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In this paper, the first femtoscopic analysis of pion–kaon correlations at the LHC is reported. The analysis 
was performed on the Pb–Pb collision data at √sNN = 2.76 TeV recorded with the ALICE detector. The 
non-identical particle correlations probe the spatio-temporal separation between sources of different 
particle species as well as the average source size of the emitting system. The sizes of the pion and kaon 
sources increase with centrality, and pions are emitted closer to the centre of the system and/or later 
than kaons. This is naturally expected in a system with strong radial flow and is qualitatively reproduced 
by hydrodynamic models. ALICE data on pion–kaon emission asymmetry are consistent with (3+1)-
dimensional viscous hydrodynamics coupled to a statistical hadronisation model, resonance propagation, 
and decay code THERMINATOR 2 calculation, with an additional time delay between 1 and 2 fm/c for 
kaons. The delay can be interpreted as evidence for a significant hadronic rescattering phase in heavy-ion 
collisions at the LHC.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The main goal of the heavy-ion programme at the Large Hadron 
Collider (LHC) is to study the deconfined state of strongly inter-
acting matter. This state, where the relevant degrees of freedom 
are quarks and gluons, is called the quark-gluon plasma (QGP). 
Experimental results from RHIC suggest that the QGP behaves as 
a fluid with small specific viscosity [1–4]. The characteristics in 
momentum space can be accessed from radial and elliptic flow, 
transverse momentum spectra or from event-by-event fluctuations. 
The space-time structure, relevant for the size and pressure gra-
dients of the system, can be accessed using two-particle correla-
tions.

Non-identical particle correlations are sensitive to the relative 
space-time emission shifts of different particle species [5–7]. The 
difference between mean emission space-time coordinates of two 
particle species at freeze-out is called emission asymmetry. It oc-
curs as a consequence of the collective expansion of the system, 
the presence of short-lived resonances decaying into the consid-
ered particles, the radial flow of these resonances, and the possibil-
ity of having additional rescattering between the chemical and ki-
netic boundaries of the evolution of the system [7]. Measurements 
of correlations of non-identical particles in low-energy heavy-ion 
collisions allowed one to establish an emission time ordering of 
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the nuclear fragments [8,9]. In relativistic heavy-ion collisions they 
provided independent evidence of collective transverse expansion 
in Au–Au collisions at 

√
sNN = 130 GeV at the Relativistic Heavy 

Ion Collider (RHIC) [10].
The Hanbury Brown and Twiss (HBT) [11–16] pion correlation 

radii are a measure of the source size of pions of a given mo-
mentum. Together with measurements of the elliptic flow and 
the transverse momentum spectra of identified particles they 
have been fundamental in identifying the relevant stages of ultra-
relativistic heavy-ion collisions and their properties [17]. Further-
more, a recent measurement of the kaon femtoscopic radii in 
Pb–Pb collisions [18] showed that (when compared for the same 
event centrality and pair mT) they are systematically larger than 
the ones from pions and those predicted by models based on a 
hydrodynamic evolution coupled to statistical hadronisation. Only 
after including the hadronic rescattering phase could the model 
[19] reproduce the data for pions and kaons simultaneously. The 
mean emission time of kaons (11.6 fm/c) and of pions (9.5 fm/c) 
were reported [18]. The difference is attributed to the rescattering 
through the K∗ resonance.

Particle yields and spectra add further support to models which 
include the formation of a dense hadronic phase in the final 
stages of the evolution of the fireball created in heavy-ion col-
lisions. The suppression or the enhancement of the yield (with 
respect to pp collisions) of short-lived resonances due to rescatter-
ing (suppression) or regeneration (enhancement) in the hadronic 
phase has been proposed as an observable for the estimation of 
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the lifetime and properties of the hadronic phase [20–22]. The 
measurements of several resonances, from the very short-lived ρ
meson (τ = 1.4 fm/c), K∗ (τ = 4 fm/c), �(1520) (τ = 10 fm/c) to 
longer-lived φ (τ = 46 fm/c), demonstrate strong suppression of 
short-lived resonances in central collisions [23–25]. The observed 
suppression can result from a long-lasting hadronic rescattering 
phase.

