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Abstract

This paper studies the problem of maximizing the sum of traces of matrix quadratic forms on a

product of Stiefel manifolds. This orthogonal trace-sum maximization (OTSM) problem

generalizes many interesting problems such as generalized canonical correlation analysis (CCA),

Procrustes analysis, and cryo-electron microscopy of the Nobel prize fame. For these applications

finding global solutions is highly desirable, but it has been unclear how to find even a stationary

point, let alone test its global optimality. Through a close inspection of Ky Fan’s classical result

[Proc. Natl. Acad. Sci. USA, 35 (1949), pp. 652–655] on the variational formulation of the sum of

largest eigenvalues of a symmetric matrix, and a semidefinite programming (SDP) relaxation of

the latter, we first provide a simple method to certify global optimality of a given stationary point

of OTSM. This method only requires testing whether a symmetric matrix is positive semidefinite.

A by-product of this analysis is an unexpected strong duality between Shapiro and Botha [SIAM J.
Matrix Anal. Appl., 9 (1988), pp. 378–383] and Zhang and Singer [Linear Algebra Appl., 524

(2017), pp. 159–181]. After showing that a popular algorithm for generalized CCA and Procrustes

analysis may generate oscillating iterates, we propose a simple fix that provably guarantees

convergence to a stationary point. The combination of our algorithm and certificate reveals novel

global optima of various instances of OTSM.
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1. Introduction.

1.1. Orthogonal trace-sum maximization.

Given Si j = S ji
T ∈ ℝ

di × d j for i, j = 1, …,m, and r ≤ mini = 1, …, mdi, we are interested in

solving the following optimization problem:

(OTSM) maximize 1
2 ∑

i, j = 1

m
tr Oi

TSi jO j subject to Oi ∈ 𝒪di, r, i = 1, …, m,

where 𝒪d, r = O ∈ ℝd × r:OTO = Ir  is the Stiefel manifold of (partially) orthogonal matrices

[8]; Ir denotes the identity matrix of order r. Since adding a positive multiple of the identity

matrix to Sii only increases the objective by a constant amount, without loss of generality we

can assume each Sii is positive semidefinite. In what follows, we call (OTSM) the

orthogonal trace-sum maximization problem. OTSM arises in many interesting settings, as

follows.

Canonical correlation analysis.—Canonical correlation analysis (CCA) [18] seeks

directions to maximize the correlation between two sets of n observations of variables of

possibly different dimensions, A1 ∈ ℝ
n × d1 and A2 ∈ ℝ

n × d2:

maximize corr A1t1, A2t2 subject to ti
Tti = 1, i = 1, 2,

where ti ∈ ℝ
di are the optimization variables, and corr(⋅,⋅) denotes the Pearson correlation

coefficient between two sample vectors. Generalizations of CCA (i) handle more than two

sets of variables A1, …,Am (m ≥ 2), and (ii) seek partial rotation matrices (as opposed to

vectors) of Ai’s to achieve maximal agreement. The popular MAXDIFF and MAXBET

criteria [15,21,31,34] solve

(MAXDIFF) maximize ∑
i < j

tr Oi
T Ai

T A jO j subject to Oi ∈ 𝒪di, r, i = 1, …, m;

(MAXBET) maximize1
2 ∑

i, j = 1

m
tr Oi

T Ai
T A jO j subject to Oi ∈ 𝒪di, r, i = 1, …, m .

Both MAXDIFF and MAXBET are instances of (OTSM) with Si j = Ai
T A j (if MAXDIFF, Sii

= 0), for i, j = 1, …,m. It is worth noting that when d1 = ⋯ = dm = d = r, i.e., the fully

orthogonal case, MAXDIFF coincides with MAXBET up to an additive constant.
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Procrustes analysis and little Grothendieck problem.—If the variables are fully

orthogonal and there exist S11, S12, …, Smm ∈ ℝd × d such that the symmetric md×md block

matrix S = Si j i, j = 1
m

 is positive semidefinite (denoted S ≻ 0), then (OTSM) reduces to the

little Grothendieck problem over the orthogonal group [5], which arises in generalized

Procrustes analysis [13,14,30]. Given a collection of n landmarks of d-dimensional images

Ai ∈ ℝn × d, i = 1, …,m, the goal is to find orthogonal matrices that minimize the pairwise

discrepancy

f O1, …, Om = 1
2 ∑

i, j = 1

m
AiOi − A jO j F

2 = − ∑
i < j

tr Oi
T Ai

TA jO j + const. (1.1)

subject to the constraints that Oi ∈ 𝒪d, d for all i, where ⋅
F

 is Frobenius norm. This

problem is a special case of (OTSM) with Si j = Ai
T A j for i,j = 1,…,m. Clearly,

S = A1, …, Am
T A1, …, Am ≻ 0. When m = 2, problem (1.1) reduces to ordinary (partial)

Procrustes analysis [10, Chapter 7].

Cryo-EM and orthogonal least squares.—Another instance of (OTSM) involving

fully orthogonal matrices is the least squares regression problem that minimizes the squared

Frobenius norm of the difference between a given n×d matrix AK+1 and linear combination

∑i = 1
K AiOi of given n×d matrices Ai with Oi ∈ 𝒪d, d, i=1, …,K This least-squares problem

has a direct application in single-particle reconstruction with cryo-electron microscopy

(cryo-EM) celebrated by the 2017 Nobel Prize in Chemistry. Then we can equivalently

minimize

1
2 AK + 1 −OK + 1 − ∑

i = 1

K
AiOi

F

2
= ∑

i < j
tr Oi

TAi
T A jO j + const. (1.2)

subject to the orthogonality constraints on O1,…,OK+1. Any minimizer

−O1OK + 1
T , …, − OKOK + 1

T  of (1.2) supplies a minimizer −O1OK + 1
T , …, − OKOK + 1

T  of the

original problem. This is a special case of (OTSM) with Si j = − Ai
T A j. In cryo-EM,

reconstruction of the three-dimensional (3D) map of a particle involves estimating viewing

directions of its two-dimensional (2D) projections. Retrieval of the orthogonal matrices

representing the orientations is posed as the above least squares problem [6,33,35,37].

1.2. Global solutions of OTSM.

Each instance of (OTSM) above can be posed as a maximum likelihood estimation problem

under an appropriate model. Finding its global solution is highly desirable for correct
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inference. While it attains a maximum because each 𝒪di, r is compact and the objective

function is continuous in ℝ
d1 × r

× ⋯ × ℝ
dm × r

, (OTSM) is a nonconvex optimization

problem since the constraint set 𝒪d1, r × ⋯ × 𝒪dm, r is nonconvex. Except for the special case

of m = 2 in which an analytic global maximizer can be found using the singular value

decomposition (SVD) [13,34], we generally have to resort to iterative methods. The

nonconvexity of the problem makes it difficult to test global optimality of a candidate (local)

solution.

To add further difficulties, the global solution to (OTSM) is not unique. If O1
⋆, …, Om

⋆  is a

solution to (OTSM), then for any R ∈ 𝒪r, r, O1
⋆R, …, Om

⋆R  is also a solution.

1.3. Contributions.

The contributions of this paper are as follows: (i) providing a simple certificate that

guarantees the global optimality of a local stationary point of problem (OTSM) (section 3)

and (ii) showing that a standard algorithm for generalized CCA and Procrustes analysis may

exhibit oscillation, and proposing an efficient proximal block relaxation algorithm with a

convergence guarantee to a stationary point (section 4). Our certificate and duality results are

developed in close analogy to the classical result by Ky Fan [11] on the variational

formulation of the sum of largest eigenvalues of a symmetric matrix (section 2). (In the

accompanying supplementary material file OTSM_sup.pdf [local/web 625KB], we also

establish a duality between problem (OTSM) and another eigenvalue optimization problem.

As a special case, a strong duality between two separately known results in the literature

[28,40] is shown.) The certificate only requires testing positive semidefiniteness of a

symmetric matrix constructed from a stationary point and data. Therefore, it is simple to

verify global optimality. The convergence theory for the proposed algorithm proves that the

whole sequence Ok = O1
k, …, Om

k  of iterates converges to a stationary point at least at a

sublinear rate—this result is stronger than convergence of the objective value sequence or

convergence of a subsequence of{Ok}. To the best of our knowledge, there has been no

convergence result of this stronger kind for the related problems. Some numerical results of

the proposed algorithm combined with the certificate are presented in section 5.

2. Preliminary: The m = 1 case and Ky Fan theorem.

As a preparation for what follows, we review the classical results on variational formulations

of the sum of r largest eigenvalues of a symmetric matrix. For a matrix S in the vector space

of d×d symmetric real matrices (denoted 𝕊d), let λi(S) be the ith largest eigenvalue of S.

Then it is well known that

∑
i = 1

r
λi(S) = max

O ∈ 𝒪d, r
tr OTSO = max

U ∈ 𝕊d
tr(SU):0 ≺ U ≺ Id, tr(U) = r . (2.1)
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The first equality is the celebrated Ky Fan theorem [11], where the involved nonconvex

optimization problem over a Stiefel manifold is a special case of (OTSM) for m = 1. The

second equality is due to [17,25], which state that there always is a tight convex relaxation of

Ky Fan’s nonconvex problem. It is also well known that the dual of this convex semidefinite

programming (SDP) problem is an SDP

minimize rz + tr(M),
subject to zId + M − L = S, M ≻ 0, L ≻ 0 (2.2)

for variables M, L ∈ 𝕊d and z ∈ ℝ [3,23,26].

