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Computer and Information Science Department
University of Pennsylvania
Philadelphia, PA 19104

Abstract

Although the connectionist approach has lead to elegant solutions to a number of problems in cognitive science
and artificial intelligence, its suitability for dealing with problems in knowledge representation and inference has
often been questioned. This paper partially answers this criticism by demonstrating that effective solutions to certain
problems in knowledge representation and limited inference can be found by adopting a connectionist approach.
The paper presents a connectionist realization of semantic networks, i.e. it describes how knowledge about
concepts, their properties, and the hierarchical relationship between them may be encoded as an interpreter-free
massively parallel network of simple processing elements that can solve an interesting class of inheritance and
recognition problems extremely fast - in time proportional to the depth of the conceptual hierarchy. The
connectionist realization is based on an evidential formulation that leads to principled solutions to the problems of
exceptions, multiple inheritance, and conflicting information during inheritance, and the best match or partial match
computation during recognition.

1 Introduction

Connectionist networks are playing an increasingly important role in artificial intelligence (AI) and cognitive
science and have been employed successfully to deal with a variety of problems in low and intermediate level
vision, word perception, associative memory, word sense disambiguation, modeling of context effects in natural
language understanding, speech production, and a wide range of issues related to leamning (Cognitive Science 85;
McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986). However, for connectionism to be considered a
scientific language of choice for expressing solutions to problems in cognitive science and Al, it must be
demonstrated that it can be used to represent highly structured knowledge and perform inferences based on such
knowledge. A common criticism leveled against connectionism is that although it is appropriate for modeling
"approximate" memory processes such as semantic priming associative recall, it is unsuitable for dealing with
problems related to knowledge representation and reasoning.

The work described in this paper partially answers the criticism by demonstrating that the connectionist
approach is extremely effective in solving certain problems in knowledge representation and inference. This paper
presents a connectionist realization of semantic networks, i.e it describes how knowledge about concepts, their
properties, and the hierarchical relationship between them, may be encoded as a connectionist network that can
compute principled solutions to inheritance and recognition problems with extreme efficiency. Some salient
features of the system are:

i) The connectionist semantic networks use controlled spreading activation to solve an interesting class of
inheritance and recognition problems extremely fast - in time proportional to the depth of the
conceptual hierarchy.

ii) The networks compute the solutions in accordance with an evidential formalization that derives from
the principle of maximum entropy. This formalization leads to a principled treatment of exceptions,
multiple inheritance and conflicting information during inheritance, and the best match or partial match
computation during recognition.

iii) The networks operate without the intervention of a central controller and do not require a distinct
interpreter. The knowledge as well as mechanisms for drawing limited inferences on it are encoded
within the network.

iv) The networks can be constructed from a high-level specification of the knowledge to be encoded and
the mapping between the knowledge level and the network level is precisely specified. Furthermore,
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the solution scales because the design is independent of the size of the semantic memory.

1.1 Representation and retrieval: An overview

The system’s conceptual knowledge is encoded in a connectionist network referred to as the Memory network.
This network is capable of performing inheritance and recognition via controlled spreading activation. A problem is
posed to the network by activating relevant nodes in it. Once activated, the network performs the required inferences
automatically and at the end of a specified interval the answer is available implicitly as the levels of activation of a
relevant set of nodes.

In keeping with the connectionist paradigm, the presentation of queries to the Memory network, and the
subsequent answer extraction is also carried out by connectionist network fragments called routines. Routines
encode canned procedures for performing specific tasks and are represented as a sequence of nodes connected so
that activation can serve to sequence through the routine. Routines pose queries to the Memory network by
activating appropriate nodes in it. The Memory network in turn retuns the answer to the routine by activating
response nodes in the routine. The activation returned by a node in the Memory network is a measure of the
evidential support for an answer. It is assumed that all queries originating in routines are posed with respect to an
explicit set of answers and there is a response node for each-possible answer. Response nodes compete with one
another and the node receiving the maximum activation dominates and triggers the appropriate action. Thus,
computing an answer amounts to choosing the answer that receives the highest evidence relative to a set of potential
answers. The actual answer extraction mechanism explicitly allows for "don’t know" as a possible answer. This
may happen if there is insufficient evidence for all the choices or if there is no clear cut winner. This interaction
between the Memory network and routines is depicted in Figure 1.

