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A NUMERICAL INVESTIGATION OF CONFINED TURBULENT SHEAR FLOWS

Peter Simon Bernard

ABSTRACT

The first objective of this work is to present a new der1vat1on
of the method of coarse gra1n1ng for the computation of turbulent f]ows,
one which strengthens and clarifies its theoretical foundation.
Second]y, we show by the application of this method to the study of the
turbulent flow in a channel and behind a piston in compressive motion
thatea'promising start has been made toward acquiring the ability to
predict the mean properties of turbulent flows. The work presented
here is primarily concerned with two dimensional flow.

The principal improvement in the method of coarse graining consists

of the establishment of a new general law of turbulent diffusion which

applies to any scalar that is passively convected in a turbulent flow.
The law is in the form of an expansion in roughly the Lagrangian

integral time scale. The transport law is used to derive a closed set

of equations fbr the mean vorticity and mean squared fluctuating

vorticity. Other innovations include a more precise accounting of

the effects of the local turbulence on the velocity moments and the

use of an explicit equation for mean squared fluctuating vorticity

instead of mean squared vorticity.
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and the generation of turbulence at the piston face. The flow at two

" different stroke to bore ratios is studied, and an analysis is made of

the flow environments that would exist at ignition.



I.  INTRODUCTION

The advent of computers has brought hope that a "computational"
answer may be found tb the problem of finding a means of predicting the
average behavior of a fluid in turbulent motion. The numerical methods-
that the computer has spawned, however, cannot be better than the
theoretical foundations on which they are based. Thus, it is a sad
fact that most numerical methods of computing the mean properties of
turbulent flows in use today rely on theoretical notions about turbulent
diffusion as manifeéted in the Reynolds stresses which have been known
to be incorrect since before the first computer was built. Equally |
disturbing are some of the most recent numerical methods which rely. on
purely mathematical hypotheses and make no pretense of being based on a
theory of turbulence at all.

It is ironic.that such a state of affairs should exist at a time
when many significant new advances have been made by experimentalists
in revealing the nature of turbulent motion. One would hope that
eventually this new knowledge would find its way into a mathematical
form that would be useful in predicting the properties of a turbulent
flow. |

In point of fact, however, a rudimentary example of this procedure
was performed by G. I. Taylor over sixty years ago in his vorticity
transport theory. His idea, unfortunately was largely ignored, until
a couple of years ago when Chorin (1974) showed how a numerical method
of computing turbulent flows could be based on it. This method known
as "the coarse grained approximation to turbulent motion" is innovative

in both its respect for physical theory and for mathematical rigor.



This thesis will attempt to enrich the theory begun by Chorin and
then apply it to the study of the turbulent fiow in a channel and behind
a piston in compressive motion. We hope to show that a promising start
has been made toward agquiring an ability to predict the mean properties
of turbulent flows.

The theory presented here will be concerned with two dimensiona]
flows. A general theory of coarse graining which is applicable to
three dimensional fTows is currenf]y under development. The study of
two dimensional turbu]ence is useful because it is a model problem
that contains many of the features of three dimensional flow yet is
considerably easier to solve. Furthermore, the physi;a1 phenomena and
mathematical difficulties that one encounters in two dimensions are
either equivalent to or are simpler versions of the same prob]ems that
one encounters in three dimensions. Thus the application of a theory
of turbulence to two dimeﬁsiona1 flows is a useful first step in
demonstrating its soundness.

In the method of coarse graining the average state of the (two -
dimensional) turbulent fluid is described by the mean vorticity, &
and mean squared fluctuating vorticity,—zj?-. £E=¢ + EI is the compo-
nent of vorticity orthogonal to the plane of motion. A closed set of

equations describing the evolution of the £ and ET?' fields is derived

using a simple statistical hypothesis involving certain functionals

of the vorticity field. These equations may then be solved numericaily.
Among the major theoretical improvements of the theory of coarse

graining that are accomplished here are:

[>3



(i) The turbulent transport law has been derived in such a manner
as to permit the computatiqn of higher order terms and to give a physi-
cal interbretation of the parameterS'appéaring,in it.

(ii) The use of an explicit equation for'gTz has been instituted
rep]abing bne for EQ + ETE- used by.Chorin. This a}]ows an assessment
to be made of the various factors contributing to.fhe_ba1énce of Erz.

(i) fThe closure scheme is derived so as to now include the
. effect of the local turbulence intensity on ihelve1ocity moments.
| (iv) An essentially exact boundary conditibn’to the £ equation
is derived using the'linear Taw of the wall.

(v) An extensive analysis 6f the ba]ance.éf ET?.in the wall
region is made énd is subsequently used to formulate a physically
plausible difference equation for ET?. near the wa11.

With these improvements a fairly complete picture of the extent
to which coarse graining can predict the mean prbpefties df a two
dimensional turbulent flow will eherge. The ways in which our theory
is limited by the complexity of the small sca]e‘tUrbulent mdtion will
be made apparent throughout this work. However each of these prob]ems
will be sharply defined and will provide an indication of the directions
to which future work should be directed. |

The restriction of fwo dimensionality has affected our numerical
solution of the channel problem by giving prédictidns that are only
parfia]]y in keépiﬁg with experiments. The resu]tsvare closest, e.qg.

the mean vorticity distribution, (or mean velocity distribution) when

the two diﬁensional equation does not exclude any important physical



process from being represented. They are poor when such a process is
left out of the equations, e.g. our predictions'of ng is inaccurate
and most 1ike1y because the production of'grg.from.vortex stretching
and‘transfer is not included in the two dimenﬁiona] equations.

On the Who1e, though, our restriction to tﬁo_dimensions leaves
enough of the physics of the flow in a channel intact so that we are
still able to obtain some striking results. In particular is the
friction law shown in Figure 8 which clearly displays a drag crisis at
small Reynolds numbers and a bifurcation at a Réyho]ds number of
approximately 6500 which separates the laminar ffom.the turbulent flow
regimes.; | | | |

In tﬁé‘next chapter we will briefly describe the other approaches
toward computing turbulent flows that may be found in use today; We
will pay particu]ar attention to tﬁe fundamental principles on which
they are based and show how théy differ from those of the present method.

In Chapter III we present a complete derivation of the method of

“coarse graining. The object of Section III.A. will be to derive the

fo]]owing turbulent diffusion law: -

U. | =
= __ T T - J 199
utg = [u.u. LPPIL THT (Sik T Tik) ] +

—— 32§'v Noral h
] .
T Ty5 Uiy 3% * Yy “Laxjaxk. + (1.1)
T '32—
s Yi¥iYk Tijk axjaxk
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where: ¢ is an.arbitrary property of the fluid that satisfies the

condition
D ) > -
w2+l =0 ; (1.2)
> ’ > ) >
u = (u], u2) is the velocity field; U is the mean and u' is the

->

f]ucthating part of the velocity field, so U=U+ 3'; Tij is a

Lagrangian integral time scale; and 17, S.. and Tijk are other time

1J
scales which will be defined later. The right side of (1.1) is the
first two terms of a series expansion in (roughly) the time scale Tij'
It will be shown later that part of the special significance of
the diffusion law (1.1) is fhat it accounts for the féct that the length
and time scales of the small scale turbulent motion may be of the same
order of magnitude as the scales at which the mean flow field varies
significantly. (1.1) is most useful when the mean field is quasi-
steady and quasi-homogeneous for then it is possible that we will only
have to keep a small number of terms in fhe e*pansion to approximate
the flux accurate1y.

At points sufficiently far from a boundary in a two dimensional

flow both £ and 52 approximately satisfy (1.2) and thus the transport

Taw (1.1) may be used to compute the turbulent fluxes uif and u%gz.

These fluxes arise naturally in the formation of equations for ¥ and
) . i )
£ 2 from the vorticity equation. In Sections III.B. and III.C. we will

. —Ta ’ :
derive eqguationsfor £ and & 2, respectively, which use the lowest

order form of (1.1):



to represent the fluxes G:E'and u%&z.
The closure of the system of equationsderived in IiI.B. and I1I.C.

is completed in Section III.D. when we show how the velocity moments

u%uj may be cqmputed from a knowledge of the g|2 fie]d._ The closed
set of equatiqns for E'and gTﬁ_that are defived in this Chapter may be
approximated by finite difference equations which may 1h'turn be solved
numerically for a large class of two dimensional turbulent flows.

In Chapter IV we apply the method which is descriBed in Chapter III
to a study of the fully developed turbulent flow in a channel. For
this flow all of the second order terms in t%e transport law (1.1) are
identically equal to zero so our use of the first order form of the
transport law is well justified in this case.

We obtain equations for £ and ET?— by spe;ia]izing those derived
in Chapter III to this flow and then construct difference approximations

to them which relate the values of £ and QT?' at a discrete set of
points spanning the channel. To find the proper form of the difference
equations near the boundary we study the physics of the turbulent flow
in a channel and show that this flow may be separated into two distinct
regions: a thin dissipation zone near the wa]i where no production of
vy

g “ takes place and a core region where ET?.is produced. We conclude

that for the £ equation at the boundary we must specify the average

o



flux of vorticity from the wall and compute it from the relation

where y is a coordinate normal to the wall, R is a Reynolds number,

§ is the distance from the wall of an arbitrary point within the
viscous sublayer and U_ is the mean velocity at §. We also find that
the proper boundary condition to the gT?-equation is the specification
of the rate at which gT?—diffuses from the core region and into the
d{ssipation region. |

In the process of forming a closed system of equations for £ and

£ 2 it is necessary to introduce a small number of undetermined
parameters, (for example the time scale Tij in (1.3)), thus to solve
our system of equations for the channel problem numerically we must
assign values to them; We do this by fitting the computed and
experimentally determined results for the flow at one particular
Reynolds number. Then we are free to investigate the predictions of
our numerical method for all of the remaining Reynolds numbers. We
have studied the behavior of the mean velocity profiles, &, ET7 and
the friction coefficient with the Reynolds number and these results
are reported in Section IV.E.

In Chapter V we apply the theory of Chapter III to study the

piston driven turbulent flow in a two dimensional model of an internal

combustion engine cylinder. This represents the first application of



the method of coarse graining fo a turbulent flow with a fu11y two
dimensional mean velocity field. The flow we are concerned with here
is even more comp]ex.than this since the mean properties are also non-
steady and the fluid is undergoing a uniform compression.

To account for the changing size of the flow domain we have defined
our discrete approximations to £ and ETg-on a grid which collapses
uniformly as the fluid is compressed. The equations for £ and ET7
derived in Chapter III were purposefully kept general enough so és to
accomodate the particular flow we encounter in this problem. Thus to
form difference equations for £ and ET? here we may directly use
these equations. |

The results of our computation of the flow during the compreégion
stroke described in Chapter V are to be viewed as giving a qualitative
description of this flow. As expected, large amounts of vorticity and
turbulence are generated next to the wall as the piston moves and are
subsequently mdgnified by the compressive motion. We give predjctibns
of the mean state of the fluid in the cylinder at the time of ignition
for two differént stroke-to-bore ratios. It is seen that a considerably
different combustion process would be expected to occur in each of

these different flow environments.

-y



I1. HISTORICAL SURVEY OF TURBULENCE CLOSURES

The mean velocity field of a turbulent flow evolves in part due
to the action of apparent stresses which arise from the random eddying
motion of the fluid. These are the Reynolds stresses, a typical com-
: ponent‘of which, - Bﬁyﬁg'expresses the average flux of the ith component
of momentum in the jth direction. The Reynolds' stresses appear as
"~ additional unknowns in the equations of motion, creating the need to
either relate them to the other dependen£ vériab]es or to introduce an
additional set of equations which describe their change. The means by
which a closed system of equations is obtained is termed a turbulence
closure.

In this Chapter we W111 present a sketch of the history of the
major trends in closure formation in use today, so as to show the
origin of the present method and its relationship to the other
approaches. Comprehensive surveys of many particular examples of
closures, giving some indication of their merits and limitations may
be found in Reynoids (1974) and.(1976), Cébeci and Smifh (1974),
Mellor and Herring (1973) and Bradshaw (1972).

The turbulence closures that are found in use today may be
separated into two broad categories: Those that, in loose analogy
to the viscous stresses, relate the Reyno1ds stresses to the gradients
of the mean velocity field through a constituitive relationship
involving an eddy diffusivity, and those that do not. Most closures
are of the first type, and part of what is distincfive about the

closure that we will present in this paper, is, that it does not

belong to this group.
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The first type of closure apparently originated with Boussinesq
(1877), in his proposal that for a unidirectional mean flow field
U(y), the Reynolds stress - pu'v' could be approximated in analogy to

the viscous stress ug% , viz:

o UV = A g (2.1)
The "mixing coefficient" or "eddy diffusivity" AT remained to be
'determined by some unspecified means.

A theory which purported to give a plausibie value to the eddy
diffusivity AT appearing in (2.1) was subsequently developed by
Prandtl (1925). His idea, known as the mixing-length theory, was based
on the assumption that small particles of fluid in a turbulent flow |
would conserve their momentum while traveling a short distance, called
a mixing-length. Using this physical model of turbﬁ]ent momentum
exchange, he was able to deduce an analytical expression for AT.
However, his result was incomplete in that it depended explicitly on
the mixing length, which was yet to be determined.

Thekmixing-1ength theory was followed by the similarity hypothesis
of von Karman (1930) which supposed that the velocity fluctuations at
ény point in a turbulent flow depended exclusively on the values of a
local length and time scale. .He was able to derive an expression for
AT identical to that of‘Prandtl, and in addition, give a formula for
the mixing length. Left undetermined in von Karman's theory was one
universal constant. An account of thié theory and that of Prandtl's

may be found in Schlicting (1968).
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In the period in which the momentum based model (2.1) was on the
ascendancy, an alternative closure not of the first category, was devel--
oped by G.I. Taylor (1915). Unaware of the work of Prandtl, he consi-
dered and then rejected the idea that a closure could be based on the
assumption of momentum transport which was at the heart of the mixing-
length theory. He could find no justification for the belief that the
pressure variations in the flow would not have a considerable effect in
altering the momentum of fluid particle when they moved, even over very
short distances. Thus no appeal to an analogy with the molecular trans-
port of momentum could be made.

Taylor instead proposed that in circumstances in which the turbu—.
lent fluid motion is preponderantly two dimensiona], as i1s the case in
'a unidirectional flow, one could use the fact that the vorticity of
fluid particles is preserved in two dimensioné] inyiscid motion to form:
a closure to the mean flow equations;' He showed that the term contéin-
ing the Reynolds stress - BﬁTVT'in the mean momentum equation could be

VTE.

rewritten as the turbulent vorticity flux, Introducing the concept

of a vorticity mixing-length, say d, he derived for v'¢ the expression

- _ T 0%
VE=-wd VT g5 (2.2)

Though (2.2) is incomplete in that a means of estimating [vi] and d
must still be found, in contrast to (2.1) the physical model behind it

is much less open to criticism.
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Later, Taylor (1932) generalized his vorticity transport theory so
that it would apply to arbitrary three dimensional turbulent flows.
Though the equations he derived were not in a form that could be used
in practical app]ications, it is clear however,-that at this time Taylor
had a definite notion of the direction that shod]d'bé pursued in ob-
tainfng a general turbulence closure.

Taylor (1932) had also learned of Prandtl's work with the mixing-
length theory and made the first of severa1.comparisons (see Taylor ‘
(1935b) and (1937)) between the predictions of his own vorticity trans-
port theory and the theories of Prandtl and von Karman. He also provided _
new arguments, in addition to restating the one of 1915, which helped to
c. >t doubt on the wisdom of.postu1ating any similarity between turbulent
and molecular transport Qf momentum.

