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Abstract 

Background: Long‑read shotgun metagenomic sequencing is gaining in popularity 
and offers many advantages over short‑read sequencing. The higher information con‑
tent in long reads is useful for a variety of metagenomics analyses, including taxonomic 
classification and profiling. The development of long‑read specific tools for taxonomic 
classification is accelerating, yet there is a lack of information regarding their relative 
performance. Here, we perform a critical benchmarking study using 11 methods, 
including five methods designed specifically for long reads. We applied these tools to 
several mock community datasets generated using Pacific Biosciences (PacBio) HiFi or 
Oxford Nanopore Technology sequencing, and evaluated their performance based on 
read utilization, detection metrics, and relative abundance estimates.

Results: Our results show that long‑read classifiers generally performed best. Several 
short‑read classification and profiling methods produced many false positives (particu‑
larly at lower abundances), required heavy filtering to achieve acceptable precision (at 
the cost of reduced recall), and produced inaccurate abundance estimates. By con‑
trast, two long‑read methods (BugSeq, MEGAN‑LR & DIAMOND) and one generalized 
method (sourmash) displayed high precision and recall without any filtering required. 
Furthermore, in the PacBio HiFi datasets these methods detected all species down to 
the 0.1% abundance level with high precision. Some long‑read methods, such as Meta‑
Maps and MMseqs2, required moderate filtering to reduce false positives to resemble 
the precision and recall of the top‑performing methods. We found read quality affected 
performance for methods relying on protein prediction or exact k‑mer matching, and 
these methods performed better with PacBio HiFi datasets. We also found that long‑
read datasets with a large proportion of shorter reads (< 2 kb length) resulted in lower 
precision and worse abundance estimates, relative to length‑filtered datasets. Finally, 
for classification methods, we found that the long‑read datasets produced significantly 
better results than short‑read datasets, demonstrating clear advantages for long‑read 
metagenomic sequencing.

Conclusions: Our critical assessment of available methods provides best‑practice 
recommendations for current research using long reads and establishes a baseline for 
future benchmarking studies.
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PacBio, Nanopore, Mock community, Benchmarking, Sourmash
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Introduction
The identification of microbial species in environmental communities is an essential task 
in microbiology. Shotgun metagenomic sequencing (or metagenomics) can provide rela-
tively unbiased sampling of the species in such communities, which can include bacteria, 
archaea, viruses, and eukaryotes. Whereas selective amplification (e.g., 16S, ITS) targets 
specific gene regions, the goal of metagenomics is to sequence complete genomic DNA 
for all species in a sample. Consequently, the set of tools used to predict the identities 
and relative abundances of microbial species differs greatly between these approaches. 
In particular, the difficulty of performing this task for complex shotgun sequencing 
data has led to the development of many taxonomic profiling and classification meth-
ods, particularly for second-generation/short-read technologies (reviewed in [1]). The 
rapid expansion of short-read taxonomic tools led to recognition of the importance of 
methods comparisons, benchmarking, and standardized test datasets [1–10]. These 
benchmarking studies have been critical for understanding the relative performance 
of taxonomic profiling methods for different use-cases, which can vary greatly among 
microbiologists.

Though much of metagenomics has focused on short-read sequencing, there is rising 
awareness of the new opportunities offered by third-generation sequencing technolo-
gies which produce longer sequencing reads. Whereas short reads typically contain a 
single gene fragment, long reads often span multiple genes and intergenic regions which 
can be used for alignment algorithms and sequence matching. Among the most popular 
long-read sequencing platforms are those produced by Pacific Biosciences (PacBio) and 
Oxford Nanopore Technologies (ONT). While long reads have historically been accom-
panied by higher error rates, continual improvements in library preparation, sequenc-
ing chemistries and post-processing have dramatically reduced the error rates associated 
with longer reads. For example, the most recent combination of ONT “Q20” chemistry 
and the Bonito basecaller (v0.3.5 +) is reported to produce modal read accuracies of 99% 
(~ Q20), and the development of PacBio HiFi sequencing allows for highly accurate con-
sensus reads (> Q20, median Q30) that are 10–20 kb in length [11]. As a result of these 
improvements, both PacBio HiFi and ONT long reads offer new potential for metagen-
omic analyses, including metagenome assembly, functional annotation, and taxonomic 
profiling.

Until recently, few studies have evaluated the performance of taxonomic classifi-
cation and profiling methods for long reads, in part because few tailored methods 
were available. However, the rate of development for long-read taxonomic classifica-
tion methods appears to be increasing. For example, MetaMaps [12] and MEGAN-
LR [13] were among the first long-read methods, and they became available over the 
course of several years. By contrast, multiple methods have appeared in the begin-
ning of 2021, including MMseqs2 taxonomy [14] and BugSeq [15]. Prior long-read 
benchmarking studies applied short-read methods to long reads [3, 16] or compared 
the potential of long reads to short reads [17], yet only one study has included a 
comparison of long-read methods [18]. Given the dramatic decreases in long read 
error rates and the proliferation of long read classification methods, there is a press-
ing need to assess the performance of taxonomic profiling using long reads.
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Here, we perform a critical benchmarking study to evaluate the performance of 
taxonomic classification and profiling methods for long-read datasets. We evaluate 
11 methods, including five methods designed for long reads. We include both taxo-
nomic classifiers and taxonomic profilers in our study. Taxonomic sequence clas-
sifiers are used to classify all input reads by aligning or matching the information 
content in reads to databases consisting of comprehensive nucleotide, protein, or 
whole genome datasets. The resulting matches or alignments are interpreted to pro-
vide taxonomic annotations per reads. When aggregated, the per-read classifications 
can be used to produce a taxonomic profile with relative abundance estimates (often 
based on read counts). We note that classifiers can also be used with contigs (vs. 
reads), and this approach is generally referred to as taxonomic binning. However, 
taxonomic binning precludes relative abundance estimation unless additional steps 
are included. By contrast, taxonomic profilers are not intended to classify all input 
reads. Rather, they are designed to output a taxonomic profile with relative abun-
dance estimates. Several profilers rely on smaller marker-specific databases, with 
contents selected to represent the unique signatures of species. For these marker-
based profiling methods, it is expected that only a subset of reads will map success-
fully. However, profiling methods are not inherently restricted to marker-specific 
databases, and some methods can use comprehensive databases (see “Materials and 
Methods” Section). We also note that some methods may not be easily categorized 
as a classifier or profiler. Finally, we distinguish long-read methods from short-read 
methods as those which utilize the long-range information contained across a long 
read (often using multiple genes for classification).

We propose the ideal taxonomic classifier and profiler should display high pre-
cision and recall (e.g., low numbers of false positives and false negatives), and 
accurately estimate the relative abundances of taxa [1, 3, 4, 7–10]. Furthermore, tax-
onomic classifiers should ideally assign all assignable reads (e.g., those with database 
representation). Given the design of marker-based profiling methods, read assign-
ment is not as relevant as a metric of performance. We evaluate the relative perfor-
mance of methods based on these criteria, using publicly available datasets. These 
datasets are generated from mock communities of known compositions, which were 
sequenced using PacBio HiFi or ONT. Mock communities are considered simplistic 
relative to environmental samples, but they allow a clear assessment of detection 
metrics (such as precision, recall, and F-scores) and are therefore highly informa-
tive for benchmarking. In order to tease apart the impacts of error profile and read 
length on performance, we also include comparisons using Illumina short-read 
datasets for two of the mock communities. Our main goals are to (1) identify which 
methods perform best for long-read datasets, (2) understand if long reads provide 
more accurate taxonomic profiles or abundance estimates relative to short reads, 
and (3) identify if differences in long read quality have any effects on performance. 
Overall, we provide a baseline assessment of available methods using reproducible 
analyses, which can inform current research and establish a foundation for future 
benchmarking studies.
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Materials and methods
Mock community datasets

We obtained two PacBio HiFi datasets and two ONT datasets from publicly available 
sources. We chose empirical datasets versus simulated datasets because simulations do 
not capture true variation in error profiles, read length heterogeneity, and the effects of 
DNA extraction, library preparation, and sequencing. Furthermore, pseudo-mock com-
munities (e.g., those created from multiple isolate sequencing datasets) may combine 
older and newer sequencing chemistries/platforms for a given technology, creating addi-
tional confounding effects.

The two PacBio datasets are available on NCBI (Table 1). The first PacBio HiFi data-
set is for the ATCC MSA-1003 mock community (PRJNA546278: SRX6095783, released 
June 2019). The ATCC MSA-1003 mock community contains 20 bacteria species in stag-
gered abundances (5 species at 18%, 1.8%, 0.18% and 0.02% abundance levels, respec-
tively). The PacBio ATCC dataset was generated using the Sequel II System and contains 
2.4 million HiFi reads with a median length of 8.3 kb, for a total of 20.54 Gb of data (Fig. 1 
and Table 1). We refer to this dataset as HiFi ATCC MSA-1003. The second PacBio HiFi 
dataset is for the ZymoBIOMICS Gut Microbiome Standard D6331 (PRJNA680590: 
SRX9569057, released November 2020). The Zymo D6331 mock community contains 
17 species (including 14 bacteria, 1 archaea, and 2 yeasts) in staggered abundances. 
Five species occur at 14% abundance, four at 6%, four at 1.5%, and one species per 0.1%, 
0.01%, 0.001%, and 0.0001% abundance level. There are five strains of E. coli contained 
in this community (each at 2.8% abundance), which we treat here as one species at 14% 
abundance. The PacBio Zymo D6331 dataset was generated using the Sequel II System 
and contains 1.9 million HiFi reads with a median length of 8.1 kb, for a total of 17.99 Gb 
of data (Fig. 1 and Table 1). We refer to this dataset as HiFi Zymo D6331.

