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A NUMERICAL INVESTIGATION OF CONFINED TURBULENT SHEAR FLOWS 

Peter Simon Bernard 

ABSTRACT 

The first objective of this work is to pre~ent a new derivation 

of the method of coarse graining yor the computation of turbulent flows; 

one which strengthens and clarifies its theoretical foundation. 

Secondly, we show by the application of this method to the study of the 

turbul~nt flow in a channel and behind a piston in compressive motion 

that a promising start has been made toward acquiring the ability to 

predict the mean properties of turbulent flows. The work presented 

here is primarily concerned with two dimensional flow. 

The principal improvement in the method of coarse graining consists 

of the establishment of a new general law of turbulent diffusion which 

applies to any scalar that is passively convected in a turbulent flow. 

The law is in the form of an expansion in roughly the Lagrangian 

integral time scale. The transport law is used to derive a closed set 

of equations for the mean vorticity and mean squared fluctuating 

vorticity. Other innovations include a more precise accounting of 

the effects of the local turbulence on the velocity moments and the 

use of an explicit equation for mean squared fluctuating vorticity 

instead of mean square.d vorticity. 
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and the generation of turbulence at the piston face. The flow at two 

different stroke to bore ratios is studied, and a~ analysis is made of 

the flow environments that would exist at ignition . 
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I. INTRODUCTION 

The advent of computers has brought hope that a "computational" 

answer may be found to the problem of finding a means of predicting the 

average behavior of a fluid in turbulent motion. The numerical methods 

that the computer has spawned, however, cannot be better than the 

theoretical foundations on which they are based. Thus, it is a sad 

fact that most numerical methods of computing the mean properties of 

turbulent flows in use today rely on theoretical notions about turbulent 

diffusion as manifested in the Reynolds stresses which have been known 

to be incorrect since before the first computer was built. Equally 

disturbing are some of the most recent numerical methods which rely on 

purely mathematical hypotheses and make no pretense of being based on a 

theory of turbulence at all. 

It is ironic that such a state of affairs should exist at a time 

when many significant new advances have been made by experimentalists 

in revealing the nature of turbulent motion. One would hope that 

eventually this new knowledge would find its way into a mathematical 

form that would be useful in predicting the properties of a turbulent 

flow. 

In point of fact, however, a rudimentary example of this procedure 

was performed by G. I. Taylor over sixty years ago in his vorticity 

transport theory. His idea, unfortunately was largely ignored, until 

a couple of years ago when Chorin (1974) showed how a numerical method 

of computing turbulent flows could be based on it. This method known 

as 11 the ·coarse grained approximation to turbulent motion .. is innovative 

in both its respect for physical theory and for mathematical rigor. 
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This thesis will attempt to enrich the theory begun by Chorin and 

then apply it to the study of the turbulent flow in a channel and behind 

a piston in compressive motion. We hope to show that a promising start 

has been made toward acquiring an ability to predict the mean properties 

of turbulent flows. 

The theory presented here will be concerned with two dimensional 

flows. A general theory of coarse graining which is applicable to 

three dimensional flows is currently under development. The study of 

two dimensional turbulence is useful because it is a model problem 

that contains many of the features of three dimensional flow yet is 

considerably easier to solve. Furthermore, the physical phenomena and 

mathematical difficulties that one encounters in two dimensions are 

either equivalent to or are simpler versions of the same problems that 

one encounters in three dimensions. Thus the application of a theory 

of turbulence to two dimensional flows is a useful first step in 

demonstrating its soundness. 

In the method of coarse graining the average state of the (two 

dimensional) turbulent fluid is described by the mean vorticity, I 

d d fl t t . t' 't -;r2 ~ ~ ~ an mean square uc ua 1ng vor 1c1 y, s . s = s + s is the compo-

nent of vorticity orthogonal to the plane of motion. A closed set of 

equations describing the evolution of the I and~ fields is derived 

using a simple statistical hypothesis involving certain functionals 

of the vorticity field. These equations may then be solved numerically. 

Among the major theoretical improvements of the theory of coarse 

graining that are accomplished here are: 
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( i) · The turbulent transport 1 aw has been derived in such a manner 

as to permit the computation of higher order terms and to give a physi­

cal interpretation of the pa~ameters appearing in it. 

(ii) The use of an explicit equation for~ has been instituted 
--,-;r . 

replacing one for ~ + ~ 2 used by Chorin. This allows an assessment 
. . -:72 

to be made of the various factors contributing to the balance of ~ . 

(iii) The closure scheme is derived so as to now include the, 

effect of the local turbulence intensity on the velocity moments. 

(iv) An essentially exact boundary condition to the~ equation 

is derived using the linear law of the wall. 
. . -, 

(v) An extensive analysis of the balance of ~ 2 in the wall 

region is made and is subsequently used to formulate a physically 

plausible difference equation for~ near the wall. 

With these improvements a fairlj complete picture of the extent 

to which coarse graining can predict the mean properties of a two 

dimensional turbulent flow will emerge. The ways in which our theory 

is limited by the complexity of the small scale turbulent motion will 

be made apparent throughout this work. However each of these problems 

will be sharply defined and will provide an indication of the directions 

to which future work should be directed. 

The restriction of two dimensionality has affected our numerical 

solution of the channel problem by giving preditti.ons that are only 
I 

partially in keeping with experiments. The results are closest, e.g. 

the mean vorticity distribution, (or mean velocity distribution) when 

the two dimensional equation does not exclude any important physical 
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process from being represented. They are poor when such a process is 

left out of the equations, e.g. our predictions of ~· 2 is inaccurate 
-,.-;:;- . 

and most likely because the production of~ 2 from vortex stretching 

and transfer is not included in the two dimensional equations. 

On the whole, though, our restriction to two dimensions leaves 

enough of the physics of the flow in a channel intact so that we are 

still able to obtain some striking results. In particular is the 

friction law shown in Figure 8 which clearly displays a drag crisis at 

small Reynolds numbers and a bifurcation at a Reynolds number of 

approximately 6500 which separates the laminar from the turbulent flow 

regimes. 

I~ the 'next chapter we will briefly describe the other approaches 

toward computing turbulent flows that may be found in use today. We 

will pay particular attention to the fundamental principles on which 

they are based and show how they differ from those of the present method. 

In Chapter III we present a complete derivation of the method of 

·coarse graining. The object of Section III.A. will be to derive the 

following turbulent diffusion law: 

( 1.1) 

.... 

'"· 
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where: ¢ is an arbitrary property of the fluid that satisfies the 

condition 

(1. 2) 

-+ 
-+ -+ 
u = (u1, u2) is the velocity field; U is the mean and u' is the 

. -+ 

fluctuating part of the velocity field, so~= U + ~'; T .. is a 
. . lJ 

Lagrangian integral time scale; and T, s .. and T. "k are other time 
lJ lJ 

scales which will be defined later. The right side of (1.1) is the 

first two terms of a series expansion in (roughly) the time scale Tij" 

It will be shown later that part of the special significance of 

the diffusion law (1.1) is that it accounts for the fact that the length 

and time scales of the small scale turbulent motion may be of the same 

order of magnitude as the scales at which the mean flow field varies 

significantly. (1.1) is most useful when the mean field is quasi­

steady and quasi-homogeneous for then it is possible that we will only 

have to keep a small number of terms in the expansion to approximate 

the flux accurately . 

At points sufficiently far from a boundary in a two dimensional 

flow both~ and ~ 2 approximately satisfy (1.2) and thus the transport 
- --2 

law (1.1) may be used to compute the turbulent fluxes ui~ and ui~. 

These fluxes arise naturally in the formation of equations for~ and 
~ 
~ from the vorticity equation. In Sections !II.B. and. III.C. we will 

derive equationsfor ~and~' respectively, which use the lowest 

order form of (1.1): 
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- ~a¢ 
u~¢ =-T .. u.u. -"-, lJ 1 J oXj 

- ----:-:2 to represent the fluxes u~s and u,~s . 
l 

(1. 3) 

The closure of the system of equationsderived in 111.8. and III.C. 

is completed in Section III.D. when we show how the velocity moments 

uiuj may be computed from a knowledge of the s
12 

field. The closed 

set of equations for~ and s
12 

that are derived in this chapter may be 

approximated by finite difference equations which may in turn be solved 

numerically for a large class of two dimensional turbulent flows. 

In Chapter IV we apply the method which is described in Chapter III 

to a study of the fully developed turbulent flow in a channel. For 
,-

this flow all of the second order terms in the transport law (1.1) are 

identically equal to zero so our use of the first order form of the 

transport law is well justified in this case. 

We obtain equations for~ and~ by specializing those derived 

in. Chapter III to this flow and then construct difference approximations 
- ~ to them which relate the values of s and s at a discrete set of 

points spanning the channel. To find the proper form of the difference 

equations near the boundary we study the physics of the turbulent flow 

in a channel and show that this flow may be separated into two distinct 

regions: a thin dissipation zone near the wall where no production of 

~ takes place and a core region where ~ is produced. We conclude 

that for the~ equation at the boundary we must specify the average 
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flux of vorticity from the wall and compute it from the relation 

( 1. 4) 

where y is a coordinate normal to the wall, R is a Reynolds number, 

o is the distance from the wall of an arbitrary point within the 

viscous sublayer and U is the mean velocity at o. We also find that 
00 

the proper boundary condition to the ~ equation is the specification 

of the rate at which ~diffuses from the core region and into the 

dissipation region. 

In the proces~ of forming a closed system of equations for ~ and 
~ 
~ it is necessary to introduce a small number of undetermined 

parameters, (for example the time scale Tij in (1.3)), thus to solve 

our system of equations for the channel problem numerically we must 

assign values to them. We do this by fitting the computed and 

experimentally d€termined results for the flow at one particular 

Reynolds number. Then we are free to investigate the predictions of 

our numerical method for all of the remaining Reynolds numbers. We 

have studied the behavior of the mean velocity profiles, ~. ~ and 

the friction coefficient with the Reynolds number and these results 

are reported in Section IV.E. 

In Chapter V we apply the theory of Chapter III to study the 

piston driven turbulent flow in a two dimensional model of an internal 

combustion engine cylinder. This represents the first application of 
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the method of coarse graining to a turbulent flow with a fully two 

dimensional mean velocity field. The flow we are concerned with here 

is even more complex than this sirice the mean properties are also non-

steady and the fluid is undergoing a uniform compression. 

To account for the changing size of the flow domain we have defined 

our discrete approximations to~ and~ on a grid which collapses 

uniformly as the fluid is compressed. - ~ The equations for ~ and ~ 

derived in Chapter III were purposefully kept general enough so as to 

accomodate the particular flow we encounter in this problem. Thus to 
- ~ form difference equations for ~ and ~ here we may directly use 

these equations. 

The results of our computation of the flow during the compres~ion 

stroke described in Chapter V are to be viewed as giving a qualitative 

description of this flow. As expected, large amounts of vorticity and 

turbulence are generated next to the wall as the piston moves and are 

subsequently magnified by the compressive motion. We give predictions 

of the mean state of the fluid in the cylinder at the time of ignition 

for two different stroke-to-bore ratios. It is seen that a considerably 

different combustion process would be expected to occur in each of 

these different flow environments. 

I 
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II. HISTORICAL SURVEY OF TURBULENCE CLOSURES 

The mean velocity field of a turbulent flow evolves in part due 

to the action of apparent stresses which arise from the random eddying 

~ motion of the fluid. These are the Reynolds stresses, a typical com­

ponent of which, - puiuj expresses the average flux of the ith component 

of momentum in the jth direction. The Reynolds• stresses appear as 

additional unknowns in the equations of motion, creating the need to 

either relate them to the other dependent variables or to introduce an 

additional set of equations which describe their change. The means by 

which a closed system of equations is obtained is termed a turbulence 

closure. 

In this Chapter we will present a sketch of the history of the 

major trends in closure formation in use today, so as to show the 

origin of the present method and its relationship to the other 

approaches. Comprehensive surveys of many particular examples of 

closures, giving some indication of their merits and limitations m~y 

be found in Reynolds (1974} and (1976}, Cebeci and Smith (1974), 

Mellor and Herring (1973) and Bradshaw (1972). 

The turbulence closures that are found in use today may be 

separated into two broad categories: Those that, in loose analogy 

to the viscous stresses, relate the Reynolds stresses to the gradients 

of the mean velocity field through a constituitive relationship 

involving an eddy diffusivity, and those that do not. Most closures 

are of the first type, and part of what is distinctive about the 

closure that we will present in this· paper, is, that it does not 

belong to this group. 
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The first type of closure apparently originated with Boussinesq 

(1877), in his proposal that for a unidirectional mean flow field 

U(y), the Reynolds stress - pu'v' could be approximated in analogy to 

the viscous stress ~~~ , viz: 

-p li'V' = A ~ 
T ay (2.1) 

The "mixing coefficient" or "eddy diffusivity" A remained to be 
T 

determined by some unspecified means. 

A theory which purported to give a plausible value to the eddy 

diffusivity AT appearing in (2.1) was subsequently developed by 

Prandtl (1925). His idea, known as the mixing-length theory, was based 

on the assumption that small particles of fluid in a turbulent flow 

would conserve their momentum while traveling a short distance, called 

a mixing-length. Using this physical model of turbulent momentum 

exchange, he was able to deduce an analytical expression for A . 
T 

However, his result was incomplete in that it depended explicitly on 

the mixing length, which was yet to be determined. 

The mixing-length theory was followed by the similarity hypothesis 

of von Karman (1930) which supposed that the velocity fluctuations at 

any point in a turbulent flow depended exclusively on the values of a 

local length and time scale. He was able to derive an expression for 

A identical to that of Prandtl, and in addition, give a formula for 
T 

the mixing length. Left undetermined in von Karman's theory was one 

universal constant. An account of this theory and that of Prandtl's 

may be found in Schlicting (1968). 
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In the period in which the momentum based model (2.1) was on the 

ascendancy, an alternative closure not of the first category, was devel-

oped by G.I. Taylor (1915). Unaware of the work of Prandtl, he consi­

dered and then rejected the idea that a closure could be based on the 

assumption of momentum transport which was at the heart of the mixing­

length theory. He could find no justification for the belief that the 

pressure variations in the flow would not have a considerable effect in 

altering the momentum of fluid particle when they moved, even over very 

short distances. Thus no appeal to an analogy with the molecular trans­

port of momentum could be made. 

Taylor instead proposed that in circumstances in which the turbu~ 

lent fluid motion is preponderantly two dimensional, as is the case in 

a unidirectional flow, one could use the fact that the vorticity of 

fluid particles is preserved in two dimensional inviscid motion to form 

a closure to the mean flow equations. He showed that the term contain­

ing the Reynolds stress - pu 1 v1 in the mean momentum equation could be 

rewritten as the turbulent vorticity flux, V'[. Introducing the concept 

of a vorticity mixing-length, say d, he derived for V'[ the expression 

V I[, = - ~d -ryn- d~ I v .I ()y (2. 2) 

Though (2.2) is incomplete in that a means of estimating TV'f and d 

must still be found, in contrast to (2.1) the physical model behind it 

is much less open to criticism. 
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Later, Taylor (1932) generalized his vorticity transport theory so 

that it would apply to arbitrary three dimensional turbulent flows. 

Though the equations he derived were not in a form that could be used 

in practical applications, it is clear however, that at this time Taylor 

had a definite notion of the direction that should be pursued in ob­

taining a general turbulence closure. 

Taylor (1932) had also learned of Prandtl•s work with the mixing­

length theory and made the first of several comparisons (see Taylor 

(l935b) and (1937)) between the predictions of his own vorticity trans­

port theory and the theories of Prandtl and von Karman. He also provided 

new arguments, in addition to restating the one of 1915, which helped to 

c ~t doubt on the wisdom of postulating any similarity between turbulent 

and molecular transport of momentum. 

In spite of the criticism by Taylor, the use of the expression (2.1) 

continued,though through his arguments, in part, it became increasingly 

clear that the justification for its use could no longer be obtained 

from the mixing-length theory. Perhaps the final words on the merits 

of the mixing-length theory, which laid it permanently to rest, (or 

should have), were made by Batchelor (1950) in a particularly cogent 

analysis. In this paper he established the principle that one must 

first understand the physics of the momentum exchange responsible for 

the Reynolds• stresses before deriving an analytical expression ·to 

gauge their magnitude. It is thus idle to speculate as to the correct 

analytical form of a closure b~sed on ~ clearly erroneous physical 

model. Such has been the case with the mixing-length theory. 
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As we have suggested, closures of the type to which (2.1) belongs, 

are commonly found in use today. In particular, for general turbulent 

flows the use of the constitutive relationship 

(2.3) 

where K is a function of various turbulent scales and flow variables, has 

become popular. Among those using either relationship (2.1) or (2.3) 

are Patankar and Spalding (1970), Cebeci and Smith (1974), Smagorinsky, 

et. al. (1965), Deardorff (1970), Saffman (1974) and Schumann (1975). 

