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The Gut Microbiota and Diabetes: Research,
Translation, and Clinical Applications—2023 Diabetes,
Diabetes Care, and Diabetologia Expert Forum
Mariana Byndloss,1,2 Suzanne Devkota,3 Frank Duca,4 Jan Hendrik Niess,5,6 Max Nieuwdorp,7,8

Marju Orho-Melander,9 Yolanda Sanz,10 Valentina Tremaroli,11 and Liping Zhao12

Diabetes 2024;73:1391–1410 | https://doi.org/10.2337/dbi24-0028

This article summarizes the state of the science on the role
of the gut microbiota (GM) in diabetes from a recent inter-
national expert forum organized by Diabetes, Diabetes
Care, and Diabetologia, which was held at the European
Association for the Study of Diabetes 2023 Annual Meeting
in Hamburg, Germany. Forum participants included clini-
cians and basic scientists who are leading investigators in
the field of the intestinalmicrobiomeandmetabolism. Their
conclusions were as follows: 1) the GM may be involved in
the pathophysiology of type 2 diabetes, as microbially pro-
ducedmetabolites associate both positively and negatively
with the disease, and mechanistic links of GM functions
(e.g., genes for butyrate production) with glucosemetabo-
lism have recently emerged through the use of Mendelian
randomization in humans; 2) the highly individualized na-
ture of the GMposes amajor research obstacle, and large
cohorts and a deep-sequencing metagenomic approach
are required for robust assessments of associations and
causation; 3) because single–time point sampling misses
intraindividual GM dynamics, future studies with repeated
measures within individuals are needed; and 4) much fu-
ture research will be required to determine the applicabil-
ity of this expanding knowledge to diabetes diagnosis and

treatment, and novel technologies and improved compu-
tational tools will be important to achieve this goal.

In October 2023, a closed-door, day-long forum organized
under the auspices of the journals Diabetes, Diabetes Care,
and Diabetologia took place during the European Associa-
tion for the Study of Diabetes 2023 Annual Meeting in
Hamburg, Germany. The express goal of the forum was to
create consensus and perform gap analyses to advance re-
search into the role of the gut microbiota (GM) in diabetes.
Discussions fell under four main headings: epidemiology;
physiology and pathophysiology; technology and method-
ology; and clinical applications.

The group acknowledged that many of the gaps in under-
standing of the GM’s role in metabolic diseases are not
unique to the diabetes field, but rather reflect broader needs
to 1) conduct more well-controlled prospective and retrospec-
tive human studies that are followed up mechanistically with
model systems studies and 2) refine computational tools and
welcome a return of microbiology and molecular biology to
our experimental toolkit. Nonetheless, there was agreement
that the current reproduced microbiome data represent
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compelling target areas for future diabetes research. This arti-
cle presents a distillation of the evidence and recommenda-
tions on important microbiome focus areas that would
benefit from the attention of young and established diabetes
researchers alike. Key knowledge gaps and challenges dis-
cussed in this article are summarized in Table 1.

EPIDEMIOLOGICAL PERSPECTIVES

Epidemiological Associations Between the GM and
Diabetes
The GM is the largest and most complex microbial commu-
nity of the human body, connecting our external and inter-
nal milieu (Fig. 1). The motivation for epidemiological
studies of the GM in obesity and cardiometabolic diseases,
including type 2 diabetes, emerged from rodent studies
demonstrating links among the GM, adiposity, and glucose
tolerance (1,2). In humans, epidemiological studies have
observed decreased microbial diversity in obesity, but no
generalizable obesity-associated gut microbial signature
has emerged from meta-analyses of small cohorts profiled
by 16S rRNA gene sequencing (3,4) or whole-genome metage-
nomics (5). However, a large GM study using deep-sequencing
whole-genome metagenomics in 34,057 individuals from
Israel and the U.S. demonstrated consistent GM-phenotype
associations and the predictive accuracy of machine learning
models trained on microbiome data for BMI and glycated
hemoglobin (A1C) that could be replicated across the co-
horts (6). By subsampling the training cohort, these authors
showed increased predictive accuracy with increased cohort
size, with�7,500–10,000 individuals optimal for replicable

results. This finding highlights the necessity of using large
cohorts with hundreds of individuals and deep-sequencing
whole-genome metagenomics that adequately represent
the embedded interindividual heterogeneity and regional
and demographic variation in human GM cross-sectional
studies.

Several observational studies have reported associations
between the GM and type 2 diabetes. Consistent features of
altered GM composition in type 2 diabetes and impaired
glucose tolerance/fasting glucose, found in epidemiological
studies worldwide and also occurring in the metabolic syn-
drome, are reduced diversity and decreased abundance of
bacteria that produce the short-chain fatty acid (SCFA) buty-
rate (Figs. 1 and 2) (7–14). Some studies have also observed
an increase of opportunistic pathogens (7,8,11), some of
which have been linked to subclinical coronary atherosclero-
sis (15). The mucus-degrading bacterium Ruminococcus gna-
vus, which has been linked to inflammatory bowel diseases,
recently has also been identified as a predictor of several
features of the metabolic syndrome, including low-grade
inflammation, large waist circumference, elevated serum tri-
glycerides, elevated A1C, and decreased HDL cholesterol
(16). However, as indicated by meta-analyses of GM altera-
tions across different diseases, including gastrointestinal
(GI) and metabolic diseases, several of these features are not
disease specific and might characterize a general GM dysbio-
sis (4,5). Therefore, to disentangle disease-specific microbial
signatures beyond differences in race/ethnicity, lifestyle,
and other demographic characteristics, it will be important
to perform studies in large populations and to include
healthy individuals/control participants from different

Table 1—The GM and diabetes: key knowledge gaps and challenges

Furthering our knowledge of the relationships between the GM and diabetes will require:

• Gathering data from large-scale prospective study cohorts and deep metagenomics sequencing with strain-level resolution to
adequately represent the interindividual heterogeneity, dynamics, and demographic variation in the human GM and thus disen-
tangle robust disease microbial signatures and their interplay with dietary history. Broad-level taxonomic information provided
by 16S rRNA gene sequencing is likely insufficient to describe robust associations between gut bacteria and human health.

• Increasing the proportion of GM sequence reads assembled to metagenomes and annotated with predicted functions. A recent
analysis of all publicly available metagenomes in 31 countries across six continents showed that 70% of the genomes retrieved
from fecal samples are uncharacterized. These genomes encode >170 million protein sequences, and about 40% of these po-
tential functions lack functional annotation (65).

• Expanding our understanding of the roles that not only gut bacteria but also viruses (i.e., bacteriophages) and fungi play in dia-
betes. Only a few studies have addressed the role of these GM inhabitants in diabetes and their interactions with bacterial
strains (81–83).

• Identifying chemical compounds resulting from GM and gut microbe-host co-metabolic processes, as well as proteins and pep-
tides, that could influence human host biology. A few metabolites linked to diabetes have been identified, but the full spectrum
of compounds that the GM is able to generate is still unknown.

• Determining the functional role of gut microbes, metabolites, and proteins detected in the intestine and plasma in the chain of
causal pathophysiological mechanisms leading to diabetes and associated conditions. Several GM metabolites, such as those
produced from aromatic amino acids, have been associated with cardiovascular outcomes (49), but the functional roles of
many others remain unknown.