We obtained two ONT datasets for the ZymoBIOMICS D6300 microbial commu-
nity standard. The Zymo D6300 standard is simpler in design and contains 10 spe-
cies in even abundances, including 8 bacteria at 12% abundance and two yeasts at 2% 
abundance. The two ONT datasets contained a broader distribution of read lengths 
which included a large tail of shorter reads (< 2 kb in length). Our initial work indi-
cated these shorter reads may have an adverse effect on taxonomic profiling, a result 
also supported by [19]. We therefore included two variations of each ONT dataset. 
The primary datasets are the focus of our methods comparison and resulted from 
length filtering to remove all short reads (< 2 kb) and ultra-long reads (> 50 kb). We 
found ultra-long reads caused compatibility issues with some taxonomic profiling 
programs (particularly the short-read methods). To investigate the potential effects 
of shorter reads, we created secondary datasets which contained a large proportion of 
shorter long reads. The first ONT dataset comes from a continually updated resource 
produced by [20]. We downloaded the R10.3 chemistry data release (February 2020) 
which was produced from two flowcells on an ONT GridION, resulting in 1.16 mil-
lion reads (4.64  Gb data). We used NanoFilt [21] to remove all short (< 2  kb) and 
ultra-long reads (> 50  kb). Length-filtering resulted in the removal of 873,079 short 
reads and 12,129 ultra-long reads (1.33 Gb total; 75% and 0.01% of total reads, respec-
tively), and the retention of 275,318 ONT reads (23% of total reads). The resulting 
length filtered ONT reads have a median length of 6.6  kb, for a total of 3.31  Gb of 
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data (Fig. 1, Table 1). We refer to this primary dataset as ONT R10 Zymo D6300. The 
secondary version of this dataset uses all reads < 50 kb in length. It contains 3.86 Gb 
data (1,148,397 reads) with a median read length of 660 bp and mean read length of 
3.3  kb, and is referred to as ONT R10 Short (Additional file  1: Figure S1). The sec-
ond ONT dataset was obtained from the European Nucleotide Archive (PRJEB43406: 
ERR5396170, released March 2021) and represents the ‘Q20 chemistry’ release for 
the Zymo D6300 standard (described at: https:// github. com/ Kirk3 gaard/ 2020- 05- 20_ 
ZymoM ock_ Q20EA). It was generated using a PromethION, resulting in 5.4 million 
reads (17.95  Gb data). We again used NanoFilt to remove short reads (< 2  kb) and 
ultra-long reads (> 50 kb), which resulted in the elimination of 2.13 million (39%) and 
819 (< 0.001%) of the total reads, respectively. From the remaining ~ 3.2 million reads, 
we subsampled to obtain 2 million reads (a number comparable to the HiFi datasets). 
This produced a length filtered ONT dataset of 2 million reads with a median length 
of 4.2 kb, for a total of 9.6 Gb of data (Fig. 1, Table 1). We refer to this primary dataset 
as ONT Q20 Zymo D6300. The secondary version of this dataset contains a compa-
rable number of shorter long reads. We used NanoFilt to remove all reads > 3  kb in 
length and subsampled the remaining reads to obtain 2 million reads. We refer to this 
as ONT Q20 Short, and this dataset contains 2.72 Gb data with a median read length 
of 1.2 kb and mean read length of 1.3 kb (Additional file 1: Figure S1). The read names 
required to reconstitute the ONT R10 Zymo D6300 and ONT Q20 Zymo D6300 data-
sets are available on the Open Science Framework project page for this paper (https:// 
osf. io/ bqtdu/).

As a final comparison to the long-read datasets, we included short-read sequence 
data for two of the mock communities (Table 1). We downloaded Illumina sequence 
data for ATCC MSA-1003 (PRJNA510527: SRX5169925, released December 
2018), which included a total of ~ 10 million 150  bp paired-end reads produced by 
a HiSeq2500 (but available pre-trimmed to 125  bp). We also obtained Illumina 

HiFi ATCC
MSA-1003

HiFi Zymo
D6331

ONT R10
Zymo D6300

ONT Q20
Zymo D6300

0

5,000

10,000

15,000

20,000

25,000

R
ea

d
Le

ng
th

Read Length Distribution

Fig. 1 Violin plots showing the read length distributions for the four mock community datasets included 
in this study, after length‑filtering was applied to remove shorter reads (see "Methods" Section). Interiors of 
plots contain white dots representing median values, black bars represent interquartile values, and black lines 
represent minimum and maximum range values. Read sizes range up to 50,000 bp in length, but the plot is 
clipped at 25,000 bp to show the core size distributions

https://github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA
https://github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA
https://osf.io/bqtdu/
https://osf.io/bqtdu/
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sequence data for the Zymo D6300 community (PRJNA648136: SRX8824472, released 
July 2020). These data were produced using a NovaSeq 6000 and include ~ 100 mil-
lion 150 bp PE reads. Given the large difference in read numbers between these data-
sets, we subsampled the Zymo Illumina data to obtain 20 million total reads. We refer 
to these datasets as Illumina ATCC MSA-1003 and Illumina Zymo D6300, respec-
tively. A variety of factors, including different DNA extraction methods, can affect 
the final composition of DNA sequenced for metagenomic samples and potentially 
bias relative abundance estimates [22]. Additionally, variation in error profiles across 
sequencing technologies could also cause potential differences in results. To control 
for these potential confounding effects in the Illumina datasets, we also “simulated” 
short-read data from our long-read datasets. Each long read was divided into 150 bp 
non-overlapping segments, and 10 segments were randomly selected to create a 
“simulated” short-read dataset. We chose this subsampling strategy (vs. retaining all 
available segments) to create a consistent number of short reads per long read, which 
varied in length. This strategy generated ~ 21 million 150  bp “reads” from the HiFi 
ATCC MSA-1003 dataset, and 20 million 150 bp “reads” from the ONT Q20 Zymo 
D6300 dataset. We refer to these datasets as SR-Sim ATCC MSA-1003 and SR-Sim 
ZymoD6300, respectively.

Taxonomic classification and profiling methods

We evaluated the performance of 11 methods on the long-read mock community data-
sets. We included five methods developed specifically for long reads, five popular short-
read methods, and one generalized method (Table 2), which we summarize here. We ran 
all methods for the primary long-read datasets and secondary ONT datasets, and used 
only short-read methods for the short-read datasets.

The short-read methods include Kraken2 [23, 24], Bracken [25], Centrifuge [26], Met-
aPhlAn3 [27], and mOTUs2 [28]. Among these methods, Kraken2 and Centrifuge are 

Table 2 Overview of taxonomic profiling methods used in this experiment

Intended Use Method Variations Reference database Strategy

Short reads Kraken2 – “PlusPF” K‑mer‑based

Bracken – “PlusPF” Bayesian Refinement

Centrifuge h22, h500 Refseq ABVF BW transform, FM‑index

MetaPhlAn3 – mpa_v30_CHOC‑
OPhlAn_201901

Read mapping, coverage scores

mOTUs2 – V3.0.3 Read mapping

General sourmash k31, k51 GenBank K‑mer min‑set‑cov; LCA 
algorithm

Long reads MetaMaps – MiniSeq + H Approximate mapping

MMseqs2 – NCBI nr Translation alignment, LCA 
algorithm

MEGAN‑LR‑prot – NCBI nr Translation alignment, LCA 
algorithm

MEGAN‑LR‑nuc HiFi, ONT NCBI nt Nucleotide alignment, LCA 
algorithm

BugSeq‑V2 – NCBI nt Nucleotide alignment, LCA 
algorithm
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taxonomic sequence classifiers, Bracken is a type of taxonomic profiler, and MetaPhlAn3 
and mOTUs2 are both marker-based taxonomic profilers. Kraken2 is a k-mer-based read 
classifier, which is often paired with Bracken for profiling. Following Kraken2 analyses, 
Bracken is used for Bayesian re-estimation of abundances. Centrifuge uses a Burrows-
Wheeler transform and Ferragina-Manzini index for storing and mapping sequences. 
We include two variations of Centrifuge analyses, one using the default settings suit-
able for short reads (referred to as Centrifuge-h22), and another with settings for long 
reads (referred to as Centrifuge-h500; see details below). MetaPhlAn3 uses coverage 
scores to calculate the relative abundances of taxa, based on read mapping to a unique 
clade-specific marker database. Similarly, mOTUs2 maps reads to a unique marker 
specific database. Specifically, it uses a database composed of single copy phylogenetic 
marker genes for operational taxonomic units (mOTUs). Recently, a “long read” option 
was introduced for mOTUs2, which divides each long read into multiple short read seg-
ments (highly similar to our SR-Sim datasets) and uses these outputs to run the typical 
short read workflow. We used the “long read” option for our analyses as recommended 
by the authors, but note that it should not be considered a true long-read method. The 
resulting artificial short read datasets contained 25–35 × more reads than the initial long 
read datasets.