Considering the widespread use of this type of closure there has con-

tinued to be a need to find a justification for it. Some attempts have 

been made up by Harlow (1968), Hirt (1969) and Daly and Harlow (1970). 

Perhaps the best approach toward giving credence to (2.1) but one which 

also limits the circumstances in which it is valid, is that discussed 

in Tennekes and Lumley (1972) p. 47. The idea behind their justifica­

tion is roughly, that an expression like (2.1) is a necessary dimen-

sional consequence of supposing that the characteristic times of the 

turbulent eddies and the mean flow are of the same order of magnitude. 

This is, incidentally, a simple example of the type of phenomenological 

reasoning which has been used to justify the more ambitious closure 

relation (2.3). 

Accompanying the current use of relations (2.1) and (2.3) has been 

criticism of their use. Unfortunately, the arguments put forward 

against them have been generally much more convincing than those given 
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for them, e.g. see the criticisms of Tennekes and Lumley (1972) and 

Corrsin (1974). 

The other types of closures, i.e., those that do not make an 

assumption such as (2.1) or (2.3) are not large in number. The approach 

which is most actively being pursued today is that of Reynolds stress 

equation modeling, see Launder, et.al. (1975), Hanjalic and Launder 

(1976) and Lumley and Khajeh-Nouri (1974), in which equations for the 

Reynolds stresses themselves are derived from the Navier-Stokes equations 

with the use of additional assumptions. 

The exact equations for the Reynolds stresses involve triple velo­

city moments and pressure-velocity correlations which have to be 

approximated in terms of the Reynolds stresses and other mean quantities. 

The result is that a multitude of assumptions are now necessary to close 

the set of equations instead of just the one major assumption for the 

Reynolds stresses such as (2.3). Further, in current practice these 

new terms are approximated by mathematical expressions which are rarely, 

if ever, tied to any precise conception of the physical process which 

they are modeling. In view of the principle laid down by Batchelor 

that we have mentioned, the method of Reynolds stress equation modeling 

as it now stands is less justifiable than, say, the mixing-length theory, 

since at least the latter theory is based on some physical model, albeit 

an erroneous one. 

The method of coarse graining which we will derive and put into 

practice in thispaperwas originated by Chorin (1974) and is related to 

the ideas of Taylor (1915) as expressed in his equation (2.2). We will 
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see that the closure used in this method is based on expressing 

mathematically two precise ideas about the physics of turbulent flow. 

The first of these concerns the transport of vorticity in a turbulent 

fluid and the second is the picture of a turbulent flow as being com-
; 

posed of many vertical structures. The major advance of Chorin was to 

show how these two ideas could be used to find an ingenious means of 

completing relation (2.2) by giving a new coefficient to the vorticity 

gradient~· i.e. one which could be determined up to a constant from 

the equations of motion. This thesis will generalize the closure of 

Taylor,and Chorin, and also clarify and improve the novel approach 

taken by Chorin to completing this closure. 
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III. THE METHOD OF COARSE GRAINING 

In this chapter we consider the derivation of the method of coarse 

graining as it applies to an arbitrary two dimensional turbulent flow. 

The principal result of Section III~A is the derivation of eqn. (3.18) 

which is the general formula for the rate of turbulent diffusion of an 

arbitrary extensive property of a fluid that is preserved during the 

course of motion of fluid particles, and was written previously as 

eqn. (1.1). The simplified form, (3.19) or (1.3) of this relation is 

then used in Section III.B to aid us in deriving eqn. (3.25) which 

describes the balance of the mean vorticity field and in Section III.C 

to derive (3.36) for ~-
Section III.D explains how the velocity moments uiuj which are 

used in the transport law may be computed from a knowledge of the mean 

squared fluctuating vorticity field, thus forming a closure to our two 

coupled equations (3.25) and (3.36). The principle result of this 

section is the derivation of the three equations (3.46), (3.47) and 
~-~ -

(3.48) for u , v and u•v• respectively. 

Before beginning with the presentation of the method, we must 

establish some of the notation we will consistently use throughout 

this work. The spatial coordinates (x1,x2) will at times be denoted 

as (x,y) and similarly (u,v) is equivalent to (u1 ,u2). Vectors are 

identified by an arrow overhead, and we will frequently use the 

notation ~(x,y,t) = u(x,t), etc. 

The mean or expected value of random flow variables is indicated 

either with a bar overhead or, when necessary, by use of the symbol 
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E[ . ]. The mean velocity field, however, will be indicated by the use, 

of capitals, thus u = U = (U,V). The fluctuating part of a random field 

is indicated by a prime, thus for example the velocity field ~may be 
+ + 

written as the sum U + u'. The mean squared fluctuating vorticity field 
+ -::-'7 will henceforth be called dx,t), thus s = s . 

Vector operations will sometimes be indicated 

V . ~' and on other occasions as sums over indices, 

summation convention always being in effect. Also, 

in symbols such as 
au. 

1 
e.g. ax.' the , 
at times partial 

differentiation will be denoted in the manner: ut = ~~ or ux = ~~ etc. 

All equations will be written in a nondimensional form in which a 

characteristic velocity and length have been used to scale the variables. 

R will denote a Reynolds number formed from this velocity and length. 

Dimensioned variables, when needed, will be defined as they arise, and 

usually are denoted by an asterisk. 

A. Turbulent Transport 

If ¢(x,t) represents the density of an arbitrary extensive property, 

¢, of an incompressible fluid, then ui¢ is the mean flux of¢ due to 

the turbulent motion. This flux arises naturally in the process of 

forming an equation which describes the mean field ¢, from a conserva­

tion equation for ¢ of the form 

,~ =: * + ~ . V¢ = 
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The best known example of this is the case ¢ = pu where pu is the 

density of momentum, for then the flux of momentum is puui which is 

(minus) the Reynolds stress. Another example, occuring in a two 

dimensional flow, is¢= E;, the vorticity which is the•\:iensity 11 of 

circulation. Here, uis is the flux of circulation, conventionally 

called the flux of vorticity. 

In some turbulent flo~1 situations it may happen that the total 

amount of a property <I> in any volume of fluid will not change as this 

clump of fluid moves in the velocity field u. In this case 

~=0 (3.1) Dt 

and this relation may be used to derive a formula for the turbulent 

flux u~¢, which is used in predicting the behavior of the mean field 
1 

¢, as we shall now show. 

Let x(x
0
,t) represent the tra~ectory of a fluid particle known 

to be at a position x
0 

at the time t
0

, i.e. 

(3.2) 

Using x(x ,t), we may form the following equivalent, integrated, version 
0 

of (3.1): 



.. 
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x(xo,t) by its definition satisfies the integral equation 

. XCX
0
,tl = X

0 
+ /u(X(X

0
,s),s)ds 

to 

(3.3) 

(3.4) 

For each realization of the field u(x,t) the path x(x
0
,t) will be 

different, thus x(x
0
,t) is a random function. For definitions of a 

random function and its realizations, see Gikhman and Skorohod (1965). 

Let T represent a small time interval and let the position of the 

. b -+ • -+ (-+ ) -+ part1cle at t
0

- T e a, 1.e. x x
0
,t

0
- T =a. ! is thus a random 

point. Using (3.3) evaluated at t
0 

- T we have for the flux~ 

(3.5) 

where all variables are evaluated at the point (x
0
,t

0
) unless otherwise 

indicated, thus e.g. ui = ui(x
0
,t

0
) in (3.5). The first term on the 

-+ 
right of (3.5) does not drop out owing to the randomness of a. We now 
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will explain, in turn, the nature of the contributions that are being 

made to the flux of¢ by each of the two terms in (3.5). 

The first term arises from the correlation between the fluctuating 
-+ 

velocity at (x ,t ) and the value of ¢ at the point in space-time 
0 0 

convected there during the interval T. The diffusive properties of 

this term may be revealed by the following construction: 
-+ 

Define t(t) = u(x(x
0
,t),t) and similarly for U(t) and u' (t). 

Further, 1 et 

-+ 

to 

: -J U(s)ds 

t -T 
0 

Using L and the definition of a, (3.4) evaluated at to ~ T gives 
-+ 

a = xo-L. Substituting this expression for a into ~{a,to-T) and 

partially expanding in Taylor's series about (x
0
,t

0
) we attain 

(3.6) 

From this point on we will refrain from indicating the presence of 

terms of order higher than T2, and will drop them without comment as 

they arise in the ensuing equations. These higher order terms may be 

computed also, though beyond the point we have gone this becomes a 
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rather tedious undertaking. We keep as many terms as we do, because, 

as we shall see, Twill be chosen to be not very much· smaller than unity . 

. To put (3.6) into usable form we must examine the quantities 

u~L. and u!L.Lk. Define 
1 J 1 J 

to 

r. = f Uj(s)ds 
J 

t -T 
0 

and 

to .: 

' L'. = f uj(s)ds 
J 

t -T 
0 

thus L. = L. + L~. Note that LJ. is random owing to its dependence on 
J J J 

~(~ ) f the random path x x
0
,t . Substituting or Lj in uilj we find 

u!L. = u~~ + u~L~ 
1 J 1 J 1 J 

(3. 7) 

Using the definition of L~ the second term on the right hand side of 
. J 

(3.7) becomes 

u~L '. 
1 J = E [1 l uj(s)ds] = 

t -T · 0 . 
T 

u~u'.JR .. (s)ds . , J 1J 
0 

u~u·. , J R •• (s-t )ds 
1J 0 

(3.8) 
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ui{t~)uj(t0+s) 
Rij(s) = u~(t0 }u~(t0 ) 

R .. (s) is a Lagrangian auto-correlation function, a special case of 
1J 

which was originally defined by Taylor (1921), see also Hinze (1959) 

p. 47. The final step in obtaining (3.8) required making the assumption 

that Rij(-t) = Rij(t) for 0 ~ t ~ T which holds if the turbulence may be 

considered to be approximately stationary over a time period of O(T). 

For T large enough, say T > T*, R.J.(T) is approximat~ly zero, 
T 1 

implying that 1 Rij (s )ds, T ;;. T*, is independent of T. If we define 

the Lagrangian integral time scale 

then for T - T* , T .. 
1J 

00 

T .. =JR .. (s)ds 1J 1J 
0 

T -J Rij ( s )ds and (3. 8) becomes 

0 

· · u'.L'. - T u'u' 
1 J ~ ir i J 

. 

(3. 9) 

. (3.10) 

Note that no summation is implied in (3.10) or in similar relations to 

follow which .involve fij oroth~r time ~onstimts still to be defined. 

Note also that it is possibl~ that Tij varies in space or time in a 

particular flow if the turbulence is ·nonuniform· or nonstationary. 
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Returning to the first term on the right side of (3.7) we have 

,-L, u .. 
1 J 

and Taylor's expansion of Uj(s) about (x
0
,t

0
) yields 

u~[. = Eru~TU. + u~ 
1 J l 1 J 1 !

to au. 
(xk(s)-xk)ds - 1 + u~ axk 1 

t -'[ 
0 

to 

J ds(xk(s)-xk)] 

t -'[ 
0 

(3.11) 

where xk is the kth component o: x
0 

Through the use of (3.4) for 
1, 

' . 
xk(s)-xk' the integral in (3.11) becomes 

to to s to s' 

J (xk(s) - xk)ds J ds Jds' uk ( s' ) - - Jds' J dsuk(s') 

t -'[ t -'[ . t' t -'[ t -'[ 
0 0 0 ·0 0 

(3.12) 
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Substituting (3.12) into (3.11) after replacing uk(s•) by Uk(s•) + 

uk(s•) gives 

u~[. 
1 J 

where 

to 

= - _J E u~ · au. [ 
axk 1 J ds•(s•-t +r)u• (s•) 

0 k 
+ u•. 

J 
t -'( 

0 

to 
au. j =-lJI:liT _J ds • (s •-t

0
+-r) 

, k axk 
t -T 

0 

R.k(s'-t ) 
1 0 

In light of our assumption on -r, (3.13) becomes 

au . 
• -L - -.-. (S T ) J ui J. ~ uiuk ik--r ik ax . k 

00 

sik o J sRik(s)ds 

0 

(3.13) 

{3.14) 
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Combining (3.10) and (3.14) yields the result 

(3.15) 

The analysis of uiLjlk is considerably longer than that of uilj' so 

we will only quote the result: To third order, 

where 

and 

u~L.Lk 
1 J 

- TU ----u'u' T + TU ----u'u' T + u'u'u' T . . k "k k . . . . . . k . "k J 1 1 1 J lJ 1 J .1J 

00 00 

ui(t
0

)uj(t
0

+s1)uk(t
0

+s 2) 

u~u'.uk' 
1 J 

We have made use of the additional assumptioh that the condition 

Rijk(-s1,-s2)= Rijk(s1,s2) holds. 

(3.16) 

(3.6) is completed by substituting (3.15) and (3.16) into it', 

though we will not write out this intermediate result. To obtain our 
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final expression for the flux u'.¢ we must look into the second term on 
1 

the right of (3.5). 

In view of our hypothesis about T, we must haveR .. (T) : 0 which lJ 
implies that ui(x

0
,t

0
)uj(a,t

0
-T) : 0. We then suppose that the absence 

of a significant correlation between velocity components at (x
0
,t

0
) and 

(a,t
0
-T) implies that u; at (x

0
,t

0
) and ¢' at (a,t

0
-T) are similarly 

uncorrelated. This is, of course, not a rigorously derived statement, 

but it is very reasonable if one considers that velocity-velocity corre-

lations are usually the most enduring ones. The difficulty we face here 

·is one that will encounter again and is due to our lack of understanding 

of the action of the small scale turbulent motion. This ignorance is 

actually a blessing in this case because if we cannot conceive of a 

physical mechanism which would result in a non-negligible correlation 

between ui(x
0
,t

0
) and ¢'(a,t

0
-T), then there is no reason to doubt our 

conclusion that 

(3.17) 

We may also eliminate the possibility that viscosity promotes 

a strong correlation, because for all the cases we consider, the 
+ 

distance ILl >> IT/R, where IT/R is the distance over which it is 

reasonable to assume that the viscosity exerts a strong influence 

during the time interval T. 
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We are now in a position to assemble our various results and 

state the general diffusion law: 

-.-- t-· -. T -.-. (s ) auj] a¢ u. ¢ - u. u. .. + u. uk . k - T T. k -"'- "' + 
1 1 J 1J 1 1 1 oXk oX. 
. J 

[
32¢ 32¢ J T T .. u~u·. + U + 

1J 1 J axjat k axJaxk 
(3.18) 

which. is valid for any field¢ satisfying (3.1). It may easily be seen 

that (3.18) is invariant under a Galilean transformation .. 

The time scale Tij is characteristic of the typical eddies in 

the turbulent flow. If the time over which the mean properties of the 

turbulent flow varies significantly is comparable to Tij then the 

higher order terms on the right of (3.18) will make a significant 

contribution to the transport law and must be included. A similar 

conclusion should also hold for the length scales of the mean and 

eddying motion. That the transport law we have derived can accomodate 

these situations is a strong point in its favor. 

The right side of (3.18) depends on the parameter T which must 

only satisfy the condition T ~ T* and thus is largely arbitrary. Since 

the left side of (3.18) is independent ofT so too must the right side. 

This apparent contradiction can be explained by realizing that the 

larger T is, the more terms in the expression on the right must be 

included. The sum of these terms always remains constant. 
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To first order (3.18) gives a simple mean gradient diffusion 

law: 

U •. ,~, = - T -:-:TT a¢ '+' •• u.u. -a-
1 1J 1 J xj 

(3.19) 

In our applications of the method we will only use this lowest order 

term. This will not introduce serious errors into the results as long 

as the second and higher order derivatives of the mean field ¢ are not 

large. 

