depletion (dashed lines)

from (7.63) is in excellent agreement with the result obtained by solving the full nonlinear dynamics

(solid lines). Adapted from reference [111].

will also only be close to perfect at small detuning, so this will also contribute to setting the
bandwidth of the ampli�er.

In Figure 7.6a, we show the gain and phase mismatch for a 2000 unit cell device with pump
current Ip = 0.5I0 at fp = 5.97 GHz and the same device parameters listed in Figure 7.5. For
perfect phase matching, we predict a gain of just over 20 dB with a very large bandwidth,
nearly an entire octave centered at 6 GHz. Without the phase matching improvement from
RPM, the gain is only 10 dB with a bandwidth of a bit under 2 GHz. The bandwidth is
set by a combination of the phase mismatch due to the band curvature and the detuning
dependence (7.62). The e�ect of RPM can be understood well by the bottom plot in 7.6b;
for low pump powers, the phase mismatch is positive, and decreases to cross zero. In the
vicinity of the zero crossing, the four-wave mixing process is e�cient and the gain increases
exponentially in the pump current.

7.5.2 Dynamic range

The upper limit of the dynamic range of a parametric ampli�er is given by pump deple-
tion: the pump transfers energy to the signal and idler which reduces the parametric gain.
To investigate this regime, we solve for the coupled wave equations without the undepleted
pump approximation. This derivation appears as Appendix 4 in reference [111], and the
resulting curves are plotted as solid lines in Figure 7.7. The gain as a function of input
signal power calculated from the full analytical expression is in excellent agreement with the
approximate, general solution for pump depletion in a four-wave parametric ampli�er [114]:

G =
G0

1 + 2G0I2
s /I

2
p

(7.63)
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where G0 is the small signal power gain in linear units and Is and Ip are the input signal and
pump currents. From (7.63), the gain compression point is approximately P1dB = Pp/(2G0).
Thus, the threshold for gain saturation is independent of the speci�c device con�guration
and depends only on the small signal gain and the pump power. For the device parameters
listed previously, the gain as a function of input signal current is plotted for three values of
the small signal gain in Figure 7.7. The signal current at which the gain drops by 1 dB is
marked. For a pump current of 0.5I0, the signal power where the gain decreases by 1 dB is
−87, −93, and −98 dBm for a small signal gain of 10, 15, and 20 dB, respectively. These
gain compression points are consistent with the approximate relation with the pump power
of -69 dBm. A 1 dB input compression power of -98 dB is about 12 dB higher than achieved
by any JPA with comparable gain.

7.5.3 Parameter regime

The parameters chosen for these theory plots are the result of extensive engineering using
the full theory of the device. Simplifying the expression for the gain by assuming perfect
phase matching and neglecting the e�ects of the resonant element and the junction resonance
on the dispersion, we �nd that the exponential gain coe�cient is directly proportional to the
wave vector g ∝ kpI

2
p/I

2
0 . Thus, for a �xed pump strength relative to the junction critical

current, the gain coe�cient is proportional to the electrical length. In other words, a larger
wave vector and thus a slower e�ective wave propagation velocity leads to a larger e�ective
nonlinearity due to the higher energy density; this e�ect is well known in photonic crystals
[115]. Because the characteristic impedance is designed to be Z ≈

√
L/(C + Cc) ≈ 50 Ω,

the ratio of the inductance and capacitance is �xed. The wave vector is proportional to the
product of the capacitance and inductance k ≈ (ω/a)

√
L(C + Cc).

Increasing both the capacitance and inductance or decreasing the unit cell size are e�ec-
tive strategies for increasing the gain per unit length while maintaining impedance matching
for 50 Ω feedlines. However, because the junction critical current I0 (and the resulting max-
imum pump power) scales inversely with the inductance (3.8), increasing the wavevector to
increase the gain also decreases the dynamic range of the ampli�er. Additionally, the min-
imum size of the unit cell is constrained due to the �nite physical extent of the capacitors
and inductors. The parameters in the design discussed here sit in a surprisingly small area
of the total parameter space where we realize an ampli�er that simultaneously achieves large
gain, large bandwidth, and large dynamic range.

Although the very large gain operation shown in the top panel of 7.6b is impressive at
�rst glance, operation with such large gain is unrealistic due to several physical constraints.
First, the total power in a pump wave with Ip = I0 ∼ 5 µA is Pp ∼ −62 dBm. Enforcing
our general constraint on power scales for linear operation of a parametric ampli�er from
section 4.3.3 and formalized in (7.63), our ampli�ed output signal power should be no larger
than Pp− 20 dB. Without any signal at the input, the ampli�er must still amplify any input
noise present, which corresponds to at least ~ω per mode of quantum �uctuations across the
entire bandwidth of the device (4.12). This results in an input noise power roughly given
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by PQ ≈ ~ωB = −108 dBm for B = 4 GHz centered at ω/2π = 6 GHz. In order to satisfy
PQ + G < Pp − 20 dB, the gain must be no larger than about 26 dB for the input noise
power to not drive the ampli�er into gain compression. This constraint could be relaxed
by reducing the bandwidth, but gain exceeding 20 dB is not normally necessary to achieve
quantum-limited operation for the whole measurement system.

A further constraint comes from the fact that we have so far ignored the possible e�ect of
multiple re�ections at the input and output of the ampli�er. In any real device, the matching
between the nonlinear transmission line and the linear input and output feedlines will be
imperfect, so some fraction of the ampli�ed signal will be re�ected from the output back to
the input. If the re�ection coe�cient is R in dB, then a signal at the input ampli�ed by
the gain G re�ects back from the output at the level of G + R and is re�ected at the input
back into the ampli�er again at G + 2R. For the ampli�er to be stable, this feedback gain
must be less than 0 dB; realistically, we would like it to be much smaller than 0, otherwise
we will set up a large standing wave inside the ampli�er which will produce large ripples in
the gain pro�le at harmonics of twice the frequency corresponding to the electrical length of
the JTWPA. For typical microwave devices, R = −20 dB is considered to be well-matched,
and reducing this further is quite challenging especially in a broadband circuit. Thus, if G
is larger than 40 dB, the ampli�er will be unstable; moreover, if we want the total re�ection
G+ 2R to be -20 dB or better, G . 20 dB.

7.5.4 E�ect of �nite losses

Although superconducting circuits are generally low-loss, there will still be some at-
tenuation at microwave frequencies due to e�ects such as dielectric loss. To describe the
attenuation of propagating waves in the transmission line, we use a complex wavevector,
k = k′ + ik′′, where the real (k′) and imaginary (k′′) components describe phase evolution
and attenuation, respectively, as a function of position. Including material damping, the dif-
ferential equation for the signal and idler amplitudes in a rotating frame is u′(x) = M(x)u(x)
where u = [as ai]

T and

Mf =

[
−i∆k

2
− k′′s iκs

−iκ∗i i∆k
2
− k′′i

]
(7.64)

where ∆k = 2kp−ki−ks + 2αp−αs−αi is the phase mismatch, kp,s,i are the wavevectors in
the weak �eld limit, κs,i are the coupling constants for the signal and idler, αp,s,i describe the
nonlinear phase shifts (de�ned in Appendix A), and k′′s,i are the imaginary components of
the signal and idler wavevectors. In a lossy nonlinear transmission line, the pump amplitude
decays with position leading to position dependent phase mismatch and coupling constants;
however, if the attenuation is small, the e�ect of pump attenuation can be approximated
by a position independent phase mismatch and coupling constant with a reduced pump
amplitude A′p = Ap exp(−k′′pL/2). The solution to these coupled di�erential equations is then

u(x) = eMxu(0). The signal amplitude in the lab frame is as(x) = [1, 0]u(x)[1, 0]T ei(∆k/2+αs)x

with gain G = |as(L)/as(0)|2.



7.5. AMPLIFIER PERFORMANCE WITH RESONANT PHASE MATCHING 100

input output

Figure 7.8 : Block diagram of the model for distributed loss and gain, showing a series of discrete

attenuators Ai each followed by a ideal phase-preserving ampli�er with gain Gi.

7.5.5 Quantum e�ciency with distributed loss

Because the loss in the JTWPA is distributed along the ampli�er, losses further down the
device should participate less strongly in setting the quantum e�ciency than losses near the
beginning. This follows from the same intuition that losses following a high-gain ampli�er
should not participate strongly in setting the noise temperature of the system as long as the
gain is signi�cantly larger than the loss. To account for the reduction in quantum e�ciency
attributable to distributed loss in the ampli�er, we model the JTWPA as a series of cascaded
ideal phase-preserving ampli�ers and lumped attenuation elements, shown schematically in
Fig. 7.8.

At the input to the ampli�er at plane P0 (blue dashed line) we have input noise N0 =
NQ = 1/2, in units of quanta. To calculate the noise at plane P1 (green dashed line)
following the lumped attenuation A1 and gain element G1 (both given in linear power units),
we must take into account the additional quantum �uctuations added by the attenuation,
Natten = NQ(1− A1), and the ideal phase-preserving ampli�er

Namp = NQ(1− 1/G1) (7.65)

(referred to the ampli�er's input) [85]. The total noise at plane P1 is thus N1 = G1(N0A1 +
NQ(1− A1) +NQ(1− 1/G1)) 1. We can generalize this into a recurrence relation

Ni = Ni−1AiGi +NQ(1− Ai)Gi +NQ(Gi − 1) (7.66)

which can be summed numerically for any distribution of Ai and Gi to �nd the total noise
at the output Nn. Referring the noise back to the input of the ampli�er by dividing by the
total transmission T =

∏n
i=1AiGi allows the expected quantum e�ciency to be calculated

as
η = (Nn/T )−1 (7.67)

assuming that the total ampli�er gain is large enough to saturate (7.65) in the absence of
loss.