The long-read methods include MetaMaps [12], MEGAN-LR [13, 29], MMseqs2 
[14], and BugSeq [15]. All long-read methods described here are considered taxo-
nomic sequence classifiers. MetaMaps was among the first methods designed specif-
ically for long reads, and it uses approximate mapping with probabilistic scoring to 
estimate sample composition. MEGAN-LR was developed from MEGAN6 and was 
designed to interpret translation alignments of long nucleotide sequences to a pro-
tein reference database. These alignments can be made using any program capable 
of translation alignment (e.g., blastx mode), but here we specifically use DIAMOND 
[30] due to its favorable long-read options (e.g., range-culling and frameshift-aware 
alignment; [31]). MEGAN-LR assigns reads to taxa using a novel interval-union low-
est common ancestor (LCA) algorithm, in combination with other relevant features 
(e.g., lcaCoveragePercent, minSupportPercent, minPercentReadCover). MEGAN-
LR can likewise interpret alignments to nucleotide databases using similar options, 
such as those created with minimap2 [32]. For this experiment, we created align-
ments based on protein references (using DIAMOND) and nucleotide references 
(using minimap2), and subsequently used MEGAN-LR for taxonomic classification. 
To distinguish between these methods, we refer to them as MEGAN-LR-prot and 
MEGAN-LR-nuc. Furthermore, we tested settings in minimap2 that were specific to 
HiFi or ONT data (see below) and ran both settings on all mock communities. We 
refer to these analyses as MEGAN-LR-nuc-HiFi and MEGAN-LR-nuc-ONT. Thus, 
we include three analyses that involve MEGAN-LR: MEGAN-LR-prot, MEGAN-
LR-nuc-HiFi, and MEGAN-LR-nuc-ONT. We note that MEGAN-LR-prot is unique 
from all other methods in that it also simultaneously assigns functional annota-
tions to genes on reads, providing a taxonomic and functional profile for a sample. 
The MMseqs2 taxonomy tool extracts all possible protein fragments in six frames 
from the long reads, pre-filters the protein sequences, aligns the retained protein 
sequences to the reference protein database, and ultimately assigns reads to taxa 
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using a novel LCA algorithm (“approximate 2bLCA”). The published BugSeq algo-
rithm (V1) performs minimap2 alignments using a nucleotide database, followed by 
Bayesian reassignment and LCA identification [15]. Following initial development, a 
BugSeq V2 method was developed which includes minimap2 alignment of sequences 
to a nucleotide database followed by LCA identification and abundance calculation 
(S. Chorlton, personal communication). BugSeq V2 performs better for longer reads 
(> 1 kb), higher sequencing depth, and shotgun metagenomics (vs. cDNA sequencing 
experiments). An auto-detect feature selects the V1 or V2 version based on the data-
set uploaded to the online platform, and in our experiment BugSeq V2 was selected 
for all long-read datasets.

In addition to methods which are generalized to short or long reads, we also 
ran sourmash [33, 34], which is a k-mer-based sequence analysis tool that can be 
used for taxonomic profiling. Sourmash uses a fractional scaling (‘FracMinHash’) 
approach to representatively subsample both metagenome and reference datasets 
in a way that supports accurate sequence similarity comparisons [35]; this allows 
rapid search of large databases. Sourmash can be used with any type of sequenc-
ing data, but its taxonomic profiling (sourmash gather + sourmash taxonomy) has 
thus far been primarily applied to short reads datasets. Sourmash profiling differs 
from the k-mer methods above in that it uses combinatorial observations of k-mers 
to find the minimum set of reference genomes that cover all information (k-mers) 
in the metagenome query, and then aggregates the taxonomic information from 
these genomes using an LCA approach [35]. Long nucleotide k-mer exact matching 
is more stringent than alignment-approaches, with stringency increasing as k-mer 
length increases. As a result, long k-mer searches may miss some reference matches 
if sufficient nucleotide divergence exists between the metagenome sequence and the 
strain available in the reference database [36]. Sourmash uses a k-mer length of 31 
for species-level matching (default), and suggests 51 for strain-level resolution; we 
test both here. We use the default fractional scaling (1/1000) for all analyses.

A standardized output format was required to facilitate comparisons of the results 
across methods. We selected kraken-report (kreport) format because it contains cumu-
lative counts and level counts across the complete hierarchical taxonomy for each taxon 
assigned. The level count is the number of reads specifically assigned to a taxon, whereas 
the cumulative count is the sum of the level counts for a taxon plus its descendants. For 
example, the cumulative count of a genus is the level count for that genus plus the level 
counts of all species and strains contained in that genus. This output format is readily 
available for Kraken2, Bracken, MMseqs2, and BugSeq. We created conversion tools 
for all other methods (MetaPhlAn3, MetaMaps, MEGAN-LR), which are available on 
github: https:// github. com/ Pacifi cBio scien ces/ pb- metag enomi cs- tools. The kreport out-
put format was recently added to sourmash and is available in sourmash v4.5.1.

Comparative analyses

We evaluated method performance using several criteria. We assessed read utiliza-
tion, detection metrics at the species and genus level, and relative abundance esti-
mates. We provide details for each of these categories below.

https://github.com/PacificBiosciences/pb-metagenomics-tools
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Read utilization

We evaluated read utilization for each profiling method in two ways. First, we simply 
calculated the total percent of reads that received a taxonomic assignment. For sour-
mash, we use the total percent of the dataset with an assignment, as it does not assign 
taxonomy to specific reads. Second, we calculated the percentage of reads (dataset) that 
were assigned to specific taxonomic levels. We performed this for the following ranks: 
class, order, family, genus, species, and subspecies/strain. Values were obtained by sum-
ming the level counts of all taxa within a given rank. In general, we expected methods 
that utilize LCA algorithms to display read assignments across multiple taxonomic 
levels, relative to methods that do not. The exception is sourmash, which makes non-
overlapping k-mer assignments to specific genomes (~ strain level) and only uses LCA 
to aggregate genome matches to higher taxonomic ranks. We expected marker-based 
profilers (MetaPhlAn3, mOTUs2) to display relatively low read assignments, and mainly 
used read utilization to evaluate performance among the remaining methods.

Detection metrics

The species compositions of the mock communities are known, allowing for a complete 
evaluation of detection metrics. For each profiling method, we scored the presence/
absence of a taxon based on whether or not the cumulative read count for that taxon 
exceeded a minimum percent threshold of the total reads. We used a minimum percent 
threshold (vs. a fixed number of reads) because our datasets contained different num-
bers of total reads. We recognize that setting a minimum detection threshold in this way 
penalizes methods that assign a smaller proportion of the total reads available. How-
ever, setting a threshold based on the number of reads assigned in a given analysis could 
produce misleading results (for example, a method could assign only 10% of total reads 
but achieve perfect precision). We evaluated three minimum read thresholds, including 
0.001% (mild filtering, mainly for removing singleton count taxa for short-read meth-
ods), 0.1% (moderate filtering), and 1% (heavy filtering) of the total number of reads 
per dataset (Table 3). The threshold filtering was mainly used to explore the effects on 
precision (particularly the impact on false positives) across the four primary datasets. 
However, we also used filtering to investigate the effects on the staggered abundance 
communities (ATCC MSA-1003 and Zymo D6331). These two mock communities con-
tained several taxa in low abundances, and we explored how filtering might cause detec-
tion dropout for different abundance levels. We performed our evaluations at the species 

Table 3 Minimum detection thresholds used to score the presence/absence of mock community 
taxa at the species or genus level

Dataset Number of reads 0.001% 
threshold

0.1% threshold 1% threshold

HiFi ATCC MSA‑1003 2,419,037 24 2419 24,190

HiFi Zymo D6331 1,978,852 19 1978 19,788

ONT R10 Zymo D6300 275,318 2 275 2753

ONT Q20 Zymo D6300 2,000,000 20 2000 20,000

Illumina ATCC MSA1003 10,038,314 100 10,038 100,383

Illumina Zymo D6300 20,000,000 200 20,000 200,000
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level and the genus level. We expected detection to be more difficult at the species level 
and easier at the genus level. This is because assignments to multiple non-target spe-
cies within a genus would be considered incorrect at the species level, but correct at the 
genus level.

We calculated several detection metrics (precision, recall, F-scores) which are based 
on the number of true positives, false positives, and false negatives. In this context, we 
define a true positive as the detection of a mock community taxon (based on a read 
count exceeding the minimum read threshold). We define a false positive as the detec-
tion of taxon that is not present in the mock community. We define a false negative as 
the failure to detect a taxon in the mock community (based on a zero count or count 
below the minimum threshold). The formulas for precision, recall and F-scores are as 
follows:

The values for the above metrics each range from 0 to 1. For precision, a score of 1 
indicates only mock community taxa were detected, whereas lower scores indicate 
detection of additional taxa (e.g., false positives). For recall, a score of 1 indicates all taxa 
in the mock community were detected, whereas a lower score indicates some taxa were 
not detected. The F-scores provide a useful way to summarize the information from pre-
cision and recall. The  F1 score is the harmonic mean of precision and recall (both meas-
ures are weighted equally), whereas the  F0.5 score gives more weight to precision (placing 
more importance on minimizing false positives). A value of 1 for either F-score indicates 
perfect precision and recall.

We controlled for two issues that can negatively impact these metrics. First, we 
observed and accounted for differences in taxonomy, particularly as it relates to syn-
onymies. In the case of a species synonomy, we used the sum of cumulative counts for 
the species and all synonyms as the read count for the taxon. This included two spe-
cies in ATCC MSA-1003 (Luteovulum sphaeroides = Rhodobacter sphaeroides, Cerei-
bacter sphaeroides; Phocaeicola vulgatus = Bacteroides vulgatus), one species in Zymo 
D6300 (Limosilactobacillus fermentum = Lactobacillus fermentum), and three species 
in Zymo D6331 (Limosilactobacillus fermentum = Lactobacillus fermentum; Bacil-
lus subtilis = Bacillus spizizenii; Faecalibacterium sp. AF28-13AC = Faecalibacterium 
prausnitzii). Most of these synonomies are related to changes in taxonomy, but for Fae-
calibacterium prausnitzii we observed that Faecalibacterium sp. AF28-13AC contained a 
genome sequence identical to F. prausnitzii in the NCBI database. Second, we observed 
that sequences and/or taxonomy information was lacking for two species (Zymo D6331: 
Veillonella rogosae, Prevotella corporis) in multiple databases (“PlusPF”, Refseq ABVF, 
MiniSeq + H, NCBI nt). To remedy this issue, we excluded the two species from the set 

Precision = true positives /(true positives + false positives)

Recall = true positives / true positives + false negatives

F1 = (2 ∗ precision ∗ recall)/(precision + recall)

F0.5 =
((

1 + 0.52
)

∗ precision ∗ recall
)

/

((

0.52 ∗ precision
)

+ recall
)
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of taxa used to calculate detection metrics at the species-level for all methods. However, 
we observed that many reads were assigned to alternate species in the same genus, so we 
included the two genera in the genus-level analysis.

We calculated detection metrics for each dataset. To understand the performance of 
each method across all datasets, we took an average of precision, recall,  F1 and  F0.5. We 
also took the average of these values for the HiFi datasets and ONT datasets separately, 
to see if any methods performed differently across the technologies.