Recently, pion–kaon correlations were studied theoretically 
with a (3+1) viscous hydrodynamic model [26], coupled to the 
statistical hadronisation, resonance decay, and propagation code 
THERMINATOR 2 [28]. The model uses a parameterisation of the 
equation of state interpolating between the lattice results [27] for 
high temperatures and the hadron gas equation of state at low 
temperatures. The hadronisation occurs via the Cooper-Frye for-
malism without distinction between chemical and kinetic freeze-
out. No further interactions between the hadrons are considered, 
however, the emission time of each species can be delayed by 
hand, mimicking the effect of rescattering. The femtoscopic emis-
sion asymmetry was shown to be highly sensitive to this delay. 
Moreover, it can be decoupled from other mechanisms like flow 
or resonance contributions present at freeze-out, including the K∗
resonance [28]. This approach has been explored for pion–kaon 
pairs. Detailed predictions for different emission scenarios for the 
pion–kaon radii and their emission asymmetry as a function of 
the source volume have been made for Pb–Pb collisions at 

√
sNN = 

2.76 TeV in [28].
In this work π+K+ , π−K+ , π+K− , and π−K− momentum corre-

lations are analysed using the femtoscopy technique. Two meth-
ods are used to evaluate the emission asymmetry in order to 
strengthen the results. The first method decomposes the correla-
tions into terms of one dimensional spherical harmonic (SH) coef-
ficients [29] while the second one is based on the Cartesian repre-
sentation of the correlation function [5]. The source size parameter 
Rout and the emission asymmetry μout are measured as a function 
of the cube root of the average charged-particle multiplicity den-
sity 〈dNch/dη〉1/3. Finally, the obtained results are compared with 
detailed model calculations [28] assuming the previously found de-
layed kaon emission [18].

2. Data selection

In this paper, pion–kaon correlation results obtained with Pb–
Pb collisions at 

√
sNN = 2.76 TeV are presented. This measurement 

used 40 million events collected by ALICE in 2011. A detailed de-
scription of the ALICE detector and its performance in the LHC Run 
1 (2009–2013) is given in [30,31].

Events were triggered and classified according to their central-
ity was determined using the measured signal amplitudes in the 
V0 detectors [32]. Three trigger configurations were used: mini-
mum bias, semi-central (10–50% collision centrality), and central 
(0–10% collision centrality) [32]. The analyses were performed 
in six centrality classes: (0–5%), (5–10%), (10–20%), (20–30%), 
(30–40%), and (40–50%), separately for positive and negative mag-
netic field polarity. The reconstructed primary vertex is required to 
lie within ±7 cm of the nominal interaction point along the beam 
axis in order to have uniform tracking and particle identification 
performance.

Charged particle tracking is performed using the Time Projec-
tion Chamber (TPC) [30,33] and the Inner Tracking System (ITS) 
[30]. The ITS allows for high spatial resolution in determining the 
primary collision vertex. In this analysis, the determination of the 
track momenta was performed using tracks reconstructed only 
from TPC signals and constrained to the primary vertex. A TPC 
track segment is reconstructed from at least 70 space points (clus-
ters) out of a maximum of 159. The χ2 of the track fit, nor-
malised to the number of degrees of freedom, is required to be 

Table 1
Single particle selection criteria, together with particle identification 
variations used for uncertainty estimation.

Track selection

pT 0.19 < pT < 1.5 GeV/c
|η| < 0.8
DCAtransverse to primary vertex < 2.4 cm
DCAlongitudinal to primary vertex < 3.0 cm

Kaon selection

Default Loose Strict

Nσ ,TPC (for p < 0.4 GeV/c) < 2 < 2.5 < 2
Nσ ,TPC (for 0.4 < p < 0.45 GeV/c) < 1 < 2 < 1
Nσ ,TPC (for p > 0.45 GeV/c) < 3 < 3 < 2
Nσ ,TOF (for 0.5 < p < 0.8 GeV/c) < 2 < 3 < 2
Nσ ,TOF (for 0.8 < p < 1.0 GeV/c) < 1.5 < 2.5 < 1.5
Nσ ,TOF (for 1.0 < p < 1.5 GeV/c) < 1 < 2 < 1