1Our choice of ordering of the attenuation element and the gain element is arbitrary, though placing
the attenuation block �rst gives a lower bound on η rather than an upper bound. For many hundreds of
elements, the noise calculated for both orderings converge.



101

Chapter 8

JTWPA characterization

The experimental results presented in this chapter correspond to the sixth JTWPA design
revision. For reasons that remain largely unknown, the �rst few generations of devices
su�ered from large insertion losses that prevented the demonstration of compelling ampli�er
performance. Some of these results appear in reference [20]. The fourth through sixth
design revisions were fabricated at MIT-Lincoln Labs (LL), and resulted in generally better
device performance. These devices were primarily designed at QNL, though the professional
mask layout team at LL did much of the layout in generations �ve and six using automated
scripts, permitting mask design revisions to be made much more easily. The sixth generation
design revision was the �rst to incorporate RPM loading structures, in concert with the
development of the dispersion engineering theory in 2014. Many, many measurements were
conducted over the entire course of the development of the JTWPA; from measurement
records, the experiments on generations four, �ve, and six comprised seven, 23, and 30
dilution refrigerator cycles, respectively, in the period from August 28, 2012 through the
�nal cooldown for generation six on January 1, 2015.

8.1 Device fabrication

The RPM-JTWPA is a fairly complex device, requiring the precision fabrication of �ve
lumped-element components per unit cell of the device, and about 2000 unit cells are re-
quired to achieve enough gain to approach quantum-limited system noise. For high-quality
ampli�er operation, these components should have a high degree of uniformity, requiring
tight controls and process tests. The foundry at LL is quite sophisticated, with extensive
process controls including a test suite of co-fabricated structures to characterize the process
performance across an entire 200 mm wafer. The JTWPA is fabricated in the deep submi-
cron (DSM) process, primarily used for manufacturing rapid single �ux quantum (RSFQ)
superconducting digital electronics, with many thousands of junctions per chip. For a very
complete description of this process, see reference [116]. A schematic of the metalization and
dielectric layers in DSM is shown in Fig. 8.1. DSM is a fully planarized Nb/Al-AlOx/Nb
trilayer process fabricated on 200 mm wafers using a modern, CMOS compatible toolset.
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Figure 8.1 : Schematic of the DSM process layers. Metal layers are 150 nm thick, the PECVD layer

is 200 nm thick, and the NbOx layer is 50 nm thick. Schematic is not shown to scale.

Process modules include 248 nm photolithography, anodization, high-density plasma etch-
ing, PVD metal deposition, PECVD SiOx deposition, and chemical mechanical polishing.

Devices are fabricated on a 750 µm silicon substrate (pale blue) with a 500 nm layer of
thermal SiO2 (pale yellow). Josephson junctions are de�ned using 248 nm optical lithogra-
phy (stepper, 5x reduction) and subtractive dry etching of the Nb/Al-AlOx/Nb trilayer; the
Al-AlOx is shown as a thin dark purple stripe. Anodization of the lower Nb layer forms a
thin NbOx protective layer around the junction (blue). The inter-layer dielectric is a low-
temperature PECVD silicon oxide (light gray). The lower and upper Nb wiring layers are
shown in pale green (M1 and M2, respectively); electrical connections between the layers
are formed using vias (center-right). Parallel-plate capacitors are formed implicitly where
the upper and lower metallization layers overlap due to the intermediate PECVD and NbOx

layers (C1, shown at left and outlined in a dashed line). An additional high-capacitance
structure can be formed by creating a via from the upper metallization layer to the an-
odization layer (C2, shown at right and outlined in a dashed line); C2 provides a speci�c
capacitance approximately 35 times larger than C1. Electrical contact is made to the chip
through titanium/gold bond pads (yellow).

A false-color optical micrograph of about 10 unit cells is shown in Fig. 8.2. The ground
plane of the JTWPA is formed from M1. The primary trace forming the transmission line
itself is formed from M2, utilizing C1 for capacitance to ground. A small ground plane
cutout surrounds an M1 island, accommodating the Josephson junction and a via back up
to M2. The dispersion-modifying resonators are capacitively coupled to this island through
C1. A meander inductor is formed from M2 inside a ground plane cutout and is electrically
connected to ground at the end with a via. The capacitance for the resonator is formed from
C2.

We use process monitor structures distributed across the 200 mm wafer to determine the
junction critical current density Jc = 5.8 µA/µm2 and junction speci�c capacitance Cs = 70
fF/µm2. The particular JTWPA device which is the main subject of this chapter features
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Figure 8.2 : False-color optical micrograph of chip layout. M1 is shown as gray, with cutouts to

form islands and accommodate the meander inductor. JJs are drawn in light blue. The top plate of

the capacitance to ground is formed from M2 and colored yellow. The coupling capacitance to the

resonator is formed from C1; the top plate (M2 layer) is colored purple. The resonator capacitance

is formed from C2; the top plate (M2 layer) is colored green. The resonator meander inductor is

colored orange; the via from M2 to M1 is the wider square at the bottom of the trace. The spacing

between Josephson junctions is 16 µm.
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Figure 8.3 : Macro photograph of a 2037 JJ RPM JTWPA. The chip is 5 mm × 5 mm.
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1 µm diameter junctions with critical current I0 = 4.6 µA, intrinsic junction capacitance
CJ = 55 fF, and an external capacitance to ground C = 45 fF shunting the junction.
The critical current density was somewhat higher than designed, resulting in a small-signal
impedance of 40 Ω. When the JTWPA is pumped, the e�ective Josephson inductance
increases, resulting in a small increase in impedance of approximately 2 Ω. A better match
to 50 Ω has been measured in similar devices with critical current densities closer to the
target parameters. A photograph of a 2037 junction device is shown in Figure 8.3.

Several other device designs were co-fabricated along with the particular chip design
which is the subject of the bulk of the results in this chapter. All in all, two full reticles
were used for generation six, providing 13 individual chip designs in each reticle with 3 chips
of process test structures. Reticle A was dedicated to JTWPAs without RPM resonators,
as these devices were known to work well. Reticle B was dedicated to JTWPAs with the
very �rst attempt at RPM loading, which turned out to work quite well and produce the
�rst JTWPAs with signi�cant gain and nearly quantum-limited noise. Various images of the
mask layouts from generation six are shown in Figure 8.4.

8.1.1 Loss tangent extraction

The loss tangents of the C1 and C2 capacitors were determined by measuring the internal
quality factor of lumped-element test resonators. The chip layout for the C2 capacitor test
resonators is shown in Figure 8.5a. The equivalent structures for measuring the C1 layer
are similar, though the capacitors have a much smaller footprint due to the larger speci�c
capacitance. The resonators are a di�erential design but are normally measured in a CPW
launch with one side of the resonator wirebonded to ground. Due to the di�erential design,
the two capacitors which form C combine in series, thus the total capacitance is half that of
each physical capacitor. The resonators are all targeted at the same nominal frequency, but
with two impedance variations and two coupling strength variations.

The total inductance L of the structure is purely geometric, and can be accurately pre-
dicted using �nite-element simulation tools. The coupling capacitance Cc is designed to be
very small compared to the resonator inductance C so as to avoid loading the resonant fre-
quency. Furthermore, Cc is designed as an interdigital capacitor, which generally has a much
higher intrinsic quality factor than the overlap capacitors formed by C1 and C2, and thus
should not e�ect the total coupling strength. Therefore, measuring the resonant frequency of
the test resonators calibrates the speci�c capacitance for the capacitor layer under considera-
tion, while extracting the internal quality factor Qi provides the loss tangent of the capacitor
layer. For details on the algorithm used to extract Qi from a re�ection measurement, see
Appendix D of reference [26].

If we assume that all of the internal loss in the resonator can be attributed to the dielectric
loss in the capacitor, then the loss tangent of the material is just given by the inverse of
Qi. The loss tangent of these types of deposited dielectrics tends to be relatively high, on
the order of 10−3 to 10−2, while inductive losses and losses in the coupling capacitors should
be very small compared to this. As shown in Figure 8.6, the C2 resonators have a fairly



8.1. DEVICE FABRICATION 106

Figure 8.4 : a Chip layout for 50 Ω 5022 JJ non-RPM device, from Reticle A. b Close-up of a,

showing CPW-to-microstrip transition and nonlinear transmission line segment. c Chip layout for

50 Ω, 2037 JJ RPM device with 20 fF coupling capacitors, from Reticle B. d Close-up of c.
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Figure 8.5 : a Chip layout for C2 layer test resonators. b Close-up of the low-coupling, high-

impedance test resonator from the left side of a.

consistent Q of about 300, while there is somewhat more scatter in C1 from 300 to 600 or so.
Because the transmission line capacitance is formed from C2, this is the most important loss
in the system, corresponding to a loss tangent of about 3.3×10−3. Assuming no other losses
in the line, the attenuation constant α of the transmission line in the small signal regime is
then given by

α = 8.686× tan(δ)
ωCZ0

2
= 2.03× 10−4 dB

unit cell ·GHz
(8.1)

for C = 45 fF [113]. Thus, a 2000 cell JTWPA should have a loss of about 1.6 dB at 4 GHz,
and 4 dB at 10 GHz.