Let us examine the relation between stationary points of these optimization problems

closely. For Ky Fan’s nonconvex problem, the Lagrangian is

ℒ(O, Λ) = − tr OTSO + 1
2tr Λ OTO − Ir ,

by rewriting the constraint O ∈ 𝒪d, r as an equality constraint OTO = Ir. The Lagrange

multiplier matrix Λ is symmetric due to the symmetry of the corresponding constraint. Point

O ∈ 𝒪d, r is a stationary point if the directional derivative of ℒ with respect to W ∈ ℝd × r

dWℒ = − tr (SO)TW + tr (OΛ)TW

vanishes for any W, i.e., if O satisfies the necessary condition for first-order local optimality.

This is equivalent to the existence of a symmetric matrix Λ satisfying

OΛ = SO . (2.3)

Further, using the constraint OTO = Ir, we have a representation Λ = OTSO ∈ 𝕊r The Karush–

Kuhn–Tucker (KKT) optimality conditions assert that a locally maximal point is also

stationary [24, Theorem 12.1].

The second-order necessary condition for a local maximum is

dW
2 ℒ = tr ΛWTW − tr WTSW ≥ 0 (2.4)

for all W ∈ ℝd × r such that WTO + OTW = 0 [24, Theorem 12.5]; the set of such W is the

tangent space of the Stiefel manifold 𝒪d, r at O. For the convex problem (either the primal or

dual), the KKT conditions are

0 ≺ U ≺ Id, tr(U) = r, M ≻ 0, M + zId − L = S,
tr(LU) = 0, tr M Id − U = 0, L ≻ 0, (2.5)
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Assume that O is a local maximizer. Let Λ = OTSO, U = OOT, and M = O Λ − zIr OT for

z = λmin(Λ) the smallest eigenvalue of Λ. Since O is a stationary point, it is easy to verify that

U, M, L = M + zId − S  satisfies all the KKT conditions in (2.5) but L ≻ 0.1 If r < d, let

O⊥ ∈ 𝒪d − r, r consist of orthonormal columns that span the null space of O, and choose

W = O⊥K for K ∈ ℝ(d − r) × r so that it satisfies WTO + OTW = 0. Then after some algebra,

tr ΛWTW − tr WTSW = tr KΛKT − tr KTO ⊥ TSO⊥K ≥ 0.

Since K is arbitrary, choose K = βvmim
T  for β ∈ ℝd − r and vmin ∈ ℝr, where the latter is the

unit eigenvector of Λ associated with z So,

tr KΛKT − tr KTO ⊥ TSO⊥K = zββT − βTO ⊥ TSO⊥β ≥ 0 ∀β ∈ ℝd − r .

This implies zId − r − O ⊥ TSO−⊥ ≻ 0. On the other hand, as any y ∈ ℝd can be written as

y = Oα + O⊥β for α ∈ ℝr and β ∈ ℝd − r, it can be easily seen that

yT M + zId − S y = βT zId − r − O ⊥ TSO⊥ β ≥ 0.

Thus L = M + zId − S ≻ 0 and O satisfies all the KKT conditions. (If r = d, it is immediate

that M = S − zId, or L = 0.) This implies that all the local maxima of Ky Fan’s nonconvex

optimization problem are global maxima.

Conversely, if a stationary point O satisfies L ≜ M + zId − S ≻ 0 for Λ, U, and M constructed

as in the beginning of the previous paragraph, then it is also globally optimal, which

obviously is locally maximal. In other words,

L ≻ 0 (global optimum) (local maximum) L ≻ 0; hence L ≻ 0 is necessary and sufficient
for a stationary point to be globally optimal.

The above analysis of Ky Fan’s problem (2.1) sheds light on (OTSM) in three ways. First,

there can be a tight convex relaxation to (OTSM). Second, by analyzing the KKT conditions

of the convex relaxation, we may be able to certify a stationary point of (OTSM) to be

globally optimal. Third, the dual of the convex relaxation may have to do with a sum of the

eigenvalues of a block matrix constructed from Sij’s. In what follows, we carry out an

analysis of the OTSM problem inspired by the Ky Fan problem. The added complexity due

to m > 1 reveals both similarities anddifferences between the two problems.

1The construction of matrices M and L is inspired by [26, Theorem 3.3], in which optimality conditions of the dual SDP (2.2) is

given. In particular, if O consists of the orthonormal eigenvectors of S corresponding to the r largest eigenvalues, it follows that

λr(S) ≥ z ≥ λr + 1(S), M = Odiag λ1(S) − z, …, λr(S) − z OT  and L = O⊥diag z − λr + 1(S), …, z − λd(S) O ⊥ T .
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3. Certificate of global optimality.

3.1. Local optimality conditions.

3.1.1. First-order conditions.—Rewriting the constraints Oi ∈ 𝒪di, r as equality

constraints Oi
TOi = Ir, the Lagrangian of (OTSM) is

ℒ O1, …, Om, Λ1, …, Λm = − 1
2 ∑

i, j = 1

m
tr Oi

TSi jO j + 1
2 ∑

i = 1

m
tr Λi Oi

TOi − Ir ,

where the Lagrange multiplier matrices Λi are symmetric due to the symmetry of the

corresponding constraints. In parallel with section 2, a point O = (O1, …,Om) is a stationary

point of problem (OTSM) if the directional derivative of ℒ with respect to

W = W1, …, Wm ∈ ℝ
d1 × r

× ⋯ × ℝ
dm × r

dWℒ = − ∑
i = 1

m
∑
j = 1

m
tr Si jO j

TW i + ∑
i = 1

m
tr OiΛi

TW i (3.1)

vanishes for any W. A local maximum satisfies condition (3.1), which is equivalent to

OiΛi = ∑
j = 1

m
Si jO j, i = 1, …, m, (3.2)

resembling the first-order condition (2.3) of the Ky Fan problem.

Using the constraint Oi
TOi = Ir, we further have a representation for Λi:

Λi = Oi
T ∑

j = 1

m
Si jO j = ∑

j = 1

m
Si jO j

T

Oi . (3.3)

The second equality follows from the symmetry of the Lagrange multiplier. Substituting this

quantity in (3.2), we obtain

Oi ∑
j = 1

m
Si jO j

T

Oi = ∑
j = 1

m
Si jO j, i = 1, …, m . (3.4)

3.1.2. Second-order condition.—The second-order necessary condition for local

maximality of (OTSM) is

dW
2 ℒ = ∑

i = 1

m
tr ΛiW i

TW i − tr WTSW ≥ 0 (3.5)
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for all, W = W1
T, …, Wm

T T
 such that Wi is a tangent vector of 𝒪di, r at Oi, i.e.,

W i
TOi + Oi

TW i = 0, i = 1, …, m, (3.6)

where S = Si j  is the symmetric D×D block matrix whose (i, j) block is Si j ∈ ℝ
di × d j,i, j = 1,

…,m. Again see the resemblance of condition (3.5) to the second-order condition (2.4) for

Ky Fan’s problem.

Unfortunately, in (OTSM) we do not have the luxury of all the local maxima being globally

optimal. We revisit this issue after studying a potentially tight convex relaxation to the

problem in the next subsection. As a partial result, some of the following characterization of

the Lagrange multipliers associated with a local or global maximum can be deduced from

[31, pp. 489–490].

Proposition 3.1.: If O = O1, …, Om ∈ 𝒪d1, r × ⋯ × 𝒪dm, r is a local maximizer of (OTSM),

then Λi as defined in (3.3) is positive semidefinite, for i ∈ 1, …, m  such that di > r. If O is a
stationary point but Λi is not positive semidefinite for some i, then one can find another

stationary point O = O1, …, Om  such that 1
2 ∑i, j tr OiSi jO j < 1

2 ∑i, j tr OiSi jO j  and

Λi = Oi
T ∑ j = 1

m Si jO j is positive semidefinite for all i = 1, …,m. Furthermore, if O is a global

maximizer of (OTSM), then Λi is positive semidefinite for all i.

A full proof is provided in Appendix A.

3.2. Semidefinite programming relaxation.

By introducing an appropriate matrix variable and constraints, we can obtain an upper bound

of the optimal value of (OTSM) by that of an SDP relaxation. Besides providing tight

bounds, the SDP formulation paves the way toward certifying the global optimality of a

local solution. If D = ∑i = 1
m di, then we can define a D × D matrix

U ≜ 1
mOOT, O = O1

T, …, Om
T T ∈ ℝD × r, (3.7)

so that ∑i < j tr Oi
TSi jO j  the objective function of (OTSM), is equal to m

2 tr(SU), where

S = Si j . We can express (OTSM) in terms of the matrix U by imposing appropriate

constraints. The proof of the following proposition is in Appendix A.

Proposition 3.2.—Problem (OTSM) is equivalent to the optimization problem

maximize (m/2)tr(SU)
sub ject to U ≻ 0, rank(U) = r, mUii ≺ Idi

, tr mUii = r, i = 1, …, m, (3.8)
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where the optimization variable is a symmetric D × D matrix U, Uii denotes the ith diagonal
block of U whose size is di × di, and A ≺ B denotes the Loewner order, i.e.,B − A ≻ 0.