1.2 Semantic networks, inheritance, and recognition

The term "semantic networks" has been used in a very general sense in the Al literature. We will however, only
focus on the central aspects of semantic networks namely, that concepts are represented in terms of their properties
and that the subsumption relationship between concepts is captured by the IS-A hierarchy. This characterization is
broad enough to capture the basic organizational principles underlying frame-based representation langauges such as
KRL (Bobrow & Winograd, 1976) and KL-ONE (Brachman & Schmolze, 1985).

The organization and structuring of information in a semantic network leads to an efficient realization of two
kinds of inferences which we will refer to as inheritance and recognition. It can be argued that these two
complementary forms of reasoning lie at the core of intelligent behavior and act as precursors to more complex and
specialized reasoning processes.

Typically, inheritance refers to the form of reasoning that leads an agent to infer property values of a concept
based on the property values of its ancestors. We define inheritance more generally to include looking up property
values directly available at the concept - of course if such local information is not available then inheritance involves
looking up properties attached to concepts higher up in the conceptual hierarchy. Many cognitive tasks may be
shown to require inheritance as an intermediate step - word sense disambiguation, determination of case-fillers, and
enforcement of selectional restrictions are some examples.

Recognition is the dual of the inheritance problem. The recognition problem may be described as follows:
"Given a description consisting of a set of properties, find a concept that best matches this description”. Note that
during matching all the property values of a concept may not be available locally and may have to be determined via
inheritance from its ancestors. For this reason, recognition may be viewed as a very general form of pattern
matching: one in which the target pattemns, i.e. the set of patterns to which an input pattern is to be matched, are
organized in a hierarchy, and where matching an input pattern A with a target pattern T; involves matching
properties that appear in A with properties local to T; as well as to properties that T; inherits from its ancestors.

A recognition step followed by an inheritance step amounts to an important sort of reasoning namely, pattern

completion. Using recognition a process can determine the identity of an object based on its partial description, and
having determined the object’s identity the process may perform an inheritance step to determine the unknown
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properties values of the object.

In addition to their ubiquity, inheritance and recognition are also significant because in spite of operating with a
large knowledge base, humans perform these inferences effortlessly and extremely fast - often in a few hundred
milliseconds. This suggests that inheritance and recognition are perhaps basic and unitary components of symbolic
reasoning - probably the smallest and simplest cognitive operations that i) produce specific responses, and ii) can be
initiated, and have their results accessed by complex and higher-level symbolic reasoning processes. The speed with
which these operations are performed also suggests that they are performed fairly automatically, and typically do not
require any conscious and attentional control. Given the significance of inheritance and recognition, it appears
reasonable to pursue a computational account of how these inferences may be drawn with the requisite efficiency.

In addition to offering computational effectiveness, the connectionist network computes solutions to the
inheritance and recognition problems in accordance with a theory of evidential reasoning that derives from the
principle of maximum entropy. Under the evidential formulation, inheritance and recognition are posed as problem
whose answers involve choosing the most likely alternative from among a set of alternatives - the computation of
likelihood being carried out with respect to the knowledge encoded in the conceptual hierarchy. This reformulation
provides a principled way of handling exceptions and resolving conflicting information during multiple inheritance,
and finding best matches based on partial information during recognition.

This paper is about the connectionist realization and a detailed discussion of the underlying evidential
formulation and the motivation for adopting it, is beyond the scope of this paper. The evidential formulation, its
relation to Bayes’ rule, and its merits are discussed in (Shastri, 1987); a brief version that deals primarily with
inheritance appears in (Shastri & Feldman, 1985). Therein, it is argued that although non-evidential treatments such
as proposals based on Default Logic (Etherington & Reiter, 1983) or on the Principle of Inferential Distance
Ordering (Touretzky, 1986) can handle exceptions, they do not deal with conflicting information adequately - they
either make arbitrary choices or simply report an ambiguity. In contrast, the evidential approach provides a
semantically justifiable way of combining all the relevant information (even though some of it may be conflicting)
to obtain the most likely answer.