Relative abundance estimates

We attempted to obtain relative abundances for each method, but acknowledge several 
potential issues. First, there are clear differences in intended outputs among methods. 
For example, profiling methods provide taxonomic abundances whereas classifiers pro-
vide sequence abundances (which must be transformed into taxonomic abundances). 
Second, the read counts obtained from classifiers do not account for the length hetero-
geneity of reads in long read datasets, and counts are not weighted by total base pairs. 
Although some methods offer this type of correction (MEGAN-LR), it is not available 
across all methods and difficult to implement. Third, DNA extraction methods can affect 
the final composition of DNA sequenced for metagenomic samples [21], which could 
lead to systematically skewed abundance estimates. Despite these caveats, relative abun-
dances are of interest to the research community and are therefore included here.

We used the read counts output directly from Kraken, Bracken, Centrifuge, mOTUs2, 
MetaMaps, MMSeqs2, all MEGAN-LR methods, and BugSeq. The output of sourmash 
is abundance-projected base pair estimates, which is a projection of the number of base 
pairs that the percent of matched k-mers represents. To estimate the “read counts” 
for this method, we obtained a total from the base pair estimates across species plus 
all unassigned base pairs, and divided the base pair estimates from all species by this 
total. For MetaPhlAn3, we multiplied the percent abundance of each taxon by the total 
number of mapped reads. We note that for mOTUs2, the read counts are based on the 
artificial short reads generated, and not the initial long reads. These numbers therefore 
represent an overestimate. However, given the low read counts recovered using this 
method (< 1%; see “Results” Section), we did not attempt to transform these read counts.

Relative abundances were estimated for each profiling method at the species and 
genus level. We obtained cumulative counts for the mock community species or gen-
era and the sum of cumulative counts for all false positives at the species or genus level 
(classified as “Other”). These data were normalized to obtain the percent abundance of 
each taxon. We corrected for the absence of two species from multiple databases (Veil-
lonella rogosae, Prevotella corporis) in HiFi Zymo D6331. For methods affected by these 
databases, we observed many reads were assigned to other species in these two genera. 
Rather than scoring these as “Other”, we allowed all species-level assignments within 
these genera to contribute to the read counts for these two species. To be consistent, we 
allowed this for all methods for HiFi Zymo D6331. In other words, genus-level counts 
for Veillonella rogosae and Prevotella corporis were used for the species abundances, 
rather than exclude these two taxa.

For each method, we calculated an L1 distance (following [9]) and performed a chi-
squared goodness of fit test to determine if the estimated abundances were significantly 
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different from the theoretical abundances. The theoretical abundances were obtained 
from the manufacturer’s specifications, which are based on genomic DNA (vs. cell 
counts). We calculated L1 distance by summing the absolute error between the theo-
retical and empirical estimate per species per community. We included the false posi-
tives lumped in the “Other” category in this calculation and compared them against a 
theoretical abundance of zero for this category. We compared the chi-squared statistic 
to the critical value obtained at the 95% significance level and obtained a correspond-
ing P-value. For this test, larger chi-squared statistic values indicate greater differences 
between the observed and expected values. We applied a Bonferroni correction for mul-
tiple testing (n = 11) per dataset, for which αaltered = 0.05/11 = 0.0045. A P-value < 0.0045 
allows rejection of the null hypothesis, and indicates the observed distribution is signifi-
cantly different from the theoretical distribution.

Reference databases
The choice of reference database directly affects the outcome of taxonomic profiling. 
For example, the use of a complete reference database versus a subset of that database 
can result in drastically different assignments if the same profiling method is run with 
otherwise identical settings. Under ideal conditions, all profiling methods would use an 
identical reference database. This would control for differences in information content 
and taxonomy, allowing observed differences in assignment results to be attributed to 
the profiling methods. However, differences in method design and matching algorithms 
required the use of multiple reference databases. We therefore provide a brief descrip-
tion and comparison of these databases below.

The databases used for Kraken2, Bracken, and Centrifuge are highly similar. For 
Kraken2 and Bracken, we used a pre-built database that includes all RefSeq sequences 
for archaea, bacteria, viruses, plasmid, human, protozoa, and fungi (“PlusPF”, released 
1/27/2021, available from: https:// benla ngmead. github. io/ aws- index es/ k2). The Centri-
fuge database was built from RefSeq sequences for archaea, bacteria, viruses, and fungi 
(downloaded 4/2021). The Centrifuge database used can be considered a subset of the 
PlusPF database, but with complete overlap for several target groups (archaea, bacteria, 
fungi).

The marker-based profilers each used a specific database. MetaPhlAn3 uses a highly 
distinct reference database which is composed of ~ 1.1 million unique clade-specific 
markers from ~ 99,500 bacteria/archaea reference genomes and ~ 500 eukaryotic ref-
erence genomes. We used the mpa_v30_CHOCOPhlAn_201901 database release. 
mOTUs2 also uses a highly distinct database, which is composed of single copy phyloge-
netic marker genes for operational taxonomic units (mOTUs). We used database version 
3.0.3, which contains ~ 12,000 reference based mOTUs, ~ 2300 mOTUs obtained from 
metagenomic samples, and ~ 19,400 MAG-based mOTUs.

MetaMaps provides a pre-built database composed of 12,058 complete RefSeq 
genomes (215 archaeal, 5774 bacterial, 6059 viral/viroidal, 7 fungi, 1 human), which is 
referred to as MiniSeq + H. The option to create a custom database (such as NCBI nt) 
was initially developed for MetaMaps, but this feature is currently not functional. The 
MiniSeq + H database was therefore the only option available for running MetaMaps in 

https://benlangmead.github.io/aws-indexes/k2
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our experiment, and it represents the smallest and most incomplete database across the 
methods used.

We used the NCBI non-redundant protein database (NCBI nr) for MMseqs2 and 
MEGAN-LR-prot, and the NCBI nucleotide database (NCBI nt) for MEGAN-LR-nuc 
and BugSeq v2 (both databases downloaded April 2021). We used a more recent ver-
sion of the NCBI nucleotide database for sourmash (downloaded March 2022), which 
was added in our revision to this manuscript. These pre-built sourmash databases con-
sist of 47,952 viral, 8750 archaeal, 1193 protozoa, 10,286 fungi, and 1,148,011 bacterial 
GenBank genomes and were constructed using FracMinHash 1/1000 fractional scal-
ing (~ 1.3million genomes, ~ 40G size all together; available at https:// sourm ash. readt 
hedocs. io/ en/ latest/ datab ases. html). Sourmash provides a corresponding lineages file 
with taxonomic information for each database. The NCBI nt databases represent the 
most complete reference databases across the methods. We note that the RefSeq data-
bases for Kraken2, Bracken, and Centrifuge are contained in NCBI nt.

Profiling method commands

To facilitate reproducible results, we provide the general commands or instructions to 
run each method.

Kraken2

We ran Kraken version 2.1.1 for each sample. We used the pre-built PlusPF database 
described above, and used the following command:
kraken2 --db PlusPF --threads 24 –report SAMPLE.kreport.txt 

SAMPLE.fasta > SAMPLE.kraken

Bracken

We ran Bracken version 2.6.0 for each sample, using the kreport outputs from Kraken2. 
We used the pre-built PlusPF database described above, and the following command to 
obtain abundances at the species level (-l S):
bracken -d PlusPF -i SAMPLE.kreport.txt -o SAMPLE.bracken -r 

50 -l S -t 10

Centrifuge

We ran Centrifuge version 1.0.4. We were unable to use centrifuge-download to obtain 
the RefSeq sequences required to build the database. We instead used kraken2-build 
to obtain the relevant RefSeq sequences and taxonomy files. The kraken headers were 
removed from the fasta sequences, and the database was built using the following 
command:
centrifuge-build -p 24 --conversion-table centrifuge-seqid-

2taxid.map --taxonomy-tree /taxonomy/nodes.dmp --name-table /

taxonomy/names.dmp arc-bac-vir-fungi.fna abvf

Centrifuge offers the option to specify the minimum length of partial hits required 
for classification (--min-hitlen). We used two values for this option. We used the default 
value of 22, which is suitable for short read analysis, and used a value of 500 which is 
suitable for long reads (labeled as Centrifuge-h22 and Centrifuge-h500, respectively).

https://sourmash.readthedocs.io/en/latest/databases.html
https://sourmash.readthedocs.io/en/latest/databases.html
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We ran Centrifuge-h22 for each sample using the following command:
centrifuge -f --min-hitlen 22 -k 20 -t -p 24 -x abvf -U SAM-

PLE.fasta -S SAMPLE-h22.txt --report-file SAMPLE-h22.centri-

fuge_report.tsv

We ran Centrifuge-h500 for each sample using the following command:
centrifuge -f --min-hitlen 500 -k 20 -t -p 24 -x abvf -U 

SAMPLE.fasta -S SAMPLE-h500.txt --report-file SAMPLE-h500.cen-

trifuge_report.tsv

Outputs were converted to kreport format using the centrifuge-kreport module.

MetaPhlAn3

Analyses were run using MetaPhlAn v3.0.7. The settings used in MetaPhlAn3 to run 
Bowtie2 will fail for long reads, so we first created alignments externally using Bowtie2:
bowtie2 -p 12 -f --local --no-head --no-sq --no-unal -S SAM-

PLE.sam -x /metaphlan/mpa_v30_CHOCOPhlAn_201901 -U SAMPLE.

fasta

After alignments were created, we ran MetaPhlAn3 with the following settings (adjust-
ing the number of reads per dataset, --neads):
metaphlan SAMPLE.sam --nproc 24 --input_type sam --nreads 

READ_NUMBER -o SAMPLE.profiled_metagenome.txt --index mpa_v30_

CHOCOPhlAn_201901 --bowtie2db /metaphlan

mOTUs2

Analyses were run using mOTUs2 v3.0.3. Each long-read dataset was converted into a 
short read dataset and then run through the typical profiling algorithm using the follow-
ing set of commands:
motus prep_long -i SAMPLE.fastq.gz -o SAMPLE_mOTUs.fastq 

-no_gz

gzip SAMPLE_mOTUs.fastq
motus profile -s SAMPLE_mOTUs.fastq.gz -o SAMPLE_mOTUs.counts.txt -c -t 48

Sourmash

Analyses were run using sourmash version 4.5.1. A streamlined workflow for sourmash 
is available (Taxonomic-Profiling-Sourmash) at: https:// github. com/ Pacifi cBio scien ces/ 
pb- metag enomi cs- tools. The pipeline is provided as a configurable snakemake workflow.