By dropping the rank constraint from problem (3.8) we obtain a convex, SDP relaxation of

(OTSM):

P‐SDP
subject to U ≻ 0, mUii ≺ Idi

, tr mUii = r, i = 1, …, m .
maximize (m/2)tr(SU)

This relaxation is tight if the solution U⋆ has rank r. The solution to (OTSM) is recovered by

the decomposition (3.7). The dual of (P-SDP) is easily seen to be the following SDP:

D‐SDP subject to Z + M − L = S, L ≻ 0, Mi ≻ 0, i = 1, …, m,
maximize ∑i = 1

m rzi + tr Mi

where Z = diag mz1Id1
, …, mzmIdm

 and M = diag (mM1, …,mMm). The optimization

variables are L ∈ 𝕊D, Mi ∈ 𝕊
di,zi ∈ ℝ, i = 1, …, m. Strong duality between (P-SDP) and (D-

SDP) holds (e.g., Slater’s condition is satisfied). A rank-r solution to the SDP relaxation (P-

SDP), if it exists, yields a globally optimal solution to the original problem (OTSM).

However, solving these convex programs is computationally challenging even with modern

convex optimization solvers due to their lifted dimensions. Moreover, if the optimal SDP

solution U has rank greater than r, the factor O in (3.7) is infeasible to the original problem

(OTSM).

Thus it is natural to ask when the candidate rank-r solution (3.7) to (P-SDP) constructed

from a stationary point (O1, …,Om) of (OTSM) becomes actually an optimal solution. If this

is the case, then the local solution globally solves (OTSM). We explore this path in the next

subsection.

3.3. Certifying global optimality of a stationary point.

The KKT conditions for (P-SDP) and (D-SDP) are

(KKT‐a) U ≻ 0,

(KKT‐b) mUii ≺ Idd
, i = 1, …, m,

(KKT‐c) tr mUii = r,
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(KKT‐d) Mi ≻ 0, i = 1, …, m

(KKT‐e) Z + M − L = S,

(KKT‐f) tr(LU) = 0,

(KKT‐g) tr Mi Idi
− mUii = 0, i = 1, …, m

(KKT‐h) L ≻ 0,

where Z = diag mz1Id1
, …, mzmIdm

 for z1, …, zm ∈ ℝ and M = diag(mM1, …,mMm). If any

tuple (U, Z, M, L) satisfies conditions (KKT-a)–(KKT-h), then U is an optimal solution to

(P-SDP) and (Z, M, L) is optimal for (D-SDP ) [36].

Now suppose O = O1, …, Om  is a stationary point of (OTSM ). Recalling (3.3), let the

associated Lagrange multipliers be Λi = ∑ j = 1
m Oi

TSi jO j. We can find the quantities that

satisfy the KKT conditions above in a similar, but not completely obvious, manner to section

2. The matrix

U ≜ 1
mOOT

(3.9)

clearly satisfies (KKT-a), (KKT-b), and (KKT-c). Now let τi be the smallest eigenvalue of

the symmetric matrix Λi Then

Mi ≜ 1
mOiΛiOi

T − ziOiOi
T = Oi

1
mΛi − ziIr Oi

T
(3.10)

satisfies (KKT-d) for any zi ≤ τi/m. If we define block diagonal matrices

Z = diag mz1Id1
, …, mzmIdm

, M = diag mM1, …, mMm , (3.11)

then
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tr[(M + Z)U] = ∑
i = 1

m
tr Mi + ziIr mUii

= 1
m ∑

i = 1

m
tr OiΛiOi

T − mziOiOi
T + mziIr OiOi

T

= 1
m ∑

i = 1

m
tr Λi = 1

m ∑
i = 1

m
∑

j = 1

m
tr Oi

TSi jO j = tr(SU) .

This satisfies (KKT-e) and (KKT-f) for L ≜ M + Z − S. Finally,

tr mMi = tr Oi Λi − mziIr Oi
T = tr Λi − mziIr ,

tr mMi mUii = tr Oi Λi − mziIr Oi
T OiOi

T = tr Λi − mziIr ;

thus (KKT-g) is satisfied. In short, the choices of variables (3.9), (3.10), and (3.11) satisfy all

the KKT conditions except (KKT-h) for any zi ≤ τi/m.

To satisfy this final KKT condition, let L z1, …, zm = M + Z − S and observe that

M + Z = diag O1Λ1O1
T + mz1O1

⊥O1
⊥ T, …, OmΛmOm

T + mzmOm
⊥Om

⊥ T , where Oi
⊥ ∈ 𝒪di, di − r

satisfies Oi
⊥Oi

⊥ T = Idi
− OiOi

T. If the linear matrix inequality (LMI)

L z1, …, zm ≻ 0, zi ≤ τi/m, i = 1, …, m, (3.12)

has a feasible point z1
⋆, …, zm

⋆ , then this is a certificate that O1, …, Om  is a global

maximizer of (OTSM). While, in general, LMIs are solved by interior-point methods [23],

for LMI (3.12) it is unnecessary. Since Oi
⊥Oi

⊥ T is positive semidefinite, L is monotone (in

Loewner order) in the scalars z1, …, zm, i.e.,

L z1, …, zm ≻ L w1, …, wm

whenever zi ≥ wi for i = 1, …,m. Thus it is sufficient to check the positive semidefiniteness

at values zi = τi/m. If it holds, we have found a feasible point. If not, the LMI is infeasible.

We state this result as the following theorem.

Theorem 3.3.—Suppose O = O1, …, Om  is a stationary is point of (OTSM). Let

Λi = ∑ j = 1
m Oi

TSi jO j, and τi be the smallest eigenvalue of Λi Then i = 1, …,m. Then O is a

global optimum of (OTSM) if
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(CERT) L⋆ = diag O1Λ1O1
T + τ1O1

⊥O1
⊥ T , …, OmΛmOm

T + τmOm
⊥Om

⊥ T − S ≻ 0.

Remark 3.4.: Let.O = m−1/2 O1
T, ⋯, Om

T T
. It is easy to see that O ∈ 𝒪D, r and L⋆O = 0 using

the stationarity condition (3.2). Therefore, it suffices to test O⊥ T
L⋆O⊥ ≻ 0, where

O⊥ ∈ 𝒪D, D − r fills out O to a fully orthogonal matrix. This matrix is (D − r) × (D − r) and

may be easier to handle than the D × D matrix L⋆.

Example 3.5.: To see the significance of Theorem 3.3, consider the example examined by

Ten Berge [30, p. 270] in the context of the MAXDIFF problem (Sii = 0, i = 1, …,m). Let m
= 3, d1 = d2 = d3 = d, and set S 12 = −Id, S13 = Id, S23 = Id. Using Theorem 3.3, it is easy to

see that any triple of (partially) orthogonal matrices O1, O2, O3 ∈ 𝒪d, r × 𝒪d, r × 𝒪d, r such

that O3 = O1 + O2 satisfies (CERT) for any r ≤ d. Indeed, for choices Λi = Ir and τi = 1 for all

i,

L⋆ =

Id Id −Id
Id Id −Id

−Id −Id Id

=

Id
Id

−Id

Id Id −Id ≻ 0.

Specifically, for d = 3 and r = 2, the triple

O1 =
1 0
0 1
0 0

, O2 =
−1/2 3/2

− 3/2 −1/2
0 0

, O3 =
1/2 3/2

− 3/2 1/2
0 0

(3.13)

is a global maximizer. The global maximum value is 3.

Unlike the Ky Fan problem of the previous section, condition (CERT) is hardly necessary

for global optimality. This is a key difference of (OTSM) from the Ky Fan problem. To see

this, let O = O1, …, Om  be a local maximizer, and recall Idi
= OiOi

T + Oi
⊥Oi

⊥ T. It follows

from the tangency condition (3.6) that

tr ΛiWi
TWi = tr WiΛiWi

TOiOi
T + tr WiΛiWi

TOi
⊥Oi

⊥ T

= tr Oi
TWiΛiWi

TOi + tr ΛiWi
TOi

⊥Oi
⊥ TWi

= tr Wi
TOiΛiOi

TWi + tr ΛiWi
TOi

⊥Oi
⊥ TWi

≥ tr Wi
TOiΛiOi

TWi + τitr Wi
TOi

⊥Oi
⊥T

Wi .
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The last inequality is due to W i
TOi

⊥ Oi
⊥ T

W i ≻ 0 and Λi ≻ τiIr (see, e.g., [19, pp. 482–483]).

Thus the local maximality condition (3.5) is sufficiently satisfied if

∑
i = 1

m
tr Wi

TOiΛiOi
TWi + ∑

i = 1

m
τitr Wi

TOi
⊥Oi

⊥ TWi − tr WTSW ≥ 0

for all W = W1
T, …, Wm

T T
. This will be the case if L⋆ ≻ 0, but not only if.

Nevertheless, there are a few special cases that condition (CERT) is also necessary for global

optimality.

Corollary 3.6.: For the MAXDIFF problem with m = 2, i.e., S11 = 0 and S22 = 0, if a point
O1, O2  is a global maximizer, then condition (CERT) is satisfied. This is true for any r ≤

min {d1, d2}.