1.3 Related work on parallel encoding of semantic networks

Fahlman’s NETL (Fahlman, 1979) was the first attempt at encoding semantic networks as a massively parallel
network of simple processing elements. NETL elements communicated with one another under the control of a
central controller by propagating discrete messages called markers. A network element could only detect the
presence or absence of a marker in the input. This all or none nature of the system made it incapable of supporting
"best match” or "partial match" operations. For example, in NETL recognition amounted to finding a concept that
possessed all of a specified set of properties. Furthermore, NETL’s solution to the inheritance problem was sensitive
to race conditions in the presence of multiple hierarchies. These limitations of marker passing systems are discussed
at length in (Fahlman, 1982; Fahlman et al., 1981; Brachman, 1985)!. Finally, NETL did not fully utilize the
potential for parallelism because the inter-node communication critically depended on instructions issued by a
central (serial) controller.

Hinton proposed a "distributed" encoding of semantic networks using parallel hardware (Hinton, 1981). The
information encoded in the network was interpreted as a set of triples of the form: [relation, rolel, role2]. The
proposed system had several interesting properties: given two components of a triple, the network could determine
the third wple, the network could be programmed using the perceptron convergence rule, and it could perform
simple property inheritance. The system however, lacked sufficient structure and control 1o handle general cases of
inheritance and "partial matching" - especially if these occurred in a mutli-level semantic network that included
multiple hierarchies and exceptional or conflicting information.

More recently, Derthik (Derthik, 1986) is implementing a variant of KL-ONE using the Boltzman machine
formulation (Ackley et al., 1985). However, the representation language being implemented does not admit
exceptions and conflicting information and is open to the same objections that apply to other non-evidential

1Subsequent work by Touretzky has remedied certain problems with inheritance. The use of discrete markers however, still precludes partial
match and best match operations.
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formalizations.

Recent work on Bayesian networks (Pearl, 1985) deals with evidential reasoning in a parallel network. Pearl’s
results however, apply only to singly-connected networks (networks in which there is only one underlying path
between any pair of nodes). More complex networks have o be conditioned to render them singly-connected. This
is in part due to the unstructured form of the underlying representation language employed by Pearl. The language
does not make distinctions such as “"concept”, "property”, "property-value" that we make (cf. section 2 below) and
hence its ability to exploit parallellism is limited.

2 A restricted language for representing conceptual knowledge

The representation langauge may be viewed as an extension of inheritance hierarchies to include relative
frequency information specifying how instances of some concepts are distributed with respect to some property
values. A summary description of the language follows. The agent’s knowledge consists of the quintuple:

8 =(C, d, #, §, <<), where

C is the set of concepts, @ is the sct of properties, # is a mapping from C to the integers I, & the distribution
function is a partial mapping from C X & to the power set of C X I, and << is a partial ordering defined on C.

For each C € C, if C is a Token (instance) then #C = 1, and if C is a Type (generic concept) then #C = the
number of instances of C observed by the agent. By extension #C[P,V] = the number of instances of C that are
observed by the agent to have the value V for property P. For example, #APPLE[has-color, RED] equals the number
of red apples observed by the agent. Finally, #C[P,V,][P,,V,] ... [P,,V ] = the number of instances of C, observed
to have the value V, for property P,, value V, for property P,, ... and value V for property P, .

The distribution function 8(C,P), specifies how instances of C are distributed with respect to the values of
property P. Recall that a concept may have several values for the same property and hence, if C is a Type, then
&(C,P), corresponds to the summary information abstracted in C based on the instances of C. Using the # function,
&(C,P) may be expressed in terms of #C[P,V]’s. Thus, 8(APPLE, has-color) may be expressed as: [ #APPLE[has-
color, RED] = 60, # APPLE[has-color, GREEN] = 40}, Note that § is only a partial mapping; an agent may not know
O(C,P) for many concept-property pairs. In general, for a given C and P, an agent knows &CP) only if this
information may prove useful in making inferences about C.