8.2 Transmission measurements

Because the JTWPA is a 2-port device and operates in a transmission mode, measuring
the transmission through the device in a well-matched 50 Ω environment is the most fun-
damental and important measurement of device performance. Measurements of re�ection
parameters are also of interest, though making this type of measurement in a well-calibrated
manner in a cryogenic system is quite non-trivial and requires cryogenic calibration standards
to make a meaningful measurement. As such, I will focus on transmission measurements only.

The cryogenic setup used for the majority of JTWPA measurements is shown schemati-
cally in Figure 8.7. The probe signals arrive at the cold stage of the dilution refrigerator and
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are passively split using a commercial 4-way 2-18 GHz power divider. The relative power
in each output is balanced to better than 0.1 dB. A 20 dB attenuator is connected to the
output of each port, ensuring the input to the device under test (DUT) is a well-matched 50
Ω, and adding an e�ective 40 dB of isolation between each measurement arm. With the 20
dB isolation of the splitter itself, this setup provides about 60 dB of total isolation between
the measurement arms. The output of each measurement arm is connected to one port of
a 6-way microwave relay switch, which directs one of the outputs through two isolators to
the HEMT ampli�er, while presenting an open circuit to the other ports. Two more DUTs
could be added to this setup if the 4-way power divider is replaced by another 6-way relay
switch, which was not available in the dilution refrigerator in which these experiments were
conducted.

One of the splitter outputs is connected to a SMA female-female union in place of a
DUT to represent the baseline calibration for the transmission measurement. The cables
used to connect the thru calibration and the DUTs to the power divider and the output
multiplexing switch are nominally identical commercial �ex cables made by Mini-Circuits,
of lengths labeled A and B. On one cooldown, one of the DUTs was replaced with another
thru connector to check the balance of the di�erent transmission arms; transmission through
the two thru connections was indistinguishable at the 0.1 dB level. The DUTs are normally
housed in an aluminum enclosure with small slots through which SMA cables enter and
leave. The aluminum enclosure is contained within a single layer of Cryoperm magnetic
shielding. The DUTs are bolted to a copper plate which is thermalized to the cold stage of
the dilution refrigerator using a thick copper wire protruding through the lid of the aluminum
enclosure. This enclosure is primarily a legacy from past experiments; because the JTWPAs
are fabricated from Niobium, they become superconducting at around 9 K, much earlier in
the cooldown process than when the aluminum enclosure becomes superconducting at about
1 K. Because the JTWPA design does not involve any SQUID loops, the device behavior
is not particularly sensitive to magnetic �eld �uctuations and so a high degree of magnetic
shielding is not necessary.

8.2.1 Length scaling of non-RPM devices

To verify the theoretical prediction of quadratic scaling with device length for JTWPAs
with no explicit modi�cation to the dispersion relation, we measured three devices from
Reticle A in the same cooldown, with lengths of 1k, 3k, and 5k unit cells1. The nominal
device parameters are I0 = 3.1 µA, Cj = 55 fF, and C = 50 fF, and the 1k, 3k, and 5k
devices actually contained 1006, 3008, and 5022 junctions, respectively.

Data from these devices are shown in Figure 8.8. After calibrating the transmission
using the thru, we measured the insertion loss of each device. The measured insertion loss
agrees well with the losses predicted by a simple model of capacitive dielectric losses with
tan δ = 0.0034, in good agreement with the measured loss tangent of the material. The

1In reality, we measured many more of these types of devices, as they were the focus of the work before
the addition of RPM loading structures. For clarity I focus here on just three devices of the �nal generation.
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Figure 8.8 : a Insertion loss for 1k, 3k, and 5k JJ devices, with theory predictions for a capacitor

quality factor Qi = 291. b Measured gain pro�les of 1k, 3k, and 5k JJ devices at identical pumping

conditions (∼ 0.75I0), after subtracting the insertion loss measured in a, with theory overlays for

the simple theory without loss.

gain of these devices is plotted with the insertion loss subtracted, to more directly show
the quadratic scaling behavior with increasing length. The agreement between the measured
gain and the theory is quite reasonable, validating the simple prediction of quadratic scaling.

8.2.2 Measurements of RPM loading structures

For the remainder of this chapter I will focus on a very complete characterization per-
formed on a single RPM-JTWPA device. The device parameters are those listed in section
8.1. I will refer to this particular ampli�er as Device A.

In the small-signal regime, an RPM-JTWPA should look identical to a JTWPA without
loading structures except for the presence of a large transmission dip in the vicinity of the
resonant frequency of the RPM resonators. The small-signal transmission and wavevector
shift for Device A is shown in Figure 8.9. The insertion loss is comparable to that measured
for non-RPM devices in Figure 8.8. The width of the RPM stop band is signi�cantly larger
than predicted for the ideal theory; this is due to some small frequency variation in the
resonators, on the order of 1%, which is su�cient to signi�cantly broaden the stop-band
and weaken the total wavevector shift. This frequency heterogeneity is also responsible for
the large ripples in transmission and wavevector on the low-frequency side of the dispersion
feature. Although the absolute magnitude of the wavevector shift is decreased compared to
theory, it is still su�cient to partially phase match the four-wave mixing process.
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8.2.3 Gain with RPM

The e�ect of RPM on the device gain is shown in Figure 8.10, where the wavevector
mismatch and gain is plotted for a pump near the RPM feature and also for a pump far
detuned. The measured gain for the RPM case is about 10 dB larger than for the detuned
case, even though the wavevector mismatch is still far from perfect at large pump powers.
The pump power axis is scaled using the sharp feature visible at the right of the plot, which
roughly corresponds to the power at which the pump current exceeds the junction critical
current. This e�ect is used in all measurements to calibrate the pump power scale.

The complete gain pro�le achieved with a pump at 7.157 GHz and Ip/I0 = 0.91 is shown
in Figure 8.11. Without exaggerating, the bandwidth achieved by Device A can be described
as massive. The gain exceeds 20 dB over a bandwidth of about 3 GHz, excluding the region
near the dispersion feature, and exceeds 15 dB over an entire octave (from 4.5 to 9 GHz).
This is by far the largest bandwidth ever achieved in a Josephson parametric ampli�er of any
variety2. The gain pro�le shows a small ripple, on the order of ±2 dB, which we attribute to
the impedance mismatch between the nonlinear JTWPA transmission line (which is about
42 Ω when pumped) and the linear 50 Ω feedlines to which it is coupled. This leads to a
small amount of re�ection, with a period related to the electrical length of the JTWPA as
discussed at the end of section 7.5.3.

2This bandwidth has been superseded by a device from a subsequent seventh generation of JTWPAs,
measured at LL. That device achieved a bandwidth of 4.5 GHz with gain above 20 dB.
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The overlaid theory curve is based on the modi�ed theory including the e�ect of �nite
pump and signal losses described in section 7.5.4. The model parameters are determined from
linear and nonlinear single-wave characterization. To obtain the wavevector, we measure
the microwave transmission without a pump through the JTWPA. The real component of
the wavevector is obtained from the phase of the transmitted �eld, k′ = (φ(ω) + φ0)/L,
and the magnitude of the transmission yields a frequency dependent imaginary wavevector,
k′′ = − log(T )/(2L) ≈ c1ω + c2

2ω
2, where c1 = 2.0 fs and c2 = 0.55 fs, away from the

resonance. The signal and idler are attenuated more than the pump as the strong pump �eld
partially saturates the frequency-dependent dielectric loss. The constant φ0 is determined
from the zero-frequency limit of the wavevector. From a comparison of the experimentally-
measured dispersion with the theoretical model for the wave-vector we obtain an estimate
for the capacitance to ground of C = 45.6 fF. The junction parameters are obtained from
electrical characterization as detailed in section 8.1. We model the e�ect of inhomogeneity
in the dispersion loading resonators as a single resonant mode with a loaded Q selected to
best match the width of the observed transmission dip.

8.3 Noise measurements

A high-gain, broadband ampli�er is only useful if the ampli�er operation is quiet. For
the JTWPA, the goal is to saturate the ideal quantum lower bound on added noise, as
discussed in chapter 4. To conclusively demonstrate noise near the quantum limit, precision
measurements must be made to ensure that the systematic errors are fractionally small
compared to the measured value. A noise measurement that concludes that the ampli�er is
quantum-limited plus or minus the quantum limit is both uninteresting and unphysical.
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8.3.1 System noise temperature extraction

The fundamental challenge for making precise cryogenic noise measurements is the need
for a calibrated power reference at the cold stage of the dilution refrigerator. Injecting a signal
which is calibrated at room temperature into the system is insu�cient, as the insertion loss
between room temperature and the cold stage cannot be directly measured when the system
is cold. Measuring the total round-trip transmission doesn't help either, as the gain of the
HEMT ampli�er and the insertion loss back up to room temperature is equally unknown.
Thus, we must �nd some physical process which produces a calibrated reference power at
the cold stage, ideally at a relevant reference plane for characterizing an ampli�er.

The two most commonly-used physical processes are the Johnson noise of a variable-
temperature matched load [117] and the shot noise of a tunnel junction [118]. Although both
of these techniques provide a precisely-calibrated broadband noise level, they su�er from the
same general class of drawbacks: each technique requires an intermediate microwave network
between the calibrated source and the remainder of the microwave measurement chain which
is unrelated to the general measurement setups in which the ampli�ers will be used. For
the variable-temperature load, an intermediate piece of coaxial cable is needed to permit
the temperature of the load to be varied independently of the rest of the measurement
chain. Because thermal conductivity in a metal is provided by the electrical conductivity at
dilution refrigerator temperatures, this typically implies that this cable is made of a lossy
material such as stainless steel, introducing an unknown insertion loss on the order of 1-2
dB. For the shot noise tunnel junction source, a bias tee is needed to inject the DC voltage
to bias the tunnel junction, introducing an unknown insertion loss on the order of 1-2 dB.
As a result of these unknown losses, the total system noise temperature reported using
these techniques typically comes with systematic uncertainty of the same order, preventing
a precise determination of the system noise [33, 36].