Corollary 3.7.: For m = 2 and r = 1, if a point O1, O2  is a global maximizer of (OTSM),

then condition (CERT) is satisfied.

Corollary 3.8.: If Sij has rank less than or equal to r with singular value decomposition

Si j = V iΣi jV j
T for rV i ∈ 𝒪d1, r, V j ∈ 𝒪d j, r and Σi j is an r × r nonnegative diagonal matrix for i,j

= 1, …,m, then (V1, …,Vm) solves (OTSM) globally.

The last corollary provides a data-only sufficient condition for global optimality, which does

not require computing a stationary point. Its hypothesis is satisfied, e.g., if Ai’s share left

singular vectors in the MAXDIFF or MAXBET problems:Ai = RΣiV i
T for some R ∈ 𝒪r, r.

Corollary 3.7 is due to [16, Result 4], which we discuss in the next subsection. Proofs of the

other corollaries are provided in Appendix A.

We also point out a special case in which a qualified local optimality implies condition

(CERT). For m = 2 involving fully orthogonal matrices (i.e., d1 = d2 = r; note in this case

(OTSM) coincides with both MAXDIFF and MAXBET), it is well-known that a locally

maximal point O = O1, O2  such that Λ1 = OTS12O2 is positive semidefinite also implies

global optimality [12, 30]. Theorem 3.3 recovers this result. To see this, observe that

Λ1 = O1
TS12O2 = O2

TS21O1 = Λ2 by symmetry. Let Λ = Λ1 = Λ2. Then,

L⋆ =
O1ΛO1

T −S12

−S12
T O2ΛO2

T
=

O1
−O2

Λ
O1

−O2

T
≻ 0,

since S12 = O1ΛO2
T = S21

T . We see the circle

L⋆ ≻ 0 (global optimum) (local maximum with Λ ≻ 0 ) L⋆ ≻ 0 for m = 2 and r = d1 = d2,
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similar to the Ky Fan problem. In fact, a stationary point with Λ ≻ 0 suffices, and by

Proposition 3.1, any stationary point can be improved to satisfy this condition.

Table 1 summarizes the results discussed so far and their parallelism with those in section 2.

3.4. Other certificates.

Sufficient conditions for global optimality of problem (OTSM) appear understudied. Here

we discuss three such conditions collected from the generalized CCA and Procrustes

analysis literature.

Ten Berge [30] shows that if d1 = ⋯ = dm = r (fully orthogonal) and Λi j ≜ Oi
TSi jO j is

symmetric and positive semidefinite for all i < j for global optimality, then O1, …, Om  is a

global solution. This sufficient condition is excessively strong, and, in fact, he uses Example

3.5 to show that the condition is hardly met: no orthogonal matrices O1, O2, O3  exist such

that −O1
TO2, O1

TO3, and O2
TO3 are simultaneously symmetric and positive semidefinite.

Nevertheless, Ten Berge’s sufficient condition is implied by Theorem 3.3. To see this,

observe that Λi = ∑ j = 1
m Λi j is symmetric (and positive semidefinite), satisfying the

stationarity condition (3.2). Also since Si j = OiΛi jO j
T,

L⋆ = diag O1Λ1O1, …, OmΛmOm − S

=

O1
⋱

Om

∑ j ≠ 1Λ1 j −Λ12 ⋯ −Λ1m
⋮ ⋱ ⋮

−Λm1 ⋯ −Λm, m − 1 ∑ j ≠ mΛm j

O1
T

⋱

Om
T

.

It is easy to check that the middle block matrix is positive semidefinite, and so is L⋆.

Hanafi and Ten Berge [16] show that if unit vectors oi ∈ ℝ
di, i = 1, …, m, satisfy

So = diag λ1, …, λm o with o = o1
T, …, om

T T
 and diag λ1Id1

, …, λmIdm
− S ≻ 0, then (o1, …,om)

maximizes 1
2 ∑i, j = 1

m Oi
TSi j

mO j globally. Obviously, this is a special case of Theorem 3.3 for r

= 1. Corollary 3.7 follows from this result.

If a stationary point O1, …, Om  satisfies the second-order condition (3.5) for all

W = W1
T, …, Wm

T T ∈ ℝD × r, i.e., each Wi does not necessarily observe the tangency

condition (3.6) at Oi,then this is obviously sufficient for the point to be globally optimal. Liu,

Wang, and Wang, [21, Theorem 2.4] describe this condition in a matrix form:
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ℒ⋆ ≜ diag Kd1, r
T Id1

⊗ Λ1 Kd1, r, …, Kdm, r
T Idm

⊗ Λm Kdm, r − 𝒮 ≻ 0, (3.14)

where 𝒮 = Ir ⊗ Si j , and Kmn is the commutation matrix such that Kmn vec A = vec AT for

A ∈ ℝm × n; vec(·) is the usual vectorization operator, and ⨂ denotes the Kronecker product.

Condition (3.14) can be related to Theorem 3.3 by the similarity transform of ℒ⋆ with

𝒦 = diag Kd1, r, …, Kdm, r :

𝒦ℒ⋆𝒦T = diag Id1
⊗ Λ1, …, Idm

⊗ Λm − 𝒦𝒮𝒦T

= diag Id1
⊗ Λ1, …, Idm

⊗ Λm − 𝒮 ≻ 0, 𝒮 = Si j ⊗ Ir .

The second equality uses the fact Kdi, r Ir ⊗ Si j Kd j, r
T = Si j ⊗ Ir. Observe the resemblance of

the last line to condition (CERT). When r = 1, these two conditions actually coincide, hence

also with the Hanafi-Ten Berge condition. For r > 1, besides the expenses of constructing a

larger matrix than L⋆ (rD×rD versus D×D), condition (3.14) is usually stronger than

Theorem 3.3. For instance, in Example 5.1 of section 5 stationary points obtained by

Algorithm 4.1 in section 4 satisfy condition (CERT) for all possible values of r, but for those

points ℒ⋆ ≻ 0 only when r = 1.

4. Proximal block relaxation algorithm.

In order to apply Theorem 3.3 to verify condition (CERT), an algorithm that generates

iterates converging to a stationary point is needed. Although problem (OTSM) has been

studied in the generalized CCA and Procrustes analysis context for a long time, algorithms

that possess this desired property appear rare. In this section, we propose such an algorithm.

4.1. Oscillation of the standard algorithm.

We first point out a flaw in the block ascent algorithm widely employed in both the

generalized CCA [15, 31, 32] and the Procrustes analysis contexts [10, 13, 30]. This

algorithm cyclically updates each orthogonal matrix Oi with other blocks Oj, j ≠ i, held

fixed. To update the ith block in the k + 1st cycle, let

Oprev = O1
k + 1, …, Oi − 1

k + 1, Oi
k, Oi + 1

k , …, Om
k , then maximize tr Oi

T ∑ j = 1
m Si jO j

prev . This block

update scheme is natural since the domain 𝒪d1, r × ⋯ × 𝒪dm, r has a product structure.

Furthermore, each maximization is explicit: let us invoke the von Neumann–Fan inequality

tr ATB ≤ ∑
l

σl(A)σl(B),

which holds for any two matrices A and B of the same dimensions with the lth largest

singular values σl(A) and σl(B), respectively; equality is attained when A and B share a
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simultaneous ordered SVD (see, e.g., [19]). Thus if B = ∑ j = 1
m Si jO j

prev has an SVD of

PiDiQi
T, where Di is r × r nonnegative diagonal, then the optimal choice of A = Oi is PiQi

T.

The latter matrix is orthogonal. This method can be considered a linearized version of the

alternating variable algorithm of [21, Algorithm 4.1].

However, convergence of this standard algorithm is not guaranteed. To be precise, let

Ok = O1
k, …, Om

k  be the kth iterate after k cycles of the algorithm. While it can be shown that

the sequence of objective values f Ok  converges [31], it cannot be said that the iterates

{Ok} themselves converge. The main reason is that the map B = ∑ j ≠ iSi jO j PiQi
T is set-

valued. If B is rank deficient, any orthonormal basis of the null space of BT (resp., B) can be

chosen as left (resp., right) singular vectors corresponding to the zero singular value; the

product PiQi
T may not be unique [2, Proposition 7]. Each update of the ith block may place it

too far from its previous location. To see the potential peril of this update scheme, let us

revisit Example 3.5. Suppose the algorithm is initialized with O0 = (I, J, I), where

I =
1 0
0 1
0 0

∈ 𝒪3, 2 and J =
0 1
1 0
0 0

∈ 𝒪3, 2 .

Both I − J and I + J have rank 1, and −J ∈ argmaxOi ∈ 𝒪3, 2
tr Oi

T(I − J) ,

I ∈ argmaxOi ∈ 𝒪3, 2
tr Oi

T(I + J) . Taking these particular values as the outputs of an instance

of the above set-valued map, we have the following sequence of Ok:

(I, J, I) ( − J, I, − J) ( − I, − J, − I) (J, − I, J) (I, J, I) ⋯ .

Thus the standard algorithm oscillates while the objective does not change from a

suboptimal value of 1 (recall the globally optimal value is 3).