A salient feature of the language is that either a concept is an instance of (subtype of) another concept or it is not,
and the << relation specifies this unequivocally. Exceptions only apply to property values. Furthermore, both
necessary properties as well as default properties may be represented. This goes a long way in assigning a clean
semantics to the representation language.

In terms of the above notation, the inheritance and recognition problem may be restated as follows:

Inheritance

Given: A concept C, a property P, and a set of property values, V-SET = (V,, V,, ... V_],

Find: V* € V-SET, such that among members of V-SET, V* is the most likely value of property P for
concept C. In other words, find V* € V-SET such that, for any V; € V-SET, the best estimate
of #C[P,V*] 2 the best estimate of #C[P,V,]’s.

For example,the inheritance problem where C = APPLE, P = has-color, V-SET = (RED, BLUE, GREEN}, may
be paraphrased as: Is the color of an apple more likely to be red, green or blue?

Recognition

Given: a set of concepts, C-SET = (C,, C,, ... C,}, and an appropriate description consisting of a set of
property value pairs, i.e., a DESCR = { [P},V,], [P,,V,], ... [P,V ] }.

Find: C* € C-SET such that relative to the concepts specified in C-SET, C* is the most likely concept
described by DESCR.

If C-SET = (APPLE, GRAPE}, DISCR = ([has-color, RED], [has-taste, SWEET]) then the recognition problem
may be paraphrased as: "Is something red in color and sweet in taste more likely to be an apple or a grape"?
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The solutions to the two problems are based on the principle of maximum entropy [Jaynes 1979] and are
described in [Shastri 1987].

3 Connectionist encoding

A connectionist network (Feldman & Ballard, 1982) consists of a large number of nodes connected via links,
The nodes are computational entities defined by a small number (2 or 3) of states, a real-valued potential in the
range [0,1], an output value also in the range [0,1], a vector of inputs iy,iy....i;, together with functions P, V and Q
that define the values of potential, state and output at time t+1, based on the values of potential, state and inputs at
time t. Nodes receive inputs via weighted links. A node may have multiple input sites, and incoming links are
connected to specific sites. Each site has an associated site functions. These functions carry out local computations
based on the inputs incident at the site, and it is the result of this computation that is processed by the functions P, V
and Q.

Connectionist networks offer a natural computational model for encoding evidential formalisms because of the
natural correspondence between nodes and hypotheses, activation and evidential support, and potential functions and
evidence combination rules. However, in order to solve the inheritance and recognition problems, the network must
perform very specific computations and it must do so without the intervention of a central controller. The design
involves introducing explicit “control nodes" (binder and relay nodes) throughout the network to mediate and
control the spread of activation.

Before describing the encoding in detail, we consider an example. Figure 2 shows a network that encodes:
"Dick is a Quaker and a Republican, most Quakers have pacifist beliefs, while most Republicans have non-pacifist
beliefs"
It is assumed that one of the properties attached to persons is "has-belief”, some of whose values are "pacifist” and
"non-pacifist". The Figure only shows about half the connections. In particular, the connections from property
values to concepts have been suppressed for better readability. The likelihoods of being pacifists and non-pacifists
for Quakers and Republicans are encoded as weights of appropriate links (Cf. Section 3.1)

The question of Dick’s beliefs on pacifism (or lack of it) can be posed to the network by activating the nodes
DICK, has-belief, and BELIEF. The resulting potentials of the nodes PACIFIST and NON-PAC will determine
whether Dick is more likely to be a pacifist or a non-pacifist. It can be shown that the potential of the node
PACIFIST equals:

#QUAKER [has-bel PACIFIST] x #REPUBLICAN[has-bel, PACIFIST]
#BELIEF x #PERSON/[has-bel PACIFIST]

The potential of the node NON-PAC is given by an analogous expression in with NON-PAC replaces
PACIFIST.