For the special case in which ¢ is the vorticity, ~. and~ and U 

depend only on y, and V = 0, e.g. in fully developed channel flow, then 

(3.18) reduces to 

(3.20) 

If we assume that ~ = 0, for this flow then this further reduces to 

(3.21) 

which is accurate to third order in l. 

For the piston problem it will be necessary to generalize our 

diffusion law slightly so as to accomodate the diffusion of vorticity 

and squared vorticity in the type of compressible flow which occurs 

there. We will assume for that problem that the density is a sure 
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function which varies with time, uniformly throughout the flow field. 

The dilatation e=v.u in this case depends on the time, and from the 

continuity equation we have 

- -1 dp 
e(t) - P dt 

The vorticity equation without the viscous term is then, 

Dt; + l;G = 0 
Dt 

and the integrated version of this relation, which corresponds to (3.3) 

is 

which may easily be verified by differentiation. It is clear that 

(3.22) will yield the same diffusion law as before, except for an 

additional factor of p(t
0

)/p(t
0
-l). However 

(3.22) 
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-·-

thus if only first order terms are to be kept in (3.18) we may still 

use the diffusion law (3.19) in this case. 

Similarly, the equation comparable to (3.3) for the squared 

vorticity will be (3.22) squared, thus implying that the additional 
2 . 

factor (p(t
0

)/p(t
0
-T)) appears in the diffusion law and again exerts 

no influence on the lowest order terms. 

The machinery we have developed to·examine the turbulent flux 

ui¢, might also be profitably applied to finding out if there is any 

justification for the Boussinesq approximation,(2.1), to the Reynolds 

stress -purv'. Thus, consider a unidirectional mean flow (U(y),O) for 

which we wish to find an expression for the flux of momentum in they 

direction due to the fluctuations v'. The density¢ is in this case 

pu which satisfies Euler's equation 

D(pu) = _ ~ 
Dt ax 

and not an equation like (3.1), so we must make special account of 

this difference. In analogy to (3.3) pu also satisfies the relation 

t 

pu(X
0
t

0
) = pu(X(X

0
,t),t)+j( ~(X(X0 ,s),s)ds 

to 
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Following the same sequence of steps as before we will arrive at 

t 
.0 1 -v-' (_x_o_' t-0-)-::-f-x_(_x_(_xo_'_s_) -, s_)_d_s 

t -'T 
0 

(3.23) 

where the term v'(x0,t0)u' (a,t0--r) was dropped since as already described 

it is essentially zero. (3'.23) will provide some justification for 

(2.1) if one could show that the last term involving the pressure is 

much smaller than the first. 

The technique of this section can provide no justification 

for the use of the general constituitive relationship (2.3) since the 

correlation one wishes to compute will also appear as a coefficient of 

some of the derivatives of the mean velocity field found in the 

transport law. 

B. Mean Vorticity Equation 

The vorticity equation for a two dimensional flow in which the 

density of the fluid is spatially uniform but may vary in time is 

An equation for the mean vorticity may be derived by substituting into 
+ + + 

this relation t + ~· for ~' U + u' for u and then averaging. The result 

is 
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--+ -+ 

~t + u.v~ + 0~ + v.u·s = k v2~ (3.24) 

where u•s is the flux of vorticity due to the turbulent motion. After 

transformation of this expression through use of the diffusion law 

(3.19), (3.24) becomes 

R = - u. v"[ - 0~ + _a_ at ax. 
1 

(3.25) 

which is the general mean vorticity equation that will be used as the 

basis for difference equations in our applications. 

C. The Equation for Mean Squared Fluctuating Vorticity 

In the original formulation of the method of Coarse Graining by 

Chorin (1974) the evolution of the 1:; field was computed from a set of 

difference equations which approximated the equation of CODServation of 

mean squared vorticity, s2 = f! + ~:;. This approach obscures the rela­

tive magnitudes of the factors contributing to the balance of 1:;. To 

remedy this we will formulate an explicit relation for s which will be 

used subsequently in the applications to derive difference equations. 

The squared vorticity equation is obtained from the vorticity 

equation by multiplying it throughout by s' thus. 

~r2 -+ 2 2 1 2 
L 

0 + L n~ + ~ 8 = _R ~ n ~ "2 ~ "2 U. V<-_, <-., <, V <-., 

.. 
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Taking the average we find 

. -+ 

~ ~t(i+z:;) + ~ U.'vC~2+z:;) + e("~-2+z:;) + ~v.~·~;2 = ~v2"[+l~;•v2~;• 

(3.26) 

Subtraction of~ times the equation for mean vorticity (3.24), from this 

relation yields 

( 3. 27) 

which describes the evolution of the z:; field. 

The physical interpretation of each of the terms on the right side 

of (3.27) is as follows: The first is the convection of z:; in the mean 

velocity field U, and the next represents an increase or decrease of z:; 

corresponding to a similar change in the density of the fluid. The next 

two, as mentioned in Tennekes and Lumley (1972) p. 87 contribute 

respectively, to the production of z:; from the mean vorticity field, and 

to the diffusion of z:; due to the turbulent motion. The next to the last 

term represents molecular diffusion of z:; and the final term gives the 

dissipation of z:; due to the viscosity of the fluid. 

The production and turbulent diffusion terms must be transformed 

using our diffusion law if they are to be in a usable form. The 

application of (3.19) to each of these terms will also have the pleasant 



34 

consequence of displaying their physical meaning directly. Thus, for 

the production term: 

-2u ~ ~ ar = 2 T .. ~ at at 
1 ax. 1 J 1 J ax. ax. 

1 1 J 

If we suppose that T .. is roughly the same for each (i, j), then 
1J 

-2u~~ ~~ = 2 T .. fu~ ~t ) 2 

1 oX; 1J\ 1 oX; 

(3.28) 

which is always positive and thus strictly represents production of ~. 

To transform the turbulent diffusion term we substitute the identi­

ty ~' 2 
= ~2 - 2t~· - t 2 into it to obtain 

-+ i2 
-ll.u'~ = -ll.u·~2 + 2V~.;u·~ 

~ :;-
Applying (3.19) to u·~ and u·~, (3.29) becomes 

-+ •2 
which clearly reveals the diffusive nature of -ll.u'~ . 

(3.29) 

(3.30) 
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The final term in (3.27) representing viscous dissipation must also 

be suitably transformed if we are to have a closed system of equations. 

We may do this only at the expense of introducing another par.ameter 

which is descriptive of the small scale turbulent motion. By definition 

so it is also true that 

= 

{3.31) 
1""2 1""2 
~ (xo+x,yo) + ~ (xo,yo)- 2~'(xo+x,yo)~'(xo,yo) 

lim 2 
x+O x 

Let us define an Eulerian vorticity correlation function R(x) by 

(3.32) 

where the dependence of R(x) on x
0 

is to be understood. If we assume 

that the turbulence is locally homogeneous so that ~~(o) = ~~(o) = 0 

then it is not hard to show that (3.31} leads to 
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A similar argument was used bv2'Taylor (l935a) to derive an analo­

gous result for the quantity (au;) which occurs as a dissipation term 
dX· 

in the equation for turbulent ki~etic energy. Taylor also initiated the 

practice of using a2~ (o) to define a length scale \, called a Taylor 
ax 

(vorticity) microscale. This length gives an indication of the extent 

of the smallest eddies that occur in the turbulent flow, and is 

defined as that distance from x = 0 at which a parabolic approximation 

to the function R(x,O) about x = 0 is equal to 0. Since R(O) = l 
2 2 

and aR(O) = 0, we must have R(x,O) ~ 1 + a R(o) !_ for very 
ax a7 2 

small x. Thus 

and then 

A 2 = 
X 

'2 ?2 :£C 
X A 2 

X 

{3.33) 

{3.34) 
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A microscale A similar to A may be defined so as to allow us to y X . 

express ~~2 by a relation analagous to (3.34). Defining a composite 

microscale Ad by 

we have · 

{3.35) 

It is clear from its definition that Ad may vary throughout the 

flow field. We have as yet no means of. predicting its value a priori, 

so its value will have to be assigned arbitrarily. It is possible 

that a precise connection between T22 and Ad' for any particular 

turbulent flow does exist, but if it does, we have not found it. 

Our final equation for z; now follows from using (3.28), (3.30) 

and (3.35) in (3.27): 

as ~ a~ a~ 
"t = - u·V's - 281; + 2 T .. u~u 1• -"- -"-
a 1 J 1 J oX. oX . 

1 J 

+ T. . u ~ u 1• ~z; ) 
lJ 1 J oXj 

I 

- 21; 
R:\2 

d 

(3.36) 
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D. The Closure 

The relations which govern the evolution of the mean vorticity and 

mena squared fluctuating vo~ticity fields, {3.25) and (3.36} depend 

explicitly on the velo~ity correlations uiuj. In this section we will 

show how these may be computed in terms of the other dependent variables 

thus providing a closure to the turbulence equations. 

The closure hinges directly on the statistical hypothesis formu­

lated by Chorin (1974) to the effect that the averages of the vorticity 

over two disjoint regions of sufficient size in a turbulent flow may be 

considered to be independent random variables. An equivalent statement 

of this hypothesis is that the circulations of nonintersecting regions 

of a proper extent are independent. For completeness, we will mention 

two of the reasons why we expect this post~late to be true. 

In the first place, the turbulent flow within or near boundaries 

is believed to be. comprised of many 'Small vortices. The positions 

and intensities of these vortices are correlated through the evolution 

of the turbulent flow as a whole. The mutual dependence between a 

pair of vortices, one in each of two disjoint regions is obscured when 

the circulation in these areas are computed by summing the circulations 

of their respective vortices. In this manner the composite circulations 

may be deemed to be independent. 

A second argument in support of the statistical assumption can be 

seen by discussing the reason why we would not expect an analogous 

hypothesis to hold for the averages of the velocity field over disjoint 

regions. The velocity of the fluid at a particular place and time 
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depends on the whole vorticity field at that instant. Thus the velo­

cities at two different points have the possibility of being highly 

correlated owing to their mutual dependence on the vorticity field. 

The vorticity, on the other hand, is purely a function of the local 

state of the fluid. 

In the previous section we defined the vorticity micro scales 

Ax and AY. These lengths give an indication of the distance over which 

the vorticity field is highly correlated. It would seem likely that if 

the statistical hypothesis just cited was to be applied to two adjacent 

regions then each of them should be of an extent greater than A ~nd A . 
X y 

We are careful not to suggest that this must be true because it is not 

clear to what extent averaging the vorticity over regions will wash out 

the local correlations of the vorticity field. 

In addition to postulating that the circulations of the non­

intersecting regions are independent of one another, Chorin further 

assumed that they are Gaussian random variables. This is a plausible 

idea which was used in the original derivation of the method, but it 

will not be necessary to make this assumption here. 

We will now use the statistical hypothesis to derive an expression 

for u' 2 in terms of the ~ field and thus achieve closure. The other 

velocity correlations are computed similarly. 
~ + We will compute u for a point x situated with regard to a grid 

as depicted in Figure 1. This is the situation that is typically 

found in practice. The flow domain has been divided into N boxes, 

N > 0. We supposed without loss of generality that each of the 
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boxes is a square with sides of length h. ~- will represent the center 
. 1 

of the ith box, and Di the region occupied by it. 

For the type of flow situation we are considering the velocity 
-+ 

component u' is incompressible and thus may be represented by a stream 

function ljJ 1
• 1/J' satisfies Poisson's equation v2

ljJ' = 
I 

- ~ with appro-

priate boundary conditions, e.g. ljJ' is constant on a solid boundary. 

The solution of this equation may be written as 

w· (x) = -JG(xl~' >~· (x' )dx' 

D 

( 3. 37} 

where G(~l~') is the Green•s 

Since u' = ~we have 

-+, function, x 
. -+ 

= (x' ,y') and dx' = dx'dy'. 

ay 

-+ f -+1-+ -+ -+ u' (x) =- Gu(x x' )~' (x' )dx' (3.38) 

D 

where 

Gu(xl~') is a sure function which is smooth for all values of X and x' 
-+ -+ . 

except when x = x' where it has a singularity. 



7 0 

41 

Breaking up the integral in (3.38) into a sum of integrals over 

the boxes Oi we have 

u' Cx) (3.39) 

For all boxes o1, except boxes o1 and o2 which are adjacent to the 

point X in Figure 1, we may, with good accuracy, write 

o. 
1 

o. 
1 

(3.40) 

We cannot readily make this same approximation for o1 and o2 because of 

the singularity; G (xlx') varies quite rapidly within these boxes. u . 

However, it will be unnecessary for us to make this assumption for 

these boxes so long as we make the following additional hypothesis: 

0[ Gu(xlx' )~· {x')d~' j=l ,2 is independent of o{ ~· {x')dx', i ~ 1 ,2. 
J 

Note that our first statistical hypothesis was to the effect that 

D~~·(x' )dx' and of~·(x')dx' were independent if;~ j, so this second 
J 

one is just an extension of the first. 
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Using (3.40) and the statistical hypotheses we find that 

~ = 1 Gu(itJit')GuCitJi")f;'(it')i;'(it")dit'dit" + 

o
1

uo2xo1uo2 {3.41) 

Using the vorticity correlation function R(x) defined in eqn. (3.32) 

we can write the first integral on the right side of (3.41) as 

(3.42) 

If we assume that the implicit dependence of R(xi '-x') .on x• is 

unimportant and that dx') z z:(x) for the region o1 U o2 then expanding 

R(x' '-x') in Taylor's series about x' '-x• = 0, (3.42) becomes 

(3.43) 
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In an unbounded domain 

Gu(xlx') - 1 (y-y•) - -21T 2 2 
(x-x') + (y-y 1

) 

(in a bounded domain we consider G (xlx') to be augmented by contribu­
u 

tions from image vortices) and if this is substituted into (3.43), and 

a coordinate change is made, (3.43) becomes 

r; Cx) , 
(2n) 2 

y'y' I 

-h/2 -h -h/2 -h 

where 

c = _1_ 
- 2nh2 

h 

-h -h/2 

1 ·[5 -1 1 'IT] - i 4 tan 2 + 2 :2 = 

(3.44) 

. 09967542103 ... 
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and we have replaced ~(0) by using a relation similar to (3.33). 
. 'Oy 

The integrals in the second term on the right of (3.41) may be 

written as 

f,· (X• )f;'(X") dX·dX" = dX;)h
4 + O(h6 ) 

o.xo. 
1 1 

(3.45) 

after using an argument analagous to the one leading to (3.44). Sub­

stituting (3.44) and (3.45) into (3.41) and neglecting terms of O(h6) 

and higher we get 

In practice we need to compute v' 2 at points situated with 

respect to the grid as represented by the point x
0 

in Figure 1. 

Following the same steps as was used for u' 2 we find 

i11,2 

(3.46) 

(3.47) 
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The correlations U'V' are in general required at both points like 

x and like x
0 

in Figure 1. In either case one finds that: 

where 

li'V' = -h4cc z:Cx>~~~Y(o) + L Gu(xlx; )Gv(xlx; > z:(x; )h4 (3.48) 
ifl,2 

1 1 ( 5 -1 1 1 1T) --c = 1T 4 tan 2 + 2 - 8 . 2186345 ... 

Apart from values for the parameters, Ax' A , Xd' T •. , and 
2 . y lJ 
~x~y(O) and a specification of the boundary conditions, which we wil.l 

do in the next chapter, we now have a complete closed system of 

equations in (3.25},(3.36}, (3.46), (3~47) and (3.48) which may be 

solved numerically for a wide range of two dimensional turbulent 

flow problems. The next two chapters will take up the application of 

this method to the two different flow situations we shall consider. 

... 
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IV. THE TURBULENT FLOW IN A CHANNEL 

In this chapter we will use the method of coarse graining to 
. 

investigate the fully developed turbulent flow in a channel. In section 

IV.A. we derive the difference equations (4.13) and {4.20) which 

approximate the mean vorticity equation in the core region and the wall 

region respectively. To derive (4.20) which uses the boundary condition 

(1.4) previously discussed in Chapter I, we will use the linear law of 

the wall. We also show in IV.A. how the distance o and velocity U =U(o) 
00 

which appear in (4.20) may be estimated using the computed stream 

function. 

In section IV.B. we analyze the physics of the overall balance of 

s in the channel and conclude that there must exist a distance from 

the wall, say y', which separates the flow domain into the two regions 

mentioned in Chapter I: A pure dissipation region next to the wall 

and a core region where s is produced. We show that for sufficiently 

large Reynolds numbers y' is very small and then use this fact to 

formulate a boundary condition to the s equation in the wall region. 

