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Abstract. Additive manufacturing (AM) processes are rapidly maturing and being adopted in 
numerous industrial sectors. One of the big challenges with many AM processes is the need for 
part quality control, either in post-manufactured assessment or in-situ during the build. This 
paper presents a low-cost structured light system (using camera and projector) that exploits 
digital fringe projection to achieve surface profiling of AM parts. Additionally, a probability 
density function of the surface profile is derived, helping the measurement process to provide 
the probabilistic support required for AM part quality control decisions. Results from a proto-
type system on AM parts are demonstrated.  
 
Keywords: digital fringe projection, additive manufacturing, surface profiling, measurement 
uncertainty quantification 
 

1 Introduction 

Additive manufacturing (AM), often referred to as industrial 3-dimensional (3-D) 
printing, is a manufacturing technique characterized by repeatedly adding material to 
create an intended object [1]. The typical AM process begins with a computer-aided 
design (CAD) file which is then converted to a tool path, then actuated by the AM 
machine (often referred to as 3-D printer). Many distinct methods of AM have been 
invented and utilized per their individual strengths and weaknesses, though there are 
several features which are common among most methods, such as high designed free-
dom, high speed, low cost for small batches, and low investment cost. Although the 
earliest AM processes can be traced to stereolithography with polymers in the late 
1980s, the advent of the first recognized metal AM system occurred in 1994 by EOS, 
dubbed the EOSINT M250, which operated via direct metal laser sintering (DMLS) 
[2] also known as powder bed fusion (PBF); this is currently the dominant AM tech-
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nology used in the modern aerospace industry. PBF techniques include selective laser 
sintering (SLS) selective laser melting (SLM), and electron beam melting (EBM). 
These techniques utilize a similar manufacturing process, by first raking gas or water 
atomized metallic powder over a flat build plate within a pressurized inert gas build 
chamber. Then, one or more welding beams or lasers melt or sinter the powder in the 
pre-designated pattern calculated from the CAD part file. The build chamber lowers, 
and a new layer of metal powder is raked across the newly formed solid layer and 
surrounding un-fused powder. This process repeats for each layer of the part.  

Substantial time and resources are spent after the MAM build process for final 
part preparation and certification. Post processing includes support structure removal, 
hot isostatic pressing, surface finishing, chemical treatments. Traditional quality con-
trol (QC) approaches including ultrasound, thermography, penetrant testing, eddy 
current, and x-ray computed tomography provide either localized or whole-part quality 
assessment after the part is already fully constructed, resulting in wasted fabrication 
time and materials if the part does not pass inspection. More importantly, the access of 
these inspection techniques is limited to the external faces of the manufactured part, 
making the quality of the internal features unknown, which may have been the driving 
reason for the part to be produced by MAM. 

A main source of final-build defects in PBF are powder-based defects (PBDs). 
These defects include striations, depressions, and clumping, and can lead to detri-
mental part defects such as keyhole porosity formation, lack-of-fusion (LoF), and even 
damage to the recoater blade [3-6]. Keyhole porosity and LoF PBDs have been ob-
served to occur in regions of powder non-uniformity, where the solidification process 
occurs with too much energy, or too little, respectively. Non-uniformity in powder 
layer thickness contributes to irregular volumetric energy density, a function of laser 
parameters and powder layer thickness, observed to be related to the inception of cas-
cading keyholing and lack-of-fusion defects. Irregular powder coating also can pro-
duce out-of-plane geometrical features, resulting in chipping or skipping of the recoat-
er blade, consequently observed to create PBDs in subsequent layers due to inadequate 
raking of powder across the build chamber.  

A common denominator of the causes of PBDs is the localized height of the 
powder layer, making for a suitable in-situ measurement feature, indicative of overall 
part health. Digital fringe projection (DFP) [7] is a technique that uses the visible spec-
trum to diagnose PBDs, through measurement of the exposed powder layer and fused 
layer. DFP is a type of structured light sensing that uses varying light intensity pat-
terns, e.g., fringes, projected onto the part (or un-fused powder) and a camera which 
captures the deformation of the incident fringes. By projecting a series of predefined 
patterns, a 3D model of the part’s surface can be created with real-world dimensional 
units. The speed of this technique is limited mostly by post-processing; data acquisi-
tion time can be reduced below 3 seconds if the projector and camera frames are syn-
chronized. The short data acquisition time make DFP suitable for implementation in 
closed feedback-loop control. 