- In spite of the criticism by-Taylor, the use of the expression (2.1)
continued, though through his arguments, in part, it became increasingly
clear that the justification for its use could no longer be obtained
from the mixing-length theory) Perhaps the final words on the merits
of the mixing-length theory, which laid it pérménent1y to rest, (or
should have), were made by Batchelor (1950) in a particularly cogent
analysis. In this paper he established the principle that one must
first understand the physics of the moméntum exchange responsible for
the Reyno1ds' stresses before deriving an analytical expression to
gauge their magnitude. It is thus idle to speculate as to the correct
analytical form of a closure based on a clearly erroneous physica]

mbde]. Such has been the case with the mixing-length theory.
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As we have suggested, closures of the type to which (2.1) belongs,
are commonly found in use today. In particular, for general turbulent

flows the use of the constitutive relationship

1 Y%, %Y
Ujuy = 3 Uy 845 - K5 E ¥ X (2.3)

where K is a function of various turbu]ent sca]es and flow variables, has
become popular. Among those using either relationship (2.1) or (2.3)
are Patankar and Spalding (1970), Cebeci and Smith (1974), Smagorinsky,
et. al. (1965), Deardorff (1970), Saffman (1974) and Schumann (1975).
Considering the widespread use of thié type of closure there has con-
tinued to be a need to find a justifiCation for it. Some attempts have
| been made up by Harlow (1968), Hirt (1969) and Daly and Harlow (1970).
Perhaps the best approach toward giving credénce to (2.1) but one which
also limits thé circumstances in which it is valid, is that discussed
in Tennekes and Lumley (1972) p. 47. The idea behind their justifica- .
tion is roughly, that an expression like (2.1) is a necessary dimen-
sional consequencélof supposing that the characteristic timesvof the
turbulent eddies and the mean flow are of the same order of magnitude.
This ié, incidentai1y, a simple example of the type of phenomenological
reasoning which has been used to justify the more ambitious closure
relation (2.3).

Accompanying the current use of relations (2.1) and (2.3) has been
criticism of their use. Unfortunately, the arguments put forward

against them have been generally much more convincing than those given
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for them, e.g. see the criticisms of Tennekes and Lhm]ey (1972) and
Corrsin (1974). |

The other types of closures, i.e., those that do not make an
assumption such as (2.1) or (2.3) are not large in number; The approach
which is most activejy being pursued today is that of Réyno]ds stress
equation modeling, see Launder, et.al. (1975), Hanjalic and Launder
(1976) and Lumley and Khajeh-Nouri (1974), in which equations for the
Reynolds stfesses themselves are derived from the Navier-Stokes equations
with the use of additional assumptions.

The exact equations for the Reynolds stressés involve triple velo-
city moments énd pressufe-ve]ocity correTatidns_which have to be
approximated in terms of the Reynolds stresses and other mean quantities.
The result is that a multitude of assumptions are now necessary to close
the set of equations instead of just the 6ne major assumption for the
Reynolds stresses such as (2.3). Further, in current practice these
new terms are approximated by mathematical expressions which are rarely,
if ever, tied to any precise conception of the physical process which
they are modeling. In view of the principle laid down by Batchelor
that we have mentioned, the method of Reynolds streSs equation modeling
as it now stands is less justifiable than, say, the mixing-length theory,
since at least the latter theory is based on some physical model, albeit
an erroneous one.

The method of coarse graining which we will derive and put into
practice in this paper was originated by Chorin (1974) and is related to

the ideas of Taylor (1915) as expressed in his equation (2.2). We will



15

see that the é]osUre used in this method is based oﬁ expressing
mathemutica11y'two precise ideas about the physics of turbulent flow.
The first of these concerns the transport of vorticity in a turbulent
fluid andvthe second is the pichre of a turbulent flow as beihg com-
posed of many vortical structures. The major advance of Chorin was to
show how these two ideas could be used to find an ingenious means of
completing relation (2.2) by giving a new coefficient to the vorticity

gradient %53 i.e. one which could be determined up to a constant from
the equations of motion. This thesis will generalize the closure of
Taylor and Chorin, and also clarify and improve the novel approach

taken by Chorin to completing this closure.
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ITI. THE METHOD OF COARSE GRAINiNG

In this chapter we consider the defivation of the method of coarse
graining as it applies to an arbitrary two dimens{onal turbulent flow.
The principal result of Section III.A is the derivafion of egn. (3.18)
which is the general formula for the raté of turbulent diffusion of an
arbitrary extensive property of a‘f1uid that is ﬁreserﬁed during the
course of motion of fluid partic1e§; and was written previously as
eqn. (1.1). The simplified form, (3.19) or (1.3) 6f this rejation is
then used in Section III.B to aid us in deriving édn. (3.25) which
describes the balance of the mean_vorticity field and in Sectidn III.C#%W
to derive (3.36) for E??: |

Section 1II.D explains how the velocity moménts U:Ug'which are
used in the transport law may be computed from a knowledge of the mean
squared fluctuating vorticity fiela,vthus fofming a ciosure td our two
coupled equations (3.25) and (3.36). The principle result of this
section is the derivation of the three equations (3.46), (3.47) and
(3.48) for w2, v Zand V" respectively.

Before beginning with the presentation of the method, we must
establish some of the notation we will consistently use throughout
this work. The spatial coordinatés (x1;x2) will at times be denoted
as {x,y) and similarly {(u,v) is equivalent to (u],uz). Vectors are’
identified by an arrow overhead, and we will frequently use the
notation U(x,y,t) = U(X,t), etc.

The meah or expected value of random f]owvvariabTes_is indicated

either with a bar overhead or, when necessary, by use of the symbol

T
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EL . 1. The mean velocity fie]d,‘however, will be indicated by the use

- ->

of capitals. thus u = U = (U,V). The fluctuating part of a random field

is indicated by a prime, thus for example the velocity field U may be

-+ - :
written as the sum U + u'. The mean squared fluctuating vorticity field
will henceforth be called z(x,t), thus =E;7:

Vpctor operations will sometimes be indicated in symbols such as
du.

V. u,_and on other occasions as sums over indices, e.qg. 3X1

» the
summatlon convention a]ways being in effect. Also, at t1mes partial
differentiation will be denoted in the manner: Uy = %%- 6r Uy = 5 etc.

A11 equations will be written in a nondimensional form in which a
characteristic velocity and 1engfh héve.been used to scale fhe variables.
R will denote a Reynoids number formed from this velocity and length.
Dimensioned variables, whén needed, will be defined as they arise, and
usually aré denoted by an asterisk. |

A.  Turbulent Transport

If ¢(; t) represents the density of an arbitrary extensivé broperty,
o, of an incompressible fluid, then U 1.<1> is the mean flux of ¢ due to
the turbulent motion. This flux arises naturally in the process of
forming an.équation which describes the mean field ¢, from a consekvaf

tion equation for ¢ of the form

3, oy -
Bt + . Vo

-----

==
o+t
m
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The best known example of this is the case ¢ = p: where p: is the
density of momentum, for then the flux of momentum is Eaaghwhich is
(minus) the Reynolds stress. Another example, occuring in a two
dimensional flow, is ¢ = £ the vorticity which is the 'density" of
circulation. Here, E:EJ is the flux of circulation, conventionally
called the flux of vorticity.

In some turbulent flow situations it may happen that the total

amount of a property ¢ in any volume of fluid will not change as this

clump of fluid moves in the velocity field 0. In this case

Dy | (3.1)

and this relation may be used to derive a formula for the turbulent
f]ux U:@; which is used in predicting'the behavior of the mean field
b, as we shall now_show.

Let ;(;o’t) represent the trajectory of a fluid particle knoWn

to be at a position §0 at the time to’ i.e.

st ) =X (3.2)

Using ;(;O,t), we may form the following equivalent, integrated, version

of (3.1):
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0(iG.t),8) = oiut). (3.3)

?(;o’t) by its definition satisfies the integral equation

.t 1]
> > > >, .
, x(xo,t) = X, + .jru(x(xo,s),s)ds (3.4)

t
0

- -

For each realization of the.fie1d U(X,t) the path x(?o,t) will be

different, thus ;(?O,t) is a random function. For definitions of a

-~ random functioh‘andlits fealizations,“see Gikhman and Skorohod (1965).
Let T represent a small time interval and let the position of“the

ﬁarticle at.to - 1 be 3, i.e. ?(zo,to - 1) =a. 3 is thus a random

point. Using (3.3) evaluated at t, - T we have for the flux urd

<
-
]

u%¢(a,t0 - 1)

u%@(?a),to. - 1) + u,icb'(g,to - 1) | (3.5)

‘where all variables are evaluated at the point (;o,to) unless otherwise

indicated, thus e.g. u; = u%(;o,tb) in (3.5).  The first term on the

right of (3.5) does not drop out owing to the randomness of 3. We now
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will explain, in turn, the nature of the contributions that are being
made to the flux of ® by each of the two terms in (3.5).

The first term arises from the correlation between the fluctuating
velocity at (;o,to) and the value of ¢ at the point in space-time
convected there during the interval T. The‘diffusive properties of
this term may be revealed by the following construction:

Define u(t) = ﬁ(?(?o,t),t) and similarly for G(t) and u'(t).
~ Further, Tlet ‘

0
- .
L = ;/Pﬁ(s)ds
tO-T
> .
Using L and the definition of a, (3.4) evaluated at ty - T gives

>

[T

= ;O—L. Substituting this expression for a into 6(3,t0-r) and

partially expanding in Tay]of's series about (;o’to) we attain

| _ 2 25
rwae - = ! aQ T Q 4 3 3
uielatom) = -uily 5 * T Ly axr R ik e, 00

(3.6)

From this point on we will refrain from indicating the presence of
terms of order higher than 12, and will drop them without comment as
they arise in the ensuing equations. These higher order terms may be

computed also, though beyond the point we have gone this becomes a

i
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rather tedious undertaking. We keep as many terms as we do, because,
as we shall see, T will be chosen to be not very much smaller than unity.

. To put (3.6) into usable form we must examine the quantities

uj L and u'L.L Define

ik’
to _
LJ_= [ Uj(s)ds
to-T
and
to
L‘j = [uj-(s)ds
t-t

" thus Lj = Lj + L&. Note that Lj is random owing to its dependence on

,thé.random-path ;(?O,t). Substituting for Lj in u%Lj we find

uil. utl: + uil® o ‘(3.7)

Using the definition of L& the second term on the right hand side of

(3.7) becomes

[
— -
e -

]

m
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ey
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w

ujuy f Rys(s)ds | ; | (3.8)
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where

g

WTTETul(E,) -

-
ui(t

Rij(s) =

Rij(s) is a Lagrangian auto-correlation function, a special case of
which was originally defined by Taylor (1921), see also Hinze (1959)
p. 47. The final step in obtaining (3.8) required making the assumption
that Rij
considered to be approximately stationary over a time period of 0(t).

(-t) = Rij(t) for 0 < t < 1 which holds "if the turbulence hay be

For 1 large enough, say T > T*, Rij(T) is approximately zero,

T . .

implying that fRij(S)ds’ T 2 1%, is independent of 1. If we define
(e}

the Lagrangian integral time scale

o0

T E /Rij(s)ds L (3.9)
o}
- |
then for © = 7% s < fRij(s)ds and (3.8) becomes

0

ULl = Teuluhoo L (30)

Note that no summation is implied in (3.10) or in similar relations to
follow which involve T}j or other time constants still to be defined.
Note also that it is possible that Tij varies in space or time in a

‘particular flow if the turbu]ence'is‘nonunifokm‘or nonstationary.
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Returning to the first term-on. the right side of (3.7) we have

t

[Uj(s)ds]

-T

u%Lj =.E[9%
_ to

and Taylor's expansion of Uj(s) about (;o’to) yields

. : ‘to . . | N to coy
— . _ 8Ui _ an
U]-Lj = E uiTUj + u1. j (Xk(S)-Xk)dS ﬁ"k' + U,i f (s—to)ds 3%
tO-T tO—T
3U o o
= _J ; - o
% E{“i f ds(xk(s) xk)} |
) (3.11)
_ tO—T

where x, s the kth component of §0. Through the use of (3.4) for .

xk(s)-xk, the integral in (3.11)'becomes

% v L S L o ‘S|
j(xk(s) - x, )ds = jl ds ‘jds‘ u(s') = - jds' j‘dsuk(vs')
ot tot oty I S

(3.12)
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Substituting (3.12) into (3.11) after replacing uk(s') by Uk(sﬁ)>+

uk(s') gives

5U t % .
N _J ' ' [ ' ' 1 ' "+ 1
u1LJ ™ E[ui fds (s toﬁ)uk(§ ) + uy [ds (; toﬂ)Uk(s ):l
tO—T . : to-T '
%%
.y ‘
=-UiUp mRs .’r ds'(s -to+r) Rik(s -to)'
tO—T

= - U.'il.lk——a_xi(_ f('T-S)R'ik(S)qs

0
In 1ight of our assumption on 1, (3.13) becomes

— 3.
- [ J -
ity = Uiy Sii-

where

0

_Sik zstik(s)ds

(o]

(3.13)

(3.14)
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Combining (3.10) and (3.14) yields the result

(3.15)

- aU.
] = T T, 0 _ J
sy = ujug Ty + usu(Sg-tTe) T

The analysis of u%Lij is considerably longer than that of u%Lj, SO

we will only quote the resuit: To third order,

u.L.Lk’= TU. usup T.k *‘TUk uiuj Tij + u%uju& T

; ; (3.16)

ijk

where
0 0 '
and
[] [ T
( ) = ui(to)uj(to+s1)uk(to+527
R::i (54,5 - T '
ijk 2172 uiujuk

We have made use of the additional assumption that the condition

Rijk(”s1"52)= Rijk(sl?sz) holds.

(3.6) is completed by substituting (3.15) and (3.16) into it,

though we will not write out this intermediate result. To obtain our



26

final expression for the flux U:E'we must look into the second term on
the right of (3.5).

j(T) 2 0 which

“implies that u%(;b’to)uﬁ(g’to'T) Z 0. We then suppose that the absence

In view of our hypothesis about T, we must have Ri

of a significant correlation between velocity components at (;O,to) and
(3,t0;r) implies thét ui at (zo,to) and ¢' at (g,to-r) are similarly
uncorrelated. This is, of course, not a rigorously derived étatement,
but it is'veny reasonable if one considers that velocity-velocity corre-
lations are usually the most enduring ones. The difficulty we face here
“is one that will encounter again and 1s‘due to our lack of understanding
of the action of the small scale turbulent motion. This ignorance is
actually a blessing in this case because if we cannot conceive of a
physical mechanism which would result in a non-neg]igib1e corré]ation
between u%(?o,t ) and ¢'(§,t0-1), then there is no reason to doubt our

0
conclusion that

ul (x5t )¢ (35t 1) = 0 (3.17)

We may also eliminate the possibility that viscosity promotes
a strong correlation, because for all the cases we consider, the
distance IZ\ >> VTR, where vi/R is the distance over which it is
reasonable to assumé that the viscosity exerts a strong influence

during the time interval T.
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We are now in a position to assemble our various results and

state the general diffusion law:

' U: 1 o
Uﬁ§={;nn Tistuiup (Sey - 175 J]§9—+

)
i i3 1] ik ik axk axj.

2— 2— (3.18)

T T.. utut 3¢ + 3¢ + ’
ij 173 jox,ot k 9x.9x
. J 377k
— 32”

B ouguguy Togy 0%,

which is valid for any field ¢ satisfying (3.1). It may easily be seen
that (3.18) 1is invariant under a Galilean transformation. .

The time scale Tij is characteristic of the typical eddies in
the turbulent flow. If the time over which the mean properties of the
turbulent flow varies significantly is comparabje to T1.j then the
higher order terms on the right of (3.18) will make a significant
contribution to the transport law and must be included. A similar
conclusion should also hold for the length scales of the mean and
eddying motion. That the transport law we'have derived can accomodate
these situationslis a strong point in its favor.

The right side of (3.18) depends on the parameter T which must
only satisfy the condition t = 1* and thus is largely arbitrary. Since
thé left side of (3.18) is independent of T so too must the right side.
This apparent contradiction can be explained by realizing that the
larger T is, the more terms in the‘expression on the right must be

inc]uded} The sum of these terms always remains constant.
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To first order (3.18) gives a simple mean gradient diffusion

Taw:

0% = _ T, uroT 9%

In our applications of the method we will only use this lowest order
term. This will not introduce serious errors into the results as long
as the second and higher order derivatives of the mean field ¢ are not
large.

For the special case in which ¢ is the vorticity, £, and £ and U
depend only on y, and V = 0, e.g. in fully deVe]oped channel flow, then

(3.18) reduces to

-I_— lzé_g— l3a'§
VEETyn v gyt TV o (3.20)
If we assume that ;Tj = 0, for this flow then this further reduces to
__ — 8
vV'E = —T22 v 2 dy (3.21)

which is accurate to third order in T.