We then construct the difference approximations to the s equation: 

(4.32) for the wall region and (4.33) for the core region. 

In section IV.C. we show how the stream function, (and then U) 

may be computed from the known values of~- In IV.D. we specialize the 

general results of III.D. on our closure scheme to the present case 

and derive equation {4.40) which gives the velocity moment ~ in 

terms of the s field. 
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We present the results of our numerical computations of the flow 

in a channel in section IV.E. Our first task here is the determination 

of the various parameters which must be assigned values before we can 

find the solutions of our difference equations. We detennine these 

parameters by fitting the computed and experimental predictions of the 

mean flow in a channel for a Reynolds number of 57,000 which was studied 

by Comte-Bellot (1965). Then keeping these parameters fixed we investi­

gate the variation with Reynolds number of the friction coefficient, 

mean velocity distribution, mean vorticity distribution, and s. 

Our requirement that the flow in the channel be "fully developed" 

implies that the x component of the mean velocity field, U, is assumed 

to be uniform in the x direction, steady, and symmetrical about the 

centerline of the channel. If lengths are scaled using the channel 

width, 20, then it follows from the assumptions on U that V=O, 

~(y) = - ~(1-y) and s(Y) = s(l-y). 

Velocities will be scaled by Urn' the average mass flow velocity, 

so that 

1 

Ju(y)dy = 1 (4. 1) 

0 

If we define a stream function ljJ from the relation U = 1 + wy and if 

~ = 0, at y = 0, then (4.1) and the symmetry condition imply that 

~(y) =-~(1-y). ~ is related to ~ by 
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- ~ 

Since conditions are uniform in the x direction, we will only have 

to solve for the values of~' s and ~at one x position along the 

channel, which we choose to be x=o. The set of points (O,(j-~)h), 

j=l, ... ,M with h = 1/M forms a staggered grid, on which we will define 

discrete approximations ~j' sj and ~j to ~((j-~)h), s((j-~)h) and 

~((j-~)h) respectively. These grid functions will be related by 

difference equations, the solutions of which for ~j and sj are found 

by allowing ~j and sj to depend on time, and integrating the equations 

until a steady time independent solution is found. A superscript •n• 

will refer to the time step n~t where ~t is the interval of time 

between integration steps. 

A. Mean Vorticity Equation 

The mean vorticity equation for the flow in a channel is 

which is a special case of the general equation (3.25). 

flux of vorticity due to the molecular motion is ~ ~. 

(4.2) 

The average 

The minus 

sign is necessary to satisfy the condition that the flux be positive 
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if it acts to increase the vorticity lying on the + side of the surface 

through which the flux occurs. v'~ is the average flux of vorticity 

due to the turbulent motion and if we define the total mean flux of 

·vorticity as Q(y) then Q(y) =-~ ~Y + v 1 ~ • (4.2) implies that 

a~;y) = 0 i.e. the total flux of vorticity is constant across the 

channel, (or more generally a function of x). 

The constant mean rate at which vorticity diffuses across the 

channel may be determined· by transformation of the x momentum equation: 

- 2 a -,-, _-.£2. + 1 a u 
ay u v - ax R ay2 (4.3) 

through use of the relations u~ + v;,- 0 and~= -UY. We find that 

where 

Q(y) = + .££ ax 

Let us define a friction coefficient, A, through 

T* 
A - w 
-~ 

P m 

dU* 
T~ = lldy* . 

y*=O 

(4.4) 

(4.5) 
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is the dimensioned shear stress at the wall and U* = UmU and y* = 2Dy 

are dimensioned variables. We will show that 

A=-~ ax (4.6) 

and therefore that (4.4) may be written as 

Q(y) = -A . (4. 7) 

If the nondimensionalization ofT~ is carried out in (4.5) we find 

that 

A= _l U'(O) 
Re 

where Re = UmD/v = R/2. The y momentum equation, 

.L ("p+ v' 2) = 0 
ay 

(4.8) 

- ~ 
implies that~ is independent of y since~~ = 0, so (4.3) may 

be integrated across the channel from y = 0 to 1 to give 
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(4.9) 

where the symmetry of U(y) was used. (4.8) and (4.9) then imply that 
a-
~= -A and therefore (4.7) holds. 

It is known that the mean flow fields such as U, ~,'~Y and v'; 

vary sharply in a thin region near the wall in a high Reynolds number 

flow. (4.7) shows that in spite of this Q(y) is a constant across this 

region. We will show now that this fact may be used to advantage in 

forming a difference approximation to the mean vorticity equation for 

the box adjacent to the wall. 

For the purposes of constructing difference equations we pretend 

that tt is not identically zero, so that in approximating ~t by a 

finite difference we create a means of iterating to the steady state 

solution. The equation we are to difference is thus 

a~ = - N(y) at . ay 

and we approximate this at any grid point j =l, ..• ,M/2(because of 

symnetry we do not need difference equations for j>M/2) as 

(4.10) 
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~+1_ ~ 
J J = Q ( j h) - Q (( j-1 ) h) + 0 ( h 2) 

t.t h 
(4.11} 

We may have complete confidence in the order of magnitude of the 

truncation error for all grid points, including, in particular, j = 1 

near the wall since Q(y) according to (4:7) will be constant across 

the wall region after the numerical solution has converged. 

For points sufficiently far from the wall so that we may suppose 

that our transport law is valid we have 

Q(y) = (l + T ~) l[ R · 22 ay (4.12) 

If we suppose that the point y = h is in this region then our difference 

approximations to (4.10) are for j = 2, ... ,M/2: 

~+1 - ~~ 
J J 

t.t 

(4.13) 

~ ~ 
which follows from (4.11) using (4.12) and where vj = v (jh). 

/ . 
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For the grid point j = 1 it the wall we have 

~+1- ~ 
1 1 

~t 
1 5 

- hR ay (4.14) 
y=O 

since v'~l = 0. If (4.14) is to be useful we must find an alterna-

tive expression for ~ ; one that we are y=O -~ 
y y=O 

able to compute. We will 

show using the linear law of the wall that 

a~ 
ay 

y=O 

Uoo 2 
= J: 1:2 u-v 

( 4.15) 

where o is a point in the viscous sublayer and U ~ U(o). Later we 
00 

will show how o and Uoo may be computed (approximately} using the 

stream function. 

First let us recall what the content of the linear law of wall is. 

This law is the experimental observation that the mean velocity field 

U(y) varies approximately linearly in the viscous sublayer. This has 

been found to occur in both pipes and channels, (see Comte-Bellot (1965) 

and Schlichting (1968) Chapter XX). 

Though the distribution of U in the viscous sublayer appears in 

experiment to be linear, it does in fact vary parabolically, though 

so slightly as to be easily overlooked. This may be seen by 
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evaluating the momentum equation (4.3) at the wall. We find, after 

using (4.6} that 

/ 

u• · (o{ = R ~ = -2>.R ax e (4.16} 

which shows that u• '(0) 1 0 and therefore U cannot be purely linear at 

the wall. If we expand U(y) in Taylor's series about y = 0 we find, 

since U(O) = 0 that 

We may take the linear law of the wall as suggesting that U(y) = ARey 

in the viscous layer or equivalently 

{4.17) 

since the contribution of the term with y2 to U(y} is negligible in 

the viscous sublayer. 

{4.17) shows that if o is a point in the viscous sublayer then 

(4.18) 
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Furthermor~ since s = -UY, 

I I 

= -U (0) (4.19) 

and therefore (4.15) follows from using (4.16) and (4.18) in (4.19). 

If we substitute (4.15) into (4.14) we attain 

1 ~ s2 - s1 2 uoo .( ) (-;:fl -n) 
= R + T 22 v 1 . h2 - Rh 

0
_
0

2 (4. 20) . 

which is the difference equation to be used for the grid point j=l. 

As we have seen the boundary condition (4.15) to the mean vorticity 

equation that is used in (4.20) may be justified by a combination of 

theoretical and experimental facts. This situation is to be con-

trasted with the heuristically derived boundary conditions used by 

Deardoff (1970) and Schumann (1976) in their large eddy simulations of 

the flow in a channel. Both of them rely on making a crude connection 

between their filtered variables and the logarithmic law of the wall. 

We have found in our computations of the flow in a channel, that an 

accurate accounting of the boundary condition is crucial toward 

obtaining the correct solution. It is, therefore, not evident that 

the results of their computations will have any meaning until such time 

as a rigorous justification. of the boundary conditions they use is found. 
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The usefulness of our boundary condition, however, depends on 

there being available to us a means of determining the velocity U at a 

point o within the viscous sublayer. Clearly we would have such a means 

if we were to use an extremely fine mesh (and supposing that we were 

able to adopt our numerical method to such a grid) that had at least 

one grid point within the viscous sublayer. We do not propose to use 

such a grid, though, and will in .fact use a very coarse grid which has 

h = l/16. This will result in our having to devise a crude method of 

finding a pair of values (o,U ). We found that the determination of a 
00 

value of o within the sublayer for the full range of Reynolds numbers 

that we have studied is rather easily accomplished, but to compute the 

value of U at this point is a much more difficult task and will force 

us to introduce a parameter that must be found by using the experimental 

data. 

Our method of computing o relies on the construction shown in 

Figure 2 which is a crude approximation to the behavior of the stream 

function in the region near the wall. In this figure we have drawn a 

straight line with slope -1 leaving the origin and a parabolic arc 

through the values of the computed stream function at the three grid 

points closest to the wall, i.e. y=h/2,3h/2 and Sh/2. The first line, 

the one leaving the origin, satisfies the boundary conditions that the 

stream function must satisfy at the wall. We have found that the point 

of intersection of these two lines always occurs in the viscous 

sublayer and so we have let o be this point. 
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After some simple algebra, one may ascertain that 

= l+B - .../(l+B) 2-4AC 0 2A ( 4. 21) 

where 

and 

C=~ _§_ij) +lij) 
8 1 4 2 8 3 

As we have suggested, without more information about the flow 

withiri the wall region the evaluation of U at the value of o given in 

(4.21) can only be done crudely. We have found nonetheless that the 

following artifice works surprisingly well as we shall see in section 

IV.E: We know that U(y) = 1 + ij)Y, so as to compute U{o) we must find 

an approximation ~to 'i'y (o). We can estimate the order of magnitude 

of ij) (o) from the slope at the point o, ( = B + 2A 6), of the y 

parabolic curve used to compute 6, and then suppose 

that ij} (6) is proportional to this slope. Therefore, y 
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introducing a parameter c
1

, we have 

u(o) = 1 + c
1

{B+2Ao) (4.22) 

where c1 remains to be determined using experimental data. 

B. Equation for Mean Squared Fluctuating Vorticity 

To aid us in formulating the correct difference equations for s 

in the wall region we must discuss at length the distribution of the~ 

field throughout the whole channel. We will show that two fundamentally 

different regions, so far as the s dynamics are concerned, may be 

distinguished. The first will be a thin dissipation region near the 

wall where no production of s from the mean flow takes place, and the 

other is an outer zone where s is produced. 

Our first job will be to predict the behavior r across the channel. 

From differentiating (4.17) we find that 

r(y) = - A R {l-2y) e (4.23) 

in the viscous sublayer. We can find the distribution of ~{y) through-

out the remainder of the channel by considering what is known about 

the typical mean velocity profiles that have been measured in turbulent 

channel flows. For example, it has been experimentally observed that 

the turbulent mean velocity profiles in a channel are considerably 

flatter in the center of the channel than the parabolic velocity 
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distribution which exists in a laminar flow. As a consequence, 

1~1 = ~~~~ must be smaller in the core region of the channel in a 

turbulent flow than it is in a laminar one. 

We also know from experiments that ~~ = -~monotonically increases 

going from the center of the channel where it is zero to the wally= 0 
-

where it is ARe. Using this fact and our knowledge of~ at the boundary 

contained in (4.23) we expect the distribution of~ to appear similar 

to the form given in figure 3, where the length scale near the wall 

has been greatly exaggerated. 

Using the curve for ~ in Figure 3 we can predict the general 

behavior of ~Y across the channel. First of all, we know from (4.17) 

that ~Y = 2ARe throughout the viscous sublayer. Figure 3 then shows 

that ~ must increase iiTITiediately outside of this region reaching a y 

maximum at the place where ~ has a point of inflection and then 

rapidly fall to the much smaller value it has throughout most of the 

core region. The distribution of ~Y across the channel is plotted in 

Figure 4, (actually} ~Y is shown, for later convenience). 

It follows then that there must exist a point outside of the 

viscous sublayer, say y', where ~Y is again equal to the value 2ARe 

which it has at the wall. We will show that the-pointy' has several 

physical interpretations (as far as a two dimensional flow is concerned) 

" and that its location in the channel is of major importance to us in 

our effort to numerically solve for the mean properties of this flow. 

The first interpretation of y' has to do with the direction of the 

mean turbulent flux of vorticity. The mean vorticity equation (4.7) is 
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Q(y} (4. 7) 

which implies that when~ = 2AR = AR, ~ = 0. Therefore v·~ = 0 at Y e 
1-y•. We see from Figure 4 that for y<y', RSy>A and that for y>y' 

(more precisely 1-y• > y>y', but we will assume throughout this 

discussion that we are only referring to the half channel ~), 

~ (Y <A. (4.7) then implies that v·~ > 0 for y<y' and that v·~ < 0 

for y>y'. Since the vorticity is negative in this half of the channel 

v•~ > 0 here corresponds to a flux of- vorticity in the-y direction. 

We have thus seen that the point y' separates the flow in the channel 

into a region 0 ~y<y' where the mean turbulent flux of vorticity is 

towards the wa 11 and a region y>y •. where it is away from the wa 11 . At 

the point y• this flux is 0. 

y• may be interpreted in another way, as the point which separates 

the flow into zones of production of~, when y>y', and pure 'dissipation' 

or destruction of~ when y>y', This may be seen by considering the 

exact equation which governs the evolution of the ~ field for the 

channel problem, which is, from a reduction of (3.27): 

O : _i_ (l .£1. _ I C" I 2 ) _ 2 ~ af - _g_ (;'2 + ;'2) 
ay R ay v "' "' ay R "'x "'y . (4.24) 
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The term in the middle of the right side is the one that we previously 

indicated in Chapter III is responsible fo~ the production of ~ from 

the mean flow. However, it is clear that it can only lead to production 

of~ when v 1 ~ < 0 and this only occurs, based on our previous discussion, 

in the wall region y'>O. In the wall region where v·~ > 0, this term 

represents a loss of ·~ by a reconversion to the mean field t;2• The 

overall dynamics of ~ may be seen by integrating (4.24) over the regions 
·, 

0 E;;; ~ y' and y' E;;; y E;;; ~ in turn. 

For the wall region 0 ~~y· we find that 

( ~ ~+ «) ay y=y' Jy• -- Jy•2 
= - 2v'~ ~Y dy- R 

0 0 

The first term on the right, which is negative, is the previously 

considered loss of~ by reconversion to r2, while the next term 

represents viscous dissipation of~. Since it doesn't make physical 

sense that ~ would be produced at the wall by the molecular motion, 

we expect that ~Y > 0 at the wall, and thus the final term on the 

right represents an additional loss of ~ by its diffusion into the 

highly viscous sublayer. These three losses on the right are balanced 

by the term on the left, which is the total flux of ~ at the position 

y = y'. Since the right side of the equation is negative, we must 

conclude that the left hand side represents a flux of ~ into the wall 

region from the outer flow. All of the ~which diffuses into the wall 

region is then lost due to the various phenomena listed on the right side. 
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Now let us explore the region y' ~ ~~ by integrating (4.24) 

between these limits. We find that 

( ~ ~s + «) 
y y=y' 

(4.25) 

Since ~ < 0 in this region, the first term on the right represents 

the total production of~ taking place in (half) the channel. The 

next term represents the dissipation taking place here and the last 

term represents, as we just saw, a loss of s from the core region by 

its diffusion into the wall region. The only way in which a balance 

can be maintained in (4.25) is if the production term exceeds the 

middle term representing viscous dissipation. Therefore a net produc­

tion of ~ takes place in the core region which is in turn,balanced by 

a net loss of ~ occuring through its dissipation in the wall region. 

