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Bayesian Framework for Detecting Gene
Expression Outliers in Individual Samples
John Vivian, PhD1; Jordan M. Eizenga, MS1; Holly C. Beale, PhD2; Olena M. Vaske, PhD2; and Benedict Paten, PhD1

abstract

PURPOSE Many antineoplastics are designed to target upregulated genes, but quantifying upregulation in
a single patient sample requires an appropriate set of samples for comparison. In cancer, the most natural
comparison set is unaffected samples from the matching tissue, but there are often too few available unaffected
samples to overcome high intersample variance. Moreover, some cancer samples have misidentified tissues of
origin or even composite-tissue phenotypes. Even if an appropriate comparison set can be identified, most
differential expression tools are not designed to accommodate comparisons to a single patient sample.

METHODS We propose a Bayesian statistical framework for gene expression outlier detection in single samples.
Our method uses all available data to produce a consensus background distribution for each gene of interest
without requiring the researcher to manually select a comparison set. The consensus distribution can then be
used to quantify over- and underexpression.

RESULTS We demonstrate this method on both simulated and real gene expression data. We show that it can
robustly quantify overexpression, even when the set of comparison samples lacks ideally matched tissue
samples. Furthermore, our results show that the method can identify appropriate comparison sets from samples
of mixed lineage and rediscover numerous known gene-cancer expression patterns.

CONCLUSION This exploratory method is suitable for identifying expression outliers from comparative RNA
sequencing (RNA-seq) analysis for individual samples, and Treehouse, a pediatric precision medicine group
that leverages RNA-seq to identify potential therapeutic leads for patients, plans to explore this method for
processing its pediatric cohort.

JCO Clin Cancer Inform 4:160-170. © 2020 by American Society of Clinical Oncology

INTRODUCTION

RNA sequencing (RNA-seq) has been used in the
cancer field for a number of purposes: To examine
differences between tumor and normal tissue; to
classify cancers for diagnostics; and—with the advent
of single-cell RNA-seq—to characterize tumor
heterogeneity.1-6 Precision medicine researchers
have also begun exploring RNA-seq’s potential to
aid in target selection and drug repositioning by
identifying clinically actionable aberrations in tumor
samples.7-10 Clinical studies have demonstrated ac-
tionable findings for up to 50% of patients through
RNA-seq analysis, particularly for pediatric patients
who often do not possess actionable coding DNA
mutations.11-15 This has led to efforts like Treehouse,
a precision medicine initiative for pediatric cancer,
that evaluates the utility of RNA-seq analysis to
inform clinical interpretation. Treehouse has cre-
ated a large compendium of open access cancer
gene expression data, which is incorporated into its
analysis.16-18

Protocols for such precision medicine initiatives in-
volve the identification of upregulated druggable gene
targets as therapeutic leads. Differential expression is
commonly used to identify up- and downregulation of
genes between two groups of samples. However, most
differential expression tools operate best under ex-
perimental conditions where both groups consist of
several technical replicates or if lacking that, biologic
replicates.19-22 Thus, most existing tools are poorly
suited to the clinical setting, where one group consists
of only a single biologic replicate from one patient (N of
1), and the other comparison group is a library of
diverse potential comparison samples. In particular,
none of the existing methods have any way of sug-
gesting what an appropriate subset of the sample
library should be used for comparison. This limitation
is especially acute in cancer, where uncertainty about
the cell of origin, histologic complexity, and metas-
tasis can make it difficult to identify the appropriate
reference tissues for a sample.23 While some work
exists to address statistical uncertainty of working
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with N-of-1 samples,24 we focus on solving the second
problem, which is the principled selection of an appro-
priate comparison set.

Existing N-of-1 protocols compare targeted genes in an
N-of-1 sample to an outlier cutoff generated from a large
compendium of either cancer samples or unaffected tissue
to determine whether a gene is upregulated.16,25-27 While
this outlier cutoff method is fast, there are some notable
drawbacks. Application of a cutoff binarizes data, which
makes it difficult tomeaningfully rank outliers or to be aware
of samples just short of meeting the cutoff. This cutoff
method is also intended for Gaussian distributions, which
are empirically common for gene expression within a tissue
group but not typical when considering the distribution of
expression across tissues.25

Ultimately, the most difficult problem is justifying the choice
of what samples constitute the comparison set that gen-
erates the cutoff because different comparison sets will
identify different genes as outliers. Many comparison data
sets are small (almost half of The Cancer Genome Atlas’s
[TCGA’s] normal tissues have ≤ 10 samples), so they lack
the statistical power to characterize the variability of the
expression landscape in the normal tissue on their own.28

This power can be increased by also including samples
from different tissues, but including tissues with larger
sample sizes can drown out the information from the
matched tissue. In addition, it is unclear which other tissues
should be included in the pooled comparison set.

