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Abstract 

In current cellular biology, we often assume that cells operate at a near steady state. This 

assumption implies that each individual cell performs the same processes at any particular 

moment. However, this assumption proves to be difficult to reconcile with cellular processes that 

are dynamic and asynchronous, such as the cell cycle, in which each cell has its own clock, or ey 

signaling processes such as the MAPK and AKT pathways, which are heterogeneous and 

dynamic from cell to cell. These heterogeneities play an essential role in cell fate decisions, 

including proliferation and differentiation. Cell signaling information also ‘spreads’ to other 

pathways and thus creates complex changes in cellular states, including in metabolic flux and 

gene expression. The connection between cell signaling and cell metabolism raises the question 

of whether cell metabolism is heterogeneous too. Furthermore, metabolic states could influence 

how cells respond to growth signaling cues. 

In the first part of this dissertation, I explore the question of whether cellular metabolism 

is heterogeneous in cell populations. I utilize a fluorescence-based FRET biosensor to probe 

AMPK activity when cellular oxidative phosphorylation (OXPHOS) is inhibited. I show that, in fact, 

at a single-cell level, cells do not utilize OXPHOS equally, and cellular adaptation after OXPHOS 

inhibition never reaches a steady state. 

In the second part, I expand the idea of single-cell metabolism and ask how cell 

metabolism regulates growth signals at the single-cell level. I developed transposase-based 

transfection systems that would allow expression of up to three fluorescence biosensors in one 

transfection to achieve this goal. I also developed an unsupervised clustering technique for multi-

dimensional time-series data to analyze more than 300,000 single cell traces. I showed that the 

signaling activity under metabolic conditions is heterogeneous even in the same type of metabolic 

stress. However, the signaling landscape is not infinite since there are only about 30 modes of 
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responses. This study characterizes the complex interaction between cell metabolism and cellular 

growth signals. 
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Chapter 1 

Introduction 

1.1. Abstract 

This introductory chapter provides an overview of the importance of cell signaling 

heterogeneity at a single-cell level. Growth signals such as ERK and AKT are known to be 

heterogeneous and dynamic across cell populations. Secondly, a comprehensive review of the 

complex interplay between key growth signals and cell metabolism state through the ERK-AKT-

AMPK axis is provided. Lastly, single-cell metabolism is discussed to provide context for my 

subsequent studies. This chapter has five sections :  

1. Overview of single-cell signaling dynamics.  

2. The need for multiplexed studies of single-cell dynamics. 

3. Single-cell metabolic heterogeneity. 

4. Review of crosstalk between growth signaling and metabolism through the ERK-AKT-

AMPK network. 

5. Kinase activity measurements at the single-cell level with fluorescence biosensors. 

1.2. Overview of single-cell signaling dynamics studies 

Cellular homeostasis depends on the ability to process intracellular information, such as 

metabolic states, and extracellular cues, such as growth factors, simultaneously. Network 

responses to a stimulus or drug treatment are heterogeneous across cell populations, due to both  

genetic and non-genetic variance (Lun and Bodenmiller, 2020). Many biological processes, 

including proliferation, differentiation, and energy metabolism, are regulated by dynamic signaling 

networks (Clapham, 2007; Groves and Kuriyan, 2010; Hetz and Saxena, 2017; Yu et al., 2015). 

These networks consist of signaling proteins, with the best known being kinases and 

phosphatases that regulate protein phosphorylation. Thus, studying the phosphorylation status of 

signaling pathways can often be used to interrogate signaling pathway activation. Classically, cell 
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signaling research has focused on identifying the cascade of individual signaling pathways or 

identifying essential kinase-substate activity from these pathways that regulate important cell 

function and provide methods for cell signaling manipulation. Predominantly, the field has relied 

on  biochemical measurements, such as western blots, that require bulk cell populations and do 

not account for cell-to-cell variability and have a very low temporal resolution. 

More recent work has revealed that cell signaling is a dynamic process that cannot be fully 

understood with snapshot measurements. The ERK pathway is a prime example of the 

importance of single-cell signaling dynamics. ERK is a member of the mitogen-activated protein 

kinase (MAPK) family and phosphorylates hundreds of downstream target proteins, including 

transcription factors that control genes involved in cell proliferation and cell survival (Yoon and 

Seger, 2006a). In the MCF10A cell line, epidermal growth factor (EGF) at high concentration (10 

ng/ml) induces sustained ERK activation, while low EGF concentration (0.001 – 0.1 mg/ml) results 

in pulsatile activation of ERK (Albeck et al., 2013a; Aoki et al., 2013; Regot et al., 2014). The 

dynamics of ERK activity can determine cell fate decisions. The PC12 cell line provides a well-

studied example of this concept, where nerve growth factor (NGF) induces sustained ERK 

activation and cell differentiation, while EGF stimulation induces transient ERK pulses that result 

in cell proliferation (Marshall, 1995; Santos et al., 2007). More recently, single-cell analysis of 

PC12 revealed that ERK responses to NGF and EGF are heterogeneous. NGF drives ERK toward 

sustained activation, and EGF drives ERK toward transient activation (Ryu et al., 2015). Further 

study showed that repeated EGF stimulation in PC12 could induce sustained ERK activation 

similar to the NGF effect, and it results in PC12 differentiation just like NGF stimulation. The 

decision to proliferate or differentiate thus depends on the level of ERK activity and not stimulus 

specificity (Chen et al., 2012). These studies exemplify the importance of the temporal pattern of 

signaling cascade on cell fate decisions. 
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1.3. The need for multiplexed studies of single-cell dynamics. 

Cellular information is not only carried over time but also ‘spreads’ to other pathways. 

Signaling pathways are, in fact, highly interconnected. There are two modes of how cell signaling 

information can be directly or indirectly carried across pathways. For direct crosstalk, an enzyme 

in one pathway directly regulates another component of the second pathway through direct 

binding or changing phosphorylation status, which produces an output that is different from each 

individual pathway activation. But more generally, indirect signaling crosstalk can involve kinase-

independent modes of action. For example, the transcriptional output of one pathway may control 

the expression of components in the second pathway. Indirect signaling crosstalks thus can 

create widespread modifications of pathway activities, resulting in complex signaling behavior and 

composite cellular output (Fey et al., 2012; Vert and Chory, 2011).  

One of the significant sources for indirect cross talk comes from cell metabolism. It is 

known that cell signaling can directly alter cell metabolism, with one of the best-known examples 

being the insulin signaling pathway, in which insulin upregulates surface expression of glucose 

transporter (GLUT) proteins, resulting in increased glycolysis (Watson and Pessin, 2001). The 

impact of such changes in metabolic flux on signaling is still an emerging area, but a few examples 

suggest that cell metabolism plays a significant role in signaling cascades. First, multiple receptor 

tyrosine kinases, such as IL-3 receptor, TGF-b receptor, and EGFR, require glycosylation for 

surface expression. Glucose withdrawal or glucose uptake inhibition results in significant growth 

retardation through downregulation of receptor tyrosine kinase surface expression (Fang et al., 

2010; Wellen et al., 2010; Wu and Derynck, 2009). Histone modification is another metabolically 

regulated process. In mammalian cells, histone acetylation is required to open chromatin structure 

and control gene expression (Li et al., 2007). Evidence in yeast suggests that the altered 

availability of acetyl-CoA, the key acetyl donor, directly changes histone acetylation status at 

many sites in the genome (Cai et al., 2011). Another mechanism by which cells sense metabolic 
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state to alter signaling cascades is through mTORC1 activity. The presence of amino acids and 

glucose recruits mTORC1 to the lysosomal surface, its primary site of activation (Saxton and 

Sabatini, 2017). These studies provide evidence that multiplexed-high-temporal-resolution 

signaling behavior measurement is required to establish signaling network kinetics and causality. 

1.4. Single-cell metabolic heterogeneity 

Metabolism is the core cellular process. It is known that metabolism varies across cell 

types and tissues (Hensley et al., 2016; Konagaya et al., 2017; Tasdogan et al., 2020). However, 

very little is known about metabolic heterogeneity within the same cell population. As mentioned 

earlier, the majority of cell-to-cell heterogeneity can arise from non-genetic factors. Metabolism 

might be a key source of cell-to-cell heterogeneity. However, the current approach to metabolic 

studies, such as mass spectrometry and flux analysis, relies on bulk input to increase metabolite 

signals and does not have any single-cell resolution measurement (Vasdekis and 

Stephanopoulos, 2015). Furthermore, to have a comprehensive understanding of metabolism, 

both metabolite concentrations and their fluxes are needed, which are difficult to obtain even at 

bulk. Most single-cell metabolic studies measure metabolic state by gene expression profiles 

(Artyomov and Van den Bossche, 2020). However, this approach is an indirect measurement of 

metabolism and captures only a ‘snapshot’ metabolic activity.  

The best source of direct single-cell metabolism measurements thus far comes from 

studies in yeast. In a nutrient-limited condition, yeast exhibits synchronous and periodic metabolic 

cycles composed of a reductive phase, where glycolytic activity is elevated and biochemical 

molecule uptake increases. This is followed by a distinct oxidative phase, where oxygen 

consumption is increased, and yeast shows higher anabolic activity (Tu et al., 2005). An intriguing 

question raised by this work is whether mammalian cells might also exhibit such cyclic metabolic 

behavior. However, there is no known method to synchronize mammalian cell metabolism to allow 

bulk measurement of metabolites. 
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In chapter 2, we approach the problem of single-cell metabolism by measuring AMP-

activated kinase (AMPK) function through the AMPKAR2 FRET biosensor. AMPK is a 

heterotrimeric complex of serine/threonine kinase that is activated upon binding to AMP/ADP, 

thus acting like an intra-cellular fuel gauge. AMPK activation requires two factors: direct binding 

of AMP/ADP on AMPK subunit and AMPK threonine 172 phosphorylation by its upstream kinase, 

LKB1 (Herzig and Shaw, 2018). Activated AMPK redirects cell metabolism towards higher 

catabolism and lower anabolism through direct phosphorylation on multiple targets, including 

mTOR complex 1 (mTORC1) (Gwinn et al., 2008; Inoki et al., 2003) and glycolytic enzymes 

(Bando et al., 2005; Wu et al., 2013). In a long-term effect, AMPK also redirects cellular 

metabolism through transcriptional regulation by increasing the expression of genes in 

mitochondrial biogenesis and autosomal degradation (Mihaylova and Shaw, 2011). 

We are particularly interested in oxidative phosphorylation (OXPHOS), which theoretically 

provides more than 90% of cellular ATP production. OXPHOS is a potential source of metabolic 

heterogeneity since evidence in yeast suggests that OXPHOS activity can vary cyclically. 

Furthermore, in the past few years, OXPHOS inhibitors, such as IACS-010759 (Molina et al., 

2018) and Gboxin (Shi et al., 2019), have been investigated as potential cancer therapy targets. 

Cell-to-cell OXPHOS heterogeneity, therefore potentially leads to therapeutic resistance for this 

class of drugs.  

 

1.5. Review of growth signaling and metabolic crosstalk through ERK-AKT-AMPK axis 

Cell signaling and cellular metabolism are inter-dependent in controlling cell fate 

decisions. (Mccubrey et al., 2007; Yoon and Seger, 2006). ERK signaling has been shown to be 

highly dynamic, and the kinetics of its activation and deactivation play a critical role in cell fate 

determination (Jones and Kazlauskas, 2001; OShaughnessy et al., 2011; Traverse et al., 1992). 

Recently, several studies have identified mechanisms by which cellular metabolic status is 
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modulated by ERK pathway activity (Abildgaard and Guldberg, 2015; Grassian et al., 2011; Haq 

et al., 2013; Nagarajan et al., 2016), but very little is known about how these metabolic changes 

control ERK dynamics, or their ultimate effect on cell fate (Verlande et al., 2017).  

The ERK signaling cascade is essential for proper cell function. Mutations in the ERK 

signaling pathway result in developmental failure, and overactivation of ERK signal results in 

cancer development (Kim and Choi, 2010; Wortzel and Seger, 2011). Under physiological 

conditions, ERK activity has been shown to be highly dynamic (Albeck et al., 2013b; Hiratsuka et 

al., 2015), and ERK activation duration and amplitude may play a significant role in cell fate 

decisions, including proliferation, survival, and apoptosis (Mccubrey et al., 2007; Yoon and Seger, 

2006b). The amplitude and duration of ERK dynamics are partially determined by canonical ERK 

signaling cascades, starting with dimerization of receptor tyrosine kinase (RTK), which then 

recruits SOS and activates RAS on the surface membrane. Activated RAS then activates the 

three-tier kinase cascade of RAF, MEK, and ERK. Phosphorylated ERK is an effector of the 

pathway that can phosphorylate multiple downstream target proteins involved in cell proliferation 

and survival (Sun et al., 2015).  

Interestingly, the ERK signaling pathway can crosstalk with multiple metabolic input 

signals. Two of the essential metabolic signals are AKT (Moelling et al., 2002) and AMPK (Shen 

et al., 2013). AKT is an effector of the Insulin-PI3K-AKT axis that plays a significant role in 

glycolytic upregulation. For example, AKT upregulates the surface expression of glucose 

transporters and phosphorylates multiple glycolytic enzymes such as PFK2 and can indirectly 

increase PFK1 activity (Manning and Toker, 2017). Apart from metabolic upregulation, AKT can 

cross inhibit ERK signaling through direct phosphorylation on S364 RAF (Manning and Toker, 

2017), which results in sequestration of RAF by 14-3-3 from its target MEK. Another essential 

metabolic signal capable of modulating ERK signaling is AMPK. The primary role of AMPK is to 

sense metabolic stress through intracellular ATP to AMP ratio (Gowans et al., 2013; Hardie et al., 
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2016). Under metabolic stress, where the concentration of AMP rises, AMP binds directly to 

AMPK to promote an activating phosphorylation event by LKB1 on AMPK. Activated AMPK 

regulates several downstream targets, which ultimately result in increased cellular catabolism and 

reduced anabolism (Garcia and Shaw, 2017). AMPK can cross inhibit ERK signaling by direct 

phosphorylation on B-RAF at S729 (Shen et al., 2013), which results in 14-3-3 binding and 

sequestration of B-RAF in an inactive form. Thus, AMPK also plays a role in ERK signaling 

modulation. 

Because AKT and AMPK promote different metabolic functions, it is surprising that both 

signals result in inhibition of the ERK cascade. This contradiction suggests that ERK regulation 

by AKT and AMPK might be subtle and may occur at specific conditions, locations, and times. 

This observation calls for temporal-sensitive measurement of ERK under the influence of AKT 

and AMPK activity. Furthermore, both AKT and AMPK activity are dependent on each other. AKT 

can directly phosphorylate and inhibit LKB1 activation of AMPK. AKT can also indirectly decrease 

AMPK activity by an increase in glycolysis and thus increase cellular energy charge. Thus it is 

necessary to monitor AMPK, AKT, and ERK activity simultaneously in order to delineate the 

influence of AKT and AMPK on the RAS/MAPK signaling pathway.  

Apart from controlling cell proliferation and cell survival, ERK signaling also regulates many 

aspects of cellular metabolism. For example, ERK overactivation drives pancreatic tumors by 

increasing glucose uptake (Ying et al., 2012). More importantly, ERK overactivation accounts for 

30% of all cancers (Fernández-Medarde and Santos, 2011), and most over-activating mutations, 

such as oncogenic RAS mutations, remain undruggable. Using metabolic perturbations is a 

possible tool available to control RAS overactivation. However, studies of metabolic control in 

oncogenic RAS are difficult, mainly because cancer cell lines contain multiple mutations that might 

confound the finding. Unsurprisingly, there are only a few studies on how metabolic perturbation 

might affect ERK signaling (Verlande et al., 2017). As a result, the effect of metabolic stress on 
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ERK signal alteration is not well characterized. However, single-cell measurements of ERK 

signaling can now provide a higher sensitivity, which should enable a more accurate 

characterization ofmetabolic effects on the ERK cascade. The recent development of fluorescent 

kinase reporters allows for direct measurements of protein kinase activity by time-lapse 

fluorescent imaging. By expressing AKT, AMPK, and ERK kinase reporters in the same cell, it is 

now possible to measure the activity of these kinases in real-time at a single-cell level and allow 

a detailed measurement of crosstalk in the AMPK-AKT-ERK axis. 

1.6. Kinase activity measurement at the single-cell level with fluorescence biosensors. 

Co-measurement of cellular metabolic state and growth signaling activity is the key to 

understanding cell growth decisions. Genetically-encoded fluorescent kinase biosensors allow 

measurement of kinase activity at a single-cell level, with high time resolution, and can be scaled 

up to four simultaneous signal measurements. This technology has overcome the limitations of 

fixed single-cell measurement, such as immunofluorescence microscopy or droplet-based 

sequencing. This type of single-cell measurement is minimally invasive to the cell state. Thus the 

measurement has higher fidelity to an underlying cell state. Furthermore, these sensors are 

synthetic substrates of kinase of interest, and therefore they are subject to the same type of 

regulation as endogenous substrate. This section details biosensors that will be used throughout 

this dissertation. 

1.6.1. AMPKAR2 – FRET biosensor 

AMPKAR2 sensor is an AMP-activated kinase (AMPK) reporter (Hung et al., 2017; Tsou 

et al., 2011). It utilizes Förster resonance energy transfer (FRET) to read out changes in AMPK 

activity. The reporter protein is composed of mTurquoise (cyan) and Ypet (yellow) fluorescent 

proteins, connected by a flexible linker to a synthetic AMPK phosphorylation site and a WW 

phospho-binding domain. When AMPK is active, it will phosphorylate the AMPK phosphorylation 

site on the sensor. The phosphorylated reporter then folds through binding of phosphorylated 
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AMPK site and WW phospho-binding domain, bringing the mTurquoise and Ypet fluorophores 

closer to each other and allowing FRET energy transfer to occur. Briefly, photons emitted from 

the FRET donor, mTurquoise, are transferred to the FRET acceptor, Ypet. This energy transfer 

can be measured as diminished mTurquoise intensity using fluorescent microscopy. The 

significant advantage of this type of sensor is that, since FRET is an intramolecular event, it is 

independent of cellular machinery apart from the kinase of interest itself. However, there are two 

major drawbacks. First, it requires two fluorescent channels to function, limiting multiplexing 

possibilities. Secondly, FRET fluorophore pairs such as CFP-YFP occupy a large part of the visual 

spectrum available for fluorescence, which reduces the opportunity for multiplexed 

measurementswith other probes. 

1.6.2. Kinase Translocation Reporters 

 Unlike FRET reporter, kinase translocation reporter (KTR) utilizes protein translocation 

between nuclear and cytosolic compartments as a read-out of kinase activity. KTR can be 

classified into two categories. 

1.6.2.1. Engineered KTRs 

 This class of KTR was first proposed by Regot et al. (Regot et al., 2014). It comprises 

three components: a fluorescent protein of choice that is fused with a kinase docking site and an 

engineered phosphorylation site optimized to allow maximal nuclear-cytosolic translocation. 

Briefly, this phosphorylation site is composed of a negatively phospho-regulated nuclear 

localization sequence (NLS) and a positively phospho-regulated nuclear export sequence (NES). 

The ERK-KTR (ERKTR) sensor is an example of this type of sensor that will be used in this 

dissertation. Mechanistically, when ERK is active, it will bind to an ERK docking domain on the 

ERKTR sensor and then phosphorylate both the NLS and NES sites. This results in a shift from 

the nuclear compartment (unphosphorylated) to the cytosolic compartment (phosphorylated) of 



 

10 

 

the KTR sensor. ERK activity is measured by the ratio of fluorescent intensity in the cytosol to the 

nucleus. There are two critical benefits of this type of sensor. First, it requires only one fluorophore 

and thus minimizes fluorescent spectral overlap to allow multiplexed kinase measurements in a 

single cell. Secondly, since the docking and phosphorylation site are engineered, may be less 

susceptible to phosphorylation by non-specific kinases. 

1.6.2.2. Native KTRs 

 This class of KTR utilizes native protein substrates that translocate between nuclear and 

cytosolic compartments when phosphorylated. The key sensor that uses this technique in this 

study is AKT-KTR sensor (Hung et al., 2017). The AKT-KTR sensor comprises two components: 

N-terminus (aa 1 – 400) of FOXO3a transcription factor fused with fluorophore of interest (Maryu 

et al., 2016). FOXO3a is a transcription factor regulated by AKT phosphorylation. Phosphorylated 

FOXO3a binds to 14-3-3 proteins, which sequester FOXO3a in the cytosol. On the other hand, 

when AKT is inhibited, FOXO3a translocates into the nucleus and binds to DNA. Since this type 

of KTR can cause overexpression effects due to its transcription factor function, we delete the C-

terminus of FOXO3a, which contains its DNA binding motif, to minimize the effect of FOXO3a 

transcription function. 

Similar to the ERKTR sensor, AKT kinase activity is measured by the ratio of fluorescent 

intensity in the cytosol to the nucleus. A major benefit of this sensor is that it is simple to design 

since it requires only known kinase substrates that translocate. However, it has a few drawbacks. 

First, as mentioned earlier, this type of sensor requires overexpression of a signaling protein, and 

thus cell state might be perturbed by the sensor expression itself. Secondly. since one protein 

might contain multiple phosphorylation sites for multiple kinases, the read-out might be subject to 

non-specificity. 

 The main benefit of KTR sensors is that they allow multi-kinase measurement in the same 

cell. However, in both engineered KTR and native KTR, the common drawback is that the 
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dynamics are subject to changes in nuclear import and export rates, adding additional noise to 

the measurement. 
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Chapter 2 

Linear single-cell AMPK measurement by AMPKAR2 FRET sensor 

2.1. Abstract 

This chapter summarizes how single-cell measurements of AMPK are performed at a 

single-cell level. Additional details on statistical analysis of AMPKAR2 sensor data are also 

provided. As mentioned in chapter 1, single-cell measurement is a key to understanding cell 

signaling. Unlike bulk measurements, single-cell measurement techniques present multiple 

challenges, including experimental design, a large volume of time-lapse image data, object 

tracking, and non-linearity of kinase sensor of interest.  

2.2. Cell preparation of a live-cell experiment 

Throughout this dissertation, most of the experiments are done in the MCF10A cell line 

MCF10A clone 5E (Janes et al., 2010). Routine cell culture for MCF10A cells was performed as 

previously described (Debnath et al., 2003). MCF10A was grown in ‘DMEM/F12 growth medium’ 

(see Media table). Primary stocks from the original clonal derivation (MCF10A-5E) or the ATCC 

(184A1) were used in all experiments. All cells were routinely split when they are ~80% confluent. 

In live microscopy experiments, we used a custom formulation, termed ‘imaging base-

DMEM/F12’, which consists of DMEM/F12 lacking glucose, glutamine, riboflavin, folic acid, and 

phenol red (Life Technologies or UC Davis Veterinary Medicine Biological Media Service) which 

allows adjustment of available nutrients and avoids fluorescence background. All experiments 

involving MCF10A cell line were performed in ‘Imaging medium 1’ (see Media composition). For 

experiments with other cell lines that are not either MCF10A or 184A1, ‘Imaging medium 2’ was 

used. For all experiments, ‘Imaging medium 1’ and ‘Imaging medium 2’ were supplied with 

glucose 17 mM and 25 mM, respectively, to imitate the full growth media of each cell line. 
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Before imaging, cells were washed twice with their respective media and then cultured in 

imaging experiment media at least 2 hours before imaging, unless indicated otherwise. The main 

reason for this incubation period is for AMPK activity to reset to normal baseline after growth 

media removal. The cell to media ratio was maintained at 150-200 cells/µl for all experiments. For 

experiments involving titration of insulin or EGF concentrations, cells were placed in EGF- or 

insulin-deficient media for 4 – 6 hours prior to imaging. 