Since v 1 ~ = 0 at y = y' the sole contribution to the flux of 

vorticity at this point comes from the molecular motion. Thus, it is 

evident that the effects of viscosity on the vorticity dynamics extend 

out at least the distance y' into the flow. This implies that there 

is no justification for believing that the vorticity approximately 

satisfies (3.1) in this zone, i.e. that the viscous terms in the 

vorticity equation can be neglected here. We are then not surprised 

to find that the transport law (3.21) does break down in the region 
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y < y' as is obvious from the fact that both v 1 ~ and T22 ~ ~Y are 

greater than zero here. 

In deriving our difference approximation to the mean vorticity 

equation at the first grid box, in the previous section, w~ applied 

the transport law (3.21) at the point h. We had assumed then that 

the point h was far enough from the wall so that (3.21) was valid 

there. If we can now show that y' < h, then we will have some 

justification for that assumption. Fortunately we can do even better 

than this and can show that y' = o{h) if Re is sufficiently high. The 

fact that the region 0 ·~ ~y• occupies only a small portion of the 

first grid box will also be helpful to us in forming a difference 

equation for s there. 

To show that y' is exceedingly small (for sufficiently large 

Reynolds numbers) we first establish that y• has yet another interpre­

tation as the point where UTVT has a minimum. The distribution of 

urv' across the channel may be found by integrating the momentum 

equation (4.3) between y = 0 and y, and using the definition of A.. 

i 
We get 

U'V"' = (4.26) 

~/R is a significant term in this equation only for a region very close 

to the wall. Thus we expect U'V' to have the behavior shown in Figure 

3, which is a well known result. We see from this figure that urv'has 
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point }y ~ = 0. 

:-:-rrv ~ = _L li'V' 
~ ay , 

a minimum at a point near the wall. At this 

But, for an incompressible flow in a channel, 
d --and since~= 0 at y•, so must ay u•v• = 0 This proves that UTVT 

is a minimum here. 

The point where UTV' is a minimum has been measured in experiments 

of turbulent flow past walls and in channels and pipes. It is generally 

found (see Tennekes and Lumley (1972) p. 161), that this occurs at 

y*ul/v ~ 30, where ul = /L:/p is the friction velocity and L: is the 

dimensional shear stress at the wall. This point also coincides with 

the lower limit of the range of y values in which the log law of the 

wall holds, see Tennekes and Lumley (1972) and Comte-Bellot (1965). 

After nondimensionalization we have 

When Re = 57,000, A~ .00366 and therefore y• ~ .00615. h, however 

for our computations = .0625, and thus it is true for this value of 
t 

Re that y•<<h. However, as R + 0, this assumption becomes progressively 

less true and in fact for Re ~ 7500, it appears from our computations 

that h < y •. 

As a sidelight of this discussion it is interesting to note from 

Figure 3 that the molecular diffusion of momentum is much less than 

its turbulent flux, (i.e. the Reynolds stress) at the distance y• 

from the wall. The molecular diffusion of vorticity, however, as we 

I 

I 
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just mentioned is still comparatively large at y = y•, thus it is 

clear that the influence of the viscosity on the diffusion of vorticity 

extends considerably further into the flow than its influence on the 

momentum transport. This might explain, in part, why Taylor (1935b) 

saw that his vorticity transport theory was not as accurate as the 

momentum transport theory in the wall region. 

Another interesting aspect of the wall region and one which will 

have a bearing on our formulation of a difference approximation for 

~l is the location of the point of greatest production of ~ and the 

magnitude of the production there. Using (4.7) the production term in 

the ~ equation (4.24) may be written as 

-2 v't, r = -2R v't, (A+ v't,) y (4.28) 

We saw in Figure 4 that -v•t, goes from 0 at y• to a value near A further 

from the wall. Consequently (4.28) will vary from 0 at y• to a maximum 
2 ~ . -

~A R when -v•t, = A/2 and then back down to a smaller value throughout 

the rest of the core region. The point where the production rate is 

a maximum most likely lies close to the point y• since ~Y is known to 

be comparatively small a short distance into the log law region. 

Though the production rate of ~ is much less than ~A2R for most 

of the flow field, its contribution to the total amount of production 

is just as significant as the intehse production coming from the wall 

region, since this latter region is quite thin. It might be helpful 
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if we demonstrate this fact with some numbers. Suppose that the maxi­

mum production in the wall region occurred over a distance : h/2. Then 
2 

the total production here is ~ A :h , Which .for Re = 57,000 is z .024. 

A typical value of ty in the core region of the channel is '&/h, so the 

total production term of (h~lf) lhe core region is :::(2Aty) = '& ~::: .015 

It is thus clear that they are comparable. 

It is a curious fact that a similar conclusion cannot be drawn 

for the production of mean turbulent kinetic energy ~where 
q2 = ~(u' 2 + v

12
) i.e. virtually all of the production of~ takes 

place in a thin region next to the wall. To see this fact consider 

the equation describing the balance of q2 

(4.29) 

The te.rm -li'v" UY which is always positive for the flow in a channel, 

represents production of ~ from the mean flow field. This term reaches 

a maximum of ::: ~ 6 A2R at the point in Figure 3 where R UTV' = t. 
Making similar estimates as before, i.e. supposing the maximum produc­

tion rate occurs over the distance h/2 and the core region is of an 

extent ~' we find that for the wall zone the total production is 

approximately ~ · tG A2R == .003, while in the core region it is 

~U'V""" uy = ~ ~ · ~ = .0002, since uy = -r = ~ and~::: ~here. 
Our claim is thus clearly substantiated. 
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Part of the intriguing complexity of the turbulent flow past a 

wall is the fact that while the wall region is a place of large 

production of both q2 and s, it is also the place where a great deal 

of the dissipation or destruction or q2 and s takes place. It has 

been sometimes conjectured, see Townsend (1961), that the wall region 

may be considered to be in an equilibrium where the production of 7 
is balanced by its loss. To aid us in deriving a difference equation 

for s in the grid box adjacent to the wall we will extend this assump­

tion to also include the case of s· ·Specifically, we suppose that to 

a good approximation, the s which is produced in the high production 

region just outside of y', is lost by its diffusion into the 

dissipation zone y < y• as well as its dissipation in the viscinity 

of where it was made. 

Though this assumption seems equally plausible for the q2 field 

as it does for s, it has drastically different consequences on a 

hypothetical·numerical method which hopes to compute~ throughout 

the flow field by incorporating this hypothesis. Thus, if the produc­

tion of ~ in the boundary region is left out of the difference 

equation for 7 by virtue of its supposed cancellation by the 

dissipation term, then the part of the production that one is left 

with to compute, is _just a small part of the total production, therefore 

it is likely that small errors in the computations would have a 

considerable effect on the calculated solutions. Such behavior is 

clearly not expected in the case of the s equation if a similar 

approximation is made, since a goodly portion of the s production is 

being computed. 
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We now are finally in a position where we can present the differ­

ence equations that we will use to approximate (4.24). In the region 

y > y•, we presume that s satisfies the equation 

d 0 =­ay (
1 "1"2) R + T22 _v ~ + 2 T 72 ""f!- - - 2 ~ 

ay 22 y ~ 
d 

(4.30) 

which makes use of our transport law. To form a difference equation 

for the box j = 1 we difference the diffusion term in (4.30) between 

y = y• and y = h and suppose that h-y• ~ h. The evaluation of 

(1/R + T22 ~)s at y = h is no trouble but at y = y• it is. To be 
y ----r-:2 

more precise, we actually must compute} sy -v ~ at y = y• since we 

have a right to be suspicious of the transport law here. In view of 
' . . 

the limitations arising from our coarse grid we will make the following 

crude approximation: 

(
1 as 
Ray 

where c2 is another constant to be determined empirically. 

In view of our supposition as to the existence of a partial 

( 4. 31 ) 

equilibrium in the production and dissipation of s in the wall region 

about y = y•, we will suppose that an adequate approximation to the 

production term for the first box is 
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Incorporating this approximation as well as (4.31), the difference 

equation for ~, may now be written as 

n+l · n ( n n) ~, - ~, - (1 """"12 ) ~ 2 - ~, 
~t - R + T22 v 1 2 

h 

( 4. 32) 

( 

-=fl -=fl ) 2 """12 ~2 - ~1 
+ 2 T 22 v 1 h 2 ~n 

- Rf. 2 1 
d 

For the remaining boxes j=2, .•. ,M/2 we will use the following 

difference equation which is a straight forward approximation to (4.30) 

"1"2" .("tj + 1 - "tj ) 2 ~ 
+ T22 v j n + T22 v j-1 (

- - ~2 
f;j ~ f;~) 2 ~~ . 

- R:X2 J 
d 

(4.33) 
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C. Stream Function 

The stream function 'ij) is determined uniquely for a known vorticity 

field, ~' as the solution of the equation 

d
2

'ij) = - ~ (4.34) 
dy2 

with the boundary conditions 'ij) = 0 at y = 0 and 1. The discrete stream 

function 'ij}j is similarly determined from the ~j by a finite difference 

analogue to (4.34). At the grid points j=2, ... ,M/2, which are distant 

from the boundary, we may form the consistent approximation to (4.34): 

which is accurate to O(h2). 

- ~· J 
(4.35) 

When j=l, (4.35) cannot be used because this would necessitate 

the use of a point outside of the flow domain. We may, however, use 

the approximation 

-s'ij)1 + 2'ij)2 - l/S'ij}3 = 
h 

- tl (4.36) 

which may be easily verified to also be of second order accuracy in h. 
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If the equation in (4.35) when j=2 is multiplied by 1/5 and then 

added to (4.36) we get 

1 -
- ~1 - 5 ~2 (4. 37) 

The system of equations (4.35) j=2, ... ,M/2 and (4.36) have the same 

solution if (4.36) is replaced by (4.37). This latter system is a 

tradiagonal system of equations which is easily solved using the 

standard algorithm. 

Once the ~j are known we can find approximationsUj to U(jh), j=l, 

... ,M/2 from 

u. = 1 + ~j+l - ~j 
J h 

In section IV.E. we will compare the computed value of Uj with those 

found experimentally. 

D. Computation of the Velocity Moments 

In this section we will show how the ~may be computed using the . J 

We will evaluate v;2 at the point (O,jh) technique of section III.D. 

shown in Figure 5. The channel has been partitioned into boxes with M 

of them spanning the channel. It is seen that each v~ 2 is situated 

with respect to the grid in the same manner as was required for the 
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development of section 111.0. Thus we may apply the results of that 

section to the present case and find that 

~ _ h
4
c
2 

( ~ 4 v. - -2- r;J. + r;J.+l + h 
J I. 

X 

{4.38) 

where 

xj = (O,jh) and xk
1 

= (xk,y
1

) = {kh,{t-~)h). Since all of the functions 
+-+ 

Gv(xlx01) are equal to zero, we do not have to remove from the sum on 

the right the contribution from the boxes (O,j) and ~,j+l) to v~~ which 

are alreajy being accounted for by the first term on the right. Note 

also that the constant C appearing in {4.38) should depend on j, but 

exact computations of it show that the variation is so slight that it 

may be neglected. 
-+ -+ 

Gv(xjlxk
1

) represents they component of velocity induced at a 
-+ 

point xj due to a vortex of circulation one sitting at xk
1

. For a 
-+ ..... 

vortex placed in a channel, Gv{xjlxk
1

) may be computed exactly by 

setting up an array of image vortices: Plus vortices are situated at 

the points {xk,y
1
+2m),- ~ < m <+~and negative vortices at 

{xk,2m-y
1

), - ~ < m < + ~. The velocity at any point x in the channel 
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..... 
due to the vortex at xk£ is then the sum of the velocities induced at 
..... 
xj as if no boundaries are present, by this vortex plus all of the 

image vortices. 

The velocity at xj arising from this infinite collection of 

vortices may be written in closed form using the velocity field 

induced by a row of vortices, given in Lamb (1932). We have 

-+ -+ 1 sinh(Tixk) 1 sinh(Tixk) 
GV(xjlxk£) =- 4 (coShTIXk- COSTI(jh-yi} + 4 (coShTIXk- COSTI(jh+yi) 

the first term coming from the column of+ vortices and the second from 

the - vortices. 

The use of (4.38) in practice is much simplified if we define a 

function A(j,i) which gives the contribution to v~ 2 from all the boxes 

with center at y = {t-~)h. Thus 

Using this function (4.38) becomes 

r;i A(j,l) {4.39) 
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Since ~M+l-~ = ~i (4.39) may be simplified further to 

(4.40) 

where B(j,~) = A(j,i) + A(j,M+l-i). The M/2 X M/2 array B(j,~) may be 

computed once and for all .and stored, making the computation of V12
j 

a trivial operation at each time step. 

E. Results of Computations 

Before discussing the results of our computations let us collect 

together the system of difference equations we intend to solve 

numerically and the equations which they approximate. The mean vorti-

city equation is 

(4. 10) 

which we approximate at the grid points j=2, ... ,M/2 by 

(4.13) 
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and at j=l by 

(4.20) 

~ where o is evaluated from (4.2l),U
00 

from (4.22) and vj from (4.40). 

The stream function used in (4.21) and (4.22) is computed from 

equations (4.35) and (4.37). 

The equation for s is 

which is approximated by 

(4.30) 

J J-
(1 

""""'f'"";)2 ) (s~ - sn · 1) 
- R + T22 v j-1 h2 

(~ -~ 1) 2 2 s~ 
J J- -~ 

h R:\2 
d 

(4.33) 
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at the grid points j=2, .•. ,M/2 and by 

n+l r;n ( ) (" ") r;l - 1 1 ~ r;2 - r;l (, '2) r;, 
= R + T22 v 1 h2 C2 R + T22 v 1 bt h2 

(4.32) 

(~ ~y ~ F,;2- F,;l 2 r;n 
+ 2 T22 v 1 . h - Rt.2 1 

d 

at the grid point j=l. 

After values have been assigned to the various parameters in the 

difference equations, we will then have a complete system of equations 

with which to solve for the grid functions ~j and r;j. As mentioned 

earlier, the equations are to be solved by iteration from initial values 
_o o -n n 
F,;. and r;. until F,;. and r;. have converged to a solution of the time 

J J J J 

independent equations. Our criterion for deciding that convergence 

occurred is the condition that s~pl~+l_ ~l<lo-10 and· 
J 

has 

The integration time step bt, must be chosen to be small enough so 

that the difference equations are stable. We may set an upper bound to 

bt by the requirement that 
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which generally must be satisfied ~or n·umerical approximations to the 

heat equation such as (4.13). Since we only s~ek steady solutions of 

our ~ifference equations, we will also find out aposte~iori from the 

fact of convergence of the iterations, that the value of ~t was small 

enough. 

For the time step and initial conditions we have used, the conver­

gence is in general quite rapid, requiring < 3000 iterations and less 

than a second of CDC 7600.computer time. The only exception to this 

is at Reynolds numbers within the range separating the turbulent 

solutions from the laminar solutions. Here, convergence may take 

considerably longer, on the order of 40,000 iterations. 

The solutions we have found are independent of initial conditions 

so long as all of the ~. 0 are not equal to 0, for in that case, as is 
J . . 

apparent from equations (4.32) and (4.33), the solution cannot help but 

be the non-turbulent parabolic flow. The iteration scheme advances by 

using the known values of~. to compute iVj by inverting equations (4.35) 

and (4.37), .and then using (4.21) and (4.22) to find values of o and 

Uoo to be used in (4.20). The values of ~j are used to compute the 

v'} from (4.40) and then the new values of ~+l and ~~+l are obtained 

from (4.13), (4.20), (4.32), and (4.33) and the cycle is repeated again. 

It is worthwhile at this point, before going into the numerical 

results, to recapitualate what are the failings of the system of 

equations that we hope to solve numerically for the mean properties of 

the flow in a channel. These limitations are: 
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( i) The transport law introdut,~s the Lagrangian integral 

time scale T22 , which is as yet indeterminable from theory. 

(ii) The dissipation term in the equation for ~ and the local 

term in the equation for ~ introduce the ,Taylor vorticity microscales 

A.x and A.Y which are a~--property of the small scale motion and again are 

not yet amenable to theoretical prediction. 

(iii) For modest Reynolds numbers, just outside of the lami-

nar range, the distance y' may be comparable to h, and in that event 

our use of the transport law in deriving the difference equations for 

the first two boxes would be unjustified. 

(iv) The production term in (4.32) which is for the box 

adjacent to the wall has only been estimated roughly. 

(v) The rate of diffusion of ~ into the region y < y' has 

been modeled crudely in (4.32) and this has resulted in the introduction 

of a constant c2 which must be determined empirically. 