• Assessing to what extent GM signatures linked to diabetes are modifiable (e.g., through FMT, diet, or intervention with probiot-
ics and metabolites) to prevent or mitigate disease.

• Establishing the potential synergistic, complementary, or antagonistic effects of the GM in determining the efficacy and mecha-
nisms of action of glucose-lowering medications.
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Figure 1—Microecological and physiological differences along the GI tract (103,234). Environmental conditions vary along the GI tract de-
pending on physical, nutritional, and biological host factors, which translate into adaptations and differences in the intestinal bacteria in-
habiting the different regions and their physiological functions through multidirectional interactions that may affect glucose metabolism
and diabetes risk. The main factors affecting the microbial load and composition in the different regions are as follows. 1) pH values in-
crease drastically from the stomach (pH 1.0–4.4) to the small intestine (pH 5.5–7.0) and then more progressively to the colon, where the
pH can drop again (pH 5.5) as a consequence of the microbial fermentation of complex carbohydrates (fiber). The pH increases again in fe-
ces (up to pH 7.8). 2) Intestinal transit is shorter and peristaltic movements are more intense in the small intestine than in the large intestine.
3) Small intestinal host epithelial cells (Paneth cells) secrete AMPs, acting as an innate defensive barrier reducing bacterial colonization,
and M cells of Peyer’s patches also pick up bacteria from the intestinal lumen. 4) Oxygen levels are also progressively reduced from the
small intestine to the large intestine. 5) Dietary nutrients (proteins, lipids, and simple carbohydrates) are primarily digested by host en-
zymes and rapidly absorbed in the small intestine, limiting the accessibility of nutrients to intestinal bacteria; in contrast, partially undi-
gested dietary residues (complex carbohydrates and partially hydrolyzed proteins/amino acids) accumulate in the large intestine, where
they serve as nutrients for bacteria. 6) Host glycans forming part of the mucous layer (produced by goblet cells), which is remarkably
thicker in the large intestine than in the small intestine, also represents a nutrient source for intestinal bacteria, supporting their growth.
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studies as references; these approaches have been shown to
increase disease prediction accuracy (5,6).

In addition to a decreased capacity to produce butyrate,
GM functional capabilities that are altered in type 2 diabetes
are involved in the production of branched-chain amino
acids (BCAAs) and the metabolism of B vitamins and simple
sugars (7,12,17,18). Increased levels of circulating BCAAs
have been described in insulin-resistant individuals and
linked to a higher risk of type 2 diabetes (19). In line with
this, an increased potential to synthesize BCAAs and de-
creased microbial BCAA uptake and catabolism have been
described in the GM of insulin-resistant individuals with
normoglycemia (18). However, the analyses of GM functions
only show an altered potential. Quantification of metabo-
lites has recently been performed to validate these findings.
Figure 2 depicts the links between GM metabolites and sig-
naling molecules that have been observed for glucose metab-
olism and type 2 diabetes.

Associations Between the GM or Its Metabolites and
Glucose-Lowering Drug Treatments
Evidence supporting the role of the GM in type 2 diabetes
has been strengthened by observational and interventional
studies demonstrating changes in the relative abundance of
multiple bacterial species in the GM of metformin users
(10,20–22). A higher relative abundance of Escherichia coli and
a decreased abundance of Intestinibacter bartlettii (10,20,21)
have been described in multiple cohorts involving individuals
being treated with metformin. Additionally, an increase in
Escherichia marmotae and a decrease in Romboutsia timonensis
have been found in metformin-treated individuals in a recent
large metagenomic study (23).

Support for the causal effects of these GM differences in
type 2 diabetes has been provided by randomized trials
and studies in drug-naive individuals demonstrating that
the GM compositional changes translate to enhanced pro-
duction of propionate and butyrate (20,21) and modula-
tion of bile acid pools (21), which may mediate some of the
glucose-lowering effects of metformin (Fig. 3) (20–22,24).
However, the GM might also be responsible for the tran-
sient or persistent intestinal discomfort experienced by
�30% of individuals who take metformin (e.g., through
increased gas production by some Escherichia species)
(22,25).

With regard to other oral glucose-lowering drugs, stud-
ies have shown effects of dipeptidyl peptidase 4 (DPP-4)
inhibitors and a-glucosidase inhibitors on the GM and mi-
crobial metabolites but less clear effects of sodium–glucose
cotransporter 2 (SGLT2) inhibitors, thiazolidinediones, and
glucagon-like peptide 1 (GLP-1) receptor agonists (26–28).
The majority of studies to date involving SGLT2 inhibitors
have been conducted in mouse models, and the few existing
human studies have provided contradictory results and
were unable to clearly discriminate the effects of the SGLT2
inhibitor from those of previous or concomitant metformin
treatment or concurrent lifestyle modifications (29). GLP-1
receptor agonists may exert anti-inflammatory effects (e.g.,
through activation of the intraepithelial lymphocyte GLP-1
receptors), which in turn could contribute to modulating
the gut microbiota (30,31). Although much more research is
needed, existing evidence suggests that the GMmay mediate
some of the benefits of glucose-lowering treatments (26),
and certain probiotics or prebiotics might further improve
the glucose-lowering effects of these drugs through their ef-
fects on the GM or its functions (32). Further interventional
and translational studies are needed to determine whether
drug-induced GM changes are causally involved in mediating
health effects and to uncover the underlying mechanisms.

Importantly, the GM might also influence the efficacy
of glucose-lowering drugs, for example, by expressing ho-
mologs of human DPP-4, which can decrease the activity
of GLP-1 and affect glucose metabolism (Fig. 3) (33,34).
Because bacterial DPP-4 homologs seem resistant to some
drugs targeting human DPP-4 (33), inhibition of bacterial
isozymes might be required to improve metabolic re-
sponses to current medications.

Associations Between GMMetabolites and
Diabetes-Related Traits
SCFAs. The GM ferments plant-based dietary carbohy-
drates and fiber, as well as peptides that reach the large in-
testine, to produce SCFAs—mainly acetate, propionate,
and butyrate. After hepatic metabolism, �70% of colonic
acetate, but only small amounts of propionate and butyrate
(<2% for butyrate), reach the circulation (35). As described
in more detail in PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL PERSPEC-

TIVES, SCFAs regulate several processes, including intestinal
motility and pH, gut barrier immune responses and systemic
metabolism through pathways affecting gluconeogenesis,