These concerns led us to propose a new approach for
identifying outliers for N-of-1 samples. In contrast to previous
methods, our method adaptively constructs a meaningful
comparison set and avoids selection bias by automatically
weighting the background sets to generate a consensus
distribution of expression. It then uses the consensus dis-
tribution to quantify overexpression for genes of interest.

METHODS

The core of our method is a Bayesian statistical model for
the N-of-1 sample’s gene expression. The model implicitly

assumes that the sample’s gene expression can be ap-
proximated by a convex mixture of the gene expression of
the background data sets. The coefficients of this mixture
are shared across genes, much like a linear model in which
each data point is the vector of expressions for a gene
across the background data sets. In addition, we model
expression for each gene from each background data set as
a random variable itself. This allows us to incorporate
statistical uncertainty from certain background sets’ small
sample size directly in the model without drowning out any
background set’s contribution through pooling (Fig 1).

Model Specification

Suppose we have n background data sets for expression,
which we will call X1,…,Xn. Within each background set

CONTEXT

Key Objective
How can we identify targetable genes in individual patients with cancer?
Knowledge Generated
We discuss a novel Bayesian method that compares an individual RNA sequencing (RNA-seq) cancer sample to a large

background of normal data. The model dynamically selects a background data set on the basis of similarity to the individual
sample, which is then used to identify expression outliers among a set of genes of interest using posterior predictive P
values.

Relevance
This method can be applied to tumor RNA-seq samples of individual patients with cancer to generate a ranked list of potential

therapeutic targets.

Laplace

InvGamma

t distribution Jointly
Dirichlet

FIG 1. Bayesian plate notation of the model, where G denotes gene
and D denotes data set. x represents gene expression for one
background data set and is multiplied by βT to produce the convex
combination ŷ . We specify jointly Dirichlet because there is not one
Dirichlet distribution per background data set. Instead, each
background data set is one component of the Dirichlet α vector. We
add Laplacian error « to the expected expression ŷ when modeling
the observed expression of a new sample y . The scale of the
Laplacian error follows an inverse gamma (InvGamma) distribution.
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d = 1, 2, …, n, we model the expression of gene g as
a normal-distributed random variable:

xd,g ∼1
�
μd,g , σd,g

�
.

The parameters of each of these normal distributions are
distributed according to a shallow but proper normal-
inverse gamma prior:

μd,g , σ
2
d,g ∼1-(&

�
0, 1, 1

�
2,1

�
.

Next, we assume that there is another unobserved random
variable x̂ d,g from the same distribution 1(μd,g , σd,g ).
Conceptually, this corresponds to the expression value that
the background distribution would influence the N-of-1
sample to take for that gene. We model the expected ex-
pression ŷ g from a new sample as a convex combination of
the unobserved expression values across the data sets:

ŷ g� β1x̂1,g +/ + βnx̂n,g

β ∼Dirichlet
�
1,/, 1

�
.

Note that β is shared across all genes. A Dirichlet distri-
bution was chosen for β to enforce the convexity constraint.
Finally, we model the observed expression of the new
sample yg , which adds Laplacian error to the expected
expression ŷ g :

yg � ŷ g+ «g

«g ∼Laplace
�
0, τ

�

τ ∼ (&
�
1, 1

�
.

The distribution of the model error ε is shared between
genes and incorporates uncertainty into the posterior to
account for variance generated by a poor match of the N of
1 to any particular background group, weak model fitting,
and biologic or technical noise. We use a Laplace distribu-
tion instead of the more conventional normal distribu-
tion because we are interested in identifying expression
outliers. The Laplace distribution is heavier tailed, so it will fit
to outliers less aggressively and thereby preserve their outlier
status.

This model fits the data well for most cases. However, it
behaves poorly on genes that have large variances in the
background data set. The reason is that the « parameter
shares a scale parameter (τ) across all genes. This causes
differences in expression that are modest relative to the
large background variance to appear to be highly signifi-
cant. Thus, the model fits aggressively to the N-of-1 ex-
pression on these genes rather than to preserving the
background distribution (Data Supplement). To address
this limitation, we normalize the background data sets for
variance but not for location. This normalization step must
be incorporated into the model specification because it is

not known a priori which background data sets the model
will learn to be important, and different background data
sets have different variances. This leads to the following
equation:

�
d
βd

�
yg − μd
σd

+ μd

�
��

d
βd

�
x̂ d − μd

σd
+ μd

�
+ «g ,

which simplifies to

yg �
�d

βd
σd
x̂ d + «g

�d
βd
σd

.