{vi) The need to compute U at a point o within the sublayer 

has introduced another unknown parameter c1, in equation (4.22} . 

. The problems listed in (iv)-{vi) are those that we hope may be 

solved one day by a more sophisticated mathematical treatment of the 

wall region. (i}-(iii) on the other hand, present much more fundamental 

difficulties and will require extensive new theoretical development 

before they are resolved. 

We will determine values for the unknown parameters by using the 

experimental results of the flow in a channel at Re = 57,000 which were 

obtained by Comte-Bellot (1965}. This will keep our reliance on 

•, 
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experiment to a minimum, but also will necessitate making the assumption 

that none of our parameters change with Reynolds number. Since we 

obtain generally good results with these parameters for the two other 

Reynolds numbers, i.e. 120,000 and 230,000 that Comte-Bellot studied, 

we may suppose that, in fact, these parameters do not change greatly 

for large Re. 

We should point out that there have been at least three other 

published experimental studies of the flow in a channel, one by 

Laufer (1953), one by Clark (1968) and one by Eckelmann (1970). We 

have not yet seen this last one, and the work of Clark will not be of 

much use to us because it does not provide us with sufficient detail 

.on the quantities we will need. The work of Laufer does, but we found 

it to be in serious disagreement with that of Comte-Bellot, forcing us 

to choose between the one or the other to use. We chose to use the 

data of Comte-Bellot because it is more recent than that of Laufer 

and is from a channel which is longer and has a higher aspect ratio 

than the one used by Laufer. 

The first kind of data that we will use is the experimentally 

determined friction coefficient. Actually, the quantity which is 

measured is ~p*/~pU*2 , where U* is the (dimensioned) centerline 
. 0 0 

velocity and ~p* = p*(x)-p*(x
0

) is the absolute mean pressure drop 

between a fix~d position x
0 

in the channel and the variable point x. 

When Re = 57,000 we see from the experimental data that 

p*(70D) - p*(l20D) = 
L U*2 "'2P o 

.150 
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Since 

(p*{700) - p*(l200)1 20 = 2T:(l200- 700) 

we must have 

where U
0 

is the dimensionless centerline velocity. We thus have the 

result that for Re = 57,000, 

(4.41) 

If we use (4.41) in place of 

(4.42) 

in (4.20) then we may determine all of the parameters except c1 by 

adjusting them until the computed and experimental predictions of the 

velocity profile at Re : 57,000 coincide. After this is done, c1 may be 
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·determined from the requirement that (4.41} and (4.42} are equal. 

The selection of a value of Ad is governed by the following 

consideration~: The sole source of production of ~ in our two 

dimensional model comes from the term 2 T22 ~ ~ in (4.30}. In the 

core region of the channel where~~ is small, the mean vorticity 

equation (4. 7) implies that T22 ;-?~Y " A. Therefore the local rate 

of production of ~ in the channel is 2 A~ . For a given Reynolds y 

number A and ~Y are determined and thus the rate of production is fixed 

and is essentially independent of the value of T22 . As a result of 

this we are limited in the choice of Ad that we may make because we 

do not wish it to be so small that the dissipation rate is too much 

for the fixed production rate and therefore prevent us from finding a 

solut1on to the equations. 

We also believe that most of the dissipation of~ takes place in 

the dissipation zone y < y• that we have discussed. Therefore we 

wish to choose a value of Ad that will allow most of the dissipation 

to occur by its.diffusion into the wall region. A typical value of 

~ which satisfies this conditions and also does not cause the 

~~ssipation rate to be too large is~ = 10. This value of~ 
Ad Ad 

implies that\ and AY are considerably larger than hand thus the 

condition that \ and AY be < h which was suggested in section III.D. 

is violated. If we were to set Ax = AY ~ h/2 so as to satisfy this 

condition then we would find that even with c2 = 0 which implies that 

no ~ diffuses into the wall region, the dissipation far exceeds the 

production of ~ and hence no solutions may be found. 



82 

The cause of this difficulty apparently is our restriction to two 

dimensions. By going into three dimensions we would then be able to 

include the production of ~ arising from vortex stretching and other 

causes, which would in turn allow us to significantly increase· the 

dissipation rate by decreasing Ax and Ay· 

We will arbitrarily assign T22 the value .4 which insures that 

v' 2 is the right order of magnitude. This value is also of the 

magnitude of some Eulerian integral scales which have been measured by 

Comte-Bellot (1965). The value of c2 will be found by a comparison of 

the computed results with experiments. Before showing how this is done 

we will show that the computed solutions for~ and hence U only depend 
c 

(roughly) on the ratio ~ = c2 X~ which is reflective of the relative 
l/A 

amounts of dissipation whigh occur in the wall region as against the 

core region and on the ratio T22!(1/A~) = T22 A~ which is suggestive of 

the strength of the production term in compar-ison to the dissipation 

terms in the core region. 

To see this, suppose that A and U are fixed. Thus ~Y is set 

and the~ equation is unaffected if T22 is replaced by K T22 and~ 
by t ~where K is a constant. Now consider the equation for z;, (4.30). 

To preserve T22 A~ we must substitute i A~ for A~, and to preserve. 

c2 A~ we must then use KC2 for c2. Also, (4.40) implies that we can 

change~ to ~~by replacing ~ by t ~. We have just established 

that with r22 A~ and c2 A~ held constant but with T22 , 1/A~ and c2 
all multiplied by a factor K, we will obtain, {modulo the diffusion 

tenn ~ (~ + T 22 ~) * in (4.30) whose effect on this argument 

I 
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turns out not to be major in practice) the same solution for U but 

with the ~ field approximately equal to ~ ~. From computations we have 

performed we have found that U will experience a change of·less than 

2.5% for factors K such that~~· K ~ 2. 

This argument shows that T22 may be adjusted later if we so desire 
2 '""2 . 

(and thus also ~d and c2) to insure that v is equal to its experi-

mentally determined value. However, as we will show later, there is 

some disagreement between the shape of the computed distribution of 
7 v across the channel with that of the experimentally determined one, 

making it pointless to adjust T22 . 

We are now left with the determination of c2. c2 will be found 

by adjusting it until the velocity profile found experimentally at 

R = 57,000 matches the computed one. We found that this occurred e 

when c2 = 1.25. The closeness of fit is shown in Figure 6. As mentioned 

we now can determine c1 and we found that it is equal to 3.28. 

Wei have presumed in this analysis that T22 and ~d are constant 

throughout the channel. There is some experimental justification for 

the belief that this is approximately true. Comte-Bellot (1965) and 

Laufer (1953) have measured the integral scale · 

00 

LY = v~2 J v' (x,y)v' (x,y+r) dr 

r=O 

and velocity microscales similar to our \ and ~y' and found that 

they do not vary greatly across most of the channel. We will take 

these facts to mean that the character of the turbulence does not 
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' radically change throughout the core region and that it is not 

unwarranted to presume that T22 and Ad are constants. 

We now have our parameters specified and we can investigate the 

predictions of the theory for the full range of Reynolds numbers. We 

first must make a comparison of the computed and experimental results 

for the Reynolds numbers 120,000 and 230,000 which were also studied in 

detail by Comte-Bellot. For Re = 120,000 the experimentally determined 
2 . 

value of A/U
0 

was .0026 and our computed result was .0023. Similarly 

for Re = 230,000 experiment found A/U~ = .00206 and our computed result 

was .00172. Figure 6 shows a comparison for each of these Reynolds 

numbers of the computed and experimentally determined mean velocity 

profiles. It is seen that the agreement is quite good. Figure 7 shows 

a comparison of the velocity profiles of the 3 Reynolds numbers studied 

by Comte-Bellot with our numerical predictions of these curves. 

Figure 8 shows our prediction of the friction law, i.e. the 

dependence of A on Re' for R up to 1,000,000. This result must be 
e ' 

viewed. with some caution .in the lower range of Reynolds number in 1 ight 

of the questionable validity of our difference equations there. A drag 

crisis is clearly evident in Figure 8 at low Reynolds numbers where the 

values of A suddenly increase from the laminar friction law A = 6/Re, 

which is represented by the straight line on the left. A distinct 

bifurcation in the computed results is observed at Re z 6500. This is 

a critical Reynolds number, below which the solutions are laminar and 

above which they are turbulent. We cannot actually compute a smooth 

transition from the laminar solution to the turbulent ones because 
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our method of computing U and 0 breaks down for the parabolic case. 

This could be easily corrected by a suitable artifice in our computer 

program but the only gain in doing this would be aesthetic. The 

collapse of our computed solutions to the laminar case is manifested 

quite clearly in practice and is equivalent to actually giving a 

prediction of the parabolic curve. 

There has been at least one experimental study of the instability 

of a flow in a channel, that of Kao and Park (1970). They found that 

the critical Reynolds number at which all small amplitude disturbances 

were damped was Re ::: 5850. They also observed that at Reynolds 

numbers lower than the critical value, disturbances o( sufficiently 

large amplitude would cause subcritical neutral disturbances. Thus it 

is an open question as to what Reynolds number would be the upper limit 

at which the flow would be stable to all finite amplitude disturbances. 

The important point here is that the experimental and computed critical 

Reynolds numbers are of the same order of magnitude. That our numerical 

method is able to predict this qualitative behavior is a strong indica­

tion that we are doing justice to the physics of turbulent flow in a 

channel. 

For a particular ~hannel, i.e. 0 fixed, and a particular fluid, 

i.e. p and u fixed, an engineer is interested in how much mass flow 
-* 

Urn can b~ obtai~ed as a function of pressure gradient ~~* . Since 

' R2 = ap* (20) -d R U 20/ F' 9 h' h . 1 t f 1 A ~ 2 an = m v, 1gure w 1c 1s a p o o og 
2 pv . -

t.R vs. log R graphically illustrates the crisis which occurs as the 

fluid becomes turbulent. On the left where the flow in laminar, 
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~ = 12/R and thus ~ R2 ~ 12R which implies that Urn will increase 

linearly with ~~=· However it is seen that when the flow becomes 

turbulent at R ~ 14,000 Urn is then barely affected by an increase in 

ap** until large pressure gradients are reached. This phenomenon is the ax 
drag crisis which arises from the increased ability of the turbulent 

fluid to deposit high momentum fluid near the wall. As the Reynolds 

number get very large Figure 9 shows that Urn varies with only the 2/3 

power of ~~=and not linearly as occurred in Poiseulle flnw. 

In Figure 10 is a family of computed velocity profiles covering 

the full range of Reynolds numbers, 4500- 1,000,000 that we studied. 

For comparison a plot of the parabolic velocity profile is included. 

Figure 11 shows the computed mean vorticity profiles for the same 

range of Reynolds numbers. The straight line eviden/t in this picture 

is the vorticity profile for laminar flow. 

The dependence of the ~ distribution on Re is shown in Figure 12, 

while Figure 13 shows a plot of v' 2 for Re = 57,000. It is apparent 

from Figure 12 that themagnitude of~ increases with Re to a maximum 

of Re ~ 30,000, and then decreases subsequently. The velocity corre­

lation ~ has the same dependence on Re as does ~ so the curves of 

~also decrease with increasing Re above 30,000. This behavior of 

v
12 

for high Re is qualitatively the same as has been observed 

experimentally by Comte-Bellot. 
'2 It is evident from Figure 13 that v decreases gradually to a 

value of 0 at the wall. The local contributions to~ for the value 

of ~x that we have used, are negligible, thus the shape of the distri­

~ bution of v is being determined by the fact that the ~j are smaller 
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-+-+ 
near the wall than in the center and by the~values of the Gv(xlx') 

which are determined by the geometry of the channel. We found that 

the latter factor is generally much more important in determining the 

shape of~ distribution then is the values of the s·· 
J 

As previously mentioned, this result for the computed shape of 
~ v departs considerably from what has been observed experimentally. 

~ There it is found that v is roughly constant across most of the 

channel and drops to zero sharply at a short distance from the wall. 

One apparent explanation of this discrepency, that can be shown 

to be wrong, is that we have chosen Ax to be too large in the first 

few grid boxes so that the local contribution to ~here are much 

smaller than they should be. This argument can't be true, because.to 
'1"2 make A~ small enough near the wall so that v will be nearly constant 

across the channel, would also have the effect of driving up the total 

dissipation of s so high that it would greatly exceed the total produc­

tion of staking place in the channel. Also, as previously mentioned, 

we would not expect to find in a real flow the large variations of Ax 

across the channel that this action would mandate. 

The most probable cause of the anomalous distribution of v;2 is 

the fact that we have considered a purely two.dimensional turbulent 

flow. This explanation may be made more plausible if we attempt to 

compute ~through the use of our formula (3 . .48). We find that 

the contributions to urvr from all of the distant grid boxes cancel 

with one another because of our assumption of the uniformity of flow 

conditions up and downstream. We are then left with the relation 
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(4.43) 

We saw in equation 4.26) that U'v':::: A/4 for part of the core 

region, and if the right side of (4.43) is to be of this magnitude 
a2R . 2 2 

then axa (O)must be quite large, in fact>>~ (0) or~ (0). 
Y ax2 a 2 

This result, which is of doubtful physical validity, is ~ necessary 

consequence of presuming that purely two dimensional turbulent motion 

would give rise to the mean flow field that is found experimentally in 

a three dimensional channel. In the real flow in a channel, the major 

source of correlation between u• and v• arises from vorticity lying 

above and below and parallel to the x-y plane and aligned in the 

direction of the principle rate of strain, see Tennekes and Lumley 

(1972) p. 41. Since this contribution to U'v' is clearly left out of 

our two dimensional model, it explains the origin of the physically 

implausible relation (4.43). Further, this same vorticity may be 

seen to also contribute~ and if accounted for might bring the 

computed distribution of~ across the channel into line with 

experiments. 
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V. FLOW IN A CYLINDER 

In this chapter we will apply the method of coarse graining to the 

study of the turbulent flow in a two dimensional idealization of an 

internal combustion engine cylinder. We will only consider the flow 

during the piston's travel from BDC (Bottom Dead Center, i.e. the 

furthest position the piston takes from the cylinder head, see figure 14), 

to TDC (Top Dead Center, i.e. the piston's closest approach to the head), 

with the valves shut, i.e. the compression stroke. 

In section V.A. we will derive the system of difference equations 

with which we intend to solve for the flow in the cylinder. Our dis­

crete approximations ~ij to ~ and ~ij to ~ are defined on a grid which 

collapses with the changing size of the flow domain. To obtain the 

difference equations (5.9) and (5.10) for ~ij and ~'ij respectively, at 

interior grid points, we approximate the equations for ~and ~ derived 

in Chapter III. We then give representative examples, eqn. (5.15) for 

~ij and eqn. (5.16) for ~ij' of the type of difference equations that 

we use at the boundary. To derive these we borrow slightly from our 

experience with the channel problem. 

Due to the changing size of the flow domain the Green's function 

used in the computation of uiuj must be evaluated at every time step. 

Our method of calculating the Green's function uses a fast direct method 

of solving Poisson's equation and is presented in section V.B. Equation 

(5.33) gives an explicit formula for u~i in terms of the Green's func­

tion and (5.34) gives the stream function. Using the stream function 

the components of the mean velocity field are then computed from 

(5.35) and (5.36). 
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In section V.C. we present the results of our computations of the 

flow in a cylinder. We have paid particular attention to predicting 

the mean flow field which occurs in the cylinder at the time of igni-

tion and have shown how these conditions change with stroke-to-bore 

ratio. 

Lengths in this problem will be scaled using the bore B so that the 

nondimensional flow domain is a rectangle with constant width 1, and a 

length xp which varies with time. The wall at x = 0 is fixed and the 
' 

one at xp represents the piston face and is in motion. To find xp we 

must first define some of the technical terms used to describe engines. 

The crank angle, a, is defined as the angle which the crankshaft 

journal, see figure 14, makes with its position at TDC, reckoning so 

that a= -180° at BDC and a= 0° at TDC. The stroke, 2r, is the dis­

tance traveled by the piston from BDC to TDC. If L is the length of 

the connecting rod, then the distance between the position the piston 

occupies at TDC to its position when the crankangle is a is, say 

d = r(l-cosd) +L-,JL2-r2sina. (r/L) 2 for many engines is near .07 

so it is common practice to suppose that L-,JL2-r2 sina~o and thus 

d=r(l-cosa). The compression ratio, x, is the ratio of the volume of 

the flow domain when the piston is at BDC to its volume when it is at 

TDC. Using x and d it is not hard to show that 

Xp = o (X~ l + i(l-cosa)) (5.1) 

where o = 2r/B is the stroke to bore ratio. 
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It will be most convenient for us to define a dimensionless time t 

with the property that t=O at BDC and t=l at TDC. To do this we first 

relate a to a real time coordinate, t•, through a=-n+2nwt• where w is 

the rate of revolution of the crankshaft in revolutions per second. 