Pion selection

Default Loose Strict

Nσ ,TPC (for p < 0.5 GeV/c) < 3 < 3 < 2.5√
N2

σ ,TPC + N2
σ ,TOF (for p > 0.5 GeV/c) < 3 < 3 < 2.5

χ2/ndf < 2. The distances of closest approach (DCA) of a track 
to the primary vertex in the transverse (DCAxy) and longitudinal 
(DCAz) directions are required to be less than 2.4 cm and 3.2 cm, 
respectively. These selections are imposed to reduce the contam-
ination from secondary tracks originating from weak decays and 
from interaction with the detector material. The transverse mo-
menta and pseudorapidities of pions and kaons were restricted 
to 0.19 < pT < 1.5 GeV/c and |η| < 0.8. All selections are sum-
marised in Table 1.

The charged-particle tracks are identified as pions and kaons 
using the combined information of their specific ionisation energy 
loss (dE/dx) in the TPC and the time-of-flight information from the 
Time-Of-Flight (TOF) detectors [34]. For each reconstructed parti-
cle, the signals from both the TPC and the TOF (dE/dx and time 
of flight, respectively) are compared with the ones predicted for a 
pion or kaon. A value Nσ is assigned to each track denoting the 
number of standard deviations between the measured track dE/dx
or time of flight and the expected one. For pions, the signal (dE/dx
for pT < 500 MeV/c, combined dE/dx and time of flight above this 
value) is allowed to differ from the calculation by 3σ . For kaons, 
five selections were used, as detailed in Table 1, together with 
variations used for uncertainty estimation. The selection criteria 
are optimised to obtain a high-purity sample while maximising 
efficiency, especially in the regions where separating kaons from 
other particle species are challenging. The purity was estimated 
from Monte Carlo simulations using the HIJING [35] event genera-
tor coupled to the GEANT3 [36] transport package and was found 
to be above 98% for both the pion and kaon samples.

The identified tracks from each event are combined into pairs. 
Two-particle detector acceptance effects, including track splitting, 
track merging, as well as effects coming from γ → e+e− con-
version, contribute to the measured distributions. The following 
selections are applied to reduce these effects. For pairs of tracks 
within |	η| < 0.1 an exclusion on the fraction of merged points 
is introduced. The merged fraction is defined as the ratio of the 
number of steps of 1 cm considered in the TPC radius range for 
which the distance between the tracks is less than 3 cm to the to-
tal number of steps. Pairs with a merged fraction above 3% were 
removed. The e+e− pairs originating from photon conversions can 
be misidentified as a real pion–kaon pair and it is necessary to 
remove spurious correlations arising from such pairs. These pairs 
are removed if their invariant mass, assuming the electron mass 
for both particles, is less than 0.002 GeV/c2, and the relative polar 
angle, 	θ , between the two tracks is less than 0.008 rad.
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3. Correlation functions

The femtoscopic correlation function C(k∗), as a function of the 
pion and kaon relative three-momenta k∗ = 1

2 (p∗
π− p∗

K) in the pair 
rest frame (PRF) indicated with the asterisk, is constructed as

C(k∗) = N
A(k∗)
B(k∗)

, (1)

where A(k∗) is the distribution constructed from the same event 
and B(k∗) is the reference distribution from particles belonging 
to different events using the event mixing method [37]. The nor-
malisation constant N is used to ensure that the ratio reaches 
unity outside the momentum range where the correlation function 
is affected by final state interactions, i.e. 0.15 < k∗ < 0.20 GeV/c, 
where k∗ = ∣∣k∗∣∣. The average transverse momentum of pions and 
kaons belonging to pairs with k∗ < 40 MeV/c is 0.27 GeV/c (std. 
dev. 0.07 GeV/c) and 0.93 GeV/c (std. dev. 0.23 GeV/c), respec-
tively, independent of centrality.