2.3. Live-cell fluorescent microscopy and image analysis 

Time-lapse wide-field microscopy was performed as described previously (Hung et al., 

2017; Pargett et al., 2017). Briefly, 25,000 cells were plated one day prior to imaging in glass-

bottom 96-well plates (Cellvis P96-1.5H-N, Mountain View, CA) pretreated with type I collagen 

(Gibco A10483-01) to promote cell adherence. It is best to use glass-bottom plates since they are 

thin and have less optical interference than plastic bottom plates. The number of cells to plate has 

to be determined for each cell line. The critical consideration for cell numbers is to avoid cell 

overlapping since it will interfere with nuclei segmentation during image analysis. 

Once image data is acquired from time-lapse microscopy. Images are subjected to the 

following analysis. (1) Background and flatfield correction: Since FRET sensor measurement 

requires an accurate ratio for FRET donor and FRET acceptor, background image intensity must 

be substracted from raw images. Furthermore, since the optics of the microscope are circular, but 

the sensor of the camera is rectangular, the illumination in each image is not equal, resulting in 

inaccurate measurement of fluorophore intensity. To correct the illumination anomaly, it is always 

best to image empty well in each experiment and perform spatial filter estimation of the 

illumination pattern. Afterward, we can use this estimated illumination pattern to normalize the 

original image to get the ‘flatfield’ images. (2) Nuclei identification: Because our AMPKAR2 sensor 

has an NES tag, which compartmentalizes the sensor in the cytosol, we could use un-illuminated 

nuclei as a nuclei marker. We automatically identify nuclei by applying intensity threshold and 
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shape threshold (e.g., nuclei size between 25 – 100 pixels and circularity) to create nuclear 

‘masks.’ (3) Nuclear tracking: The position of nuclear masks were then used for object tracking 

over the whole time-lapse movie. The critical consideration is that the object should not move 

more than 5 pixels from the previous frame, and it should not disappear for more than three 

consecutive frames. (4) Intensity measurement: Once nuclear objects were tracked, the 

watershed method created cytoplasmic masks (Vincent and Soille, 1991) using cytosolic YFP to 

identify the cytosolic boundary. The cytosolic area is further restricted to the area within 5 pixels 

of the nuclear border. Intensities of fluorophore in cytosol and nuclei were in the defined region 

were collect and linked to the physical position of the object. (5) Cell trace analysis: The resulting 

single-cell time series traces were filtered for quality by a minimum length of the trace, typically at 

least 12 hours, and a maximum number of contiguous missing or corrupt data points, typically no 

more than three frames.  

2.4. AMPKAR2 FRET reporter measurement  

Even though we can measure AMPK kinase activity by measuring the ratio of YFP to CFP 

from AMPKAR2 FRET sensor, the change in fluorophore ratio does not precisely indicate how 

much of the sensor is phosphorylated. To quantify the phosphorylated fraction of the sensor, we 

first calculated FRET efficiency exactly as shown previously (Gillies et al., 2020), using a spectral 

model of light propagated through the microscopy system, including the live cell specimen.  And 

since AMPKAR2 reporter is a substrate for AMPK kinase activity, it is possible to estimate the 

fraction of phosphorylated sensor using Phos-TagTM electrophoresis, followed by immunoblot 

against GFP. Briefly, Phos-tag electrophoresis separates proteins based on their charge. Since 

AMPKAR2 sensor has only one phosphorylation site, phosphorylated AMPKAR2 will separate 

from the unphosphorylated sensor and appear in just one clear band above the unphosphorylated 

band (Figure 2.1.A). This measurement allows us to convert FRET ratio to the fraction of 

AMPKAR2 sensor that is phosphorylated, AMPKAR2PHOS, which is more biologically relevant. 



 

21 

 

Lysates from the MCF-10A cell lines treated with condition indicated in Figure 2.1.A. were used. 

These conditions were selected because they exhibit sustained and homogeneous AMPKAR2 

activity. After Phos-Tag western blotting, membranes were stained with an anti-GFP antibody 

(CST #2955) to visualize the AMPKAR2 reporter, and the average fraction of reporter 

phosphorylated was quantified. These values were then compared with the average fraction 

associated as calculated from live-cell experiments at corresponding treatments and time points. 

Linear fitting was performed and providing a calibrated measurement of the fraction of AMPKAR2 

phosphorylated, based on live-cell measurements – eq 1 (Figure 2.1.B). This method of biosensor 

calibration is applicable to all FRET sensors that have low numbers, i.e., one to two, of 

phosphorylation sites 

𝐴𝑀𝑃𝐾𝐴𝑅2𝑃𝐻𝑂𝑆 = 2.74[𝐴𝑀𝑃𝐾𝐴𝑅2𝐹𝑅𝐸𝑇 𝑟𝑎𝑡𝑖𝑜 ] − 0.59                                             (1) 
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2.5. Media Composition 

DMEM/F12 growth media     

Component Vendor Catalog 

number 

Final 

Concentration 

DMEM/F2 Gibco 11320-033 - 

Horse Serum Invitrogen 16050-122 5% 

EGF Peprotech AF-100-15 20 ng/ml 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Insulin Sigma I9278 10 ug/ml 

    

 

 

 

 

 

   

Figure 2.1. : AMPKAR2 FRET biosensor calibration 

(A) Measurement of AMPKAR2 phosphorylation status by immunoblot. Image shows a representative 

immunoblot used to obtain the AMPKAR2PHOS measurements in (C). Phos-tag gel electrophoresis 

was used to separate phosphorylated and unphosphorylated forms of the reporter (upper and lower 

bands, respectively), with anti-GFP used to detect both forms. N=4. (B) Scatter plot of the correlation 

between FRET ratio of AMPKAR2 reporter, as measured by live-cell microscopy, and its 

phosphorylation status, as measured by phos-tag gel electrophoresis under the same conditions. A 

range of AMPK activities were induced by varying glucose and 2-deoxyglucose (2DG). Error bars 

represent standard errors of the mean (SEM) from at least two different experiments. The solid line 

represents a fitted linear model, and the dashed lines show 95% confidence bounds. This fitted 

equation is used throughout the study to report all AMPKAR2 FRET measurements as the fraction of 

AMPKAR2 phosphorylated, AMPKAR2PHOS. N=4. 
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Imaging medium 1 

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12 Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 17 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 

EGF Peprotech AF-100-15 20 ng/ml 

Insulin Sigma I9278 10 ug/ml 

    

    

Imaging medium 2    

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12 Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 25 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 
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Chapter 3 

Transient phases of OXPHOS inhibitor resistance reveal underlying metabolic 

heterogeneity in single cells 

 
Preface 

This chapter was originally published in Cell Metabolism: 

Kosaisawe N, Sparta B, Pargett M, Teragawa CK, Albeck JG. Transient phases of OXPHOS 

inhibitor resistance reveal underlying metabolic heterogeneity in single cells. Cell Metab. 2021 

Mar 2;33(3):649-665.e8. doi: 10.1016/j.cmet.2021.01.014. Epub 2021 Feb 8. PMID: 33561427; 

PMCID: PMC8005262. 

The article has been modified to satisfy the formatting requirements of this thesis 

3.1. Abstract 

Cell-to-cell heterogeneity in metabolism plays an unknown role in physiology and 

pharmacology. To functionally characterize cellular variability in metabolism, we treated cells with 

inhibitors of oxidative phosphorylation (OXPHOS) and monitored their responses with live-cell 

reporters for ATP, ADP/ATP, or activity of the energy-sensing kinase AMPK. Across multiple 

OXPHOS inhibitors and cell types, we identified a subpopulation of cells resistant to activation of 

AMPK and reduction of ADP/ATP ratio. This resistant state persists transiently for at least several 

hours and can be inherited during cell divisions. OXPHOS inhibition suppresses the mTORC1 

and ERK growth signaling pathways in sensitive cells, but not in resistant cells. Resistance is 

linked to a multi-factorial combination of increased glucose uptake, reduced protein biosynthesis, 

and G0/G1 cell cycle status. Our results reveal dynamic fluctuations in cellular energetic balance 

and provide a basis for measuring and predicting the distribution of cellular responses to 

OXPHOS inhibition. 
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3.2. Introduction 

Metabolic functions vary across different cell types and tissues (Hensley et al., 2016; 

Konagaya et al., 2017; Tasdogan et al., 2020), but much less is known about cell-to-cell metabolic 

heterogeneity. Single-cell resolution is important because cellular heterogeneity limits drug 

efficacy (Altschuler and Wu, 2010), and targeting of metabolic functions for therapeutic purposes 

will require identification of resistant subpopulations of cells. Current approaches measure the 

expression profiles of metabolic enzymes (Hartmann et al., 2020; Xiao et al., 2019), rather than 

directly assessing metabolites or their flux. Other work has used biosensors to reveal variability 

in clonal cell lines responding to inhibitors of metabolism (Hung et al., 2017) and in cellular 

metabolic disposition based on responses to glucose withdrawal (Depaoli et al., 2018). However, 

while it is typical for single-cell approaches to reveal heterogeneity, it is not clear how the observed 

variation originates within an isogenic population of cells, and what impact it has on pathways 

downstream of the immediate response.  

To approach these questions, we focused on inhibitors of oxidative phosphorylation 

(OXPHOS), which are important both as tools to probe cellular metabolism and as treatments for 

diabetes and cancer. Naturally occurring OXPHOS inhibitors, including oligomycin, antimycin, 

and rotenone are produced defensively in microorganisms and plants. Biguanides derived from 

the plant compound galegine, including metformin and phenformin, are weaker inhibitors of 

OXPHOS. Metformin is used widely to treat type II diabetes and also has anti-tumorigenic, anti-

fibrotic, and pro-longevity effects (Anisimov, 2010; Dos Santos et al., 2018). These effects have 

spurred the search for additional OXPHOS inhibitors, leading to the development of compounds 

including IACS-010759 and Gboxin, which are being evaluated as cancer therapies (Molina et al., 

2018; Shi et al., 2019). Many cancers upregulate OXPHOS and the tricarboxylic acid (TCA) cycle 

and rely on them for ATP production, biosynthesis (Vander Heiden and DeBerardinis, 2017) or 

resistance to chemotherapy (Vashisht Gopal et al., 2019). 
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By inhibiting ATP generation, OXPHOS inhibitors induce metabolic stress, which can 

range in severity from mild activation of stress pathways to a lethal energetic crisis. Understanding 

the cellular response to OXPHOS inhibition will improve on existing treatments for diabetes, 

cancer, and other conditions (Ashton et al., 2018; Stoker et al., 2019) and illuminate the 

fundamental cell biology of metabolic stress responses (Wu et al., 2016). Potent OXPHOS 

inhibitors (e.g. oligomycin) block oxygen consumption within seconds (Ruas et al., 2018), 

preventing TCA cycle turning and increasing flux through glycolysis to compensate for ATP loss 

(Fan et al., 2013); this adaptation can occur quickly enough that ATP levels remain nearly 

constant (Hao et al., 2010). Cellular responses to OXPHOS inhibition involve signaling between 

the mitochondria and stress response proteins in the cytoplasm and nucleus (Quirós et al., 2017). 

Extracellular nutrients modulate the response to OXPHOS inhibition by determining the metabolic 

pathways available to compensate for the loss of oxidative ATP production and NADH oxidation 

(Gui et al., 2016). However, essentially all the known elements of the OXPHOS inhibitor response 

have been established as bulk properties of cell populations, potentially overlooking distinct 

subpopulations of individual cells that vary widely, as tissues do, in their usage of OXPHOS.  

OXPHOS usage can be evaluated by the acute change in oxygen consumption upon 

treatment with oligomycin (Buttgereit and Brand, 1995). This perturbation-based approach is 

useful because measuring metabolic fluxes through tracing of labeled metabolites (Jang et al., 

2018) or model-based reconstruction (Orth et al., 2010) require comprehensive measurements 

(Fendt et al., 2013; Hackett et al., 2016) that are infeasible in single cells. In contrast, the response 

to OXPHOS perturbation can provide a simple, functional measurement of a cell’s usage of 

OXPHOS and glycolysis (Mookerjee et al., 2017) that can be compared across different cell types 

and tumors (Simões et al., 2015). At the single-cell level, measurements of oxygen consumption 

are possible (Dussmann et al., 2017), but other live-cell reporters may provide a more accessible 

quantification of OXPHOS activity. One such possibility is AMP-activated protein kinase (AMPK), 
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a primary contributor to the OXPHOS inhibition response. AMPK directly binds ATP, ADP, and 

AMP, and in response to decreased cellular energy charge (AMP and ADP relative to 

ATP)(Hardie and Hawley, 2001; Oakhill et al., 2011), it phosphorylates an array of substrates to 

enhance catabolism and suppress anabolism (Gowans et al., 2013; Hardie, 2014; Xiao et al., 

2011). While AMPK is not required for all the effects of OXPHOS inhibition (Griss et al., 2015), its 

activity and phosphorylation status, or phosphorylation of its effectors such as acetyl-CoA 

carboxylase (ACC), are useful indicators of cellular energetic status. Recently, fluorescent 

protein-based FRET reporters have enabled tracking of AMPK activity in living cells, revealing the 

localization and kinetics of its activity in response to different forms of metabolic perturbation, 

including OXPHOS inhibition (Hung et al., 2017; Konagaya et al., 2017; Tsou et al., 2011).  

Here, we used live-cell measurements of AMPK activity in response to OXPHOS inhibition 

to quantify differences in OXPHOS usage between single cells. We found that prominent cell-to-

cell differences in AMPK response are common across OXPHOS inhibitors, and we confirmed 

that these changes correspond to perturbation of energy charge, using reporters for intracellular 

ATP concentration (Imamura et al., 2009) or ADP/ATP ratio (Tantama et al., 2013) and various 

supporting assays to make unambiguous measurements of metabolic changes. We find that 

individual cells interconvert between sensitive and resistant states on the scale of hours, and we 

demonstrate that each cell’s response to OXPHOS inhibition is a function of the rate of insulin-

stimulated glucose uptake relative to protein synthesis rate and cell cycle status. These findings 

establish that OXPHOS usage varies in a functionally important way between cells, and over time 

within the same cell.  

3.3. Results 

3.3.1. Variable AMPK responses to OXPHOS inhibition are common  

In principle, strong activation of AMPK by OXPHOS inhibition indicates dependence on 

OXPHOS for ATP production (Gowans et al., 2013; Hao et al., 2010). Conversely, cells with 
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adequate capacity to generate ATP through other routes such as glycolysis would not experience 

a loss in energy charge and activation of AMPK upon OXPHOS inhibitor treatment. In MCF10A 

non-tumor epithelial cells, OXPHOS inhibitors targeting complexes I, III, and V of the electron 

transport chain induced a similar pattern: a sharp but variable initial increase in AMPK activity, 

followed by alternating cycles of inactivity and activity with an approximate period of 3 hours (Fig. 

3.1.A). Metformin induced only a small initial peak, consistent with its weak inhibitory activity, but 

it induced subsequent oscillations similar to the other inhibitors (Fig. S3.1.A). In contrast to 

OXPHOS inhibitors, the direct AMPK activator AICAR produced a gradual rise to a new steady 

state of AMPK activity, without oscillations (Fig. S3.1.B).  

 To quantify OXPHOS inhibitor responses, we developed metrics for single-cell AMPK 

activity. We first confirmed that the average AMPKAR2 FRET ratio correlates linearly with its 

phosphorylation status across the full range of metabolic conditions tested (Fig. S3.1.C,D). 

AMPKAR2 phosphorylation ranged from ~30% in cells cultured with full growth medium to ~75% 

in cells deprived of glucose or treated with 2-deoxyglucose, ruling out saturation of the reporter 

and confirming that AMPK retains some activity even under full nutrient conditions (Gowans et 

al., 2013). We show all subsequent AMPKAR measurements as AMPKAR2PHOS, the calibrated 

fraction of AMPKAR2 phosphorylated. On a cell-by-cell basis, AMPKAR2PHOS correlated linearly 

with immunofluorescence (IF) for ACC phosphorylated at Ser-79 (pACC; R2=0.63; Fig. 3.1.B and 

S1E). Both pACC and AMPKAR2PHOS were bimodal, and >80% of cells were either double-

positive or double-negative. Because we expect the initial change in AMPK activity to correlate 

with reliance on OXPHOS for ATP production at the time of treatment, we evaluated the baseline-

to-peak amplitude of AMPKAR2PHOS for each cell within 2 hours following oligomycin treatment 

(Fig. 3.1.C), which we term AMPKAR2Δ. AMPKAR2Δ was not correlated with basal 

AMPKAR2PHOS (Fig. S3.1.F) and was distributed bimodally (Fig. 3.1.D). Similar distributions were 

found with rotenone, antimycin, and IACS-010759 (Fig. S3.1.G). We termed cells with a low 
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AMPKAR2Δ “OXPHOS-independent” (OP-ind) because they were able to withstand OXPHOS 

inhibition with little evidence of energy stress. Cells with a strong AMPK response were termed 

“OXPHOS-dependent” (OP-dep). In contrast to OXPHOS inhibitors, maximal doses of AICAR 

stimulated a uniform increase in AMPK activity across the entire population (Fig. S3.1.H), showing 

that heterogeneous responses are a property of OXPHOS inhibition, rather than AMPK activation. 

To establish whether heterogeneous AMPK responses are shared by other cell types, we 

stably expressed AMPKAR2 and measured distributions of AMPKAR2Δ in other cell lines, 

including 184A1 (mammary epithelial), MCF7 (breast cancer), U87 (glioblastoma), and A549 

(non-small cell lung cancer, LKB1-deficient)(Fig. 3.1.E). To compare equivalent conditions for all 

cells, oligomycin challenge was performed in the absence of insulin, which resulted in a lower 

fraction of OP-ind MCF10A cells (12%). Under the same conditions, AMPKAR2Δ in 184A1 cells 

was bimodally distributed, with a higher percentage of OP-ind cells (72%), suggesting that they 

have on average a higher capacity to maintain their ATP production independently of OXPHOS. 

In contrast, nearly 100% of MCF7 cells showed a strong AMPKAR2Δ, indicating a greater 

dependence on OXPHOS to maintain ATP homeostasis. U87 cells showed a broad distribution 

of responses, with both OP-ind and OP-dep populations. A549 cells, which are deficient for the 

AMPK activator LKB1, showed only weak AMPKAR2Δ, as expected. These data indicate that 

heterogeneity in the initial OXPHOS inhibitor response is common among human cell lines.  
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Figure 3.1 : Variable AMPK responses to OXPHOS inhibition are common  

A: AMPKAR2PHOS responses for cells grown in 17 mM glucose (see STAR Methods, imaging 
media table, for all formulations). Subplots represent single cells selected to depict the full range 
of responses, with population average and interquartile range in the bottom subplot. Gray shaded 
area shows the 2-hour time window used for analysis of peak height. N=2; see STAR Methods 
for definitions of replicates and cell numbers analyzed. B: Single-cell measurements of 
AMPKAR2PHOS and pACC IF in MCF10A cells treated with 2.5 µg/ml oligomycin. AMPKAR2PHOS 
was measured in live cells 15-18 minutes after treatment; pACC was measured following fixation 
and linked to AMPKAR2PHOS for the same cell. R2 and p-value are shown for a fitted linear function 
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(dashed line). N=2. C: Schematic of AMPKAR2 pulse parameterization. Peak activity was defined 
as the local maximum value within 2 hours after perturbation;  

baseline was defined as the average of AMPKAR2 activity for one hour before treatment. 
Amplitude (AMPKARΔ) was calculated by subtraction of baseline from peak. D: Histogram of 
AMPKAR2Δ values after treatment with 2.5 µg/ml oligomycin. Green and orange lines are fitted 
Gaussian distributions. The dashed line is defined by the intersection between distributions and 
used as the cutoff for determining the percentage of OP-ind or OP-dep cells. N=2. E: Comparison 
of AMPK responses across cell lines. Top panels – representative AMPKAR2PHOS measurements 
for cells grown in 17 mM glucose without insulin and EGF, treated with 1.8 µg/ml oligomycin. Each 
subplot represents a single cell measurement, with population average and interquartile range in 
the bottom subplot. Middle panels - histograms of AMPKAR2Δ in response to oligomycin (OM) 
1.8 µg/ml treatment. Dashed lines are defined by the intersection of fitted bimodal distributions 
using pooled data for treated and untreated cells within each cell line. Bottom panels - sample 
images of AMPKAR2 responses. N=3. 

 

3.3.2. Heterogeneous AMPK responses propagate to downstream signaling activity 

AMPK inhibits the activities of the RAS/ERK pathway (Shen et al., 2013) and mTORC1 

(Gwinn et al., 2008; Inoki et al., 2003) (Fig. 3.2.A). In MCF10A cells, we investigated whether 

heterogeneous activation of AMPK induces corresponding changes in these connected 

pathways. ERK activity was monitored simultaneously with AMPK using a translocation-based 

reporter, ERKTR (Regot et al., 2014). Upon oligomycin treatment, ERKTR detected an average 

decrease in ERK activity (Fig. 3.2.B), consistent with inhibition of this pathway by active AMPK. 

On a cell-by-cell basis, the reduction of ERK activity correlated with the magnitude of AMPK 

activation for each cell (Fig. 3.2.C,i), whereas no correlation was found in the absence of 

oligomycin. By IF, OP-dep cells showed a lower intensity of phospho-ERK staining (Fig. 3.2.C,ii). 

Furthermore, when time courses of AMPKAR2 and ERKTR signals were tracked over time in 

individual cells, a significant anti-correlation was observed where pulses of AMPK activity were 

matched by depressions in ERK activity (Fig. 3.2.D,i), with a lag time of 6 minutes or less (Fig. 

3.2.E,i,ii).  

To detect mTORC1 activity in live cells, we used the nuclear-to-cytosolic translocation of 

a fluorescent protein fusion to transcription factor EB (TFEB-TR), which is stimulated by 
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mTORC1-mediated phosphorylation (Fig. 3.2.A) (Li et al., 2018; Settembre et al., 2012). As in the 

case of ERKTR, TFEB-TR cytosolic-to-nuclear ratio was decreased following oligomycin 

treatment (Fig. 3.2.B) and correlated to AMPKAR2PHOS at the single cell level (Fig. 3.2.C,iii). IF for 

phospho-4E-BP1, an mTORC1 substrate, was also reduced in OP-dep cells (Fig. 3.2.C,iv). 

Cycles of TFEB-TR translocation coincided with AMPK pulses, following a ~12 minute lag (Figs. 