7) Bile acids are secreted to the small intestine, inhibiting and favoring the growth of specific bacteria that participate in their metabolism
and recirculation. Altogether, those abiotic and biotic factors affect the ecological conditions that facilitate the survival of denser popula-
tions of bacteria moving to the most distal parts of the intestine (from 102–104 bacterial cells/g in the duodenum to 107–109 in the ileum
and 1011–1012 in the colon) and account for differences in bacterial composition, with facultative anaerobes preferentially colonizing the
small intestine and strict anaerobes dominating the microbiota of the large intestine, including butyrate producers. In the large intestine,
EECs, mainly L-cells, are stimulated by SCFAs (butyrate and propionate) to induce the hormones GLP-1 and PYY, which contribute to in-
sulin secretion and glucose homeostasis and regulate appetite. In the small intestine, other EECs, such as I-cells, predominate and pro-
duce the hormone CCK, which induces digestive enzymes and bile and suppresses appetite. This is also the main region where nutrient
signals are sensed by the enteric neurons and vagal afferents and thus signal to the brain to control energy homeostasis, although knowl-
edge of the role of the gut microbiota in their regulation is limited. SCFAs, especially butyrate, can also induce immunoregulatory T cells
(T-regs) that protect against obesity-induced proinflammatory macrophages and prevent LPS translocation. AA, amino acid; AMPs, anti-
microbial peptides; CCK, cholecystokinin; PYY, peptide YY.
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PYY, peptide YY. Adapted from Caesar (235) with permission from Elsevier.
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insulin sensitivity, and insulin secretion (Fig. 2) (36). How-
ever, human studies show extensive variation in the levels
of different SCFAs in the stools and/or blood of individuals
with type 2 diabetes, which is likely because of methodologi-
cal limitations (36). The strongest support for the role of
SCFAs in the regulation of glucose metabolism is provided
by animal studies and one recent human study using the
Mendelian randomization (MR) statistical method (36,37)
(see ROLE OF MR IN ELUCIDATING CAUSAL EFFECTS, below).
Bile Acids. Bile acids are amphipathic molecules that me-
diate the absorption of dietary fats and lipid-soluble vita-
mins. These molecules are also recognized as major players
in regulating lipid, glucose, and energy metabolism. Conse-
quently, alterations in bile acid pools have been found in
type 2 diabetes and other obesity-related diseases and
identified as possible contributors to the pathophysiology
of type 2 diabetes (Fig. 2) (24,38–41).

Increased levels of 12a-hydroxylated bile acids (41)
and decreased levels of 6a-hydroxylated bile acids (42,43)
are linked to insulin resistance and occur in people with
type 2 diabetes. Increased levels of 6a-hydroxylated bile
acids are observed after gastric bypass surgery and can pre-
dict type 2 diabetes remission (42). The GM can deconju-
gate and transform bile acids, thus contributing to a highly
variable but important portion of human bile acid pools
(Fig. 1) (44). For example, circulating levels of 6a-hydroxylated
bile acids are found to co-vary with levels of specific Clostridia
species in the gut (43).

Intervention studies have also investigated the potential
importance of bile acids in humanmetabolism. Elevated sys-
temic bile acid levels and intestinal signaling to stimulate
the release of GLP-1 have been demonstrated after bariatric
surgery, with postprandial increases found to be particularly
important (45). However, exaggerated bile acid responses
have been found in some individuals with cholecystectomy
and are associated with further increased GLP-1 and insulin
responses (46). In people with type 2 diabetes, metformin
has been shown to improve glucose metabolism via a de-
creased abundance of Bacteroides fragilis, which has been
linked to increased levels of glycoursodeoxycholic acid in the
gut and inhibition of the farnesoid X receptor (FXR) (24).
However, our understanding of direct interactions be-
tween the GM and bile acids and their associations with
the development and treatment of type 2 diabetes and
related diseases is still limited, and more human studies
are warranted.
Other Metabolites. GM-produced amino acid metabolites
have also been linked to type 2 diabetes (Figs. 1 and 2). In-
creased circulating levels of 3-indolepropionic acid, a tryp-
tophan catabolite, have been associated with improved
insulin secretion and sensitivity and a decreased risk of
type 2 diabetes (47). Furthermore, increased plasma levels
of imidazole propionate, a bacterial product of histidine
metabolism, have been reported in individuals with insulin
resistance and type 2 diabetes (48). These metabolites and
several others derived from GM catabolism of aromatic
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amino acids have also been associated with incident cardio-
vascular risk and mortality in independent cohorts from
Europe and the U.S. (49,50). Finally, GM ethanol produc-
tion has been associated with fatty liver disease (51–53)
and might be linked to insulin resistance (Fig. 2).

Role of MR in Elucidating Causal Effects
The GM can affect and interact with host health in numer-
ous ways, and the arrow of causality is often bidirectional
or even multidirectional. GM features at different levels
(e.g., community, species, pathway, gene, and metabolite)
can affect a host phenotype (e.g., altering the risk of obe-
sity), while the development of a phenotype (e.g., obesity)
can, in turn, change the GM.

MR is a statistical method that uses human genetic var-
iants related to exposures to discriminate causal effects on
disease outcomes from associations that result from con-
founding, reverse causation, or something else. To apply
MR to investigate the connection between the GM and
type 2 diabetes, the GM feature in question needs to be af-
fected by a human genetic variant or multiple variants
strongly enough to allow their use as instruments in in-
strumental variant analysis.

Although several genome-wide association studies have
been performed on different GM features such as gut bacte-
rial taxa relative abundances and human fecal microbial me-
tabolites, large MR studies investigating their causal role in
type 2 diabetes have been limited and are not yet confirmed
in replication studies. Sanna et al. (37) identified human ge-
netic variants that associate with fecal SCFA levels and re-
ported evidence for a potential causal connection between
the GM’s butyrate production potential (i.e., genes responsi-
ble for GM butyrate production) and improved response to
insulin during an oral glucose tolerance test. These authors
also found a causal link between abnormal fecal propionate
levels and increased type 2 diabetes risk (37). Another MR
study reported that type 2 diabetes and kidney disease in-
creased plasma levels of the GM-dependent metabolite tri-
methylamine oxide (TMAO) and proposed that the earlier
observational evidence of elevated risk of cardiovascular dis-
eases with higher TMAO levels might have been the result
of confounding or reverse causality rather than a causal ef-
fect (54). Another recent study suggested that certain bacte-
rial genera could have a causal link to type 2 diabetes (55).
Considering the limitations of both MR (e.g., pleiotropy and
problems related to weak instrumental variables) and GM
research (e.g., methodological differences, interindividual
heterogeneity, and intraindividual variability), large, high-
quality studies are needed to assess the ability of host ge-
netic variants using MR to mimic specific GM features—
whether specific bacterial species, genera, or metabolite
products—to understand causal connections with type 2 di-
abetes pathogenesis.

Associations Among Diet, GM, and Diabetes
Decreased dietary fiber intake has been associated repeat-
edly with increased risk of type 2 diabetes; accordingly,

new dietary recommendations for diabetes management en-
courage high consumption of minimally processed plant
foods such as whole grains, vegetables, whole fruit, legumes,
nuts, and seeds (56). Diet is a driver of the GM ecosystem,
and microbially accessible carbohydrates promote GM diver-
sity and SCFA generation, which decreases inflammation
and supports the maintenance of the gut barrier (57).

In relation to the GM and glucose metabolism, increased
fiber intake has been associated with increased levels of dis-
tinct species, for example, Prevotella copri (58) (now renamed
Segatella copri). Studies have also shown that the beneficial
effects of fibers on A1Cmay bemediated by the specific base-
line GM composition and diversity of fiber-promoted SCFA-
producing bacteria (59). However, variable effects are ob-
served even in well-controlled dietary interventions (60), and
given the high interindividual variability of the GM, dietary
responses of the GM are highly individualized (61). Precision,
or “personalized,” nutrition is an evolving field based on
identifying individual-specific response-predictive features
that can be used to design dietary interventions (62). Using
personal data on GM composition and other information
such as blood biomarkers and dietary habits, machine-
learning approaches have been applied to predict postpran-
dial glycemic responses to standardized meals with greater
accuracy than other predictive methods (63,64). These
studies have revealed that the specific composition of the
GM contributes to the specific response of its host (i.e., the
response to the diet differs in the presence of different bac-
teria). Hence, the GM determines, at least in part, meta-
bolic heterogeneity among humans. Being modifiable and
highly metabolically active, the GM offers possibilities for
more precise lifestyle interventions and novel treatments.