The first and second moments of the distribution of the spatio-
temporal separation of emission points in the PRF can be obtained 
from correlation functions either in the three-dimensional Carte-
sian representation [5] or using its decomposition into spherical 
harmonics (SH) [29,38]. The three-momentum and position dif-
ferences can be projected onto the out-side-long orthogonal axes, 
where the long axis is the beam axis, the out axis is in the direc-
tion of the transverse pair velocity in the laboratory system, while 
the side axis is perpendicular to the long and out axes [39,40]. 
At midrapidity, the emission asymmetry – displacement between 
pion and kaon sources – can exist only in the out direction [28]. In 
this work, the emission asymmetry in the out direction is obtained 
with two different methods and they are explained hereafter.

The SH decomposition allows one to project the three-dimen-
sional information contained in the correlation function into a set 
of one-dimensional distributions. The method applied here uses 
the direct decomposition of A(k∗) and B(k∗) during the filling of 
the discrete distributions [29]. The numerator can be written as

A(k∗) = √
4π

∞∑
l=0

l∑
m=0

Am
l (k∗)Y m

l (θ∗,ϕ∗), (2)

where Y m
l (θ∗, ϕ∗) are the spherical harmonics and Am

l (k∗) =
1

4π

∫
4π A(k∗)Y m

l
∗
(θ∗, ϕ∗)d∗ . A similar definition is valid also for 

the denominator. The l < 3 terms from the infinite set of numera-
tor and denominator distributions are filled for each reconstructed 
pair using the corresponding Y m

l (θ∗, ϕ∗) weight for its θ∗ and ϕ∗
angles. From these one-dimensional distributions, the components 
of the correlation function can be calculated following the method 
introduced in [29].

The femtoscopic information relevant for the emission asym-
metry measurement is contained in two one-dimensional correla-
tion functions, C0

0 and the real part of C1
1 , where C i

j is defined 
as Ai

j/Bi
j . The C0

0 and �C1
1 functions are mostly sensitive to the 

source size and the emission asymmetry, respectively [29]. Addi-
tionally, the values of C0

1 (asymmetry in the long direction) and 
	C1

1 are checked for zero emission asymmetry. Their deviations 
from zero may indicate track reconstruction problems in the de-
tector. Higher order components are small and irrelevant for this 
analysis.

The C0
0 , �C1

1 , and 	C1
1 components of the correlation function 

in the SH representation are shown in Fig. 1 for the different pairs. 
For like-sign pairs, the C0

0 correlation goes below unity at low k∗ , 
reflecting the repulsive character of the mutual Coulomb interac-
tion. For unlike-sign pairs, the effect is opposite (see also Fig. 2). 
For the �C1

1 correlation function, the deviation from unity is di-
rectly related to the emission asymmetry between the two particle 

Fig. 1. The C0
0 (top panel), �C1

1 (middle panel), and 	C1
1 (bottom panel) SH com-

ponents of the charged pion–kaon femtoscopic correlation functions for Pb–Pb col-
lisions at √sNN = 2.76 TeV in the 5–10% centrality class, positive field polarity. The 
different charge combinations of pions and kaons are shown with different colours 
and markers. The statistical and systematic uncertainties are shown as vertical bars 
and boxes, respectively.

species. The 	C1
1 should be flat by symmetry and thus is a good 

check for detector and analysis biases.
For the Cartesian representation analysis, the reconstructed 

pairs were divided into two different correlation functions, namely 
C+(k∗) and C−(k∗), where the sign reflects the sign of k∗

out. These 
correlation functions represent two different scenarios where the 
first particle (by construction the pion) is faster or slower than the 
second one (the kaon). The difference between them reflects the 
space-time emission asymmetry.

It can be observed from Fig. 2 that the correlation function is 
not exactly equal to unity at large values of k∗ , but has some in-
trinsic slope mainly due to the presence of elliptic flow, resonance 
decays, and due to global conservation of energy and momen-
tum. These background correlations have to be subtracted before 
fitting the correlation functions in both the SH and Cartesian rep-
resentations. The procedure to estimate the non-femtoscopic back-
ground is described in detail in [41], where it is shown that for 
π±K ± pairs the non-femtoscopic baseline can be parameterised by 
a common 6th order polynomial function for all pair combinations. 
The same approach is used to correct the effect of non-femtoscopic 
background in the present analysis and the resulting background 
estimation is shown in Fig. 2 as a solid black line for the C0

0 and 
�C1

1 components of pion–kaon pairs of different charge sign com-
binations.