The model can be explored using Markov chain Monte
Carlo (MCMC) to obtain samples for yg that approximate its
posterior distribution. If we have an observed expression
value for a gene of interest (from the N-of-1 cancer sample),
we can compare it to the sampled values. The proportion of
sampled values for yg that are greater (or lesser) than the
observed value is an estimate of the posterior predictive
P value for this expression value. The posterior predictive
P value can be seen as a measure of how much of an outlier
the expression is given the expectations of the comparison set.

The model is implemented in PyMC3, and each N-of-1
sample is trained using the No-U-turn MCMC sampler.29,30

Because of the computational burden of sampling from the
model, we use a couple of computational tricks to reduce
runtime to a tractable level. First, we integrate out the μd,g
and σd,g parameters so that each x̂d,g is distributed
according to a posterior predictive t test. Given our choice of
a Dirichlet distribution for β, most of the background data
sets are assigned 0 weight, which means that it is inefficient
to include all n background data sets for every training run.
Instead, background data sets are heuristically ranked for
similarity to the N-of-1 sample by a combination of analysis
of variance and pairwise distance and then iteratively
added until the posterior predictive P values converge to
Pearson correlation. 0.99 (Data Supplement). The model
is available as a Python package for convenience, a Docker
container for reproducibility, and a Toil workflow for scal-
ability. The software also provides comprehensive output to
aid users in interpreting model results (Data Supplement).

RESULTS

TCGA and Genotype-Tissue Expression

Consortium Validation

We evaluated whether the model would identify compari-
son sets on the basis of tissue type. To do so, we ran the
model on 977 TCGA tumor samples spanning 10 different
tissues. We selected these 10 tissues on the basis of two
criteria: They had corresponding tissues in the Genotype-
Tissue Expression Consortium (GTEx) data set, and they
had sufficiently many tumor samples to get a good esti-
mate of the average behavior of our model. We used the
entire set of normal tissue samples from GTEx and TCGA
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as two different background data sets to compare with
these randomly selected TCGA samples31 (Fig 2; Data
Supplement).

For every group of samples within a tissue type, the
matched tissue in GTEx or TCGA-normal was afforded
a majority of the model weight, with only two groups of
samples receiving , 60% of all total weight: bladder and
stomach. Dimensionality reduction reveals that bladder
and stomach samples tend to cluster near other tissue
groups that the model assigns weight to (Data Supple-
ment). This behavior is especially impressive considering
that the comparison is between GTEx and TCGA: two in-
dependent projects. It is likely that there are some hidden
batch effects between these data sets (which would be
challenging to correct for), but true biologic signal tends to
overwhelm any batch effects that exist.

Negative Control

As a negative control experiment, we ran 100 samples
across 10 GTEx tissues using three different backgrounds:
TCGA-tumor, TCGA-normal, and GTEx. Our expectation

was that there would be relatively few outliers when either
normal (noncancer) data set is used as the background
comparison set relative to TCGA-tumor. Figure 3A shows
that when either GTEx or TCGA-normal were used as the
background data set, the gene P values shrink toward the
middle, and outliers are rarely identified. The model tends
to assign almost all weight to the N of 1’s matched tissue in
GTEx or TCGA-normal, and the N of 1 does not deviate
significantly from other samples in that tissue group, with
few exceptions.