3.2.D,ii and 3.2.E,iii-iv). These results are consistent with dynamic regulation of mTORC1 by 

AMPK, although they do not rule out the possibility that OXPHOS inhibition suppresses mTORC1 

independently of AMPK (Kalender et al., 2010). Together these data establish that heterogeneity 

in OXPHOS inhibitor responses has a functional impact on the AMPK signaling network.   
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Figure 3.2 : Heterogeneous AMPK responses propagate to downstream signaling activity 
 
A: Known connections between AMPK, mTORC1 and ERK, and corresponding reporters for live-
cell analysis. ERKTR and TFEB-TR indicate the activities of ERK and mTORC1, respectively, by 
their cytoplasmic to nuclear ratio. B: Population average responses of AMPKAR2PHOS (blue) 
compared to ERKTR (orange) and TFEB-TR (green) after oligomycin (OM, upper panels) or 
vehicle (lower panels) treatment. Shaded areas indicate interquartile ranges. N=2. C: Correlation 
of AMPKAR2Δ with signaling markers in single cells. Each dot indicates a single cell in which 
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AMPKAR2Δ was measured in tandem with (i) ERKTR (live-cell), (ii) phosphorylated ERK (IF), (iii) 
TFEB-TR (live-cell), or (iv) phosphorylated 4E-BP1. For live-cell measurements, values represent 
amplitude of response. For IF measurements, values represent integrated staining intensity for 
cells fixed immediately following measurement of AMPKAR2Δ. R2 and p values are shown for 
linear regression against pooled data for both untreated and oligomycin-treated cells. N=2. D: 
Dynamic relationship of AMPK activity with (i) ERK and (ii) mTORC1 reporters. Representative 
single-cell profiles of AMKPAR2PHOS were measured in the same cell as ERKTR (orange) or 
TFEB-TR (green). E: Cross-correlation analysis for AMPK activity with ERK and mTORC1 
reporters. (i) and (iii) show distributions of the lag time at which maximum anti-correlation is found 
between AMPKAR2 and ERKTR or between AMPKAR2 and TFEB-TR, respectively. (ii) and (iv) 
show the distribution of Pearson’s cross-correlation coefficients at the lag time with maximum 
correlation (0 minutes for ERKTR, -12 minutes for TFEB-TR). N=2. 

 

3.3.3. AMPK responses to OXPHOS inhibition report the dynamics of ATP metabolism  

Cell-to-cell variation in AMPKAR2Δ may reflect differences in cellular energy charge 

(Hardie, 2014), but this variation could also arise from variable drug uptake or other forms of 

AMPK regulation (Lin and Hardie, 2017; Zhang et al., 2017). To independently measure changes 

in energy charge, we used the ADP/ATP reporter PercevalHR (Berg et al., 2009; Tantama et al., 

2013), which reports intracellular ADP/ATP ratio as a spectral shift in mVenus excitation, a ratio 

we refer to as PercevalEX (Fig. 3.3.A). Similar to AMPKAR2PHOS, the immediate response of 

PercevalEX following OXPHOS inhibition was heterogeneous (Fig. 3.3.B,i). However, unlike AMPK 

activity, PercevalEX lacked two distinct modes. Under continuous exposure to oligomycin, we 

observed pulses of PercevalEX 1-2 hours in duration, interspaced by 2-4 hours, similar to 

AMPKAR2PHOS in timing but more variable in amplitude. Staining of pACC was correlated with 

PercevalEX, with agreement of pACC staining and PercevalEX responses in ~80% of cells (Fig. 

3.3.B,ii and S3.2.A). However, the distinction between high- and low-PercevalEX cells was not 

sharp, and cells at intermediate PercevalEX values were distributed between high- and low-pACC 

subpopulations, consistent with findings that factors other than energy charge can influence 

AMPK activity (Hawley et al., 2005; Zhang et al., 2017). Based on these data, differences in 

energy charge are a plausible cause for AMPK variation but are not strictly identical to AMPK 

activity within individual cells.  
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We next used the FRET-based ATP sensor ATeam 1.03 (Imamura et al., 2009) to track 

intracellular ATP concentrations under the same conditions. Following oligomycin treatment, we 

were unable to detect any change in ATP level, nor any pulsatile characteristics as observed for 

AMPKAR2PHOS or PercevalEX (Fig. 3.3.B,iii). To confirm that the lack of ATeam response is not a 

result of out-of-range ATP concentration, we treated these cells with oligomycin in the absence 

of glucose, which resulted in an immediate and sharp decline in ATeam signal (Fig. S3.2.C), 

followed within 4 hours by visible cell death. We confirmed this result using bulk ATP assays, 

which detected no OXPHOS inhibitor-induced change in ATP at 17 mM glucose but a >90% 

decrease upon inhibitor treatment in the absence of glucose (Fig. S3.2.D). When ATeam cells 

were co-stained with pACC, we observed that the rare low-ATeam cells (~10%) were 

predominantly pACC-positive, as expected for cells with low ATP (Fig. 3.3.B,iv and S3.2.B). 

These results indicate that ATeam accurately reports ATP levels within MCF10A, and that 

cytoplasmic ATP remains stable during OXPHOS inhibition, as previously observed (Gowans et 

al., 2013; Hao et al., 2010).  

The differences between AMPK activity, ADP/ATP ratio, and ATP concentration prompted 

us to investigate their relationship. To approach this question, we quantified AMPKAR2PHOS, 

PercevalEX, or ATeam responses following oligomycin treatment under varying concentrations of 

glucose (Fig. 3.3.C-E). AMPKAR2PHOS responses remained bimodal across all conditions, with 

the frequency of OP-ind cells decreasing from >20% of cells at 17 mM glucose (standard MCF10A 

culture conditions) to 8-9% at 4.25 mM glucose (an intermediate physiological concentration) and 

falling to <1% at lower glucose concentrations (Fig. 3.3.C). In contrast, PercevalEX was distributed 

unimodally in each condition, with a mean that increased gradually as glucose concentration was 

lowered (Fig. 3.3.D). ATeam showed no response until glucose was reduced below 1 mM, at 

which point it showed a rapid decrease in all cells (Fig. 3.3.E). Together, these data suggest a 

model consistent with previous observations, in which the absolute cytosolic concentration of ATP 

is maintained at a nearly constant level, provided that glycolysis can operate at a sufficiently high 
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rate. Rapid equilibration of ATP with ADP and AMP prevents a large drop in absolute ATP levels 

but allows a significant shift in ADP/ATP and AMP/ATP ratios, which are detected by AMPK 

(Hardie et al., 2012). The gradually shifting broad distribution of PercevalEX indicates that these 

ratios vary from cell to cell and are sufficient to induce AMPK activity in some cells (OP-dep) but 

not others (OP-ind). The bimodality observed in AMPK activity but not ADP/ATP ratio is consistent 

with ultrasensitive activation of AMPK (Hardie et al., 1999). Thus, the differing relationships 

between pACC, AMPKAR2, PercevalEX, and ATeam can be understood as the outcome of the 

ATP/AMPK system as it operates in single cells that vary in their capacity to maintain ATP 

production when OXPHOS is inhibited.  

The results above suggest that energy charge is the primary factor determining AMPK 

activity under OXPHOS inhibition. Bulk measurements of metabolites are consistent with this 

interpretation: oligomycin treatment induced strong and persistent suppression of TCA cycle 

intermediates (Fig. S3.2.E,F), while inference of ATP production (Mookerjee et al., 2017) 

confirmed a nearly complete switch from OXPHOS to glycolysis during oligomycin treatment (Fig. 

S3.2.G). Finally, comparison of OXPHOS inhibitor responses under different conditions argued 

that the lack of AMPK activity in OP-ind cells is not an artifact of incomplete OXPHOS inhibition 

(Fig. S3.3.A-G). We conclude that OP-ind cells represent a subpopulation with metabolic 

characteristics inherently distinct from OP-dep cells. 
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Figure 3.3 : AMPK responses to OXPHOS inhibition report the dynamics of ATP 
metabolism  
 
A: Schematic of ATP metabolism and reporters used. AMPKAR2 indicates AMPK kinase activity, 
PercevalHR reports intracellular ADP/ATP ratio, and ATeam1.03 reports intracellular ATP 
concentration. B: Responses of ADP/ATP and ATP reporters to OXPHOS inhibition. (i) and (iii) 
show representative single-cell recordings of PercevalHR (i) or ATeam1.03 FRET activity (iii) after 
treatment with 2.5 µg/ml oligomycin. Each subplot represents a single cell measurement, with the 
population average and interquartile range shown at bottom. (ii) and (iv) show scatter plots of 
single-cell measurements of PercevalEX (ii) or ATeam1.03 FRET activity (iv) with phospho-ACC 
staining intensity in MCF10A cells treated with oligomycin (OM) 2.5 µg/ml. Numbers indicate the 
percentage of cells in each quadrant. R2 values are shown for linear fits to the data. N=2. C, D, 
and E: AMPK, ADP/ATP, and ATP responses to OXPHOS inhibition when glucose is varied. Line 
plots (left) show the responses for each reporter after cells were cultured in media containing the 
indicated glucose concentration and then treated with 2.5 µg/ml oligomycin (OM). Light lines 
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indicate individual cells, and heavy lines the population mean. Histograms (right) show the 
distribution of response amplitudes in each condition, calculated as in Figure 1. In (D) and (E), 
the light gray histograms indicate the distributions of reporter measurements for cells treated with 
vehicle at the same glucose concentration. N=2. 

3.3.4. Resistance to OXPHOS inhibition is a heritable but transient state 

Our results raise the question of whether OXPHOS inhibitor resistance is a fixed or 

transient cellular property, which we approached using sister cell analysis (Spencer et al., 2009; 

Strasen et al., 2018). We tracked the history of cells prior to OXPHOS inhibitor treatment and 

compared AMPKAR2Δ for sister cell pairs as a function of time since their last mitosis (Fig. 3.4.A). 

If resistance is a permanent characteristic, sister cells would remain similar in their response 

indefinitely (Fig. 3.4.A,i), whereas if resistance is transient, they will be similar initially but diverge 

over time (Fig. 3.4.A,ii). Both OP-ind and OP-dep cells were well represented at all times after the 

last division (Fig. 3.4.B,C), and sister cell pairs within 2 hours of their shared mitosis were 

significantly more likely to have a similar AMPKAR2Δ response than random pairs of cells (Fig. 

3.4.D,E). However, this similarity in AMPKAR2Δ between daughters decayed gradually and 

approached the level of unrelated cells with a half-life of ~29 hours (Fig. 3.4.E). These results 

indicate that OP-ind or OP-dep states are a heritable property that can persist for at least several 

hours, and that transitions between these states occur intermittently within the cell population. 

To observe transitions between sensitive and resistant states more directly, we performed 

long-term imaging of cells under continuous oligomycin treatment. Cells classified as OP-dep 

entered immediately into a regular oscillatory pattern of AMPK activity (as seen in Fig. 1A), with 

a period of approximately 3 hours (Fig. 3.4.F, top). However, we noted that cells occasionally 

exited this oscillatory state and entered a phase with weaker, irregular AMPK activity (Fig. 3.4.F, 

bottom and S4A). For cells that showed such a transition, the median time to transition ranged 

from 0 to 60 hours, with a median of 34 hours. Phases of weak AMPK activity persisted for 1-20 

hours, with a median of 5.6 hours (Fig. 3.4.H), before cells returned to the oscillatory phase. 

Similarly, cells that initially showed an OP-ind response typically underwent a transition into 
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oscillatory activity within 6 hours after oligomycin treatment (Fig. 3.4.I). These results are 

consistent with the sister-cell analysis and indicate that cells transition intermittently between an 

OP-dep-like phase with oscillatory AMPK activity, and an OP-ind-like phase with weak AMPK 

activity. Furthermore, comparison of the duration and frequencies of these phases to the overall 

frequency of OP-ind cells suggests that the primary source of initial OP-ind cells are the 

intermittent phases of weak AMPK activity, rather than the 3-hour oscillatory nature of the AMPK 

response (Fig. S3.4.B).  
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Figure 3.4 : OXPHOS inhibitor resistance is a heritable but transient cellular state 
 
A: Schematic of sister cell analysis to distinguish between permanent and time-varying cell states 
determining the response to OXPHOS inhibition. B: Heatmaps of AMPKAR2PHOS in individual 
cells. MCF10A-AMPKAR2 cells were imaged for 24 hours before treatment with 1.8 µg/ml 
oligomycin. Each horizontal line represents a single cell’s AMPKAR2PHOS profile, beginning with 
its most recent cell division and ending 2 hours after oligomycin (OM) treatment. Cells were sorted 
by the time of their last division. Analysis contains >11,000 individual cells. N=3. C: Line plot of 
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the relationship between a cell’s age at the time of oligomycin treatment and its recorded 
AMPKAR2Δ response. D: Sample traces of AMPK activity from sister cell pairs. E: Comparison 
of AMPKAR2PHOS responses in sister cells. Dissimilarity between the sisters of each division, or 
between randomly chosen pairs of cells was calculated (see Methods). Solid lines represent effect 
size, and the shaded areas represent interquartile range after bootstrapping. Dashed line 
represents a fitted exponential function for the decay of sister cell similarity over time. F: 
Transitions in OXPHOS dependence within single cells. Top panels show two example cells in 
which strong AMPK activity (continued pulsing) persists for the remainder of the experiment. 
Bottom panels show two example cells that transition from strong activity (orange) to a state with 
weak AMPK activity (green). N=2. G: Distribution of transition times from strong to weak AMPK 
activity. For all cells showing a transition as shown in the bottom panels of (F), the time between 
oligomycin treatment and the first transition is shown as a histogram. H: Distribution of durations 
of weak AMPK activity states. For all cells showing both entry into and exit from an OP-ind state 
during the experiment (green phases in (F)), the interval between entry and exit is shown as a 
histogram. I. Examples of cells transitioning from a weak to a strong AMPK state. Top panels 
show example cells that transition to strong and then return to weak activity. Bottom panels show 
instances of cells that transition to strong activity for the remainder of the experiment.  

 

3.3.5. Glucose uptake and protein synthesis modulate OXPHOS inhibitor resistance 

We next addressed the molecular differences that underlie OP-dep and OP-ind 

responses, beginning with the capacity to produce ATP by glycolysis. Treatment with insulin, 

which stimulates glucose uptake and glycolysis through PI3K/AKT signaling, increased the 

frequency of OP-ind responses in MCF10A, MCF7, 184A1, and U87MG cells (Fig. 3.5.A). 

Furthermore, inhibition of AKT, hexokinase, or mTORC1/2 shifted cells toward OP-dep responses 

(Fig. 3.5.B). In contrast, inhibition of fatty acid oxidation or lipolysis failed to significantly alter OP-

ind responses (Fig. S3.5.A). While these results implicate regulation of glucose uptake through 

insulin/PI3K/AKT signaling, this pathway can potentially affect AMPK activation through multiple 

routes (Suzuki et al., 2013). To test whether OP-ind cells can result solely from increased glucose 

uptake capacity, we overexpressed the glucose transporter GLUT1 along with a co-translated red 

fluorescent protein (RFP) to quantify GLUT1 overexpression on a cell-by-cell basis. We removed 

insulin to eliminate the AKT-induced component of glucose uptake. Higher expression GLUT1-

RFP correlated with weaker AMPK responses to OXPHOS inhibitor (Fig. 3.5.C), with 60% of 

GLUT1-RFP-expressing cells showing OP-ind behavior, while almost 100% of cells not 

expressing GLUT1-RFP were OP-dep. When insulin was added, OP-ind responses shifted to 
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include cells at lower GLUT1-RFP expression levels, consistent with the induction of endogenous 

(unlabeled) glucose transporters (Fig. 3.5.D,E). Accordingly, the predictability of OXPHOS 

inhibitor response as a function of exogenous GLUT1 expression decayed (Fig. 3.5.C-E, bottom 

panels). These data demonstrate that a cell’s OXPHOS inhibitor resistance status can be 

determined by its capacity to take up glucose, and that this status can be predicted based on 

glucose transporter expression when other factors are minimized.   

Most cell lines are cultured in media containing high levels of glucose, and therefore OP-

ind responses might result from glucose-induced changes in glycolytic gene expression or from 

increased storage metabolites (such as glycogen). To test these possibilities, we cultured cells in 

the absence of glucose for 24 hours, and then added glucose for a short time window (30 minutes 

or 1 minute) prior to treating with oligomycin (Fig. 3.5.F). Because short exposure to glucose is 

unlikely to increase storage pools or expression of glycolytic enzymes, we expected that OP-ind 

cells relying on these mechanisms would become OP-dep during the starvation period. However, 

OP-ind cells were instead detected at a much higher frequency following glucose withdrawal 

(>90% at 17 mM glucose, Fig. 3.5.G) than when cultured in glucose continuously (~25% at 17 

mM glucose, see Fig. 3C). This result indicates that OP-ind cells are not simply the result of 

prolonged high glucose conditions. Rather, it may be that during the starvation period, ATP 

consumption rates decline more than glycolytic capacity, resulting in anabolically inactive cells 

that have relatively low demand but remain poised to utilize glucose when it is resupplied (Fig. 

S3.5.B). Consistent with this interpretation, protein synthesis rate as measured by O-propargyl 

puromycin (OPP) incorporation was significantly lower following 24 hour glucose starvation (Fig. 

S3.5.C). At the same time, the frequency of OP-ind cells remained dependent on the 

concentration of glucose that was resupplied for 1 minute (Fig. 3.5.G). Thus, these results support 

that glycolytic capacity is needed for OP-ind responses and implicate ATP turnover as a potential 

additional factor that influences the OXPHOS inhibitor response. We also found that glutamine, 
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which is provided in excess in some cell culture media, is not required for OP-ind responses but 

can increase their frequency (Fig. S3.5.D).  

 Because our results and previous studies (Buttgereit and Brand, 1995) suggest that ATP 

usage (i.e., turnover) by protein synthesis may impact energy charge upon OXPHOS inhibition, 

we tested the effect of translation inhibition by cycloheximide (CHX) using both OPP incorporation 

and a live-cell translation reporter, TOP-H2B-YFP-DD (Han et al., 2014)(Fig. 3.6.A-C). Pre-

treatment with CHX decreased the fraction of OP-dep cells from 60% to <10% (Fig. 3.6.D). 

Furthermore, even 15 minutes after an AMPK response was initiated, protein synthesis inhibitors 

immediately reduced AMPK activity, shortening the pulse length from 60 minutes to 20 minutes 

(Figure 6E, F). This observation suggests that reducing ATP consumption by translation lowers 

the impact of OXPHOS inhibitors on energy charge and AMPK activation.  

Several observations supported the interpretation that inhibitors of translation limit AMPK 

activity due to a decrease in catabolic activity, rather than activation of feedback or stress 

responses. First, while extended incubation with CHX increased phosphorylation of S6 and 4E-

BP1 as previously reported (Santos et al., 2019), this increase was moderate relative to the pre-

existing mTORC1 activity level (Fig. S6D,E). Furthermore, culture of cells in varying 

concentrations of essential amino acids (EAA) or non-essential amino acids (NEAA) modulated 

the rate of protein synthesis as measured by TOP-H2B-YFP-DD (Fig. 3.6.G,H). Under these 

conditions, the fraction of OP-dep cells measured following oligomycin treatment correlated with 

the protein synthesis rate (R2 =0.53, Fig. 3.6.I). These results support that OP-ind cells depend 

on a low rate of protein synthesis, which makes it possible for glycolysis to maintain cellular energy 

charge above the threshold to trigger AMPK.  
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Figure 3.5 : Glucose uptake and protein synthesis modulate OXPHOS inhibitor resistance 
 
A: Increase in OP-ind responses stimulated by insulin. Histograms show AMPKAR2Δ responses 
to 1.8 µg/ml oligomycin. N=2. B: Change in OP-dep responses in response to inhibitor treatment 
for MCF10A cells under 17 mM glucose. Inhibitors were added 30 minutes prior to oligomycin. 
Horizontal black lines indicate the fraction of OP-dep cells under control treatment (DMSO); points 
falling outside the gray region are considered significant by t-test. Points represent the mean, and 
error bars standard error of the mean; N=2. C, D and E: Effect of increased glucose uptake on 
OXPHOS inhibitor responses. MCF10A-AMPKAR2 cells stably overexpressing GLUT1-IRES-
NLS-mCherry were cultured with 0 (C), 100 (D), or 10000 ng/ml (E) insulin and exposed to 
oligomycin (OM). Each row in the heatmaps (upper panels) represents an individual cell; rows are 
sorted by relative mCherry intensity (corresponding to the level of GLUT1 overexpression), which 
is indicated by the color bar to the left. GLUT1 expression levels are normalized to the minimum 
and maximum expression levels in the population. Lower panels show scatter plots of mCherry 
intensity and AMPKAR2Δ following oligomycin treatment. N=2. F, G: Increase in OP-ind 
responses following glucose starvation. (F) shows average AMPKAR2PHOS recordings for 
MCF10A cells grown in the absence of glucose for 24 hours and then treated with glucose at the 
specified concentrations, followed by 1.8 µg/ml oligomycin at 30 minutes or 1 minute after glucose 
addition. (G) shows histograms of AMPKAR2Δ values after oligomycin treatment for the 
conditions shown in (F). N=2.  
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Figure 3.6 : Reducing protein synthesis rate promotes OXPHOS inhibitor resistance  
 
A: Measurement of protein synthesis rates in live cells. MCF10A cells stably expressing TOP-
H2B-YFP-DD (TOP) were treated with the degron inhibitor trimethoprim (TMP). Protein production 
rate was calculated as the slope of YFP intensity change during the 60 minutes after TMP 
treatment (orange shaded area). The effect of CHX inhibition on protein production was quantified 
from the slope for a 60 minute period beginning 90 minutes after treatment (blue shaded area); 
relative protein production rate is calculated as the ratio of slopes in the blue and orange regions 
(S1 and S2 respectively). B, C: Quantification of reduced protein synthesis rates. (B) shows mean 
TOP-H2B-YFP-DD intensity for a concentration series of CHX treatments. Shaded areas show 
interquartile ranges. (C) shows calculated single-cell relative protein production rates for each 
concentration of cycloheximide. Each box represents the distribution of >400 cells. N=2. D: 
Relationship of average protein production rate to the fraction of OP-dep cells. Protein rate was 
measured as in (A-C). The corresponding fraction of OP-dep responses was determined by 
culturing cells in the same CHX concentrations, followed by oligomycin treatment. Points 
represent the mean, and error bars standard error of the mean; N=2. E, F: Termination of AMPK 
activity pulses by protein synthesis inhibition. (E) shows single-cell traces (light lines) and means 
(dark lines) for cells treated with oligomycin (OM), followed by the protein synthesis inhibitors CHX 
or geneticin (Gen) at the concentrations indicated. (F) shows quantification of single cell 
AMPKAR2PHOS pulse widths after CHX (left panel) or geneticin (right panel) treatment. Pulse 
widths were calculated as the time at which AMPKARPHOS decreased to 50% of the maximum 
value for each cell following treatment with CHX or geneticin. N=2. G-I: Modulation of protein 
synthesis and AMPK responses by amino acid availability. (G) shows representative mean TOP-
H2B-YFP-DD intensity for MCF10A cells cultured in essential or non-essential amino acid at the 
indicated concentrations (X represents fold-change relative to the concentration in MEM). Shaded 
areas show interquartile ranges. (H) shows quantification of relative protein synthesis rates from 
the experiment shown in (G). Each box represents the distribution of >200 cells. (I) shows the 
mean protein synthesis rates from (G) plotted against the corresponding fraction of OP-dep cells, 
measured after oligomycin treatment in the same amino acid concentrations. Solid line represents 
a fitted linear model, and dashed lines the 95% confidence bounds. N=2.  

 

3.3.6. OXPHOS inhibitor response states are inherently multivariate 

We investigated the cell division cycle as a potential source of variability, combining 

AMPKAR2 measurements with DNA content, a live-cell S/G2 reporter (mCherry-Geminin1-330), 

and staining for phosphorylated Rb protein (pRb). Plotting these measurements enabled cell cycle 

phases to be clearly distinguished (Fig. 3.7.A). We then overlaid the oligomycin-induced 

AMPKAR2Δ measurement for each cell, recorded immediately prior to fixation (Fig. 3.7.B). We 

noted that both high and low AMPKAR2Δ measurements were found in all stages of the cell cycle 

(Fig. 3.7.C,D). However, comparisons of the cell cycle phase distributions of OP-dep and OP-ind 
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cells revealed enrichment for different phases – OP-ind cells were 2-fold more likely to be in G1 

phase relative to OP-dep cells, whereas OP-dep cells were more often found in S and G2 phases 

(Fig. 3.7.E). We noted that OPP incorporation increased with progression of the cell cycle (Fig. 