Ignoring the common factor, #BELIEF, in the above expression, the potential of PACIFIST (NON-PAC)
corresponds to the best estimate of the number of persons that are both quakers and republicans and believe in
pacifism (non-pacifism). Hence, a comparison of the two potentials will give the most likely answer to the question:
Is Dick a pacifist or a non-pacifist.

3.1 Encoding the conceptual structure

The encoding employs five distinct unit types. These are the concept nodes (§-nodes), property nodes (¢-nodes),
binder nodes, relay nodes and enable nodes. With reference to Figure 2, all solid boxes denote E-nodes, all
triangular nodes denote binder nodes, and the single dashed box denotes a ¢-node. Relay nodes are used to control
directionality of spreading activation along the conceptual hierarchy, while enable nodes are used to specify the type
of query (inheritance or categorization). Relay and enable nodes are not shown in Figure 2.

Each concept is represented by a &-node. These nodes have six sites: QUERY, RELAY, CP, HCP, PV and

INV. With reference to the partial ordering <<, if concept B is a parent of concept A then there is a T (bottom up)
link from A to B and a | (top down) link from B to A. The weight on both these links equal # A/ #B and they are
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incident at the site RELAY. As the T and { links always occur in pairs, they will often be represented by a single
undirected arc. Arcs between DICK and QUAKER, and QUAKER and PERSON, are examples of such
interconnections.

Each property is also encoded as a node. These nodes are called ¢-nodes, and they has one input site: QUERY.

If 3(A,P) is known, then for every value V; of P there exists a pair of binder nodes [AP -> V;] and [P,V, -> A]
that are connected to A, P and V; as shown in Figures 3 and 4 respectively. A binder node such as [AP -> V ] is
called a i-binder node and has two sites: ENABLE and EC. The node [A,P-> V] receives one input from node A
and another from node P. Both these inputs are incident at site ENABLE, and the weight on these links is 1.0. The
link from [AP -> V] to V, is incident at site CP and the weight on this link is given by #A[P,V,] / #V,. A binder
node such as the node [P,V -> A] is called a r-binder node and has one site ENABLE where it receives inputs from
nodes P and V;; the weights on these links are 1.0. The output from [P,V; -> A] is incident at the site PV of A, and
the weight on this link is given by #A[P,V,] / #A.

If B is a parent of A such that &(B,P) is known, and there is no concept C between A and B for which &C,P) is
known, then there is a link from [A,P -> V] to [B,P -> V], incident at site INV with a weight of # A[P,V,/
#B[A,V,] (refer to Figure 5). Similarly, there is a link from [PV, -> B] to A incident at site INV with a weight of
#B[P,V,] / #B (refer to Figure 6). Finally, if B is such that it is the highest node for which 3(B,P) is known, then the
link from [B,P -> V;] to V; is incident at site HCP, instead of site CP.

Besides the interconnections described above, all nodes representing concepts, properties, and values (E-nodes
and ¢-nodes) have an external input incident at the site QUERY, with a weight of 1.0. In addition to the unit types
described above, there are two other enable units: INHERIT and RECOGNIZE.These units have one input site:
QUERY, at which they receive an external input. Each i-binder node receives an input from the node INHERIT at
the site ENABLE while each r-binder node receives an input from the node RECOGNIZE also at the site ENABLE.

3.2 Description of network behavior

Each unit in the network can be in one of two states: active or inert. The quiescent state of each unit is inert. A
unit switches to an active state under conditions specified below, and in this state the unit transmits an output equal
to its potential. The computational characteristics of various unit types are described below:

&-nodes:
State: Node is in active state if it receives one or more inputs.
Potential: If no inputs at site HCP then

potential = the product of inputs at sites QUERY, RELAY, CP,
and PV divided by the product of inputs at site INV.
else potential = the product of inputs at sites QUERY, RELAY, HCP

i-binder nodes:

State: Node is in active state if and only if it receives all the
three inputs at site ENABLE.
Potential: If state = active then

potential = 1.0 * the product of inputs at sites EC
else potential = NIL

r-binder nodes:
State: Node is in active state if and only if it receives all three
inputs at sitt ENABLE.
Potential: If state = active then potential = 1.0 else potential = NIL

¢-nodes, INHERIT node, and RECOGNIZE node switch to active state if they receive input at site QUERY,
and in this state their potential always equals 1.0.