Knowledge Gaps, Challenges, and Possibilities
Several large, high-quality reference genome catalogs now exist
(65–67) and greatly facilitate taxonomic assignment and func-
tional characterization of the GM in human studies. However,
these databases are not without limitations (Table 1). For epi-
demiological analyses, GM data are fraught with challenges,
including great inter- and intraindividual variability, high di-
mensionality (i.e., the number of observed GM features may
be larger than the number of samples and subjects), and spar-
sity (i.e., GM features such as species are only detected in part
of the samples) (68). At the population level, the GM is com-
posed of thousands of interacting species, each harboring ge-
netic diversity across hosts and within a host over time; yet,
commonly performed analyses often ignore such noninde-
pendence, the complex additive and interaction effects among
the microbes, and the modifiability and fluctuations of the
GM. However, some recent analyses have revealed different
patterns of intraindividual variation and adaptation to host
physiology for different bacterial species (14,69,70).

Other challenges relate to the remarkable number of
phenotypic and environmental factors that the GM may
influence and to which it may respond. The requirement
of large cohorts has unquestionably been demonstrated in
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human genetics; most polygenic traits are known to be af-
fected by many genetic variants with small effect sizes,
which nonetheless can be summed to powerful polygenic
risk scores of clinical importance (71,72). Similarly, as evi-
denced by the findings of the large metagenomic study
from Israel and the U.S. (6), single bacterial species might
have associations of low effect size with human pheno-
types or be present in low abundance. Thus, large sample
sizes for adequate statistical power and coverage of inter-
individual variability are necessary to obtain replicable re-
sults and high prediction accuracy.

To better understand the long-term influence of GM
variation and dynamics on type 2 diabetes, prospective
studies are crucial. In the few prospective studies published
to date, GM features have been associated with incident
type 2 diabetes in a geographically diverse Chinese popula-
tion (73) and a subset of a Spanish clinical trial (74), both
studies using 16S rRNA gene sequencing. GM features
were also linked to type 2 diabetes in a large population-
based Finnish cohort with 18 years of follow-up using shal-
low metagenomic sequencing (75). However, in these stud-
ies, the number of incident cases was restricted, and the
analyses had limited resolution (i.e., were restricted to the
most dominant GM taxa), as none of the studies used
deep-sequencing whole-genome metagenomics.

The importance of subspecies- and strain-level resolu-
tion in metagenomic studies may have been undervalued
and is an important limitation to harnessing the GM for
human health. For example, Faecalibacterium prausnitzii is
among the most promising candidates for next-generation
probiotics, but there are also other promising candidates,
such as Akkermansia muciniphila and P. copri (76). With re-
gard to F. prausnitzii, several potential subspecies have
been found in the human gut, harboring different func-
tional potential for the use of complex polysaccharides
(77). In line with this observation, several F. prausnitzii
subspecies were also identified in the large metagenomic
study from Israel and the U.S., and negative associations
with BMI were observed only for a subset of them (6). In
the case of P. copri, both positive and negative associa-
tions have been found with the host metabolic phenotype
(e.g., visceral fat and glucose responses).

These inconsistent findings could be partially explained by
intra- and interspecies diversity (78,79). The current code of
nomenclature defines bacterial species based on genome simi-
larity, with conspecific genomes having $70% similarity by
DNA-DNA hybridization and an average nucleotide identity
$94% in the core genome and $96% in universal marker
genes (80). However, these genomic variations can translate
into important phenotypic differences. For example, these
differences may define a strain within the same species as
commensal or pathogenic, as in the cases of B. fragilis and
Clostridium difficile, depending on whether the strain encodes
virulence factors (80). Overall, the studies mentioned above
demonstrate that differences at the strain or even substrain

level are highly meaningful, and low-resolution analyses (such
as 16S rRNA gene sequencing) miss key information.

Another knowledge gap concerns the viral component of
the GM, predominantly comprising viruses that infect bacte-
ria, known as bacteriophages (or, more simply, “phages”). Al-
though these phages have not been well studied in the
epidemiological setting, they may be important for under-
standing the bacterial dynamics of the GM that may affect
its interactions with the host. To date, only a few epidemio-
logical studies have reported associations between the gut
phageome and type 2 diabetes (81,82) or the metabolic syn-
drome (83). Although initially promising, the conclusiveness
of the results is limited because of the restricted sample
sizes. Future studies of the role of phages as regulators of
the GM and cardiometabolic health are warranted but will
face challenges related to, among other issues, virome isola-
tion and the limitations of current databases (84,85).

Integrative multiomics studies might be needed to in-
vestigate the intricate connections among environmental
factors, the GM, the virome/phageome, and cardiometa-
bolic phenotypes. Some pioneering examples of reason-
ably large studies have recently demonstrated the power
of such approaches (14,86–88). The interactions are mul-
tifactorial and multidirectional and demand untargeted,
large-sized, multiomics and longitudinal approaches of
high depth and resolution.

PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL
PERSPECTIVES

Current Understanding of the Role of the GM in the
Pathophysiology of Diabetes
During their evolution, mammals had to adapt to a world
rich in microbes, viruses, and fungi (89). During and imme-
diately after birth from a sterile intrauterine environment,
mammals are exposed to potentially harmful microbes
(90–92). Evolution has created substantial barriers, includ-
ing the GI transit process (93), immunoglobulin A (IgA)
(94–96), mucus (97), the epithelial layer (98), the endothe-
lial barrier (99), lymph nodes (100), and the liver (101), all
of which prevent microbial translocation into the body but
create an optimal reservoir for the microbial ecosystem
(102). Low microbe numbers are present in the upper GI
tract. At the same time, high microbial density and rich-
ness are observed in the large intestine, along with physio-
logical changes in the pH and aerobic/anaerobic conditions
from the small to the large intestine, with anaerobic condi-
tions in the large intestine (Fig. 1) (103).

Essential Functions of Microbes
Besides being a potential deleterious threat for mammals,
gut microbes also provide essential functions for mammals,
including the education of the immune system, protection
from pathogens (i.e., colonization resistance) (104), meta-
bolic functions, and the supply of nutrients (e.g., vitamins
[105]), gut motility, and detoxification of xenobiotics (106).
At the same time, there is competition between microbes
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and the host for nutrients in the small intestine, and micro-
bially producedmacronutrient byproducts are provided to the
host. Nutrients (i.e., fibers) and mammalian metabolites such
as glucuronides, mucus polysaccharides, and bile acids are fer-
mented or transformed by microbial metabolism (Fig. 1)
(107). Microbial metabolism and microbial cell death and
turnover contribute to pools of microbial metabolites in the
peripheral blood, where�30% of all peripheral bloodmetabo-
lites show associations with the GM and its genes (108,109).
These microbial metabolites are recognized by receptors such
as G-protein–coupled receptors (GPCRs) (110) or the aryl hy-
drocarbon receptor (AHR) (111) or are further processed by
mammalian enzymes such as TMAO to regulate mammalian
gene expression by epigenetic modifications, with implica-
tions for cardiometabolic health (112–115).