4. Fitting of the correlation functions

The experimental correlation functions in both representations 
are compared to theoretical functions calculated with the software 
package CorrFit [42]. These functions are calculated as
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Fig. 2. The C0
0 (top panel) and �C1

1 (bottom panel) components of the pion–kaon 
correlation functions in the 5–10% centrality class showing the non-femtoscopic 
background in the spherical-harmonic representation, positive field polarity. The 
background fit corresponds to a 6th order polynomial function common for all 
charge combinations. The two structures visible in the correlation function at 0.11 
GeV/c and at 0.29 GeV/c correspond to the remaining effect from track merging 
and the K∗ resonance, respectively. The statistical and systematic uncertainties are 
shown as vertical bars and boxes, respectively.

C(k∗) =
∫

S(r∗)|�πK(r∗,k∗)|2d4r∗∫
S(r∗)d4r∗ , (3)

where the four-vector r∗ = x∗
π − x∗

K is the space-time position dif-
ference of a pion and a kaon, S(r∗) is the source emission func-
tion which is the probability of emitting a pair of particles at a 
given position difference. The possible dependence of the source 
on k∗ has been neglected. This approximation has been proven 
for radii larger than 1–2 fm [15]. �πK is the pion–kaon pair wave 
function. It accounts for the Coulomb and strong final-state inter-
actions (FSI), the former being dominant for the correlation ef-
fect [28].

In order to be able to compare the resulting radii to those 
obtained from identical-particle femtoscopy, we parameterise the 
source in the longitudinally comoving coordinate system (LCMS), 
defined for each pair such that the longitudinal pair momentum 
vanishes. The relative two-particle source can be expressed as

S(r) ∝ exp

(
−[rout − μout]2

2R2
out

− r2
side

2R2
side

− r2
long

2R2
long

)
, (4)

where Rout, Rside, and R long are the femtoscopic radii in the three 
directions and μout is the emission asymmetry. In order to avoid 
a large set of fitting parameters, the relations Rside = Rout and 
R long = 1.3Rout are used, which are based on measured radii from 
identical pion femtoscopy from the same experimental data [16]. 
In this approach only two independent parameters are needed to 
characterise the correlation function for the whole system: μout
and Rout. In order to (numerically) compute the fit function corre-
sponding to Eq. (3), the relative positions between pions and kaons 

are sampled from Eq. (4), while their momenta are sampled from 
the respective experimental distributions from the same data set. 
The positions and momenta are then boosted from the LCMS to 
the PRF. The fit value is the mean wave function squared in the 
PRF.

The fitting procedure also accounts for the purity of the sam-
ple, defined as the percentage of the properly identified primary 
particle pairs originating from the 3D Gaussian profile, referred to 
as the “Gaussian core”. Products of decays of long lived resonances 
are considered as not correlated. Following the method proposed 
in [7], the values for the purity parameter depend on the misiden-
tification, on the secondary contamination from weak decays, and 
on the percentage of pions and kaons that come from strongly de-
caying resonances constituting the long-range tails in the source 
distribution, outside the Gaussian core. These three purity factors 
are denoted as p, f , and g , respectively. The pair purity (also re-
ferred to as the primary fraction) is evaluated independently for 
each centrality class and magnetic field polarity and is defined 
as:

Pπ± K ± = pπ± · pK± · fπ± · fK± · g. (5)

All parameters except g are obtained from a detailed simulation 
of the detector response calculated using the HIJING Monte Carlo 
model with particle transport performed by GEANT3. The g val-
ues are taken from a calculation in [7] following the methodology 
used in [28]. The total value of the pair purity is 0.73 for the 0–5% 
centrality class and decreases smoothly to 0.61 for the 40–50% 
centrality class.

