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111Equation Chapter 1 Section 1Model Uncertainty Quantification and Updating of
a Boundary Condition Model of a Miter Gate Using Strain Measurements

Chen Jiang1, Manuel A. Vega2, Michael D. Todd2, and Zhen Hu1

1 Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn,
Dearborn, MI 48128, USA

2 Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA

ABSTRACT
This paper presents a model uncertainty quantification and updating approach for a boundary condition model of a miter gate.
A boundary condition model is used as the forward model to predict the boundary load condition of a miter gate for a given
gap length. The boundary force prediction is then employed as inputs to a strain analysis model that  predicts the strain
response of the gate.  Due to model simplifications, the boundary condition model may not accurately represent the true
physics.  By following the Kennedy and O’Hagan (KOH) framework  under  a Bayesian  scheme,  this  paper  corrects  the
unobservable boundary condition model using the strain measurements  by simultaneously estimating the gap length and
quantifying the model uncertainty. Results show that the proposed approach can effectively estimate the unknown gap length
and improve the prediction of both the boundary condition model and strain response model.

Keywords: Miter Gates, Boundary Condition Model, Model Calibration, Uncertainty Quantification, Model Updating

Introduction
The US Army Corps of Engineers (USACE) maintains 236 miter gates at 191 sites [1]. One of the most common failures of
miter gate is the deterioration of quoin block due to the rolling contact between supporting wall and miter gate, leading to the
loss of contact, i.e. gap. Unexpected closure of miter gates will happen when high-stress area where boundary force exceeds
the limit states emerges as the gap length increases. Early gap prediction is required before gap length is too large to maintain
normal operation of miter gates. Even through models have been developed to predict the boundary forces along quoin block
by using a contact model or by simplifying the contact as a pin boundary condition, these models may not accurately predict
the boundary load condition due to model assumptions and simplifications. In addition, the unknown gap length of quoin
block further complicates the boundary load condition analysis. In this work, we are going to implement Bayesian calibration
to  identify  the  gap  length  and  correct  the  boundary  condition  model.  Since  true  boundary  force  is  distributed  and
unobservable, we construct a multi-level model for miter gate and use strain measurements for Bayesian calibration.

Multi-level simulation models
A high-fidelity ABAQUS finite element simulation model was developed for stress analysis and boundary contact analysis as
shown in Fig. 1 [3], in which the distributed boundary forces at normal and tangential directions can be respectively obtained
for a given gap length. Based on finite element model, a reduced-order model of strain analysis was developed for prediction
of strain gauges using static condensation method [4] with the distributed boundary force as input. Even though both the
boundary contact analysis model and strain analysis model share the same finite element model, the analyses are performed

in a multi-level  manner.  As shown in Fig.  2,  boundary condition model,  ,  is  called  unobservable  model  since the

distributed boundary force   is unobservable, whereas the strain analysis model,  , is called observable model

because strain gauge data  can be measured. Furthermore, the unobservable distributed boundary force may be one
of inputs of prediction model, such as the fatigue analysis model. In Fig. 2,   are upstream and downstream water levels

governing the hydrostatic load on the gates,  is the unknown true gap length since gap is underwater in practice. , 

and  are respectively the spatial coordinates in the different model responses.



Quoin block with gap

Modularized Bayesian calibration of multi-level model
The underlying true unobservable boundary force can be modeled by

22\* MERGEFORMAT ()

where   is the number of spatial coordinates  ,   represent the model discrepancy of   due to the model
assumptions  or  simplifications,   is  an  unknown  regression  coefficient.  Since  unobservable  distributed  response

 cannot be obtained in practice to calibrate , we employed the strain measurements given below

33\* MERGEFORMAT ()

where  are the measurement errors of strain data ,  is the number of .

The modularized Bayesian scheme [5-6] is adopted. In Module 1, reduced-order model is constructed for  and  using

Lagrange multiplier method and static condensation method respectively [4]. Module 2 estimates  and construct surrogate

model   based on the strain observations  , where   are the hyper-parameters of the constructed

discrepancy surrogate model. Module 3 updates the posterior distribution of   (i.e.  ) by Bayesian
inference scheme. In Module 4, the distributed boundary force after calibration and correction is predicted as

44\*
MERGEFORMAT ()
and the corrected strain response prediction is obtained in similar manner like Eq. (3).

Fig. 1 Miter gate and finite element model (Left: Miter gate; Middle: stress analysis; Right: contact force analysis)

Fig. 2 Multi-level analysis model of miter gate

Results
For the purpose of demonstrating and verifying the proposed method, we assume the boundary force discrepancy functions as

55\* MERGEFORMAT ()

66\* MERGEFORMAT ()

where both  and  will equal to zero if ,  and  are the discrepancy of normal

and tangential boundary force respectively.   denote the upstream and downstream water levels varying over



Error before correction
Error after correction(a) (b) (c)

[24,  744]  inches,   denote  the  height  coordinates  along  the  quoin  block  whose  height  is  equal  to  762  inches  (i.e.

),   represents the true gap length, which is assumed to be 150 inches for illustration. Building upon the
boundary condition model, assumed discrepancy functions and gap length, 500 strain data are synthesized by Eq. (2) with

, and each group of data have 7 strain responses collected through the strain gauges in Fig. 1. The standard deviation

of strain measurement  error  is  assumed to be  .  After  that,  ,  ,  ,  and   are assumed to be

unknown while  performing  Bayesian  calibration.  A non-informative  uniform distribution   inches  is

assumed to be the prior distribution of . 

The regression coefficient is estimated to be 0.83, and the maximum a posterior estimation of   is equal to 149 inches,

which is very close to the assumed true  . Fig. 3 shows the normal force prediction after correction. Fig. 3(a) and (b)
respectively compare the normal force discrepancy and total normal force prediction at a certain water level (upstream level:
426 inches; downstream level: 120 inches). Fig. 3(c) shows an error surface by fixing downstream water level at 120 inches.
The results show that Bayesian calibration improves the prediction accuracy of boundary force analysis model. Moreover,
Fig. 4 depicts the comparison of strain response prediction errors at the seven sensor locations of 50 different input settings
by respectively fixing downstream and upstream levels. It indicates that the prediction accuracy of observable strain model
can also be improved dramatically after calibration and correction of unobservable boundary condition model.

Fig. 3 Normal force prediction after correction: (a) normal force discrepancy reconstruction and (b) total normal force prediction at a 
certain water level, as well as (c) normal force prediction errors by fixing downstream water level at 120 inches

Fig. 4 Prediction errors of seven strain responses with downstream water level or upstream water level fixed

Conclusions
This work proposed a modularized Bayesian calibration method for multi-level simulation model of miter gate, where the
observable strain measurements are employed to tackle the challenge of correcting the unobservable model with distributed
boundary force response. Results show the prediction accuracies of both unobservable and observable models are improved.
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