Read datasets were sketched in the same manner as sourmash pre-prepared databases, 
using a fractional scaling of 1/1000:
sourmash sketch dna SAMPLE.fna.gz -p k = 31,k = 51,scaled = 100

0,abund –name SAMPLE -o SAMPLE.sig.zip

The database search was performed separately for each k-mer size using sourmash 
gather. This analysis took 3–7  h on a single thread, requiring 40-100G of memory 
(depending on dataset):
sourmash gather SAMPLE.sig.zip genbank-2022.03-bac-

teria-k31.zip genbank-2022.03-archaea-k31.zip 

https://github.com/PacificBiosciences/pb-metagenomics-tools
https://github.com/PacificBiosciences/pb-metagenomics-tools
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genbank-2022.03-viral-k31.zip genbank-2022.03-protozoa-k31.

zip genbank-2022.03-fungi-k31.zip

-k 31 -o SAMPLE.gather.k31.csv
After searching with sourmash defaults, we also ran gather at its most sensitive, allow-

ing detection of even a single shared hash in the database (by adding –threshold-bp 0 
to the command). For each dataset and ksize, taxonomic aggregation of genome-level 
matches was performed using the sourmash taxonomy module, with kreport output, e.g. 
k31:
sourmash tax metagenome -g SAMPLE.gather.k31.csv -t gen-

bank-2022.03-*.lineages.csv.gz -o SAMPLE.gather.k31 -F 

kreport

Note that sourmash gather outputs initial k-mer assignments to individual genomes, 
which is ~ strain-level profiling; we did not evaluate these in our results.

MetaMaps

We used MetaMaps v0.1 to run analyses with the following set of commands:
metamaps mapDirectly --all -r/databases/miniSeq-H/DB.fa -q 

SAMPLE.fasta --maxmemory 35 -t 24 -o SAMPLE_results

metamaps classify -t 12 --mappings SAMPLE_results --DB /databases/miniSeq-H
The conversion from MetaMaps output format to kreport format was performed at the 

species level, but we note that MetaMaps can produce a large number of strain assign-
ments that are not represented in our results.

MMseqs2

We used MMseqs2 v13.45111 to run all analyses. We first built the database for NCBI nr 
using the following command:
mmseqs databases NR /mmseqs-database/NR_db /scratch 

--threads 24

We then used the easy-taxonomy module to run analyses for each sample, using the 
following general command:
mmseqs easy-taxonomy SAMPLE.fasta /mmseqs-database/NR_db 

SAMPLE/scratch --threads 48 --split-memory-limit 120G

MEGAN‑LR‑prot

A streamlined workflow for MEGAN-LR-prot is available (Taxonomic- Profiling-Dia-
mond-Megan) at: https:// github. com/ Pacifi cBio scien ces/ pb- metag enomi cs- tools. The 
pipeline is provided as a configurable snakemake workflow. To use the workflows, we 
first downloaded the NCBI nr database and created a DIAMOND index using the fol-
lowing command:
diamond makedb --in nr.gz --db diamond_nr_db --threads 24

We downloaded MEGAN6 community edition to obtain the executable tools required 
for these workflows (sam2rma, rma2info), as well as the required MEGAN protein map-
ping file (megan-map-Jan2021.db). We then ran the Taxonomic-Profiling-Diamond-Megan 
pipeline. The locations of the nr index, sam2rma, rma2info,  and the mapping file were 
specified in the main configuration file for the analysis (config.yaml), and we used all other 

https://github.com/PacificBiosciences/pb-metagenomics-tools
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default settings (see documentation). The information for the sample fasta files was added 
to the sample configuration file (Sample-Config.yaml), and the snakemake (Snakefile-
taxprot) was executed. Details for the usage of each program are provided in the online 
documentation.

MEGAN‑LR‑nuc

A streamlined workflow for MEGAN-LR-nuc is available (Taxonomic-Profiling-Minimap-
Megan) at: https:// github. com/ Pacifi cBio scien ces/ pb- metag enomi cs- tools. The pipeline is 
provided as a configurable snakemake workflow. To use the workflow, we first downloaded 
the NCBI nt database and indexed it with minimap2 using the following command:
minimap2 -k 19 -w 10 -I 10G -d mm_nt_db.mmi nt.gz

We downloaded MEGAN6 community edition to obtain the executable tools required 
for these workflows (sam2rma, rma2info), as well as the required MEGAN nucleotide map-
ping file (megan-nucl-Jan201.db). We then ran the Taxonomic-Profiling-Minimap-Megan 
pipeline. The locations of the minimap2 nt index, sam2rma, rma2info,  and the mapping 
file were specified in the main configuration file for the analysis (config.yaml), and we also 
changed the maximum number of secondary alignments from 20 to 5. The information for 
the sample fasta files was added to the sample configuration file (Sample-Config.yaml), and 
the snakemake (Snakefile-taxnuc) was executed. Details for the usage of each program are 
provided in the online documentation.

The above instructions are for the MEGAN-LR-nuc-HiFi analysis. Running the MEGAN-
LR-nuc-ONT analysis required some changes. Specifically, we indexed the database with 
minimap2 using the following command:
minimap2 -k 15 -w 10 -I 10G -d mm_nt_db_ONT.mmi nt.gz

We then edited the minimap2 command in the snakemake file to include the ONT rec-
ommended settings:

minimap2 -ax map-ont

BugSeq

We uploaded datasets to the BugSeq online platform: https:// bugseq. com. For each data-
set, we selected the NCBI nt reference database option, and submitted the analysis. After 
successful completion all results were available for download.

Results
The kreport files produced from all taxonomic classification and profiling methods, and 
the Jupyter notebooks used to generate the following results, are freely available on the 
Open Science Framework project page for this paper (https:// osf. io/ bqtdu/). These files 
can be used to replicate all results reported below.

Comparative analyses

Read utilization

Total read assignment differed drastically across methods (Fig. 2). In terms of short-read 
methods, Kraken, Bracken, and Centrifuge-h22 assigned the greatest number of reads 
(93–100% for HiFi, 81–99% for ONT). Centrifuge-h500, which required a minimum 
total length of 500 for partial hits, assigned far fewer reads across datasets (1–53%), with 

https://github.com/PacificBiosciences/pb-metagenomics-tools
https://bugseq.com
https://osf.io/bqtdu/
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the exception of HiFi ATCC MSA-1003 (which had 98% read assignment). Read assign-
ment was exceptionally low for Centrifuge-h500 in ONT R10 Zymo D6300 (~ 1%; Fig. 2). 
As expected, both marker-based profilers assigned the fewest reads (MetaPhlAn3: 
23–39%; mOTUs2: 0.2–1%; Fig. 2). Slightly more of the dataset was assigned by sour-
mash-k51 versus k31 (4–15% difference; Fig. 2). However, the greatest difference in sour-
mash assignment occurred between HiFi and ONT datasets, with far more of the dataset 
assigned in HiFi (81–90%) versus ONT (26–41% for ONT R10.3, 59–68% for ONT Q20).

There was considerable variation in read assignments across the long-read methods 
and across different sequencing technologies (Fig. 2). Total read assignment in the HiFi 
datasets ranged from 71 to 99% (average = 85%) across all long-read methods, and for 
ONT ranged from 46 to 97% (average = 71%). For the ONT datasets, MetaMaps and 
BugSeq-V2 assigned the greatest number of reads (95–97%), with all other methods 
assigning fewer reads (46–67%). Methods that rely on translation alignments to pro-
tein references assigned more reads in the HiFi datasets versus ONT datasets, including 
MMseqs2 (HiFi: 94–99%; ONT: 46–67%) and MEGAN-LR-prot (HiFi: 71–74%; ONT: 
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60–62%) (Fig. 2). There were no clear differences in total read assignment for MEGAN-
LR-nuc-HiFi and MEGAN-LR-nuc-ONT within the ONT datasets or the HiFi data-
sets, suggesting read assignment was not sensitive to different minimap2 settings. The 
MEGAN-LR-nuc methods resulted in a higher number of reads assigned in HiFi datasets 
(81–90%) versus ONT datasets (54–60%). BugSeq-V2 assigned more reads in the ONT 
datasets (95–96%) versus HiFi datasets (82–93%). As expected, methods using LCA 
algorithms during assignment (MMseq2, all three MEGAN-LR workflows, BugSeq-V2) 
displayed a significant proportion of annotations to taxonomic ranks above the strain 
and species level (Fig. 2). However, the MEGAN-LR-nuc methods showed a smaller pro-
portion of reads assigned to higher ranks, relative to the protein-alignment methods.

Detection metrics

The complete set of read counts per dataset used in the species and genus-level analyses 
are provided in Additional file 1: Tables S1–S8. Detection at different thresholds follows 
the minimum read counts in Table 3. Species and genus level results are provided for 
each dataset in Figs. 3 and 5 and Table 4. Averaged results per method across all datasets 
are shown in Figs. 4 and 6, and technology specific results are shown in Additional file 1: 
Figures S2 and S3.