The experimental finite momentum resolution has been in-
corporated in the fitting procedure. The ideal three-momenta of 
20 000 randomly selected pairs from analysed data per k∗ bin used 
in the fitting routine were smeared by the momentum-dependent 
experimental momentum and angular resolutions. These were ob-
tained from Monte Carlo simulations using a detailed description 
of the experimental set-up.

Each of the correlation functions obtained for the six event 
centralities, four charge combinations, and two polarities of the 
electric field have been fitted independently. The values of the 
radii and emission asymmetry are obtained using a χ2 minimi-
sation in the Rout − μout plane. The fitting is done in the range 
0 < k∗ < 0.1 GeV/c using the CorrFit package [42]. A fit example of 
the C0

0(k∗) and �C1
1(k∗) parts of the correlation function for π−K−

and π−K+ is shown in Fig. 3. Note that the poor χ2 values reflect 
the residual deviations from a Gaussian distribution, rather than an 
improperly performed fit. The non-Gaussianity comes mainly from 
combining different pair transverse momenta, representing three 
spatial dimensions in a one-dimensional correlation function, and 
the presence of daughters of short-lived (up to ω) resonance de-
cays.

The systematic uncertainties are estimated by varying the parti-
cle identification and selection criteria, the normalisation range of 
the correlation functions, the background fit range of the polyno-
mial that is used for estimation of non-femtoscopic contributions, 
the fit range, and the momentum resolution parameters used for 
smearing. Values of these variations and their individual contribu-
tions to the systematic uncertainty are summarised in Table 2. All 
the systematic uncertainties are evaluated independently for each 
centrality class and the maximum value is reported in the table. 
The primary pair fractions are treated separately. They introduce a 
significant and correlated systematic error for all centralities.

The final uncertainty is obtained combining the systematic and 
statistical uncertainties using the covariance ellipses method. For 
each of the eight fit results (pair combinations and magnetic field 
polarities) as well as for each systematic variation, 104 points are 
generated following a two-dimensional Gaussian distribution in 

4
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Fig. 3. The C0
0(k∗) and �C1

1(k∗) parts of the correlation function for (left) π−K− and (right) π−K+ pairs, shown as markers for the 5–10% centrality, with the corresponding 
fits calculated using the CorrFit package shown as dashed lines. Only half of the statistics is used, corresponding to one magnetic field (positive field polarity). The statistical 
and systematic uncertainties are shown as vertical lines and boxes, respectively.

Table 2
Input parameters to CorrFit used to fit the correlation functions and variation of relevant parameters and ranges used 
for the evaluation of the systematic uncertainties of Rout and μout . The first three uncertainty sources affect the cor-
relation functions and are visualised in Figs. 1 and 2. The uncertainties were estimated for all the centrality ranges 
independently and maximum value is reported. The variation of primary pair fractions was not included in the covari-
ance ellipse calculation and is shown separately as a correlated model-dependent systematic uncertainty indicated with 
a † symbol. Uncertainties from fits using only Coulomb interaction, indicated with symbol ‡, are not included in the fi-
nal systematic uncertainty. The ranges indicated with § symbol include exclusion of 0.1–0.125 GeV/c and 0.265–0.315 
GeV/c, to account for splitting effects and K∗ resonance.

Uncertainty source Default value Variations max Rout (%) max μout (%)

PID Default in Table 1 Loose and strict in Table 1 3.0 12.0

Background fit range 
(k∗ in GeV/c)

0.0–0.5§ 0.0–0.265§, 0.125–0.5§ 2.6 17.3

Normalisation range 
(k∗ in GeV/c)

0.15–0.2 0.1–0.12, 0.18–0.21 3.3 18.0

Fit range (k∗ in GeV/c) 0–0.1 0–0.08/0.12, 0.005–0.1 3.7 13.4

Momentum resolution Procedure from [30,31] +12% 3.6 10.3

Primary fraction† In Sec. 4 ±10% 15.0† 20.0†

Analysis type SH Cartesian coordinates 1.6 3.1

�πK‡ Strong and Coulomb Coulomb only 33.0‡ 8.7‡

the Rout–μout space, where the mean and covariance are taken 
from the fit. The covariance ellipses are calculated from the sample 
of generated points in each centrality bin. The systematic uncer-
tainties used for the final result are obtained using 1σ covariance 
ellipses. Negligible correlation between Rout–μout parameters is 
observed.