This paper describes a low-cost DFP system designed for surface profiling in this 
application, with additional development of a measurement uncertainty quantification 
model that gives confidence intervals on image height estimations at each pixel. Such 



3 

a design could support AM part accept/reject decision-making in accordance with 
standardized industrial practices. 

2 Digital Fringe Projection 

2.1 Measurement Process 

A general schematic of a reference based DFP process is shown in Fig. 1 (left), with 
the physical initial prototypical implementation on the right.  
 

  
Fig. 1. General schematic of DFP (left), and physical prototype implementation (right). 

 
In the DFP measurement process, phase measurements (an intermediate value relat-

ed to height profile through a calibration routine) are made by projecting a series of 
patterns on to a scene and recording the resulting deformation of the patterns caused 
by the measured object. In Fig. 1, the point Q is the point to be measured. A common 
implementation of DFP is a differential phase measurement; a series of fringe images 
are first projected onto a flat reference plane (mathematical or physical, denoted by the 
subscript r in Fig. 1), and then placing the measurement object (denoted by the sub-
script o in Fig. 1) into the scene, which deforms the incident projected fringe pattern. 
The camera records images of the incident fringes on both surfaces, where the intensi-
ty I(r,o) of any fringe incident on the measurement surface (either r or o) at any given 
location x(r,o) is given by  

                                   (1) 

where f(r,o) = 2πx(r,o)/P is the fringe phase, P is the fringe pitch, and A(r,o) and B(r,o) are the 
ambient light intensity and the projected fringe contrast, respectively, at x(r,o). The object 
height z at this point is then given by a differential phase measurement between object 
and reference 

  ,                                               (2) 

where f = fo – fr. The nonlinear encoding of phase in Eq. (1) necessitates a phase-
modulation approach to recover it, so N phase-shifted images are generated and projected 
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onto both reference and object with equipartitioned spatial shifts δk = 2πk/N, k = 1...N 
(“bins”); it may be shown that the individual reference and object phases at the point 
of interest may be recovered by summing over the phase-shifted intensities: 

                                          (3) 

assuming that nonlinear projector gamma issues are negligible.  

2.2 Uncertainty Quantification 

The idealized intensities of Eq. (1) in practice are subject to pixel noise upon meas-
urement. Using an additive model form, the measured noisy intensities are given by 

,        (4) 

where e designates the random pixel noise for the reference or object observed at the i-
th bin, and the term fc is included to account for the spatial phase offset of the meas-
urement point in relation to the projected fringe pattern. Eqs. (4) are substituted into 
Eq. (3) to get the measured object and reference phases, which are then subtracted to 
get the full differential phase measurement. Then, the phase noise k is defined as the 
difference between this noisy differential measurement and the idealized differential 
measurement, and if quadratic noise terms inside the large parenthesis set in Eq. (3) 
are ignored, it may be shown that  

,             (5) 

where the overbars on the noise terms just indicate normalization of the noise by the 
fringe contrasts. Eq. (5) may be interpreted as a noise transfer function, where pixel 
noise structure e(o,r),i in the measured intensities gets converted to phase noise k in the 
output.  
 Of course, this phase noise is just propagated into the surface height estimation via 
Eq. (2); if the height estimation error c is defined, similar to the way the phase noise 
was defined, as the difference between the noisy height estimation and ideal height 
estimation, c = z(f+k) – z(f), then it may be shown that 

                                          (6) 

