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Hamilton-Jacobi Multi-Time Reachability

Manan Doshi1,∗, Manmeet Bhabra1,∗, Marius Wiggert2, Claire J. Tomlin2, and Pierre F.J. Lermusiaux1

Abstract— For the analysis of dynamical systems, it is fun-
damental to determine all states that can be reached at any
given time. In this work, we obtain and apply new governing
equations for reachability analysis over multiple start and
terminal times all at once, and for systems operating in time-
varying environments with dynamic obstacles and any other
relevant dynamic fields. The theory and schemes are developed
for both backward and forward reachable tubes with time-
varying target and start sets. The resulting value functions
elegantly capture not only the reachable tubes but also time-to-
reach and time-to-leave maps as well as start time vs. duration
plots and other useful secondary quantities for optimal control.
We discuss the numerical schemes and computational efficiency.
We first verify our results in an environment with a moving
target and obstacle where reachability tubes can be analytically
computed. We then consider the Dubin’s car problem extended
with a moving target and obstacle. Finally, we showcase our
multi-time reachability in a non-hydrostatic bottom gravity
current system. Results highlight the novel capabilities of exact
multi-time reachability in dynamic environments.

I. INTRODUCTION

Reachability analysis quantifies the states that can be
reached by an actuated dynamical system. With optimal
control, Hamilton-Jacobi (HJ) reachability analysis formal-
ized this concept with differential equations, leading to
recent successes [1], [2]. Classical HJ reachability is mainly
concerned with the computation of reachable sets, forward
and backward in time, often for robotics and autonomy
applications. It provides analyses of the performance and
safety of dynamical systems [1], including formal safety
guarantees by determining regions of a system’s state space
that results in catastrophic failure (ex. hitting an obstacle)
[3]. With some modifications, it handles moving obstacles
and targets in both steady and time-varying systems [4],
[5], [6], [7]. HJ reachability is a versatile method for path
planning, even in complex environments such as strong and
dynamic ocean currents [8], [9], [10]. It then provides the
exact solution and is more efficient than other schemes, e.g.,
graph methods [11]. Reachability planning has been extended
to uncertain environments [12] and risk optimality [13]. Fi-
nally, HJ reachability has been used in aircraft auto-landing,
model predictive control (MPC) of unmanned aerial vehicles
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(UAVs) and underwater vehicles (AUVs), and multiplayer
reach-avoid games [1], [14], [15], [16], [17], [18].

In this paper, the aim is to drastically extend reachability
analysis. Some of the key questions that motivate our work
include: i) How can we extend classical reachability theory to
multiple start and terminal times?; ii) What is the correspond-
ing value function that provides all level sets at once and
what is its governing HJ reachability equation?; iii) Could
we compute reachable tubes for all possible times without
having to resort to repeated solves of classic reachability
PDEs?; iv) What are other quantities that such multi-time
forward and backward analysis could compute?; and v) What
are the corresponding computational costs?

To address the above questions, we derive a new approach
for analyzing the reachability of time-varying dynamical
systems that we refer to as multi-time reachability. We for-
mulate the optimal control problem using a new running cost
term, and obtain new governing equations for reachability
analysis over multiple start and terminal times all at once,
and for systems operating in time-varying environments with
dynamic obstacles and any other dynamic fields relevant to
their control. Unlike the prior results on moving targets and
obstacles, we present a theory that incorporates these effects
in the system dynamics without introducing extra dimensions
[4] and fields [7]. We apply our results to three applications
and demonstrate that the new governing equations not only
more efficiently compute backward and forward reachable
tubes, but also generate new secondary quantities that encode
valuable reachability information such as duration maps.

In what follows, Section II outlines the problem statement
and introduce key notation. Section III develops the theory
and equations for multi-time reachability. Numerical methods
are briefly discussed in IV. In Section V, applications and
numerical results for new multi-reachability problems are
presented, followed by the conclusions in Section VI.

II. PROBLEM FORMULATION

Our primary goal is to accurately and efficiently compute
reachable tubes for general time-varying dynamical systems.
There are essentially two main cases. In the first, we consider
a time-varying target set and predict what is known as the
backward reachable tube. In the second, we consider a time-
varying start set and compute the forward reachable tube. For
each case, we derive the governing equations and also solve
the added complexity of time-varying obstacles that must be
avoided in the dynamic environment.

Next, we formalize the above concepts. We define the
properties of the dynamical systems. We then describe the
start, target, and obstacle sets, as well as the backward



and forward reachable tubes. Finally, we combine all these
components and define the types of problems we solve.