S3.7.A), providing a potential explanation for the higher number of OP-dep cells in S and G2. 

Live-cell recordings in cells expressing both AMPKAR2 and mCherry-Geminin1-330 and treated 

with oligomycin identified OP-ind phases immediately following cell division (Fig. 3.7.F, top panel), 

consistent with their statistical enrichment in G0/G1. However, other cells showed continuous OP-

dep responses in G0/G1 (Fig. 3.7.F, bottom panel), indicating that OP-ind responses are 

probabilistically related to cell cycle position, but not strictly determined by it.   

To understand how multiple factors interact to determine OXPHOS inhibitor responses 

within individual cells, we performed a multivariate analysis using partial least squares regression 

(PLSR). We collected a multiplexed dataset for AMPKAR2Δ, OPP incorporation, cell cycle 

markers (Hoechst-33342 and pRb) and our GLUT1-RFP expression system as a surrogate 

measurement for glycolytic rate. We used Wanderlust (Bendall et al., 2014) to represent cell cycle 

position as a single continuous variable cycle based on DNA content and pRb measurements 

(Fig. S3.7.D). PLSR models were generated to predict each cell’s AMPK response based on its 

individual combination of the other factors. Initially, we excluded cells with the highest GLUT1-

RFP expression (Fig. S3.7.E) to prevent them from dominating the model predictions. In the best 

fitting models, the first principal component (PC) captured approximately 8% of variability in AMPK 

response between single cells, which was increased to 10% by the second PC; additional PCs 

did not further improve predictivity (Fig. 3.7.G and S7F). This relatively low predictive power is not 

unusual for single-cell models of signaling responses (Gillies et al., 2017) and indicates that 

unmeasured factors or stochastic variation contribute substantially to the variable AMPK 

response. Nonetheless, the variability captured by the model represents a strong signal relative 

to control models (Fig. 3.7.G, gray line) that can be used to understand the interactions between 
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measured variables. In the first PC, GLUT1-RFP was the highest weighted input and contributed 

negatively to AMPK response, while pRB and OPP incorporation had smaller positive 

contributions (Fig. 3.7.I). Individually, GLUT1, OPP, and pRB predicted 6.9%, 2.4%, and 1.8% of 

AMPK variability, while the inferred cell cycle position was less predictive than pRb (Fig. 3.7.H). 

As expected, when all levels of GLUT1-RFP expression were considered, overall predictivity rose 

to 35% (Fig. S3.7.E,F) but was dominated by the contribution of GLUT1-RFP (Fig. S3.7.G). 

Overall, this analysis demonstrates that each cell’s OXPHOS inhibitor response is a multivariate 

process determined by a combination of glycolytic rate, protein synthesis, and RB 

phosphorylation, as well as other unmeasured parameters.  
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Figure 3.7 : OXPHOS inhibitor response states are inherently multivariate 

A: Scatter plot of single cell measurements of DNA content (Hoechst 33342 intensity) and 
phospho-Rb IF, colored by mCherry-Geminin1-330 intensity. Dotted lines divide the phases of the 
cell division cycle, with the percentage of cells in each phase indicated. N=3. B: Scatter plot of 
cell cycle parameters as in (A), colored by AMPKAR2Δ values recorded during the 30 minutes 
immediately prior to fixation and staining. N=3. C and D: Scatter plots of cell cycle parameters as 
in (A), divided between OP-dep cells (C) and OP-ind cells (D). N=3. E: Bar graph comparing the 
distribution of cell cycle phases for OP-ind and OP-dep cells. Error bars represent standard errors 
of means; N=3. F: Single cell traces of AMPK activity and mCherry-Geminin1-330 intensity for (top) 
a cell in which OP-ind occurs early in G0/G1, and (bottom) a cell in which no OP-ind phase occurs 
during G0/G1. Markers indicate the time of mitosis. G: Predictivity of PLSR models of AMPKAR2Δ 
(percentage of total variance explained) including the indicated combinations of measurements. 
For the ‘‘scrambled’’ model, pairings between input and output measurements for each cell were 
randomly reassigned. Cell cycle position was estimated by using the Wanderlust algorithm for 
non-linear mapping. See STAR Methods and Figure S7D for details. H: Bar chart showing percent 
of total variance explained by the first PLSR component for models using combinations of cellular 
processes measurement as indicated. I: Contribution of measured processes to PLSR models for 
AMPKAR2PHOS response to oligomycin treatment. Distributions of parameter coefficients were 
generated by bootstrapping with replacement 10,000 times. J: Simplified diagrams indicate the 
state of ATP metabolism in OP-ind and OP-dep cells. Blue “pipes” indicate flux of ATP, and red 
pipes the flux of ADP. Meter icons indicate the balance of ATP production capacity relative to ATP 
consumption. The dotted ‘pipe’ indicates reserve glycolytic capacity to supply ATP. OP-dep cells 
(top panel) have low glycolytic capacity with high ATP demand; upon OXPHOS inhibition, these 
cells maintain constant ATP concentration at the expense of an increase in ADP that triggers 
activation of AMPK and inhibition mTORC1 and ERK pathways. OP-ind cells (bottom panel) have 
high reserve glycolytic capacity and relatively low ATP demand. Upon OXPHOS inhibition, these 
cells can maintain constant ATP and a low concentration of ADP via glycolysis, and AMPK 
consequently remains inactive. 
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3.4. Discussion 

Cellular heterogeneity can influence the therapeutic efficacy of drugs (Altschuler and Wu, 

2010). We identify a distinct form of heterogeneity that results from transient differences in each 

cell’s balance between the capacity to generate ATP through glycolysis and its ATP consumption 

or turnover rate. While protein synthesis, glucose uptake, and the cell cycle are well-known to 

affect cellular energy balance, our analysis reveals that these processes interact at the cellular 

level to create transient states of resistance to an acute metabolic challenge like OXPHOS 

inhibitor treatment. This variation impacts metabolic stress signaling through AMPK, mTOR, and 

ERK, which are among the intended targets for OXPHOS inhibition in both cancer and diabetes 

(Howell et al., 2017; Kim et al., 2012).  

Our data indicate that the response to OXPHOS inhibition depends on multiple factors 

and is difficult to predict for any individual cell. Each cell carries on its own mixture of ATP-

consuming processes, and at the same time has a certain maximal capacity for ATP production 

through glycolysis. The net balance of these processes determines the extent to which ATP 

production can continue when OXPHOS is inhibited (Fig. 7J). Therefore, while protein synthesis 

and AKT signaling are significant drivers of the OXPHOS response, for a specific cell they may 

not be the most consequential, depending on which other ATP-consuming or generating 

processes are active. Furthermore, our data suggest that as the prevalence of these processes 

changes over time in a given cell, so does its OXPHOS inhibition response. Only when 

components such as GLUT1 are overexpressed can a cell’s response be predicted reliably based 

on a single factor. This complexity makes the OXPHOS inhibitor response useful, as it can 

interrogate the net ATP production/turnover balance in a single measurement.   

How does cellular variation in ATP turnover and production arise? While OP-dep and OP-

ind responses correlate to some extent with cell cycle phases, this bias cannot explain most 

variation, as both types of response can be found at any point in the cell cycle. We suggest that, 
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because protein synthesis increases throughout the cell cycle (Elliott and McLaughlin, 1978), ATP 

turnover increases and OP-dep states become increasingly likely during S and G2, explaining 

their observed enrichment in these phases. Can the remaining variability then be attributed to 

different rates of glucose uptake? This is possible, as we have observed that AMPK and AKT 

activity can fluctuate during normal growth conditions (Hung et al., 2017), which would be 

expected to result in different glucose uptake rates over time. Still another possibility is that, as in 

yeast (Cai and Tu, 2012; Tu et al., 2007) mammalian cells have an intrinsic cycle that controls 

flux through glycolysis and protein synthesis. Our results reveal the existence of at least two 

different but interrelated cellular rhythms: a regular oscillation between AMPK activity and 

inactivity with a period of ~3 hours during OXPHOS inhibition, and a longer-term shift between a 

state in which cells are competent for AMPK oscillations and a state in which AMPK activity 

remains dormant. The longer cycle, on the order of 20-30 hours, could be linked to the mammalian 

cell division cycle (Ahn et al., 2017) or circadian rhythms (Bass and Takahashi, 2010). However, 

it is less clear whether the shorter cycles have any relationship to the yeast metabolic cycle, which 

has a period of 2-3 hours but is closely linked to the cell cycle.  

Our data reiterate the remarkable adaptability of ATP homeostasis that has previously 

been reported (Gowans et al., 2013; Hao et al., 2010). The stability of ATP concentration under 

severe perturbation of ATP production by OXPHOS inhibitor implies that a large fraction of ATP 

production can be shifted to glycolysis within seconds, despite its low yield of 2 ATP per glucose 

molecule relative to the ~30 produced by OXPHOS. Because ATP homeostasis is maintained 

even in cells without a detectable AMPK response (OP-ind), AMPK is likely not required for this 

initial adaptation. Rather, our data imply that during OXPHOS inhibitor treatment, flux through 

glycolysis is redirected from the production of biosynthetic intermediates, which are uncoupled 

from ATP production (Lunt and Vander Heiden, 2011), to prioritize the production of ATP. In OP-

ind cells, the ATP consumption load is low enough that this shift can occur without a large 
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perturbation of ADP/ATP ratio, precluding activation of AMPK. In OP-dep cells, this shift is 

sufficiently rapid to preserve ATP levels, but generates a large enough rise in ADP/ATP ratio to 

cross the ultrasensitive threshold for AMPK activation (Hardie et al., 1999). AMPK likely plays a 

longer-term role in metabolic adaptation, consistent with the finding that it is required for 

mammalian development (Viollet and Foretz, 2016) but not for cellular viability (O'Neill et al., 

2011).  

Recently developed pharmacological AMPK activators (Cokorinos et al., 2017; Myers et 

al., 2017) and OXPHOS inhibitors (Molina et al., 2018; Shi et al., 2019) are expected to be useful 

in the treatment of cancer, diabetes, and inflammatory conditions. Understanding the factors that 

underlie the heterogeneous OXPHOS inhibitor response will be important in optimizing this 

growing class of pharmacological compounds. The ability to predict and control the fraction of 

cells that respond to OXPHOS inhibitors may allow these drugs to be tailored toward different 

goals. Potent induction of energy stress in the largest number of cells possible may be desirable 

in the case of anti-cancer therapy, but heterogeneous activation may be preferable when trying 

to restore physiological energy balance in diabetes or metabolic syndrome. Measuring metabolic 

heterogeneity may also be important for predicting responses to other drugs, such as cytotoxic 

chemotherapies. Our study opens a new window into how cellular heterogeneity in drug 

responses can arise from underlying metabolic differences between cells.  

3.5. Limitations of Study 

This study relies on immortalized cell lines, which carry genetic abnormalities, and which 

are cultured in medium that does not correspond to physiological conditions. Thus, this study 

does not bear on whether the heterogeneity we observe occurs within the human body. While we 

identify factors that alter or predict heterogeneous metabolic behavior, our study does not identify 

the underlying process that creates alternating periods of OXPHOS inhibitor sensitivity or specify 

the nature of this process. Changes in gene expression profile could underlie shifts in sensitivity, 



 

56 

 

but it is equally possible that post-translational modifications of proteins, or changes in metabolic 

pathway flux generate the observed variation; further work will be needed to distinguish these 

possibilities. Finally, our conclusions rely heavily on live-cell reporters of cellular metabolites or 

kinase activity, and though we provide validation of reporter data using alternate methods, we 

cannot exclude the possibility that the reporters show some cross-reactivity to additional factors 

in the cell.  
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3.7. Methods 

3.7.1. Cell culture and media 

Routine cell culture for human mammary epithelial cells, MCF10A clone 5E (Janes et al., 

2010) and 184A cells were performed as previously described (Debnath et al., 2003). MCF10A 

and 184A1 were grown in ‘DMEM/F12 growth medium’ (see Media table). Primary stocks from 

the original clonal derivation (MCF10A-5E) or the ATCC (184A1) were used in all experiments. 
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MCF7, U87, and A549 cell lines were obtained from ATCC and cultured in ‘DMEM growth 

medium’ (see Media composition). All cells were routinely split when they are ~80% confluent. 

In live microscopy experiments, we used a custom formulation, termed ‘imaging base-

DMEM/F12’, which consists of DMEM/F12 lacking glucose, glutamine, riboflavin, folic acid, and 

phenol red (Life Technologies or UC Davis Veterinary Medicine Biological Media Service) which 

allows adjustment of available nutrients and avoids fluorescence background. All experiments 

involving MCF10A or 184A1 cell line were performed in ‘Imaging medium 1’ (see Media 

composition). ‘Imaging medium 1 – noAA’ was used in experiments that involved amino acid 

perturbation. For experiments with MCF7, U87 or A549 cell lines, ‘Imaging medium 2’ was used. 

For all experiments, ‘Imaging medium 1’, ‘Imaging medium 1 – noAA’ and ‘Imaging medium 2’ 

were supplied with glucose 17 mM and 25 mM, respectively, unless indicated otherwise. 

Before imaging, cells were washed twice with their respective media and then cultured in 

imaging experiment media at least 2 hours prior to imaging, unless indicated otherwise. The cell 

to media ratio was maintained at 150-200 cells/µl for all experiments. For experiments involving 

titration of insulin or EGF concentrations, cells were placed in EGF- or insulin-deficient media for 

4 – 6 hours prior to imaging. 
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3.7.2. Media composition 

DMEM/F12 growth media     

Component Vendor Catalog 

number 

Final 

Concentration 

DMEM/F2 Gibco 11320-033 - 

Horse Serum Invitrogen 16050-122 5% 

EGF Peprotech AF-100-15 20 ng/ml 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Insulin Sigma I9278 10 ug/ml 

    

DMEM growth medium    

Component Vendor Catalog 

number 

Final 

Concentration 

DMEM Gibco 11965-092 - 

Fetal bovine serum Gemini bio products 100-106 10% 

    

Imaging medium 1    

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12 Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 17 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 

EGF Peprotech AF-100-15 20 ng/ml 

Insulin Sigma I9278 10 ug/ml 
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Imaging medium 2 

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12 Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 25 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 

    

Imaging medium 1 - noAA    

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12-

noAA 

Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

amino acids, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 17 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 

EGF Peprotech AF-100-15 20 ng/ml 

Insulin Sigma I9278 10 ug/ml 
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Seahorse Assay Medium 

Component Vendor Catalog 

number 

Final 

Concentration 

Seahorse XF base medium Agilent 103334-100 - 

Sodium pyruvate Gibco 11360070 1 mM 

L-Glutamine Gibco 35050079 2 mM 

 

3.7.3. Reporter construction 

The reporters AMPKAR2 (Hung et al., 2017) and ERKTR-mCherry (Sparta et al., 2015) 

were previously described. PercevalHR (Tantama et al., 2013), ATeam1.03 (Imamura et al., 

2009), and GLUT1 were obtained from Addgene. TOP-H2B-YFP-DD (Han et al., 2014) was 

generously provided by Tobias Meyer. PercevalHR was modified with a nuclear export sequence 

at the C-terminus to compartmentalize the sensor in the cytosol. AMPKAR2, PercevalHR, and 

Ateam1.03 sensors were cloned into a vector compatible with piggyBAC transposase-mediated 

delivery (Yusa et al., 2011) to minimize recombination between CFP and YFP. GLUT1-IRES-

NLS-mCherry was constructed by cloning the GLUT1 coding sequence (Takanaga et al., 2008) 

into the retroviral vector pBabe-neo (BamHI/XhoI); a nuclear localization signal (NLS) was added 

to mCherry by PCR and was cloned into retroviral vector pBabe-neo (BamHI/EcoRI). IRES-NLS-

mCherry was then inserted at the 3’ end of GLUT1 (XhoI/SalI). pLJM1-TFEB-TR. TFEBTR-

mCardinal was constructed by inserting the coding sequence for TFEB residues 1-237 into pLJM1 

upstream of and in-frame with the coding sequence of mCardinal. Correct insertions for all 

plasmids were confirmed by sequencing. 

3.7.4. Reporter Delivery 

Cell lines stably expressing biosensors were generated by retroviral transduction or 

transfection with the PiggyBac transposase system (Yusa et al., 2011). PiggyBac plasmids were 

delivered by electroporation (Amaxa II system, Lonza). After transfection or transduction, cells 

were selected with puromycin (1–2 μg/ml) or geneticin (300 μg/ml); single-cell clones were made 
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by limiting dilution or flow cytometry sorting. For each reporter, we isolated multiple stable clones 

with homogenous expression; data reported in this study reflect representative behaviors that 

were consistent across clones for each reporter line. Main reporter cell lines were confirmed to 

be mycoplasma-negative by PCR; results were validated by third-party testing of selected lines 

(ATCC). 

3.7.5. Live-cell fluorescence microscopy 

Time-lapse wide-field microscopy was performed as described previously (Hung et al., 

2017; Pargett et al., 2017). Briefly, 25,000 cells were plated one day prior to imaging in glass-

bottom 96-well plates (Cellvis P96-1.5H-N, Mountain View, CA) pretreated with type I collagen 

(Gibco A10483-01) to promote cell adherence. For experiments with drug addition, cells were 

placed in imaging medium until the addition of the drug. For drugs dissolved in DMSO, the final 

DMSO concentration was <0.1%. Cells were maintained in 95% air and 5% CO2 at 37 C̊ in an 

environmental chamber. Images were collected with a Nikon (Tokyo, Japan) 20/0.75 NA Plan Apo 

objective on a Nikon Eclipse Ti inverted microscope, equipped with a Lumencor SOLA or 

Lumencor SPECTRA X light engine. Fluorescence filters used in the experiment are: DAPI 

(custom ET395/25x - ET460/50m - T425lpxr, Chroma), CFP (49001, Chroma), Sapphire (custom 

ET420/10x - ET525/50m - T425lpxr, Chroma), GFP (49002, Chroma), YFP (49003, Chroma), 

Cherry (41043, Chroma) and Cy5 (49006, Chroma). For AMPKAR2 and Ateam1.03 biosensors, 

CFP and YFP filters were used to acquire images, while for the PercevalHR biosensor Sapphire 

and GFP filters were used. Images were acquired using Andor Zyla 5.5 scMOS camera every 6 

– 7 minutes with 2x2 binning. Exposure times for each channel were 25-50 ms for DAPI; 150 – 

250 ms for CFP; 150 – 250 ms for YFP; 500 – 750 ms for Sapphire; 500 – 750 ms for GFP; 300 

– 500 ms for Cherry and 300 – 500 ms for Cy5. 

3.7.6. Immunofluorescence microscopy 
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At indicated times during live-cell imaging experiment, 8% paraformaldehyde was added 

directly into imaging media to make 2% paraformaldehyde final concentration. Paraformaldehyde 

fixation was performed for 15 minutes, followed by permeabilization with 100% methanol. Cells 

were then washed in PBS-T (0.1% Tween-20 in PBS) twice and blocked with Odyssey Blocking 

Buffer (Li-Cor, Lincoln, NE) for 1 hour at room temperature. Reporter fluorophores were bleached 

as described in the CyCIF protocol (Lin et al., 2015). Samples were then incubated with primary 

antibody at the indicated concentrations (see Antibody Table), diluted in blocking buffer, overnight 

at 4 C̊. Secondary staining was performed with Alexa 647-conjugated anti-rabbit (Life 

Technologies, A-21245, diluted at 1:1000 in blocking buffer), followed by DNA staining with 

Hoechst-33342 (Life Technologies, H3570, diluted at 1:1000 in PBS). Plates were imaged as 

described for live-cell microscopy, using DAPI and Cy5 filter sets. After imaging, the Afterwards, 

intensity of fixed-cell images in each condition were matched back to the corresponding time-

lapse movies. 

3.7.6. Single cell protein synthesis estimation by O-propargyl-puromycin (OPP) 

To estimate global nascent protein synthesis rate, we pulse-labeled cells with the 

puromycin analog O-propargyl-puromycin (OPP; Click Chemistry Tools #1407) at 10 µM final 

concentration for 30 minutes before the end of live-cell imaging. After fixation, permeabilization, 

and fluorophore bleaching as described earlier, cells were then incubated with click chemistry 

reaction buffer (10 μM Azide dye + 4mM CuSO4 + 50 mM Ascorbic acid in 100 mM Tris Buffer pH 

8.5) containing Alexa 647 Azide dye (Click Chemistry Tools #1299) for 1 hour. Then, samples 

were washed with PBS three times and imaged as described earlier. 

3.7.7. Phos-Tag electrophoresis and western blot 

All samples for western blot experiments were collected from cells cultured in 6 well-plates 

at 80% confluency. Samples were lysed with ice-cold RIPA buffer. For Phos-TagTM gel 
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electrophoresis, we used SuperSep™ Phos-tagTM Precast Gels (Wako; 195-17991). Samples 

were loaded at 3 ug/lane, as measured by BCA protein assay (Thermo Scientific 23225).  

The electrophoresis running buffer was Tris-Glycine-SDS solution (25 mM Tris, 192 mM 

Glycine, 0.1% SDS, pH 8.3), supplied with 1.25 mM sodium bisulfite immediately before 

electrophoresis. Electrophoresis was performed at 100V, constant voltage for 3 hours at 4oC. 

After electrophoresis was completed, gels were washed in methanol-free transfer buffer (25 mM 

Tris, 192 mM Glycine, pH 8.3, 10 mM EDTA) 3 times, 10 minutes each in order to remove divalent 

cations that would immobilize phosphorylated proteins in the gel. Then gel was equilibrated in 

transfer buffer (25 mM Tris, 192 mM Glycine, pH 8.3, 10 mM EDTA, 20% v/v Methanol) twice, 10 

minutes each. Separated proteins were transferred to PVDF membrane using wet blot transfer 

method at 18V, overnight at 4oC. 

Following protein transfer, membranes were stained with 3% w/v Ponceau S to validate 

transfer efficiency, then thoroughly de-stained with Milli-Q water and 0.1%PBST (10 mM Tris–HCl 

(pH 7.5), 100 mM NaCl, and 0.1% v/v Tween-20). Non-specific antibody binding was blocked by 

incubating membranes in Odyssey blocking buffer (Licor; 927-40000) for 1 hour at room 

temperature. Primary antibodies (Rabbit Anti-GFP, CST 2956) were diluted to 1:1000 in blocking 

buffer and incubated with the membrane overnight at 4oC to detect the AMPKAR2 reporter, 

Following extensive washing in 0.1%PBST (3 times, 10 minutes each), membranes were 

incubated with diluted IRDye 800CW (Licor; 926-32211) secondary antibodies for 1 hour, at room 

temperature. After washing in 0.1%BST (3 times, 10 minutes each) immunoreactive bands were 

recorded with an Odyssey CLx imaging system.  

3.7.8. Luminescence ATP determination 

ATP concentration for bulk cell populations was determined using an ATP determination 

kit (Thermo Fisher, A22066), using protocol provided by the manufacturer with minor modification 
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as follows. Cells were plated in 96-well plate at 25000 cell/well 1 day before the experiment and 

treated as previously described for live-cell microscopy. Samples were collected at indicated time 

points by incubation with Trichloracetic acid (TCA), final concentration of 2.5% v/v, at 4° C for 30 

minutes. After cell lysis, samples were diluted five-fold to minimize TCA concentration (now 0.5% 

v/v). 10 µl of diluted sample was added to 90 µl reaction solution (see product manual), in 96-well 

plate assay plate (Corning 3603) followed by incubation for 15 minutes at room temperature. 