Roles of Nondigestible Fibers and Their Metabolites
Nondigestible carbohydrates are an energy source for spe-
cific bacteria in the large intestine that contain enzymes,
lacking in the host, that metabolize these fibers and pro-
mote the production of SCFAs. Numerous studies have
demonstrated that exogenous administration of SCFAs,
particularly propionate and butyrate, is beneficial in rodent
models of diabetes-like phenotypes (116–118). However,
the evidence from clinical trials in both type 1 and type 2
diabetes is less clear (119–123).

In the colon, SCFAs activate enteroendocrine cells (EECs)
via binding to GPCRs and free fatty acid receptors 2 and 3 to
induce the release of gut peptides, mainly GLP-1 and peptide
YY (Fig. 1) (124). In support of this finding, supplementa-
tion with prebiotics in rodents and humans, which can im-
prove glucose tolerance and insulin resistance, has been
associated with increased levels of gut peptides (125). In one
study, a high-fiber diet improved glucose tolerance in indi-
viduals with type 2 diabetes, an effect that was associated
with increased fecal butyrate levels and circulating GLP-1
(59). GLP-1 regulates glucose homeostasis by increasing in-
sulin secretion, promoting insulin sensitivity, and reducing
hepatic glucose production (Fig. 1).

Additionally, SCFAs are crucial for maintaining overall
gut health and the gut barrier, as butyrate is the primary
fuel source for colonocytes. In contrast, reduced butyrate
drives colonocytes toward anaerobic glycolysis, which in-
creases epithelial oxygenation, disrupting the anaerobic
environment of the colon (126). Although SCFAs can act
to increase gut peptide release or improve the gut barrier,
additional work has highlighted a glucoregulatory role via
their action in intestinal gluconeogenesis and on energy
expenditure via brown adipose tissue, as well as direct ac-
tion at the liver, pancreas, and even brain, all of which re-
quires further exploration (127–131).

The GM produces a plethora of metabolites in addition
to SCFAs, which likely play a crucial role in host glucose ho-
meostasis (Fig. 2) (132). For example, bile acids are known
glucoregulatory signaling molecules, and their affinity for
both FXR and Takeda GPCR 5 (TGR5) is significantly

affected by deconjugation and metabolism into secondary
bile acids coordinated by gut microbes (133–136). Addi-
tionally, the GM converts tryptophan and other nutrients
into indoles that act via the AHR to reduce inflammation
in the metabolic syndrome, especially at the gut level
(137,138). Furthermore, other gut-derived molecules such
as TMAO and imidazole propionate have been implicated
in the development of diabetes (139,140).

Role of the GM in Gut Barrier Functioning
The GM plays a vital role in gut barrier functioning. Im-
pairment in the gut barrier leads to a leaky gut, contribut-
ing to low-grade systemic inflammation, a characteristic of
obesity and diabetes (141,142). Although the mechanisms
have been studied mostly in experimental models, one po-
tential mechanism contributing to systemic inflammation
is an increase in circulating lipopolysaccharide (LPS) endo-
toxins derived from the cell envelope of Gram-negative
bacteria, also known as metabolic endotoxemia (Fig. 1).
LPSs can act on a specific pathogen-associated molecular
pattern (PAMP)—toll-like receptor 4 (TLR4)—throughout
the body to elicit a proinflammatory immune response
that negatively affects glucose homeostasis. A series of
studies have suggested a potential role for A. muciniphila in
mediating some of the effects of alterations in the GM on
systemic inflammation through actions on TLR4 and the
gut barrier; however, less evidence is available on its role in
mediating effects on glucose metabolism in metabolic dis-
ease (143–146). However, much more research is needed
to determine whether metabolite sensing by PAMPs other
than TLR4 is implicated in regulating host-microbe cross
talk and gut barrier integrity (147) in humans.

In parallel, the accumulation of proinflammatory macro-
phages (Fig. 1), CD8ab T-cell infiltration, and reduced IgA1
immune cells are observed in the intestines of individuals
with obesity (148–150), contributing to insulin resistance
(149,150). GM modulation strategies could mitigate the ad-
verse gut immune effects of hypercaloric diets. For example,
reducing the proportion of proinflammatory macrophages
and increasing type 3 innate lymphoid cells and regulatory
T cells are associated with improved glucose metabolism.
Nonetheless, understanding the precise molecular mecha-
nisms driving microbe-immune interactions in the gut and
their translation to humans will also require extensive fu-
ture research.

Knowledge Gaps, Challenges, and Possibilities
Reductionist approaches are required to progress from corre-
lations of bacterial phylotypes/strains with metabolic pheno-
type (e.g., diabetes) to mechanistic and causal relationships.
However, many of the earlier analyses performed in epidemi-
ological studies do not have sufficient resolution (i.e., 16S
rRNA gene short amplicon sequencing only provides accurate
identification at the genus level but not at the species, strain,
and functional levels) (151), and deep-sequencing whole-
genome metagenomics, coupled with strain-level analyses,
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are needed to identify bacteria and their functions that are
linked to diseases and thereby to correctly downsize further
causality andmechanistic studies (152).

The complexity of the GM and the multitude of possi-
ble phylotypes and microbial networks associated with
specific phenotypes in population studies also make it dif-
ficult to test all possible hypotheses experimentally. Ad-
vanced statistics (e.g., MR and mediation analysis) and
machine learning methods are helping to establish causal
inferences in human studies, but further validation stages
are still needed to provide direct evidence of causality.
For this purpose, the use of rodent models in which con-
founding variables (e.g., genetic background, microbial
communities, and diet) can be controlled is key to clearly
identifying the effects caused by the precise microbe in-
vestigated (namely, a bacterial strain or metabolite).

The use of whole fecal microbiota transplantation
(FMT) or co-housing experiments in which the microbiota
of rodents with different phenotypes are interexchanged
have substantially helped to unravel cause and effect in
whole communities of microorganisms (2,153). Nonethe-
less, the results of those trials could be biased by limita-
tions in study design. For example, bias could arise in
relation to the limited number of donors selected and the
possible variations in rodent response to microbes from a
different donor species (e.g., lack of colonization or persis-
tency of part of the microbial population or failure in repli-
cating host-microbe interactions of the original host in
which the microbiota co-evolved) and consequent differ-
ences in physiological effects (154).

Moreover, identifying the key microbial actors driving a
health or disease phenotype and the nonactive players within
the community is a rather complex undertaking. Specific
components of the GM could play a role per se or in coordi-
nation with other community members (155). Furthermore,
correlations and causal relationships between GM compo-
nents and disease could also depend on the specific host
(e.g., disease predisposition) and environmental context
(e.g., dietary patterns), which can vary in different geo-
graphical locations and population groups (11).

One reductionist approach that could aid in establishing
the causal role of microbes in metabolic disease is the use
of defined microbial communities in gnotobiotic mouse
models of diabetes (156). This approach consists of assem-
bling a defined community of well-characterized and genet-
ically tractable microbes, which is then used to colonize
gnotobiotic mice. This so-called defined microbiota ap-
proach allows for the manipulation of a specific microbial
feature in the background of a complex, yet manageable,
microbial community to determine whether specific micro-
bial functions play a causative role in the pathogenesis of
diabetes and related complications.