The networks have the additional property that unlike other links that always transmit the output of their source
node, the T and | normally remain disabled, and transmit activity only when they are enabled. This control is
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affected via relay nodes that are associated with ¢-nodes. The details of this mechanism are beyond the scope of this
paper.

3.3 Posing queries and computing solutions

In the context of the network encoding the inheritance and categorization are posed as follows:

Inheritance

Given: A concept C, a property P, a set of possible answers, V-SET = (V,, V,, ...V}, and a concept
REF where REF is an ancestor of every memebr of V-SET. (Typically, REF is a parent of V,’s.
For example, if V;’s are RED, GREEN, BLUE ... then REF could be COLOR).

Find: V* e V-SET such that relative to the values specified in V-SET, V* is the most likely value of

property P for concept C.

The inheritance query is posed by setting the external inputs, i.e. the inputs to the site QUERY, of nodes C, P
and INHERIT to 1.0. If one or more members of V-SET reach an active state within three time steps, the external
input to REF gets set to 1.0, and the { links leaving REF are enabled. If none of the members of V-SET receive any
activation, the external input to REF is set to 1.0, and the { links leaving REF as well as the T links leaving C are
enabled. After d+3 time steps - where d is the longest path in the ordering graph defined by C and <<, the potentials
of nodes will be such that for any two nodes V; and Vj € V-SET, the following holds:

potential of V;, #C[P,V ]
potential of V; #C[P,V]]

It follows that the node V* € V-SET with the highest potential will correspond to the value that is the solution
to the inheritance problem.

Recognition

Given: a set of concepts C-SET = { Cl, Cz, C“), a reference concept REF, such that REF is an
ancestor of all concepts in C-SET, and a description consisting of a set of property value pairs,
i.e.aset DESCR = { [P},V,], [P,.V,], ... [P,V ] )

Find: C* € C-SET such that relative to the concepts specified in C-SET, C* is the most likely

concept described by DESCR.

The solution to the above problem may be computed as follows: For each [P,,V.] € DESCR, set the inputs to
the site QUERY of nodes P; and V; to 1.0. At the same time, sct the input to the site QUERY of RECOGNIZE and
REF to 1.0, and enable the 4 links emanating from REF. Wait d + 3 time steps, where d is the longest path in the
ordering graph defined by C and <<. At the end of this interval, the potential of the nodes will be such that for any
two nodes C; and Cj € C-SET, the following holds:

potential of C;
potential of Cj
equals the best estimate of #C;[P,V,][Py,V,] .. [P, V] divided by the best estimate of

#C-[PI.VI][Pz.VZ] P V). It follows that the node C* € C-SET with the highest potential corresponds to the
solution of the recognition problem.

4 Some examples

In order to explicate the behavior of networks and demonstrate the nature of inferences drawn by them, several
examples that are often cited in the knowledge representation literature as being problematic have been simulated.
The first example is an extension of the "quaker example" discussed in section 3. It demonstrates how the network
performs inheritance in the presence of conflicting information arising due to "multiple inheritance". Figure 7
depicts the underlying information. There are two properties has-bel (has-belief) with values PAC (pacifist) and
NON-PAC (non-pacifist), and has-eth-org (ethnic-origin) with values AFRIC (african) and EURO (european). In
broad terms, the information encoded is as follows:

Most persons are non-pacifists, most quakers are pacifists, most republications are non-pacifists, most persons are of
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european descent, most republicans are of european descent, and most persons of african decent are democrats.

Such information is specified to a network compiler in terms of: i) the set of concepts, ii) the set of properties
and their associated values, iii) a list specifying the partial ordering together with the ratios #A/#B (for all pairs of
concepts A and B such that B is a parent of A), and iv) a partial mapping 8(C,P) in terms of #C[P,V]'s. The
specification does not refer to any network level detail and the compiler directly translates such a specification into a
connectionist network.