Luminescence was monitored by microplate reader (Molecular Device, SpectraMax M5) at 560 

nM, room temperature.  

3.7.9. Measurement of mitochondrial stress responses and ATP flux from 
glycolysis/oxidative phosphorylation 

XF24 cell culture plates and sensor cartridges (100867–100) were purchased from 

Seahorse Bioscience (North Billerica, MA). Cells were plated in XF24 cell culture plates at a 

density determined by optimization experiments (35000 cells/well) and incubated at 37  ̊C with 

5% CO2 overnight in growth medium; even distribution of cells was verified visually. For the 

mitochondrial stress test, the growth medium was completely removed 24 hours after plating, and 

cells were washed twice with 1,000 ml of pre-warmed imaging medium 1. 500 ml of imaging 

medium 1 was added to each well and cells were incubated in a 37 C̊ incubator without CO2 for 1 

hr to allow cell equilibration with Imaging medium 1 (see Media Table). Oxygen consumption rates 

were measured with the XF24 analyzer under this basal condition followed by sequential addition 

of different oligomycin concentration, as indicated in Supplementary Figure 4A. For ATP fluxes 

from glycolysis and oxidative phosphorylation estimation, the data collected in the previous study 

(Hung et al., 2017) using Seashorse Assay Medium (see Media Table) was applied to formula 

previously described by Mookerjee et al.(Mookerjee et al., 2017). 

3.7.10. GC-TOF analysis of metabolites 
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For GCMS analysis, cells were plated in 10 cm plates at 107 cells per plate. After 

incubation overnight, the growth medium was replaced with 10 ml of ‘Imaging medium 1’ supplied 

with 17 mM glucose. After 4 hours of incubation, cells were treated with oligomycin 1.8 μg/ml. 

Samples were later prepared for gas chromatography study as described in (Fiehn, 2016). Briefly, 

samples were quenched by immediately replacing the media with 1 ml of pre-chilled, degassed 

3:3:2 v/v acetonitrile:isopropanol:water (Fisher) at 0,30,60,150 and 270 minutes following 

oligomycin, representing the average first peak, trough, and second peak of the AMPKAR2PHOS 

response to OXPHOS inhibitors. After quenching, samples were flash-frozen in liquid nitrogen 

and stored in -80oC freezer.  

Prior to GC-TOF analysis, all samples were thawed at room temperature and centrifuged 

at 14,000 rcf. Supernatants were removed, and samples evaporated to dryness using a CentrVap. 

To remove membrane lipids and triglycerides, dried samples were resuspended with 1:1 v/v 

acetonitrile:water, decanted and evaporated to dryness using a CentrVap. Internal standards, 

C8–C30 fatty acid methyl esters (FAMEs), were added to samples and derivatized with 

methoxyamine hydrochloride in pyridine followed by MSTFA (Sigma-Aldrich 69479) for 

trimethylsilylation of acidic protons. Derivatized samples were subsequently submitted for 

analysis by GC-TOFMS. 

Primary metabolite data was collected using a Leco Pegasus IV time of flight (TOF) MS 

(Leco Corporation) coupled to an Agilent 6890 GC (Agilent Technologies) equipped with a 30 m 

long 0.25 mm id Rtx5Sil-MS column (30 m × 0.25 mm; 0.25 µm phase) and a Gerstel MPS2 

automatic liner exchange system (Gerstel GMBH & Co. KG). The chromatographic gradient used 

a constant flow of 1 ml/min, and an oven temperature ramping from 50°C for to 330°C over 22 

minutes. Mass spectrometry data were collected using 1525 V detector voltage at m/z 85–500 

with 17 spectra/sec, electron ionization at −70 eV and an ion source temperature of 250°C. QC 

injections, blanks, and pooled human plasma were used for quality assurance throughout the run. 
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Data were processed by BinBase (Fiehn et al., 2005) for deconvolution, peak picking, filtering, 

and metabolite identifications. 

3.8. Quantification and statistical analysis 

3.8.1. Image processing 

After background subtraction and flat field correction, image data were processed to 

segment and average pixels within each identified cell’s nucleus and cytoplasm, using a custom 

procedure written for MATLAB (Pargett et al., 2017), with modifications in the cytosolic 

identification protocol as described below. Image data were stored in ND2 files generated by NIS 

Elements and accessed using the Bio-Formats MATLAB toolbox. Individual cells were tracked 

over time using uTrack 2.0 (Jaqaman et al., 2008). Cytoplasmic masks were created by 

watershed method (Vincent and Soille, 1991) using cytosolic YFP (for cell lines expressing 

AMPKAR2 or ATeam1.03) or GFP (for cell lines expressing PercevalHR) to identify the cytosolic 

boundary. The cytosolic area is further restricted to the area within 5 pixels from the nuclear 

border. The resulting single-cell time series traces were filtered for quality by a minimum length 

of trace and maximum number of contiguous missing or corrupt data points.  

3.8.2. FRET reporter calibration and measurement 

To quantify FRET biosensors (AMPKAR2 and ATeam1.03), we calculated FRET 

efficiency exactly as shown previously (Gillies et al., 2020), using a spectral model of light 

propagated through the microscopy system, including the live cell specimen. Since AMPKAR2 

reporter is a substrate for AMPK kinase activity, it is possible to estimate the fraction of sensor 

that is phosphorylated using Phos-TagTM electrophoresis, followed by immunoblot against GFP 

(see Phos-Tag electrophoresis and western blot). This measurement allows us to convert FRET 

ratios to the fraction of AMPKAR2 sensor that is phosphorylated, AMPKAR2PHOS. Western blot 

images were manually segmented to quantify protein bands using ImageJ and quantified as 
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average band intensity. AMPKAR2 phosphorylation fraction was calculated by computing the ratio 

of the phosphorylated band over the summation of phosphorylated and unphosphorylated bands. 

Conditions shown in Supplementary Figure 1C-D (4 replicates per treatment) were selected 

because they exhibit sustained AMPKAR2 activity over a range of intensities. The average 

fraction of reporter phosphorylated was quantified in each condition and compared with the 

average FRET efficiency as calculated from live-cell experiments with corresponding treatments 

and time points. Linear fitting was performed, providing a calibrated measurement of the fraction 

of AMPKAR2 phosphorylated, based on live-cell measurements (eq 1). 

𝐴𝑀𝑃𝐾𝐴𝑅2𝑃𝐻𝑂𝑆 = 2.74[𝐴𝑀𝑃𝐾𝐴𝑅2𝐹𝑅𝐸𝑇 𝑟𝑎𝑡𝑖𝑜 ] − 0.59                       (1) 

3.8.3. Perceval reporter measurement 

Unlike FRET reporters, PercevalHR has only one fluorophore, cp173 mVenus, that binds 

to ATP and ADP differentially, resulting in a shift of excitation spectra with peaks at 470 nM (ATP-

bound) and 405 nM (ADP-bound)(Tantama et al., 2013). To measure the proportions of these 

forms, we imaged cells expressing PercevalHR reporter with Sapphire and GFP filters (see Live-

cell fluorescence microscopy). To account for variation in microscope light source set up from 

experiment to experiment, we scaled image measurements by the relative excitation intensity and 

exposure time delivered in each channel. The ratio of intensity when excited by Sapphire and 

GFP filters, which we term PercevalEX, reflects the ratio of ADP to ATP.  

3.8.4. Cell age and sister cell analysis 

For sister cell analysis, we expressed an NLS-mCherry nuclear marker in MCF10A-

AMPKAR2 cell line to improve nuclei tracking accuracy across cytokinesis. Cell division events 

were first automatically identified by uTrack2.0 (Jaqaman et al., 2008) and later manually verified. 

In total, we were able to record more than 5,500 cell division events (11,000 related cells) within 
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25 hours. This dataset gave us estimates on both each cell’s age and their lineage at the time 

they were challenged with oligomycin.  

The similarity of AMPKAR2PHOS response between cell sister cells was calculated by 

computing the Euclidean distance of AMPKAR2PHOS responses within the 2-hour window after 

oligomycin treatment. To determine whether AMPKAR2PHOS response between sister cells was 

more similar than that of unrelated cells, we generated 1000 random pairs of cells that divided at 

the same time and computed the average AMPKAR2PHOS Euclidean distance. We were able to 

estimate the Euclidean distance of AMPKAR2PHOS between unrelated cells with 95% confidence 

interval. The age-dependent increase in the AMPKAR2PHOS Euclidean distance was fitted by an 

exponential function to estimate the half-life. 

3.8.5. Analysis and statistics of kinetics in reporter signals 

A custom MATLAB algorithm was designed to identify peaks (Gillies et al., 2017) in the 

time-lapse signals of AMPKAR2, PercevalHR, and Ateam1.03 activity. The AMPK, PercevalHR, 

and Ateam1.03 were first smoothened using Butterworth low pass filter with a 3-timepoint cutoff 

period to remove spurious noise. Peaks and associated valleys in the index were identified by 

setting two local cutoff values, based on maximum and minimum values of the data within a sliding 

time window (typically 120 minutes for AMPKAR2 and PercevalHR, 30 minutes for Ateam1.03). 

A peak was detected if both cutoff values were crossed by a rise and subsequent fall in the index. 

Typically, more than 300 individual cell recordings were scored for each condition and plotted as 

a histogram.  

For long-term AMPK activity analysis, we identified the ‘strong’ phases of low AMPK 

activity (OP-ind) as follows. First, we applied the moving standard deviation with a 3-hour sliding 

window to AMPKAR traces from cells treated with oligomycin. We chose a 3-hour sliding window, 

because the peak-to -peak period of AMPK activity is around 2 hours, making 3 hours the Nyquist 
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interval. Next, we used the 95th percentile of the calculated moving standard deviation values from 

all cells treated with vehicle to set a cut-off point for ‘strong’ AMPK activity (Figure S4A, upper 

panel). Any sections of AMPK activity trace that had a moving standard deviation period below 

the cut-off for longer than 3 hours were designated as ‘’ AMPK response phases  

3.8.6. GC-TOF data analysis 

Peak heights of each metabolite were used for further statistical analysis. First, data were 

normalized by using the sum of the knowns, or mTIC normalization, to scale each sample. Peak 

heights were then submitted using R to DeviumWeb (v0.3.2). The data were normalized further 

by log transformation and Pareto scaling. ANOVA analysis was performed with Tukey post hoc 

testing with an alpha of 0.05. The reported trends in metabolite abundance following oligomycin 

treatment were robust to the normalization scheme and could also be observed in raw peak 

values.  

3.8.7. Distributions and statistical tests 

Statistical tests, including ANOVA, t-tests, and Pearson’s correlations, were performed 

using standard functions in MATLAB. R2 values were calculated as the square of the Pearson 

correlation coefficient.  Where indicated in the figure legends, a linear regression model was 

generated, using the MATLAB command fitlm. Box and whisker plots show the median value (red 

line), interquartile range (box), range (whiskers), and outliers (plus symbols); for all other cases, 

definition of centers and dispersion measures are listed in the figure legends. Distributions of 

single-cell measurements were plotted and inspected visually to confirm that they met the 

assumptions of the statistical tests used. To test for bimodality, data were fitted to a bimodal 

Gaussian mixture distribution and a panel of unimodal distributions, including (including normal, 

log-normal, generalized extreme value, and Weibull). The best-fitted distribution was selected 

using corrected Akaike’s Information Criterion, to account for additional parameter terms 
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(Cavanaugh, 1997). Data were considered bimodally distributed if and only if the bimodal 

Gaussian mixture distribution was ranked as the best-fitted distribution. 

3.8.8. Pearson’s cross-correlation of time series 

The time series to be compared were normalized by subtracting by their corresponding 

averages. To quantify lag between reporters for each time series, the maximal cross-correlation 

value was computed using the MATLAB xcorr function. We assumed that each pair of reporters, 

namely AMPKAR2 and TFEB-TR or AMPKAR2 and ERKTR, had a characteristic lag time, 

estimated as the mode of calculated lags across all sampled cells. The lag times identified from 

this process were used to align two time-series data. Pearson’s correlation coefficient was 

computed from these aligned time series for each cell. Significance of the differences between 

the Pearson’s coefficient distributions for different treatments was calculated by t-test.  

3.8.9. Partial least squares regression modeling 

To evaluate the relative contributions of glycolytic activity, protein synthesis rate and cell 

cycle stage to AMPK responses to OXPHOS inhibition, we performed live-cell experiments using 

MCF10A cells expressing AMPKAR2 and GLUT1-NLS mCherry, in which allows glycolytic 

capacity can be estimated by measuring mCherry intensity. After 4 hours of live imaging, cells 

were pulse-labeled with OPP for 30 minutes and later treated with oligomycin 1.8 μg/ml for 15 

minutes prior to fixation. Samples were bleached and stained with phospho-Rb and Hoechst 

33342 as described earlier. Intensity of mCherry, OPP, phospho-Rb and Hoechst were used as 

proxies of glycolytic activity, protein synthesis rate, G1/S transition, and DNA content, 

respectively. Since the relationship between DNA content and phospho-Rb is not linear, as shown 

in Figure 6A, we created a linearized pseudotime variable for cell cycle progression using 

Wanderlust (Bendall et al., 2014). AMPKAR2Δ in response to oligomycin treatment was used as 

the output variable for PLSR models, while mCherry, OPP, DAPI, phospho-Rb and cell cycle 
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pseudotime values were used as input variables. Data were first centered by subtracting the mean 

from each parameter and input parameters were scaled to unit variance. The MATLAB 

implementation of the SIMPLS partial least squares regression algorithm was employed to fit 

paired data sets to a linear model.  

3.8.10. Replicates  

Numbers of independent replicates are indicated in each figure legend as “N”; we define 

‘independent replicate’ as a complete, separate performance of a time-lapse imaging experiment 

with similar culture and treatment conditions, beginning from the plating of cells from bulk culture 

on an imaging plate and occurring on different days from other replicates. For all independent 

replicates, a minimum of 200 cells were imaged and tracked in each condition. Unless noted 

otherwise, where single-cell recordings are shown, the displayed cells were chosen by random 

number generation in MATLAB with a threshold for minimum tracking time to eliminate cells in 

which recording was terminated prematurely due to failure of the tracking algorithm. The chosen 

tracks were manually verified to be representative of successfully tracked cells and consistent 

with the overall range of cell behaviors. Cellular measurements determined by manual inspection 

to have poor tracking or quantification accuracy were discarded. 
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3.9. Key Resource Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Phospho-Rb (Ser807/811) (D20B12)  

 

Cell Signaling 

Technology 

RRID:AB_1117865

8Cat#8516 

Phospho-Acetyl-CoA Carboxylase (Ser79) 

(D7D11)  

 

Cell Signaling 

Technology 
RRID:AB_2687505 

Cat#11818 

Phospho-S6 Ribosomal Protein (Ser240/244) 

(D68F8) 

 

Cell Signaling 

Technology 

RRID:AB_1069423

3 

Cat#5364 

Phospho-4E-BP1 (Thr37/46) (236B4) 

 

Cell Signaling 

Technology 

RRID:AB_560835 

Cat#2855 

Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (D13.14.4E) 

 

Cell Signaling 

Technology 
RRID:AB_2315112 

Cat#4370 

GFP (4B10) 

 

Cell Signaling 

Technology 

RRID:AB_1196614 

Cat#2955 

Goat anti-Rabbit IgG Alexa 647 Life Technologies RRID:AB_2535813 

A-21245 

Chemicals, Peptides, and Recombinant Proteins 

Oligomycin A Sigma Cat#75351 

Insulin Sigma Cat#I9278 

EGF  Peprotech Cat#100-15 

Hydrocortisone Sigma  Cat#H0888 

Cholera Toxin  Sigma  Cat#C8052 

DMEM/F12 Invitrogen Cat#11330-032 

Pen/Strep Invitrogen Cat#15070-063 

Antimycin A Sigma Cat#A8674 

Rotenone Sigma Cat#45656 

FCCP Sigma  Cat#C2920 

Glucose  Fisher Cat#D16 

MK2206 Selleckchem Cat#S1078 

Torin1 Selleckchem Cat#S2827 

2DG Sigma Cat#D8375 

3PO Selleckchem Cat#S7639 

BU99006 Santa Cruz 

Biotechnology 

Cat#SC-300307 

CAS-648926-15-2 EMD Millipore Cat#361515 

Etomoxir Sigma Cat#E1905 

6AN Cayman Chemical Cat#10009315 
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Cycloheximide EMD Millipore Cat#239763 

Collagen I, Rat tail  Gibco Cat#A10483-01 

Bafilomycin A Cayman Chemical  Cat#11038 

SBI0206965 Sigma Cat#SML1540 

PF0175157 Sigma Cat#PZ0299 

Paraformaldehyde 8% Electron 

Microscopy 

Sciences  

Cat#157-8-100 

Hoechst 33342 Life Technologies Cat#H3570 

Cell Culture Media   

DMEM/F-12 1:1 Life Technologies Cat#11320 

Horse Serum  Invitrogen 16050-122 

DMEM Life Technologies 11965175 

FBS Life Technologies 11965175 

Experimental Models: Cell lines 

MCF10A Janes et al., 2010 RRID:CVCL_0598 

184A1 ATCC RRID:CVCL_3040 

MCF7  ATCC RRID:CVCL_0031 

U87 ATCC RRID:CVCL_0022 

A549 ATCC RRID:CVCL_0023 

MCF10A-AMPKAR2 (Hung et al, 2017)   

MCF10A-AMPKAR2-ERKTR This report   

MCF10A-AMPKAR2-TFEBTR This report   

MCF10A-PercevalHR This report   

MCF10A-Ateam This report   

MCF10A-AMPKAR2-GLUT1_NLSmCherry This report   

MCF10A-AMPKAR2-Geminin::mCherry This report   

MCF10A-AMPKAR2-NLS::mCherry This report   

MCF10A-TOP This report   

184A1-AMPKAR2 This report   

MCF7-AMPKAR2 This report   

U87-AMPKAR2 This report   

A549-AMPKAR2 This report   

Recombinant DNA 

pPBJ-AMPKAR2-puro (Hung et al, 2017)  

pLJM-ERKTR::mCherry (Sparta et al., 

2015) 

 

GW1-PercevalHR (Tantama et al., 

2013) 

Addgene#49082 

pPBJ-PercevalHR-puro This report  
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ATeam1.03-nD/nA/pcDNA3 (Imamura et al., 

2009) 

Addgene#51958 

pPBJ-Ateam1.03-puro This report  

TOP-H2B-YFP-DD (Han et al., 2014) Addgene#96891 

pLJM-geminin::mCherry (Hung et al., 2017)  

pLJM-TFEBTR::mCardinal This report  

pBabe-NLS::mCherry This report  

pBabe-GLUT1-NLS::mCherry This report  

Software and Algorithms 

NIS-Elements AR ver. 4.20 Nikon RRID:SCR_014329 

Bio-Formats ver. 5.1.1 (May 2015) OME RRID:SCR_000450 

uTrack 2.0 (Jaqaman et al., 

2008) 

http://www.utsouth

western.edu/labs/d

anuser/software/ 

MATLAB Mathworks SCR_001622 

Other 

Glass Bottom Plates, #1.5 cover glass In Vitro Scientific Cat#P24-1.5H-N, 

P96-1.5H-N 
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3.10. Supplementary Materials 

 

Supplemental Figure S3.1, Related to Figure 3.1 

A: Representative AMPKAR2PHOS measurements for cells grown in 17 mM glucose and treated 
with 1.5 mM metformin. Each subplot represents a single cell measurement, with population 
average and interquartile range in the bottom subplot. The shaded area shows the 2-hour time 
window of the data used for analysis. N=2. B: Population average AMPKAR2PHOS measurements 
for cells grown in 17 mM glucose, treated with AICAR at the indicated doses. The shaded areas 
represent interquartile ranges. N=2. C: Scatter plot of the correlation between FRET ratio of 
AMPKAR2 reporter, as measured by live-cell microscopy, and its phosphorylation status, as 
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measured by phos-tag gel electrophoresis under the same conditions. A range of AMPK activities 
were induced by varying glucose and 2-deoxyglucose (2DG). Error bars represent standard errors 
of the mean (SEM) from at least two different experiments. The solid line represents a fitted linear 
model, and the dashed lines show 95% confidence bounds. This fitted equation is used 
throughout the study to report all AMPKAR2 FRET measurements as the fraction of AMPKAR2 
phosphorylated, AMPKAR2PHOS. N=4. D: Measurement of AMPKAR2 phosphorylation status by 
immunoblot. Image shows a representative immunoblot used to obtain the AMPKAR2PHOS 
measurements in (C). Phos-tag gel electrophoresis was used to separate phosphorylated and 
unphosphorylated forms of the reporter (upper and lower bands, respectively), with anti-GFP used 
to detect both forms. N=4. E: Representative image of AMPKAR2 FRET activity (shown as a 
ratiometric image) and the corresponding pACC immunofluorescence pattern after the same cells 
were fixed and stained. F: Scatter plot of baseline AMPKAR2PHOS (prior to oligomycin treatment) 
and corresponding AMPKAR2Δ for each cell following oligomycin (1.8 µg/ml). Colormap 
represents relative data density. N=2. G: Histogram of AMPKAR2Δ values after treatment with 
the indicated inhibitors. Green and orange lines are fitted Gaussian distributions. The dashed line 
is defined by the intersection between distributions and used as the cutoff to calculate the fractions 
of OP-ind and OP-dep cells, which are shown as percentages. N=2. H: Histogram of 
AMPKAR2PHOS amplitudes after treatment with varied concentrations of AICAR, as shown in (B). 
Note the lack of clear bimodal distributions, in contrast to the distributions at maximal doses of 
electron transport chain inhibitors (G). N=2. 
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Supplemental Figure S3.2, Related to Figure 3.3 

A and B: Sample images of PercevalEX and ATeam1.03 FRET activity and their corresponding 
pACC staining pattern in response to 2.5 µg/ml oligomycin. Reporter images were acquired in live 
cells at 30 minutes after oligomycin treatment. Cells were then immediately fixed and stained for 
pACC. N=2. C: Rapid drop in ATP as measured by ATeam1.03 after treatment with 2.5 µg/ml 
oligomycin in the absence of glucose. Each subplot represents a single cell measurement, with 
population average and interquartile range in the bottom subplot. N=2. D: Bulk population 
measurements of ATP following oligomycin treatment. Left panel: standard curve for ATP assay, 
generated with known quantities of ATP. Right panel: Bulk ATP measurements for MCF10A cells 
cultured in the indicated glucose concentrations and treated with oligomycin at time 0. N=5. E: 
Data collection scheme for bulk analysis of metabolites. Black line indicates the population mean 
of AMPKAR2PHOS after oligomycin treatment, and lighter lines individual cells. Note that 
fluctuations in AMPK activity remain synchronous for the first 6 hours following treatment. Red 
boxes indicate time points at which samples were collected for mass spectrometry analysis. F: 
Mass spectrometry analysis of metabolites in oligomycin-treated cells. Left panel: schematic of 
analyzed metabolites in glycolysis and TCA cycle. Right panels: box plots of relative metabolite 
concentrations measured by mass spectrometry. Red font and boxes show metabolites that were 
significantly reduced after OXPHOS inhibition. Error bars represent the standard deviation for 6 
replicate cultures assayed in parallel. G: Estimated ATP production by glycolysis and OXPHOS 
in MCF10A cell line under the indicated conditions. Measurements of oxygen consumption rate 
(OCR) and extracellular acidification rate (table, right) were made using a Seahorse bioanalyzer 
(table, right); some measurements were previously reported (Hung et al., 2017). These values 
were used to calculate ATP production rates (bar graph, left) using the procedure described in 
(Mookerjee et al., 2017). Error bars represent the standard deviations of four replicates. 
Percentages indicate the fraction of total ATP production by OXPHOS (red) and glycolysis (blue) 
within each condition.  
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Supplemental Figure S3.3, Related to Figure 3.3 

A: Oxygen consumption rate of MCF10A-AMPKAR2 cell line measured by Seahorse XF assay. 