If Eq. (5) were then substituted into Eq. (6), the result is a complete noise transfer 
function from pixel intensity to surface height error. Using change of variables formu-
la, the probability density of c may be found: 
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                                                (7) 

which is a very general form result for any given probability density function of the 
phase noise k, p(k). In [8], a probability density function for k was derived based on 
the transfer function Eq. (5), and that form could be substituted into Eq. (7), where k 
would be obtained by inverting Eq. (6). The full, generalized probability density func-
tion is too complex to reproduce here, but a common case occurs when the pixel inten-
sity noise structure has no inter-projection correlation and no correlation between ref-
erence and test object data, with the same standard deviations and zero mean on each 
projection. This case of Eq. (7) results in  

(8) 

where so and sr are the object data and reference data pixel noise standard deviations, 
respectively. Eq. (8), and more generally Eq. (7), would thus be surface height c (out-
put) uncertainty quantification as a function of pixel noise e (input) and system param-
eters. 

3 Application to Power Bed Defect Detection 

In this section, results showing the detection of lab-created PBDs made by the 
proposed DFP monitoring system, employing the accompanying uncertainty models 
to execute a parametric study evaluating multiple measurement parameters, are pre-
sented. The effects of varying experimental geometries (illumination angle q, number 
of projections N, and fringe pitch P) to determine parameters best suited for in-situ 
PBD monitoring are explored. 

Intentional PBDs were created using a modified recoater blade with four damage 
locations representative of the size and shape of PBDs which can occur in the PBF 
process. The “pristine” recoater blade was used to create a uniform powder bed to 
serve as the DFP reference surface, and the “defective” recoater blade was used to 
create realizations of raised-streak PBDs. The “defective” blade was fabricated with a 
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set of four notches, increasing in size and width, and was used to create realizations of 
PBDs. Each realization of PBDs were made using the same raking motion to move 
powder across the aluminum tray, producing an intrinsically random, but consistent 
surface structure (Fig. 2(left)). Four streak PBDs, of approximate heights of 150−180 
μm, 105−120 μm, 45−75 μm, and 20−45μm for PBDs 1-4 shown in Fig. 2(right). A 
Keyence VHX-1000 height measurement microscope was used to estimate the charac-
teristic height and width of the PBDs, considered “ground truth.” The prototype DFP 
monitoring system was comprised of a research projector, camera, and laptop for trig-
gering and processing images. The projector is an EKB Technologies 
DPME4500MKII-OX On-Axis Focusable projector; the illumination optics are the 
Texas Instruments DLP LightCrafterTM 4500 chipset and software package. This 
particular projector was selected for its variable focus, and 0% offset projection optics 
to allow the possibility of altering throw distance and field-of view by adding concen-
tric lenses. A Basler Ace acA4600 GigE camera was used to capture images of pro-
jected fringes. The camera position was kept constant at viewing angle of approxi-
mately 60o, indicative of the geometries of the EOS M 290 3-D printer, a common 
aerospace manufacturing printer, with the center of the front lens positioned at x ≈ 7” 
and z ≈ 13.5”. Pixel density in this study were approximately 50μm. The output trig-
gering functionality of the projector was used to trigger camera image acquisition. 
This allowed the capture of fringe images at uniform intervals to eliminate projector 
“draw lines” which occur without synchronization. Calibration details and further 
experimental design considerations are given in [8]. 
 

 
Fig. 2. General schematic of DFP (left), and physical prototype implementation (right). 

 
To estimate the uncertainty field on DFP measurements, Eq. (8) was used to estab-

lish fundamental central tendency and dispersion characteristics of the height error, 

                                        (9) 

where cl is the differential height (DH) error variable. With these expressions, the 
ideal DH single-point standard deviation was calculated for the average level of pixel 
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intensity noise and used to determine the fringe P selected for each experimental set-
up. For reference, the experimental fringe contrast was approximately 90 units of pixel 
intensity; with an average standard deviation of 1.67 pixel intensity units, that equates 
to an average of .0186 pixel noise (normalized by fringe contrast). Significantly higher 
fringe contrast was achieved for illumination angles θ > 25◦, but for the sake of con-
sistency, a contrast value achievable by all measurement angles was selected. 
 Figure 3 shows the selected parameters for experiment for all four illumination 
angles θ, all four fringe pitches P, and all five fringe projection bin numbers N. The 
green shaded areas correspond to DFP resultant height noise approximately 1/2 of the 
measured height of each PBD streak, which the authors argue is the minimum sensitiv-
ity required to detect a single pixel sized PBD with 95% confidence. The colored se-
ries lines show how the ideal standard deviation of measurement increases for increas-
ing fringe pitch P, for a range of bin numbers N. The gray dashed lines show the se-
lected P for each angle; each four representing similar resultant calibration constants. 