For the piston problem it will be necessary to generalize our
diffusion law slightly so as to accomodate the diffusion of vorticity
and'squared vorticity in the type of compressible flow which occurs

there. We will assume for that problem that the density is a sure
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function which varies with time, uniformly throughout the flow field.
The diTatation 0=V.U in this case depends on the time, and from the

continuity equation we have

a

p

-z1dp
o(t) = 5 @t

The vorticity equation without the viscous term is then,

and the integrated version of this relation, which corresponds to (3.3)

is
S p(to) e
E(Xo,to) =5 E(X(Xoat),t) (3.22)

which may easily be verified by differentiation. It is clear that
(3.22) will yield the same diffusion law as before, except for an

“additional factor of p(to)/o(to-T). However

p(to) 2
'a(t—o_Ty—]*'Te“'O(T)
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thus if only first order terms are to be kept in (3.18) we may still
use the diffusion law (3.19) in this case.

Similarly, the equation comparable to (3.3) for the squared
vorticity will be (3.22) squared, thus implying that the additional
factor (p(to)/p(to-T))2 appears {n the diffusion law and again exerts
no influence on the lowest order terms.

The machinery we have developed to examine the turbulent flux
E?E, might also be profitably applied to finding out if there is any
justification for the Boussinesq approximation,(2.1), to the Reynolds
stress -pu'v’. Thus, consider a unidirectional mean flow (U(y),0) for
which we wish to find an expression for the flux of momentum in the y
direction due to the fluctuations v'. The density ¢ is in this case

~ pu which satisfies Euler's equation

and not an equation like (3.1), so we must make special account of

this difference. In analogy to_(3.3) pu also satisfies the relation

t

>, > >

pu(Xyty) = pulX(%y,t) )+ | S2(k(%y»5),s)ds

t
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Fo]]owing the same sequence of steps as before we will arrive at

-pu'v' = p T22 v 3y + ‘Ir v (X_,t )gﬁ{z(; ,$),s)ds (3.23)

where the term Vl(;o’to)“|(g’to'T) was dropped since as already described
it is essentially zero. (3;23) will provide some justification for
(2.1) if one could show that the last term involving the pressure is
much smallér than the first.

The technique of this section can provide no justification
for the use of:the general constituitive relationship (2.3) since the
correlation one Wishes to Compute will also appear as a coefficient of
some of the derivatives of the meah velocity field found ih ﬁhe

transport law.

B. Mean Vorticity Equation

The vorticity equétion for a two dimensional flow in which the

density of the fluid is spatially uniform but may vary in time is

- 1.2 -
€t + u.VE + E0 = §V g

An equation for the mean vorticfty may be derived by substituting into
' > > -> )

this relation E'f g' for £, U + u' for u and then averaging. The result

is
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> >

'g‘t + U.VE + 0 + V.u'g = vz'g' (3.24)

| =

where 3'& is the flux of vorticity due to the turbulent motion. After
transformation of this expressioh through use of the diffusion law

(3.19), (3.24) becomes

3 . PoF.of+ 2 |L3E oo 3E »
5 U.ve e‘€+ax1. R 3x; +T1.J. ugu; axj - (3.25)
which is the general mean vorticity equation that will be used as the

basis for difference equations in our applications.

€. The Equation for Mean Squared Fluctuating Vorticity

In the original formulation of the method of Coarse Graining by
Chorin (1974) the evolution of the ¢ field was computed from a set of
difference eduations which approximated the equation of conservation of
mean squared vorticity, Q?'= EQ + ¢. This approach obscures the rela-
tive magnitudes of the factors contributing to the balance of z. To
remedy this we will formulate an explicit relation for ¢ which will be
used subsequently in the applications to derive difference equations. ’
The squared vorticity equation is obtained from the vorticity

equation by multiplying it throughout by £, thus’

2
%%%—+53.vg2+g29=

£ veE

0| —
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Taking the average we find

3
ot

N

-
|

N

w 2(E040) + % U(EPH) + 0(EB+) + wrUre? - Vg £'voE

(3.26)

Subtraction of £ times the equation for mean vorticity (3.24), from this

relation yields

> —— — 2
- - - >y g +| '2 l 2 - _2__ .QQ
Ly = - U.Vg - 20 - 20'E.VE - V.U'E T+ £ VL Fl(axi)

o | (3.27)
which describes the evolution of the ¢ field.

The physical interpretation of each of the terms on the right side
of (3.27) is as follows: The first is the convection of z in the mean
velocity field G, and the next represents an increase or decrease of ¢
corresponding to a similar change in the density of the fluid. The next
utwo, as mentioﬁed in Tennekes and Lumley (1972) p. 87 contribqté
respectively, to the production of ¢ from the mean vorticity field, and‘
to the diffusion of ¢ due to the turbulent motion. The next to the last
term represents molecular diffusion of ¢z and the final term gives the
dissipation of ¢ due to the viscosity of the fluid.

The production and turbulent diffusion terms must be transformed

using our diffusion law if they are to be in a usable form. The

application of (3.19) to each of these terms will also have the pleasant
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consequence of displaying their physical meaning directly. Thus, for

the production term:

— N |
2uig ; 2 T., ulut % ij (3.28)

If we suppose that Tij is rbugh]y the same for each (i, j), then

S— 7T =\?2 :
’T—_§.= v 38 °
Uit ox; T 2 TijGﬁ Bxi)

which is always positive and thus strictly represents production of z.
To transform the turbulent diffusion term we substitute the identi-

ty £ © = g5 - 288" - EQ into it to obtain

w.we'? - v v vTre (3.29)

Applying (3.19) to G'gz and U'E , (3.29) becomes

_+'l2=.§.__ f a__ g _a__g____a__ ||_3L.
v.u's axi Tij uju J X (g *z) 2 3 T 1 3 9X.  OX, T1Ju1uJ X .
J *i J 1 J

(3.30)

. . y 12
which c]ear]y reveals the diffusive nature of -V.u £ .
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The final term in (3.27) representing viscous dissipation must also
be suitably transformed if we are to have a closed system of equations.
We may do this only at. the expense of introducing another parameter

which is descriptive of the small scale turbulent motion. By definition

E' (x*X5¥,) - &' (xg¥,)

X (Xo’yo) llg . X

so it is_a]so truevthat

£ (x +x,y ) - E'(x_,y.)
E;?~ = £ 1im { e 222 ]
. v x+0

(3.31)

E (X 4x,y.) + 6'2(x ' ) - 28" (x_tx,y JE'(x.,Y.)

1i 0 %Yo o’yo o Yo 0’’o
im >
x-+0 X

Let us define an Eulerian vorticity correlation function R(?) by

NI CRTRT)
R(X) = & 0¥ )8 XYty (3.32)

"'_u"z' .
§ “(xy0¥,)

where the dependence of R(;) on ;o is to be understood. If we assume
that the turbulence is locally homogeneous so that %%(o) = %%{o) =0
then it is not hard to show that (3.31) leads to
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A similar argument was used bvaayYOr (1935a) to derive an analo-
L

——

gous result for the quantity (Bui) which occurs as a dissipation term

X
in the equation for turbulent ki%etic energy. Taylor also initiated.the
> A
practice of using 3—% (o) to define a length scale Ax’ called a Taylor
X '

(vorticity) microscale. This length gives an indication of the extent
of the smallest eddies that occur in the turbulent flow, and is

0 at which a parabolic approximation

defined as that distance from x

1

to the function R(x,0) about x = 0 is equal to 0. Since R(0) =1

R 82R x2
and 5;(0) = 0, we must have R(x,0) %1+ 5;2(0) 5~ for wvery
small x. Thus
-
2 _ 3R :
A= g'f(o) v (3.33)
X
and then
7.2l
X NE (3.34)



A microscale Ay similar to A, may be defined so as to allow us to
express gyz by a relation analagous to (3.34). Defining a composite

microscale Ad by

: 2.2
ACA
4 %2 x;ﬁf |
Aty
we have -
oy B o ar
| éx + €¥ = ;g‘_ « ‘, (3.3?)

It is clear from its definition fhat xd may vary throughout the
flow field. .we have as yet no means of. predicting its_va]ue a priori,
) it$ value will have to be assigned arbitrarily. It is possible
that a precisé connection between T22 and Ad’ for any particular
turbulent f]ow'doeé exist, but if it does, we have not found it.

Qur final equation for r now fol]ows from using (3.28), (3;30)

and (3.35) in (3.27):

a :
t

c Y
<]
Y
[
Ny
<D
i
+
~n
-
—de
Ca :
[~
<
@
Ty
lcu
™

(3.36)
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D. The Closure
The relations which govern the evolution of the mean Vofticity and
mena squared fluctuating vorlicity fields, (3.25) and (3.36) depend

explicitly on the velocity correlations In this section we will

show how these may be éomputed in terms of the other dependent variables
thus providing a closure to the turbulence equations.

The closure hinges directly on the statistica1 hypothesis formu-
lated by Chorin.(1974) to the effect that the averages of the vorticity
over two disjoint regions of sufficient size in a turbulent flow may be
considered to be independent random-variables. An equivalent stafement
of this hypothesis is that the circulations of nonintersecting regions
of a proper extent are independent. For completeness, we will mention
two of the reasons why we expect this postulate to be true.

In the first place, the'turbulent‘flow within or near boundaries
is believed to be,coﬁpriséd_of many‘small vortices. The positions
and intensities of these vortices are correlated through the evolution
of the turbulent flow as a whole. The mutual dependence between a
pair of vortices, one in each of two disjoint regions is obscured when
the circulation in these areas are computed by summing the circulations
of their rgspective vortices. In this manner the cbmpcsite circulations
may be deemed to be independent.

A second argument in support of the statistical assumpfion can be
seen by discussing the reason why we would not expect an analogous
hypothesis to hold for the averages of the velocity fig]d over disjoint

regions. The velocity of the fluid at a particular place and time
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depends on the whole vorticity field at that instant. Thus the velo-
cities at two different points have the possibility of being highly
correlated owing to their mutﬁa] dependence on the vorticity field.
The vorticity, on the other hand, is purely a function of the local
state of the fluid.

Ih the previous section we defined the vorticity micro scales
AX and Ay. These 1engths give an indication of the distance over which
the vorticity field is highly correlated. It would seem likely that if
tﬁé statistical hypothésis just cited was to be applied to two adjacent
regions then each of them should be of an extent greater than XX and xy.
We are careful not to suggest that this must be true because it is not
clear to what eXtent'averaging the vorticjty over regions will wash out
the local correlations of the vorticity field.

In addition to postulating that the circulations of the non-
intersecting regions are independent of one another, Chorin further
assumed that they are Gaussian random variables. This is a plausible
idea which waé used in the original derivation of the method, but it
will not be necessary to make this assumption here.

We wi]] now use the statistical hypothesisvto derive an expression
for ;Tﬁ-in terms of the ¢ field and thus achieve closure. The other
velocity correlations aré computed similarily.

We will compute ;TE for a point X situated with regard to a grid
as depicted in Figure 1. This is the situation that is typically
found in practice. The flow domain has been divided into N boxes,

N > 0. We supposed without loss of generality that each of the
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boxes is a square with sides of length h. ;1 will represent the center
of the ith box, and Di the region occupied by it.

For the type of flow situation we are considering the velocity
component u' s incompressible and thus may‘be represented by a stream
function ¢'. ' satfsfies Poisson's equation VzwI = - gl with appro-
priate boundary conditions, e.g. ' is constant on a solid boundary.

The solution of this equation may be written as

w'(i*)=-fe(§|§')a'(x')d§' | | (3.37)
- |

where G(X|X') is the Green's function, x' = (x',y') and dx' = dx'dy".

Since_u' = %%—-we have

u' (X) ;.fsum-)g'(;' )dx"* | (3.38)
: D . _

where

6, (X|%") = %y G(x|x")

Gu(ili')'is~a sure function which is smooth for all values of X and X'

‘except when X = X' where it has a singularity.
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Breaking up the integral in (3.38) into a sum of integrals over

the boxes Di we have

Zje (Xl )g'(x | (3.39)

i=1 D,
j

For all boxes Di’ except boxes_D] and 02 which are adjacent to the

point X in Figure 1, we may, with good accuracy, write

| fs G e (x (X]%;) fg F)dk' (3.40)

D

We cannot readily make this same approximation for D1 ahd 02 because of

the singularity; GU(YIY') varies quite rapid]y within these boxes. |

However, it will be unnecessary for us to make this assumption for

these boxes so long as we make the following additional hypothesis:

er (x] dex j= 1 2 is independent of Djrg Y(X)dx', i # 1,2, )
Note ‘that our first statistical hypothesis was to the effect that N
Dg;‘(x')dx' and Dg;‘(x')dx' were»independent if i# j, so this second

J
one is just an extension of the first.
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Using (3.40) and the statistical hypotheses we find that

a7 [eu(x*uz-)eum;-wg'(;-)g'(;n)d;:-d;-- ;

D.yb,xD,UD .
1772712 (3.41)

Zeﬁ(zlii)fg-(&")g'(I--) dx* dx* "

i£1,2
DixDi.

Using the vorticity correlation function R(X) defined in egn. (3.32)

‘we can write the first integral on the right side of (3.41) as

- > >

feual;z-)eu&l;“)c(i') RO -x') '’ (3.42)

p]UDZXD]UDZ

If we assume that the implicit dependence of R(X''-X') on X

is
unimportant and that z(X') = ¢(X) for the region D; U D, then expanding

_R(z"-f') in Taylor's series about X''-x' = 0, (3.42) becomes

c&)feu(il‘i')eu&\?“) [H(x---‘x') B (0) + (vt -y 3O+ ]ax-d;--

D]UDZXD]UD2 : (3.43)
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In an unbounded domain

T2y o ] (y-y')
G =
U(_X‘X ) 2w (X_X.A)Z + (y_ye)Z

(in a bounded domain we consider GU(II;') to be augmented by contribu-
tions from image vortices) and if this is substituted into (3.43), and

a coordinate change is made, (3.43) becomes

r ] Bl dll ‘lyl"' '1
Jj.J/.j[X (x 24y 2)(x ay %)

-?;2 -h - -
h/ h h/2 h (3.44)

| > 8.2
P+u~x)<m (v y)fmrtn}=ﬁ%%£-+mﬁ)
. |

where
h  h/2
cz—1s Hax flay _y° -1 [% tan”l 2 4 % —‘21] = .09967542103. ..
' 27h x2+y?
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and we have replaced §~§(0) by using a relation similar to (3.33).

The integrals in the second term on the right of (3.41) may be

written as

/a'(?")a'(i"') dx'dx'" = c('ig)h4 +o(h®  (3.45)

01XDi

after using an argument analagous to the one leading to (3.44). Sub-

stituting (3.44) and (3.45) into (3.41) and neg]ectfng_terms of 0(h6)

and higher we get

—_ 4.2, :
Z_2h'C 2212 4
U =L_k_%_(x_) " E 62 (X[% )z (% )h (3.46)
y i£1,2

- 5
In practice we need to compute v 2 at points situated with

respect to the grid as represented by the point ;o in Figure 1.

Following the same steps as was used for u 2 we find

4.2 > |
V22, > 62X )T (X0’ (3.47)
M i#1,2 |
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The correlations u'v' are in general required at both points like

X and like §0 in Figure 1. In either case one finds that:

)%,@—(0) + Zeu&lii)ev(}li’i) ;(?Zi)h“ (3.48)
i#1,2 |

where
o= %(g tan”) ‘7+%- g"l) = .2186345 ...

| Apart from values for the parameters, A_, A ., A, T..,
p | p x* ty kd i3 and

2 .
9 R (0) and a specification of the boundary conditions, which we will

X3y
do in the next chapter, we now have a complete closed system of
 equations in (3.25),(3.36), (3.46), (3.47) and (3.48) which may be
solved numerically for a wide range of two dimensional turbulent

flow problems. The next two chapters will take up the application of

this method to the two different flow situations we shall consider.
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IV. THE TURBULENT FLOW IN A CHANNEL

In this chapter we will use the method of coarse graining to
investigate the fully deve1oped turbulent flow in a channel. In section
IV.A. we derive the difference equations (4.13) and (4.20) which
approximate the mean vorticity equation in the core region and the wall
region respectively. To derive (4.20) which uses the boundary condifion
(1.4) previously discussed in Chapter I, we will use the linear law of
- the wall. We also show in IV.A. how the distance & and velocity U_=U(§)
which appear in (4.20) may be estimated using the computed stream
function.

| In section IV.B. we analyze the physics of the overall balance of

z in the channe] and conclude that there must exist a distance from
the wa11, say y', which separates the flow domain into the two regions
mentioned in Chapter I: A pure dissipafion region next to the wall
and a core region where ¢ is produced. We show that for sufficiently
large Reynolds numbers y' is very small and then use this fact to
formulate a boundary condition to the z equation in the wall region.
We then construct the difference approximations to the ¢ equation:
(4.32) for the wall region and (4.33) for the core region. |

In section IV.C. we show how the stream function, (and then U)
may be computed from the known values of EZ In IV.D. we specialize the
general results of II}.D. on our closure scheme to the present case
and derive equation (4.40) which gives the velocity momeht ;Ti in

terms of the r field.
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We present the results of our numeriqa] computations of the fiow
in a channel in section IV.E. OQur first task here is the determination
of the various parameters which must be assigned values before we can
find the solutions of our difference equations. We determine these
parameters by fitting the computed and experimental predictions of the
mean flow in a channel for a Reynolds number of 57,000 which was studied
by Comte-Bellot (1965). Then keeping these parameters fixed we investi-
gate the variation with Reynolds number of the friction coefficient,
mean velocity distribution, mean vorticity distribution, and z.