8.3.2 Circuit QED power calibration

Instead of these calibrated noise reference techniques, we utilize the AC Stark shift of a
cQED system to precisely calibrate the photon number occupation of the cavity. A schematic
of the full microwave setup used in these experiments is shown in Fig 8.12. By independently
measuring the cavity frequency ωr and output coupling rate κ, the output power is then
precisely determined as P = κ~ωrn̄. This is the same technique as is used to determine ηdet

in section 5.3.4. Because we use a cQED system as the source of the power calibration, there is
no additional uncertainty in determining the relevant system noise temperature delivered by a
particular parametric ampli�er in a real experimental context, as the experiment itself serves
as the reference plane. The primary downside of this technique compared to a calibrated
noise reference is the fundamentally narrowband nature of the cavity power calibration, so
we will only be able to extract the system noise at the cavity frequency.

The cQED system used here was again a single-junction 3D transmon. The qubit had a
transition frequency ωqb/2π = 3.58 GHz, measured precisely with Ramsey oscillations, and
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T1 = 22 µs. The cavity parameters are directly measured by �tting the cavity transmission
spectrum to a Lorentzian function, as shown in Figure 8.13, resulting in ωr/2π = 5.984 GHz
and κ/2π = 18.5 MHz.

We calibrate the dispersive shift χ using two techniques. First, we utilize the same AC
Stark shift and measurement dephasing technique described in section 5.3.1, though in this
round of measurements we took a signi�cantly larger quantity of data to reduce the noise and
improve our estimate of χ to the 1% level. The extracted AC Stark shift and dephasing rates
versus measurement power are shown in Figure 8.14a along with the resulting calibration
between input power and n̄ (Figure 8.14b); from the �ts, we extract χ = 584± 5 kHz.

As an independent check on this result, we directly measure the phase shift in the trans-
mitted microwave signal for di�erent qubit states. This data is shown in Figure 8.14c. We use
postselection to purify an ensemble of qubit states in |0〉 and |1〉 (see section 8.3.4 for more
details). We then integrate an intermediate measurement period and plot the resulting points
in the IQ plane. We measure an angular separation ∆θ = 7.3 degrees, implying a value for
the ratio χ/κ = 1

2
tan (∆θ/2) = 3.18×10−2. From the direct measurement of κ and the value

for χ extracted using the AC Stark shift measurement, we �nd χ/κ = (3.16± 0.03)× 10−2,
in excellent agreement. There is a slight 1% asymmetry in the length of the two coherent
state vectors, likely due to the measurement frequency not being exactly at the midpoint
between the cavity frequencies associated with the �rst two qubit states.

This direct measurement of ∆θ requires precisely calibrating the demodulation setup. In
general, the three �rst-order imperfections in the demodulation setup are unequal gains and
DC o�sets in the low-frequency signal path for the I and Q outputs, as well as skew in the
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axes represented by I and Q (implying some mixing of one axis into the other). All of these
e�ects can be measured simultaneously by injecting a signal which is slightly detuned from
the local oscillator, producing oscillations in I and Q at the detuning frequency. By �tting
these oscillations to sine and cosine and extracting the o�set, amplitude, and phase shift, we
can calculate a transformation which removes all of these e�ects to �rst order.

8.3.3 Noise power

With the photon number calibration in hand, measuring the system noise temperature
referred to the cavity output is as simple as measuring the ouput noise spectrum of the
microwave measurement chain while simultaneously injecting a calibrated signal power. In
practice, we excite the cavity with a calibrated n̄ and measure the resulting power at the
output using a spectrum analyzer. We then turn the cavity excitation o�, and inject a tone
directly down the JTWPA pump line, bypassing the cavity, and adjust the generator power
until we measure the same power at the spectrum analyzer. This procedure calibrates this
signal power to the same plane as the photon number calibration, but avoids any extra noise
associated with thermally-induced qubit transitions or small qubit-cavity nonlinearities at
high drive powers from contaminating the ampli�er measurement.

Noise power spectra taken of the output microwave �eld in the vicinity of the cavity
frequency are shown in Figure 8.15. The coherent tone corresponding to a mean cavity
occupation n̄ = 3.62 ± 0.04 allows us to calibrate a cavity-output-referred power axis (left)
as well as a system noise temperature axis using Boltzmann's constant and the 10 kHz
measurement bandwidth (right). With the JTWPA pump o� we extract a system noise of
9.01±0.23 K. This is a very reasonable number; the HEMT ampli�er is manufactured by Low
Noise Factory (model LNC4-8A) and has a speci�ed noise temperature of 3 K. If the HEMT
is meeting this speci�cation, then a 9 K system noise implies an insertion loss of 4.8 dB
between the cavity and the HEMT, including 2.0 dB of loss in the JTWPA. Considering the
passive microwave network in this portion of the measurement chain contains a directional
coupler and three isolators, an insertion loss of 2.8 dB is very reasonable (a typical rule of
thumb is 0.5 to 1 dB per component). We turn the pump on and measure a signal gain of
21.6 dB; we refer the resulting noise level to the cavity output by subtracting this gain from
the measured trace, permitting a direct comparison of noise temperature. We measure a
system noise of 602± 15 mK, or about twice the one-photon quantum limit, equivalent to a
quantum measurement e�ciency η = 0.48± 0.016.

8.3.4 Weak measurement

We make an independent assessment of the quantum e�ciency using the results for de-
phasing in a circuit QED measurement [40]. In the limit relevant to weak measurement, the
dephasing rate is given by Γm = 8χ2n̄/κ. The rate of qubit state information collection is re-
lated to the signal-to-noise ratio (SNR) of integrated readout histograms as Γ′m = (SNR)2/8τ
where τ is the measurement integration time [61]. The quantum e�ciency is the ratio of
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these two quantities, η = Γ′m/Γm, which saturates to 1 when the dephasing rate and the rate
of information collection are equal.

The control sequence for this measurement is shown in Figure 8.15a. We use heralding
to post-select a pure ground state ensemble [49]. We prepare half of the ensemble in |1〉 by
applying a π-pulse and leave the other half in |0〉, followed by a weak measurement of variable
amplitude. A �nal strong measurement allows the use of post-selection to eliminate records
that underwent an undesired state transition. In this manner, we create very pure ensembles;
the only non-ideal events which can contaminate these ensembles are experimental records
which underwent two or more spontaneous state transitions during the weak measurement
period. With the long T1 time of this qubit, this type of event is fairly rare3.

All of the weak measurement period is digitized, allowing for the integration time to be
chosen during data analysis. We integrate the weak measurement for various times in the
range 1 to 4.6 µs and histogram the results. One set of these histograms is shown in Figure
8.16b. We �t the histograms for the |0〉 and |1〉 sub-ensembles to Gaussian functions and
extract the SNR. We repeat this experiment for a range n̄ from 0.3 to 3.6, extracting a mean
quantum e�ciency η = 0.49± 0.01, in excellent agreement with the result obtained from the
noise power method.

3We can crudely estimate an upper bound on this e�ect in the following manner. The total time between
the strong measurements τm is less than 5 µs, and the probability of �nding the qubit in the excited state in
thermal equilibrium P|1〉,therm is smaller than 5%. If we assume the thermalization time scale is the same as
T1, then the probability of a qubit starting in the excited state, decaying due to T1, and then being thermally
re-excited is smaller than P|1〉,therm[1 − exp (−τm/T1)]2 = 0.002. The fact that these events can only have
one physical time-ordering of course further suppresses this probability.
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8.3.5 Quantum e�ciency analysis

The directly measured noise quantity in these experiments is the quantum e�ciency of
the entire microwave measurement chain, η, referred to the plane coincident with the output
of the 3D cavity. This single number involves contributions from several sources that all
conspire to reduce the quantum e�ciency of the measurement chain from unity. We identify
four di�erent components to the measured value: insertion loss between the cavity and
JTWPA (ηL), the insertion loss of the JTWPA itself (ηD), the �nite size of the HEMT noise
compared to the ampli�ed quantum noise at the output of the JTWPA (ηH), and �nally an
additional factor due to possible unknown factors intrinsic to the JTWPA itself (ηJ).

We measure the insertion loss of the intermediate microwave network between the cavity
and the JTWPA in a separate measurement at 77 K. We �nd an insertion loss of 1.6 dB
at 5.9833 GHz, equivalent to ηL = 0.69. We can estimate ηD using the theory developed in
section 7.5.5. From Figure 8.9, we extract a small-signal insertion loss of 2.0 dB at 5.9833
GHz. If we attribute all of this loss to the dielectric loss in the capacitance to ground in
each unit cell, then the attenuation per unit cell is Ai = 9.8 × 10−4 dB. At the operating
point used for the weak measurement calibration of η, the JTWPA provided 21.6 dB of gain.
In the simple approximation of purely exponential gain with length, each unit cell delivers
1.06 × 10−2 dB of gain. From (7.67), we predict an input-referred noise of 1.1 quanta, or a
quantum e�ciency η = 0.9. Utilizing the full gain pro�le in length predicted from theory
provides a very small correction to this number, a further reduction in η on the order of
0.001. This result suggests that the use of a relatively lossy SiO2 dielectric is not a dominant
e�ect in setting the noise temperature of the ampli�er. With only a modest reduction in
dielectric loss tangent, the contribution of the distributed loss in the ampli�er to the quantum
e�ciency can be further reduced to the few-percent level.