Intervention studies with specific bacteria in the eco-
system, as well as more sophisticated strategies that de-
plete specific microbial components or functions, are ideal
for providing evidence of causality (157,158). However,

even if a particular bacterial genus and species has been
correlated with a specific disease phenotype in a relatively
reproducible manner in epidemiological studies (159) and
proven to be causally involved in an intervention trial,
differences between species, and even between strains,
may also lead to different outcomes. As explained above,
small genomic and phenotypic differences between strains
belonging to the same species can translate into func-
tional differences affecting the host phenotype (e.g., with
regard to their immunomodulatory effects) (160). There-
fore, the results of efficacy and mechanistic analyses de-
duced from studies performed with a specific strain
cannot be systematically generalized to all strains of the
given species.

Historically, the study of the impact of GM on human
disease has been focused on the large intestine microbiota
because the human colon is the site in the body with the
highest abundance of microbes and the most accessible in-
testinal section. The contribution of the large intestine mi-
crobiota to the pathogenesis of metabolic disease has been
demonstrated by FMT studies in mouse models of obesity
and related complications (2,153). However, it is important
to note that the small intestine overshadows the large in-
testine with regard to metabolic regulation. The small in-
testine is home to EECs that produce GLP-1 and other
incretin hormones, which are key glucose metabolism regu-
lators (161). The small intestine epithelium also plays an
essential role in glucose and fat uptake and metabolism,
protecting the host from features of metabolic dysfunction
(162,163), and the small intestine microbiota is a regulator
of EEC function and nutrient absorption, metabolism, and
secretion (164,165). Thus, microbiota-host interactions in
the small intestine would be expected to contribute to dia-
betes pathogenesis. Recent work in mouse models has de-
termined that specific members of the small intestine
microbiota can inhibit lipid secretion by enterocytes and
limit serum triglyceride concentrations during the con-
sumption of a Western-style obesogenic diet (166). Addi-
tionally, the small intestine microbiota in rodents has been
demonstrated to affect nutrient-induced gut-brain signal-
ing, which regulates glucose homeostasis (167,168).

Despite their importance, host-microbiota interactions in
the small intestine and their relevance to diabetes are under-
studied because of limitations in the process of acquiring
small intestine microbiota samples from humans and the re-
duced abundance of microbes in this portion of the digestive
tract. Novel technologies to overcome technical limitations
in the study of the small intestinal microbiota are discussed
further in TECHNOLOGICAL AND METHODOLOGICAL ADVANCEMENTS.

GM fluctuation, especially related to dietary intake, should
be considered when establishing what are normal and what
are dysfunctional microbiota changes for metabolic health.
The GM mirrors individuals’ habitual diet and daily choices.
Therefore, longitudinally considering dietary history and GM
variations over multiple days could help to fine-tune associa-
tions and infer causal relationships regarding the metabolic
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health of individuals (169). Moreover, daily oscillations of
the GM related to eating patterns also affect its functional
roles, such as appetite regulation and postprandial re-
sponses to food intake, with potential long-term effects on
metabolic health and diabetes risk. For example, mouse
studies have shown that daily oscillations in GM composi-
tion are required to maintain the circadian release of GLP-1,
which in turn is required to achieve appropriate circadian
control of metabolic homeostasis (170). In humans, type 2
diabetes and obesity are correlated with alterations of GM
circadian rhythms (171), suggesting that daily oscillations
are relevant to understanding the role of the GM in control-
ling energy homeostasis.

Sex also seems to contribute to GM variations, although
its relevance for predicting health associations and their
underlying mechanisms are underinvestigated. The epide-
miology and pathophysiology of obesity and associated car-
diometabolic disorders such as type 2 diabetes have a sex
dimorphism that may be related to not only the role of sex
hormones in fat distribution, metabolism, and immunity
but also differences in the GM (172). Studies in mouse
models suggest reciprocal interactions between sex hor-
mones and the GM. On one hand, the GM may regulate
the production and/or metabolism of sex hormones (i.e.,
testosterone and estrogens), as proven in a nonobese dia-
betic mouse model of type 1 diabetes (173). On the other
hand, physiological effects of sex hormones (e.g., on immu-
nity and intestinal transit) may affect the GM (174). There-
fore, sex should be considered a confounding variable in
epidemiological studies and in the design of mechanistic
studies using mouse models because, to date, most preclin-
ical studies have been carried out exclusively in males.

TECHNOLOGICAL AND METHODOLOGICAL
ADVANCEMENTS

Separating phenomenology from actual biology in the mi-
crobiome field requires tools and approaches to identify
mechanisms that deconvolute whether the microbiome
may be a driver of, or offer therapeutic opportunities for,
metabolic diseases. Here, we discuss the most promising
technological developments for advancing the field.

Model Systems
When comparing model systems for studying the relation-
ship between the GM and metabolic diseases, it is essen-
tial to consider both traditional models (e.g., germ-free
[GF] and gnotobiotic mice) and emerging technologies
(e.g., organs-on-a-chip and nonmurine GF models such as
zebrafish and pigs).

GF animals have been used widely to investigate the role
of the human GM in obesity and diabetes (1,173,175).
These animals, which are born without any microbiota, al-
low for the interrogation of interventions in the absence of
a microbiome. As a result, we can gain insight into whether
the microbiome is necessary for a given biological process.

Gnotobiotic disease models are established by colonizing
GF mice with either an entire GM via donor stool or specific
isolated bacterial strains (176). Studies have demonstrated
that GF animals, when inoculated with fecal microbiota from
individuals with obesity and type 2 diabetes, successfully rep-
licated disease phenotypes, providing evidence for the in-
volvement of the GM in metabolic diseases (2,59,177).
Additionally, an overgrowing endotoxin-producing bacterium,
Enterobacter cloacae B29, isolated from the gut of a person
with morbid obesity and diabetes, induced obesity, fatty liver,
and insulin resistance in GF C57BL/6J mice that were other-
wise resistant to high-fat diet–induced metabolic defects.
Knocking out the endotoxin-producing gene in the B29 bacte-
rial strain or the Tlr4 gene in C57BL/6J mice prevented the
metabolic defects, underscoring the causal relationship be-
tween specific gut bacteria and host responses in the initia-
tion and progression of metabolic disease (178–180).

However, certain concepts have been perpetuated about
GF mice that are the result of studying only one genotype.
For example, GF C57BL/6J mice are resistant to diet-
induced obesity (175), whereas GF Swiss Webster mice are
not (181); therefore, because the majority of GF mouse
studies use C57BL/6J mice, it has been stated as fact that
GF mice in general have to eat more than conventional
mice to maintain weight. The divergent responses of these
models to high-fat diets underscore the importance of ge-
netic background in research outcomes (182).

The availability of additional GF models, such as pigs
and zebrafish, complement the use of GF mice. GF pigs
and piglets offer more human-relevant insights than do
mice when developing human microbiota–associated gno-
tobiotic models (183), although the space required to
house them is prohibitive for many institutions or limits
studies to using just a few animals. GF zebrafish, on the
other hand, have proven useful for studies of the GM and
distinct host cellular developmental stages (184). The
transparency of the fish body and the ability to fluores-
cently tag and image different cell types in the presence
of different bacteria, as well as the ease of housing and
propagating zebrafish, is advantageous for investigating
specific questions (185). These models do not fully repli-
cate human physiology, but they allow longitudinal and
invasive sampling in tightly controlled conditions, which
is important when asking mechanistic questions.