Defining t=2wt• we get the desired relation between a and t, i.e. 

a=-n+nt. In terms oft (5.1) becomes 

(5.2) 

For the flow conditions of a typical engine the Mach number formed 

from the maximum piston velocity i~ small enough so that compression 

waves formed at the face of the cylinder rapidly disperse throughout 

the whole domain before the piston moves appreciably. Thus the com­

pression of the fluid may be assumed to take place instantaneously and 

uniformly as the piston moves. Since there will be no combustion 

taking place during this stroke, there is then no possibility of 

gradients in density arising from this cause either and hence we may 

then make the simplifying assumption that the density p depends solely 

on the time. 

It is clear that this assumption about the density is equivalent 

to supposing that the thermodynamic pressure (as compared to the dynamic 

pressure) varies uniformly with time also. With both the density and 

thermodynamic pressure uniform we may also conclude that the tempera­

ture is uniform, and thus that the flow is adiabatic and reversible. 
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If the charge is considered to behave like a perfect gas, then from 

our knowledge of the density we may find the thermodynamic pressure 

and temperature from the relations: 

p - (p ) y 
Po - Po and 

where y = Cp/Cv is the ratio of specific heats. The conservation of 

mass implies that 

thus 

P (X (o) )Y 
Po = ¢11-

The dilatation 

and T -
To -

l d u 
8=--~=_p_ 

P dt xP 

(

X (o)) y-l 

VtT 

(5.3) 
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where 

dx 
U __Q -07T • 

p = dt = 2 s 1 nTit (5.4) 

is the velocity of the piston. e is uniform throughout the flow field. 

We will separate the velocity field u into a compressible and 

irrotational 
+ component u1 

+' 

component Uc = (U ,V ) and an incompressible and rotational 
+ c c 

= (u1,v1). Uc will account for the compression of the 
+ + + 

fluid due to the piston and is a sure function, while u1 = U + u' is 
+ 

random. Uc satisfies the boundary conditions Uc = 0 at x = 0 and 

Uc =UP at x = xp' and Vc. = 0 at y = 0 and 1, while u1 must satisfy 

u1 = 0 at x = 0 and xp' u1 =-Uc at y = 0 and l, and v1 =oat y = 0 

arid 1 and v1 = -Vc at x = 0 and 1. 

Since e is known we may compute uc a priori. To satisfy the 
+ + 

irrotational requirement on Uc we define a potential ¢ via Uc = V¢. 

Then¢ satisfies v2¢=G, with specified values of its normal derivatives 

at each boundary. This is a Neumann Problem which has a unique solution. 

Using (5.3) the solution is easily found to be ¢ = ex2/2 + constant. 

Thus 

(5.5) 
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-+ 

Since 8 is a sure function, so is Uc and as hypothesized, this part of 

velocity field makes no contribution to the fluctuating velocity field. 

Using the previously defined length and time scales for this 

problem we may form the velocity scale 2Bw. The Reynolds number 

appearing in the equations of motion is then 

2 
R = 2B wp 

11 

which is time dependent due to the density and the viscosity 11· The 

viscosity is time dependent through its dependence on the pressure and 

temperature. For simplicity we will assume that the kinematic viscosity, 

u = 11/P is constant during the compression stoke and therefore that R 

is also. In application it is a simple matter to supply the proper 

dependence of 11 on T and p. 

We will assume that the mean flow pattern is symmetrical through 

reflection in the line y = ~- As a consequence, U(x,y} = U(x,l-y) and 

V(x,y) = -V(x,l-y). These relations then imply that ~(x,y) ·= -~(x,l-y), 

and if we use a stream function to represent U then we must have 

ij}(x,y) =- ij}(x,l-y}. 

At t = 0 we will divide the flow domain into N x M boxes of equal 

size with M boxes spanning the width of the cylinder and N boxes its 

length. Once constituted, we will consider these boxes to move with 

the velocity Uc, and consequently the boxes will remain uniform in size. 

The boxes will have the constant width 6y = 1/M and a variable 

length 6x = xp(t)/N. The collection of centers of the boxes at any one 
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instant: 1((i-l:!}flx,(j-l:!}fly) :i=l, ... ,N and j =l, ... ,Mf form a 

staggered grid, which collapses as t varies from 0 to 1. Our discrete 

representations, ~ij' ~ij and ¢ij of~' ~ and¢ respectively, will be 

defined on this grid. We will use the superscript •n• to denote the 

discretized time step which the grid variable refers to. Thus, for 

example ~ijn approximates~ ((i~l:!)flxn,(j-l:!}fly,nflt) where 

flxn = xp(nflt}/N and fit is the integration time step. 

A. Difference Equations 

We saw in section IV.E. that to accurately predict the values of 

the velocity correlations urvr one must make a three dimensional 

simulation of the flow field. Since we do not propose to do this here 

we will suppose instead that the qualitative features of the flow in the 

two dimensional cylinder will not be strongly affected if all terms in 

the equations for~ and ~ containing "U'V" ar~ set equal to zero. With 

this assumption the e~ations governing~ and ~ for the flow in a 

cylinder are 

Clt,: -+ -+ 
- = -(U +U) at c 

(5.6} 

and 
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( 

--,-;;- ---r-;') ( - ) 2 + _L l. + T v 2 ) ~ + 2 T . 2 a~ 
ay R 22 ay 11 u ax 

(5. 7) 

where for simplicity we will assume that (5.6) and (5.7) may be used 

everywhere in the flow domain. 

In forming difference equations for~. and~~. which are consist-1J 1J . 

ent to (5.6) and (5.7) we must be careful of how we account for the 

collapsing grid. The index 'i' in ~j refers to the point (i-~)~xn 
-;:f\ -;:f\ + 1 so that even though ~·. and ~·J· may have the identical i index, i.e. 

lJ 1 

they refer to the same grid box, they do not refer to the same physical 

point in space. Consider the finite difference approximation: 

~:1 - ~. 
1J 1J 

~t 
(5.8) 

We may show that because of the movement of the grid this term actually 

represents an approximation to ~t + Uc ~x and not just to ~t: Substi­

tute the function ( into (5.8) to get 
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t (<i-~)~Xn+l'(j-~)~y,(n+l)~t) - '( ({i-~Mxn,{j-~)~y,n~t) 
~t 

= 

= 

= 

= 

Q.E.D. 

The difference equations to follow will use this time differencing, 

so that to have equations consistent with (5.6) and (5.7) we will not 

have to further consider the term uc;x in (5.6) or uc~x in (5.7). 

The difference equations for the interior boxes where i = 2, ... , 

N-1 and j = 2, ••• ,M/2 are 
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~ ""'2 where U.J. and u .. are at the point (i~xn,(j-~)~y) and v .. and v .. are 
, 1J 1J 1J 

evaluated at ((i-~)~Xn,j~y) and·en = e(n~t). The convection term in 

both of these equations has been written in conservative from for ease 
I 

of progra11111ing. 

The special form for the boundary condition to the mean vorticity 

equation which was derived for the channel problem will not apply to 

the present case. However we may still suppose that the total vorticity 

flux normal to a boundary does not change rapidly across the wall region 

in spite of the fact that the molecular flux and the turbulent flux may 

individually vary greatly. Thus the boundary condition to the "[ 
1 a[ equation will be the vorticity flux from the wall, i.e. Ray at the wall 

y = 0 and l ~ at x = 0 and x . R ClX p 

We approximate this flux by, e.g. at y = 0: 

l at,; ::: l (n~y/2) - Iw) 
R Cly y=O . R ~y/2 

(5.11) 

where tw = t(o) and we presume here that all quantities are at a fixed 

value of x. The approximation in (5.11) is not unreasonable because the 

typical Reynolds numbers we will encounter, e~g. when an engine is 

rotating at 4000 rpm is only :::: 5000. Since ~ =- ~YUI we must 
y=O 

estimate~~ at the wall to complete (5.11). To do this we will say 

that 
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au _ a (u +U) 
ay - ay c (5.12) 

y=O y=O 

where U' and o' are a typical velocity and length at the outer edge of 

the region of rapid variation next to the wall. Using ijj we may define 

U' as the average mass flow velocity in the region between y = 0 and 

y = 6y/2, thus 

U' ~ o r2

(Uc+U)dy = u/{- + ~ (') 
0 

or 

(5.13) 

We will define o' as a mass displacement thickness, by the 

requirement that 
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which says that the total mass flow between 0 and ~y/2 is equal to the 

product of the velocity at ~y/2 and the reduced distance ~y/2- o'. 

If we assume that U(~y/2) z (~i 2 - ~il)/~y then we find that 

o' = (5.14) 

This same expression for o • may be obtained by an argument which 

is similar to the one that was used to obtain o for the channel problem 

in section IV.A. In the present case one may show that o' is the value 

of y at the point of intersection of a line leaving the origin with 

slope -Uc' with the extension of a straight line connecting {~y/2, ~il) 

and (3~y/2, ~i 2 ). Thus instead of using a parabolic arc coming from 

the grid points near the wall to approximate~ as was done in IV.A, 

here we are using a straight line. 

Formula (5.14) gives a reasonable value of o' when the flow near 

the wall has a turbulent boundary layer. In flow situations such as 

when the piston is near TDC, we don't necessarily expect to find the 

type of large gradients in U and~ which are required for (5.14) to make 

sense, so in this case we will set o' = ~Y /2. 

Using the approximations (5.11) and (5.12) and similar relations 

for the wall x = 0 we may write out the t equation to be used at the 

corner box i = 1, j = 1: 

..... ·~. •. 
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~+1- ~ 
11 11 

n (-;:11 -;:fl ) v,, f,;l2 + f,;ll 
~t 2~y 

-=11 ( 1 '""2 n) -t,;11 en + R + r11 u11 

- 2 ~n 2V 
1 

) ( 1 ~) ~ 2 - ~ 1 
R(~X )2 11 - ~Xn + R + T22 vll 2 . n (~) 

(5.15) 

where V' is defined analagously to U' and we have used ~Xnf2·at the 
I 

walls x = 0 and xp in place of computing a length like o . 

Note that there is no need to introduce any special arbitrary 

parameters, e.g. in the definitions of U' or o', because we have no 

quantitative experimental data with which to compare our results. 

Similarly, we will use the following equation at the corner box i = 1, 

j = 1 which is also free of additional parameters: 
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n n 

C ozn) r;;21 - r;;ll 
+ R + Tn u 11 

(~Xn)2 

n n 

C ozn) r;;l2 - r;;ll 
+ R + T22 vll (~y)2 

2 

'2"(~1 -~1) + 2 T11 ull ~X . 
n 

2 n - 1';;11 

~R 

n C . ozn) r;;ll 
- R + T11 u11 (~Xn)2• 

n c '2") r;;, 
R + T 22 vll . (~y)2 

+ 2 T ~ 12 - 11 "( ~r ' 22 11 ~y 

(5.16) 

The stability analysis of the difference equations (5.9) and 

(5.10) et.al. is unaffected by the fact that the grid is collapsing, 

except as in so far as ~xn is changing in magnitude. The complexity 

of these equations is such that we will do no more than impose the 

stability conditions which are applicable for a linear system with 

constant coefficients, i.e. 
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t.t [ 
1 

2 (J + r11 ~~P u~J~) + 
1 

2 (} + T22 su.p v:~ )] 
(t.xn) lJ (l~y) ij lJ 

t.t ~~piVijl < t.y 
lJ 

In practice these conditions pose no hardship to finding a useful value 

of t.t for which no instabilities appear in the computations. 

B. Computation of Stream Function, Mean Velocity and Velocity Moments 

The functions Gu(xl'x') and Gv(xl"x') which are used to compute~ 
""""'2 and v will have to be recomputed at every time step in this problem 

because of the changing size of the flow domain. The functions may be 

calculated exactly by setting up a lattice of image vortices in the 
"""1"2 """1"2 plane and adding up their contributions to u and v , as was done in 

the channel problem. This is, however, a very slow procedure computa­

tionally, so instead we will compute the functions Gu and Gv 

only approximately but by a considerably faster method. 

' ' 
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To explain this procedure, let us consider two general functions 

f{x) and g{x) which are related through Poisson•s equation v2f = g on 

our rectangular domain D. f, in addition, is required to be 0 on the 

boundaries. As we saw in eqn. {3.37) f is determined by g through the 

integral relation 

f(it) = JG(itJit• )g(it• )dit' 
D 

We will find an approximation to G{xlx•) by forming an analogue to 

{5.17) in terms of grid functions. 

{5.17) 

Let f;j and gij be approximations to f and g, respectively, at the 

point indicated by {i,j) on our staggered grid. We relate f .. and g .. 
lJ lJ 

through a difference approximation to Poisson's equation. For points 

at a distance from the boundary we use the standard five point approxi-

mation to the Laplacian: 

f,.+l J. - 2f .. + f. 1 . f. "+1 - 2f. . + f. . 1 
_.:..._:_~ _ _..:..,1 "'-:J ;;.-----'-1 ---=--~J + , J 1 J 1 J - = 

{~x)2 {~y)2 
g .. 

1J 

and at a wall, i.e. i = 1 or Nand/or j = 1 or M, we use, e.g. 

when j = 1, l < i < N: 

(5.18) 
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fi+l 1 - 2fi 1 + fi-1 1 f; 2- 3fi 1 
(6x) + (6y)2 = ·9.i 1 

and e.g. in the corner i = 1, j = 1: 

+ f 12 - 3f 11 = 
(6y)2 

Equations (5.19) and (5.20) ar·e not formally consistent with 

(5.19) 

(5.20) 

Poisson's equation, however, the use of them may be justified by a 

simple physical argument for the case in which f is the stream function 

~: Consider)the process of making a finite difference approximation to 
2-

au =~near the wall y = 0, in a turbulent flow when we expect that a 
ay ay2 
sharp gradient in U exists in a small region next to the wall. We may 

say 

au = 
ay y=~ 

2 
( 5. 21 ) 
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where U' is a typical velocity just outside the region of large 

variation in U and which we make take to be the average velocity U' 

defined in (5.13). The term (Uc+U)y=~y may be approximated as 

and thus (5.21) becomes 

(5.22) 

which is used in the making of (5.19) and (5.20). 

The motivation to use this special differencing at the wall comes 

from the fact that the relations (5.19), (5.20) et.al. will permit us 

to use a fast direct method of solving Poisson's equation for the 
' staggered grid, a very important consideration. The only alternative 

differenciflg procedure we know of that also admits of a solution by a 

fast direct method, is to interpolate the mean vorticity field onto a 

non-staggered grid, and then solve a system of equations like (5.18) 

which relate the ~ij on this grid. We have found that for a test 

problem containing a turbulent-like vorticity distribution for which 

U and ~could be obtained analytically the procedure we have elected 
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to use predicted U more accurately over more of the flow domain than the 

alternative procedure, and therefore we chose to use it. 

Now to continue our argument, we fix indices k and t, and suppose 

that g .. is lJ 
~ -

equal to ~x~y oin oJ.m where o. is the Kronecker delta . 1n 

function. The solution of the di~ference equations (5.18) et.al. for 

this special function gij we call G~j. If we compute the functions G~j 

for each value of (n,m), n=l, ... ,N and m=l ... ,M then it is a simple 

matter to show that, for an aribitrary function gij: 

N M 
fij = :E ~ 

n=l m=l 

nm G .. g .. ~x~y 
lJ lJ (5.23) 

(5.23) is formally an approximation to (5.17) and we may suppose that 

G~ll_l:::: G ((i-~)~x,(j-~)~YI (n-~)~x,(m-~)~y) . 
lJ -

nm In practice we will only have to compute Gij for n=l, ... ,N/2 and 

m=l, ... ,M/2 because we may use the following relations which arise from 

the symmetry of the rectangle: 

Gn .•. M+ 1-m = Gnm 
lJ i M+l-j 

G~;l-n,M+l-m = G~~l-i M+l-j 

to compute the others. 