 
Fig. 3. Parameter selections for the experiment with varying projection count N, pitch P, and 
illumination angle q. The green shaded areas show the regions of minimum required noise 
to resolve PBDs with heights characteristic of experiment. 
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To summarize our findings across every combination of tested parameters, the noise 
distributions of ensemble experimental DH measurements were compared to the esti-
mated single-point uncertainty. Figure 4 shows the estimated and experimental aver-
age noise fields on DH measurements across θ,N,P. Estimated DH measurement noise 
is shown with filled circles and solid bars representing a single standard deviation, and 
the experimental full field noise median is shown with X’s and error bar caps repre-
senting a single standard deviation. The green areas in the figure correspond to mini-
mum levels of DH noise required to detect the corresponding PBD, at a 95% confi-
dence interval for a single measurement point. 

 
Fig 4. Measured DH noise across iterations for a range of illumination angles θ, bin number N, 
fringe pitch P. Green areas show the minimum experimental value of uncertainty required to 
detect a single pixel of the corresponding PBD at 95% (or 2σ) confidence. Experimental points 
are shown with error bars of a single standard deviation. Uncertainty model estimations are 
shown with filled circle markers. 
 

The uncertainty model summarized the average observed noise levels of the exper-
iments, with agreement for each parameter combination within a single standard de-
viation. For measurement parameters across all θ, for N > 5 and calibration constant C 
< 1.7, the measurement model estimated the experiment very accurately. When P in-
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creases (for equivalently C > 1), the model begins to erroneously overestimate the 
measurement noise, which becomes large enough to impact the most severe PBD 
streaks. A higher discrepancy between the model estimations and the experimental 
noise for N < 5 was also observed, expectedly so as a results of inadequate sinusoidali-
ty of projected fringes during low bin number measurement. 

 
Fig. 5. Full field differential height measurement noise of an example “pristine” powder condi-
tion; upper left shows measured differential height noise across iterations, upper right shows 
estimated DH uncertainty made by the single point uncertainty model, and the lower shows 
estimated PDFs for local sample pixels 1 and 2 from the two upper sub-figures. 
 

To showcase an example of the model’s estimation of DH uncertainty, a representa-
tive case comparing observed DH noise across all 15 iterations and estimated uncer-
tainty is presented in Fig. 5. Figure 5 (upper left) shows the measured standard devia-
tion of DH measurements across all iterations, for an example measurement with N = 
5, θ = 45◦, and P ≈ 17mm. Figure 5 (upper right) shows the estimated standard devia-



10 

tion of the PDF produced by the single point uncertainty model for the same meas-
urement parameters. Figure 5 (lower) shows the distribution of the DH measurements 
and the estimated uncertainty distribution of sample points 1 and 2 from the upper sub-
figures. Observed in the upper left portion Fig. 5, DH measurement noise was non-
uniform across the field of measurement and varied dramatically depending on subtle 
surface textures. The uncertainty model captured these noise structures, seen in the 
upper right sub-figure of Fig. 5, allowing for pixel-by-pixel statistical confidence to 
determine the probability of each height point. The distributions of DH noise and es-
timated uncertainty of example pixels 1 and 2 is shown in the lower sub-figure of Fig. 
5, showcasing excellent agreement between model and simulation. 

4 Conclusion 

This paper described work that evaluated the feasibility of digital fringe projection 
(DFP) for real-time part monitoring during powder bed based additive manufacturing. 
A rigorous model of the effects a primary measurement error source, pixel intensity 
noise, was established and verified against simulation and physical experiment with 
excellent agreement. As PBF AM practices become increasingly adopted, the system 
described herein represents a prototype low-cost, decision-supportive monitoring sys-
tem for part surface qualification. 
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