Organs-on-a-chip, such as the gut-on-a-chip, offer more
human-relevant systems because they can be derived di-
rectly from human tissue or blood-derived induced pluripo-
tent stem cells, which retain the genetic signature of the
host; thus, they enable the study of complex human tissues
and cellular interactions in a controlled environment
(186). Recent efforts have demonstrated the ability to seed
the gut-on-a-chip withmicrobiota in a semi-anaerobic envi-
ronment (187), and many groups are now testing the effi-
ciency of seeding increasingly complex communities on
these chips. Although the gut-on-a-chip model lacks some
key cell types such as immune cells, major advances include
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the ability to connect different organ chips such as the gut-
chip and neuron-chip (188) to model gut-brain interactions.
Creative uses of organs-on-a-chip to study the microbiome
will continue to emerge and are likely to fill important gaps
to complement animal models.

Understanding of Bacterial Genes and Functions
The ability to sequence and assemble whole genomes of
bacteria is an enormously powerful approach for identify-
ing lineages and the relatedness of bacterial strains and
for identifying putative pathways involved in a given bac-
terial phenotype that may have relevance in human
health or disease. If we think about the mechanisms of
human disease that have been elucidated from the study
of genetically manipulated mice, it is not hard to imagine
the wealth of information to be gained from doing the
same in bacteria. The ability to knock out and manipulate
bacterial genes is not new. Nearly 80 years of bacterial ge-
netics have clarified how pathogens colonize the gut epi-
thelium and secrete toxins, leading to diseases such as
cholera, how they share information with each other to
adapt to different environments, and how nutritional se-
lection drives their composition in a host. E. coli can be
considered the bacterial version of the C57BL/6 mouse; its
genetics are well-defined and easily engineered (189–191),
and it has become the workhorse for testing the effect of
modifications in a given environment. However, the com-
mensal GM consists of far more diversity than just E. coli;
thus, researchers are actively seeking a deeper understand-
ing of GM genetics, using, for example, Bacteroides and
Clostridium as representative organisms (192,193), as nu-
merous human and mouse studies have demonstrated the
important roles of these organisms in health and disease.

Advanced computational tools, including artificial intelli-
gence, have shed new light on unannotated parts of a bacte-
rial genome by predicting the three-dimensional structures
of proteins, a task greatly advanced by technologies such as
AlphaFold2 (194,195). By analyzing these structures, re-
searchers can infer possible functions based on their shapes
and binding sites. These potential roles can be confirmed by
experimental validation in biochemical and microbiological
studies (196). This knowledge, especially regarding how pro-
teins influence metabolic pathways, is crucial for linking mi-
crobial activity to health conditions such as diabetes, offering
insights into disease mechanisms and potential therapeutic
targets.

Reference-Free Data Analysis
The most critical issue with current database-dependent ap-
proaches in microbiome sequencing analysis is their limita-
tion in detecting novel or understudied microbes (197).
When microbial community samples are analyzed using da-
tabases based on reference genomes from well-characterized
bacteria, sequences that do not match are overlooked or
misclassified. This process results in a biased view of the mi-
crobial ecosystem, potentially missing crucial components

that could have significant roles in health and disease, in-
cluding diabetes. Therefore, advancing microbiome research
necessitates the development and use of methods that can
uncover and characterize these underrepresented microbial
entities.

Assembling genomes de novo from metagenomic se-
quencing data is a powerful approach in microbiome re-
search that involves constructing genomes directly from
sequencing reads without relying on reference databases
(197). This method uses advanced computational algo-
rithms to piece together DNA fragments from a sample,
allowing the identification of genetic material from a wide
range of organisms, including those not previously se-
quenced or cataloged. By assembling these genomes, re-
searchers can discover novel species and uncover new
gene functions, significantly expanding our understanding
of microbial diversity and its potential roles in various en-
vironments, including the human body. This approach is
particularly useful in revealing the full spectrum of micro-
bial life, including rare or unknown species that might
play crucial roles in health and disease.

Access to the Small Intestine Microbiota
The small intestine is the primary site of nutrient uptake,
enterohepatic recycling, and intestinal hormone stimula-
tion; thus, it is essential to gain a deep understanding of
microbial function in this region of the body. However,
most of our knowledge of human microbiomes has been
based on stool samples and the colonic microbiota be-
cause accessing the small intestine microbiota is challeng-
ing, even with modern endoscopy methods.

Recent advances use innovative methods such as ingest-
ible capsules that sample intestinal material throughout
the GI tract (198). Because each capsule is triggered by a
different pH along the gut, this method can provide a mi-
crobial atlas of intestinal communities. These tools are be-
ing further refined and commercially developed for use in
both diagnostics and research. One caveat, however, is that
there is potential for microbes to continue growing after
the sample has been collected within a capsule, thus giving
an inaccurate representation of the native microbiome
community. Additionally, these and other capsules have
been developed for sampling in the fasting state, leaving
the study of postprandial responses still limited, although
these responses are likely important to reach a complete
understanding of microbial contributions to the regulation
of glucose metabolism. Addressing these issues is crucial
for ensuring the reliability and accuracy of microbiome
studies with such devices.

Isozyme and Small Molecule Screens
Isozyme and small molecule screens in microbiome re-
search are crucial for identifying specific bacterial products
that can be targeted therapeutically. Microbial isozymes
are enzymes that have different molecular structures but
catalyze the same reaction as the host enzymes. Screening

1402 The Gut Microbiota and Diabetes Diabetes Volume 73, September 2024



these products can reveal variations in microbial metabo-
lism that might influence health and potentially interfere
with medications, as in the case of bacterial DPP-4 iso-
zymes (33). Small molecule screens focus on identifying
bioactive compounds produced by microbes (199). These
compounds can have significant effects on host pathophys-
iology (140,200). By identifying specific isozymes and
small molecules, researchers can target them for degrada-
tion or enhancement, offering potential therapeutic strate-
gies for diseases such as diabetes.

POTENTIAL GM-BASED DIAGNOSTICS AND
THERAPIES IN DIABETES

As described above, no diagnostic and generalized fecal mi-
crobiota taxonomic signature has been found for type 1 or
type 2 diabetes (86,201). Future research should therefore
move toward strain-level studies in large prospective popu-
lations and, when possible, focus on functional profiling of
intestinal microbes along the GI tract (198), with special
attention to stable isotope precursors to study production
and substrate fluxes of important microbially produced
metabolites in different GI regions (202).

High-Fiber Diets and SCFA-Based Treatments
With regard to GM-based therapies for diabetes, high-fiber
diets have been shown to be effective in controlling blood
glucose levels and reducing insulin resistance in both type 1
and type 2 diabetes (203,204). Although the direct mode of
action of dietary fiber via the GM remains to be shown,
these trials underscore the potential importance of includ-
ing GMmodulation strategies as part of diabetes intervention
trials, especially for the production of beneficial metabolites
such as SCFAs (205). However, as noted above, intervention
trials of oral SCFA butyrate supplementation have shown no
effect on glycemic control or other markers of diabetes regu-
lation in either type 1 or type 2 diabetes (116,122,123,206),
probably because the site of delivery does not mimic endoge-
nous production. For other SCFAs, including propionate and
acetate, data are too scarce to draw any conclusions regard-
ing possible effects on metabolic regulation.