4.2. Proximal regularization.

We propose a simple modification of the standard algorithm that leads to a convergent

algorithm. Define a bivariate function f i:𝒪di, r × 𝒪d1, r × ⋯ × 𝒪dm, r ℝ as

f i Oi, Θ = tr Oi
T ∑ j = 1

m Si jΘ j  for i = 1, …,m, where Θ = Θ1, …, Θm . Then the objective

function of (OTSM) can be denoted by f (O) = 1
2 ∑ = 1

m f i Oi, O , where O = (O1, …,Om). For

the update of the ith block in the k +1st cycle, we consider a spherical quadratic

approximation of fi at Oi
k, i.e.,
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f i Oi
k, Oprev + tr ∇1 f i Oi

k, Oprev T Oi − Oi
k − 1

2α Oi − Oi
k

F
2

+ ∑
j ≠ i

f j O j
prev, Oprev ,

(4.1)

where Oprev = O1
k + 1, …, Oi − 1

k + 1, Oi
k, Oi + 1

k , …, Om
k , and ∇1 f i Oi, Θ = ∑ j = 1

m Si jΘ j is the

derivative of fi in the first variable; α > 0 is a given constant. We then maximize this

approximation with respect to Oi, with the other coordinates held fixed. This partial

maximization is also explicit, as it can be easily seen that maximizing the objective (4.1) is

equivalent to maximizing tr Oi
T ∑ j = 1

m Si jO j
prev + α−1Oi

k . Therefore, we can employ the von

Neumann-Fan inequality to A = Oi and B = ∑ j = 1
m Si jO j

prev + α−1Oi
k. If B has an SVD of

PiDiQi
T, then the optimal choice of A is again PiQi

T, which is orthogonal. This fact suggests

Algorithm 4.1, which includes that standard algorithm as a special case (α = +∞). The

quadratic regularization term in objective (4.1) keeps the update Oi
k + 1 in the proximity of its

previous value Oi
k, and the α moderates the degree of attraction. Algorithm 4.1 is also an

instance of the minorization-maximization (MM) algorithm (see, e.g., [20]): at each update,

the surrogate function defined on 𝒪d1, r × ⋯ × 𝒪dm, r × 𝒪d1, r × ⋯ × 𝒪dm, r

g(O ∣ Θ) = f (Θ) + ∑
i = 1

m
tr ∇1 f i Θi, Θ T Oi − Θi − 1

2α ∑
i = 1

m
Oi − Oi

k
F
2

minorizes the objective function f(O) at Θ = O1
k + 1, …, Oi − 1

k + 1, Oi
k, Oi + 1

k , …, Om
k  for a certain

range of α and is partially maximized. As a consequence of being an MM algorithm, each

update monotonically improves the objective function f. Due to the compactness of each

𝒪di, r, actually the sequence of objective values {f(Ok)} converges.

In the next subsection we proceed to show that the sequence of iterates {Ok} converges to a

stationary point, in contrast to the standard algorithm. In particular, in the example of the

previous subsection, with any finite α > 0 the maximizers of tr Oi
T −J + I + α−1I ,

tr Oi
T −I + I + α−1J  and tr Oi

T I + J + α−1I  in 𝒪3, 2 are uniquely determined by I, J, and I.

This yields O0 = (I, J, I) = O1 = O2 = 2⋯ in Algorithm 4.1. In fact, the point (I, J, I) is a

stationary point. (Convergence to a global maximizer, e.g., (3.13), requires a good initial

point. We discuss this in section 5 with another global solution.) Note, however, the map in

lines 5 and 6 of Algorithm 4.1 is nevertheless set-valued, since there is no guarantee of full

rank of B.
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Algorithm 4.1

Proximal block relaxation algorithm for solving (OTSM).

1: Initialize O1, …, Om; Set α ∈ (0, 1/ maxi=1,…,m ∥Sii∥2)

2: For k = 1, 2, …

3:  For i = 1, …, m

4:   Set B = ∑ j = 1
m Si jO j + α−1Oi

5:   Compute SVD of B as PiDiQi
T

6:   Set Oi = PiQi
T

7:  End For

8:  If there is no progress, then break

9: End For

10: Return (O1, …, Om)

4.3. Global convergence.

Algorithm 4.1 with α > 0 converges despite the nonuniqueness of the map in lines 5 and 6.

Theorem 4.1.—The sequence O1
k, …, Om

k  generated by Algorithm 4.1 converges to a

stationary point of (OTSM) for α ∈ 0, 1/maxi = 1, …, m Sii 2 ; ⋅
2
 denotes the spectral norm.

Furthermore, the rate of convergence is at least sublinear.

This result is stronger than typical global convergence results that all the limit points are

stationary [19,39], or that the gradient vanishes [1,24]. Theorem 4.1 can be shown using

Theorems 1 and 2 in Xu and Yin [38] by noting that Algorithm 4.1 falls into their

“deterministic block prox-linear” class of algorithms and problem (OTSM) possesses the

Kurdyka–Łojasiewicz property [4]. In the accompanying supplementary material file OTSM

supp.pdf [local/web 625KB], we provide a simpler proof utilizing the closedness [39] of the

map in lines 5 and 6, and the geometry of the product of Stiefel manifolds.

Remark 4.2.—In case Sii = 0 for i = 1, …,m, e.g., the MAXDIFF problem, the α can be

chosen as an arbitrary positive constant.

5. Numerical experiments.

5.1. Setup.

In this section we test Algorithm 4.1 equipped with the certificates of global optimality and

suboptimality discussed in section 3 with both synthetic and real-world examples. Algorithm

4.1 was implemented in the Julia programming language [7] and run on a standard laptop

computer (Macbook Pro, i5@2.4GHz, 16GB RAM). We set the proximity constant α =

1000 and terminated the algorithm if the mean change m−1∑i = 1
m Oi

k − Oi
k − 1

F was less

than 10−8 and the relative change of the objective function was less than 10−10, or a
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maximum iteration of 50000 was reached. For comparison, we also tested the generic

Riemanian trust-region method [1] implemented in the Manopt MATLAB toolbox [9]. The

maximum number of outer iterations of this method was set to 10000. For both methods,

four initialization strategies were considered:

1. (“eye”) The ith block Oi
0 of the initial point takes the first r columns of Idi

.

2. (“tb”) Take the eigenvectors corresponding to the r largest eigenvalues of the data

matrix S = Si j  to form a D × r orthogonal matrix V. Split V into m blocks so that

V = V1
T, …, Vm

T T
, where V i ∈ ℝ

di × r
, i = 1, …, m. Project each block Ṽi to the

Stiefel manifold 𝒪di, r
 to obtain Oi

0.

3. (“sb”) Replace the diagonal blocks Sii of S by −∑ j = 1
m Si jSi j

T 1/2
, where M1/2

denotes the matrix square root of the positive semidefinite matrix M. Take the

eigenvectors corresponding to the r largest eigenvalues of the resulting negative

semidefinite matrix to form a D × r orthogonal matrix V. Proceed as strategy

“tb.”

4. (“lww1”) Set O1
0 to the top r eigenvectors of S11. Then set Ok

0 = UkQk, where Uk

is the top r eigenvectors of Skk and Qk is the Q factor in the QR decomposition of

Uk∑ j < k Sk jO j
0, k = 2, …, m.

The initial point of strategy “tb” coincides with that which gives the second upper bound of

the orthogonal Procrustes problem [30, p. 273], and also with the starting point strategy 2 of

[21, p. 1495] for the MAXBET problem. Strategy “sb” extends [28, p. 380] for the

orthogonal Procrustes problem; see Lemma A.1 in Appendix A, and also the accompanying

supplementary material file OTSM_supp.pdf [local/web 625KB]. Strategy “lww1” is the

starting point strategy 1 by [21, p. 1494].

5.2. Small examples.

Example 5.1 (CCA of port wine data).—We consider generalized CCA of the subset of

the data from sensory evaluation of port wines analyzed by Hanafi and Kiers [15, Table 2].

The goal is to capture the agreement between m = 4 assessors in the assessment of the

appearance of n = 8 port wines. Note that the dimensions are disparate: d1 = 4, d2 = 3, d3 =

4, and d4 = 3. The MAXDIFF criterion was tested for all possible r = 1, 2, 3. The results are

summarized in Table 2. Algorithm 4.1 achieved global optimum for all r and for all initial

point strategies. A similar phenomenon occurred with MAXBET, whose results are provided

in the accompanying supplementary material file OTSM supp.pdf [local/web 625KB],

except for r = 3 with strategies “eye” and “lww1.” On the other hand, Manopt occasionally

converged to a stationary point violating the conclusion of Proposition 3.1. In addition,

Algorithm 4.1 was orders of magnitudes faster than Manopt. In all cases certified to be

globally optimal, the smallest eigenvalues of L⋆ in condition (CERT) (denoted λmin(L⋆))
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were numerically zero up to the fourteenth digit after the decimal point, whereas those of

ℒ⋆ denotedλmin ℒ⋆  in condition (3.14) were often definitely negative.