If the JTWPA were fully quantum-limited, the output noise at the input to the HEMT
would be 41.5 K, implying the 3 K HEMT noise is not completely negligible compared to
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Figure 8.17 : Measured input power gain compression curve, showing P1dB = −99 dBm.

the ampli�ed quantum noise. From these values we calculate ηH = 0.93. Combining these
results and solving for the unknown factor gives ηJ = 0.85, implying that the parametric
process in the JTWPA is operating with a high quantum e�ciency. Although ηD is not
fundamental to the JTWPA and can be reduced in future devices by using a lower-loss
dielectric, we consider it to be part of the intrinsic quantum e�ciency of this device. Thus,
we calculate the quantum e�ciency of Device A as ηDηJ = 0.76. These values are realistically
just estimates and could easily have unaccounted-for systematic errors of 10-20%.

8.4 Projective qubit readout

Because one of the motivating applications of the JTWPA is the simultaneous readout of
multiple superconducting qubits, evaluating the performance of the ampli�er in the context
of projective qubit readout is important. From a quantitative standpoint, the projective
measurement performance of the ampli�er only depends on the input compression power
and the measurement e�ciency, as these two quantities determine how well qubit readout
histograms can be separated. For reading out more than one qubit, the ampli�er bandwidth
is also important, as each qubit will typically have its own readout resonator, and to ensure
a clean readout of each qubit the detuning between cavity frequencies should be at least
several cavity linewidths. The very large bandwidth of the JTWPA handily satis�es this
condition for typical cQED parameters; with κ = 10 MHz and a 5κ detuning, about 30
readout resonators could �t into one gain sideband.

8.4.1 Input compression power

From the same signal power calibration used in section 8.3.3, we can measure the gain of
the ampli�er as a function of the input signal power. This measurement is shown in Figure
8.17, with 1 dB gain compression occurring with an input signal of -99 dBm. This value is
about 10 dB larger than demonstrated in any JPA with comparable gain [94, 36].
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8.4.2 Single-qubit readout and extrapolation

Lacking a multi-qubit platform, we instead use a single 3D transmon to benchmark the
projective readout performance of the JTWPA. Realizing a good projective measurement
requires a cQED system optimized in a di�erent regime than the weak measurement regime
used for the noise calibrations; namely, the dispersive shift 2χ should be of the same order as
κ, the cavity linewidth4. As such, we substitute another qubit into the cavity with a smaller
qubit-cavity detuning ∆, and decrease the output coupling rate, both of which enhance the
ratio χ/κ. The values achieved in the experiment were χ/2π = 2.2 MHz and κ/2π = 8.7
MHz. The qubit had a relatively short relaxation time T1 = 6 µs.

The control sequence for projective readout is the same as in Figure 8.16a except for the
absence of the weak measurement. Using n̄ = 23.3 and a 100 ns integration window, we
measure the well-separated readout histograms shown in Figure 8.18a. We extract a raw
measurement �delity F = 1− P1|0 − P0|1 = 0.967 where Pa|b is the probability of identifying
the qubit state as |a〉 when it was prepared as |b〉. The error is dominated by relaxation
of the qubit and spurious excitation between the heralding readout and the �nal readout,
contributing 0.026 and 0.007, respectively. Based on Gaussian �ts to the state histograms,
the intrinsic overlap contributes about 10−5 of the total measurement error. The readout
error due to this histogram overlap (associated with the quantum e�ciency) is plotted versus
readout power (and n̄) in Figure. 8.18b. The readout power needed to achieve a 10−5 error
level is 14 dB below the 1 dB compression power of the JTWPA, implying that over 20
qubits could be simultaneously read out without a degradation in performance. `

4Technically speaking there is a global optimum at 2χ = κ, but this is not stringently required for good
projective readout.
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Chapter 9

Future directions

9.1 Quantum feedback control

The stabilization of Rabi oscillations was successful partially due to the simplicity of the
direct feedback control law, which does not require complex signal processing to implement.
The extra delay time associated with real-time calculations, even in fast, dedicated digital
hardware, is on the same order as the total analog loop delay measured in section 5.3.7, and
this delay time played a large role in limiting the feedback performance. With coherence
times of superconducting qubits continually improving, the critical rates necessary to achieve
good feedback performance can be relaxed as the qubit decoherence rates decrease.

With more dwell time available for signal processing calibrations, far more elaborate
feedback protocols may be implemented. For example, in the cavity QED experiment which
demonstrated the stabilization of Fock states using feedback [39], the coherence times of
the Fock states were on the order of milliseconds, with one measurement Rydberg atom
detected every 82 µs. These time scales are long enough that a real-time computer was
employed to use a complex Bayesian inference procedure to update a real-time estimate of
the density matrix of the cavity state and apply a brief correction pulse. This procedure
included the e�ects of many experimental imperfections, including a relatively low atom
detection e�ciency of 35% and the fact that the atom source sometimes failed to emit an
atom. As such, in spite of these ine�ciencies, the feedback loop prepares the target state
with a �delity of about 0.8, and is able to rapidly detect a quantum jump in the �eld after
only about 3 atom passages and begin applying a correction.

The other major limiting factor in the Rabi stabilization experiment was the relatively
low quantum measurement e�ciency achieved of at best 40%. By reducing the losses between
the cavity and parametric ampli�er this number can be improved somewhat, though typical
system quantum e�ciencies at QNL are still about 50%. Because the JTWPA does not
intrinsically require a microwave circulator between the cavity and ampli�er, it is possible
that careful microwave engineering will permit the direct integration of the ampli�er on the
same chip as the qubit and cavity. By eliminating the insertion loss associated with the
intermediate microwave components, and with a modestly higher capacitor dielectric quality
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Figure 9.1 : a Circuit model of transamp, showing di�erential launch using hybrid, single-junction

transmon qubit in purple, nonlinear resonator (LJPA) in blue, and the bias line used to �ux-

pump the LJPA (red). b False-color electron-microscope image of a transamp chip; the coloring

corresponds to the circuit schematic in a.

factor (readily achievable in other fabrication processes), the quantum e�ciency of this setup
could potentially read 80%-90%.

Another route to achieving high quantum e�ciency is integrating the quantum-limited
ampli�er into the readout cavity itself. There is an e�ort at QNL to do just this. The
device is called the transamp (short for transmon ampli�er); a circuit schematic and an
image of a fabricated device are shown in Figure 9.1. The basis for the transamp is to
couple the transmon qubit directly to a nonlinear resonator, which is driven by a strong �ux
modulation. This can be thought of as a dispersive circuit QED readout with some intrinsic
gain at the level of the cavity itself. Because of this gain, the losses between this device
and the next following ampli�er should not participate as strongly as they do in a normal
cQED with following paramp setup. The back-action of this type of readout is not as simple
as the straightforward dispersive cQED readout, however, and achieving quantum-limited
performance in this system is an outstanding experimental challenge.

A variety of interesting feedback protocols become possible in superconducting qubits
with the addition of fast real-time signal processing, further improvements to the quantum
measurement e�ciency, or both. Some examples of single-qubit experiments which would
be possible with higher measurement e�ciency include the rapid puri�cation of an unknown
qubit state using adaptive measurements [119], the potential demonstration of measurement-
induced steering of the qubit state evolution during measurement [120], and feedback control
based purely on the quantum Zeno e�ect [121].

Two similar experiments to the Rabi stabilization experiment have since been performed
by other groups, utilizing fast digital electronics to implement more complex control proto-
cols. In reference [122], an FPGA was used as the feedback controller to enable the stabi-
lization of the qubit along the x-axis of the Bloch sphere with an e�ciency of about 50%,
limited by the quantum measurement e�ciency. In reference [123], Rabi oscillations were
stabilized using stroboscopic projective measurements to check the state of the qubit during
the moments of the oscillation corresponding to qubit eigenstates. A fast control protocol
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implemented in an FPGA applied a π-pulse to �ip the qubit state if it was not found in the
right state. The reliance on projective measurements relaxes the stringent requirement on
quantum e�ciency, allowing a stabilization of Rabi oscillations with a �delity of 85%.

The remote entanglement-by-measurement experiment performed at QNL [50] only cre-
ated two-qubit entanglement in a probabilistic manner. Adding feedback control to this
experiment could enable the deterministic creation of this entanglement by actively driving
the system back into the entangled state when the continuous joint measurement detects
evolution towards an error state [124, 125]. A version of this experiment utilizing projective
measurements on the joint state of two qubits in the same cavity has been experimentally
demonstrated in reference [126].

9.2 JTWPA development

Although the JTWPA device discussed in chapter 8 is the result of several years of
development, it is essentially still a �rst-generation device. Now that the theory has been
validated, and a working device demonstrated, there is plenty of engineering left to do to
create a more highly optimized device.

The dynamic range of the JTWPA is essentially set by the junction critical current.
From the discussion in section 7.5.3, if we were to increase the dynamic range by raising the
junction critical current, the unit cell inductance and thus the gain would fall. A similar
constraint limits the dynamic range of JPAs, due to the relationship between bandwidth,
center frequency, and critical current discussed in section 4.3.3. There is a technique which
has been utilized in JPAs to sidestep this issue [94], which is to replace the single junction of
critical current I0 (and corresponding Josephson inductance L ∝ 1/I0) with a series array of
N junctions, each with critical current NI0 (and inductance L′ = L/N). The total critical
current of the array is then N times larger, though the inductance has remained constant,
enabling an increase in the maximum pump power of a factor of N2. Because of the need
to utilize SQUIDs rather than single junctions to tune the center frequency of the ampli�er,
this technique cannot be pushed to an arbitrarily long array without eventually introducing
instabilities related to multiple SQUID energy con�gurations.