Testing Model Robustness by Removing Matched Tissues

In most cases, our method is robust to situations in which
there is no obvious matched normal tissue (Fig 3B). To
demonstrate this, we used our method with a comparison
data set in which we artificially removed the tissue matched
to the sample and then compared the results with the
restricted data set to the results we obtain with the full data
set. The model will often go from assigning almost all of the
weight to thematched normal tissue to distributing it among
several other phenotypically similar tissues. However, in
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FIG 2. Heat map of the average model weight assigned to Genotype-Tissue Expression Consortium (GTEx)
tissues across tumor subtypes in The Cancer Genome Atlas (TCGA). The model assigns a majority of weight to
the matched tissue in GTEx for every tumor subtype. Only two tumor tissues—bladder and stomach—received
, 60% of the average model weight. GTEx has only nine bladder samples, and principal component analysis
shows that those bladder samples cluster on top of minor salivary gland and vaginal samples, which helps to
explain its lower average weight relative to other tumor types (Data Supplement).
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FIG 3. Different aspects of model robustness. (A) Robustness to false-positives. Negative control experiment
where 100 Genotype-Tissue Expression Consortium (GTEx) samples were run using GTEx, The Cancer Genome
Atlas (TCGA)-normal, and TCGA-tumor as different backgrounds. Because posterior predictive P values
measure how different the observed result is from model expectations, we assume that using normal tissues as
backgrounds for GTEx N-of-1 samples will result in a peak at approximately .5 and very few outliers compared
with when TCGA-tumor is used as a background. (B) Robustness to imperfect comparison sets. The effect that
removing a matched tissue has on the gene P values the model generates as measured by Pearson correlation.
The x-axis is the weight assigned to the matched tissue by the model. Gene P values are relatively consistent,
even when a matched tissue is removed, particularly if the model can redistribute that weight to tissues of similar
phenotypes. (C) Robustness to mixed lineage samples. Average model weight of mixture samples generated
from randompairings of GTEx tissues. Samples were generated by averaging gene expression between randomly
sampled subsets of each tissue group. In most cases, the two tissues used to generate the mixture are assigned
the majority of the model weight, which is the expected result. Three sets of mixture samples—adrenal-brain,
brain-lung, and liver-thyroid—do not get the same result. Principal component analysis of those mixture
samples, in the context of similar tissues, shows that the generated mixture samples happen to cluster closer to
other tissues than one or both of the tissues used to generate the samples (Data Supplement). In these cir-
cumstances, we expect the model to assign weight to those tissues that are more similar to the mixture samples.
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most tissues, the model largely compensates for the missing
data in the final results: The P values remain highly corre-
lated to those produced with the full data set (Data Sup-
plement). That said, the P values do move slightly away from
the tails, indicating lower power to detect outliers.

Mixture Simulation

We used a simulation to validate the method’s ability to
identify comparison sets in tumors of nonspecific lineage.
Simulated N-of-1 samples were created by randomly
selecting tissue pairs from GTEx then averaging gene ex-
pression between random samples from those tissue pairs.
Principal component analysis of themixture samples shows
a tight cluster in between the two clusters for the con-
tributing tissues (Data Supplement). Mixture samples were
run through the model, and the weights from the two
contributing tissues were collected (Fig 3C). Ideally, 50% of
the model weight should be assigned to each of the con-
tributing tissues used to generate those mixture samples,
which is true for a majority of the tissue pairs. We would not
want the model to split weight evenly between the two
contributing tissues if the generated mixtures happen to be
more similar to other tissue types in the background data
set. For mixture samples that did not match to the tissues
used to generate them, dimensionality reduction clearly
shows that other tissues happen to cluster closer to the
mixtures than one or both of the contributing tissues (Data
Supplement).

Upregulated Gene Outlier Counts Across Tumor Subtypes

Gene amplification and overexpression are common hall-
marks of cancer cells, resulting from extra copies of a locus
(amplicon) as well as from other genetic and epigenetic
changes. In many cases, these changes occur in genes that
are specific to their tissue of origin.32-34 Many of these
commonly mutated genes can be targeted by existing
drugs.35 Eighty-five such druggable genes, mostly receptor
tyrosine kinases, were curated and provided to us by
Treehouse. We calculated P values for these genes using
our method across the 977 TCGA samples (Fig 4). Genes
with P values below a cutoff (, 0.05) that also appeared in
more than a third of the tumor samples within a subtype
were all identified as known biomarkers in the literature
(Data Supplement). These include AURKA in both blad-
der and breast cancer36-38; AURKB, CDK4, EGFR, and
PDGFRA in brain cancers and gliomas39-43; MET in thyroid
carcinomas and gastric cancers44-47; and ROS1 in lung
cancers.48

Exploring Results for a Single Sample

To illustrate how our method is used in practice, we
demonstrate the model on a single sample rather than on
summary statistics over many samples. Figure 5 compares
our method on a random tumor sample from TCGA to
Treehouse’s standard practice approach of pooling normal
samples and applying a cutoff on the basis of the inter-
quartile range on a selection of 85 cancer genes that could

be targeted by an available therapy.49,50 The random
sample is labeled thyroid carcinoma in TCGA. More than
8,000 samples from the GTEx data set were used as the
comparative normal data set, categorized by tissue type.
The model automatically weights each tissue group and
assigns a majority of the weight to thyroid tissue in GTEx.
Where the pan-normal cutoff method returns a binary
classification for each of the selected genes, our method
returns a posterior predictive P value generated from a dis-
tribution informed by the background data sets that are most
similar to the N-of-1 sample. Where there is disagreement in
outlier classification between the two methods (PIK3CB and
CCND2), the posterior distribution can be examined in the
context of the highest weighted background data sets to
clearly understand how the P value was generated. For
example, our method does not identify PIK3CB as an outlier
(given a P value cutoff of .05) because the method down-
weights nonthyroid tissues, which have lower average ex-
pression for this gene than normal thyroid tissue.