Example 5.2.—We revisit Example 3.5 for d = 3 and r = 1, 2, 3. The results are

summarized in Table 3. Strategies “eye” and “lww1” gave suboptimal stationary points as

initial points, and both algorithms could not make progress. Strategy “sb” yielded global

optima for both r = 1, 2. For r = 3, no strategy could certify global optimality. For r = 2,

while both “sb” and “tb” were successful, Algorithm 4.1 took the full 50000 iterations to

achieve the same accuracy as Manopt, which in this case took 22 outer iterations. The

stationary points reached from the two initial points were all quite different from each other,

and also from the analytic solution (3.13). The error O1 + O2 − O3 ∞ was between

8.877×10−7 and 6.146×10−6. Together with the smallest eigenvalue of L⋆ computed being

−6.674×10−6, this relatively large error reflects the hardness of this problem illustrated in

Example 3.5. This difficulty was also experienced with an extra run of the commercial

interior-point method solver MOSEK [22] to solve the convex relaxtion (P-SDP). While the

optimal objective value was 3 up to the eighth digit after the decimal point, MOSEK failed

to obtain a rank-two solution. With this exception, Algorithm 4.1 terminated in a fraction of

time for Manopt.

Additional examples.—In the supplementary material (OTSM supp.pdf [local/web

625KB]), Examples 5.1 and 5.2 of [21] are considered under both MAXDIFF and

MAXBET criteria, and new global optima are found.

5.3. Simulation studies.

Following the orthogonal Procrustes analysis model, we generated n sets of d-dimensional

landmarks from the standard normal distribution independently, and randomly rotated them

by m orthogonal matrices of size d × r.

For this set of n × d matrices, normal error with variance σ2 to obtain Ai was added, i = 1,

…, m. The data matrix S = Si j  was constructed with Si j = Ai
T A j, i ≠ j, and Sii = 0. Values of

m = 5, n = 100, and d ∈ {10, 20, …,100} were used. The noise levels considered were σ ∈
{0.1, 1.0, 5.0, 10.0}. The rank r was set to 3. Initial value strategies “sb” and “tb” were used

for both Algorithm 4.1 and Manopt, as they showed good performance in the small

examples. One hundred samples of random sets were generated for each combination of

simulation parameters. In Figure 1, error- versus-time curves are plotted for typical

instances. Algorithm 4.1 was more than an order of magnitude faster than Manopt. (For d =

100, Manopt did not terminate for more than three days, hence the results were omitted.)

There was little difference between the two initial value strategies, hence the differences of

the final objective values between Algorithm 4.1 and Manopt are plotted in Figure 1 for

strategy “tb” only. The final objective values of the two algorithms agreed in most cases,

while Algorithm 4.1 tended to give larger values. The proportions of certified global optima

are reported in Table 4 for d that are multiples of tens. Not surprisingly, when the noise level

was low both Algorithm 4.1 and Manopt almost always solved (OTSM) globally. Even if σ
was as large as 10.0, the success rate was between 8% and 24%.
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5.4. Real-world examples.

Example 5.3 (cryo-EM).—Ab initio modeling for the single-particle reconstruction (SPR)

problem in cryo-EM refers to the procedure of obtaining a preliminary 3D map of the

particle in the ice from 2D images by tomographic inversion. Since each cryo-EM image is a

noisy projection of the particle with unknown orientation, reliable estimation of orientations

from a collection of images is an important step in SPR. A popular approach is based on the

common-lines property [6]: the Fourier slice theorem implies that any pair of projection

images possesses a pair of radial lines on which their Fourier transforms coincide. Once the

common lines of all the pairs among m projections are given, the orientations can be

estimated via orthogonal least squares [37]. For a pair of images i and j, if the common line

between images i and j appears in the direction of ci j = cosθi j, sinθi j, 0 T
 in image i and in

c ji = cosθ ji, sinθ ji, 0 T
 in image j, then the unknown 3D rotation matrices Oi and Oj in the

special orthogonal group SO(3) should approximately satisfy Oi
Tci j = O j

Tc ji. Thus for

estimating these matrices for all pairs among the m images, we may minimize

∑
i < j

Oi
Tci j − O j

Tc ji F
2 ,

which is (OTSM) with d1 = ⋯ = dm = r = 3, Si j = ci jc ji
T  for i ≠ j, and Sii = 0, i = 1, …,m (i.e.,

MAXDIFF), but the domain is SO(3) × ⋯ × SO(3) instead of 𝒪3, 3 × ⋯ × 𝒪3, 3. Algorithm 4.1

can be trivially modified for this setting, since the projection of B = PDQT ∈ ℝr × r (full

SVD) onto SO (r) is P diag(1, …,1, −1)QT if the singular values of B are sorted in

descending order.

We generated m noisy projections of a ribosomal subunit provided with ASPIRE software

for SPR2 that implements the orthogonal least squares method via SDP relaxation (m = 100,

500, 1000). The orientations of the projections were distributed uniformly over SO(3). White

Gaussian noise was added to the clean projections to generate noisy images of size 65 by 65

with signal-to-noise ratios (SNRs) ∞, 1, 1/2, 1/4, 1/8, and 1/16. Common-line pairs were

detected with a 1° resolution using the functionality of ASPIRE. Due to the presence of

noise, the common-line detection rate deteriorates as SNR decreases. Orientations were

estimated using two methods, i.e., SDP relaxation of ASPIRE (which utilizes the SDPLR

solver3) and Algorithm 4.1 initialized with “sb.” The mean squared error of the estimated

rotation matrices was computed using the formula of [37, eq. (8.2)]. Because we had

difficulties in installing ASPIRE on the Macbook Pro laptop and common-line detection is

computationally demanding, all the computations except for Algorithm 4.1 were conducted

on a Linux workstation with two Intel Xeon E5-2680v2@2.80GHz CPUs (256GB RAM)

and eight Nvidia GTX 1080 GPUs (8GB VRAM/GPU).

2Available at http://spr.math.princeton.edu/content/download-software.
3Available at http://sburer.github.io/files/SDPLR-1.03-beta.zip.
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The results are collected in Table 5. Except for the extremely challenging case with a low

number of measurements (m = 100) and SNR (1/16), Algorithm 4.1 produced solutions of

the same quality as ASPIRE/SDPLR in much shorter time (recall that ASPIRE was run on a

much more powerful workstation), which, in turn, are certified to be globally optimal except

the case m = 1000 and SNR = 1/16. Hence these solutions cannot be further improved under

the least squares regime. In case the two methods disagree, the solution computed by using

an SDP relaxation of the orthogonal least squares method failed to be even first-order

stationary, possibly due to the rounding procedure of the SDP solution to SO (3), even

though the resulting MSE was lower.

Example 5.4 (generalized CCA).—Our second real-world data example considers gene-

level interaction analysis based on genotype data [27,41]. Let Ai ∈ 0, 1, 2
n × di be the

genotype matrix of gene i, where n is the number of individuals and di is the number of

single nucleotide polymorphisms (SNPs) in gene i. To test the interaction between m genes,

the maximal canonical correlations among m genes, i.e., (OTSM), were computed. To

demonstrate the scalability of the proximal block relaxation algorithm (Algorithm 4.1), we

computed the top r ∈ {1, 2, 3} generalized canonical correlations using the MAXDIFF

criterion among the first m ∈ {2, …,100} genes on chromosome 1 of n = 488, 377 samples

from the UK Biobank [29]. (In contrast, conventional analyses [27, 41] are restricted to m =

2 and r = 1.) The numbers of SNPs di range from 10 to 271 with mean 34.33 in these genes.

Figure 2 displays the run times, all under 15 seconds, of Algorithm 4.1 using the same

convergence criteria as in section 5.1, together with the histogram of di’s of the 100 genes.

Among the 297 local solutions, 107 (36%) of them were certified to be globally optimal

using Theorem 3.3.

6. Conclusion.

We have presented an in-depth analysis of the orthogonal trace-sum maximization (OTSM)

problem, which subsumes various linear and quadratic optimization problems on a product

of Stiefel manifolds. In a close analogy with classical results on eigenvalue optimization, a

fairly general condition for certifying global optimality of a stationary point of the problem

is derived. A practical algorithm to reach a stationary point with a global convergence

guarantee is also proposed. We believe both are new to the literature. Numerical experiments

show that the combination of our algorithm and certificate, with initial value strategies “sb”

and “tb,” can reveal global optima of various instances of OTSM. A further analysis on the

probability of global optima of the algorithm, under some distributional assumption on the

data, is warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Technical proofs.

Proof of Proposition 3.1.

Let i ∈ 1, …, m  be such that di > r. Let τi = λmin Λi , the smallest eigenvalue of the

symmetric matrix Λi, and let vi ∈ ℝr be the associated unit eigenvector, i.e., Λivi = τivi If

Oi
⊥ ∈ 𝒪di, di − r fills out Oi to a fully orthogonal matrix, then for any xi ∈ ℝ

di − r
, W i = Oi

⊥xivi
T

and Wj = 0 for j ≠ i satisfy the tangency condition (3.6). Then,

tr WTSW = tr W i
TSiiW i = xi

TOi
⊥ TSiiOi

⊥xi, and

tr ΛiW i
TW i = tr Λivixi

TOi
⊥ TOi

⊥xivi
T = tr Λivixi

Txivi
T = xi

2vi
TΛivi = xi

2τi. Further

tr Λ jW j
TW j = 0 for j ≠ i. Thus the second-order condition (3.5) entails

0 ≤ ∑
i = 1

m
tr ΛiWi

TWi − tr WTSW = xi
T τiIdi − r − Oi

⊥ TSiiOi
⊥ xi .