Our requirement that the_f]ow in the channel be "fully developed"
implies that the x component of the mean velocity field, U, is assumed
to be uniform in the x direction, steady, and symmetrical about the
centerline of the channel. If lengths are scaled using the channel
width, 2D, then it follows from the assumptions on U that V=0,

E(y) = - E1-y) and y) = £(1-y).
Velocities will be scaled by Um’ the average mass flow velocity,

so that

1
[U(y)dy =1 : (4.1)
0
If we define a stream function ¥ from the relation U = 1 + E& and if
P =0, at y = 0, then (4.1) and the symmetry condition imply that
vly) =-¥(1-y). ¥ is related to € by
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Since conditions are uniform in the x direction, we will only have
to solve for the values of £, ¢ and y at one x position along the
channel, which we choose to be x=0. The set of points (0,(j-%)h),
J=1,...,M with h = 1/M forms a staggered grid, on which we will define
discrete approximations Eﬁ, 25 and Es‘to E((j—%)h), z((j-%)h) and
Y((3-%)h) respectively. These grid functions will be related by

J
by allowing Ej and Ej to depend on time, and integrating the equations

difference equations, the solutions of which for E& and ¢. are found

until a steady time independent solution is found. A superscript 'n'
will refer to the time step>nAt where At is the interval of time
between integration steps.

A. Mean Vorticity Equation

The mean vorticity equation for the flow in a channel is

)
vl

(4.2)

x]_a
&

which is a special case of the general equation (3.25). The average
flux of vorticity due to the molecular motion is -%-%%-. The minus

sign is necessary to satisfy the condition that the flux be positive
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if it acts to increase the vorticity 1ying on the + side of the surface
through which the flux occurs. V'E is the average flux of vorticity
due to the turbulent motion and if we define the total mean flux of
“vorticity as Q(y) then Q(y)‘=—%-€& +Vv'E . (4.2) implies that -
§%§Xl-= 0 i.e. the total flux of vorticity is constant across the
channel, (or more generally a function of x).

The constant mean rate at which vorticity diffuses across the

channel may be determined- by transformation of the x momentum equation:

1%
R Byz'

9_

> (4.3)

' '=-_a_-é..+
u'v 5%

through use of the relations u; +vv§'= 0 énd_E’= -Uy. We find that

, |
aly) = + 5 (4.4)

Let us define a friction coefficient, A, through

e ' (4.5)
%ol v
m .
where
* - dU*
Tw udy*
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is the dimensioned shear stress at the wall and U* = UmU and y* = 2Dy

are dimensioned variables. We will show that

e -2 e
and therefore ;hat (4.4) may be written as

Q) = -x . | (3.7)

If the nondimensionalization of T; is carried out in (4.5) we find

that
A= U (0) - (4.8)
where Re = U D/v = R/2. The y momentum equation,

m

3 4=, "2y _
-a—y(pfv ) =0

_r;

- 2 | '
implies that %g- is independent of y since %%— = 0, so (4.3) may

be integrated across the channel fromy = 0 to 1 to give
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] (u (-v(0)) =) (4.9)

e

where the symmetry of U(y) was used. (4.8) and (4.9) then imply that

%§'= -1 and therefore (4.7) holds.

It is known that the mean flow fields such as U, E}'E& and V'E
vary sharply in a thin region near the wall in a high Reynolds number
flow. (4.7) shows that in spite of this Q(y) is a constant across this
region. We will show now that this fact may be used to advantage in
forming a difference approximation to the mean vorticity equation for
the box adjacent to the wall.

For the purposesvof cohstructihg difference equations we pretend
that Ei is not identically zero, so that in approximating Ei by a

finite difference we create a means of iterating to the steady state

~ solution. The equat1on we are to difference is thus

21
c-fml

- - 3y) - (4.10)

and we approximate this at any grid point j =1,...,M/2(Because of

symmetry we do not need difference equations for'j>M/Z)as
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gl . v
N - i . Q(h) - Q3-Vh) 4 g(p?). (4.11)

We may have comp]eté confidence in the order of magnitude of the
truncation error for all grid points, including, in particular, j=1
near the wall since Q(y) according to (4.7) will be constant across

the wall region after the numerical solution has converged.

For points sufficiently far from the wall so that we may suppose

that our transport law is valid we have

Qly) = G— + Too 77) % | (4.12)

If we suppose that the point y = h is in this region then our difference

approximations to (4.10) are for j = 2,...,M/2:

(4.13)

i . 2 2.
which follows from (4.11) using (4.12) and where Vi =V (ih).
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For the grid point j = 1 at the wall we have

(4.14)

since V'§ = 0. If (4.14) is to be useful we must find an alterna-
y=0 = .
tive expression for 9 ; one that we are able to compute. We will

Y|, =
. y._O
show using the linear Taw of the wall that

%5 = 552 - (4.15)

where § is a point in the viscous sublayer and U_ = U(§). Later we
will show how & and U_ may be computed (approximately) using the
stream function. '

First Tet us recall what the content of the linear law.of wall is.
This'law is thé ekperimenta] observation that the mean velocity field
U(y) varies approximately linearly in the viscous sublayer. This has
been found to occur in both pipes and channels, (see Comte-Bellot (1965)
and Schlichting (1968) Chapter XX).

Though the distribution of U jn the viscous sublayer appears in
experiment to be linear, it does in fact vary parabolically, thoubh

so slightly as to be easily overlooked. This may be seen by
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evaluating thé momentum equation (4.3) at the wall. We find, after

using (4.6) that

'} : EE = _ ) |
U (o) = R R = -2aR, (4.16)

which shows that U''(0) # 0 and therefore U cannot be purely linear at
the wall. 1If we expand U(y) in Taylor's series about y = 0 we find,

since U(O)’= 0 that
U(y) = R (y-y?) + 0(y®)

We may take the linear Taw of the wall as suggesting that U(y) = xRey

in the viscous layer or equivalently

U(y) = AR, (y-y%) | (4.7)

since the contribution of the term with y2 to U(y) 1is negligible in

the viscous sublayer.

(4.17) shows that if § is a point in the viscous sublayer then

(4.18)
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Furthermore since £ = -U_,

Qi)
< Lr*ﬂ
]

1
<
—~
o
g

(4.19)

\

and therefore (4.15) follows from using (4.16) and (4.18) in (4.19).
If we substituté (4.15) into (4.14) we attain

1 ,

which is the difference eduation to be-used for the grid péint j=1.
As we have seen the boundary condition (4;15) to the mean vorticity |
equation that is used in (4.20) may be justified by a combination of
theoretical and eiperimenta1 facts. This situatibh is to be con-
trasted with the heuristically derived boundary conditions used by
Deardoff (1970) and Schumann (1976) in their large eddy sihulations of
the flow in a éhanne].‘ Both of them rely on making a crude connection

between their filtered variables and the 1ogarithmic law of the wall.

We have found in our computations of the flow in a channel, that an

accurate accounting of the boundary condition is crucial toward
obtaining the correct solution. It is, therefore, not evident that
the resu]ts of their computations will have any meaning until such time

as a rigorous justification of the boundary conditions they use is found.
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The usefulness of our boundary conditioﬁ, however, depends on
there being available to us a means of determining the velocity U at 'a
point & within the viscous Sub]ayer. Cléar]y we would have such a means
if we were to use an extremely fine mesh (and supposing that we were
able to adopt our numerical method to such a'grid) that had at least
one grid point within the viscous sublayer. We do not propose to use
such a grid, though, and will in fact use a-very coarse grid which has
h =1/16. This will result in ou} having to devise a crude method of
finding a pair of values (G,Um). We found that the determination of a
value of & within the sublayer for the full range of Reynolds numbers
that wé have studied is rather easily accomplished, but to compute the
value of U at this poiht is a much more difficult task and w111 fofce
ué to introduce a parameter that must be found by using the experimental
data. | '

Our method of computing & relies on the construction shown in
Figure 2 which is a crude approximation to the behavior of the stream
function in the region near the wall. In‘this figure we have drawn a
stfaight 1ine with slope -1 leaving the origin and a ﬁarabo]ic arc
through the values of the computed stream function at the three grid
pdints closest to the wall, i.e. y=h/2,3h/2 and 5h/2. The first line,
the one leaving the origin, satisfies the boundary conditions that the
stream function must satisfy at the wall. We have found that the point
of intersection of these two lines always occurs in the viscous

sublayer and so we have let & be this point.
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After some simple algebra, one may ascertain that

5 o 14B - V(14B)2-4AC

28 - (4.21)
where
A = ]2 (w] 2.‘52"'.‘]1—3)
2h
B = & (-2 + 30, - U,)
h ' ™1 2 3
and

15- 5 — ., 3—
C=3% -7V *g¥s

As we have suggested, without more information about the flow
within the wall region‘the evaluation of U at the value of § given in
(4.21) can only be done crudely. We have found nonetheless that the
following artifice works surprisingly well as we shall see in section
IV.E: We know that U(y) =1 + E&, so as to compute U(S) we must find
an approximation to 6& (8). We can estimate the order of magnitude
of 5&(6) from the slope at the point &, ( = B + 2A &), of the
parabolic curve used to compute &, and then suppose

that E&(é) is proportional to this slope. Therefore,
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introducing a parameter C1, we have
U(s) =1 + C1(B+2A6) (4.22)

where C] remains to be determined using experimental data.

B. Equation for Mean Squared Fluctuating Vorticity

To aid-us in formulating thevcorrect difference équations for ¢ -
in the wall region we must discuss at length the distribution of the 3
field throughout the whole channel. ‘We will show that two fundamentally
different regions, so far as the ¢ dynamics are concerned, may be
distinguished. The first will be a thin dissipation region néar the‘
Wa11 where no production of ¢ from the mean fiow takes place, and the
other is an outer zone where 7 is produced.

Qur first job will be to predict the behavior T across the channel.

From differentiating (4.17) we find that

Ey) = - AR(-2y) (4.23)

in the viscous sublayer. We can find the distribution of E(y) through-
out the remainder of the channel by considering what is known about

the typical mean velocity profiles that have been measured in turbulent
channel flows. For example, it has been'experimenta11y observed that
the turbulent mean velocity profiles in a channel are considerably

flatter in the center of the channel than the parabolic velocity
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distribution which exists in a laminar flow. As a cohsequence,
g = l%%- must be smaller in the core region of the channel in a
turbulent flow than it is in a laminar one.

We also know from experiments that %%-= -£ monotonically increases
going from the center of the channel where it is zero to the wa11y = d
where it is ARe. Uéing this fact and our krowledge of £ at the boundary
contained in (4.23) we expect the distribution of £ to appear similar
to the form given in figure 3, where the length scale near the wall
has been greatly exaggerated.

Using the curve for € in Figure 3 we can predict the general
behavior of‘E& across the channel. First of all, we know from (4.17)
that E&‘= 2)\Re throughout the viscous sublayer. Figure 3 then shows
that E& must increase immediately outside of this region reaching a
meximum at the\p]ace where £ has a point of inflection and then
rapidly fall to the much smaller value it has throughout most of the
core region. The distribution of E& across the channel is p]dtted in
Figure 4, (actually %-E& is shown, for later convenience).

It fol]ows then that there must exist a point outside of the
viscous sublayer, say y', where E& is again equal to the value 2>\Re
which it has at the wall. We will show that the ‘point y' has several
physical interpretations (as far as a two dimensional flow is concerned)
and that its location in the channel is of major importance to as in
our effort to numerica]]y solve for the mean properfies of this flow.

The first interpretation of y' has to do with the direction of the

mean turbulent flux of vorticity. The mean vorticity equation (4.7) is
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Qy) = g T+ VE= - | )

which implies that when E& = 20R, = AR, V'E = 0. Therefore V'€ = 0 at
‘y'; We see from Figure 4 that for y<y', %§&>k and that for y>y'
(more precisely 1-y' > y>y', but we will assume throughout this
discussion that we are only referring to the half channel o<y<;),
%-E&.< A. (4.7) then implies that V'E > 0 for y<y' and that V'E < 0
for y>y'. Since the vorticity is negative in this half of the channel
V'E >0 here corresponds to a flux of - vorticity in the -y direction.
We have thus seen that the point y' separates the flow in the channel
into a region 0 <§y<y' where the mean turbulent flux of vorticity is
towards the.wa11 and a region y>y' where it is away from the wall. At
the point y' this flux is O. |

y' may be interpreted in another way, as the point which separates
the flow into zones of production of g, when y>y', and pure 'dissipation’
or destruction of  when y>y', This may be seen by considering the
exact equation which governs the evolution of the ¢ field for the

channel problem, which is, from a reduction of (3.27):

193 _ 2

a1 T L, 2 (77,772 "
0= 3y (Ray "g) 2 Ve gy (Ex+5y-) (4.28)

FellN]
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The term in the middie of the right side is the one that we previously
indicated in.Chapter I1I is reSponsib]e fof the production of ¢ from

the mean flow. However, it is clear that it can only lead to prdduction
of ¢ when V'E < 0 and this only occurs, based on our previous discussion;
in the wall region y'>0. In the wall fegion where V'E > 0, this term
represents a loss of ¢ by a reconversioﬁ to the mean field EQ. The
overall dynamics of ¢z may be seen by integrating (4.24) over the regions
‘0f< y<y'andy' <y <% in turn. |

For the wall region.O < y<y' we find that. -

y y : ,’
1 — = 2 (72,2 1 3¢
o), - fres o fo a1

o

The first term on the right, which is negative, is the previously
considered 1055 of ¢ by reconversion to EQ, while the next term
represents viscous dissipation of . Since it doesn't make physical
sense that wou]d be produced at the wall by the molecular motion,
‘we expect thét cy > 0 at the wall, and thus‘the final term on the
right represents an additional loss of ¢ by its diffusion into the
highly viscous ﬁublayer. These three losses on the right are balanced
by the term on the left, which is the total flux of ¢ at ihe position
y = y'. Since the right side of the equation is negative, we must
conclude that the left hand side represents a fiux of ¢ into the wall
region from the outer.f1ow. ‘A1l of the ¢ which diffuses into the wall

region is then 1ost due to the various phenomena ligted on the right side.
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Now let us explore the region y' < y<%, by integrating (4.24)

between these limits. We find that

> o
= .ooFF _2_—'7—_1—2) _lﬂ ) 2
0 IZVEﬁydy-fR(€X+£y dy + <R3y+v€y=y'
yl y' . |
(4.25)
Since V'€ < 0 in this region, the first term on the right represents

the total production of ¢ taking place in (half) the channel. The
next term represents the dissipation taking place here and the last
term represents, as we just saw, a loss of 4 frpm the core region by
its diffusion into the wall region. The only way in which a balance
can be maintained in (4.25) is if the production term exceeds the
middle term representing viscous dissipation. Therefore a net produc-
tion of ¢ takes place in fhe'core region which is in turn.balanced by
a net loss of ¢ occuring through its dissipation in the wall region.
Since ViE = 0 at y = y' the sole contribution to the flux of
vorticity at this point comes from the molecular motion. Thus, it is
evident that the effects of viscosity on the vorticity dynamics extend
out at least the distance y' into the flow. This implies that there
is no justification for believing that the‘vorticity approximately
satisfies (3.1) in this zone, i.e. that the viscous terms in the
vbrticity equation cén be neglected here. We are then not surprised

to find that the transport law (3.21) does break down in the region
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y < y' as is obvious from the fact that both V'E and Top ;Tﬁ-gy are
greater than zero here.