DISCUSSION

Our method avoids selection bias introduced by having to
choose a single comparison background data set. It also
provides continuous P values for genes that can be ranked
and avoids missing borderline cases that would be ignored
by existing cutoff methods. Moreover, in addition to under-
and overexpression, the model quantifies the similarity of
the analyst’s sample to background comparison sets.
Researchers can use this feature as a diagnostic: Diffuse
weight distributions suggest that the model did not identify
a strong set of matches among the background data sets.
The model has also been demonstrated to be robust to
false-positives, incomplete comparison datasets, and anal-
ysis of samples of mixed lineage.

These benefits do come with a trade-off in computation.
The calculation of outliers through other methods can be
very fast, whereas the runtime of this method increases
quadratically with the number of genes and data sets.
Moreover, this method uses MCMC, which is computa-
tionally demanding even after we used tricks to reduce
runtime. The method is only appropriate for analyzing
small targeted gene sets—fewer than approximately 200
ideally—because of the way model complexity scales. After
approximately 200 genes, it is better to parallelize multiple
runs for a single sample, which is facilitated by a Toil-based
version of the workflow that makes scaling trivial and allows
the method to run hundreds of samples in parallel on both
standard local and cloud-based clusters.51 The software
provides intermediate output at every step in the workflow
so that users can validate model convergence, assess the
model’s similarity metrics for background data sets to the N
of 1, and examine every model parameter to reproduce how
P values were calculated for every gene.

The model makes certain mathematical assumptions that
we know to be unrealistic. First, it implicitly assumes
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independence among the N-of-1 sample’s genes. It also
assumes that the sample’s gene expression can be ap-
proximated by a convex mixture of the gene expression of
the background data sets, which aids interpretability at the
expense of descriptive accuracy. These limitations could be
addressed by extending the model.

To incorporate correlation between genes, random var-
iables for each xd,g could be replaced with multivariable
distributions that are shared among all genes belonging
to that group of co-expressed genes, where groups could
be formed through a clustering process or according
to existing annotations. Prior knowledge could also be
used to introduce nonindependence between genes
into the model. For instance, the independent error
terms could be replaced by errors that are structured
according to the Laplacian matrix of a gene interaction
network.52

The method is also limited by the availability of ethnically
diverse background data sets. For instance, 85% of GTEx
samples are of European ancestry. If other subpopula-
tions harbor genetic variants that affect expression, the
baseline computed from a primarily European sample will

be miscalibrated. While the magnitude of such differences
in expression are small compared with differences between
tissues (studies in lymphoblastic cell lines attributed
only 2%-3% of variance in expression to ancestry53), this
miscalibration has the potential to bias results in under-
represented populations. However, we note that the model
can easily accommodate more granular subdivisions of the
background data set by ancestry as such data become
available.

Our model could be theoretically extended to single-cell
RNA-seq analysis in addition to bulk. However, without any
modifications to the existing model, this would require
training the model for each cell, which would be compu-
tationally expensive. A faster alternative would be to cluster
the cells and sample a small number of representative cells
from each cluster to run through the model to get summary
information about each of the single-cell clusters. However,
the high levels of technical noise, biologic variability be-
tween cells, and dropouts may require too many training
genes to obtain robust estimates of themodel parameters.54

Finally, the distribution of the random variable xd,g would
need to be replaced with a more appropriate distribution to
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FIG 4. Outlier counts given a P value cutoff of .05. Eighty-five druggable genes curated by Treehouse were used as the target gene set for this analysis. All
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model single-cell expression, such as a β-Poisson mixture
model.55

In conclusion, as clinicians have begun to demonstrate that
RNA-seq analysis can produce actionable findings for
patients with cancer, it is necessary to have informed and
principled analytic tools for an individual patient. The
method we have proposed detects gene expression outliers
among a panel of target genes. It also provides additional
information for researchers to explore and validate the
results through examination of the model’s parameters. For
portability, scalability, and reproducibility, we have made
this open source tool available as a Python package,

Docker container, and Toil workflow available at https://
github.com/jvivian/gene-outlier-detection.

Availability of Data and Material

Raw expression data used in these experiments is available
at University of California, Santa Cruz (UCSC) Xena:
https://toil.xenahubs.net

All data used to produce every figure and experiment is
publicly available at UCSC: http://courtyard.gi.ucsc.edu/
~jvivian/outlier-paper

Our model’s code is open source and available on GitHub:
https://github.com/jvivian/gene-outlier-detection
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