A. System Dynamics

In this work, we consider dynamical systems defined by
an ordinary differential equation (ODE) of the form

ξ̇(s) = f(ξ(s),u(s), s), s ∈ [0, T ], (1)

with given initial or terminal conditions, where ξ ∈ Rnx

is the system state governed by the ODE, s the temporal
variable in an interval [0, T ], and u(·) the control from a set
U of measurable functions of s ∈ [0, T ] with values in U :

U = {φ : [0, T ]→ U | φ(·) is measurable}. (2)
The dynamical systems (1) govern state variables explicitly
affected by the controls (e.g. autonomy variables) but the
dynamics f in general includes all other relevant forcing
such as the dynamic environment with dynamic obstacles
and other dynamic fields that affect the autonomy, e.g. [19],
[20]. The control space U is often a closed bounded set in
Rnu , where nu is the number of control inputs. The system
dynamics f : Rnx × U × R → Rnx are further assumed
to be continuous, bounded and Lipschitz continuous in ξ
uniformly in u [1]. Then, there exists a unique solution to
Equation (1) for any control sequence u(·) [21], [1]. For the
initial value problem, this solution is the trajectory of the
system from an initial state x at time t ∈ [0, T ] forced by
the control sequence u(·) and denoted here by ξu(·)

t,x (s).

B. Start, Target, and Obstacle Sets

We focus on systems either launched from some dynamic
start set or being required to reach a dynamic target set,
with the constraint of avoiding the dynamic obstacle set, i.e.
any dynamic disjoint obstacles that may be present. We now
formalize some of the properties of these sets.

For each t ∈ [0, T ], we denote the time-varying start,
target, and obstacle sets as St, Tt and Ot respectively, where
all sets are closed subsets of Rnx . Following closely [7],
these sets, in turn, yield corresponding space-time sets S, O,
and T, which are all closed subsets of Rnx × [0, T ]:

S :=
⋃

t∈[0,T ]

St × {t}, T :=
⋃

t∈[0,T ]

Tt × {t},

O :=
⋃

t∈[0,T ]

Ot × {t}. (3)

The start, target, and obstacle sets are further assumed to
evolve “smoothly” in time. Specifically, a set Mt is said to
evolve smoothly in time if there exists a Lipschitz continuous
function gM(ξ) : Rn → Rn such that for the system

ξ̇ = gM(ξ), (4)
all trajectories that start inMt at some time t stay in the set
Mt̄ at all subsequent times t̄ ∈ [t, T ]. That is,
ξt,x(t̄) ∈Mt̄ ∀t ∈ [0, T ], ∀x ∈Mt, ∀t̄ ∈ [t, T ]. (5)

Practically, this implies that the dynamic start, target, and
obstacle sets cannot teleport or disappear in the state space.

C. Reachability Sets and Tubes

In reachability analysis, backward and forward reachable
sets or tubes are commonly needed [1]. The maximal sets

and tubes encompass all the states to which the system can
be driven to when going forward or backward through time,
avoiding dynamic obstacles. These maximal sets and tubes
can be defined as follows [3], [2], [1]:

1) Backward Reachable Set (BRS): Given a specified final
time tf ∈ [0, T ], the BRS at time t ≤ tf is the set of all
states at time t that can reach a target set Ttf exactly at the
final time tf :
R(t,tf , Ttf ,O) = {x̂ | ∃u ∈ U, x = x̂,

ξ
u(·)
t,x (tf ) ∈ Ttf ∧ ∀s ∈ [t, tf ], ξ

u(·)
t,x (s) /∈ Os}. (6)

2) Backward Reachable Tube (BRT): BRTs extend BRSs.
Given a specified final time tf ∈ [0, T ], the BRT at time
t < tf is the set of all states that can reach a time-varying
target T ⊂ Rnx × [0, T ] at any time t̄ ∈ [t, tf ]:
R̄(t,tf ,T,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [t, tf ], x = x̂,

ξ
u(·)
t,x (t̄) ∈ Tt̄ ∧ ∀s ∈ [t, tf ], ξ

u(·)
t,x (s) /∈ Os}. (7)

3) Forward Reachable Set (FRS): Given a specified start
time ts ∈ [0, T ], the FRS at time t ≥ ts is the set of all
states that can be reached at time t when starting from a
state within the set Sts at time ts:

F(t,ts,Sts ,O) = {x̂ | ∃u ∈ U, ∃x ∈ Sts ,
ξ
u(·)
ts,x(t) = x̂ ∧ ∀s ∈ [ts, t], ξ

u(·)
ts,x(s) /∈ Os} (8)

4) Forward Reachable Tube (FRT): FRTs extend FRSs.
Given a specified start time ts ∈ [0, T ], the FRT at time t >
ts is the set of all states that can be reached when launched
from a state from a time-varying start set S ⊂ Rnx × [0, T ]
at any time t̄ ∈ [ts, t]:
F̄(t,ts,S,O) = {x̂ | ∃u ∈ U, ∃t̄ ∈ [ts, t], ∃x ∈ St̄,

ξ
u(·)
t̄,x (t) = x̂ ∧ ∀s ∈ [t̄, t], ξ

u(·)
t̄,x (s) /∈ Os} (9)

D. Problem Statement

Given a dynamical system of the form (1) operating in a
dynamic environment with obstacles and possibly affected
by other dynamic fields, our goal is to obtain equations that
govern the backward and forward reachability tubes, as well
as schemes that solve these equations efficiently:

1) Backward Reachability: Given a final time tf ∈ [0, T ],
a time t < tf , and time-varying target and obstacle sets that
define space-time sets T and O, Eq. (3), we seek to derive
and solve the equations for the BRTs, R̄(t, tf ,T,O), Eq. (7).