This technique can be readily adapted to the JTWPA, and the picture is even more
simple due to the fact that only junction arrays rather than SQUID arrays are necessary
due to the large intrinsic bandwidth. By moving towards mini-arrays of 3 junctions per unit
cell, the dynamic range of the JTWPA could be increased by an order of magnitude. This is
a very minor design change, and should not increase the size of the device as the junctions
are by far the smallest circuit element. It is not presently understood if this approach
has any fundamental limitations; a move to 10-junction mini-arrays in each unit cell would
push the dynamic range up by two orders of magnitude. Based on the extrapolation in
section 8.4.2, such a large dynamic range is not necessary for the readout of, say, 100 qubits
(and, moreover, the resource overhead of adding another quantum-limited ampli�er is small
compared to the resource overhead of dozens of qubits), so scalable quantum computing may
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not be an application that demands pushing this approach to the limit.
The gain pro�le of the JTWPA shown in section 8.2.3 is not completely smooth, but

contains some∼ 2 dB ripples due to the imperfect impedance matching between the nonlinear
transmission line and the linear feedlines. This can be improved in future devices by more
carefully matching the nonlinear impedance to 50 Ω. Some of this mismatch is also likely
due to the wirebonds which make the connection between the chip and the PCB on which
it is mounted. Future JTWPA devices may be integrated directly on the same chip as the
qubit and cavity, removing the need for the large CPW taper structure and the wirebonds.
This may further improve the impedance matching and reduce the gain ripple.

At present, an external directional coupler is used to inject the strong pump tone which
drives the JTWPA. This component introduces some loss, which reduces the overall quantum
e�ciency by about 0.5 to 1 dB. Utilizing either a PCB-level or on-chip superconducting
directional coupler, this component could be eliminated, reducing the total component count
and eliminating some loss. Alternatively, because the pump tone is narrowband and �xed
in frequency to be near the RPM dispersion feature, a more specialized structure than a
traditional directional coupler could be employed instead, as only narrowband directivity is
required to isolate the pump from the ampli�er's input port.

The layout of the JTWPA is reminiscent of a standard meandered transmission line with
smooth bends. However, the need for these features in a geometric transmission line funda-
mentally arises from the fact that the geometry of the transmission line sets the impedance,
so smooth features are necessary to realize a consistent impedance. In the JTWPA, the
impedance is entirely set by the ratio of the size of the Josephson inductance to the capaci-
tance to ground in each unit cell. Because each unit cell is much shorter than a wavelength,
only the electrical properties on the length scale of many tens of unit cells is important to
wave propagation. Thus, the smooth bends in the JTWPA could be eliminated in favor
of sharp 90◦ corners. Furthermore, because the transmission line inductance is almost en-
tirely the kinetic inductance of the Josephson junction and the capacitance is formed from
high-aspect-ratio, nearly-ideal parallel plate capacitors, the transmission line segments could
be brought much closer together without any serious inter-trace coupling. These two facts
combined imply that the footprint of the JTWPA on chip could be signi�cantly reduced,
quite possibly occupying an area an order of magnitude smaller than the present device.

Besides improvements in the engineering of the JTWPA, there remain plenty of funda-
mental science questions to be addressed in this system. With no signal incident at the input
of the JTWPA, the output state contains two-mode correlations at symmetrically detuned
frequencies about the pump frequency. If the quantum performance of the JTWPA turns out
to be su�ciently ideal, these two-mode correlations should be large enough to realize two-
mode squeezed states [88]. These states have been generated using JPAs [127, 128] and have
been utilized as a resource in quantum information processing [129]. A technique has been
proposed to utilize broadband two-mode squeezing to realize a high-�delity projective qubit
measurement on a much shorter time scale than what is possible using conventional cQED
readout with unsqueezed light [130]. The JTWPA could be ideally suited to implementing
this scheme, if future measurements of its squeezing properties reveal good performance. A
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source of very broadband two-mode squeezing could also potentially enable future directions
in microwave quantum optics which have not yet been imagined.



128

Bibliography

[1] Brune, M., Haroche, S., Lefevre, V., Raimond, J. M. & Zagury, N. Quantum non-
demolition measurement of small photon numbers by Rydberg-atom phase-sensitive
detection. Phys. Rev. Lett. 65, 976�979 (1990).

[2] Brune, M. et al. From Lamb shift to light shifts: Vacuum and subphoton cavity �elds
measured by atomic phase sensitive detection. Phys. Rev. Lett. 72, 3339�3342 (1994).

[3] Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239�242
(1999).

[4] Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A �Schrödinger Cat�
Superposition State of an Atom. Science 272, 1131�1136 (1996).

[5] Myatt, C., King, B. & Turchette, Q. Decoherence of quantum superpositions through
coupling to engineered reservoirs. Nature 403, 269�73 (2000).

[6] Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with
atoms and photons in a cavity. Rev. Mod. Phys. 73, 565�582 (2001).

[7] Nobelprize.org. The 2012 Nobel Prize in Physics - Press Release (2012). URL http:

//www.nobelprize.org/nobel_prizes/physics/laureates/2012/press.html.

[8] Bloch, I. Ultracold quantum gases in optical lattices. Nature Physics 1, 23�30 (2005).

[9] Dobrovitski, V. V., Fuchs, G. D., Falk, A. L., Santori, C. & Awschalom, D. D. Quantum
Control over Single Spins in Diamond. In Langer, JS (ed.) Annual Review of Condensed
Matter Physics, vol. 4, 23�50 (Annual Reviews, Palo Alto, CA, USA, 2013).

[10] Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541�545
(2012).

[11] Kloe�el, C. & Loss, D. Prospects for Spin-Based Quantum Computing in Quantum
Dots. In Langer, JS (ed.) Annual Review of Condensed Matter Physics, vol. 4, 51�81
(Annual Reviews, Palo Alto, CA, USA, 2013).

[12] Leggett, A. J. Macroscopic Quantum Systems and the Quantum Theory of Measure-
ment. Progress of Theoretical Physics Supplement 69, 80�100 (1980).

http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/press.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/press.html


BIBLIOGRAPHY 129

[13] Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum
behavior of a macroscopic degree of freedom: The phase di�erence across a Josephson
junction. Phys. Rev. B 35, 4682�4698 (1987).

[14] Nakamura, Y., Pashkin, Y. a. & Tsai, J. S. Coherent control of macroscopic quantum
states in a single-Cooper-pair box. Nature 398, 4 (1999).

[15] Paik, H. et al. Observation of High Coherence in Josephson Junction Qubits Mea-
sured in a Three-Dimensional Circuit QED Architecture. Phys. Rev. Lett. 107, 240501
(2011).

[16] Chang, J. B. et al. Improved superconducting qubit coherence using titanium nitride.
App. Phys. Lett. 103, 012602 (2013).

[17] Blais, A., Huang, R.-S., Wallra�, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum
computation. Phys. Rev. A 69, 62320 (2004).

[18] Wallra�, a. et al. Strong coupling of a single photon to a superconducting qubit using
circuit quantum electrodynamics. Nature 431, 162�167 (2004).

[19] Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of Quantum Jumps in a Supercon-
ducting Arti�cial Atom. Phys. Rev. Lett. 106, 110502 (2011).

[20] Slichter, D. H. Quantum jumps and measurement backaction in a superconducting
qubit. Ph.D. thesis, University of California, Berkeley (2011).

[21] Schuster, D. I. et al. Resolving photon number states in a superconducting circuit.
Nature 445, 515�518 (2007).

[22] Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting res-
onator. Nature 459, 546�549 (2009).

[23] Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon
Schrödinger cat states. Science 342, 607�10 (2013).

[24] Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single quantum
trajectories of a superconducting quantum bit. Nature 502, 211�214 (2013).

[25] Weber, S. J. et al. Mapping the optimal route between two quantum states. Nature
511, 570�3 (2014).

[26] Weber, S. Quantum Trajectories of a Superconducting Qubit. Ph.D. thesis, University
of California, Berkeley (2014).

[27] Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E. & Siddiqi, I. Reduction of the
radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62�65 (2013).



BIBLIOGRAPHY 130

[28] Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information
(Cambridge Univ. Press, Cambridge, 2000).

[29] Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A 86, 32324 (2012).

[30] Barends, R. et al. Superconducting quantum circuits at the surface code threshold for
fault tolerance. Nature 508, 500�3 (2014).

[31] Ristè, D. et al. Detecting bit-�ip errors in a logical qubit using stabilizer measurements.
arXiv 1411.5542 (2014).

[32] Chow, J. M. et al. Implementing a strand of a scalable fault-tolerant quantum com-
puting fabric. Nature Comm. 5, 4015 (2014).

[33] Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W.
Ampli�cation and squeezing of quantum noise with a tunable Josephson metamaterial.
Nature Physics 4, 929�931 (2008).

[34] Bergeal, N. et al. Phase-preserving ampli�cation near the quantum limit with a Joseph-
son ring modulator. Nature 465, 64�68 (2010).

[35] Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetom-
etry with a quantum limited SQUID parametric ampli�er. Phys. Rev. B 83, 134501
(2011).

[36] Mutus, J. Y. et al. Strong environmental coupling in a Josephson parametric ampli�er.
App. Phys. Lett. 104, 263513 (2014).