In deriving our difference approximation to the mean vorticity
equation at the first grid box, in thé previous section, we applied
the transport law (3.21) at the point h. We had assumed then that
the point h was far enough from the wall so that (3.21) was valid
there. If we can now show that y' < h, then we will have some
justification for that assumption. Fortunately we can do even better
than this and can show that y' = o{h) if Re is sufficiently high. The
fact that'the region 0 < y<y' occupies only a small portion of the
first grid box will aiso be helpful to us in forming a difference
equation for z there. |

To show that y' is exceedingly small (for sufficiently large
Reynolds numbers) we first establish that y' has yet another interpre-
tation as the point where u'v’ has a minimum.; The distribution of
u'v' across the channel may be found'by integrating the momentum

equation (4.3) between y = 0 and y, and using the definition of X.

We getb

uv' = a(y-%) - (4.26)

o)

E/R is a significant term in this equation only for a region very close
to the wall. Thus we expect u'v' to have the behavior shown in Figure

3, which is a well known result. We see from this figure that u'v' has
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a minimum at a point near the wall. At this point g%-u'v' = 0.

VE = R u'v',

Yy
3'_"l——l.- . 7T T
= 0 at y', so must 3y UV T 0 This proves that u'v

But, for an incompressible flow in a channel,
and since V'¢
is a minimum here.

The point where ETVT'iS a minimum has been measured in experiments
of turbulent flow past walls and in channels and pipes. It is generally
found (see Tennekes and Lumley (19?2) p. 161), that this occurs at
y*u /v * 30, where u_ = ¢?§75_ is the friction velocity and T;'is the
dimensional shear stress at the wall. This point also coincides with
the lower limit of the range of y values in which the log law of the

wall holds, see Tennekes and Lumley (1972) and Comte-Bellot (1965).

After nondimensionalization we have

w
o

3]

y' =3 % (4.27)

When Re = 57,000, X < .00366 and therefore y' ® .00615. h, however
for our computations = .0625, and thus it is true for this value of'
Re that y'<<h. However, as R ~ 0, this assumption becomes progressively
less true and in fact for Re < 7500, it appears from bur computations
that h < y'.

As a sidelight of this discussion it is interesting to note from
Figure 3 that the molecular diffusion of momentum is much less than
its turbulent flux, (i.e. the Reynolds stress) at'fhe distance y'

from the wall. The molecular diffusion of vorticity, however, as we
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just mentioned is still comparatively large at y = y', thus it is
clear that the influence of thé viscosity on the diffusion of vorticity
extends considerably further into the flow than its influence on the
momentum transport. This might exp]éin, in part, why Taylor (1935b)
saw that his vorticity transport theory was not as accurate as the
momentum transport theory in the wall region.

Another interesting aspect of the wall region and oﬁe which will
have a bearing on our formulation of a difference approximation for
&y is thé'1ocation of the point of greatest production of ¢z and the
magnitude of the production there. Using (4.7) the production term in

the z equation (4.24) may be written as
-2 ’v"‘éEy = 2RVE (A+V'E) (4.28)

Weaéaw in Figure 4 that -v'£ goes from 0 at y' to a value near A further
from the wall. Consequently (4.28) will vary from 0 at y' to a maximum
%kzkiwhén -V'E = A/Z and then back down to a smaller value throughout
the reét of the core region. The point where the production rate is

a maximum most likely lies t]ose to the point y' since E& is known to

be combaratiVe]yvsma11 a short distance into the log law region.

2R for most

Though the production rate of ¢ is much less than )\
of the flow field, its contribution to the totalvamount of production
is just as significant as the intense production coming from the wall

region, since this latter region is quite thin. It might be helpful
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if we demonstrate this fact with some numbers. Suppose that the maxi-

mum production in the wall region occurred over a distance ~ h/2. Then

2
the total production here is = l—f% , which for R, = 57,000 is * .024.

A tybica] value of E& in the core region of the channel is %/h, so the

= .015

=i>

total production term of (h;if)'fﬂe core region is 3(2X§&) =4
It is thus clear that they are comparable.

It is a curious fact that a similar conclusion cannot be drawn
for the production of mean turbulent kinetic energy ;E'where
q2 = ls(u'2 +.v'2) i.e. virtually all of the production of ;2 takes
place in a thin region next to the wall. To see this fact consider

the equation describing the balance of q2

—2 ——"‘ B [} )
0=-uviu -2 Wd-(‘ﬁg—}- v-qz)-‘ﬁ(uh w2 o+ vx2+vy2 )
(4.29)

The term -u'V’ U‘y which is always positive for the flow in a channel,
represents production of ;? from the mean flow field. This term reaches

1,2

a maximum of = i3 A Vo=

R at the point in Figure 3 where R u'v' = E.
Making similar estimates as before, i.e. supposing the maximum produc-
tian rate occurs over the distance h/2 and the core region is of an

extent %, we find that for the wall zone the total production is

approximately %-' %E-XZR ® .003, while in the core region it is
= ..A.- >z 3 =2 F = "-T"T:)\
Ty’ U.y %7 5 .0002, since Uy Exand u'v z-herg.

OQur claim is thus clearly substantiated.
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Part of the intriguing complexity of the turbulent flow past a

wall is the fact that while the wall region is a p]aée of large

production of both q2 and g, it is also the place where a great deal

of the dissipation or destruction or a?-and g takés place. It has
been sbmetimes conjectured, see Townsend (1961), that the wall region
.may be considered to be in an equilibrium where the production of ;?
is balanced by its loss. Tb aid us in deriving a difference equation
for ¢ in the grid box adjacent to the wall we wi11‘extend this assump-
tion to also include the case of . "Specifically, we suppose that to
a gbod approximation, the ¢ which is produced in the high production
region just outside of y', is 1ost by its diffusion 1nt6 the
dissipation zone y < y' as we11 as its dissfpation in the viscinity
of where it was made. |

Though this assumption seems equally p]ausib]e for the ;7 field
as it does for z, it has drastically different consequences on a
hypothetical numerical method which hopes to compute az.throughout
the flow field by incorporating this hypothesis. Thus, if the produc-
tion of ;? in the boundary region is left out of the difference
equation for gz'by virtue of its supposed cancellation by the
dissipation term, then the part of the production that one is left
with to compute, is just a small part of the total production, therefore
it is likely that small errors in the,computations would have a
considerable effect on the calculated solutions. Such behavior is
clearly not expected in the case of the ¢ equation if a similar

approximation is made, since a goodly portion of the r production is

being computed.
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We now are finé11y in a position where we can present the differ-
ence equations that we will use to épproximate (4.24). 1In the region

y > y', we presume that z satisfies the equation

a9 [ T2\ ¢ 2 2
0= 3y (-ﬁ + T22 \ ) 'a—y + 2 T22 \Y Ey - )\—2“; (4.30)

which makes use of our transport law. To form a difference equation
for the box j = 1 we difference the diffusion term in (4.30) between
' y'='y' and y = h and suppose that h-y' = h. The evaluation of

(1/R + Toy ;Tf)cy at y = h is no trouble but at y = y* it is. To bé
more precise, we actually must compute %a;y -;Tgﬁiat y = y' since we
have a right to be suspicious Qf'the transport law here. In view of

the limitations afising from our coarse gridAwe will make the following

crude approximation:

(i1 2 e flir 2 ) 2 |
(R 5y vg}) CZ(R+T22v ]) i (4.31)
y=y'

where C2 is another constant to be determined empirically.

in view of our supposition as to the existence of a partial
equilibrium in the production and dissipation of ¢ in the wall region
about y = y', we will suppose that an adequate approximation to the

production term for the first box is
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Incorporating this approximation as well as (4.31), the difference

equation for gy may now be written as

For the remaining boxes j=2,...,M/2 we will use the following

difference equation which is a straight forward approximation to (4.30) -

n+l

n n n « N
55 "5 N A YL RS 1 =7 i 7 3-1
X (R’, Ty v J><‘L—r‘l> ‘("ﬁ * T V50 J“‘f“)
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C. Stream Function

The stream function ¥ is determined uniquely for a known vorticity

field, £, as the solution of the equation -
v . _¢ : (4.34)

with the boundary conditions Yy=0aty=0 and 1. Thé discrete stream’
function Ej is similarly determined from the 25 by a finite difference
analogue to (4.34). At the grid points j=2,...,M/2, which are distant

from the boundary, we may form the consistent approximation to (4.34):

-‘Ejﬂ - 21—1’:} + \Uj_] - _g_
'h2 J

(4.35)

which is accurate to O(hz).
When j=1, (4.35) cannot be used because this would necessitate
the use of a point outside of the flow domain. We may; however, use

the approximation

53, + 20, - 1/5%,

h?

= -‘EA (4.36)

which may be easily verified to also be of second order accuracy in h.
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If the equation in (4.35) when j=2 is multiplied by 1/5 and then

added to (4.36) we get

- 1=
- - -3 (4.37)

The system of equations (4.35) j=2,...,M/2 and (4.36) have fhe same
solution if (4.36) is replaced by (4.37). This latter system is a
tradiagonal system of equations which is easily solved using the -
standard algorithm.

Once the E& are known we can find approximationsUj to U(jh), j=1,

....M/2 from

[
it
e
+
€
i
<

In section IV.E. we will compare the computed value of Uj with those

found experimentally.

D. Computation of the Velocity Moments

7

In this section we will show how the vj may be computed using the
' —T5
technique of section III.D. We will evaluate v.2 at the point (0,jh)

J
shown in Figure 5. The channel has been partitioned into boxes with M

of thém spanning the channel. It is seen that each ;;Z is situated

with respect to the grid in the same manner as was required for the
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development of section III,D. Thus we may apply the results of that

section to the present case and find that

+o0

M -
2. h'c 4 T
vi0 =T (cj + T, ﬂ) +h ; ~ e (x31%,.,) (4.38)

where

> > <+ >

6, (x;1xy,) ax > (x; j1%ke)

->

(0,jh) and xkz (xk,yz) = (kh,(g-%)h). Since all of the functions

J-)--»
Gv(xlx02) are equal to zero, we do not have to remove from the sum on

the right the contribution from the boxes (0,j) and 0,j+1) tb ;;szhich
are alreaiy.being accounted for by the first term on the right. Note
also that the constant C appearing in (4.38) should depend on j, but
exact computations of it show that the variation is so slight that it

may be neglected.

-+ &
G (x-lxkl) represents the y component of velocity induced at a
->
point x due to a vortex of circulation one sitting at Xeg " For a

> <+

vortex p1aced in a channel, Gv(xalxkz) may be computed exactly by
setting up an array of image vortices: Plus vortices are situated at
the points (xk,y£+2m),- w < m <+ and negative vortices at

(xk,Zm-yz), -o<m< +o, The ve]oéity at any point'x in the channel
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->

due to the vortex at xk
N £

xj as if no boundaries are present, by this vortex plus all of the

image vortices.

is then the sum of the velocities induced at

> .
The velocity at X5 arising from this infinite collection of

vortices may be written in closed form using the velocity field

induced by a row of vortices, given in Lamb (1932). We have

V. . . sinh(ﬂxk) ] Sinh(ﬂxk)
S 0;1xig) = - 7 Teashme, = cosnl3hoy,) * 7 Tcoshmx, = cosn(3hvy,)

the first term.coming from the column of + vortices and the second from
the - vortices.

The use of (4.38) in practice is much simplified if we define a
functionAA(j,z) which gives the contributioh to ;;7-from all the boxes

with center at y = (g-%)h. Thus

+o0
2 + o
A(j,e) = A Gv(xj‘xkl)
k==
Using this function (4.38) becomes
. M ‘
T3 h4C2 Z .
Vj Az (gj + §j+]) + 2 ] CQ A(J!l) (4'39)
=t
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Since Ty, o = &g (4.39) may be simplified further to

— 4, E{f. , ‘ :
'2 _h'C | . , -
.= — .+ T, + )
v - (554 Ty) e B(j.2)z, (4.40)

>‘X

where B(j,2) = A(j,2) + A(5,M+1-2). The M/2 X M/2 array B(j,%) may be
. i

computed once and for all and stored, making the computation of v

a trivial operation at each time step.

E. Results of Computations

Before dfscussing the results of our computations let us collect
together the system of difference equations we intend to solve
numerically and the equations which they approximate. The mean vorti-

city equation is

Q

3 _
3t

&|

<§ FT, ay> (4.10)

which we approximate at the grid points j=2,...,M/2 by
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&
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and at j=1 by
N V(% -5 ——
I Y 4 el 1 D (4.20)
5t R¥ T2 V3 n> ) R eme |

~15

where & is evaluated from (4.21),U_ from (4.22) and vjz from (4.40).
The stream function used in (4.21) and (4.22) is computéd from
equations (4.35) and (4.37).

~ The equation for ¢ is

. N ’ _ 2
3, 3 1 A 4 LA 1 i
3t " 3y (R TV ) y T2Ta2 Vv \%y R
(4.30)
which is approximated by
AL —5\ [t - oh —~ - "
J j_f1 il B R WY B 2 23 - 3-1
At (} MRV ;}( 2 ) (R * T V50 2
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at the grid points j=2,...,M/2 and by

n+1 n n n
i I WOV 5 IO 2 I Sl 1) IR (8 O e |
At RY¥ 122V 5 2 2\R" 22 ¥ 1) 2
(4.32)
2
=N _ =N
eo1 R4 2 I
v : - —— 1
22 V1 h .
d

at the grid point j=1.
After Va]ues have been assigned to the various parameters in the
difference equations, we will then have a complete system of equations

with which to solve for the grid functions E&Vand 4 As mentioned

j-
earlier, the equations are to be solved by iteration from initial values
0
%

independent equations. Our criterion for deciding that convergence has

occurred is the condition that st]Eg+]- E?l<]0—10 and

n+1  ny _.~-10 J
j - cjl<10 .

and cjo until Ejn and gjn have converged to a solution of the time

sgplc

J
The integration time step At, must be chosen to be small enough so

that the difference equations are stable. We may set an upper bound to

At by the reguirement that

At [ 2 1
(ke ) <
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which genéra]ﬁy hust be satisfied for nh&erica] approximations to the
heat equation such as (4.13). S1nce we on]y seek steady solutions of
our difference equations, we will a1so f1nd out aposteriori from the

fact of convergence of the 1terat1ons, that the value of At was small
enough. |

For the time step ahd initial conditions we have used, the conver-
~gence is in general quite rapid, requiring < 3000 iterations and less
than a second of CDC:7600,computer time. The only exception to this
is at Reynolds numbers within the range separating thé turbulent
solutions from the laminar solutions. Hefe, convergence may take
considerably Tonger, on the order of 40,000 iterations.

The so]ut1ons we have found are 1ndependent of 1n1t1a1 conditions
so long as all of the gj afe‘not equa1 to 0, for in that case, as is
apparent from equations (4.32) and (4,33), the solution cannot help But
be the non-turbulent parabo]ic_f]oﬁ. The“iteration scheﬁe'advénces by
using the known values of Eg_to compute Eg by invérting equations (4.35)
and (4.37), and then using (4.21) and (4.22) to find values of § and
- U_ to be used in (4.20). The values of c are used to compute the
-—7 =n+1 n+1

Vo from (4.40) and then the new va]ues of EJ and c

from (4.13), (4.20), (4.32), and (4.33) and the cycle is repeated again.

~are obtained

It is worthwhile at this point, before going into the numerical
results, to recapitualate what are the fai]ings of the system of
equations that we hope to solve numerically for the mean properties of

the flow in a channel. These 11mitatiqns are:
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(i) The transport law introdué;s the Lagrangian integral
time scale T22, which is as yet indeterminable from theory.

(ii) The dissipation terh in the equation for ¢ and the local
term in the equation for ;Tz.inffoduce the Taylor vorticity microscales
xx and xy which are a«propérty of the small scale motion and again are
not yet amenable to theoretical prediction:

(iii)' For‘modest Reynolds numbers, just outside of the lamif
nar range, the distance y' may be comparable to_h, and in that event
our use of the thansport 1aﬁ in deriving the difference equations for
the first two boxes would be unjustified. _ |

(iv) The production term in (4.32) which is fdr the box
adjacent_td the wall has only been estimated rough]y.

| (v) The rate of diffusion of z into the region y<y' hag
been modeled crudely in (4.32) and this has resulted in the introduction
of a constant C2 which must be determined empirically. _

(vi) The need to compute U at a point & within the sublayer
has introduced another unkndwn parametef C], in equation (4.22).