2) Forward Reachability: Given a start time ts ∈ [0, T ],
a time t > ts, and time-varying start and obstacle sets that
define space-time sets S and O, Eq. (3), we seek to derive
and solve the equations for the FRTs, F̄(t, ts,S,O), Eq. (9).

Once the BRTs and/or FRTs are computed ∀(t, tf ) and/or
∀(ts, t), they can be used to compute various other quantities
of interest. Such quantities include: time-to-reach maps, i.e.
maps of the minimum travel time to the target given the
present state and time; start time vs. duration plots, i.e.
function that maps the travel time to the target to the time
at which the trajectory starts given a start state; and time-
to-leave maps, i.e. maps of the latest time at which one can
depart from the start state and reach the target point at a



given time. The computation of these secondary quantities
is discussed in Section III-C.3

III. MULTI-TIME REACHABILITY FOR DYNAMIC SETS

We now develop the theory and obtain the governing equa-
tions for HJ multi-time reachability for systems operating in
dynamic environments. We start with multi-time reachability
in the backward context, i.e. predict backward reachable
tubes for time-varying target sets. We use continuous-time,
optimal control and show how the resulting value function
elegantly captures not only the backward reachable tubes
but also time-to-reach maps. We then extend the results to
the forward counterpart, i.e. predict forward reachable tubes
for time-varying start sets. Finally, we present remarks and
discuss secondary quantities such as time-to-reach and time-
to-leave maps as well as start time vs. duration plots.

A. Backward Multi-Time Reachability

1) Augmented Dynamics: To account for the dynamic tar-
get and obstacle sets, we define a new augmented dynamical
system as follows:

ξ̇ = fa(ξ,u, s) =


gO(ξ, s), ξ ∈ Os
gT (ξ, s), ξ ∈ Ts and ξ 6∈ Os
f(ξ,u, s), otherwise

.

(10)
where gO(ξ, s) and gT (ξ, s) are functions that keep tra-
jectories within their respective sets as defined by Eq. (4).
With this augmentation, we provide valuable properties to
the system. First, once a state enters an obstacle set, it will
remain in that set for all subsequent times irrespective of the
controls applied. Second, the same holds for states that enter
the target set. These properties will be shown to be key in
our optimal control setting.

2) Optimal Control: For our optimal control problem, we
first define the terminal cost at time T ,

lterm(ξ) =

{
∞, ξ ∈ OT
d(ξ, TT ), otherwise

. (11)

Eq. (11) defines the terminal cost of a state in the obstacle
set to be infinitely high (in Section IV we address how this
property can be numerically handled). For all other states, the
cost is defined as the distance of the state (ξ) from the target
set at the terminal time (TT ) under some distance metric
d which depends on the system at hand. Being a distance
metric, we require d(ξ, TT ) ≥ 0 ∀(ξ, TT ) and d(ξ, TT ) = 0
if and only if ξ ∈ TT .

The running cost is defined as a constant negative value
at the target set and zero everywhere else

l(ξ, s) =

{
−α, ξ ∈ Ts and ξ 6∈ Os
0, otherwise

, (12)

where α is an arbitrary positive constant which we set to 1.
The solution is exact irrespective of the value of α. Values of
α can however be used to minimize numerical errors due to
discontinuities that arise out of this loss function (not shown).

Using the augmented dynamics (10), terminal cost (11),
and running cost (12), the total cost function incurred when

using controls u(·) and initial state x at initial time t is

J(x,u(·), t) = lterm(ξ
u(·)
t,x (T )) +

∫ T

t

l(ξ
u(·)
t,x (s), s)ds

(13)
To obtain an intuition for the meaning of the total cost,

we substitute the functions for the case when the trajectory
ξ
u(·)
t,x (s) never enters the obstacle set,

J(x,u(·), t) = d(ξ
u(·)
t,x (T ), TT )︸ ︷︷ ︸

Terminal distance
from target set

−α
∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds︸ ︷︷ ︸

Time spent in target set

(14)
where the identity function ITs(ξ) = 1 when ξ ∈ Ts and
is 0 otherwise. We note that if the trajectory ever enters the
obstacle set, it will stay in the obstacle set at the terminal time
under the augmented dynamics and will incur an infinitely
high total cost. Additionally, the value function under the
optimal control for trajectories that avoids the obstacles is,