[37] Kelly, J. et al. State preservation by repetitive error detection in a superconducting
quantum circuit. Nature 519, 66�69 (2015).

[38] Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge
Univ. Press, 2009).

[39] Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number
states. Nature 477, 73�77 (2011).

[40] Boissonneault, M., Gambetta, J. & Blais, A. Dispersive regime of circuit QED: Photon-
dependent qubit dephasing and relaxation rates. Phys. Rev. A 79, 013819 (2009).

[41] Korotkov, A. N. Quantum Bayesian approach to circuit QED measurement. arXiv:
1111.4016 (2011).

[42] Girvin, S. M. Circuit QED: superconducting qubits coupled to microwave photons.
In Les Houches, Session XCVI: Quantum Machines: Measurement and Control of
Engineered Quantum Systems, chap. 3, 113�256 (Oxford University Press, Oxford,
2014).



BIBLIOGRAPHY 131

[43] Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. In-
troduction to quantum noise, measurement, and ampli�cation. Rev. Mod. Phys. 82,
1155�1208 (2010).

[44] Feldman, M. J., Parrish, P. T. & Chiao, R. Y. Parametric ampli�cation by unbiased
Josephson junctions. Journal of Applied Physics 46, 4031�4042 (1975).

[45] Silver, A. H., Pridmore-Brown, D. C., Sandell, R. D. & Hurrell, J. Parametric prop-
erties of SQUID lattice arrays. IEEE Transactions on Magnetics 17, 412�415 (1981).

[46] Smith, A. D., Sandell, R. D., Burch, J. F. & Silver, A. H. Low noise microwave
parametric ampli�er. IEEE Transactions on Magnetics 21, 1022�1028 (1985).

[47] Yurke, B. et al. Observation of parametric ampli�cation and deampli�cation in a
Josephson parametric ampli�er. Phys. Rev. A 39, 2519�2533 (1989).

[48] Yurke, B., Roukes, M. L., Movshovich, R. & Pargellis, A. N. A low-noise series-array
Josephson junction parametric ampli�er. App. Phys. Lett. 69, 3078�3080 (1996).

[49] Johnson, J. E. et al. Heralded State Preparation in a Superconducting Qubit. Phys.
Rev. Lett. 109, 050506 (2012).

[50] Roch, N. et al. Observation of Measurement-Induced Entanglement and Quantum
Trajectories of Remote Superconducting Qubits. Phys. Rev. Lett. 112, 170501 (2014).

[51] Wiseman, H. M. Quantum physics: Cruise control for a qubit. Nature 490, 43�44
(2012).

[52] Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press,
Cambridge, 1992), �rst edn.

[53] Heisenberg, W. K. The physical principles of the quantum theory (1930).

[54] Vijay, R., Devoret, M. H. & Siddiqi, I. Invited review article: The Josephson bifurcation
ampli�er. Rev. Sci. Inst. 80, 111101 (2009).

[55] Lupascu, A. et al. Quantum non-demolition measurement of a superconducting two-
level system. Nature Physics 3, 119�125 (2007).

[56] Boulant, N. et al. Quantum nondemolition readout using a Josephson bifurcation
ampli�er. Phys. Rev. B 76, 014525 (2007).

[57] Korotkov, A. N. Continuous quantum measurement of a double dot. Phys. Rev. B 60,
5737�5742 (1999).

[58] Jacobs, K. & Steck, D. A Straightforward Introduction to Continuous Quantum Mea-
surement. Contemporary Physics 47, 279 (2006).



BIBLIOGRAPHY 132

[59] Ruskov, R. & Korotkov, A. N. Quantum feedback control of a solid-state qubit. Phys.
Rev. B 66, 41401 (2002).

[60] Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum
feedback. Nature 490, 77�80 (2012).

[61] Korotkov, A. N. Selective quantum evolution of a qubit state due to continuous mea-
surement. Phys. Rev. B 63, 15 (2000).

[62] Korotkov, A. N. Nonideal quantum detectors in Bayesian formalism. Phys. Rev. B
67, 235408 (2003).

[63] Hofmann, H. F., Mahler, G. & Hess, O. Quantum control of atomic systems by
homodyne detection and feedback. Phys. Rev. A 57, 4877�4888 (1998).

[64] Wang, J. & Wiseman, H. M. Feedback-stabilization of an arbitrary pure state of a
two-level atom. Phys. Rev. A 64, 63810 (2001).

[65] Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the
ground state of motion. Nature 463, 72�75 (2010).

[66] O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechan-
ical resonator. Nature 464, 697�703 (2010).

[67] Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W.
Coherent state transfer between itinerant microwave �elds and a mechanical oscillator.
Nature 495, 210�4 (2013).

[68] Tinkham, M. Introduction to Superconductivity: Second Edition. Dover Books on
Physics (Dover Publications, 2004).

[69] Devoret, M. H. Quantum �uctuations in electrical circuits. In Les Houches, Session
LXIII, 351�386 (Elsevier, Amsterdam, 1995).

[70] Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031�1042
(2008).

[71] Houck, A. A., Koch, J., Devoret, M. H., Girvin, S. M. & Schoelkopf, R. J. Life after
charge noise: recent results with transmon qubits. Quantum Information Processing
8, 105�115 (2009).

[72] Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys.
Rev. A 76, 42319 (2007).

[73] Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge
qubits. Phys. Rev. B 77, 180502 (2008).



BIBLIOGRAPHY 133

[74] Chow, J. M. et al. Randomized Benchmarking and Process Tomography for Gate
Errors in a Solid-State Qubit. Phys. Rev. Lett. 102, 90502 (2009).

[75] Chow, J. M. et al. Optimized driving of superconducting arti�cial atoms for improved
single-qubit gates. Phys. Rev. A 82, 40305 (2010).

[76] Berman, P. R., Bates, D. R. & Bederson, B. (eds.) Cavity Quantum Electrodynamics
(Academic Press, 1993).

[77] Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electro-
dynamics. Reports on Progress in Physics 69, 1325 (2006).

[78] Blais, A. et al. Quantum-information processing with circuit quantum electrodynamics.
Phys. Rev. A 75, 32329 (2007).

[79] Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 2008).

[80] Ho�man, A. J., Srinivasan, S. J., Gambetta, J. M. & Houck, A. A. Coherent control of
a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys. Rev.
B 84, 184515 (2011).

[81] Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443�447
(2007).

[82] Mariantoni, M. et al. Photon shell game in three-resonator circuit quantum electrody-
namics. Nature Physics 7, 18 (2010).

[83] Je�rey, E. et al. Fast Accurate State Measurement with Superconducting Qubits. Phys.
Rev. Lett. 112, 190504 (2014).

[84] Hakamata, T. Photomultiplier Tubes: Principle and Applications (Hamamatsu Pho-
tonics K.K. Electron Tube Division, 2007), 3a edn.

[85] Caves, C. Quantum limits on noise in linear ampli�ers. Phys. Rev. D 26 (1982).

[86] Haus, H. A. & Mullen, J. A. Quantum Noise in Linear Ampli�ers. Physical Review
128, 2407�2413 (1962).

[87] He�ner, H. The Fundamental Noise Limit of Linear Ampli�ers. Proceedings of the IRE
50, 1604�1608 (1962).

[88] Loudon, R. & Knight, P. L. Squeezed Light. Journal of Modern Optics 34, 709�759
(1987).

[89] Wadefalk, N. et al. Cryogenic wide-band ultra-low-noise IF ampli�ers operating at
ultra-low DC power. IEEE Transactions on Microwave Theory and Techniques 51,
1705�1711 (2003).



BIBLIOGRAPHY 134

[90] Bourassa, J., Beaudoin, F., Gambetta, J. M. & Blais, A. Josephson-junction-embedded
transmission-line resonators: From Kerr medium to in-line transmon. Phys. Rev. A
86, 13814 (2012).

[91] Castellanos-Beltran, M. A. Development of a Josephson Parametric Ampli�er for the
Preparation and Detection of Nonclassical States of Microwave Fields. Ph.D. thesis,
University of Colorado (2010).

[92] Eichler, C. Experimental Characterization of Quantum Microwave Radiation and its
Entanglement with a Superconducting Qubit. Ph.D. thesis, ETH Zuerich (2013).

[93] Castellanos-Beltran, M. A. & Lehnert, K. W. Widely tunable parametric ampli�er
based on a superconducting quantum interference device array resonator. App. Phys.
Lett. 91, 083509 (2007).

[94] Eichler, C. & Wallra�, A. Controlling the dynamic range of a Josephson parametric
ampli�er. EPJ Quantum Technology 1, 2 (2014).

[95] Abdo, B. et al. Josephson directional ampli�er for quantum measurement of super-
conducting circuits. Phys. Rev. Lett 112, 1�5 (2014).

[96] Hansryd, J., Andrekson, P. A., Westlund, M., Li, J. & Hedekvist, P. O. Fiber-based
optical parametric ampli�ers and their applications. IEEE Journal on Selected Topics
in Quantum Electronics 8, 506�520 (2002).

[97] Sweeny, M. & Mahler, R. A travelling-wave parametric ampli�er utilizing Josephson
junctions. IEEE Transactions on Magnetics 21, 654�655 (1985).

[98] Sarovar, M., Ahn, C., Jacobs, K. & Milburn, G. J. Practical scheme for error control
using feedback. Phys. Rev. A 69, 52324 (2004).

[99] Zhang, Q., Ruskov, R. & Korotkov, A. N. Continuous quantum feedback of coherent
oscillations in a solid-state qubit. Phys. Rev. B 72, 1�11 (2005).