Cells were treated with oligomycin as indicated, followed by 5 µM FCCP and a combination of 2.5 

µM rotenone and 2.5 µM antimycin A to completely inhibit cellular respiration. ‘Blank’ indicates 

measurement from a well without any cells. N=4. B: PercevalEX response to different 

concentrations of oligomycin, as indicated, at different glucose concentrations. Note that the 

distribution of responses depends primarily on glucose concentration, rather than oligomycin 

concentration. N=2. C: Fraction of OP-dep cells observed when treated with varying doses of 

oligomycin at indicated glucose concentrations. Concentrations of oligomycin >0.16 µg/ml are 

sufficient to increase ADP/ATP ratio in 100% of cells in <4mM glucose (S3.3.B), which indicates 

that the drug is fully active in all cells at this concentration. However, the same oligomycin 

concentrations fail to induce 100% OP-dep cells in the presence of >4mM glucose, arguing that 

the resistance of cells is due not to a failure of the drug to achieve target inhibition, but instead to 

metabolic differences between cells that manifest at higher glucose levels. N=2. D: AMPKAR2PHOS 

responses for simultaneous treatment with multiple OXPHOS inhibitors. Left panel: population 

average of AMPKAR2PHOS response to OXPHOS inhibitor combinations as indicated. Right panel: 

AMPKAR2Δ distribution after treatment with the indicated OXPHOS inhibitor combinations. Note 

that OP-ind cells persist even under treatment with multiple OXPHOS inhibitors. It is unlikely that 

these drugs share a common resistance mechanism that could simultaneously prevent all of them 

from blocking OXPHOS. N=2. E: AMPKAR2PHOS responses for sequential treatment with 

metabolic inhibitors. Upper panels: population average of AMPKAR2PHOS response when cells 

were first treated with 1.8 µg/ml oligomycin, followed by a second challenge one hour later (red 

font) with 2-deoxyglucose (2DG), antimycin A, or rotenone at the indicated concentration. In the 

last step cells were treated with combination of 20 mM 2DG, 10 μM antimycin A and 5 μM 

rotenone (Combo) to maximize AMPKAR2PHOS activation. Bottom panels - population averages 

of AMPKAR2PHOS response to 2DG, antimycin A or rotenone alone at indicated concentrations. 

N=2. F: Example single-cell AMPKAR2PHOS measurements from the experiments shown in Fig 

S4E. Note that AMPKAR2PHOS in OP-ind cells remains unchanged after the second challenge with 

5 μM antimycin A. Population average and interquartile range are shown in the bottom subplot. 

G: AMPKAR2Δ distributions in OP-ind cells for the second challenge as described in Fig S4E.  
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Supplemental Figure S3.4, Related to Figure 3.4 

A: Identification of OP-ind-like cell states in single-cell time courses of AMPK activity. Moving 
standard deviation with 3-hour sliding window (moving SD) was applied to AMPKAR2PHOS traces. 
The 95th percentile of moving SD from untreated cells (black and gray lines) was chosen as a cut-
off for the ‘strong’ AMPK response; any part of AMPKAR2PHOS trace falling  below the cut-off value 
for longer than 3 hours was identified as a ‘weak’ AMPK response period (green lines). B: Analysis 
of the frequency of OP-ind cells relative to the dynamics of AMPK activity. Our objective was to 
determine whether the OP-ind responses observed on the initial treatment with OXPHOS 
inhibitors correspond to the regularly occurring decreases in AMPKAR2PHOS (“V” valleys), the 
prolonged regions without AMPK activity peaks (“U” valleys), or both. In a population of cells 
treated with oligomycin for a prolonged period of time, we calculated the fraction of time spent in 
“V” valleys, “U” valleys, or the sum of both, and compared these values to the frequency of OP-
ind cells occurring at initial treatment. The frequency of OP-ind cells is most closely matched by 
the duration of “U” valleys, while “V” valleys account for a much larger amount of time. This 
comparison is consistent with the interpretation that “U” valleys represent a pre-existing cell state 
that manifests as OP-ind cells upon challenge with an OXPHOS inhibitor. In contrast, “V” valleys 
are more likely to be a kinetic component of the AMPK response triggered only after OXPHOS 
inhibition has been initiated. 
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Supplemental Figure S3.5, Related to Figure 3.5 

A: Lack of significant changes in OP-dep responses after inhibition of fatty acid oxidation or 
synthesis. Lines show the fraction of OP-dep responses to treatment with oligomycin in the 
presence of etomoxir (carnitine palmitoyl transferase inhibitor) or PF05175157 (acetyl-CoA 
carboxylase inhibitor). The horizontal black line indicates the fraction of OP-dep cells under 
control treatment (DMSO); points falling outside the gray region are considered significant by t-
test. N=2. B: Inferred cellular metabolic states as a function of ATP production (horizontal axes) 
relative to ATP consumption (vertical axes). The diagonal line in each panel represents the 
amount of ATP production capacity that is needed to meet a given level of ATP consumption 
without perturbing energy charge and triggering AMPK activity. Under high glucose (i), cells have 
excess ATP production capacity, but OXPHOS inhibition treatment reduces ATP production 
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acutely. Some cells retain sufficient glycolytic capacity to meet the demands of consumption, 
averting AMPK activation. Under low glucose (ii), glycolytic capacity is immediately reduced and 
all cells fail to satisfy ATP demands following OXPHOS inhibition, and thus fall in the OP-dep 
region. (iii-iv) Hypotheses for metabolic adaptation to long-term glucose starvation. In (iii), 
starvation may cause cells to deplete metabolite stores or may change their gene expression 
profile to reduce glycolytic capacity; upon re-supply of glucose followed immediately by OXPHOS 
inhibitor treatment, such cells would score as OP-dep. Alternatively (iv), glucose-starved cells 
may reduce their ATP consumption by downregulating energy-consuming processes; upon 
glucose resupply and OXPHOS inhibitor treatment, these cells would need less ATP production 
capacity to meet their demands and would score as OP-ind. C: Reduction of protein synthesis 
rate in glucose-starved cells. Data points show the intensity of OPP labeling in cells that are either 
non–starved or starved of glucose for 24 hours. The glucose concentrations shown indicate the 
level of glucose used to culture the cells for 1 day prior to the starvation period and, for the non-
starved cells, during the final 24 hours. Stars indicate p-value < 0.05 by t-test comparison. N=2. 
D: Increase in OP-ind responses in the presence of glutamine. Histogram shows distributions of 
AMPKAR2Δ after oligomycin treatment in imaging medium 1 containing 17 mM glucose and 
glutamine at the indicated concentrations. N=2. 
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Supplemental Figure S3.6, Related to Figure 3.6 

A,B: Quantification of protein synthesis rate modulation by the translation inhibitor geneticin. Plot 

in (A) indicates mean H2B-TOP-YFP-DD intensity for a concentration series of geneticin 

treatments. Shaded areas show interquartile ranges. (B) shows quantification of relative protein 

production rates for each concentration. Each box represents the distribution of 400 cells. N=2. 

C: Relationship of average protein production rate to the fraction of OP-dep cells under geneticin 

treatment. Protein rates measured in (A-B) are shown plotted against the corresponding OP-dep 

responses. While there is little decrease observed in OP-dep cells, this plot is consistent with the 

results obtained using CHX in Fig. 3.6.D, because geneticin treatment does not reduce protein 

synthesis rate as potently as CHX. However, we do note that geneticin concentrations >500 ug/ml, 

which suppress the protein synthesis rate moderately, are capable of terminating ongoing AMPK 

pulses as shown in Fig. 3.6.E, suggesting that AMPK activity is more sensitive to acute changes 

in protein synthesis rate than pre-existing levels. D and E: Modest stimulation of mTORC1 activity 

by protein synthesis inhibition. The activation of mTORC1 downstream targets were quantified by 

immunofluorescence for phospho-4E-BP1 (D) and phospho-S6 (E) after cells were treated with 

CHX at indicated dose for 30 minutes (upper panels) or 2 hours (lower panels). Treatment of cells 

with the mTOR inhibitor Torin2 is used to evaluate the baseline immunofluorescence level in the 

absence of mTORC1 activity. To compare the CHX mediated induction of mTORC1 activity to the 

pre-existing level of mTORC1 activity, the red bars shown to the side of the plots indicate the 

difference in staining observed in the absence and presence of CHX treatment at 30 minutes at 

the minimal dose needed to efficiently block AMPK activity (0.2 ng/ml, Fig. 3.6.E,F), while the blue 

bars indicate the difference in staining between untreated cells and the fully suppressed level 

achieved by mTORC1 inhibition for 2 hours. We find that the CHX-mediated induction of mTORC1 

activity is approximately 10-20% greater than pre-existing activity, which suggests that activation 

of this pathway, and any subsequent modulation of glycolysis, is unlikely to account for the rapid 

effects of CHX on oligomycin-induced AMPK activity (Fig. 3.6.E,F).  Data points show individual 

cell staining intensity, with mean and standard deviation shown in line plot.  Stars show statistical 

significance with p-value < 0.05 by ANOVA test with Tukey’s post hoc analysis.  
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Supplemental Figure S7, Related to Figure 7 

A: Left panel - scatter plot of single cell measurements of DNA content and phospho-Rb, colored 
by OPP labeling intensity. Cell division cycle annotations are shown as in Fig. 3.6.A. Right panel 
– boxplot of single cell OPP labeling intensity at each phase of the cell division cycle. Stars show 
statistical significance with p-value < 0.05 by ANOVA with Tukey’s post hoc analysis. Gray dots 
show single cell data points. N=3. B: Scatter plot of single cell measurement of DNA content and 
phospho-Rb, colored by cell cycle trajectory as calculated using the Wanderlust algorithm. See 
STAR Methods for details. N=3. C: Histogram of single cell GLUT1 expression distribution as 
measured by NLS-mCherry intensity. The highest levels of overexpression (gray shaded area) 
were excluded from PLSR modelling in Figures 3.7.G, H, and I and S3.7.D, to prevent highly 
overexpressing cells from dominating the model.  All cells are used for PLSR modelling in Figure 
S3.7.E,F, and G. D: Single-cell predictions of AMPKAR2Δ  by PLSR plotted against measured 
AMPKAR2Δ, for the full model shown in Figs 3.7.G (red line) and 7H (red bar). Dashed line 
represents perfect prediction of the data by the model. Data used were not truncated. E,F,G: 
PLSR modeling of AMPKAR2Δ using all cells, without excluding high GLUT1-expressors. PLSR 
modeling was performed as in Fig. 3.7 but using all expression levels of GLUT1-mCherry. Results 
are qualitatively similar to the model with overexpressors excluded, but show a higher contribution 
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of GLUT1-mCherry intensity, as expected. (D) Comparison of single-cell predictions to measured 
AMPKAR2Δ values. (E) Variance explained by the model. (F) Contribution of each measurement 
to the first component of the model. 
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Chapter 4 

Metabolic constraints result in altered growth signaling pattern 

4.1. Abstract 

Mammalian cell growth requires coordination between growth cues and intracellular 

nutrient availability. The ERK-AKT-AMPK signaling axis has emerged as a core pathway that 

modulates both growth signal and cellular metabolism status. ERK and AKT signaling show highly 

dynamic activation-deactivation kinetics, which helps to determine cell cycle entry and metabolic 

activity. AMPK is an intracellular energy-sensing kinase, which senses the ratio of AMP, ADP, 

and ATP.  AMPK is activated when ADP/AMP increases relative to ATP and signals changes in 

metabolic activity to increase ATP production and decrease ATP consumption. The ERK, AKT, 

and AMPK pathways interact through both direct phosphorylation of each others’ components 

and through indirect regulation via changes in metabolite abundance. However, very little is 

known about how these cross-interactions result in changes in signaling patterns and how each 

pattern encodes cell fate decisions. In this study, we simultaneously measured ERK, AKT, and 

AMPK activity at the single-cell level. We showed that AMPK exerts multiple modes of ERK 

inhibition. We also showed that AKT is more likely to regulate ERK via metabolic alteration rather 

than direct phosphorylation. Lastly, we provide a framework for multivariate time series data 

exploration. Our result emphasizes the importance of metabolism in determining cell growth 

signaling pathway activity. 

4.2.  Introduction 

Mammalian cell growth requires both extracellular cues and an abundance of intracellular 

nutrients (Mason and Rathmell, 2011; Zhu and Thompson, 2019). Cell signaling processes 

respond to extracellular cues, such as cell density and growth factors, to appropriately regulate 

cellular behaviors such as cell cycle progression and protein synthesis (Kholodenko, 2006). On 

the other hand, cell metabolism involves the cellular uptake of high-energy molecules such as 
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glucose and the breakdown of chemical bonds to generate ATP, a cellular energy currency. Cell 

metabolism provides chemical building blocks for biosynthetic processes such as cell proliferation 

and gene expression. Therefore, under mitogenic conditions, cells must coordinate both growth 

signal and metabolism to allow proliferation. 

In fact, there are multiple studies that show this growth signal and metabolic coordination. 

Growth signaling kinases, such as ERK and PI3K/AKT, play a significant role in metabolic 

reprogramming. ERK overactivation in pancreatic tumors increases glucose uptake by 30% (Ying 

et al., 2012). ERBB2 overexpression, which also activates ERK, increases glycolytic flux through 

pyruvate dehydrogenase (PDH), by reducing PDH inhibitory kinase (PDK4) expression (Grassian 

et al., 2011). RAS activation also induces transcription of glycolytic flux regulating enzymes, such 

as Glucose transporter (GLUT1), Hexokinase (HK2), Phosphofructokinase (PFKFB3), and 

Monocarboxylate transporter (MCT1) (Tanner et al., 2018). ERK also indirectly controls cell 

metabolism through the PI3K/AKT axis and AMPK pathways. For example, ERK phosphorylates 

GAB1, a PI3K docking protein, which disrupts PI3K recruitment to the insulin receptor on the cell 

membrane, thus attenuating insulin-dependent AKT activation (Yu et al., 2002). ERK crosstalks 

with AMPK by phosphorylating the essential AMPK activator, liver kinase B1 (LKB1). This 

phosphorylation results in inhibition of both LKB1 and AMPK function (Kawashima et al., 2015). 

The PI3K/AKT cascade, another important cell growth signal, which is activated by the insulin 

receptor and other receptor tyrosine kinases, also possesses metabolic control activity. The 

PI3K/AKT axis regulates glucose uptake through glucose transporter (GLUT) surface expression 

(Manning and Toker, 2017). Key metabolic enzymes such as phosphofructokinase and pyruvate 

kinase are regulated through phosphorylation by PI3K/AKT (Manning and Toker, 2017). PI3K also 

indirectly regulates aldolase through actin modification (Hu et al., 2016). In addition, AKT 

regulates mTOR kinase activity, which controls the uptake and utilization of amino acids for 
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protein synthesis as well as the supply of intermediates for the Krebs cycle (Hoxhaj and Manning, 

2020).  

Cells also sense intracellular metabolite concentrations and their fluxes, which can exert 

control over signal transduction through multiple mechanisms. First, sensors such as AMPK 

sense ADP/AMP levels and adjust their kinase activity accordingly (Hardie et al., 2016). AMPK 

exerts it control over cell growth signals by directly phosphorylating RAF, and thus suppressing 

the ERK cascade (Shen et al., 2013). AKT, which regulates glycolytic function, also cross-inhibits 

the ERK cascade through RAF phosphorylation (Manning and Toker, 2017). The second mode 

of metabolic-signaling crosstalk is through direct modification of molecules by metabolites. For 

example, tyrosine kinase receptor, such as EGFR, requires glycosylation to be expressed on cell 

membrane. Glucose starvation severely diminishes ERK activity (Wellen et al., 2010). Fructose-

1-6-bisphosphate also directly binds to Sos1, a RAS guanine exchange factor (GEF), which 

results in ERK activation (Peeters et al., 2017). Thirdly, kinases such as mTOR Complex 1 

(mTORC1) integrates both growth signaling and nutrient status to facilitate cell growth. mTORC1 

regulates protein translation through multiple downstream targets, such as ribosomal-S6-kinase 

(S6K) and eukaryotic translation initiation factor 4E (eIF4E). mTORC1 sense intracellular amino 

acid concentration, such as leucine (Wolfson et al., 2015) and arginine (Rebsamen et al., 2015; 

Saxton et al., 2016), through dedicated pathways. Apart from anabolic activity, mTORC1 can 

increase the catabolic state by upregulating glycolysis and autophagy (Liu and Sabatini, 2020). 

mTORC1 integrates glycolytic information by directly binding with hexokinase-II, which results in 

inhibition of autophagy (Roberts et al., 2014). These studies highlight the importance of 

coordination between cell signaling and cell metabolism in cell fate decisions.  

The main obstacle to understanding the coordination of cell signals and cell metabolism 

lies in the fact that the concepts and measurements of cell signals and cell metabolism are starkly 

different. First, cell signaling is viewed as a quasi-steady-state process, for example, kinase 
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function is often considered ‘ON’ or ‘OFF’ as a level of phosphorylation status. Cell signaling 

measurement relies on ‘steady state’ estimation, such as protein abundance and phosphorylation 

status, as metrics of protein function. On the other hand, cell metabolism is a kinetic process, 

which we view as a ‘flow’ of biochemical molecules through ‘pipes’ of enzymatic processes. In 

order to reconcile these two fundamental concepts, we need to measure both cell signaling 

activity and metabolic state in a time-sensitive manner. 

At the single-cell level, multiple studies have shown that cell signaling is highly dynamic 

and heterogeneous from cell to cell (Albeck et al., 2013; Aoki et al., 2013; Regot et al., 2014; 

Sampattavanich et al., 2018). As shown in the preceding chapter, cell metabolism also shares 

these characteristics. Using AMPK as a marker of metabolic state, we demonstrated that 

mammalian cells change their reliance on oxidative phosphorylation over time (OXPHOS), and 

OXPHOS dependency is determined in part by the instantaneous anabolic-catabolic balance, 

which is in turn affected by insulin-mediated signaling (Kosaisawe et al., 2021). By using 

genetically encoded fluorescent biosensors, these studies provide a tool for simultaneous cell 

signaling and metabolism measurement. 

 Genetically-encoded fluorescent biosensors allow a high temporal resolution 

measurement of both signaling and metabolic states of the cells. With existing translocation-

based (KTR) biosensors (Regot et al., 2014), we can measure ERK and AKT (Maryu et al., 2016) 

function simultaneously. We can also measure AMPK kinase activity as an indicator of cellular 

metabolic status using the AMPKAR2 FRET sensor (Hung et al., 2017; Tsou et al., 2011). 

Because KTR biosensors can be linked to fluorescent proteins with minimal spectral overlap, we 

can co-express and simultaneously measure these signals in the same cell. The result of this 

approach is a high dimensional time-dataset that contains high-temporal resolution data of both 

pathway activity of each observing pathway and interactions between measuring pathways. 
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Real-time measurement of kinase activities presents multiple challenges. First, 

characterizing of a real-time multi-dimensional signal is not straightforward. Single-cell 

measurement is heterogeneous from cell to cell by nature, and it is difficult to state whether these 

heterogeneous signals are driven by the same underlying mechanics or not. Secondly, signals in 

complex systems can exhibit interactions behaviors that are delayed and non-linear. Thus it is not 

obvious to the observer. Even though deterministic modeling can be employed to identify some 

of these interactions, model parameter estimation from the sparse measurement of such a vast 

system will always lead to non-unique solutions, which result in an inaccurate mechanistic 

interpretation of the systems. In this study, we will first focus on multidimensional time-series 

characterization 

The common approach to time series analysis is to ‘featurize’ time series behavior, such 

as amplitude, means, and frequency, and to correlate those features with the phenotype of 

interest, such as gene expression or cell growth (Benary et al., 2020; Foreman and Wollman, 

2020; Gillies et al., 2017). Another approach is to perform time series clustering, using time series 

euclidean distance or dynamic time warping distance (DTW) (Ryu et al., 2016; Strasen et al., 

2018), to group and align time series data together. However, these approaches are not 

applicable to multi-variate time series since they all lack metrics to describe inter-variate 

dependency. The latest framework to explore single-cell multi-variate time-series dataset is 

CODEX (Jacques et al., 2021), which combines time-series feature representation through a 

convolutional neural network (CNN) and supervised classification. However, this approach relies 

on knowledge about classes of data a priori for data representation, which limits our ability to 

explore the variation within the predefined classes of data . Thus to efficiently explore multi-variate 

time series data, first, we need a tool that can capture time series patterns and their 

interdependency. Secondly, we need an approach to cluster time-series in an unsupervised 

manner.  
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Autoencoder is one of the most generic methods to featurize multi-variate time series data. 

Autoencoder is an unsupervised neural network that learns to encode the representation of 

original time series data and reconstruct the original data from that encoded representation 

(Goodfellow et al., 2016). The combination of an autoencoder and a CNN provides a framework 

to extract ‘features’ of high-dimensional time series patterns in a bias-free manner (Aghabozorgi 

et al., 2015). In fact, the autoencoder approach has been applied in multiple time-series dataset 

settings; for example, it is used to identify abnormal sleeping patterns from real-world respirogram 

data and animal posture from accelerometer data (Ali et al., 2019). In theory, autoencoder is 

applicable to detect patterns in our dataset as well. 

After time-series featurization by autoencoder, we can use clustering techniques to group 

similar time series together. However, the main challenges for unsupervised classification are 

high-dimensionality and clustering result optimization. Almost all clustering algorithms rely on the 

euclidean distance definition. However, in high-dimensional space, Euclidean distance is 

meaningless since the distances of all datapoints approach the same value (Hinneburg et al., 

2000). Furthermore, there are currently no objective criteria to determine when unsupervised 

classification is ‘complete,’ which makes clustering results highly subjective. To analyze our 

dataset, we developed a framework for unsupervised classification based on Louvain community 

detection (Blondel et al., 2008) for data classification. This approach avoids using Euclidean 

distance definitions of similarity. We also propose a method to objectively define a stopping point 

for unsupervised classification, relying on the assumption that the clustering resolution is only 

limited only by noise in measurement (Stacey et al., 2020). 

In this study, we used live-cell measurements to simultaneously measure the ERK and 

AKT growth signaling pathways and cell energetic status as represented by AMPK activity under 

metabolic stress conditions. We found that ERK responses to growth factors vary under direct 

AMPK activation, with at least two separate response patterns that cannot be explained by the 
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current signaling pathway topology. Different modes of AMPK activation also result in different 

distributions of ERK response patterns. Furthermore, the effect of AKT inhibition can be 

compensated by ERK pathway activation over a long period of time. Lastly, we provide a novel 

framework for unsupervised classification of multivariate time series. These findings highlight the 

significance of growth signaling and cell metabolism integration to determine kinase activity such 

as ERK. It also allows for the identification of discrepancies between actual behavior and known 

signaling connections, which could be used for further refinement of the topology of signaling 

network maps. 

4.3. Results 

4.3.1. Construction of multi-cistronic expression systems to express multiple 
fluorescence reporters in one transfection 

Metabolism is one of the most fundamental cellular functions; it is integrated with all other 

cellular processes, including cell growth and proliferation, cell differentiation, and ultimately cell 

death. In fact, cell metabolism and cell signaling are intimately connected and co-regulate one 

another (Figure 4.1.A). We also know from multiple studies that growth signals such as ERK and 

PI3K-AKT axis are extremely dynamic (Albeck et al., 2013; Aoki et al., 2013; Regot et al., 2014; 

Sampattavanich et al., 2018). This leaves us with a key question of the role that metabolic 

conditions play in determining the dynamic signaling response to growth factor stimulation.  