J∗(x, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )− α

∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds

]
(15)

To explain this minimization physically, we consider two
cases. In the first, we assume there exists some control that
drives the system from initial state x (or set) at time t into
the target set at a time t̄ ∈ [t, T ] while avoiding the obstacles.
In the opposive second, we assume no control can drive the
system to the target set while avoiding the obstacles.

a) Case 1: Let u∗(·) be the set of controls that drives
the system from state x at time t (under the augmented
dynamics) to the target set at the earliest possible time
t∗ = min(t̄) while avoiding the dynamic obstacle set O.
We reiterate that for the augmented system (10), if the target
set is reached at some t∗ < T , the system will stay in the
set at all future times and hence ξu(·)

t,x (T ) ∈ TT . It follows
then that the cost for such a set of controls is:

J(x,u∗(·), t) = d(ξ
u(·)
t,x (T ), TT )︸ ︷︷ ︸

0

−α
∫ T

t

ITs
(
ξ
u(·)
t,x (s)

)
ds︸ ︷︷ ︸

T−t∗

= −α(T − t∗) .
We now provide the lower bound of the value function

(15) under the optimal control

J∗(x, t) = min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )−

α

∫ T

t

I
{
ξ
u(·)
t,x (s) ∈ Ts

}
ds

]
(16)

≥ min
u(·)∈U

[
d(ξ

u(·)
t,x (T ), TT )

]
+ min

u(·)∈U

[
−α

∫ T

t

I
{
ξ
u(·)
t,x (s) ∈ Ts

}
ds

]
(17)

J∗(x, t) ≥ −α(T − t∗) . (18)
This lower bound is achieved under the control u∗. There-
fore, when the vehicle can reach the destination, the optimal
control under the given loss function generates a time optimal
trajectory to the target state. The value function is given by
J∗(x, t) = −α(T − t∗) where t∗ is the minimum time at
which a trajectory starting at (ξ, t) can reach the target state.



b) Case 2: When there exists no control u(·) that can
drive the system from (x, t) to the target set while avoiding
the obstacles, the term ITs

(
ξ
u(·)
t,x (s)

)
in the value function

(15) is always 0 by construction. It follows then that:

J∗(x, t) = min
u(·)∈U

[
lterm(ξ

u(·)
t,x (T ))

]
(19)

That is, when a trajectory with initial conditions (x, t) cannot
reach the target set, the minimization of the cost function will
lead the system as close to the target set as possible while
avoiding the obstacle (since hitting the obstacle will drive
the terminal cost infinitely high).

To summarize, the value function corresponding to the
optimal control problem is given as

J∗(x, t) =



−α(T −min(t̄)), if∃u(·) s.t.
ξ
u(·)
t,x (t̄) ∈ Tt̄

∞, if 6 ∃u(·) s.t.
ξ
u(·)
t,x (t̄) 6∈ Ot̄
∀t̄ ∈ [t, T ]

minu d(ξ
u(·)
t,x (T ), TT ), Otherwise.

(20)

In other words, at any state x at a time t ∈ [0, T ], the value of
J∗(x, t), if negative, physically implies that a state starting
at x at time t can reach the target set before the terminal time
T . Moreover, the earliest time that it can reach the destination
is given by T + J∗(x,t)

α . If the value of J∗(x, t) is positive,
it implies that a state starting at x at time t cannot reach the
target set in the time interval [t, T ], and the value physically
corresponds to how close such a state could possibly get to
the target set at the terminal time T . Finally, for states for
which J∗(x, t) is infinite, we have that for a system starting
at x at time t, the obstacle will inevitably be hit.

3) The Hamilton-Jacobi-Bellman Equation: The value
function can be efficiently computed using dynamic pro-
gramming. For continuous-time optimal control, it is the
viscosity solution of the Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE) [22], [23], [24]

∂J∗(x, t)

∂t
+ min

u
[l(x, t) +∇xJ

∗ · fa(x,u, t)] = 0

J∗(x, T ) = lterm(x), (21)
where lterm and l are the terminal and running costs,
respectively. For our problem, these costs are defined in Eqs.
(11) and (12). Inserting them and the augmented dynamical
system (10) in Eq. (21), we obtain the final HJB PDE:

∂J∗(x, t)

∂t
=


− [−α+∇xJ

∗ · gT (x, t)] , x(t) ∈ Tt ∩ (Ot)c

− [∇xJ
∗ · gO(x, t)] , x(t) ∈ Ot

−minu [∇xJ
∗ · f(x,u, t)] , otherwise

J∗(x, T ) =

{
∞, x ∈ OT
d(x, TT ), otherwise

. (22)

Eq. (22) is a terminal-value problem which is solved back-
ward in time to obtain the value of J∗(x, t) for all states in
the state space and all times t ∈ [0, T ].