[100] Schuster, D. I. et al. Ac Stark shift and dephasing of a superconducting qubit strongly
coupled to a cavity �eld. Phys. Rev. Lett. 94, 123602 (2005).

[101] Kamal, A., Marblestone, A. & Devoret, M. Signal-to-pump back action and self-
oscillation in double-pump Josephson parametric ampli�er. Phys. Rev. B 79, 184301
(2009).

[102] Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit.
Phys. Rev. Lett 110, 1�5 (2013).

[103] Jin, X. Y. et al. Thermal and Residual Excited-State Population in a 3D Transmon
Qubit. arXiv 1412.2772v2 (2014).



BIBLIOGRAPHY 135

[104] Barends, R. et al. Minimizing quasiparticle generation from stray infrared light in
superconducting quantum circuits. App. Phys. Lett. 99, 1�4 (2011).

[105] Chow, J. M. et al. Randomized benchmarking and process tomography for gate errors
in a solid-state qubit. Phys. Rev. Lett 102, 1�4 (2009).

[106] Merkel, S. T. et al. Self-consistent quantum process tomography. Phys. Rev. A 87,
1�9 (2013).

[107] Blume-Kohout, R. et al. Robust, self-consistent, closed-form tomography of quantum
logic gates on a trapped ion qubit. arXiv 1310.4492 (2013).

[108] Korotkov, A. N. & Averin, D. V. Continuous weak measurement of quantum coherent
oscillations. Phys. Rev. B 64, 165310 (2001).

[109] Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2012), 5 edn.

[110] Yaakobi, O., Friedland, L., Macklin, C. & Siddiqi, I. Parametric ampli�cation in
Josephson junction embedded transmission lines. Phys. Rev. B 87, 144301 (2013).

[111] O'Brien, K., Macklin, C., Siddiqi, I. & Zhang, X. Resonant Phase Matching of Joseph-
son Junction Traveling Wave Parametric Ampli�ers. Phys. Rev. Lett. 113, 157001
(2014).

[112] Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between
Light Waves in a Nonlinear Dielectric. Physical Review 127, 1918�1939 (1962).

[113] Pozar, D. M. Microwave Engineering (Wiley, 2005), 3 edn.

[114] Kylemark, P., Sunnerud, H., Karlsson, M. & Andrekson, P. A. Semi-Analytic Satura-
tion Theory of Fiber Optical Parametric Ampli�ers. J. Lightwave Technol. 24, 3471
(2006).

[115] Soljaci¢, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensi-
tivity. J. Opt. Soc. Am. B 19, 2052�2059 (2002).

[116] Tolpygo, S. K. et al. Fabrication Process and Properties of Fully Planarized, Deep-
Submicron Nb/Al-AlOx/Nb Josephson Junctions for VLSI Circuits. arXiv 1408.5829
(2014).

[117] Fernandez, J. E. A Noise-Temperature Measurement System Using a Cryogenic At-
tenuator. TMO Progress Report 42, 1�9 (1998).

[118] Spietz, L., Lehnert, K. W., Siddiqi, I. & Schoelkopf, R. J. Primary electronic ther-
mometry using the shot noise of a tunnel junction. Science 300, 1929�32 (2003).



BIBLIOGRAPHY 136

[119] Jacobs, K. How to project qubits faster using quantum feedback. Phys. Rev. A 67,
30301 (2003).

[120] Wiseman, H. M. & Gambetta, J. M. Are Dynamical Quantum Jumps Detector De-
pendent? Phys. Rev. Lett. 108, 220402 (2012).

[121] Jacobs, K. Feedback control using only quantum back-action. New Journal of Physics
12, 43005 (2010).

[122] de Lange, G. et al. Reversing Quantum Trajectories with Analog Feedback. Phys.
Rev. Lett. 112, 080501 (2014).

[123] Campagne-Ibarcq, P. et al. Persistent Control of a Superconducting Qubit by Strobo-
scopic Measurement Feedback. Phys. Rev. X 3, 021008 (2013).

[124] Sarovar, M., Goan, H.-S., Spiller, T. P. & Milburn, G. J. High-�delity measurement
and quantum feedback control in circuit QED. Phys. Rev. A 72, 62327 (2005).

[125] Hofer, S. G., Vasilyev, D. V., Aspelmeyer, M. & Hammerer, K. Time-Continuous Bell
Measurements. Phys. Rev. Lett. 111, 170404 (2013).

[126] Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity mea-
surement and feedback. Nature 502, 350�4 (2013).

[127] Eichler, C. et al. Observation of two-mode squeezing in the microwave frequency
domain. Phys. Rev. Lett 107, 1�5 (2011).

[128] Bergeal, N., Schackert, F., Frunzio, L. & Devoret, M. H. Two-Mode Correlation of
Microwave Quantum Noise Generated by Parametric Down-Conversion. Phys. Rev.
Lett. 108, 123902 (2012).

[129] Flurin, E., Roch, N., Pillet, J. D., Mallet, F. & Huard, B. Superconducting Quantum
Node for Entanglement and Storage of Microwave Radiation. Phys. Rev. Lett. 114,
90503 (2015).

[130] Didier, N., Kamal, A., Blais, A. & Clerk, A. A. Heisenberg-limited qubit readout with
two-mode squeezed light. arXiv 1502.00607 (2015).



137

Appendix A

Derivation of parametric ampli�cation in

the JTWPA

In this appendix, I reproduce the full derivation of the coupled wave equations for the
JTWPA. This work appears as Appendix 1 in reference [111]. The nonlinear wave equation
describing the JTWPA was derived in section 7.2 as

C0
∂2φ

∂t2
− a2

L

∂2φ

∂x2
− Cja2 ∂4φ

∂x2∂t2
=

a4

2I2
0L

3

∂2φ

∂x2

(
∂φ

∂x

)2

(A.1)

We take the ansatz that the solutions will be forward propagating waves of the form:

φ =
1

2
[Ap(x)ei(kpx+ωpt) + As(x)ei(ksx+ωst) + Ai(x)ei(kix+ωit) + c.c] (A.2)

where Am is the slowly varying amplitude, km is the wave vector, and ωm is the angular
frequency. We substitute the above expression into the nonlinear wave equation then make
the following approximations:

1. Neglect the second derivatives of the slowly varying amplitudes using the slowly varying

envelope approximation:
∣∣∣∂2Am

∂x2

∣∣∣� ∣∣km∂Am

∂x

∣∣.
2. Neglect the �rst derivatives of the slowly varying amplitudes on the right side of the

nonlinear wave equation (ie, in the nonlinear polarizability):
∣∣∂Am

∂x

∣∣� |kmAm|.
Considering only the left side of Eq. A.1 and separating out the terms that oscillate at the
pump, signal, and idler frequencies we get the following equation:[

a2ei(tωm+kmx)k2
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where m = p, s, i. De�ning the wave vector as km = ωm
√
C0L

a
√

1−CjLωm
, Eq. A.3 simpli�es to:

−iC0ωm
2

km
ei(tωm+kmx)∂Am(x)

∂x
(A.4)

Now we consider the nonlinear component (the right side of Eq. A.1). The propagation
equation for the pump is:

∂Ap
∂x
− ia4kp

5

16C0I0
2L3ω2

p

Ap
2A∗p = 0 (A.5)

where we have neglected the terms proportional to the amplitudes of the signal and idler as
they are much smaller than the pump �eld. The propagation equation for the signal and
idler, neglecting terms which are quadratic in the signal and idler amplitudes:
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− i a4kp
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3
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Now we solve for the pump propagation, assuming no loss, and obtain:

Ap(x) = Ap,0e
i

a4k5pApA
∗
p

16C0I
2
0L3ω2

p
x

(A.8)

We substitute the solution for the pump �eld (Eq. A.8) into Eqs. A.6 and A.7:

Ap(x) = Ap,0e
iαpx (A.9)

∂As
∂x
− iαsAs − iκsA∗i ei(∆kL+2αp)x = 0 (A.10)

∂Ai
∂x
− iαiAi − iκiA∗sei(∆kL+2αp)x = 0 (A.11)

where the couplings are de�ned as:

αs =
2κk3
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To generalize these equations for arbitrary circuits, we make the substitution C0 = 1/(iωZ2)
and express the pump amplitude in terms of the characteristic impedance and pump current:
Ap,0 = IpZchar/ωp. The couplings are now:

αs =
2κk3

sa
2iZ2(ωs)

Lωs
κs =

κ(2kp − ki)kskiiZ2(ωs)a
2
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(A.15)
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We solve the coupled amplitude equations (A.10,A.11) by making the substitutions As =
ase

iαsx and Ai = aie
iαix to obtain:

∂as
∂x
− iκsa∗i ei(∆kL+2αp−αs−αi)x = 0 (A.18)

∂ai
∂x
− iκia∗sei(∆kL+2αp−αs−αi)x = 0 (A.19)

These equations are analogous to the coupled amplitude equations for an optical parametric
ampli�er, which have the following solution[112]:

as(x) =

[
as(0)

(
cosh gx− i∆k

2g
sinh gx

)
+
iκs
g
a∗i (0) sinh gx

]
ei∆kx/2 (A.20)

ai(x) =

[
ai(0)

(
cosh gx− i∆k

2g
sinh gx

)
+
iκi
g
a∗s(0) sinh gx

]
ei∆kx/2 (A.21)

where ∆k and g are de�ned as:

∆k = ∆kL + 2αp − αs − αi
= 2kp − ks − ki + 2αp − αs − αi (A.22)

g =
√
κsκ∗i − (∆k/2)2 (A.23)
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