Thus τiIdi − r ≻ Oi
⊥ TSiiOi

⊥ Since Oi
⊥ TSiiOi

⊥ is positive semidefinite (recall Sii ≻ 0), it follows

that τi ≥ 0 proving the first claim.

Now suppose O = (O1, …,Om) is a stationary point with Λi ⋡ 0 for some i. Denote the

objective of (OTSM) by f(O). Let the full singular value decomposition of Λi be Λi = PiDiQi
T

where Pi, Qi ∈ 𝒪r, r and Di ≻ 0 is diagonal. Then it must be Pi ≠ Qi since otherwise Λi ≻ 0.

Now let Θi = OiPiQi
T ∈ 𝒪di, r Recall that Λi = Oi

T ∑ j = 1
m Si jO j It follows that

tr Θi
T ∑

j = 1

m
Si jO j = tr QiPi

TOi
T ∑

j = 1

m
Si jO j = tr QiPi

TΛi = tr QiPi
TPiDiQi

T

= tr Di

> tr Qi
TPiDi = tr PiDiQi

T = tr Λi = tr Oi
T ∑

j = 1

m
Si jO j .

Note the update Oi Θi corresponds to Algorithm 4.1 (line 6) with α = ∞ or the standard

block ascent algorithm of section 4.1. By the ascent property of the algorithm, if we let
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Θ = O1, …, Oi − 1, Θi, Oi + 1, …, Om  then we have f(O) < f(θ). Now if we run Algorithm 4.1

with α ∈ 0, 1/maxi = 1, …, m Sii 2 , then the algorithm will converge to a stationary point O by

Theorem 4.1. Again by the ascent property of Algorithm 4.1, we see f (O) < f (Θ) ≤ f (O) If
the associated Lagrange multipliers Λi = Oi

T ∑ j = 1
m Si jO j are not all positive semidefinite,

then repeat the above procedure with Λi ← Λi until no strict progress is possible.

Eventually, we arrive at a stationary point with the desired property.

The above proof of the second claim also shows that Λi ≻ 0 for all i is a necessary condition

for global optimality.

Proof of Proposition 3.2.

It suffices to show the constraints Oi ∈ 𝒪d1, r, i = 1, …, m, are equivalent to the constraints of

problem (3.8). From (3.7), clearly the former implies the latter. To show the opposite, first

note that U ≻ 0 and rank(U) = r if and only if mU = EET, E = E1
T, …, Em

T T ∈ ℝD × r, for some

Ei ∈ ℝ
d1 × r

, i = 1, …, m. Then mUii = EiEi
T ≺ Idi

 and tr mUii = tr Ei
TEi = r jointly imply that

all r singular values of Ei are 1. That is,Ei ∈ 𝒪di, r.

Proof of Corollary 3.6.

Suppose S12 = S21
T ∈ ℝ

d1 × d2 has a singular value decomposition S12 = UΣVT with

U ∈ 𝒪d1, d, V ∈ 𝒪d2, d and Σ = diag σ1, …, σd ∈ 𝕊d, where d = min{d1, d2} and

σ1 ≥ ⋯ ≥ σd ≥ 0. Since O1O2
T ∈ ℝ

d1 × d2 has r unit singular values and the rest are zero, the

von Neumann–Fan inequality entails

tr O1
TS12O2 = tr O1O2

T T
S12 ≤ ∑

i = 1

r
σi,

with equality if and only if O1 = U1R (resp., O2 = V1R), where R ∈ 𝒪r, r and U1 (resp., U2)

consists of the left (resp., right) singular vectors of S12 associated with σ1, …, σr in this order.

If we denote such orthogonal matrices by O1 and O2 then O1
TU = R 0 = O2

TV and O1, O2  is

a globally optimal stationary point. The associate Lagrange multipliers are,

Λ1 = O1
TS12O2 = O2

TS21O1 = Λ2Thus

Λ = Λ1 = Λ2 = O1
TUΣVTO2 = RTΣ1R = RTdiag σ1, …, σr R,

and the diagonal blocks of the certificate matrix L⋆ are

WON et al. Page 24

SIAM J Matrix Anal Appl. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L11
⋆ = O1ΛO1

T + σrO1
⊥O1

⊥ T = UΣUT , L22
⋆ = O2ΛO2

T + σrO2
⊥O2

⊥ T = VΣVT ,

where Σ = diag Σ1, Id − r ≻ Σ. It follows that

L⋆ = UΣUT −UΣVT

−VΣUT VΣVT
≻ UΣUT −UΣVT

−VΣUT VΣVT
= U

−V
Σ U

−V

T
≻ 0.

Proof of Corollary 3.8.

The following lemma extends Theorem 2 of [28] for Sii ≻ 0, i = 1, …, m and is used to prove

the claim of the corollary.

Lemma A.1.

If Si j = S ji
T ∈ ℝ

di × d j, i, j = 1, …, m, has a singular value decomposition Si j = Ui jΣi jV i j
T  with

Ui j ∈ 𝒪di, d, V i j ∈ 𝒪d j, d and Σi j = diag σ1, …, σd ∈ 𝕊d where d = min di, d j  and

σ1 ≥ ⋯ ≥ σd ≥ 0 then for X = diag(X1, …,Xm) with Xi = ∑ j = 1
m Ui jΣi jUi j

T = ∑ j = 1
m Si jSi j

T 1/2
,

the symmetric matrix X − S where S = Si j  is the data matrix, is positive semidefinite.

Proof. Since S ji = U jiΣ jiV ji
T = Si j

T = V i jΣi jUi j
T  we can set Vij = Uji and Σi j = Σ ji For any

y = y1
T, …, ym

T T
 with yi ∈ ℝ

di let a = Σi j
1/2Ui j

T yi and b = Σi j
1/2V i j

T y j = Σ ji
1/2U ji

T y j Then from the

fact 2aTb ≤ aTa + bTb,

2yi
TSi jy j = 2yi

TUi jΣi jU ji
T y j ≤ yi

TUi jΣi jUi j
T yi + y j

TU jiΣ jiU ji
T y j .

Thus,

yT(X − S)y = − ∑
i, j: j ≠ i

yi
TSi jy j + ∑

i = 1

m
yi
T Xi − Sii yi

≥ − 1
2 ∑

i = 1

m
yi
TUi jΣi jUi j

T yi − 1
2 ∑

j = 1

m
y j
TU jiΣ jiU ji

T y j + ∑
i = 1

m
yi
T ∑

j = 1

m
Si jSi j

T 1/2 − Sii yi .

= − ∑
i = 1

m
∑
j ≠ i

yi Si jSi j
T 1/2

yi + ∑
i = 1

m
∑
j ≠ i

yi Si jSi j
T 1/2

yi = 0.
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Proof of Corollary 3.8.

If Sij has a singular value decomposition Si j = V iΣi jV j
T, where Σi j = Σ ji nonnegative

diagonal, then

Xi = ∑
j = 1

m
Si jSi j

T 1/2 = Vi ∑
j = 1

m
Σi j V j

T = ViΣi ⋅ Vi
T , Σi = ∑

j = 1

m
Σi j .

From Lemma A.1, X − S = diag X1, …, Xm − S ≻ 0. Furthermore,

∑
j = 1

m
Si jV j = ∑

j = 1

m
ViΣi jV j

TV j = ViΣi

and Σi . = ∑ j = 1
m V i

TSi jV j Thus we can set Oi = V i and Λi = Σi in Theorem 3.3. Let τi be the

smallest diagonal entry of Σi Then,

diag V1Σ1 ⋅ V1
T + τ1V1

⊥V1
⊥ T , …, VmΣm ⋅ Vm

T + τmVm
⊥Vm

⊥ T ≻ diag X1, …, Xm = X,

hence L⋆ ≻ X − S ≻ 0. □
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Fig. 1.
Simulation studies. Left: relative error versus wall clock time for each method and

initialization strategy. Right: objective value difference between Algorithm 4.1 and Manopt

at convergence.
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Fig. 2.
Left panel displays the run times of the proximal block relaxation algorithm (Algorithm 4.1)

for finding the top r canonical correlations among the first m genes on chromosome 1 of n =

488, 377 UK Biobank samples. Right panel shows the distribution of di (number of SNPs) in

the first 100 genes.
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Table 1

Comparison between Ky Fan’s problem and the orthogonal trace-sum maximization problem (OTSM). Set Γ2

refers to the set of locally maximal points.