110 

We will now show how the system of equations {5.18), (5.19), 

(5.20) et.al. may be solved using a fast direct method based on numerical 

separation of variables: We presume, initi,a11y, that gij is a general 

grid function and will specialize it later to obtain the G~j. let us 

define column vectors fi and gi through 

; 
' g - • 

The system of equations (5.18) et.al. may be written concisely in terms 

of these vectors as 

i =2, ••• N-1 · 

fi+l - 3fi + (B-21) fi = gi 
(~x)2 (~y)2 

i=l (5.24) 

fi-l - 3fi + {B-21) fi = 
9
; 

{~x)2 . . (by)2 
i=N 
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where I is the M x M identity matrix and 

B -

is also a M x M matrix. 

Since B is real and symmetric it is self adjoint, and there exists 

a complete orthogonal set of its eigenvectors. The matrix B is of a 

type studied by Gear (1969) and we find there that the eigenvectors of 

B are 

sinak(l-~) 

sinak(2-~) 

• 

k=l,2 ... ,M where ak = kn/M. We define ¢kl = sin(ak(t-~)), 

£=1 ,2, ... ,M and also 
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The eigenvalue corresponding to ¢k is Ak = 2cosak. Since the ¢k are 
; i linearly independent and complete we may write f and g as a linear 

combination of them, viz: 

and 

The orthogonality of the ¢k implies that the inner product of 

¢b and ¢b is 

(5.25) 

(5.26) 
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f M/2 k r M 

l M k = M 

Substituting (5.25) and (5.26) into (5.24) and taking the inner product 

with respect to each ¢kin turn, k=1, ... ,M, gives the following system 

of equations for the s~·s in terms of the A~·s 

i=2, ... N-1 

Bi+1 - 3Bi (' 2) Bi 
1\ - k . 

k k+ =A, 
(~x)? (6y)2 k 

i = 1 ( 5. 27) 

i = N 
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The A~ 's are computed from 

M 

A·ki = _cl < "'k,gi > = _1 ~ • k1T(. L) '~' C 4-t g .. Slrr..-M J-"'2 
k k j=l lJ 

using the known values of gij" For each k (5.27) gives a tridiagonal 

system of M equations for the M unknowns B~ , and the solution is easily 

obtained computationally. 

With the B~ in hand we can compute the fij from 

M M 
f = ~ B i "' ~. B i . k1r ( . ·,I 2) . . LJ k '~'k. = LJ k Sln -M J-
lJ k=l J k=l 

and this completes the algorithm. 

(5.28) 

For the special case when gij = ~~~Y oinojm so that f;j = G~j we 

can shorten some of the steps involved in carrying out this algorithm. 

First of all, the evaluation of the A~ in this case is trivial since 
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Next, using these special values of A~ we can significantly reduce 

the amount of labor needed to solve the. system of equations (5.27). To 

show how this may be done let us make the definitions: 

(5.29) 

m _ 1 • k'TT ( ) 
Dk - C t,y s1nM m-~ 

k 
(5.30) 

The tridiagonal equations we must solve may be written, using (5.29) 

and (5.30) as 

(Wk-1) Bk + Bk = 0 1 2 

. 
k + w sk + sk = 0 B. 1 1- k i i+ 1 

(5.31) . 
k + w sk + sk = 6x om B l n- k n n+l k 

k If we define coefficients R;, i=O,l, .•. ,N recursively through 
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i=l,2, ... ,N 

then the solution of the system of equations (5.31} may be obtained by 

first computing 

and then computing the rest of the s~·s from the recursion relations 

' 
B~ = R~ k i n-1 ,n-2, ... ,2, 1 8i+l = 

1 1 

B~ = k k i n+l,n+2, ... ,N-l,N RN+l-i B. 1 = 
1 

,_ 

Since the coefficients R~ do not depend on n and m, they may be 

computed once at each time step, to be used in the computations of all 

the G~~. The quantities Dmk· may be computed once and for all time before 
1J 

the numerical integration is initiated, and held in an array. 
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There is no special savings to be had, arising from the special 

nature of the gij' for the computation of the sum in (5.28). However 

we may evaluate it more efficiently than doing it directly, through the 

use of a fast Fourier transform. The sum in (5.28) is not in the 

standard form that can be computed by a fast Fourier transform, but it 

may be put into such a form. To do this we define, for an arbitrary 

vector zk with M' = 4M components, the following finite Fourier 

transform: 

£:= 1 ' 2 ' ••• 'M' . 

If 

Bi 
k 

z = k 

0 

then it is easy to see that 

k = 

2'1Ti kl 
M' 

l,2, ... ,M 

k > M 

I 
. I 

(5.32) 
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M . k 
= ~ B~ sin MTI (j-~) = 

k=l 

where lm[ ] means 'the imaginary part of'. 

When M is equal to a power of 2, (5.32) may be evaluated efficiently 

through the use of the fast Fourier transform algorithm given by Cooley 

and Tukey (1965). To do this, we must specify a value of M and then 
' 

write a special program tailored to this M which takes advantage of the 

special properties of our sum, e.g. that Zk = 0 for k > M, etc. We have 

done for M = 16 and found that a 1/3 savings in time could be had over 

computing (5.28) directly. Considering that this sum must be done MN2/4 

times for each time step this represents a considerable increase in 

efficiency. The fact that we are then restricted to have M = 16 is not 

a hardship because the width of the cylinder does not vary and M = 16 

gives adequate resolution of the flow field without being unduly 

expensive. Also N may still be varied to account for different values 

of a. 

Turning now to the computations of the velocity correlations ~ 
and~ we may use the computed Green's function G~j to approximate 

the functions Gu(~l~') and Gv(~l~') by finite differences. To simplify 

the writing of the formulas we define a function H~j as an approximation 

to G(i~x,j~y!(n-~)~x,(m-~)~y), and compute it from interpolation of the 

Gnm . 
• . VlZ: 
lJ 
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H~~ = l ( 6~m +Gnm + 6nm + 6n.m.) 
1J 4 1+1 j+l i j+l i+l j lJ 

Using the H~; we find e.g. 

+ [ (-H~-~-i -'-j---:~-~-; .-::j_-1_)2 + (-H-~-~ ,_· _M-""'"""j'--+ 6._1 y_-_H--'~-~ ,_· .;...;.M-__..j'--)] 
z;;N+l-n m 

(5.33) 

where, for simplicity we treat the boxes making a local contribution to 
1""2 '2 uij the same as the others. A similar formula may be obtained for vij" 

Using the computed values of G~~ and (5.23) with no -extra work we 
lJ 

get the stream function from 

where we have used the antisymmetry of rij" 

6nm ) 
N+l-i M+l-j l;N+ 1-i j] 

(5.34) 
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Uij and Vij may then be computed from the relations 

~i+l j+l + ~; j+l - ~i+l j-1 - ~; j-1 i = l, ... ,N-1 
2~y j = 1,2 .. M/2 

vi j = -(~ __ i +_1--=-j_+ l_+_~_i+_l~~~-:-:-~-i _-1-----:<j_+_l_-_~_i -_l~j) ~ : 
1 , •• , N 

1 , 2, .. M/2 

where we have let ~io = -~il i = l, ... ,N and ~oj = -~ 1 j and 

(5.35) 

(5.36) 

~N+l j = -~Nj for j = l, ... ,M/2, so as to enable (5.35) and (5.36) to 

apply at grid points near the boundary. 

C. Results of Computations 

For convenience let us collect together the basic difference 

equations we hope to solve for the flow in the cylinder. The I 

equation is 

which we approximate at all interior grid points by 

(5.6) 
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and at a boundary point by an equation similar to (5.15) which is for 

the corner point i = 1, j = 1. The u~~ are computed from (5.33) and 

v~; from a similar relation that we have not written out. u• and a• 
appearing in (5.15) are computed from (5.13) and (5.14) respectively. 

Th G I f • d • th t t • f ""'2 d ""'2 • . e reen s unct1on use 1n e compu a 1on o uij an vij 1s 

computed by solving the system of equations (5.18), (5.19) et.al. 

using the method described in section V.B. In (5.34) the stream 

function is found from the Green•s function, and Uij is computed from 

(5.35) and Vij from (5.36). 

The ~ equation used in this problem is 

+j_ 
ay ( 1 1""2) R + T22 v 

""'2 (~) 2 + 2 T22 v ay 

which we approximate at interior grid points by 

/ 

(5. 7) 



n+1 n (".II ( n n J n ( n n \\ ( n { n n ) n ( n n )) tij - t,J • -ufJ ti+1 J + ti - ut-1 JtJ + ti-1 Jll__ _ v,J ~, J+1 - r.,J - v, J-1 ttJ + r., J-1 
11 

2AXn 2Ay 

( ) 
n n ( ~n n n 1 ~ tt+1 J - tu 1 . ~ ttJ - tH J 

-2r.,Jen + l + T11 uiJ 2 - l + T11 ut-1 J 2 
(AXn) (AXn) 

(5.10) 

+ 1 + T ~ i j+1 - tj _ . 1 + T ~ tj - 1 J-1 ~ ) 
r." r." ~ ~ r." r." 

J 22 ij (lly)2 l 22 t j-1 (Ay)2 

+ T -:t'(~+l i- ~j) 2 + T -;'!' (~J . ~-1 j)2 
11 ij A n 11 t-1 j AXn 

(,... ~ )2 (~ ~ )2 n 72" t.i j+1 - (ij . ~ F:tj - (t j-1 - 2 r.,j 
+ 122 vij Ay + T22 vt j-1 Ay ~ 

d 

and at a wall we use an equation of which (5.16) for the corner i = l,_j = 1 is a typical example. 

~ 

N 
w 

0 

c: 
.{:"' 
;;;,_...,_ 

c 

·0' 

c 
o· 

C..,f 

0 

0'• 



124 

We will report here the results of simulations of the turbulent 

flow during the compression stroke in our two dimensional model of an 

internal combustion engine cylinder. Until such time as useful 

experimental measurements of the flow in a cylinder are made, an assess­

ment of the accuracy of these computations cannot be made. In the future 

we hope to make a visual comparison of our computed solutions with some 

laser schlieren photographs of the flow in a cylinder being taken at 

Berkeley by A.K. Oppenheim, et.al. (1976). Also we should note that 

there has recently been a start at obtaining quantitative data, (see 

Witze (1975)) of the flow in a cylinder, but as of the moment the 

measurements were made at only one point in the flow and this will be of 

no use to us in establishing the truth of our predictions. 
_() 0 

To initiate our solutions we will assume that ~ij = 0 and sij = .1 

for all i,j for all of the computations reported here. These initial 

conditions amount to an initial low level of turbulence with no mean 

currents. This will allow us to clearly observe the motion generated 

by the piston. 

To have a non-trivial solution we must also give initial values 

to the quantities~. in {5.11). This will have the effect of putting 
1 

a small amount of vorticity into the fluid while the piston moves during 

the first time step. We will set 
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which is the value it would have at the wall at time ~t in a flow 

impulsively moved with the velocity U (~t). c . 

We wi 11 present the results of simulations for two cases. In the 

first, we have set R = 5000, x = 8 and a= 1, values which are of the 

magnitude commonly found in engines. The second case differs from the 

first only in that a = 2. Our grid will have M = 16 and N = 12, and 

most computations were done with ~t = .01. Also we have assumed that 

T11 = T22 = .4 and Ax = 15 ~x and AY = /5 ~y. 

The computations proved to be largely independent of both grid size 

and time step. The largest source of disagreement between computations 

done with different time.steps arose d~ring the interval t = .9- 1. 

when considerable amounts of ~ which had been generated previously by 

the piston motion were then being increased greatly by the term -2 0 ~ 

in equation (5.7). Considering the precipitous drop of e(t) shown in 

Figure 15 as t + 1, we see that the smaller ~tis, the greater the 

magnification of ~ will be. 

Figures 15 and 17 show a contour plot of ~ij for the first case for 

the times t= .5 & 1., respectively. Figure 18 shows a plot of the mean 

vorticity distribution for this .case at t = 1 while Figure 19 shows the 

distribution of~ at t = 1. 

Figures 17, 18 and 19 represent our predictions of the mean flow 

properties existing in the cylinder at the time of ignition. It is 

apparent that the great amount of turbulence and vorticity generated 

in the corners has not diffused very far into the flow field and 

certainly not into the vicinity of the sparkplug. This result would 

mean that a spark set off in this environment would create an essentially 
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laminar flame which after burning sufficiently far into the flow would 

become turbulent. 

Figure 20 shows a plot of W·. at t = 1 for 0 = 2 and Figure 21 
1J 

shows the corresponding ~ field. When 0 = 2, the piston must travel 

a longer distance than when 0 = 1 and als6 attains a higher velocity. 

These figures show that there is quite a good deal more turbulence and 

vorticity generated in this case. The combustion process occurring 

after ignition in this environment would most likely be significantly 

different than the one occurring in the previous case. 



.. 

127 

VI. CONCLUSIONS AND FUTURE WORK 

We have attempted in this thesis to develop and present the method 

of coarse graining in a manner which sharply distinguishes between what 

we may assert with confidence to be true about a turbulent flow and what 

is either an hypothesis or as yet unknown to us. It is only in this way 

that a precise and complete theory of turbulence may emerge. On the 

boundary between our knowledge and ignorance may be found well defined 

problems whose solution will extend the applicability of this approach. 

Thus we expect that coarse graining is evolutionary in nature, and will 

continue to be refined and improved in the future. 

The transport law (3.18) that we have derived should represent 

a special case of a more general transport law. For example, it is 

conceivable that the effect of the molecular diffusion of the quantity 

¢could be incorporated into a more general version of (3.18). This 

would permit a more careful study to be made of the flow at the range 

of Reynolds numbers just above the transition to turbulence. 

Another direction to proceed in generalizing (3.18) is to enable 

it to account for the turbulent diffusion of vorticity in a three 

dimensional flow. To do this it would have to account for the effect 

of the stretching and rotation of vortex filaments as they are diffused. 

This is precisely the type of problem which could benefit from the 

results of experiments into the nature of vorticity dynamics in a 

turbulent flow. 

The transport law (3.18) betrays our inability to predict the 

small scale motion of a turbulent fluid by its inclusion of the 
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Lagrangian integral time scale Tij and the other integral parameters .. 

We may assume that the source of this difficulty has to do with the 

nature of turbulent diffusion itself and is not a quirk of our particu­

lar transport law. Thus we expect that in all turbulent diffusion 

models our ignorance of the small scale motion will require us to 

include indeterminable parameters such as Tij" This phenomenon should 

be viewed the same as our experience with the molecular viscosity: 

In gases of a very special nature it may be predicted theoretically 

but in dense gases and liquids it must be found by experiment. So too 

we may imagine that in some turbulent flows Tij may be predicted 

theoretically but in others it must be found experimentally or by ana­

logy to similar flows where it has been determined previously. It thus 

seems that the search for 'flow• independent parameters in turbulence 

models may not be justified. 

Our experience with the transport law (3.18) should teach us that 

in the design of a more sophisticated transport law of the types we 

have suggested, we should be open to the possibility that we will need 

to incorporate new time and length scales into it. These scales would 

be reflective of some aspect of the physical phenomenon that is being 

modeled. 

Another area of investigation should be to determine the 

relationship of the vorticity microscales A and A to the size of X y . 

the region for which the statistical hypothesis mentioned in section 

III.D. is valid. Also, the question as to whether or not a connection 

exists between the various lengths and time scales should be studied. 

.. 
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Our consi~erable success in solving for the mean flow in a 

channel shows that many of the physical processes found in a turbulent 

flow are being well repres~nted by the method of coarse graining. This 

an encouraging sign that if coarse graining were to be extended to three 

dimensions that it would be successful in predicting the mean properties 

of real turbulent flows. 

The extension of coarse graining to three dimensional turbulent 

flows is complicated by the fact that we then need to follow the 

dynamics of all three components of vorticity. In addition, we would 

have to contend with modeling the process of vortex stretching which 

is of such major importance in the dynamics of turbulent flow. 

Our work with the piston problem reported here represents a prelude 

to a much more extensive investigation of this flow, in which we will 

include the combustion process which arises after ignition. These 

computations will have to predict correctly the pressure pulse 

determined experimentally. In spite of the heavy-handedness with which 

we will be forced to deal with some of the aspects of the turbulent 

flow in the cylinder, a complete simulation of this flow and combustion· 

by coarse graining even in 2-d would represent a great advance over any 

existing method. 
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