As our first example of inheritance, consider the query: "Is Dick a pacifist or a non-pacifist?” The normalized
potentials of PAC and NON-PAC as a result of this query are 1.00 and 0.66 respectively. Thus, on the basis of the
available information, Dick who is a republican and a quaker is more likely to be a pacifist than a non-pacifist, the
ratio of likelihoods being 1.00 : 0.66, i.e., about 3:2. Similar simulations for RICK, PAT, and SUSAN lead to the
following results: Rick who is a mormom republican is more likely to be a non-pacifist. The ratio of pacifist v/s
non-pacifist for Rick being 0.39 v/s 1.00. Pat who is mormon democrat is also more likely to be a non-pacifist, but
only marginally so (0.89 v/s 1.00). Finally, Susan who is a quaker democrat is likely to be a pacifist with a very
high probability (1.00 v/s 0.29).

As an example of recognition, consider the query: "among Dick, Rick, Susan, and Pat, who is more likely to be
a pacifist of african descent?” The resulting normalized potentials are SUSAN 1.00, PAT 0.57, DICK 0.11, and
RICK 0.05. As would be expected, Susan who is a democrat and a quaker, best matches the description "person of
african descent with pacifist beliefs". The least likely person tums out to be Rick (notice that Rick is neither a
democrat who correlate with african origin nor is he a quaker who correlate with pacifism).

In order to illustrate how exceptions are handled, the information given in Figure 8 was encoded in a network.
The information captures the following aspect of the domain: "Most Molluscs are shell-bearers, Cephalopods are
Molluscs, but most Cephalopods are not shell-bearers, Nautili are Cephalopods, and all Nautili are shell-bearers”.

The normalized potentials of SHELL and SKIN as a result of the inheritance of the property epidermis-type of
MOLLUSC, CEPHAL, and NAUTILUS are as follows: (the potentials of FUR and FEATHER were consistently
0.0):

VALUE MOLLUSC CEPHAL NAUTILUS
SHELL 1.00 0.25 1.00
SKIN 043 1.00 0.00

Thus, a Mollusc is more likely to be a shell-bearer. A Cephalopod is not likely to be a shell-bearer. Finally, a
Nautilus is definitely a shell-bearer (note that the likelihood of a Nautilus having an epidermis-type other than shell
computes to 0.00, this is because ALL Nautilus are shell-bearers).

S Conclusions

This effort has lead to the design of a connectionist network that provides a computational account of how an
interesting class of inheritance and recognition problems may be solved extremely fast. The networks also have a
provable behavior; they compute solutions to the inheritance and recognition problems in accordance with a theory
of evidential reasoning. The use of evidential reasoning redefines these problems so that conflicting information can
be interpreted in a semantically consistent manner. The work also identifies specific constraints that must be
satisfied by the conceptual structure in order to achieve an efficient connectionist realization. These are discussed at
length in (Shastri 87).

Besides offering a natural way of describing the evidential interactions between pieces of knowledge, the
network encoding suggests how a physical system may extract from its environment the information required to
solve inheritance and recognition problems. An examination of the weights on the links reveals that in most cases
the weights are directly related to Hebb’s interpretation of synaptic weights (Hebb, 1949). The weight on these links
is equal to the ratio: "how often when the destination node was active, was the source node also active”.

A discussion of a connectionist system often leads to the question of its biological plausibility. It may be felt that

the computational characteristics of nodes described in section 3.1 are too complex to be biologically plausible. The
proposed encoding is certainly not intended to be a blueprint for building "wetware". Yet it does satisfy nearly all
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the constraints proposed in (Feldman & Ballard, 1982). The only serious violation of biological plausibilty is the
requirement that nodes perform high precision multiplication. One may interpret the connectionist system described
here as an ideal realization of a formal model of evidential reasoning. One can try and identify more plausible
"approximations” of the ideal system and study the manner in which their response deviates from the prescribed
behavior. Such an exercise may be rewarding and point out further constraints that govern the organization of
conceptual structure.
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