4) Equation for Backward Reachable Tubes: Using the
value function J∗ governed by the HJB PDE (22), we now
obtain the equation for the BRTs defined by Eq. (7) as well
as an efficient scheme for their computation. Consider a fixed
time tf ∈ [0, T ] and a time t < tf . From Eq. (20), it follows

that for any state x satisfying J∗(x, t) ≤ −α(T − tf ), a
control function u(·) exists that will drive the system from
state x at time t to the target set at some time t̄ ∈ [t, tf ].
This results in an efficient scheme to compute the BRT:
R̄(t,tf ,T,O) = {x | J∗(x, t) ≤ −α(T − tf )}. (23)

For a specified final time tf , the BRT at any time t < tf can
simply be extracted by considering the appropriate sub-level
set of the value function at that time. This is because an
agent in this set would reach the target while avoiding the
obstacle at t < tf under the optimal control and stay in the
target because of the augmented dynamics 10 accumulating
the negative cost at the destination.

5) Equation for Time-to-Reach Maps: The value function
stores important information regarding the optimal time a
system can reach the target set. This can be used to compute
time-to-reach or duration maps D from Eq. (21) or (22):

D(x, t) = T +
J∗(x, t)

α
− t, ∀(x, t) s.t., J∗(x, t) < 0.

For a state x at time t satisfying J∗(x, t) ≤ 0, Eq. (20)
implies that such a state can reach the target set and the
earliest possible time this will happen will be at T + J∗(x,t)

α .
It follows then that for all (x, t) with J∗(x, t) ≤ 0, D(x, t)
corresponds to the minimum duration for a trajectory starting
at state x at time t to reach the target set.

6) Closed-loop optimal controller: As discussed in Sec-
tion III-A.2, an optimal controller that minimizes the cost
function will: (a) avoid dynamic obstacles; (b) reach the
target in minimum time if it can; and (c), reach as close to the
target as possible if it cannot reach it. The optimal controller
can also compute the minimum duration to the target set
from the current state. Thus, solving for J∗(x, t) using Eq.
(22) provides a powerful closed-loop control policy:
π(x, t) = arg min

u
[∇xJ

∗(x, t) · f(x,u, t)] ∀x 6∈ (Ot ∪ Tt) ,

as demonstrated with reliable navigation in complex time-
varying ocean currents with forecast errors [25].

B. Forward Multi-Time Reachability
Section III-A addressed backward multi-time reachability.

That is, we considered how to efficiently compute backward
reachable tubes (and time-to-reach maps) in a dynamic
environment with time-varying target and obstacle sets. In
this section, we examine the forward counterpart, and derive
how to compute forward reachable tubes in dynamic domains
containing now time-varying start sets.

The forward problem can be addressed analogously to the
derivation in Section III-A, but now analyzing the system
evolution backwards in time. First, an augmented dynamic
system akin to Eq. (10) can be defined as follows:

ξ̇ = f̃a(ξ,u, s) =


gO(ξ, s), ξ ∈ Os
gS(ξ, s), ξ ∈ Ss and ξ 6∈ Os
f(ξ,u, s), otherwise

. (24)

where now the start set is used instead of the target set.
This system’s evolution backwards in time can be studied by
mapping time to a new “reverse-time” variable, τ(t) = T−t,
resulting in a mapped augmented dynamical system:

dξ

dτ
= −f̃a(ξ,u, T − τ) . (25)



Analogous to backward multi-time reachability, we can for-
mulate an optimal control for the system (25) while using
the start set in place of the target set. Specifically, we define
a terminal cost, now at time τ = T , of the form:

l̃term(ξ) =

{
∞, ξ ∈ O0

d(ξ,S0), otherwise
. (26)

To remain consistent with the set indexing convention in-
troduced in Section II-B, the sets in Eq. (26) are evaluated
at time t = 0 (corresponds to the “terminal” reverse-time
τ = T ). Moreover, a running cost can be similarly defined:

l̃(ξ, τ) =

{
−α, ξ ∈ S(T−τ) and ξ 6∈ O(T−τ)

0, otherwise
, (27)

The value function for this optimal control problem can
again be computed by forming a HJB PDE using now the
dynamical system (24), terminal cost (26), and running cost
(27). Mapping the resulting HJB PDE back to the original
time variable t so as to not have to explicitly work in reverse-
time τ , the HJB PDE can be shown to be given as:
∂J̃∗(x, t)

∂t
+ max

u

[
−l̃(x, t) +∇xJ̃

∗ · f̃a(x,u, t)
]

= 0

J̃∗(x, 0) = l̃term(x), (28)
which, upon inserting the augmented dynamics (24), and the
costs (26) and (27), yields:

∂J̃∗(x, t)

∂t
=


− [α+∇xJ

∗ · gS(x, t)] , x(t) ∈ St ∩ (Ot)c

− [∇xJ
∗ · gO(x, t)] , x(t) ∈ Ot

−maxu [∇xJ
∗ · f(x,u, t)] , Otherwise

J̃∗(x, 0) =

{
∞, x ∈ O0

d(x,S0), otherwise
. (29)

In duality to the backward multi-reach setting where a
terminal-value problem was obtained, in this case the value
function J̃∗(x, t) is given as the solution to an initial value
problem. Furthermore, analogous to the backward setting,
the value function can be used to extract the FRT,

F̄(t,ts,S,O) = {x | J̃∗(x, t) ≤ −α · ts}, (30)
and the time-to-leave maps,

D̃(x, t) = − J̃
∗(x, t)

α
, ∀(x, t) s.t., J̃∗(x, t) < 0. (31)

In comparison to backward reachability, the optimal con-
troller obtained by working in reverse-time allows computing
the start set as quickly as possible in a reverse-time setting.
This is not as commonly useful since the universe runs for-
ward in time, thus usually requiring an open-loop controller
to execute the corresponding trajectories.

C. Remarks and Discussion

With the evolution equations derived for multi-time reach-
ability, we now present several properties and differences
when compared to classic reachability.

1) Ability to compute BRTs / FRTs with arbitrary start
and end times: We note that we require a single solve of
the PDE 22 / 29 to compute all possible BRTs / FRTs for
a given dynamical system, target/start set, and obstacle set
using Eq. (23) / (30). With classic reachability, one would
instead a solve of a HJB PDE for every terminal time tf ,

or start time ts. While this benefit is inconsequential when
dealing with a time-invariant system (since the backward and
forward reachability tubes depend only on the time duration,
tf − t and t− ts, respectively), this property is very useful
for analyzing dynamic systems. Many multi-time autonomy
problems today indeed involve dynamic environments gov-
erned by PDEs (e.g., UAVs or AUVs affected by currents or
winds), dynamic target / start sets, and / or dynamic obstacle
sets [26]. Multi-time reachability thus has strong appeal.

While finishing this work, [27] posted a related framework
that also adds a running cost to the HJB equation. Presently
however, we derive and apply the exact governing equations
for BRTs / FRTs and associated quantities, for the first time
for systems operating in time-varying environments with
dynamic obstacles and affected by other dynamic fields.

2) Field of Level Sets: In classical reachability, only the
data on the zero level set of the value function is typically
used, as this decomposes the space into the reachable and
non-reachable regions which is usually what is of interest
In multi-time reachability, a PDE of essentially identical
complexity is solved, yet every value on the field provides
useful physical reachability information. Specifically, in the
backward reachability setting, the physical meaning of other
level sets of the value function is given by Eq. (20). In this
case, we reiterate, level sets with a negative value provide
minimum times at which a target set can be reached from a
given state, level sets with a positive value correspond to the
closest distance to the target that can be reached for states
that cannot reach the target, and finally an infinite value for
J∗ are states where it is unavoidable that an obstacle will be
hit. The case of forward reachability has a similar physical
interpretation for its different level sets.

3) Secondary quantities: While the value function ob-
tained by classical backward reachability determines if one
can reach the destination by time tf given a starting time
and position, the value function obtained using multi-time
backward reachability determines when one can reach the
target set (D(x, t)). When evaluated at a given position
x, one can infer the map between the starting time of
the trajectory to the duration it takes to reach the target.
Similarly, the forward value function determines when to
start a journey to be able to reach an arbitrary point from
the starting set (D̃(x, t)). This information can be extremely
valuable for time varying systems where the time to reach
the destination can vary drastically with the time at which the
trajectory starts. We refer to the resulting plots as duration
vs. arrival time, and start time vs. duration.

4) Optimal Controller: The closed loop controller under
the value function for multi-time reachability (Sect. III-A.6)
has varied desirable properties including obstacle avoidance,
time optimality if the target is reachable, and distance to
target minimized if not. This drastically augments classical
reachability that only minimizes the terminal signed distance
from the target set at time T and does not provide time
optimality when the state is not on the zero level set.



IV. COMPUTATION AND NUMERICAL SCHEMES

In Section III, the PDEs (21)-(22) for the value function
of backward reachability and PDEs (28)-(29) for the value
function of forward reachability are HJB PDEs. These PDEs,
including the existence, uniqueness, and properties of their
viscosity solutions, have been extensively studied in recent
years due to their broad applicability [28], [29], [22].