Additionally, the analysis was done in the Cartesian represen-
tation [5] using the projected C+ and C− correlation functions 
shown in Fig. 4. The results of this analysis are fully compatible 
with those from SH within uncertainties. However, these results 
are not incorporated as another source of systematic uncertainty 
since the Cartesian method yields three times larger statistical un-
certainties of μout.

Fits to correlation functions considering only Coulomb interac-
tion show a systematic and centrality-dependent decrease for Rout
of the order of 33% with a significantly increased χ2 of the fit. 
For this reason these are not included in the evaluation of the 
uncertainties. However, the effect on the asymmetry parameter, 

supporting the prediction made in [28], is about 9%, in line with 
other variations and demonstrating the prevalence of the Coulomb 
interaction for the emission asymmetry measurement.

5. Results

The final extracted radii, Rout, and emission asymmetry, μout, 
are calculated as a weighted averages between the values obtained 
from the analysis of correlation functions corresponding to two 
magnetic field polarities and four possible charge combinations 
of charged pion–kaon pairs, using the SH representation. The ob-
tained values are shown as a function of 〈dNch/dη〉1/3 in Fig. 5. 
The radius increases smoothly from 4 fm to 9 fm when going from 
the 40–50% centrality interval to 0–5%. At the same time, the emis-
sion asymmetry evolves from a starting value of μout = −2.5 fm 
and reaches μout = −4 fm for the most central events. In the same 
figure, the predictions published in [28] are shown as lines for dif-
ferent hypotheses of the extra delay for kaons, starting from the 
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Fig. 4. Pion–kaon correlation functions in the Cartesian representation for all charge combinations. The C− is on the negative side of the k∗ axes while C+ is on the positive. 
The femtoscopic fits are shown as a solid black line and were computed using the CorrFit package. The statistical and systematic uncertainties are smaller than the markers.

Fig. 5. Pion–kaon source size (upper panel) and emission asymmetry (lower panel) 
for Pb–Pb collisions at √sNN = 2.76 TeV as a function of 〈dNch/dη〉1/3. The solid 
lines show predictions from calculation of source size and emission asymmetry 
using the THERMINATOR 2 model with default and selected values of additional 
delay with a mean time of 	τ and width σt for kaons [28]. The statistical and 
systematic uncertainties are combined and shown as square brackets. The uncer-
tainty related to the fraction of primary pairs is reported separately as a correlated 
model-dependent systematic uncertainty of ±15% (20%).

default setting with no delay to a maximum of 3.2 fm/c extra 
emission time. This delay reduces the asymmetry produced natu-
rally which originates from the collective behaviour of the expand-
ing system created in the collisions modelled with THERMINATOR 
2 [43]. The agreement between the measured and predicted radii is 
good for peripheral events but measurements are larger by 1.5 fm 
for the most central events. On the other hand, the emission asym-
metry measurement follows the predicted trends for all centrali-
ties. The data points lie between the curves corresponding to time 
delays of 1.0 and 2.1 fm/c.

The model-dependent systematic errors of 15% and 20% for the 
radii and asymmetry, respectively, are present also in the theo-

retical prediction, as the same values for the fraction of particles 
within the Gaussian core are used to obtain the radii and emission 
asymmetry [7]. Therefore, this additional systematic uncertainty 
would synchronously move the results up and down and the pre-
diction lines without changing their interpretation.

6. Discussion

In this work the first femtoscopy analysis of pion–kaon pairs 
at the LHC is presented. The collective behaviour of the matter 
created in Pb–Pb collisions generates a natural asymmetry in the 
emission of pions and kaons due to their different masses. This is 
related to the kaon emission distribution, which is more strongly 
influenced by flow than pions [7]. The analysis was implemented 
using the spherical harmonics and the Cartesian representation of 
the femtoscopic correlation function. The non-femtoscopic back-
ground present in the raw ratios was subtracted using a combined 
fit to the four possible charge combinations. The final results are 
compared to state-of-the-art hydrodynamical calculations where 
an additional delay for kaons was introduced to mimic the be-
haviour during the hadron rescattering phase.