“The problems listed in (iv)-(vi) are those that we hope may be
solved one day by a more sophisticated mathematical treatment of fhe
wall region. (i)-(iii) on the'ofher hand, present much more fundamental
difficultiés and will regquire extensive new theoretical development
before they are resolved.

We will determine values for the unknown parameters by using the
experimental results of the flow in a channel at Re . 57,000 which were

obtained by Comte-Bellot (1965). This will keep our reliance on
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experiment to a minimum, but also.w111 necessitate making the assumption
that none of our parameters change with Reynolds number. Since we
obtain generally good results with these parameters for the two other
Reynolds numbers, i.e. 120,000 and 230,000 that Comte-Bellot studied,
we may suppose that, in fact, these parameters do not change greatly
for large Re- '

We should point out that there have been at least three other
published experimental studies of the flow in a channel, one by
Laufer (1953), one by Clark (1968) and one by Eckelmann (1970). We
have not yet seen this Tast one, and the work of Clark will not be of
much}use to us because it does not provide us with sufficient detail
.on the quantities we will need. The work of Laufer does, but we found
it to be in serious disagreement with that of Comte-Bellot, forcing us
to choose between the one or the other to use. We chose to use the
data of Comte-Bellot because it is morevrecent than that of Laufer
and is from a channel which is longer and has a higher aspect ratio
than the one used by Laufer.

The first kind of data that we will use is the experimentally
determined friction coefficient. Actually, the quantity which is
measured is AE*/%pUSZ, where U; is the (dimensioned) centerline
velocity and Ap* = B*(x)-ﬁ*(xo) is the abso]ute mean pressure drop

between a fixed position x_ in the channel and the variable point x.

(]
When Re = 57,000 we see from the experimental data that

_p*(7OD) —zp*(12OD) = .150
apug :
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Since
[B*(7oo) - P*(1200)| 2D = 2t*(1200 - 70D)

we must have

*
T
W . A _ .15 _
2 2707 00
lsz0 0

where U0 is the dimensionless centerline velocity. We thus have the

result that for Re = 57,000,

A = .003 u° (4.41)
If we use (4.41) in place of
Uoo
R,(5-67) -

in (4.20) then we may determine all of the barameters except C] by
adjusting them until the’computed and experimental predictions of the

velocity profile at Re = 57,000 coincide. After this is done, C] may be
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- determined from the requirement that (4.41) and (4.42) are equal.

" The selection of a value of Ad is'governed by the following
considerations: The sole source of production of z in our two
dimensional.model comes from the term 2 T22 ;Tﬁ-zi in (4.30). 1In the
core region of the channel where %-E' is small, the mean vorticity
equation (4.7) implies that T22 v E& ¥ X. Therefore the local rate
of production of ¢ in the channel is 2 A E&. For a given Reynolds
number A and E& are determined and thus the rate of production is fixed
and is essentially independent of the value of T22. As a result of -
this we are 1imited in the choice of Ad that we may make because we |
do not wish it to be so small that the dissipation rate is too'much
for the fixed production rate and therefqre prevent us from finding a
_so]ution to the equatfons.

We also be1ievé that most of the dissipation of ¢ takes pTace in
the dissipation zone y < y' that we have discussed. Therefore we
wish to choose a value of A that will allow most of the dissipation

to occur by its .diffusion into the wall region. A typical value of

l—g which satisfies this conditions and also does not cause the

ggssipation rate to be too ]argevis ;iz- = 10. This value of ;17
implies that AX and ky are considerably larger than h and thus the
conditiqn that Ax and Ay be < h which wa; suggested in section III.D.
is violated. If we were to set AX = xy =~ h/2 so as to sgtisfy this
condition then we would find that even with C, = 0 which implies that
no ¢ diffuses into the wall region, the dissipation far exceeds the

'production of ¢ and hence no solutions may be found.
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The cause of this difficulty apparently is our restriction to two
dimensions. By going into three dimensions we would then be able to
include the production of ¢ arising from vortex stretching and other
causes, which would in turn allow us to significantly increase the

dissipation rate by decreasing Ax and xy.

We will arbitrarily assign T22 the value .4 which insures that
e X3
v 2 is the right order of magnitude. This value is also of the

magnitude of some Eulerian integral scales which have been measured by
Comte-Bellot (1965). The value of C2 will be found by a comparison of
the computed results with experiments. Before showing how this is done

we will show that the computed solutions for £ and hence U only deﬁend
: C
(roughly) on the ratio __27 = C, Ag which is reflective of the relative
/A
amounts of dissipation whigh occur in the wall region as against the

core fegion and on the ratio TZZ/(leg) = T22 xg which is suggestive of
the strength of the production term in comparison to the dissipation
terms in the core region.

To see this, suppose that A and U are fixed. Thus'Ey is set

and the € equation is unaffected if T22 is replaced by K T22 and v
1777

byAK v © where K is a constant. Now consider the equation for z, (4.30).

To preserve TZ2 Ag we must substitute %-Ag for Ag, and to preserve

C2 Ag we must then use KC2 for C,. Also, (4.40) imp]ies.that we can

change ;Tf to %-;Tz by replacing ¢ by %-c. We have Just estab]ished

that with Ty, 4 and C, A5 held constant but with Tp,, 1/A3 and C,
all multiplied by a factor K, we will obtain, (modulo the diffusion

3 N 2\ oz . .
term v <§ + T22 v 3y in (4.30) whose effect on this argument
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turns out not to be major in practice) the same solution for U but
with the ¢ field approximately equal to'% z. From computations we have
performed we have found that U will experience a change of ‘1ess than
2.5% for factors K such that % < K < 2.

This argument shows that T22 may be,aéjusted later if we so desire
(and thus also kg and C,) to ihsure that ;Tﬁ-is'equa1 to its experi-
mentally determined value. _However, as we will show later, there is
some disagreement between fhe shape of the computed distribution of
.grf across the channe]_with that of the experimentally determined one,
making it pointless to adjust Too-

We are now left with the determination of C,. C, will be found
by adjusting it until the ve]oéity profile found experimentally at
Re = 57,000 matches the computed one. We found that this occurred
when C2 = 1.25. The closeness of fit is shown in Figure 6. As mentioned
we now can determine C] and we found that it is equal to 3f28. |

Wel have presumed in this ané]ysi§ that T22 and Aq are constant
throughout the channel. There is some experimehta] justification for
the belief that this is approximately true. Comte-Bellot (1965) and
Laufer (1953) have measured‘the integral scale |

[o ]

1

'Ly = ~?—2—f VIOGY IV G y+r) dr
Vv

r=0
and velocity mic¢roscales similar to our Ag and Ay, and found that
they do not vary greatly across most of the channel. We will take

these facts to mean that the character of the turbulence does not
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radically cﬁange throughout the core region and that it is not
unwarranted to presume that T22 and xd are constants.

We now have our parameters specified and we can investigate the
predictions of the theory for the full range of Reynolds numbers. We
first must make a comparison of the computed and experimental'results
for the Reynolds numbers 120,000 and 230,000 which were also studied in
detail by Comte-Be]]otfﬂ For Re = 120,000 the experimentally determined
value of X/Ug was .0026 and our computed result was .0023. Similarly
for Re = 230,000 éxperiment found R/Ug = .00206 and our computed result
was .00172. Figuré 6 shows a comparison for each of these Reynolds
numbers of the computed and experimentally determined mean velocity
profiles. "It is seen that the agreement is quite good. Figufe 7 shows
a comparison of the velocity profiles of the 3'Reynolds numbers studied
by Comte-Bellot with our numerical predictions of these curves.

Figure 8 shows our prediction of the frictionvlaw, i.e. the
dependence of A on Re’ for Re up to 1,000,000. This result must be
viewed. with some caution in the 1bwer-range of Reynolds number in 1light
df the questionable validity of our difference eduations there. A drag
crisis is clearly evident in Figure 8 at low Reynolds numbers where the
va]uesvof X suddenly increase f}dm the laminar friction law A = 6/Re’
which is represented by the straight 1ine on the}1eft. A distinct
bifurcation in the computed results is observed at Re <~ 6500. This is
a critical Reynolds nUmber, below which the solutions are laminar and
above which they are turbulent. We cannot actually compute a smooth

" transition from the laminar solution to the turbulent ones because
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our method of computing U ahd § breaks down for the parabolic case.
This could be easily corrected by a suitable artifice in ourvcompufef
programibut the only gain in doing this would be aesthetic. The
collapse of our computed solutions té the laminar case is manifested
quite clearly in practice and is equivé]ént to actually giving a
prediction of the parabolic curve.

There has been at least one experimental study‘of the instability
of a flow in a channel, that of Kao and Park (1970). They found that
the critical Reynolds number at which all small amplitude disturbances
were damped was Re ~ 5850. They also observed that at Reynolds
numbers Tower th;n the critical value, disturbances of‘sufficientTy
1arge'amp11tude would cause subcritica] neutral disturbances. Thus it
is an open question as to what Reynolds number would be the upper Timit
at which the flow would be stable fo all finite amplitude disturbances.

vThe important point here is that the experimental and computed critical
Reynolds numbers are of the same order of magnitude. That our numerical
method is able to predict this qualitative behavior is a strong indica-
tion that we are doing justice to the physics of turbulent flow in a
channel. _' .

For a particular channel, i.e. D fixed, and a particu]ér fluid,
i.e. p and v fixed, an engineer is interested in how much mass flow
Um can be obtained as a function of pressure gradient %g; . Since

ey 3 .
A RE = 26 QQ)? and R = U_ 2D/v, Figure 9 which is a plot of log
ov ’

: ARZ vs. log R graphita]]y illustrates the crisis which occurs as the

fluid becomes turbulent. On the left wheré the flow in laminar,
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A = 12/R and thus A R2 = 12R which implies that Um will increase

1inearly with %géa However it is seen that when the flow becomes
turbulent at R = 14,000 Um is then barely affected by an increase in
%E;-until lTarge pressure gradients are reached. This'phenomenon is the
drag crisis which arises from the~increased ability of the turbulent
fluid to deﬁosit high momentum fluid near the wa]i. As the Reynd]dé
number get very large Figure 9 shows that Um varies with only fhe 2/3
power of gg;-and not linearly as occurred in Poiseulle flow,

.In Figure 10 is a family of computed ve]oeity profiles covering
‘the full range of Reynolds numbers, 4500 - 1,000,000 that we studied.
For comparison a plot of the parabolic velocity profile is included.
Figure 11 shows the computed mean vorticity profi]es\for.the same
range of Reynolds numbers. The straight 1ine'eviden; in this picture
is the vorticity profiie for laminar flow.

The dependence of the c.distribution on Re is shown in Figure 12,
while Figure 13 shows a plot of ;Ti.for Re = 57,000. It is apparent
from Figure 12 that the magnitude of ¢ increases with Re to a maximum
of Re =~ 30,000, and then decreases subsequently. The velocity corre-
lation ;Tf has the same dependehce on Re'as does ¢ so the curves of
;TZ also decrease with increasing"Re above 30;000. This behavior of
;Tﬁhfor high Re is qualitatively the same as has been ebserVed
experimentally by Comte-Bellot.

It is evident from Figure 13 that ;Tﬁidecreases gradually to a
value of 0 at the wall. The local contributions to ;Tﬁ.for the value
Of.kx that we have used, are negligible, thus the shape of the distri-

15 ’
bution of v 2 is being determined by the fact that the Cj are smaller
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o
near the wall than in the center and by the values of the Gv(xlx')

which are determined by the geometry of the channel. We found that
the latter factor is generally much more important in determining the
shape ofncTﬁ distribution then is the values of the cj.

AS previously mentioned, this result for the computed shape of
;T? departs considerab]y from what has been observed experimentally.
There it is found that ;T?.is roughly constant across most of the
~channel and drops td zero sharply at a short distance from the‘wa1].

One apparent explanation of this discrepency, that can be shown
to be wrong, is that we have chosen kx to be too large in the first
few grid boxes so that the local contribution to ;Tf here are much
smaller than they should be. This argument can't be true, because to
- make A*'sma11 enough near the wall so that ;Tﬁ.wi11 be nearly constant
across'the channel, would also have the effect of driving up the total
dissipation of énso high that it would greét]y exceed the total produc-
tion of ¢ taking place in the channel. Also, as previously mentioned,
we wou]d‘not expect to fihd in a real flow the large variations of AX
across the channel that this action would mandate.

The most probable cause of the anomalous distribution of is

the fact that we have considered a purely two dimensional turbulent
flow. This explanation may be made more plausible if we attempt to
compute u'v' through the use of our formula (3.48). We find that

the contributions to u'v' from all of the distant grid boxes cancel

with one another because of our assumption of the uniformity of fiow

conditions up and downstream. We are then left with the relation
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—— _ 4 ' 32R A
u'v j© h " CC X0y (0) Ej (4.43)

We saw in equation 4.26) that u'v' = A/4 for part of the core
region, and if the right side of (4.43) is to be of this magnitude

2 2 2
AR - - 5> R R 1y
then Bxay(o)must be qu1te large, in fact >> __?.(0) or ‘*7'(0)-

This result, which is of doubtful physical v2¥idity, is g necessary
consequence of presuming that purely two dimensional turbulent motion
would give rise to the mean flow field that is found experimentally in
a three dimensional channel. In the real flow in a channel, the major
source of correlation between u' and v' arises from vorticity lying
above and below and parallel to_the X-y plane and.aligned in the
direction of the prihcip]e rate of strain, see Tennekes and Lumley
(1972) p. 41. Since this contribution to u'v' is clearly left out of
ouf two dimensional model, it explains the origin of the physica]jy
implausible relation (4.43). Further, this same vorticity may be

seen to also contribute ;T?.and if accounted for might bring the

computed distribution of ;Tf across the channel into line with

experiments.
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V. FLOW IN A CYLINDER

In this chapter we will apply the method of coarse graining to the
study of the turbulent flow in a two dimensional idealization of an
intefna] combustion engine cylinder. We will only consider the flow
duking the piston's travel from BDC (Bottom Dead Center, i.e. the
furthest position the piston takes from the cylinder head, see figure 14),
to TDC (Top Dead Center, i.e. the piston's closest approach to the head),
with the valves shut, i.e. the compression stroke.

In section V.A. we will derive the system of difference equations
with which we intend to solve for the flow in the cylinder. Our dis-
crete approximations E}j to £ and Z;; to ¢ are defined on a grid which
collapses with the changing size of the flow domain. To obtain the
difference equations (5.9) anq (5.10) for E}j and Zij respectively, at

.interior grid points, we approximate the equations for € and ¢ derived |

in Chapter III. We then give representative examples, eqn. (5.15) for
we use at the boundary. To derive these we borrow slightly from our

and egn. (5.16) for cij,'of the type of difference equations that

experience with the channel probiem.

Due to the changing size of the flow domain the Green's function

used in the computation of ulu: must be evaluated at every time step.

17
Our method of calculating the Green's function uses a fast direct method

of solving Poisson's equation and is presented in section V.B. Equation
T H
(5.33) gives an explicit formula for u-g in terms of the Green's func-

1]
tion and (5.34) gives the stream function. Using the stream function
the components of the mean velocity field are then computed from

(5.35) and (5.36).
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In section V.C. we present the results of our computations of the
flow in a cylinder. We have paid particular attention to predicting
the mean flow field which occurs in the cylinder at the time of igni-
tion and have shown how these conditions change with stroke-to-bore
ratio. |

Lengths in this problem will be scaled using the bore B so that the
nondimensional flow domain is a rectangle with constant width 1, and a
length xp which varies yith time. The wall aﬁ x = 0 is fixed and the
one at xp represents the piston face and is in motion. To find xp Qe
must first define some of the technical terms used to describe engines.