The species-level detection results based on the minimum threshold of 0.001% of the 
total reads are summarized in Figs. 3 and 4 and Table 4. The clearest difference in perfor-
mance occurs between short-read and long-read/generalized methods (including sour-
mash). Most short-read methods display very low precision and relatively high recall, 
and consequently very low F-scores (Figs. 3, 4). These results for precision and F-scores 
are driven by the large number of false positives detected (40–300) despite the presence 
of few false negatives (Table 4). We note that Bracken did not significantly improve the 
results of Kraken2, based on these measures (Figs. 3, 4). The Centrifuge-h500 analysis, 
which required longer matches, resulted in a lower number of false positives and con-
sequently higher precision (Fig.  3 and Table  4), though this improvement varied con-
siderably across datasets (Fig. 4). MetaPhlAn3 displayed values that were intermediate 
between Centrifuge-h500 and the other short-read methods. An exception to this rule 
occurs with mOTUs2, which displays high precision and moderate recall (Figs. 3, 4). By 
precision and F-scores, mOTUs2 outperforms all other short read methods by a consid-
erable margin.

The long-read methods and sourmash outperformed the short-read methods in 
terms of precision, recall, and F-scores (Fig. 3, Table 4), but they also displayed vari-
ation in performance. Some methods did not show consistent results and performed 
better for a particular dataset. For example, MetaMaps and MMseqs2 performed 
quite well for HiFi ATCC MSA-1003. However, these two methods performed worse 
for the other three datasets and more closely resembled the results for the short-read 
methods (e.g., very low precision, higher recall; Fig.  3 and Table  4). Interestingly, 
sourmash displayed high precision and recall for HiFi datasets (highest in k51), out-
performing most long-read methods (Fig. 3, Additional file 1: Figure S2). However, its 
performance decreased for the ONT datasets; this is particularly noticeable for ONT 
R10 (Fig. 3, Additional file 1: Figure S3). Across all four datasets, MEGAN-LR-prot, 
MEGAN-LR-nuc-HiFi, MEGAN-LR-nuc-ONT, and BugSeq-V2 consistently displayed 
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the best performance (Figs.  3, 4). These four methods detected most species in the 
communities (e.g., low false negatives) and rarely called any false positives (0–2). 
Consequently, they display high precision, moderate to high recall, and the highest 
F-scores (Fig. 3). The moderate recall scores for the HiFi datasets resulted from the 
failure to detect species at lower abundances, particularly for the 0.02% to 0.0001% 
abundance levels (Additional file  1: Table  S9). Sourmash (k31 and k51) displayed 
exceptional recall for these challenging HiFi datasets, detecting all species at 0.02% 
and 0.001% relative abundance (Additional file 1: Table S9). For the ONT datasets, the 
species in Zymo D6300 had comparatively high abundances (12% and 2%), and this 
was reflected in perfect recall for nearly all long-read methods as well as sourmash 

Fig. 3 Precision, recall and F‑scores for the species‑level analysis based on a minimum threshold of 0.001% of 
the total reads for A HiFi ATCC MSA‑1003, B HiFi Zymo D6331, C ONT R10 Zymo D6300, and D ONT Q20 Zymo 
D6300

Fig. 4 The average values for A precision and recall, B F1 scores, and C F0.5 scores for the species‑level 
analysis based on a minimum threshold of 0.001% of the total reads. Methods to the right of the vertical line 
in B and C are the long‑read classifiers. Error bars represent standard deviation
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(Fig. 3, Table 4). We did not observe any difference in performance between MEGAN-
LR-nuc-HiFi and MEGAN-LR-nuc-ONT for the ONT datasets or HiFi datasets, sug-
gesting the profiling analyses are not sensitive to minimap2 alignment settings.

The genus-level analysis based on the minimum threshold of 0.001% of the total reads 
largely mirrored the species-level results, but with expected improvements in precision, 
recall, and F-scores (Figs. 5, 6, Additional file 1: Table S10). Improvements were nearly 
guaranteed because reads assigned to multiple species within a genus are all considered 
correct at the genus level, and consequently the number of false positives (and poten-
tially false negatives) decreased. Despite improvements in precision, recall, and F-scores 
across all methods at the genus level, the long-read methods still outperformed most 
short-read methods by a considerable margin (Fig. 4, Additional file 1: Table S10). We 

Fig. 5 Precision, recall and F‑scores for the genus‑level analysis based on a minimum threshold of 0.001% of 
the total reads for A HiFi ATCC MSA‑1003, B HiFi Zymo D6331, C ONT R10 Zymo D6300, and D ONT Q20 Zymo 
D6300

Fig. 6 The average values for A precision and recall, B F1 scores, and C F0.5 scores for the genus‑level 
analysis based on a minimum threshold of 0.001% of the total reads. Methods to the right of the vertical line 
in B and C are the long‑read classifiers. Error bars represent standard deviation
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observed perfect precision in mOTUs2, but it displayed lower recall relative to long-read 
methods (Fig.  6). Sourmash (k31 and k51) displayed perfect recall and precision was 
comparable to the long-read methods (particularly for HiFi datasets, Figs.  5, 6, Addi-
tional file 1: Figure S2).

Requiring a moderate minimum threshold for detection (0.1% of total reads) for the 
species-level analysis had an overall positive effect on precision, but negative effect on 
recall (Additional file  1: Figure S4, Table  S11). These changes were most dramatic for 
the short-read methods, in which the number of false positives was reduced from sev-
eral hundred to ~ 10 or fewer, thereby increasing precision considerably (Additional 
file 1: Table S11). However, despite this improvement the long-read methods still per-
formed better in terms of precision and F-scores (Additional file  1: Figure S4). Preci-
sion increased for some long-read methods (MetaMaps, MMseqs2), but others were 
unaffected as they were already high at the lower detection threshold. As expected, this 
increase in minimum detection threshold most strongly impacted recall in the commu-
nities with staggered abundances (HiFi datasets) versus communities with even abun-
dances (ONT datasets). In the HiFi datasets, the long-read methods displayed more 
false negatives which resulted in lower recall (Additional file 1: Figure S8). At the 0.1% 
total reads detection threshold, all methods (long and short) failed to detect species 
with < 0.02% abundance and missed several species with 0.1–1.8% abundance (Addi-
tional file 1: Table S12). Surprisingly, this detection threshold also reduced the recall of 
some methods for the ONT datasets, with a more noticeable reduction in recall values 
for ONT R10 Zymo D6300 (Additional file 1: Figure S4, Table S11). The patterns for the 
genus-level analysis using the 0.1% total reads detection threshold mirrored the species-
level results (Additional file 1: Figure S5). Precision increased in the short-read meth-
ods across all datasets, and recall was lowered in the staggered abundance communities 
(Additional file 1: Table S13).

The highest minimum threshold for detection used in our experiment (1% of total 
reads) exacerbated the effects described for the 0.1% detection threshold. The most 
noticeable effects were for the communities with staggered abundances: all methods dis-
played perfect precision (with one exception), but recall was drastically lowered (< 0.6; 
Additional file 1: Figure S6, Table S14). In other words, false positives were completely 
eliminated, but at the cost of vastly increased false negatives. Using 1% of total reads 
as the minimum detection threshold for HiFi ATCC MSA-1003 and Zymo D6331, all 
methods (long and short) failed to detect species with < 1.8% relative abundance, and 
some species were not detected in the 1.5% and 6% abundance levels (Additional file 1: 
Table S15). This higher threshold for detection also impacted results for the even abun-
dance communities (ONT R10 and Q20 for Zymo D6300). Precision increased primar-
ily for the short-read methods, yet perfect precision was not achieved by all methods 
(Additional file  1: Figure S6, Table  S14). This higher detection threshold also caused 
recall to drop (< 0.8) in these datasets for all methods except Kraken2, Bracken, and one 
instance of BugSeq V2, each of which maintained perfect recall (Additional file 1: Figure 
S6). This indicates that multiple methods failed to detect several species at the 2% and 
12% abundance levels in Zymo D6300. These effects were mirrored in the genus-level 
analysis with the 0.1% detection threshold (Additional file 1: Figure S7, Table S16).
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Relative abundance estimates

The species-level and genus-level relative abundances are shown in Figs. 7 and 8, respec-
tively. The results of the chi-squared goodness of fit tests (GOF) are reported in Addi-
tional file  1: Tables S17 and S18 and highlighted in Figs.  7 and 8. The L1 scores are 
reported in Table 4 and Additional file 1: Tables S10, S19, S23, and S27. At the species 
level, abundance estimates by the long-read methods and sourmash were more accu-
rate than those produced by short-read methods across all datasets (based on L1 dis-
tances and chi-squared test statistic values). For HiFi ATCC MSA-1003, MetaMaps, 
MMseqs2, MEGAN-LR-prot, and BugSeq-V2 all passed the GOF, and BugSeq-V2 had 
the lowest error. All methods failed the GOF for HiFi Zymo D6331 at the species level 
(which had two species missing from most databases, see "Methods"), but MEGAN-LR-
prot and BugSeq-V2 resulted in the lowest error. For ONT R10 Zymo D6300, mOTUs2, 
sourmash-k51, and BugSeq-V2 passed the GOF. Both BugSeq-V2 and MEGAN-LR-
prot passed the GOF for ONT Q20 Zymo D6300. At the genus level we generally found 
more methods passed GOF for each dataset, except for HiFi Zymo D6331 for which 
only sourmash (k31 and k51) and BugSeq-V2 passed (Additional file 1: Table S18). All 
methods that accurately estimated abundances at the species level also passed the GOF 
at the genus level (Figs. 7, 8). We additionally found Centrifuge (h22 and/or h500) and 

Fig. 7 Species‑level relative abundance estimates for A HiFi ATCC MSA‑1003, B HiFi Zymo D6331, C ONT 
R10 Zymo D6300, and D ONT Q20 Zymo D6300. The theoretical distributions are shown on the left and are 
based on the manufacturer’s specifications. The read counts for all species‑level false positives were grouped 
in a category labeled ‘Other’. For HiFi Zymo D6331, all species assignments within the genera Prevotella and 
Veillonella were counted towards Prevotella corporis and Veillonella rogosae, due to the absence of these 
species from several databases (see "Methods" Section). Asterisks signify methods that failed the chi‑squared 
goodness of fit test (e.g., the abundance estimates were significantly different from the theoretical values)
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MetaMaps passed GOF at the genus level in some datasets in which they failed at the 
species level (Figs. 7, 8). Across all datasets and levels, we generally found that BugSeq-
V2 had the lowest abundance error, followed closely by MEGAN-LR-prot (Additional 
file 1: Tables S17, S18). Across datasets, the proportion of reads assigned to false posi-
tives (‘Other’, Figs. 7, 8) was generally highest for MetaPhlAn3, followed by Kraken2 and 
Bracken.