Ky Fan OTSM

Domain O ∈ 𝒪d, r O = O1, …, Om ∈ 𝒪d1, r
× ⋯ × 𝒪dm, r

Lagrange multiplier(s) Λ = OTSO = ΛT Λi = ∑ j = 1
m Oi

TSO j = Λi
T, i = 1, …, m

Lifting matrix U = OOT U = 1
mOOT

Cutoff matrix z = λmin(Λ)
Z = diag τiIdi i = 1

m
, τi = λmin Λi

Nonneg. part of Λ M = O Λ − zIr OT
M = diag Oi Λi − τiIr Oi

T
i = 1
m

Nonpos. part of Λ L = M + zId − S L = M + Z − S

Certificate matrix L ≻ 0 ∀O ∈ Γ2 L ≻ 0 ∃O ∈ Γ2
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Table 2

Port wine data, MAXDIFF. In “classification,” “not loc. opt.” means that the iterate at termination is stationary

but violates Proposition 3.1.

r Init Method Iter Time (sec) Obj Classification λmin(L*) λmin ℒ⋆

1

eye
PBA 10 0.0001923 209.8 global opt. −1.276e-14 −1.276e-14

Manopt 9 0.07502 209.8 global opt. −2.482e-15 −2.482e-15

sb
PBA 10 0.0002432 209.8 global opt. −2.101e-14 −2.101e-14

Manopt 7 0.05024 209.8 global opt. 6.234e-15 6.234e-15

tb
PBA 9 0.0001739 209.8 global opt. −1.159e-14 −1.159e-14

Manopt 5 0.03958 209.8 global opt. −1.951e-14 −1.951e-14

lww1
PBA 10 0.0002291 209.8 global opt. 2.599e-15 2.599e-15

Manopt 9 0.05789 209.8 global opt. −1.024e-15 −1.024e-15

2

eye
PBA 10 0.0002719 271.2 global opt. −1.471e-14 −79.61

Manopt 11 0.1084 271.2 global opt. −2.707e-15 −79.61

sb
PBA 9 0.0002301 271.2 global opt. −6.812e-14 −79.61

Manopt 7 0.08470 271.2 global opt. −4.465e-14 −79.61

tb
PBA 9 0.0002238 271.2 global opt. −2.418e-14 −79.61

Manopt 6 0.07996 271.2 global opt. −1.992e-14 −79.61

lww1
PBA 10 0.0002762 271.2 global opt. −1.364e-13 −79.61

Manopt 12 0.1024 271.2 global opt. −1.219e-14 −79.61

3

eye
PBA 13 0.0002659 284.1 global opt. −3.292e-14 −106.1

Manopt 13 0.1814 280.7 not loc. opt. – –

sb
PBA 9 0.0001853 284.1 global opt. −1.370e-14 −106.1

Manopt 6 0.1135 284.1 global opt. −5.021e-14 −106.1

tb
PBA 10 0.0002105 284.1 global opt. −1.16e-13 −106.1

Manopt 6 0.1078 284.1 global opt. −4.389e-15 −106.1

lww1
PBA 11 0.0002893 284.1 global opt. 4.392e-15 −106.1

Manopt 12 0.1530 280.7 not loc. opt. – –
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Table 3

Example 5.2. In “classification,” “stationary” means that the iterate at termination is stationary but its global

optimality is not confirmed by using Theorem 3.3.

r Init Method Iter Time (sec) Obj Classification λmin(L*) λmin ℒ⋆

1

eye
PBA 2 0.0005041 1.000 stationary −1.000 −1.000

Manopt 1 0.001597 1.000 stationary −1.000 −1.000

sb
PBA 12 0.0001631 1.500 global opt. −1.608e-10 −1.608e-10

Manopt 7 0.02612 1.500 global opt. −1.045e-7 −1.045e-7

tb
PBA 2 0.0001112 1.000 stationary −1.000 −1.000

Manopt 1 0.001039 1.000 stationary −1.000 −1.000

lww1
PBA 2 0.0001182 1.000 stationary −1.000 −1.000

Manopt 1 0.0009643 1.000 stationary −1.000 −1.000

2

eye
PBA 2 0.0001587 2.000 stationary −1.000 −1.000

Manopt 1 0.001062 2.000 stationary −1.000 −1.000

sb
PBA 50000 0.5982 3.000 global opt. −6.674e-6 −6.674e-6

Manopt 22 0.2152 3.000 global opt. −1.241e-6 −1.183e-6

tb
PBA 50000 0.4910 3.000 global opt. −6.674e-6 −6.674e-6

Manopt 22 0.1925 3.000 global opt. −1.322e-6 −1.322e-6

lww1
PBA 2 0.0001049 2.000 stationary −1.000 −1.000

Manopt 1 0.0009794 2.000 stationary −1.000 −1.000

3

eye
PBA 2 6.970e-5 3.000 stationary −1.000 −1.000

Manopt 1 0.001210 3.000 stationary −1.000 −1.000

sb
PBA 14 0.0002474 4.000 stationary −1.000 −1.000

Manopt 8 0.03438 4.000 stationary −1.000 −1.000

tb
PBA 11 0.0001370 4.000 stationary −1.000 −1.000

Manopt 7 0.02888 4.000 stationary −1.000 −1.000

lww1
PBA 2 5.438e-5 3.000 stationary −1.000 −1.000

Manopt 1 0.0009759 3.000 stationary −1.000 −1.000
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Table 4

Frequency of certified global optimality, large examples.

d Init Method Certification rate (σ) d Init Method Certification rate (σ)

0.1 1.0 5.0 10 0.1 1.0 5.0 10

10 sb PBA 1.0 .94 .19 .17 60 sb PBA 1.0 .78 .21 .20

Manopt 1.0 .94 .19 .17 Manopt 1.0 .78 .21 .20

tb PBA 1.0 .94 .19 .17 tb PBA 1.0 .78 .21 .20

Manopt 1.0 .94 .19 .17 Manopt 1.0 .78 .21 .20

20 sb PBA 1.0 .88 .14 .17 70 sb PBA 1.0 .79 .14 .15

Manopt 1.0 .88 .14 .17 Manopt 1.0 .79 .14 .15

tb PBA 1.0 .88 .14 .17 tb PBA 1.0 .79 .14 .15

Manopt 1.0 .88 .14 .17 Manopt 1.0 .79 .14 .15

30 sb PBA 1.0 .91 .12 .12 80 sb PBA 1.0 .91 .18 .14

Manopt 1.0 .91 .12 .12 Manopt 1.0 .91 .18 .14

tb PBA 1.0 .91 .12 .12 tb PBA 1.0 .91 .18 .14

Manopt 1.0 .91 .12 .12 Manopt 1.0 .91 .18 .14

40 sb PBA 1.0 .86 .10 .19 90 sb PBA 1.0 .80 .21 .23

Manopt 1.0 .86 .10 .19 Manopt 1.0 .80 .21 .23

tb PBA 1.0 .86 .10 .19 tb PBA 1.0 .80 .21 .23

Manopt 1.0 .86 .10 .19 Manopt 1.0 .80 .21 .23

50 sb PBA 1.0 .86 .22 .21 100 sb PBA 1.0 .76 .23 .21

Manopt 1.0 .86 .22 .21 Manopt - - - -

tb PBA 1.0 .86 .22 .21 tb PBA 1.0 .76 .23 .21

Manopt 1.0 .86 .22 .21 Manopt - - - -
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Table 5

Example 5.3. “CL rate” refers to the common-line detection rate. In “classification,” “stationary” means that

the iterate at termination is stationary but its global optimality is not confirmed by using Theorem 3.3; “not

stat.” means that it does not satisfy the first-order local optimality condition (2.3).

m SNR CL rate Method MSE Time (sec) Iters Classification

100 ∞ 0.9990 PBA 0.0000 0.0582 14 global opt.

SDPLR 0.0000 1.3764 - global opt.

1 0.9442 PBA 0.0010 0.0309 13 global opt.

SDPLR 0.0010 0.8879 - global opt.

1/2 0.8275 PBA 0.0148 0.0392 13 global opt.

SDPLR 0.0148 0.8510 - global opt.

1/4 0.6048 PBA 0.1253 0.0333 15 global opt.

SDPLR 0.1253 0.8089 - global opt.

1/8 0.3628 PBA 0.6646 0.0635 29 global opt.

SDPLR 0.6646 0.9883 - global opt.

1/16 0.1834 PBA 2.1363 0.2265 110 stationary

SDPLR 1.7991 1.3070 - not stat.

500 ∞ 0.9994 PBA 0.0000 0.6996 14 global opt.

SDPLR 0.0000 2.9501 - global opt.

1 0.8899 PBA 0.0038 0.6890 12 global opt.

SDPLR 0.0038 2.3761 - global opt.

1/2 0.7250 PBA 0.0338 0.7755 14 global opt.

SDPLR 0.0338 3.1371 - global opt.

1/4 0.4860 PBA 0.1959 0.9834 16 global opt.

SDPLR 0.1959 5.4611 - global opt.

1/8 0.2678 PBA 0.7366 1.0938 20 global opt.

SDPLR 0.7366 13.1841 - global opt.

1/16 0.1263 PBA 1.6252 1.5513 30 global opt.

SDPLR 1.6252 11.2194 - global opt.

1000 ∞ 0.9994 PBA 0.0000 2.5524 13 global opt.

SDPLR 0.0000 10.1951 - global opt.

1 0.9177 PBA 0.0017 2.5475 13 global opt.

SDPLR 0.0017 9.7137 - global opt.

1/2 0.7889 PBA 0.0188 2.4491 13 global opt.

SDPLR 0.0188 19.7047 - global opt.

1/4 0.5686 PBA 0.1297 2.6885 14 global opt.

SDPLR 0.1297 34.6575 - global opt.

1/8 0.3365 PBA 0.5384 3.8236 20 global opt.

SDPLR 0.5384 67.5752 - global opt.

1/16 0.1687 PBA 1.3403 6.6967 35 stationary

SDPLR 1.3403 102.6977 - stationary
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