The crank angle, o, is defined as the angle which the crankshaft
joufnal, see figure 14, makes with its position at TDC, reckoning so
that a = -180° at BDC and o = 0° at TDC. The stroke, 2r, is the dis-
tance traveled by the piston from BDC to TDC. If L'is the length of
the connecting rod; then the distance between the position the piston
occupies at TDC to its position when the crankangle is a is, say '
d = r(1-cosa) +L-\}L2-r251'na . (|r'/L)2 for many engines is near .07
so it is commbn practice to suppose thatl;ﬁVLz-rzsina:O and thus
d=r(1-cosa). The compression ratio, x, is the ratio of the volume of
the flow domain when the piston is at BDC to its volume when it is at

TDC. Using x and d it is not hard to show that

Xp =0 (;(—}—]— + %—(1-cosa)) (5.1)

where ¢ = 2r/B is the stroke to bore ratio.
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It will be most convenient for us to define a dimensionless time t
with the property that t=0 at BDC andt=1 at TDC. To do this we first
relate o to a real time coordinate, t', through a=-T+27wt' where w is
the rate of revolution of the crankshaft in revolutions per second.
Defining t=2wt' we get the desired relation between a and t, i.e.

a=-m+mt. In terms of t (5.1) becomes
X (t) = of =+ (1 + cosnt) (5.2)
p x-1 2" :

For the flow conditions of a typical engine the Mach number formed
from the maximum piston velocity i¢ small enough so that compression
waves formed at the face of the cylinder rapidly disperse throughout
the whole domain before the piston moves appreciably. Thus the com-
pression of the fluid may be assumed to take place instantaneously and
uniformly as the piston moves. Since there will be no combustion
taking place during this stroke, there is then no possibility of
gradients in density arising from this cause either and hence we may
then make the simplifying assumption that the density p depends solely
on the time.

It is clear that this assumption about the density is equivalent
to supposing that the thermodynamic pressure (as compared to the dynamic
pressure) varies uniformly with time also. With both the density and
thermodynamic pressure uniform we may also conclude that the tempera-

ture is uniform, and thus that the flow is adiabatic and reversible.
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If the charge is considered to behave 1ike a perfect gas, then from
our knowledge of the density we may find the thermodynamic pressure

and température from the relations:

where v = Cp/Cv is the ratio of specific heats. The conservation of

mass implies that

PlEX(E) = p(0)%,(0)

thus

| -1
p (%, (0) v T [¥(0) Y
1 <Xp(t) T X

The dilatation

(5.3)

@

n

]
o |—
s

o
<o
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where
dx on v
up = E‘Q ="5" sinmt _ (5.4)

is the velocity of the piston. © is uniform throughout the flow field.

We will separate_the velocity field U into a compressible and
o
irrotational component UC = (UC,VC) and an incompressible and rotational
-

component KI = (uI,vI). UC will account for the compression of the
: > >

>
fluid due to the piston and is a sure function, while up = U+ u is
+

random. UC satisfies the boundary conditions UC =0at x =0 and

. -> .
c Up at x = xp, and Vt = 0aty=20and 1, while Uy must satisfy

Uy 0 at x = 0 and xp,'uI =-Uc at y =0and 1, and Vi =0 aty=20

and 1 and Vi = —Vc at x = 0 and 1.

U

>
Since © is known we may compute U @ priori. To satisfy the

irrotational réquirement on G; we define a potential ¢ via Uc = Vo.

Then ¢ satisfies V2¢==O, with specified values of its normal derivatives
at each boundary. This is a Neumann Problem which has a unique solution.
Using (5.3) the solution is easily found to be ¢ = Ox2/2 + constant.

Thus

=
1]

Ox ,
(5.5)
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Since © is a sure function, so is Uc and as hypothesized, this part of
velocity field makes no contribution to the f]uctuating velocity field.
Using the previously defined length and time scales for this
problem we may form the velocity scale 2Bw. The Reynolds number

apbearing in the‘equations of motion is then

R = ZBsz
u

- which js time dependent due to the density and the viscosity u. The

. viscosity is time dependent through its dependence on the'pressure and
temperature. For simplicity we will assume that the kinematic viscosity,
v = u/p is Constant during the compreséion stoke and therefore that R

is also. In application it is a simple matter to supply the proper
dependence of u on T and p.

We will assume that the mean flow pattern is symmetrical thrddgh
reflection in the line y = %. As a consequence, U(x,y) = U(x,i-y) and
V(x,y) = -V(x,1-y). These relations then imply that E(*,y)'= “E(x,1-y),
and if we use a stream function to represent U then we must have
Vxy) = - vx,1-y). |

At t = 0 we will divide the flow domain into N x M boxes of equal
size with M boxes sbanning the width of.the cylinder and N boxes its
1ehgth.. Once constituted, we will consider these boxes to move with
the velocity Uc, and consequently the boxes will remain uniform in size.

The boxes will have the constant width Ay = 1/M and a variable

length Ax = xp(t)/N. The collection of centers of the boxes at any one
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instant: 3((14%)Ax,(j-%)Ay) :i=1,...,Nand j =1,...,M form a
staggered grid, which collapses as t varies from 0 to 1. Our discrete

representations, €., £y and Y4 of £, ¢ and  respectively, will be

1J
defined on this grid. We will use the superscript 'n' to denote the
discretized time step which the grid variable refers to. Thus, for
example E}jn approximates g'((i4%)Axn,(j-%)Ay,nAt) where

Ax_ = x_(nAt)/N and At is the integration time step.

n Xp
A. Difference Equations

We saw in section IV.E. that to accurately predict the values of
the velocity'correlations u'v' one must make a three dimensional
simulation of the flow field. Since we do not propose to do this‘here
we will suppose instead that the qualitative features of the flow in the
two dimensional cylinder will not be strbng]y affected if all terms in
the equations for £ and ¢ containing u'v' are set equal to zero. With
this assumption the eduations governing € and ¢ for the flow in a

cylinder are

> > — =
_ - o1, T2\E, 8 (1 7\ 5
"(Uc+U)'V‘5'59+§I<'§+TH“ >ax+3y<R+T22v >ay

[e >4 Re 3]
r+hﬁl

(5.6)

and
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T G ' - -
9L - 3 (1 "2\ oz
2= -(U M) . vr -2ge + ( + Ty u )

ul (.gg) ¢ (5.7)

7 faT\ 2
22 AZR
d

whére for simpiicity we will assume that (5.6) and (5.7) may be used
everywhere in the flow domain. |

In formiﬁg difference equations for E?j and ;?j which are consist-
~ent to (5.6) and.(5.7) we must be careful of how we account for the
collapsing grid. The index 'i' in E?j refers to the point (i-!:)Axn
so that even though E?j and E?;]

they refer to the same grid box, they do not refer to the same physical

may have the identical i index, i.e.

point in space. Consider the finite difference approximation:

i NI ] (5.8)

We may show that because of the movement of the grid this term actually
represents an approximation to Ei + U, E& and not just to Ei: Substi-

tute the function £ into (5.8) to get
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™|

(Gi-m)8%, 4 (3-u)ay, (n#1)at) - € ((i-n)ax,, (§-5)ay,nat)
At '

= (-w)(aX g - 0X) &, + At Ep

(X (t+at) - X _(t)
- (1&%) (gp = P ) T+, +0(at)

AX (i-%) U
n P T LT
Xp S P 0(At)

= U E, +E, + 0(st)
Q.E.D.

The difference equations to follow will use this time differencing,
so that to have equations consistent with (5.6) and (5.7) we will not
have to further consider the term UCE; in (5.6) or Uz, in (5.7).

The difference equations for the interior boxes where i = 2,...,

N-1and § = 2,...,M/2 are
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, —~p 5
where U, ij and u;j are at the point (1Axn,(J -4)Ay) and Vs i and v;j are

eva]uated at  ((i-%)aX,,J0y) and'On = o(nAt). The convection term in
both of.these equations has been written in conservative from for ease
of programming. | : {

The special form for the boundary condition to the mean vorticity
‘equation which was derived for the channel problem will ﬁot apply to
the present case. Howevér we may still 'suppose that the toté] v0rtfcity
" flux normal to a boundary does not change rap1d1y across the wall region
in sp1te of the fact that the molecular flux and the turbulent f]ux may
individually vary greatly. Thus the boundaryvcond1t1on to the £
equation will be the vorticity flux from the wall, i.e. %-%g-at'the wall

= 0 and %-%g.at x = 0 and xp. ,
We approximate this flux by, e.g. at y = 0:

19E o1 (Ey2) -F C(5.11)
Ra|yeg R\ O¥/2 |

where EQ = £(0) and we presume here that all quantities are at a fixed
value of x. The approximation in (5.11) is not unreasonable because the

typical Reynolds numbers we will encounter, e.g. when an engine is

rotating at 4000 rpm is only = 5000. Since gw ---39 we must

. y=0
estimate %g‘ at the wall to complete (5.11). To do this we will say

that
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U - U+ 0|y e
6!

Ul 3 _
| Caytldy) s
y=0 y=0

(5.12)

©2

where U' and &'are a typical velocity and length at the outer edge of
the region of rapid variation next to the wall. Using ¥ we may define
U' as the average mass flow velocity in the region between y = 0 and

y = Ay/2, thus

or
U=y + 2 T(ay/2) | (5.13)

We will define §' as a mass disp]acement thickness, by the

requirement that

Ucézl+$(éé!) - (u‘c+u(’—32-¥)> (%X-cs')
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‘which says that the total mass flow between O and Ay/2 is equal to the
product of the velocity at Ay/2 and the reduced distance Ay/2- §'.

If we assume that U{ay/2) * ($}2 - i%])/Ay‘then we find that

5 = i (5.14)

. This same expression for §' may be obtained by an argument which
is similar to the one that was used to obtain & for the channel prbb]em
in section IV.A. In the present case one may show that & is the value
of y at the point of intersection of a 1ine leaving the origin with
slope -Ué, with the extension of a straight line connecting (Ay/2, ﬁ%l)
and (3ny/2, ﬁ%z); Thus instead of using a parabolic-arc coming from
the grid points near the wall to approximate ¥ as was done in IV.A,
here we are using a straight line.

Formula (5.14) gives a reasonable value of &' when the flow near
the wall has a turbulent boundary 1ayer. In flow situations such as
when the piston is near TDC, we don't necessarily expect to find the
type of large gradients in U and ¥ which are req@ired for (5.14) to make
sense, so in this case we will set §' = Ay/Z.

Using the approximations (5.11) and (5.12) and similar relations
for the wall x = O we may write out the £ equation to be used at the

corner box i =1, Jj=1:



103

=+l = N [=n =N n [=n =N
qn T ’”11(‘521 * 511) ) Vn(ng * 511)

Bt Y 2y
N | = =N
\ ' —75 N £ - £
Een * <‘r]€+ Rt > SR
| | (o%.)

! =N =N
-2 én _gy_)+<1_” ‘T‘*vz‘>€12"5n
EZX;;;? 17 A RT T2 Y ) T 7

- R(Azy)z (2'1‘] * U'/‘S')

(5.15)

where V' is defined analagously to U' and we have used AXn/2'at the
walls x = 0 and xp in place of computing a Tength 1ike 6'.

Note that there is no need to introduce any specia} arbitrary
parameters, e.g. in the definitions of U' or &', because we have no
guantitative experimental data with which to compare our results.

Similarly, we will use the following equation at the corner box i = 1,

j = 1 which is also free of additional parameters:
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n n n
—5h z - T —5h
*(%* Ty o 211> Al (JR"' T “1%) i 2°
(AX) (aX,)
n
n n n
5N Can = C n\ 2
+<‘]|i"722 "112) L. (%”72271? =
(Ay) (ay)
2
_ =l =N =N =N\ 2
APl ) Nl R R AT 1V B
14 \Tax 2T I,
n
gaa)
xdzR
(5.16)

The stability analysis of the difference equations (5.9) and
(5.10) et.al. is unaffected by the fact that the grid is collapsing,
except as in so far as Ax, is changing in magnitude. The complexity
of these equations is such that we will do no more than impose the
stability_conditions which afe applicable for a linear system with

constant coefficients, i.e.

e
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and

At sup]U | < Axp
ij

At sup|V, l < Ay
iJ

In practice these conditions pose no hardship to finding a'usefu]'value
of At for which no instabilities appear in the computations.

B. Computat1on of Stream Function, Mean Velocity and Velocity Moments
L)
The functions Gu(xlx ). and Gv(xlx ) which are used to compute u 2
— _ | ; o .
and v 2 will have‘to be recomputed at every time step in this problem

because bf the changing size'of the flow domain. The fnnctions méy be
calculated exactly by setting up a lattice of 1mage vort1ces in the

plane and adding up their contributions to ui2 and.;_?, as was done 1n'
the channel problem. This is, however, a very slow procedure computa- .
tionally, so instead we will compute the functions Gu and Gv |

only approximately but by a considerab]y faster method.
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To explain thig procedure, 1ef us consider two general functions
£(x) and g(x) which‘are related through Poisson's equation sz = g on
our rectangular domain D. f, in addition, is required to be 0 on the
boundaries. As we saw in egn. (3.37) f is determined by g through the

integral relation

£(X) = fe(stli-)g(;')d;' (5.17) |
: | |

We will find an approximation to G(?I?') by forming an analogue to
(5.17) in terms of grid functions.
Let fij and gij be approximations to f and g, respectively, at the

point indicated by (i,j) on our staggered grid. We re1ate_f1 and 95 ;

J
through a difference approximation to Poisson's equation. For points
at a distance from the boundary we use the standard five point approxi-

mation to the Laplacian:

g P hia g figm ot

(ax)? (ay)

- of f

i+l J

[pN) 4]
-
i
]
—
(=]
-
o~
o
—
[0 o]
~

and at a wall, i.e. i =1 orN and/or J=1o0r M, we use, e.qg.

when j =1, 1 < i <N:
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R AT R T FIPIL I A v
2 ¥ VI TIRT (5.19)
(Ax) (ay)

and e.g. in the corner i =1, j = 1:

] o 5
21 ">, e T T (5.20)

(8% o2

f

Equations (5.19) and (5.20) are not formally consistent with

Poisson's équation, however, the use of them may be justified by a
simple physical argument for the case in which f is the stream function

U: Consider the process of making a finite difference approximation to

2— : .
%g-= §—%-near the wall y = 0, in a turbulent flow when we expect that a
Y :

sharp gradient in U exists in a small region next to the wall. We may

say

(UC+U),y=Ay - U

o _ |
|,y T % W) ay Ay (5.21)
2 » : 2 ..
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where U' is a typical velocity just outside the region of large
variation in U and which we make také_to be the average ve1oc1ty U’

defined in (5.13). The term (Uc+U)y=Ay may be approximated as |

PEPAE P
<Pc + U) ~ Uc + 2A RATR

and thus (5.21) becohes

au . Yiz - 30y |
3y |- Ay - _ . (5.22)

which is used in the making of (5.19) and (5.20).

- The motivation to use this special differencing at the wall comes
from the fact that the relations (5.19), (5.20) et.al. wi11 permit us
to use a fast direct method of solving PoisSon's.equation for the
staggered grid, a very important cbnsiderétion. The only alternative
differencing procedure we know of thatva1so admits of a solution by a.
fast direct hethod, is to interpolate the mean vorticity field onto a
non-staggered grid, and then so]ve a system of equations iike (5.18)
which relate the Egj on this grid. We have found that for a test
problem containing a turbu]ent~1ike vorticity distribution for which

U and ¥ could be obtained ané1ytica11y the procedure we have elected
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to use predicted U more accurately over more of the flow domain than the
alternative procedure, and therefore we chose to use it.
Now to continue our argument, wevfix indices k ahdbk, and suppose

3 5. 5. where 8, is the Kronecker delta

that gi is equa] to AxAy in jm

function. The solution of the di?ference‘equations (5.18) et.al. for
this special function 955 we call G??. If we compute the functions G??
for each value of (n,m), n=1,...,N and m=1...,M then it is a simple

matter to show that, for an aribitrary'function gij:

N
:E: 93 5 AxAy (5.23)
n= ‘

1 m=1

(5.23) is. formally an approximation to (5.17) and we may suppose that

nm

G1J

= 6 ((-3)ax, (3-0)ay| (n-3)8x, (m-x)ay )
~ In practice we will only have to compute G . for n=1,...,N/2 and
m=1,...,M/2 because we may use the following re]at1ons which arise from

the symmetry of the rectangle:

N+1-n,m _ ~nm
65 On+1-1
G!n,M+1-m._ gnm

ii 7 B M-

N+1-n,M+1-m _'Gnm

85 " ONerog a1y

to compute the others.
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We will now show how the system of equations (5.18), (5.19),
(5.20) et.al. may be solved using a fast direct method based on numerical
separation of yariab]és: He presume, initip]]y, that_gij is a general
grid function and will specialize it later to obtain the G??. Let us

- define column vectors £' and g1 through

‘The system of equations (5.18) et.al. may be written concisely in terms

of these vectors as

SRR . SR R A X I
f - 2f2 + f + (B-Zl)zf = g1 _ i =2,.. ',N-] ’
(ax) (ay) ‘
i+ ; | i |
£ }w +@4U; =g i=1 (5.24)
(ax) (ay) '

i-1 i i
f —23f . (B-lezf - g i=N
(ax)* - (ay)




m

is also a M x M matrix.