Analyses of shorter ONT reads

Comparisons of the length-filtered variations of each ONT dataset revealed that shorter 
reads (< 2 kb) negatively impacted taxonomic profiling analyses. For each ONT dataset, 
we created a primary dataset which contained only longer reads (> 2 kb) and a second-
ary dataset which had a large proportion of shorter reads (< 2 kb; see “Methods”). In the 
primary datasets, precision and F-scores were very high for long-read methods and low 
for short-read methods at the 0.001% reads detection threshold. In the secondary data-
sets, precision and F-scores were comparatively lower for the long-read methods and 
were similarly low for the short-read methods (Additional file 1: Figure S8, Tables S19, 
S20). Based on Wilcoxon Signed-Rank tests, the observed differences in precision and 
F-scores between the primary and secondary datasets were not statistically significant. 

Fig. 8 Genus‑level relative abundance estimates for A HiFi ATCC MSA‑1003, B HiFi Zymo D6331, C ONT R10 
Zymo D6300, and D ONT Q20 Zymo D6300. The theoretical distributions are shown on the left and are based 
on the manufacturer’s specifications. The read counts for all genus‑level false positives were grouped in a 
category labeled ‘Other’. Asterisks signify methods that failed the chi‑squared goodness of fit test (e.g., the 
abundance estimates were significantly different from the theoretical values)



Page 29 of 39Portik et al. BMC Bioinformatics          (2022) 23:541  

However, at the 0.1% reads detection threshold we found precision and F-scores were 
substantially lower in the secondary datasets at both the species and genus level, across 
all methods (Additional file 1: Figure S8, Tables S19, S20). These differences in precision 
and F-scores were statistically significant (P < 0.01 for all comparisons). In contrast to 
most methods, BugSeq produced relatively consistent results in precision and F-scores 
between the primary and secondary datasets across the different filtering thresholds.

Relative abundance estimates appeared heavily skewed in the secondary datasets, and 
most methods greatly overestimated the abundance of Limosilactobacillus fermentum in 
the community (Additional file 1: Figure S9). Interestingly, in the secondary datasets the 
abundance error at the species level decreased for the short-read methods but increased 
in the long-read methods. At the genus level, abundance error appeared to increase 
across all methods in the secondary datasets. Based on Wilcoxon Signed-Rank tests, we 
did not find a significant difference in abundance error between the primary and sec-
ondary datasets at the species level, but at the genus level abundance error was signifi-
cantly higher in the secondary datasets (P < 0.05 for the R10 and Q20 comparison). In 
the secondary datasets, nearly every method failed the chi-squared goodness of fit test at 
the species level (21 of 22) and genus level (20 of 22; Additional file 1: Tables S21, S22). 
We found BugSeq and Centrifuge-h22 passed the GOF for the species level of ONT R10 
Short, and BugSeq passed the GOF for ONT R10 Short at the genus level (Additional 
file 1: Tables S21, S22). No methods passed the GOF for ONT Q20 Short at the species 
or genus level.

Analyses of Illumina and artificial short reads

We evaluated the performance of Kraken2, Bracken, Centrifuge-h22, MetaPhlAn3, 
mOTUs2, and sourmash (k31 and k51) for two types of short-read datasets for the ATCC 
MSA-1003 and Zymo D6300 mock communities. We found detection and abundance 
results were highly similar between the Illumina short-read datasets and the “simulated” 
short-read datasets (SR-Sim; which were derived from the long reads). This indicates 
that for short-read methods, the differences in results between the long-read datasets 
and the Illumina short-read datasets are unlikely to be driven by platform-specific or 
confounding effects (such as DNA extraction methods or error profiles). However, the 
fraction of dataset assigned using sourmash was quite different between the Illumina 
(94–96%) and the SR-Sim ONT dataset (62.9–72.6%) for Zymo D6300. The SR-Sim ONT 
was created from the ONT Q20 long reads, and we note sourmash also assigned a com-
parable fraction of reads in the full length ONT Q20 dataset (59–68%). These results 
suggest that error profile impacts sourmash profiling performance.

The precision, recall, and F-score values obtained from the short-read datasets 
strongly resembled those obtained from long reads for both communities (Figs. 9, 10, 
Table 4, Additional file 1: Figure S10, Tables S23–24, S27–28). This overall pattern 
included low precision and high recall for Kraken2, Bracken, and Centrifuge-h22. 
MetaPhlAn3 improved in performance, with high precision and moderate recall, 
comparable to mOTUs2. Sourmash was the top performer in the short-reads data-
sets with perfect recall and high precision (Figs. 9, 10). More stringent filtering (0.1% 
or 1% of total reads) dramatically reduced false positives for Kraken2, Bracken, and 
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Centrifuge-h22, but also negatively impacted recall (Additional file  1: Table  S23), 
and in many cases produced scores that were worse than the long-read scores for 
these method and filtering combinations (Additional file  1: Table  S11, S14). The 
same patterns were present for the genus-level analyses of the short-read datasets 
of ATCC MSA-1003 (Additional file 1: Table S24) and the less complex ZymoD6300 
community (10 species).

The short-read datasets failed to produce accurate relative abundance estimates 
(Fig.  9, Additional file  1: Figures  S11–12, Tables S25–26, S29–30). All short-read 
methods failed the chi-squared goodness of fit test at the species level in both com-
munities, and at the genus level only sourmash-k51 passed the goodness of fit test 
across multiple datasets (Additional file 1: Figure S12).

Fig. 9 Results for the two Illumina short‑read datasets. Precision, recall and F‑scores for the species‑level 
analysis based on a minimum threshold of 0.001% of the total reads for A Illumina ATCC MSA‑1003 
and B Illumina Zymo D6300. Species‑level relative abundance estimates for C Illumina ATCC MSA‑1003 
and D Illumina Zymo D6300. The theoretical distributions are shown on the left and are based on the 
manufacturer’s specifications. The read counts for all species‑level false positives were grouped in a category 
labeled ‘Other’. Asterisks signify methods that failed the chi‑squared goodness of fit test
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Discussion
With decreasing error rates in long reads and the recent introduction of new long-
read classification methods, long reads are increasingly utilized for metagenomic 
applications. We used publicly available mock community datasets to perform a 
critical assessment of taxonomic profiling  and classification methods for long-read 
datasets. We included five long-read methods, five short-read methods, and one gen-
eralized method. While all methods displayed some trade-offs between precision and 
recall, our results suggest that generalized methods (e.g., sourmash) and methods 
designed for long reads performed best.

In our study, we included a mix of short-read classifiers (Kraken2, Centrifuge), short-
read profilers (Bracken, MetaPhlAn3, mOTUs2), a generalized profiler (sourmash), 
and several long-read classifiers (MetaMaps, MMSeqs2, BugSeq, MEGAN-LR-prot, 
MEGAN-LR-nuc-HiFi, and MEGAN-LR-nuc-ONT). The ideal taxonomic classifier or 
profiler should display high precision and recall. We found that the methods examined 
here tended to fall into three broad categories: (1) high precision and moderate recall, 
(2) moderate precision and high recall, and (3) low precision and high recall (Fig. 3A). 
The first two categories provide the best tradeoffs, with the third category displaying 
undesirable properties. Overall, we find that BugSeq, MEGAN-LR-prot, and MEGAN-
LR-nuc provide the best tradeoffs for all long-read metagenomics data. In addition to 
these three, sourmash was the top-performing method for HiFi datasets. Below, we dis-
cuss our findings for short-read, long-read, and generalized methods, including trade-
offs, best practices, and the impact of shorter reads. Finally, we briefly summarize the 
effects of read accuracy on method performance.

Short‑read methods

A majority of short-read methods (Kraken2, Bracken, Centrifuge-h22) assigned a high 
proportion of reads and displayed high recall, but they produced poor abundance esti-
mates. They also recovered a very high number of false positives (15–300 species) and 
consequently had very low precision and F-scores (Figs. 2, 3, 4). False positives were not 
a trivial proportion of assigned reads; they comprised up to 25% of the reads assigned at 
the species level (Fig. 7). We attempted to apply long-read settings to Centrifuge (Cen-
trifuge-h500) to improve detection results. Unfortunately, this setting reduced total read 
assignment and had unpredictable outcomes on precision, recall, and F-scores across 

Fig. 10 Results for the two Illumina short‑read datasets. The average values for A precision and recall, B F1 
scores, and C F0.5 scores for the species‑level analysis based on a minimum threshold of 0.001% of the total 
reads. Error bars represent standard deviation



Page 32 of 39Portik et al. BMC Bioinformatics          (2022) 23:541 

the datasets (Figs. 2, 3, 4). The marker-based profilers had variable performance. Met-
aPhlAn3 displayed low precision and moderate recall, whereas mOTUs2 displayed high 
precision with comparable recall (Fig.  4). Both methods assigned a low percentage of 
reads, which is typical for marker-based mapping methods. Previous studies have shown 
similar results for these methods with short-read datasets [3, 8, 9], but here we demon-
strate the use of long reads does not significantly change these trade-offs.

We attempted to improve the results from short-read methods using various levels of 
filtering. Specifically, we applied different minimum thresholds for detection (0.001%, 
0.1%, and 1% of the total reads) in an effort to reduce false positives and improve preci-
sion. A moderate detection threshold (0.1% total reads) successfully reduced the false 
positive count of species from hundreds to fewer than 15, and without significantly 
reducing recall. However, precision in these methods was still below scores produced by 
the long-read methods without any filtering. A stringent detection threshold (1% total 
reads) greatly improved precision for many short-read methods, but severely impacted 
recall by eliminating detection of many species at lower abundance levels (< 2% abun-
dance). Overall, we found that filtering was necessary to reduce false positives and 
improve precision in the short-read methods. However, none of the filtering strategies 
successfully balanced precision and recall to produce results similar to the long-read 
methods.