Several options exist for numerically computing a viscos-
ity solution to a given HJB PDE, ranging from Finite Volume
methods to high-order discontinuous Galerkin methods [30],
[31], [32], [9], [26]. Presently, we used the method of lines,
with high-order finite difference methods for the temporal
and spatial discretization, on structured, uniform, rectangular
meshes [33], [34]. Our software was built on top of an
open-source HJ equation solver, hj reachability [35], built
on JAX [36]. To numerically compute the viscosity solution,
the Local Lax-Friedrichs scheme was used [29], [33], [34].

Since the above scheme is fully explicit, the computational
cost is O(NxNt) where Nx and Nt are the total number
of spatial gridpoints and of timesteps, respectively. The ex-
plicit scheme allows direct parallelization of the computation
across gridpoints. The cost of our method is thus exactly
of the same order as that of classical reachability while
providing much richer information about the system.

Finally, we discuss two numerical implementation details:
(1) Handling the infinite condition in the terminal cost for
when a state terminates in an obstacle set, i.e. Eqs. (11)
and (26), is straightforward. Since the numerical solve is
inherently restricted to a closed and bounded state space,
we simply set the terminal cost value when in an obstacle
set to an arbitrary constant greater than the largest possible
signed distance value in the domain at terminal time. When
processing the final numerically computed value function, we
simply mask off all values that equal this arbitrary constant
as there are no controls that allow the system to avoid the
obstacle. (2) The constant α in Eq. (12) can be chosen to
decrease round off errors associated to the numerical solve.
By setting α to the order of the characteristic time of the
problem, the contours of interest will be O(1).

V. NUMERICAL RESULTS

We illustrate our theory and schemes on three numerical
cases. In the first, we verify our method by applying it to
a system with analytical reachability tubes. In the second
and third cases, we consider more complex systems and
demonstrate the various capabilities of our approach.

A. Analytical Moving Target and Obstacle

1) Problem Setup: This case uses the example of [7, Sec
5.1]. The 2D dynamical system consists of a vehicle moving
with a constant speed in any heading, ẋ = uvehĥ, where the
state x = [x, y] is the vehicle position, ĥ the unit heading,
and uveh = 0.5 the constant speed of the vehicle. The dy-
namic target set is a square of side length 0.4 units centered
at [0, 0.75] at t = 0 travelling with velocity of [0,−1.5] units.
The obstacle is a square of side length 0.2 initially centered
at [0, 0] and traveling with velocity of [0,−1] units. Our goal

is to compute backward reachability tubes and compare them
to the analytical solution we obtained geometrically using [7,
Sec 5.1.1]. The augmented dynamics is here straightforward:
we modify the system dynamics such that when the agent
is in the target (/obstacle) it moves exactly with the known
velocity of the target (/obstacle).

2) Results: Fig. 1 shows the analytical, overlaid on the
numerical, backward reachability tubes using our multi-time
reachability. The analytical and numerical tubes (left half
of the domain) are effectively identical. When compared to
the results in [7] that compute the BRTs for tf = 0.5, our
approach accurately computes tubes for all terminal times tf
and in a single PDE simulation.
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Fig. 1. Backward reachability tubes for various start and end times.
Analytically computed tubes are superimposed in the left half on top of
numerically computed tubes (dashed line).

B. Dynamic Dubin’s car

1) Problem Setup: We now consider a more complex 3D
dynamical system often referred to as the Dubin’s car. The
state space of the car is given by its position and orientation:
x = [x, y, θ]. The only control is that of the steering rate
θ̇ = uα. The dynamics is given by[

ẋ ẏ θ̇
]T

=
[
v cos θ v sin θ uα

]T
,

where v = 1 is the velocity of the car. We additionally
constrain the steering rate to satisfy |uα| < π

3 units.
We add a moving target and moving obstacle with veloc-

ities [0.4, 0] and [0.2, 0], respectively. The positions of the
target and obstacle at various times are shown in Fig. 2 (the
target is blue and obstacle orange). Our goal is to compute
backward reachable tubes as well as time-to-reach maps.

2) Results: Since the state space is 3D, the value function
now lives in a 3D space. To get an intuition of what kind
of information can be gained from the value function, we
consider the duration map at a slice D(x, y, θ = 8.95o, t)
(Fig. 2). At a given (x, y) and time t, the duration map
returns the amount of time needed to reach the target when
starting at that position and time, and being initially aligned
at the given angle (i.e. θ = 8.95o). As expected, states to
the left of the target can reach the target set more easily
given their initial orientation (states to the right need to turn



around to reach the target set). In addition, note the triangular
region which forms on the left of the obstacle, corresponding
to regions where the car cannot avoid the obstacle.
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Fig. 2. Slice of the duration map at θ = 8.95o. This map physically
represents the time needed to reach the target set based on the initial position
of the car. The point marked with the star denotes an arbitrary start point
that is used in subsequent analysis (Fig. 5).