Conventional and Next-Generation Probiotics
Probiotic therapies for diabetes can be divided into conven-
tional probiotics, particularly Lactobacillus and Bifidobacte-
rium strains, which have a history of use for human
consumption in fermented foods or supplements to pro-
mote health, and next-generation probiotics, which are
strains of new bacterial species recently identified as indig-
enous members of the human GM. These strains are asso-
ciated with health, and their presence is diminished in
disease settings (76,207). With regard to the conventional
probiotics, prospective randomized controlled trials (RCTs)
in new-onset type 1 diabetes are ongoing (NCT03961854,
NCT03961347, NCT04769037, and NCT05767450), and a
smaller trial has shown only moderate effects in longstand-
ing type 1 diabetes (208). However, an open-label trial of

probiotics (strains of Bifidobacterium, Lactobacillus, and
Streptococcus salivarius) found beneficial effects on suscepti-
bility to and progression of type 1 diabetes in siblings of
people with type 1 diabetes (209). In type 2 diabetes, a re-
cent meta-analysis described some efficacy of these probiotic
strains in metabolic control and reduced insulin resistance
(210).

With regard to next-generation probiotics, fewer data
have been generated in humans. For example, despite spe-
cific strains (e.g., Akkermansia) having been associated with
a healthy metabolic phenotype (211), an RCT intervention
with A. muciniphila did not identify strongmetabolic effects
(143). This finding could be the result of a lack of a causal
role of these tested strains in the metabolic syndrome,
reduced viability upon passage through the stomach
(212,213), inadequate dosages, or a lack of engraftment
when introduced in the human gut (214). Because the
small intestine is important for the pathophysiology of
both type 1 and type 2 diabetes, further analyses of small
intestinal microbiota from individuals with type 1 (215)
and type 2 (216,217) diabetes are needed, with defined
combinations of next-generation probiotic strains studied
as possible interventions for diabetes. However, this effort
should consider conditions of bacterial strain engraftment,
ecological or functional dependencies on other bacterial
members, and potential redundancies in functionality, as
shown by a meta-analysis of FMT (218).

Donor FMT
Until such investigations with defined combinations of
strains are completed, donor FMT might provide insight
into the magnitude of effect of modulating the GM and the
effect of such modulation on the pathophysiology and po-
tential reversibility of diabetes. de Groot et al. (219) recently
published research on the efficacy of fresh FMT in maintain-
ing residual b-cell function and dampening autoimmunity
in new-onset type 1 diabetes. Other studies have been per-
formed for type 2 diabetes and insulin resistance, showing a
modest effect of FMT on insulin resistance and nonalcoholic
fatty liver disease (216,217,220–223), whereas one study
showed no effect on these parameters (224). Additionally, a
combined intervention of encapsulated donor FMT and fi-
ber supplementation showed beneficial effects on glucose
metabolism, suggesting the possible need to design inter-
ventions not only with synthetic bacterial strain consortia
but also with dietary support (e.g., fiber to nourish the bac-
terial strains) (221). Finally, studies evaluating whether au-
tologous FMT after lifestyle intervention could help prevent
weight regain have suggested that diet-induced changes in
low-abundance bacteria might be responsible for weight loss
maintenance, which could guide more precise interventions
with less ethical burden and lower risks of transmitting dis-
eases (225).

Overall, donor FMT is a more diffuse approach than in-
terventions with targeted strains or metabolites (226). Ad-
ditionally, there are differences in mode of fecal material
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administration (capsules vs. fresh FMT), intestinal pH
(e.g., due to antacids), and colonic transit time in existing
data sets, and the amount of fecal microbiota administered
also seems to affect engraftment of donor bacterial strains
(218,227). These factors preclude generalization of the re-
sults of studies to date. We therefore advocate further
standardization of intestinal microbiota composition
measurements (228), with strict dietary monitoring. Also,
better standardization is needed in human studies of FMT-
based interventions. In this context, production of lyophi-
lized capsules for FMT must follow Good Manufacturing
Practices to maintain viability and ensure adequate shelf
life (229).

Nevertheless, based on its wide availability and general
safety (provided that donors are adequately screened
[230]), FMT could provide clinicians with new treatment
modalities for diabetes until interventions with defined
combinations of strains are available, especially if next-
generation probiotics can be spiked in donor fecal micro-
biota to boost therapeutic efficacy (231). However, these
interventions should adhere to the international Nagoya
Protocol on Access to Genetic Resources and the Fair and
Equitable Sharing of Benefits Arising From Their Utiliza-
tion to the Convention on Biological Diversity (232),
which seeks to prevent researchers or their institutions
from financially capitalizing (at the expense of vulnerable
individuals or populations) on identified bacterial strains
as next-generation probiotics. With regard to trial out-
comes for diabetes and GM-based therapies, using dy-
namic measurements of glucose metabolism over time
(e.g., mixed-meal tests or continuous glucose monitoring)
could provide better insights into the interactions be-
tween the GM, diet, and glucose homeostasis during both
FMT and administration of defined strain combinations.

New insights into the GM are increasingly associating it
with diabetes in humans, although the microbiome of the
small intestine remains understudied. Intervention studies
with FMT in humans have been able to dissect associations
from causality and have indeed shown some clinical bene-
fit, although the contrast between, on average, relatively
small therapeutic effects and ethical concerns (233) pre-
clude widespread practical use of this treatment option in
diabetes clinical care. Additional studies are thus needed of
prospective associations between the GM and diabetes in
multiethnic cohorts. Alongside this effort, the therapeutic
potential of synthetic GM-derived bacterial strains and/or
communities and engineered systems for targeting intesti-
nal delivery of identified metabolites in diabetes should be
explored.

CONCLUSIONS

Over the past two decades, alterations in the GM have been
associated with aberrant glucose metabolism and steatosis
in individuals with diabetes. Larger sample sizes in epidemi-
ological studies have now started to show the magnitude
and possible consistency of correlations between the GM

and human metabolic traits of relevance to obesity and/or
type 2 diabetes; however, for type 1 diabetes, the picture is
much less clear.

Interaction with diabetes medications in relation to
ethnicity and dietary intake should be taken into account
more rigorously in future studies. Moreover, in recent
years, more insights have been gained into the function
of the GM beyond just its composition, and this informa-
tion nicely dovetails with earlier reports of links between
specific metabolites, including SCFAs, BCAAs and bile
acids, and obesity and diabetes.

With regard to GM composition, only a few studies
have addressed the role of phages and fungi and the in-
teractions between these inhabitants and bacterial strains
in diabetes. It is clear that future studies also need to fo-
cus on small intestine microbiota function as well as de-
veloping adequate bioinformatic pipelines and correctly
assembling genomes (Table 1).

We must also take into account that most data to date
have been generated in mouse studies whose relevance to
human diabetes needs further confirmation because of
the large differences between mice and humans in diet,
genetics, and life span. Nevertheless, human intervention
studies of single strains and FMT in the setting of human
diabetes have shown a range of clinical metabolic effects
(compared with the more consistent effects of medica-
tions) but without serious side effects. In conclusion, after
almost two decades of study, we must still look to future
efforts to illuminate the clinical diagnostic and therapeu-
tic applicability of GM research to human diabetes.
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