To answer this question, we need to simultaneously measure both cellular metabolic 

status and growth signals at the single-cell level. With the development of fluorescent biosensors 

in the past decade, we can now use a FRET-based AMPK sensor, AMPKAR2, to measure AMPK 

activity and at the same time track ERK and AKT activity using the translocation reporters ERKTR 

and AKT-TR, respectively (Figure 4.1.D). However, there are a few drawbacks of using 

fluorescent biosensors to study cell signaling. First, multiplexing is limited by spectral overlap to 

4-5 fluorescent proteins per cell. Secondly, cell line construction usually requires multiple 
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transfections to express multiple reporters in the cell, which can introduce significant but difficult 

to assess genomic damage to the cell of interest. To minimize such damage, we utilized a multi-

cistronic approach using self-cleaving peptides P2A and T2A to insert multiple reporters into the 

genome in one transfection event (Figure 4.1.B). I have shown using multiple multi-cistronic 

constructs that the expression of three activity reporters containing four fluorophores can be 

achieved (Figure 4.1.C). 

However, one challenge of the P2A expression system is that P2A cleavage might not be 

complete. The key consideration here is that translocation reporter activity might be affected by 

incompletely cleaved proteins. For example, AMPKAR2 reporter contains a nuclear export 

sequence which might affect the AKT-KTR readout (cytosolic to nuclear ratio) if AMPKAR2 and 

AKT-KTR are not entirely cleaved. To validate that the function of these triple reporter cassettes, 

I showed that the AMPKAR2 reporter still exhibits behavior similar to previous reports when cells 

are treated with a glycolytic inhibitor, 2DG, and an electron transport chain inhibitor, oligomycin 

(Figure 4.1.E-F) (Hung et al., 2017; Kosaisawe et al., 2021). Next, I showed that ERKTR reporter 

translocates when cells are treated with the canonical ERK activator EGF and MEK inhibitor, 

PD0325901, as previously shown (Figure 4.1.G-H) (Regot et al., 2014). Finally, we also showed 

that the AKT-KTR reporter translocates to the nucleus as expected when cells are treated with an 

AKT inhibitor, MK-2206, and to the cytoplasm when cells are treated with EGF (Figure 4.1.I-J) 

(Maryu et al., 2016). In summary, we showed that a multi-cistronic fluorescent biosensor system 

is successfully expressed in MCF10A cell line, and that sensor function is preserved, as shown 

in earlier studies. 
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Figure 4.1 : Construction of multi-cistronic expression systems to express multiple 
fluorescence reporters in one transfection 

A : Metabolic-cell growth signaling map adapted from KEGG (Kanehisa and Goto, 2000). 
Receptor tyrosine kinase are colorcoded in pale yellow. Kinase and other signaling proteins are 
encoded in green. Protein and metabolite that can be measured at single cell level are encoded 
in red. Perturbators of singaling protein or metabolic enzymes are colorcoded in purple. 
B.Schematic representation of triple reporter AKT-TR_AMPKAR2_ERKTR reporter systems, 
consisting of AKT-TR::mCardinal, AMPKAR2 and ERKTR::mOrange. They are connected by self-
cleaving P2A and T2A peptides, which allow then to be expressed seperately. Right before self-
cleaving peptide, glycine linkers were inserted to enhance protein cleavage. Pink lines denote 
start and stop codon. C. Example of MCF10A cell lines expressing AKTR-TR, AMPKAR2 and 
ERKTR reporter, using epifluoresence microscope. D. Simplified schematic of metabolic-cell 
growht signaling map, with signaling node that can be measured by indicated sensors. E-J. (E,G,I) 
Population average and interquartile range of corresponding reporters reponse to treatment as 
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indicated. (F,H,J)  Sample of single-cell measurement of corresponding sensors. Triangle and 
dashed line indicate time when perturbation was added. 

4.3.2. Temporal response of ERK-AMPK-AKT axis to growth factor is heterogeneous 

To probe how metabolic conditions alter dynamic growth signals, we use MCF10A as our 

model since they are sensitive to growth factor manipulation. These cells require both EGF and 

insulin for maximal proliferation and enter quiescence when these factors are withdrawn (Worster 

et al., 2012; Yamanouchi et al., 1996). We stably expressed the triple reporter combination of 

ERKTR, AMPKAR2, and AKT-TR in MCF10A. In our experimental setup, we pre-starved cells of 

all growth factors and serum for 4 hours prior to the experiment to replicate low mitogenic 

conditions of normal tissue, and we further adjusted glucose to 5 mM to make experimental 

conditions more similar to physiologic glucose level. Next, we perturbed metabolic status by 

chemical perturbation for one hour, followed by treatment of EGF. Then we captured signaling 

dynamics of ERKTR, AMPKAR2, and AKT-TR for 12 hours (Figure 4.2.A). In this dataset, we 

mainly perturbed metabolic state through glycolysis manipulation, nutrient supplementation, and 

AMPK and AKT manipulation (Figure 4.2.B). In total, we have over 200 metabolic and growth 

conditions in our dataset and more than 300,000 single-cell traces of triple-reporter data.   

One of the main challenges in understanding signaling and metabolic function is single-

cell heterogeneity. For example, simple treatment with EGF 10000 pg/ml to MCF10A can 

generate heterogeneous ERK signaling patterns (Figure 4.2.C). Typically, it is observed that EGF 

treatment increases ERK activity, and to a lesser degree AKT activity, while suppressing AMPK 

activity (Hung et al., 2017; Worster et al., 2012). However, as shown in Figure 4.2.C, we can 

visually observe that there are multiple patterns of ERK, AKT, and AMPK responses to EGF. First, 

EGF induces sustained ERK and AKT activation and minimal AMPK suppression (Figure 4.2.C.-

Top row). In another instance, EGF initially induces moderate ERK and AKT activation but with a 

significant initial drop in AMPK activity, followed by pulses of ERK activity with a period of about 

one hour (Figure 4.2.C.-Second row from the top). Thirdly, EGF can induce a large initial pulse 
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that lasts for about 3 hours, followed by pulses of ERK activity (Figure 4.2.C-Third row from the 

top). Lastly, EGF can induce only a small initial ERK pulse, followed by extended inactivity (Figure 

4.2.C-Bottom row). While none of these observations are inconsistent with the current 

understanding of the ERK-AKT-AMPK signaling network,  the current map fails to predict the 

heterogeneous nature of these activity dynamics. Furthermore, these data also indicate that even 

with one perturbation, cells have more than one response mode. All in all, these observations 

motivate us to build an unsupervised clustering tool to group similar time series together for data 

exploration. 

 

Figure 4.2. : Temporal response of ERK-AMPK-AKT axis to growth factor is heterogeneous 

A. Schematic representation of experimental setup. (Pre-exp : Pre experiment; Met. Pertub. : 
Metabolic perturbation.). B. Simplified schematic of metabolic-cell growht signaling map, with 
signaling node that can be measured by indicated sensors. Metabolic perturbations used in the 
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dataset are shown in red. C. Example of single-cell measurement when cells are treated with EGF 
10000 pg/ml. Dashed line indicates time of treatment. 

 

4.3.3. Unsupervised time-series clustering using autoencoder and Louvain community 
detection to explore multidimensional time-series data 

Time series data comprise time-ordered sequences of measurements. Unlike other types 

of data, each instance of measurement in a time series dataset is not independent of the others. 

This renders statistical analyses that rely on an assumption of independence less effective on 

time series. Intuitively, instead of treating each data point in a time series as an independent 

variable, we would like to consider the full-length time series as a manifestation of one or more 

underlying dynamical systems. To complicate our analysis further, unlike univariate time series 

analysis, each variable of a multivariate time series might depend on the values of the other time 

series. In other words, for multivariate time series analysis, metrics that capture intervariable 

dependency are required for an accurate description of the data. 

To get around this problem, we used a machine learning (ML) architecture called a 

convolutional autoencoder to collect features of both multidimensional time-series patterns. In 

short, the convolutional autoencoder takes the original N-dimensional time series, builds a 

compact representational vector space, and then recreates the original time series data. The 

autoencoder then minimizes the error between the reconstructed time series and the original time 

series. The final result of autoencoder consists of K-dimensional latent vectors that are descriptive 

of N-dimensional time series. Theoretically,  the latent vectors are orthogonal to each other 

(Goodfellow et al., 2016). We can then use this vector space to perform unsupervised clustering 

for data exploration (Figure 4.3.A). 

We can find the optimal K dimension for the latent space by minimizing error in the whole 

dataset against the K parameters. By plotting whole dataset residuals against the size of K, we 

can heuristically estimate the optimal size of latent space using the elbow method (Figure 4.3.B). 
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For our current dataset, the optimal dimension for latent space is 50. We can show that the 

convolutional autoencoder faithfully recreates our original time series data (Figure 4.3.C.). 

Clustering in higher dimensional space is a non-trivial problem for two reasons. First, in 

higher dimensional space, Euclidean distance is meaningless, which means that Euclidean-

based clustering methods such as K-means are inapplicable in such space (Xia et al., 2015). 

Second, while clustering can be performed in a lower-dimensional projection of higher-

dimensional space, we risk over-partitioning the dataset, which would result in an over-clustered 

solution (Cooley et al., 2019).  

To avoid these problems, we converted a higher dimensional space into a graph, using 

the k-nearest neighbor approach. Though this approach still relies on the notion of Euclidean 

distance as a metric for proximity, it avoids the requirement of the user’s explicit declaration of a 

distance that is considered ‘close’ (Hinneburg et al., 2000). Once data are converted into an 

adjacency matrix, we can use Louvain community detection (Blondel et al., 2008) to detect time-

series clusters. The reason that we prefer Louvain community detection over other algorithms is 

because of fast implementation in Python through scikit-network. However, the main challenge of 

Louvain community detection is the selection of the resolution parameter, which has to be 

determined a priori. Another challenge to unsupervised clustering is that there is no objective 

optimization for a ‘good’ clustering result. Furthermore, real biological measurements are 

contaminated with measurement noise which further jeopardizes accurate classification.  

Thus, the goals of our classification are first to identify an ‘objective’ function for the optimal 

resolution parameter in Louvain clustering, which in effect will determine the number of clusters 

in the final clustering solution, and second, to find a metric to estimate the confidence for each 

clustering result. To achieve this goal, we took an approach described earlier (Stacey et al., 2020). 

Generally, we directly add noise into feature space over M iterations and perform clustering on 

that perturbed dataset over different Louvain resolution parameters. We can estimate the 
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robustness of the clustering result by evaluating the reproducibility of clusters after noise injection 

in M iterations, and we called this score repJ (Figure 4.3.D.). After a set cluster robustness score 

is achieved, we then evaluate the clustering result over an array of Louvain resolution parameters, 

heuristically choosing the resolution by elbow method (Figure 4.3.E.). For this dataset, the optimal 

resolution parameter is 2.5. 

After featurization and clustering, we can visualize the data by projecting the latent vector 

onto a 2-dimensional UMAP (McInnes et al., 2018) space. We can also overlay the confidence of 

clustering that belongs to the cluster for each data point (Figure 4.3.F). In total, we were able to 

identify 26 clusters in our dataset. Examples of each cluster were provided  (Figure S4.1). We 

also provide the pipeline for analysis in python and graphic user interface, tsc_gui, for data 

exploration in MATLAB as well. 
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Figure 4.3. : Unsupervised time-series clustering using autoencoder and Louvain 
community detection to explore multidimensional time-series data  

A. Schematic representation of the workflow for multi-dimensional time series analysis. B. 
Estimation of the size of latent vector space in autoencoder. The orange point indicates the most 
optimal number of latent vector space, using the elbow method. C. Sample of single-cell 
measurement. The dashed line represents the reconstructed time series from autoencoder. D. 
Schematic representation of cluster robustness estimation. Cluster reproducibility score (repJ) is 
the average overlap with the best match cluster across noise injection iterations. Node 
reproducibility score (fnode) is the frequency the datapoint appears in the best match noise-
injected cluster divided by the number of iteration. E. Estimation of Louvain resolution parameter, 
where optimization objective is to find the resolution parameter that start to reach a saturated 
average repJ, using elbow method. Average repJ is the average of cluster repJ of clustering result 
from each resolution parameter. F. 2D UMAP projection of our dataset overlay with fnode score 
for each data point that belongs to the selected cluster. 

 

4.3.4. Direct AMPK activation result in multiple modes of ERK inhibition 

After clustering was performed on the data, we first explored a very simple set of 

experiments, where we directly activated AMPK by treating cells with AICAR, followed by ERK 

activation through EGF treatment (Figure 4.4.A). Theoretically, this should result in inhibition of 

ERK activation through RAF inhibition. However, from our data, we observe that there are at least 

two different forms of ERK inhibition. First, about 50% of the cell population shows initial ERK 

activation, followed by a long and slow decay of ERK activity over a period of 12 hours, 

represented by cluster 7 (Figure 4.4.B). Another 10% of the cell population shows an initial pulse 

of ERK activity that lasts for about 1 hour but is followed by complete inhibition of ERK until the 

end of the experiment, represented by cluster 5 (Figure 4.4.B). In comparison, cells that were not 

subjected to metabolic inhibition (Figure 4.4.C) were represented by clusters 3 and 6, which have 

more ‘pulsy’ ERK activity over time. Though we cannot explain mechanistically how AMPK 

activation results in these response patterns of ERK, this result suggests that cellular networks 

can have more than one dynamic response to simple metabolic stress such as direct AMPK 

activation. 
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Next, we explored whether different types of AMPK response will result in the same mode 

of ERK inhibition or not. We activated AMPK in two different modes. First, we used AICAR as a 

direct activator of AMPK, as described earlier. Secondly, we used a glycolytic inhibitor, 2-

deoxyglucose (2DG) to activate AMPK indirectly. These two perturbations resulted in sustained 

AMPK activation, and theoretically, should result in similar ERK inhibition since AMPK is the only 

known direct connection between metabolic stress and the ERK pathway (Shen et al., 2013). 

However, our results suggest otherwise. First, 2DG treatment results in almost all cells 

responding to EGF with a small initial ERK pulse followed by sustained ERK inhibition, 

represented by cluster 5 (Figure 4.4.D). This response is unlike AICAR, under which most of the 

cells exhibit an initial ERK response follow by the slow decay of ERK activity. We suspect that 

these differences might come from the different degrees of AMPK activation achieved by the 

different compounds; however AMPK activation by AICAR is higher than that of 2DG, which 

cannot explain why 2DG inhibits ERK signal more strongly than AICAR (Figure 4.4.E). This result 

suggests that glycolysis inhibition might inhibit ERK activity through an AMPK-independent 

pathway.   

In summary, these results suggest that even though AMPK activities are similar, different 

forms of metabolic inhibition might have an AMPK independent method of ERK inhibition. 
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Figure 4.4 : Direct AMPK activation result in multiple modes of ERK inhibition 

A.Schematic representation of metabolic-cell growht signaling map, with signaling node that can 
be measured by indicated sensors. Perturbations are shown in red with the order of treatment. B 
– C. Upper panel : cluster distribution of cells treated as indicated. Lower panels : representative 
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time series data for each of identified cluster. E. AMPKAR2 level caomparisong between cells 
treated with AICAR and 2DG at indicated concentration. 

 

4.3.5. AKT inhibition results in transient ERK inhibition through indirect interaction 

Next, we expanded our study further into AKT signals. It is thought that AKT can directly 

inhibit ERK through inhibitory phosphorylation of RAF (Figure 4A, Dark Blue lines) (Manning and 

Toker, 2017). However, activation of AKT also results in upregulation of glycolytic activity through 

GLUT1 surface expression and direct activation of hexokinase, among other effects (Figure 4A, 

Pink lines) (Manning and Toker, 2017). This situation creates a conundrum, in which if AKT 

inhibition can result in ERK suppression because of AMPK activation through glycolytic inhibition 

or in ERK activation because of the release of RAF from inhibition. To explore this space, we 

used the pan-PI3K inhibitor BKM120 and the allosteric AKT inhibitor MK2206, along with the 

activator insulin, to perturb the PI3K-AKT axis.  

First, we observed that insulin does not significantly change the ERK response to EGF 

compared to cells not pretreated with insulin because in both cases, a majority of cells are in 

cluster 3. However, among cells that are pre-treated with insulin, about 20%  have a much higher 

ERK baseline activity prior to EGF treatment, characterized by cluster 11. We also observe that 

cells in cluster 11 have much lower AKT responses compared to cells in cluster 3. This finding 

suggests that AKT activation does not significantly change ERK activation by EGF. 

Next, we investigate how AKT inhibition affects ERK response to EGF by treating cells with 

BKM120 and MK2206. We observed that MK2206 exerts a stronger inhibition of AKT activity, as 

shown by AKT-KTR baseline prior to EGF treatment in cluster 6 compared to cluster 3. When 

comparing ERK responses between cells treated with AKT inhibitors and untreated cells, we 

observed that 70% of the AKT-inhibited cells have a strong initial ERK response that lasted about 

two hours, followed by a slow rise of ERK activity that eventually reached the peak ERK response 
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after about 12 hours, as identified by cluster 6. On the other hand, the majority of untreated cells 

belonged to cluster 3, which is characterized by an initial ERK pulse, followed by constant ERK 

activity after. However, there is no difference in AMPK activity detected between cluster 3 and 

cluster 6, which implies that the different ERK response is not dependent on  AMPK activity. 

These two findings suggest that AKT activation does not directly inhibit ERK activity. Furthermore, 

when AKT is inhibited ERK activity is also diminished in the short term. But this inhibition is not 

sustained over the long term, as ERK activity continues to rise over a period of 12 hours. 
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Figure 4.5 : AKT inhibition results in transient ERK inhibition through indirect interaction. 

A.Schematic of the metabolic-cell growth signaling, with signaling nodes that can be measured 
by indicated sensors. Perturbations are shown in red with the order of treatment. B. Cluster 
distribution of cells treated as indicated. C. Representative time-series data for each identified 
cluster. 

 

4.5. Discussion 

In this study, we showed that multi-sensor expression could be achieved by using a single 

open reading frame with self-cleaving peptides. Thus, we can minimize genomic scars from the 

multiple transfection steps that are needed in single reporter expression systems. Furthermore, 

the multi-cassette approach yields highly expressed sensors that can be imaged at relatively high 

frequency and which are spectrally well-separated enough that independent measurement of 

individual pathways is achievable. 

Though time-series dimension reduction and clustering is still a field of active research, 

autoencoder has become one of the most popular ‘featurization’ algorithms. The major drawback 

of autoencoder is that the optimization is done in L2-norm space, which implies that the features 

that drive time series must be able to be represented in L2-norm space as well. In other words, 

Autoendoer does not guarantee that its latent representation would capture the true underlying 

processes that drive the time series behavior. However, we are not using autoencoder as a tool 

for hypothesis validation; rather, we have used it as a tool for data description. Time-series 

clustering has also proved to be a highly active field of study. Our approach is to use the latent 

spaces created by autoencoder as features of time series. Then, we assume that these feature 

spaces are in L2-norm space so that we can create nearest neighbor graphs and use Louvain 

community detection to detect clusters of similar time series. This method is different from 

previous approaches for a few reasons. First, we avoid projecting latent feature space into a non-

linear lower dimension, thus avoiding the risk of hyper-clustering. Secondly, since the Louvain 

clustering algorithm only needs adjacency matrix representations of graphs, it allows large dataset 
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clustering on desktop computers and takes a fraction of time compared to other algorithms. 

However, like all unsupervised clustering, the clustering result is sensitive to scaling and the 

number of clusters selected. In order to objectively define the best clustering result, we used an 

approach that was recently developed (Stacey et al., 2020). The key idea is to add noise to the 

original clustering space over a number of iterations; if the clustering result is ‘good,’ that cluster 

will persist across multiple noise injections. Though this method has never been used as an 

objective optimization function for unsupervised clustering, we think that it is a very logical 

approach as long as the noise injection is close to the real measurement noise. 

One of the interesting experimental results of our study is that AMPK activation by AICAR 

results in a fast initial ERK response to EGF stimulation. However, unlike in full growth medium 

conditions, ERK exhibits a slow decay of activity over a period of 12 hours, rather than a fast 

decay of initial ERK pulses followed by periodic ERK activation later on. We don’t know if this truly 

indicates higher ERK activity over the period of 12 hours or if it is an artifact of our sensor since 

we did not measure any other ERK downstream targets, such as FRA-1 or EGR-1 gene 

expression. We speculate that this behavior might arise from the fact that the AMPK inhibitory 

phosphorylation site on c-RAF is Serine-621, which is also required to be phosphorylated for Ras-

mediated ERK activation. This result suggests that there might be other sites of AMPK inhibition 

within the ERK pathway or that the c-RAF serine-621 site has multiple functions. It is not surprising 

that AMPK activation by 2DG exhibits stronger ERK inhibition, as we speculate that ERK inhibition 

effect might also be AMPK independent, for example, due to EGF-receptor glycosylation and its 

surface expression (Wellen et al., 2010). Our findings provide a counterpoint to previous signaling 

research, in which focus has been placed on direct signaling integration mechanisms (such as 

AKT-RAF phosphorylation) rather than cell-wide effects due to integrated changes in cell 

metabolism. It is notable that in the literature, many of the functions ascribed to AKT 
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phosphorylation of specific targets have not used adequate controls to rule out the general effects 

of increasing glycolysis.   

Our study also paves the way to characterize and better describe signaling network 

topology through real-time multi-signal observation. Using techniques like time series clustering, 

we can operate under the assumption that cells have limited modes of response to any 

perturbation. We can thus fit mathematical models to ‘characteristic’ cluster representatives 

instead of fitting data at the single-cell level, which can be unstable and resource-intensive. 

4.6. Methods 

4.6.1. Cell culture and media 

Routine cell culture for human mammary epithelial cells, MCF10A clone 5E (Janes et al., 

2010) were performed as previously described (Debnath et al., 2003). MCF10A was grown in 

‘DMEM/F12 growth medium’ (see Media table). Primary stocks from the original clonal derivation 

(MCF10A-5E) was used in all experiments. Cells were routinely split when they are ~80% 

confluent. 

In live microscopy experiments, we used a custom formulation, termed ‘imaging base-

DMEM/F12’, which consists of DMEM/F12 lacking glucose, glutamine, riboflavin, folic acid, and 

phenol red (Life Technologies or UC Davis Veterinary Medicine Biological Media Service) which 

allows adjustment of available nutrients and avoids fluorescence background. ‘Imaging medium’ 

was used for all experiments (see Media composition). Before imaging, cells were washed twice 

with their respective media and then cultured in imaging experiment media at least 4 hours prior 

to imaging, unless indicated otherwise. The cell to media ratio was maintained at 150-200 cells/µl 

for all experiments.  
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4.6.2. Media composition 

 

DMEM/F12 growth media     

Component Vendor Catalog 

number 

Final 

Concentration 

DMEM/F2 Gibco 11320-033 - 

Horse Serum Invitrogen 16050-122 5% 

EGF Peprotech AF-100-15 20 ng/ml 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Insulin Sigma I9278 10 ug/ml 

    

    

Imaging medium     

Component Vendor Catalog 

number 

Final 

Concentration 

Imaging base-DMEM/F12 Gibco Custom; 

equivalent to 

Gibco 11320-

033 lacking 

glucose, 

glutamine, 

pyruvate, 

riboflavin, folic 

acid, and phenol 

red 

- 

D-glucose Fisher D16 5 mM 

BSA Invitrogen 16050-122 0.1% w/v 

Hydrocortisone Sigma H0888 0.5 mg/ml 

Cholera toxin Sigma C8052 100 ng/ml 

Penicillin-Streptomycin Gibco 15140122 100 U/ml 

    

4.6.3. Reporter construction 

The reporters AMPKAR2 (Hung et al., 2017b; Kosaisawe et al., 2021), AKT-TR (Maryu et 

al., 2016; Sampattavanich et al., 2018), and ERKTR (Regot et al., 2014) sequences were 

previously described. We used a commercial synthesis service to build AKT-
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TR_AMPKAR2_ERKTR construct and cloned it into a vector compatible with piggyBac 

transposase-mediated delivery (Yusa et al., 2011) to minimize recombination between all 

fluorophores. All plasmids were confirmed by sequencing. 