Fig. 2 highlights a key feature of the power of multi-time
reachability. Consider the following question: given a start
point (xs, ys, θs) (marked with a star), what is the minimum
duration to the target as a function of the start time (ts)?
This information is readily available using the duration map,
D(xs, ys, θs, ts), as seen in Fig. 3. As different contours of
the duration map reach the start point, we see vastly different
gradients of the value function – implying changing optimal
control strategies based on when the car starts.
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Fig. 3. Duration of the journey to the target set as a function of the starting
time. Since this is a time varying system, the duration is not constant. Due
to the moving obstacle, the duration first decreases and increases. Times of
interest are marked with a black dot.

Suppose we pose another question: Given a start position
(xs, ys) what is the optimal starting angle at different starting
times to minimize the duration to the target set? We can
use the following expression to compute the duration under
optimal θ as a function of the starting time ts: d(ts) =
minθ D(xs, ys, θ, ts). The corresponding optimal θ is given
by arg minθ D(xs, ys, θ, ts). Fig. 4 shows, for a start position
(xs, ys) = (−3,−0.7), this minimum duration and optimal
θ as a function of start time. These plots, trivially generated
using the multi-time reachability value function, contain
information that is invaluable in deciding when and how to
start the journey from a given start point.

Different regimes of the optimal solution can be noted, as

Fig. 4. (Left) Minimum duration to reach the target set, given the starting
position (xs, ys) = (−3,−0.7), as a function of starting time (ts). (Right)
Initial angle θs under which this minimum duration can be achieved for each
corresponding starting time. Points of interest are marked with black dots.

the car decides to start with drastically different angles based
on the starting time. To see why this is occurs, we plot the
trajectories (Fig. 5) of all the points of interest marked with
black dots in Figs. 3 and 4. The plot on the left traces out

Fig. 5. Trajectories for various start points, start times and start angles.
(Left) Trajectories starting at fixed start point but with the optimal angle
to reach the destination as early as possible. (Right) Trajectories start at a
constrained position and angle. Both set of trajectories start at a user defined
time and end at different times before the final time horizon T

optimal trajectories when starting at the star (for various start
times marked in Fig. 3) while constraining the initial heading
the vehicle must start with. We find that the duration initially
falls with start time as cutting across the front of the obstacle
is difficult for the agent given this constrained initial angle.
The plot on the right corresponds to the trajectories starting
at optimal θ at various times (Fig. 4). We see that early
on, the optimal agent cuts across the front of the obstacle
and heads straight for the target. If it starts later, it has to
go out of its way to drive around the front of the obstacle.
However, if it waits long enough, the agent can reach the
target by traversing behind the obstacle.

This case shows how we compute optimal trajectories for a
variety of starting positions, angles, and start/terminal times.
We further note that these can all be efficiently computed
using information from a single multi-time reachability PDE
solve – something not possible with other approaches.

C. AUV in a Bottom Gravity Current Flow Field

1) Problem Setup: Finally, we showcase results when a
time-varying dynamic environment affects the system and
optimal control. We consider an AUV in 2D with state
variables x = (x, z) where x and z are position and depth
of the vehicle. We denote the dynamics by
ẋ =

[
Fx cos(uθ) + Vx(x, t) Fy sin(uθ) + Vy(x, t)

]T
,

where uθ is the sole control and V = [Vx, Vy] is the dynamic
background ocean flow field that advects the AUV around.
The background flow is that of a non-hydrostatic bottom
gravity current simulated using our Finite Volume ocean
modeling software [37]. This flow involves heavy salt water
flowing down an incline and creating eddies due to Kevin-
Helmholtz instabilities, as visualized in Fig. 6 [38].



Fig. 6. Salinity field (left) and x-component of the velocity field in m/s
(right) for the the bottom gravity flow. The units of x and y are in km.

2) Results: We consider a domain of interest at the bottom
of the incline. As expected, we see that the duration map is
uniform at the time before the current reaches the bottom,
whereas it is non-uniform and time-varying at the time frame
when the current and its billows and waves arrive (Fig. 7).

Fig. 7. Duration maps under the bottom gravity flow after (left) and before
(right) the current enters the domain. The units of x and y are in km, and
the unit for time is hours.

Applications of multi-time reachability to dynamic ocean
environments can be found in [25].

VI. CONCLUSIONS

We obtained the governing equations for reachability over
multiple start and terminal times all at once, for systems op-
erating in time-varying environments with dynamic obstacles
and any other relevant dynamic fields. We verified results
analytically for a moving target and obstacle problem, then
applied multi-time reachability to an extended dynamic Du-
bin’s car, and finally showcased the method in a bottom grav-
ity current system. Results highlight the novel capabilities
of exact multi-time reachability in dynamic environments.
Future work include stochastic effects, adaptive control, data
assimilation, learning, and multi-time flow maps [39].
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