The radii values predicted by the theoretical calculation [28]
have several assumptions included in the particle distributions 
which are different from the experiment. One of them is that the 
presence of the strong interaction does not modify the emission 
asymmetry visible in the correlation functions. Our analysis con-
firms this statement; removal of strong interaction from the fit 
has significant influence on the radii (33%) but moderate influence 
on the emission asymmetry (9%). Even though pions and kaons 
have been selected according to ALICE acceptance and momentum 
ranges, the optimisation of the purity of the data sample modified 
the transverse momentum distribution. This experimental effect 
biases the distributions towards lower momentum values, hence 
it increases the source radii.

The obtained width of the relative pion–kaon source, Rout , can 
be compared to the pion and kaon source radii extracted from 
identical-particle correlation analyses added in quadrature. The 
pion–kaon pairs used in the current analysis are predominantly 
composed of soft pions (0.2 ≤ mT ≤ 0.3 GeV/c) and hard kaons 
(1.0 ≤ mT ≤ 1.3 GeV/c). The pion and kaon source radii measured 
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Table 3
Centrality-averaged difference between 
the μout predicted using THERMINA-
TOR with different values of the added 
kaon delay 	τ [28] and the one mea-
sured in this analysis, divided by the total 
uncertainty of the measurement σ exp.

	τ (μTHERM
out − μ

exp
out )/σ

exp

no delay −3.62
1.0 fm/c −1.02
2.1 fm/c 2.15
3.2 fm/c 5.26

for these ranges of transverse mass (mT) in 0–10% central collisions 
were 7–8.5 fm and 4–5 fm, respectively [18]. Added in quadrature, 
this yields 8–10 fm, well in agreement with the most central pion–
kaon point in Fig. 5. Similarly, for 30–50% centrality class, the pion 
and kaon sources are 4–4.5 fm and 2–3 fm, respectively, and their 
combination yields 4.5–5.5 fm, again in reasonable agreement with 
the average of two most peripheral intervals in Fig. 5.

The emission asymmetry presented here coincides with the 
predictions calculated including a delay of the kaon emission of 
1.0–2.1 fm/c. The difference between the μout values predicted in 
Ref. [28] and the measured value, averaged over centrality and nor-
malised to the total uncertainty of our measurement, is shown in 
Table 3.

The values obtained for the emission asymmetry are in line 
with those predicted by the hydrokinetic model [19], the bro-
ken mT scaling of the radii of kaons with respect to pions ob-
served in [18], and from the short-lived resonances measured by 
ALICE [23–25]. This measurement is another confirmation of the 
hadron rescattering phase.

In order to better understand the relevant effects influencing 
the emission asymmetry, it would be natural to continue the stud-
ies measuring other systems. It would be especially interesting to 
measure the πp and Kp systems and probe the validity of the re-
lation μπp

out = μπK
out + μ

Kp
out [7]. Final-state interactions such as the 

ones taking place in a long-lasting rescattering phase might mod-
ify or distort this picture.

In summary, the first measurement of the emission asymme-
try of pions and kaons for different centralities at the LHC has 
been performed. Rout was measured to be 9 fm for central col-
lisions and decreases as a function of centrality to 4.5 fm for more 
peripheral collisions. At the same time, the magnitude of the emis-
sion asymmetry changed from μout = −4.5 fm to μout = −2 fm. 
This confirms the importance of the collective expansion of the 
system with the pions emitted closer to the centre of the colli-
sion and/or later than kaons. However, the collective motion is not 
enough to reproduce the trend of the emission asymmetry which 
according to state-of-the-art models based on 3+1 viscous hydro-
dynamics demands an additional time delay of 1–2 fm/c for kaons 
in order to reproduce the measured trend. This observation is in 
agreement with a hydrodynamic evolution of the expanding sys-
tem and favors a stronger radial flow in central collisions together 
with a dense and long-lasting hadronic rescattering phase at the 
end of the evolution of the fireball at LHC energies.
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