Since B is real and symmetric it is self adjoint, and there exists
a complete orthogonal set of its eigenvectors. The matrix B is of a
type studied by Gear (1969) and we find there that the eigenvectors of
B are

s1nak(1—%)

sinak(Z-%)

‘nasinak(M-%)

k=1,2...,M where o = kn/M. We define ¢4 = sin(a, (2-1)),

2=1,2,...,M and also
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The eigenvalue corresponding to ¢k is,Ak = 2cosak. Since the ¢k are

tinearly independent and complete we may write £! and g1 as a linear

combination of them, viz:

M
A2 B of (5.25)
k=1
and
I ~
ot = 2o Ay @ (5.26)
k=1 .
The orthogonality of the ¢k implies that the ihner product of
ki

¢! and ¢k2 is
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M

(¢k1,¢k2> z :E:

2=1 ¢klwgz ¢‘sz = Ck1 6k1k;)_
where
M2k #M
C, = Cokok) = {
M M

Substituting (5.25) and (5.26) into (5.24) and taking the inner product

with respect to each ¢k in turn, k=1,...,M, gives the following system

of equations for the Bg's in terms of the A;'S‘

Bi*1 _opd w171 -2y Bl
k v k2 k 4k . k _ A;
(Ax) (Ay)
B - B, (i -2) By
Y 7~ = Ak
(Ax): (ay)
i1 oo i
B B, B By

(ax)2 ()2 K

i=2,...N-1
i=1
i=N

(5.27)
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The A; ‘s are computed from

9>— Zg H)

|....
7¢‘

e do
{]
o
-
7¢
Ce
1
—d
-l
.

using the known values of 95 5° For each k (5.27) gives a tridiagonal
system of M equations for the M unknowns B; s and the solution is easily
obtained computationally.

With the B; in hand we can compute the fij from

Fo 3
M=
——t

_ i, =3 |
f15 " 2 By O kZ] By sin &1 (5-1/2) (5.28)

and this tomp]etes the a]gorithm

1 v _ ohm
AxAy Ginsjm so that fij Gij

can shorten some of the steps 1nv01ved in carrying out this algorithm.

For the special case when g we

First of all, the evaluation of the A; in this case is trivial since

M
1 - < kT - 1 s kT
A = C, :z: AXAy Sin jm n—-(J'%) CkAxAy Sin S‘"%T(m %)
j=1
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Next, using these special values of A; we can significantly reduce
the amount of labor needed to solve the system of equations (5.27). To

show how this may be done let us make the definitions:

2 |
= BX -
M, =2 + (zy') (xk 2) (5.29)
m_o 1 iK™ (-
Dk = CkAy siny (m-3) (5;30)

The tridiagonal equations we must solve may be written,vusing (5.29)

and (5.30) as

k k _
k k o ok _
Byt wk Bi + Bin 0
(5.31)
k k k - m
Bop + W Bl + Bl = Ax Dy

K Ty ok
By.1 + (W _q) By

1
o

If we define coefficients R?, i=0,1,...,N recursively through
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then the solution of the system of equations (5.31) may be obtained by

first computing

m
Bk ) Aka
TR
k n-1 N-n

and then computing the rest of the Bi's from the recursion relations

n-1,n-2,...,2,1

—do
n

k _ ok k
i~ Rvaroi Bio

i = ntl,n+2,...,N-1,N

o
\

Since the coefficients R: do not depend on n and m, they may be
computed once at each time step, to be used in the computations of all
the G??. The quantities D? may be computed once and for all time before

the numerical integration is initiated, and held in an array.
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There is no special savings to be had, arising from the speciatl
nature of the gij’ for the computation of the sum in (5.28). However
" we may evaluate it more efficiently than doing it directly, through the
. use of a fast Fourier transform. The sum in (5.28) is not in the
standard form that can be computed by a fast Fourier transform, but it
may be put into such a form. To do this we define, for an arbitrary

vector zk_with M' = 4M components, the following finite Fourier

~transform:
- M| Zﬂ?k]
2,252, ¢ M
[ k © (5.32)
' k=1 o
£=1,2,...,M".
1f

0 k>M

then it is easy to see that
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kn -
EE% B sin o (j- %) Im[ZZJ 1]

where Im[ ] means 'the imaginary part of';

When M is equal to a power of 2, (5 32)‘may be evaluated efficiently
through the use of the fast Four1er transform algorithm given by Cooley
}and Tukey (1965). To do this, we must specify avalue of M and then
write a special program tailored to this M which takes advantage of the
special properties of our sum, e.g. that Zk =0 for k > M, etc. We have
done fof M = 16 and found that al/3. sav1ngs in time cou]d be had over
computing (5.28) directly. Considering that this sum must be done MN /4
times for each time step this represents a considerable increase in
efficiency. The fact that we are then restricted to have M = 16 is not
a hardship because the width of‘the cylinder does not vary and M = 16
gives adéquate resolution of the flow field without being unduly
expensive. Also N may‘sti11 be varied to account for different values
of o. |

Turning now to the computations of the velocity corre]ations.;TT
and.;Ti.we may use the computed Green's function G . to approximate
the functions G, x!x ) and G (xlx ) by finite d1fferences. To simplify

the writing of the formu]as we define a function H as an approximation

to G(iAx,jAy|(n-%)Ax,(m-%)Ay), and compute it from 1nterp01ation of the

Gnm

ij Viz:
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nm _ l_( nm nm nm nm
His = 7\ 5a1%65 541 Y 6 5 ¥ Gij)

Using the H?? we find e.qg.

—~. M nmo_ogtmo 2 nm _ynm N2
7 VA2 ) (M- Mg M mgn Wi
“ij ZZ ¥ nm
m=1 n=1 by By
ymo o nm 2 ym yrm
+ N-1] N-i j-1 + N-1 M-j+1 = "N-i M-j .
Ay v Ay N+l-n m
(5.33)

where, for simplicity we treat the boxes making a local contribution to

) L)
ui§ the same as the others. A similar formula may be obtained for Vi?'

Using the computed values of G?? and (5.23) with no -extra work we

get the stream function from

i nm _ .nm = nm nm
DIEEIDD <G1'j GiM+1-j>€"+<G 6

ij N+1-9§ N+1-1’M+1-j) ENt1-i

(5.38)
_ where we have used the antisymmetry of E}j‘
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Uij and Vij may then be computed from the relations

U _ lJJ'|+'| j+ + w.‘ 3+ - w1+~| j-1 - w1 -1 i=1,...,N-1
1 2by i=1,2..M2
Vo= Vis 341 + wi+1 i wi-] j41 T wi-] 3 i=1,...N

i 78X i=1,2,..M2

where we have let E%o = -E}] i=1,...,Nand iﬁj = -y,. and

13

(5.35)

(5.36)

UN+1 i 'wNj for j = 1,...,M/2, so as to enable (5.35) and (5.36) to

apply at grid points near the boundary.

C. Results of Computations

For convenience let us collect together the basic difference

equations we hope:to solve for the flow in the cylinder. The €

equation is

3 _ i a o =m . B [1 2
ﬁ"(”c’ru)-vg"i@*ﬁ(rz”n“ )a-x““WE*Tzz" y

which we approximate at all interior grid points by

oF 5(1 VI)E

(5.6)
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and at a boundary point by an equation similar to (5.15) which is for

)
the corner point i =1, j = 1. The ui§ are computed from (5.33) and

Vi? from a similar relation that we have not written out. U' and &'

appearing in (5.15) are computed from (5.13) and (5.14) respectively.
' 7 g

The Green's function used in the computation of uij and vij is

computed by solving the system of equations (5.18), (5.19) et.al.
using the method described in section V.B. In (5.34) the stream |
function is found from the Green's function, and U1.j is computed from
(5.35) and Vij from (5.36).

The ¢ equation used in this problem is

-> > —_——
3T _ 31 'Z)a_c_
T -(Uc +U) . Vg -200 + o (R +Tyq U 55

—_ -\ 2
3 (1 2\ o 2 (ag )
+ = (—-+ Top V ) T 2 T,, u T (5.7)

T E) %

+27T
: 2

22

which we approximate at interior grid points by



‘and at a wall we use an equation of which (5.16) for the corner i

T (“71 (301 4 * "1'.1) RN TR R J)) ) ("'1',1 ) M "1‘,1) - 3-1(51 adl ,1-1))

C‘ - (' .
ok :

28y

n n n n . .
1 72“ (1‘ -t —vzﬂ [ 4 ,-(-
-2('1'59"4(‘[41'" “U) _1_1___211- (“‘.;Tﬂ w5 ")J‘JH\;J)TLI (5.10)
n

(8%,)
1 - "1'141"'1'1 1 —rn "1'1""1'11
* (F * T2 ' (ay) i '(R' A J") (ay) -
2 =N =n 2
(B -5 " [Ey- B
* T vy (“‘"}‘H - * Ty oy (e .

* Ta2 iy 25

- \2 - -n 2 n

- (5 1 " &y .o (511 - & 1-1) 2y
* T2 i ga 7y - —2_1,\ "

_ d

1, jJ = 1 is a typical example.

€l
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_ We will report here the results of simulations of the turbulent
flow during the compression stroke in our two dimensional model of an
internal combustion engine cylinder. Until such time as useful
experimental measurements of the flow in a cylinder are made, an assess-
ment of the accuracy of these computations cannot be made. In the future
we hope to make a visual comparison of our computed so]utions with some
laser sch]ieren'photographs of the flow in a cylinder being taken at
Berkeley by A.K. Oppenheim, et.al. (1976). Also we should note that
there has recently been a start at obtaihing quantitative data, (see
Witze (1975)) of the flow in a éy]inder, but as of ‘the moment the
measurements were made at only'one‘point in the flow and this wi]] be of
no use to us in estab]iéhing the truth of our predictions. |

To initiate our solutions we will assume that E?j = 0 and C?j = .1
for all i,j for all of the computétions reported‘here. These initial
conditions amount to an initial 10w~leve1 of turbulence with no mean
currents. This will allow us to clearly observe the MOtion generated
by the piston. |

To have a non-trivial so]ution we must also give initial values
to the quantities E@ivin (5.11). This will have the effect of putting

a small amount of vorticity into the fluid while the piston moves during

the first time step. We will set

R
TAt

_o

S,

= U_ (At)
i 5
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which is the value it would have af the wall at time At in a flow
impulsively moved with the velocity Uc(At).

 We will present the results of simulations for two cases. In the
first, we have set R = 5000, x = 8 and 0 = T, values which are of the
magnitude commonly found in engines. The second case differs from the
first only in that o = 2. Our grid will have M = 16 and N = 12, and
most combutations were done with At = .01. Also we have assumed that -
LR T22 = .4and A = /5 Ax and Ay = /5 Ay.

The computations proved to be largely independent of both grid size
and time step. The largest source of disagreement between computations
done with different time steps arose during the interval t = .9 - 1.
when considerable amounts of ¢ which had been generated previously by
fhe piston motion were then being increased greatly by the term -20¢C
in equation (5.7). Considering the precipitous drop of ©(t) shown in
Figure 15 as t - 1, we see that the smaller At is, the greater the
maghification of ¢ will be.

Figures 15 and 17 show a contour plot of E%j for the first cése for
the times t= .5 & 1., respectively. Figure 18 shows a plot of the mean
vorticity distribution for this case at t = 1 while Figure 19 shows the
distribution of z at' t = 1.

Figures 17, 18 and 19 represent our predictions of the mean flow
properties existing in the cylinder at the time of ignition. It is
~ apparent that the great amount of turbulence and vorticity generated
in the corners has not diffused very far into the flow field and
certainly not into the vicinity of the sparkplug. This result would

mean that a spark set off in this environment would create an essentially

v
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laminar flame which after burning sufficiently far into the flow would
become turbulent.

Figure 20 shows a plot of'@}j at t =1 for o = 2 and Figure 21
shows the corresponding ¢ field. When o = 2, the piston must travel
a longer distance than when ¢ = 1 and also attains a higher velocity.
These figures show that there is quite a good deal more turbulence and -
vorticity generated in this case. The combustion process occurring
after ignition in this environment would most 1ikely be significantly

different than the one occurring in the previous case.
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VI. CONCLUSIONS AND FUTURE WORK
 we have attempted in this thesis to develop and present the method
of coarse graining in a manner which sharply distinguishes between what
we may assert with confidence to be true about a turbu]ent flow and what
is either an hypothesis or as yet unknown to us. It is oniy in this way
that a preéise and complete theory of_turbu]ence may emerge. On the
boundary between our knowledge and ignorance may be found well defined
problems whose solution will extend the applicability of this approach.
Thus we expect that coarse graining is evolutionary in nature, and wi])
continue to be refined and improved in the future.
The transport law (3.18) that we have derived should represent
a special caée of a more general transport law. For example, it is
conceivable that the effect of the molecular diffusion of the quantity
¢ could be incorporated into a more general version of (3.18). This
would permit a more careful study to be made of the flow at the range
of Reynolds numbers just above the transition to turbulence.
| Another direction to proceed in Qenera]izing (3.18) is to enable
it to account for the turbulent diffusidn of vorticity in a three
dimensional flow. To do this it would have to account for the effect
of the stretching and rotation of vortex filaments as they are diffused.
This is precisely the type of problem which could benefit from the
-resu1ts of experiments into the nature of vorticity dynamics in a
© turbulent flow. _ _
The transport law (3.18) betrays our inability to predict the

small scale motion of a turbulent fluid by its inclusion of the
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Lagrangian integral time scale Tij and the other integral parameters.
We may assume that the source of this difficulty has tbvdo with fhe
nature of turbulent diffusion itself and is not a quirk of our particu-
lar transport 1aw.' Thus we expect that iﬁ all turbulent diffusion
models our ignorance of the small scale motion will require us to
include indeterminable parameters such as Tij' -This phenomenon should
be viewed the same as our experience with the molecular viscosity:
In gases of a very special nature it may be predicted theoretically
but in dense gases and'liquids it must be found by experiment. So too
we May imagjne thet in some turbulent flows Tij may be predicted
theoretically but in others it must be found experimentally or by ana-
logy to similar flows where it has been determined previously. It thus
seems ‘that the search for 'flow' independent parameters in turbulence
modé]s may not be justified. | |

Our experience with the transport law (3.18) should teach us that
in the design of a more sophisticated transpert Taw of the types we
have suggested, we should be open to the possibility that we will need
to incorporate new time and length scales into it. These scales would
be reflective of some aspect of the physical phenomenon that is being
modeled.

Another area of investigation should be to determine the
relationship of the vorticity microscales xx and Ay to the size of
the region for which the statistical hypothesis mentioned in section
IT1.D. is valid. Also, the quesiion as to whether or not a connection

exists between the various lengths and time scales should be studied.
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Our considerable success in solving for the mean flow in a
channel showe that many of the physical processes found in a turbulent
flow are being well represented by the method of coarse graining. This
an encouraging sign that if coarse graining were to be extended to three
dimeneions that it would be successful in predicting the mean properties
of real turbulent flows.

The extension of coarse graining to three dimensional turbulent
flows 1is complicated by the fact that we then need to follow the
dynamics of all three components of vorticity. In addition, we would
have to contend with modeling the process of vortex stretching which
ie of such major importance in the dynamics of turbulent flow.

Our work with the piston problem reportedvhere represents a prelude
- to a much more extensive investigation of this flow, in which we will
include the combustion process which arises aftee ignition. These
computations will have to predict correctly the pressure pulse
determined experimentally. In spite of the heavy-handedness with which
we Wwill be forced to deal with some of the aspects of the turbulent
flow in the cylinder, a complete simulation of this flow and combustion -
by coarse graining even in 2-d would fepresent a great advance over any

existing method.
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