4.6.4. Reporter Delivery 

Cell lines stably expressing biosensors were generated by retroviral transduction or 

transfection with the PiggyBac transposase system. PiggyBac plasmids were delivered by 

electroporation (Neon Electroporation systems, Thermo Scientific). The ratio between piggyBac 

plasmid and HypBase was 8:1 μg. After transfection or transduction, cells were selected with 

geneticin (300 μg/ml); single-cell clones were made by flow cytometry sorting, maximize the 

fluorophore expression in all four channels. We isolated multiple stable clones with homogenous 

expression; data reported in this study reflect representative behaviors that were consistent 

across clones for each reporter line. All reporter cell lines were confirmed to be mycoplasma-

negative by PCR; results were validated by third-party testing of selected lines (ATCC). 

4.6.5. Live-cell fluorescence microscopy 

Time-lapse wide-field microscopy was performed as described previously (Hung et al., 

2017b; Pargett et al., 2017). Briefly, 10000 cells were spotted one day prior to imaging in glass-

bottom 96-well plates (Cellvis P96-1.5H-N, Mountain View, CA) pretreated with type I collagen 

(Gibco A10483-01) to promote cell adherence. For experiments with drug addition, cells were 

placed in an imaging medium until the addition of the drug. For drugs dissolved in DMSO, the 

final DMSO concentration was <0.1%. Cells were maintained in 95% air and 5% CO2 at 37 ̊C in 

an environmental chamber. Images were collected with a Nikon (Tokyo, Japan) 20/0.75 NA Plan 

Apo objective on a Nikon Eclipse Ti inverted microscope, equipped with a Lumencor SOLA or 

Lumencor SPECTRA X light engine. Fluorescence filters used in the experiment are: DAPI 

(custom ET395/25x - ET460/50m - T425lpxr, Chroma), CFP (49001, Chroma), YFP (49003, 
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Chroma), Cherry (41043, Chroma), mOrange (49014, Chroma) and Cy5 (49006, Chroma). For 

AMPKAR2 biosensors, CFP and YFP filters were used to acquire images. Images were acquired 

using Andor Zyla 5.5 scMOS camera every 8 minutes with 2x2 binning. Exposure times for each 

channel were 25-50 ms for DAPI; 150 – 250 ms for CFP; 150 – 250 ms for YFP; 150-250 ms for 

mOrange; 300 – 500 ms for Cherry and 300 – 500 ms for Cy5. 

4.6. QUANTIFICATION AND STATISTICAL ANALYSIS 

4.6.1. Image processing 

After background subtraction and flat field correction, image data were processed to 

segment and average pixels within each identified cell’s nucleus and cytoplasm, using a custom 

procedure written for MATLAB (Pargett et al., 2017), with modifications in the cytosolic 

identification protocol as described below. Image data were stored in ND2 files generated by NIS 

Elements and accessed using the Bio-Formats MATLAB toolbox. Individual cells were tracked 

over time using uTrack 2.0 (Jaqaman et al., 2008). Cytoplasmic masks were created by 

watershed method using cytosolic YFP to identify the cytosolic boundary. The cytosolic area is 

further restricted to the area within 5 pixels of the nuclear border. The resulting single-cell time 

series traces were filtered for quality by a minimum length of trace and maximum number of 

contiguous missing or corrupt data points.  

4.6.2. Sensor calibration and normalization 

For the AMPKAR2 reporter, AMPKAR2 phosphorylation status was calculated using the 

protocol described (Kosaisawe et al., 2021). Briefly, linearized AMPKAR2 FRET efficiency was 

calculated as shown in our previous work (Gillies et al., 2020). Then AMPKAR2 phosphorylation 

status was estimated based on this equation 

𝐴𝑀𝑃𝐾𝐴𝑅2𝑃𝐻𝑂𝑆 = 2.74[𝐴𝑀𝑃𝐾𝐴𝑅2𝐹𝑅𝐸𝑇 𝑟𝑎𝑡𝑖𝑜 ] − 0.59  
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For ERKTR and AKT-TR, data from each experiment were normalized to maximal and 

minimal responses possible for each sensor. For maximal ERKTR and AKTTR response, we treat 

cells with a combination of EGF 10000 pg/ml and insulin 10000 ng/ml, respectively. For minimal 

ERKTR and AKTTR response we treated cells with a combination of PD0325901 1 mM and MK-

22006 1 mM, respectively.  

4.6.3. Time series analysis 

Pre-Processing 

All time-series were first normalized as described in the previous section. Then each time 

series were mean subtracted before passing into deep convolutional autoencoder (DCAE). All 

time-series in the analyzed dataset have the same number of time steps and time intervals. 

Deep Convolutional Autoencoder (DCAE) 

The main purpose of DCAE is to reduce the dimension of time series and create a non-

linear representation of time series (Ali et al., 2019). DCAE in this study was built in Python 3.7, 

using TensorFlow API (Version 2.4). The architecture of DCAE is similar to a previous study (Ali 

et al., 2019) and is shown in Data Analysis Table 1. DCAE is composed of 3 parts: encoding, 

latent representation, and decoding. The shape of the input depends on the number of time steps 

and the dimensions of time series that are fed into the model. In the encoding part, there are three 

2D-convolution layers so that the model can learn local representation in both time and order of 

time series. Then parameters from convolutional layers are flattened and passed to fully 

connected layer so that the model can learn about long-term time effects.  In the latent 

representation layer, output from the fully connected layer is compressed to the size that the user 

has defined. Then, these latent vectors are decoded through three 2D-convolution layers and 

reshaping to return the reconstructed time-series that has the same shape as the input time 

series. The loss function used in DCAE is mean squared error (MSE), and the optimization is 

through minimizing MSE of reconstructed time series and original time series. The Adam 
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optimizer was used. All models were trained to minimize MSE with an L2 regularization weighted 

at 1e-10. 

The size of latent vector space can be optimized by running the DCAE model through 

different sizes of latent vector space. The optimal number of latent vectors can be estimated when 

the total model error reaches a salient point, as identified by the elbow plot (Figure 4.3.B.). 

Data Analysis Table 1 
 

Layers Shape Filter size 
Number of 

Kernels 
Number 
of Unit  Activation 

Input TTS x DTS          

2D Convolution 40 x (2,2) 2x2 40   Relu 

2D Convolution 20 x (2,2) 2x2 20   Relu 

2D Convolution 10 x (2,2) 2x2 10   Relu 

Flatten           

Dense       100 Relu 

Dense       N Linear 

Dense       100 Relu 

Reshape 10 x (2,2)         

2D Convolution 10 x (2,2) 2x2 10   Relu 

2D Convolution 20 x (2,2) 2x2 20   Relu 

2D Convolution 40 x (2,2) 2x2 40   Relu 

Output TTS x DTS        Linear 

TTS - time step of time series 

DTS - dimension of time series 

N – size of latent vectors; user defined 
 

Training and validation 

Eighty percent of the dataset was randomly selected to use for training, and the remaining 

20% of the dataset was used for model validation. Stopping criteria was set when ‘loss’ does not 

change for three epochs. 

UMAP projection 
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UMAP projection of latent representation was performed with Python implementation of 

UMAP (UMAP). 

Unsupervised clustering using Louvain community detection 

 For unsupervised clustering, we first convert latent vector representation of time series 

from DCAE into K-nearest neighbor graph (K = 5) using Faiss API in python. The adjacency matrix 

was then fed into the Python implementation of Louvain community detection in SciKit-Network 

(version 0.24). 

Unsupervised classification by Louvain community detection has two challenges. First, 

Louvain resolution parameter selection has to be determined a priori, which will affect the size of 

the final clustering outcome. Secondly, for all unsupervised clustering, there is no objective 

optimization function for a ‘good’ clustering result.  

To this end, we took a cluster perturbation approach described earlier in the text. The 

process can be described as follows 

1. We performed Louvain clustering on the original dataset, using the following range of 

Louvain resolution parameters (Resolution : [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 

6, 6.5, 7, 7.5, 8]). 

2. Uniform normal distribution noise at 10% of original data. We iterated this process 10 

times. We call the noise-added data the ‘perturbed dataset’. The type and degree of 

noise are chosen as suggested in Stacey et al. 

3. Louvain clustering was performed on each perturbed dataset, using a range of 

resolution parameter described in (1). 

4. Once we have clustering results from the original and perturbed datasets, we have to 

determine the similarity of these datasets. We used the Jaccard index (Ji), which is the 

number of nodes in common between two clusters divided by total number of unique 

nodes in the two clusters (see equation below). 
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𝐽𝑖 = 𝑚𝑎𝑥𝑗 (
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1𝑖, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟2𝑗)

𝑢𝑛𝑖𝑜𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1𝑖, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟2𝑗)
) 

Where cluster 1 is the perturbed cluster set; cluster 2 is the original cluster set; 

cluster1i and cluster2j are single clusters from those sets.  

The matched clusters from perturbed and original datasets are identfied by clusters 

that maximize Ji. Then for each cluster identified in the original dataset, it contains in 

total N numbers of Ji, where N is the number of noise addition iteration. We can 

estimate the reproducibility of each cluster by calculating the average Ji (repJ) for each 

cluster. 

𝑟𝑒𝑝𝐽 =  
∑𝑁

𝑖=1 𝐽𝑖

𝑁
 

5. To choose the right resolution parameter, we then calculate the average repJ for each 

resolution level and identify the optimal resolution parameter by elbow method (Figure 

4.3.E.). 

6. Once the right level of resolution parameter is obtained, we discard any cluster that 

has repJ below the cutoff of 0.1 (set arbitrarily).  

4.6.4. Distributions and statistical tests 

Statistical tests, including ANOVA, t-tests, and Pearson’s correlations, were performed 

using standard functions in MATLAB. Box and whisker plots show the median value (red line), 

interquartile range (box), range (whiskers), and outliers (plus symbols).  
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4.7. Supplementary Materials 
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Figure S4.1. : Example of all clusters identified in current dataset 

Each row of panels, represents an example of time series that belongs to corresponding cluster, 
indicate y-axis label. Thick black lines, represent average time series behavior corresponding to 
the type of signals and clusters as indicated. Color lines are single cell time series examples of 
each clusters and signals. 
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Chapter 5 

Conclusions and future work 

5.1. Abstract 

This dissertation addressed the presence of heterogeneous metabolic and signaling 

functions among individual cells in mammalian cell lines. This heterogeneity is driven by 

underlying variation in cellular processes, including cell cycle, protein synthesis rate, and 

glycolytic rate. For example, heterogeneity in OXPHOS function governs how cells respond to 

growth signaling cues. We also showed that metabolic stress, which we model with chemical 

inhibitors, plays a significant role in how cells respond to growth factors, such as EGF. The 

majority of this work utilized live-cell imaging techniques to probe dynamic intracellular signaling 

activities. We developed a new plasmid and a clustering technique to explore high-dimensional 

time series data. The following chapters contain a summary of the work done, conclusions, and 

future directions. 

5.2. Summary of Works 

 Chapter 3 details a novel method to probe functional metabolism at a single cell level, 

using the fluorescent protein-based biosensor AMPKAR2. AMPK is a crucial responder to 

metabolic stress, specifically the elevation of ADP/AMP to ATP ratio, and thus AMPK acts as an 

internal ‘fuel guage’ of the cell (Hardie, 2014; Hardie et al., 2012). By measuring AMPK activity in 

live cells, we observe a primary parameter of cellular metabolism. We were particularly interested 

in OXPHOS activity at a single cell level because of its importance in physiology. Previous work 

in yeast showed that yeast metabolism alternates between glycolysis- and OXPHOS-dependent 

phases (Cai and Tu, 2012; Tu et al., 2005). Recently, OXPHOS has become a sought-after target 

for cancer therapy. Multiple OXPHOS inhibitors are early clinical trials, for example, IACS-010759 

(Molina et al., 2018) and Gboxin (Shi et al., 2019), as candidates for cancer therapy. We thus 
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hypothesized that mammalian cells might vary in their OXPHOS activity, both among cell types 

and individual cells. 

 Our strategy to probe OXPHOS activity at the single-cell level was to directly perturb 

electron transport chain (ETC) function with chemical compounds and measure AMPK activity in 

real-time. Effectively, this approach queries whether OXPHOS is required for efficient ATP 

production in each cell. First, we found that in the MCF10A cell line, when Oligomycin inhibits the 

ETC, an ATPase inhibitor, there are two distinct subpopulations of cells. The first subpopulation 

is cells that show immediate AMPK activation, termed OXPHOS-dependent cells (OP-dep). The 

second group is cells in which AMPK is not responsive to ETC inhibition, termed OXPHOS 

independent cells (OP-ind). This phenomenon is found in multiple cell lines of both cancerous 

and non-cancerous origin. We also found that cells that survive under OXPHOS inhibition undergo 

cycles between OP-dep and OP-ind states every two hours for more than three days. Under 

OXPHOS-inhibited conditions, this metabolic cycle also dictates when growth signaling proteins, 

such as ERK and mTORC1, can become active. We further showed that these short-term cycles 

are part of a longer metabolic cycle that takes about 36 hours to switch between OXPHOS 

dependent and independent states. To identify the driving factors that dictate the state of 

OXPHOS dependency, we measured the cell division cycle, glycolytic activity, and protein 

translation at the single-cell level. We showed that in the OP-dep state, cells tend to be in the G1 

phase of the cell division cycle, have lower glycolytic activity, and synthesize proteins at a higher 

rate. On the other hand, the OP-ind state is best characterized by cells in the G2/M phase of the 

cell division cycle, with higher glycolytic activity and a lower protein production rate. 

 Altogether, this work shows that mammalian cell metabolism is cyclical and 

heterogeneous within isogenic cell populations. Metabolic heterogeneity appears to be critical to 

the function of key cell growth pathways. Lastly, OXPHOS heterogeneity could influence the 

therapeutic efficacy of OXPHOS inhibitors in cancer therapy. 
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 Chapter 4 expands on the idea of metabolic regulation of growth signaling pathways by 

directly measuring ERK, AKT, and AMPK function at a single cell level using fluorescent 

biosensors. In terms of technical advancement, we first created a novel sensor expression system 

that can deliver up to three reporters in one transfection. This technique minimizes the unwanted 

effects of multiple transfections. We then confirmed that each sensor (ERKTR, AMPKAR2 and 

AKT-TR) expressed by this method performs appropriately. We also developed an unsupervised 

clustering algorithm for multivariate time series data based on autoencoder and Louvain 

community detection algorithms. More importantly, we developed an ‘objective’ optimization 

function for the number of clusters in unsupervised clustering and further determined the quality 

of clustering results. 

 In terms of biological advancement, we probed how the ERK-AKT signaling network 

integrates metabolic information from AMPK in real-time. First, our results showed that direct 

AMPK inhibition of ERK pathway has at least two distinct modes of action, as identified by two 

classes of ERK response pattern under active AMPK, in which about 50% of cells in the population 

have an initial strong ERK response followed by slow decay of ERK activity over 12 hours. The 

other mode of action is characterized by a weak initial ERK response to EGF that lasts for about 

1 hour, followed by complete inhibition. These findings reveal the limitations of purely topological 

conceptions of cell signaling, demonstrating that connections between signaling molecules do not 

uniquely specify a pathway’s function. We further compared two distinct modes of AMPK 

activation, one by direct AMPK activation, the other through glycolytic inhibition with 2-DG. We 

found that 2-DG has only one mode of action on the ERK pathway and provides much more 

potent ERK inhibition, characterized by weak initial ERK response of EGF followed by complete 

inhibition. This result signifies that AMPK might not be the critical communicating hub between 

cell metabolism and cell signaling.  
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Our results further clarify the multifaceted impact of AKT on ERK activity. On the one hand, 

AKT can directly inhibit ERK activity by inhibitory phosphorylation of RAF (Manning and Toker, 

2017). On the other hand, AKT can increase glycolytic activity, which results in suppressed AMPK 

function. These two functions of AKT contradict each other, and the functional outcome of this 

conflict can be resolved by simultaneous measurement of ERK, AKT, and AMPK at the single-

cell level. First, we found that direct AKT activation does not diminish ERK activity; rather, it helps 

sustain ERK activity after the initial response. Secondly, AKT inhibition results in lower ERK 

baseline activity. Though AKT inhibition does not affect the initial ERK response to EGF, it results 

in a slow rise of ERK activity over 12 hours. This response pattern does not match with that of 

direct AMPK activation, which suggests that, in fact, AMPK might not play a direct role in the AKT-

mediated ERK response. Altogether, this work provides a framework for systemic analysis of 

multivariate single-cell dynamic activity data. It also provides evidence for advancing the concept 

of signaling network function beyond simple topological “connection” maps, and toward its 

functional behaviors. 

5.3. Conclusion 

 Our work emphasizes that cell metabolism is heterogeneous and highly dynamic in 

individual cells. Typically, cell metabolism studies rely on bulk measurement and ‘profiling’ of 

metabolic states. We provided a novel technique to measure ‘functional’ cellular metabolism, 

rather than metabolic ‘profiles,’ with single-cell level resolution. We identified two distinct 

metabolic states in mammalian cells, OXPHOS dependent and OXPHOS independent, that can 

only be observed through single-cell measurement. We also show that OXPHOS dependency 

states are cyclical and govern the function of growth signaling pathways, thus putting cell 

metabolism at the forefront of understanding cell signaling. This ‘functional’ metabolic 

heterogeneity is not regulated by any single gene but rather by an ensemble of cellular states, 

including cell division cycle, glycolytic activity, and protein synthesis activity at any particular time. 
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Finally, OXPHOS heterogeneity presents a possible route for cancer therapeutic resistance to 

OXPHOS inhibition strategy. 

 Cells must coordinate both growth signaling and intracellular metabolic status to maintain 

homeostasis between nutrient processing (catabolic) and biosynthetic (anabolic) activities. 

Characterizing how cell metabolism alters growth signaling is central to understanding this 

homeostasis. Simultaneous live-cell measurement of growth signals, ERK and AKT, and a 

metabolic signal, AMPK, is the key to observe these interactions in real-time. First, AMPK has at 

least two modes of interaction with ERK signals. (1) AMPK fully inhibit ERK activity over a long 

time up to 12 hours. (2) AMPK could also slowly inhibit ERK activity after initial ERK activation. 

Secondly, even though multiple metabolic stresses activate AMPK, these stresses do not 

necessarily inhibit ERK through an AMPK-dependent mode. Thus, pose a question of a cancer 

treatment strategy that depends on AMPK activity. Lastly, AKT inhibition results in ERK pathway 

downregulation and diminished response to EGF. However, this suppressed ERK activity is 

transient and can be compensated over 12 hours. Though we do not know the mechanism that 

AKT suppresses ERK, we know that it is AMPK-independent. Our study did not provide a 

mechanistic explanation for these observations, but it provides data to refine the topological map 

of cell signaling by confining the possibility space of signal interaction behavior. 

5.4. Future Work 

 The future works proposed here are designed to probe further into the cellular metabolic 

heterogeneity and how cell metabolism information is integrated into cell growth signaling. In the 

first part, we aim to further identify other ‘types’ of cellular metabolic heterogeneity and factors 

that diminish or increase metabolic heterogeneity. We also want to explore the phenotypic effects 

of heterogeneous responses of OXPHOS inhibition, such as cell division. In the latter part, we 

wish to create a more comprehensive cell signaling mechanistic model that includes metabolic 
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state as a deterministic factor. We also want to explore the phenotypic result of different response 

classes to growth factors under the same metabolic stress.  

5.4.1. Deeper dive into single-cell metabolic heterogeneity 

  In chapter 3, we provided the first evidence that cellular OXPHOS activity is 

heterogeneous. However, there remain both technical and biological challenges for single-cell 

metabolism studies.First, presently we measure cellular metabolic status by measuring AMPK 

activity. This implies that organisms of interest must possess intact AMPK activation machinery. 

Furthermore, data from the AMPKAR2 sensor could be challenging to interpret. AMPKAR2 is a 

kinase sensor that could cross-react with other kinases inside the cell, thus interfering with 

AMPKAR2 readout. One solution is to develop a more sensitive ‘metabolites’ sensor, specifically 

ADP or ATP sensor, which does not exist at the moment. Even though in chapter 3, we adopt 

Ateam1.03, an ATP sensor, and PercevalHR, an ADP/ATP ratio sensor, we could not calibrate 

and convert the FRET ratio of these sensors to an absolute unit of concentration or ratio, which 

poses the question of what these sensors are measuring precisely.  

Another critical question that we could not explain is how AMPKAR2 could have quasi-

periodic behavior upon OXPHOS inhibition. One possible explanation could be that cells can only 

maintain glycolytic flux cyclically , or for limited periods of time. To test this idea, we need to either 

(1) directly measure ATP production rate from glycolysis or (2) measure metabolites from the rate-

limiting steps of glycolysis,such as fructose-1-6-bisphosphate (F16BP). In fact, there exists an 

F16BP FRET biosensor (Merrins et al., 2013). However, this sensor is an intermolecular FRET 

sensor that has a very slow off-rate of around 15-30 minutes, which means that it cannot measure 

a fast change in metabolite concentration. We will need to design a new F16BP sensor that can 

respond to concentration change within seconds to capture changes in glycolysis; one possibility 

is to change the design to intramolecular FRET.  
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We also want to find a connection between OXPHOS heterogeneity and cell phenotypes, 

such as resistance to chemotherapies, activation of inflammatory pathways, or cell death. This 

generally means that we need to first probe the cell OXPHOS status with ETC inhibitor, followed 

by inhibitor removal, and then measure the cell phenotype of interest after ETC inhibitor removal. 

However, all existing OXPHOS inhibitors irreversibly bind to ETC targets and cannot be washed 

out. We need to identify a new reversible ETC inhibitor so that we can further probe the biological 

effects and correlates of OXPHOS heterogeneity. 

Lastly, we also do not know if OXPHOS heterogeneity exists outside of in vitro cell culture 

conditions. We could develop transgenic mice that express AMPKAR2 FRET biosensor and ask 

how AMPKAR2 responds to OXPHOS inhibition at the organismal level. 

5.4.2. Building a new cell signaling model that includes cell metabolism as a player 

 In chapter 4, we provided systemic evidence that metabolic conditions could influence 

growth signal behavior. Though we identified multiple signaling patterns, we did not link the 

signaling behavior with cell phenotype. One could simply measure gene expression through 

single-cell transcriptome studies or immunofluorescence to determine the transcription effect of 

such signaling behavior. We also point out that current cell signaling topology could not explain 

the dynamical behavior of ERK, AKT, and AMPK together. One direction is to use our clustering 

result to build a mechanistic model that encompasses signaling patterns over time and thus refine 

the current signaling topology, which will result in a more accurate prediction of cellular response 

to signaling behavior. This study also opens the possibility to identify signal interactions as a key 

regulator of cell behavior instead of signaling pattern alone. All in all, accurate description of how 

cell signaling interacts is also critical to pharmacological interventions of human disease. 
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