We analyzed short read Illumina datasets for two of the mock communities to evalu-
ate if any short-read methods performed differently. We found consistent results across 
short and long-read datasets for Kraken2, Bracken, and Centrifuge (high false positives, 
low precision). For these methods, the outcomes appear to be driven by characteristics 
of the methods themselves, rather than read type. However, we observed an improve-
ment in MetaPhlAn3 (higher precision), indicating this method is potentially sensitive 
to the read type. We could not appropriately evaluate differences mOTUs2 because the 
“long read” analyses consisted of short reads derived from the long reads, meaning the 
inputs for both the short and long-read analyses were highly similar.

Long‑read and generalized methods

Several long-read classification methods showed consistent and favorable characteris-
tics across all datasets. These include MEGAN-LR-prot, MEGAN-LR-nuc (both map-
ping settings), and BugSeq, which displayed medium to high read assignment and very 
high precision (Figs. 2, 5, Table 4). Recall values from these methods differed between 
the staggered abundance and even abundance communities (0.7–0.8 and 1, respectively). 
This difference is explained by the failure to detect species with < 0.02% abundance in the 
staggered community. In contrast to the short-read methods, several long-read meth-
ods estimated accurate species abundances for the complex communities (particularly 
ATCC MSA-1003; Fig. 7). Across all communities, we generally found BugSeq displayed 
the lowest abundance error of any method, followed by MEGAN-LR-prot. Though abun-
dance error was higher for Metamaps, MMseqs2, and MEGAN-LR-nuc, these meth-
ods still performed better than most short-read methods in most cases. We found that 
MetaMaps and MMseqs2 showed high read assignment and precision for one dataset 
(HiFi ATCC MSA-1003), but for all other datasets showed unfavorable qualities which 
resembled many short-read methods (e.g., high false positives and low precision, high 
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recall). This contrasts with a recent study by Marić et al. (2020), who found MetaMaps 
performed better than MEGAN-LR. However, Marić et al. (2020) produced alignments 
for MEGAN-LR using a different method (LAST) and a reduced database, which may 
explain these differences. Several long-read methods displayed high or perfect precision 
(MEGAN-LR-prot, MEGAN-LR-nuc, BugSeq), and this did not change after applying 
a moderate detection threshold (0.1% of total reads). However, we observed a dramatic 
improvement in precision for MMseqs2 and MetaMaps (Additional file  1: Figure S6). 
This was accompanied by a slight reduction in recall, suggesting this filtering strategy 
is beneficial for these methods. A more stringent detection threshold (1% total reads) 
resulted in perfect precision but severely reduced recall for all long-read methods, and is 
not advised. Overall, we found that filtering was not required for many long-read meth-
ods (MEGAN-LR-prot, MEGAN-LR-nuc, BugSeq), and that moderate filtering could be 
used to balance precision and recall for methods with higher false positive rates (Meta-
Maps, MMseqs2).

The generalized method, sourmash, also performed consistently well on most datasets, 
with nearly perfect recall and precision similar to the top performing long-read clas-
sifiers. Sourmash k31 only had one false negative in any dataset: Clostridium perfrin-
gens, which had a theoretical abundance of 0.0001% in Zymo D6331. When sourmash 
gather was run with default fractional scaling (1/1000  k-mers) but without a detec-
tion threshold (any k-mer match is reported), matches were found to 651 Clostridium 
perfringens genomes, with the most k-mer matches to GCA_902166105.1 (Clostrid-
ium perfringens strain = 4928STDY7387913; 220  k-mers, representing approximately 
22,000 bp sequence). This finding suggests that the fractional scaling was sufficient for 
detection, but the match was eliminated during the greedy minimum-set-cover assign-
ment to best-match genomes. Disambiguating extremely low-abundance genomes 
from similar genomes truly present in the community represents a challenge for sour-
mash’s greedy assignment algorithm: most k-mer matches to genomes in the genus 
Clostridium were shared with the Clostridioides difficile genome match (1.5% of Zymo 
D6331), leaving < 10  kb of detected sequence that uniquely matched Clostridium per-
fringens genomes, far below the default threshold for sourmash gather (50  kb). While 
zero-threshold gather is too sensitive (yielding many false positives), setting a moder-
ately lowered detection threshold may improve recall of very low-abundance genomes 
in long-read datasets, particularly as sequencing depth tends to be lower than typical 
short-read datasets, which sourmash has primarily been tested on.

Sourmash displayed high precision, comparable to long-read classification methods. 
The majority of species-level false positives results represented different species in the 
same genus. As k-mer matching is less tolerant of sequence mismatch than alignment 
methods, these FP matches may represent genomic sequence shared across these spe-
cies, but with sequence mismatches in the sequenced metagenome compared with the 
reference species in GenBank.

In terms of dataset utilization, sourmash performed less well for ONT data compared 
with datasets from other platforms, regardless of read length. This, with the observed 
improved performance on ONT Q20 compared with R10.3, suggests that the error pro-
file may reduce exact matching of k31 and k51 k-mers to reference genomes. However, 
sourmash still performed well on ONT community composition and relative abundance, 
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suggesting that ONT datasets provide sufficient non-erroneous k-mers for assignment 
via the minimum-set-cover approach, and that the error profile does not result in profil-
ing bias across taxa.

Best practices and detection limits

Our findings demonstrate the important trade-offs between precision, recall, and detec-
tion limits. Taxonomic methods which have high recall (e.g., they find all the species 
present in a community) also tend to have low precision (e.g., they recover many false 
positives). In our experiment, methods with these characteristics include many short-
read methods (Kraken2, Bracken, Centrifuge-h22, MetaPhlAn3), and several long-read 
methods (MetaMaps, MMseqs2). There is one clear exception to this rule—sourmash 
displays near perfect recall and high precision, particularly in the HiFi datasets (Fig. 3, 
Additional file 1: Figure S2). Sourmash is k-mer-based, similar to Kraken2, Bracken, and 
Centrifuge, but uses k-mers from across the entire dataset, rather than individual reads, 
to find best-match genomes. In this way, it is able to leverage longer-range informa-
tion present in a dataset, though not across reads themselves. By contrast, most other 
methods which have high precision (e.g., no false positives) tend to have lower recall 
(e.g., not all species are detected). In our experiment, this was represented by several 
long-read methods, including MEGAN-LR-prot, MEGAN-LR-nuc, and BugSeq. These 
three methods involve mapping reads to whole-reference databases, and subsequently 
interpreting alignments across the entire length of reads. This strongly suggests that top-
performing methods are those that can utilize long-range information available in long 
reads. Although mOTUs2 displays high precision, its current implementation breaks 
long reads into artificial short reads and eliminates all long-range information, making it 
less desirable for long-read metagenomics.

If precision is the most important aspect of a long-read metagenomics experiment, 
we suggest using MEGAN-LR-prot, MEGAN-LR-nuc, or BugSeq, which do not require 
any additional post-processing or filtering. The choice among them could depend on 
which references will be used (proteins: MEGAN-LR-prot; nucleotide sequences: Bug-
Seq, MEGAN-LR-nuc), computational skills/resource availability (BugSeq is an online 
service platform; the MEGAN-LR workflows require high resources and bioinformatics 
experience), and abundance estimation (BugSeq and MEGAN-LR-prot are considerably 
more accurate than MEGAN-LR-nuc). One additional advantage of MEGAN-LR-prot is 
that it simultaneously assigns functional annotations to genes on reads, providing both 
taxonomic and functional profiles.

There may also be cases where recall is more important for an experiment. For these 
use-cases we recommend using sourmash, which had the highest recall without reduced 
precision. With sourmash, we detected all species down to 0.001% relative abundance 
in the HiFi datasets, with only 2–3 false positives (Table 4, Additional file 1: Table S9). 
While this method appears to have reduced precision with ONT data (Additional file 1: 
Figure S3), the genome-level assignments produced during rapid sourmash profiling 
could be used as candidate genomes for detailed, alignment-based analysis to confirm 
results and reduce false positives [35]. Other long-read methods with high precision 
(MEGAN-LR-prot, MEGAN-LR-nuc, BugSeq) had excellent recall for species with 
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higher abundances. These three methods confidently detected species with 0.1% and 
greater abundance in all the mock communities, with no false positives detected at 
these higher abundance levels. However, the lower detection limit for these three meth-
ods appears to be somewhere between 0.1 and 0.02% relative abundance. An important 
caveat is that these detection limits are based on results from the PacBio HiFi staggered 
communities, which consist of 2–2.5 million reads and a minimum detection count of 
20–25 reads (Table 3).

Finally, it is important to consider the impact of novel sequences on performance. All 
species in our study have suitable representation in the databases used (but see cave-
ats for Zymo D6331), and we therefore did not investigate this topic explicitly. How-
ever, we propose three features may be important for working with novel diversity in 
empirical samples. First, the LCA algorithm provides beneficial behavior in ambiguous 
cases, preventing mis-assignments at the species level by making assignments to higher 
taxa. Second, protein-based alignments may be more advantageous than nucleotide 
alignments or k-mer matches for highly distant sequences. Finally, methods which uti-
lize large, comprehensive databases should provide advantages over smaller or marker-
specific databases. For example, utilizing NCBI nt or nr allows for the inclusion of new 
sequences that are continuously deposited in public databases. We propose the effects 
of novel sequences would be a useful topic for future study, particularly for long-read 
datasets.

Effects of shorter reads

Our comparisons of length-filtered datasets strongly suggest that including shorter long 
reads (< 2 kb) can have an adverse effect on taxonomic profiling. We found that data-
sets with many shorter reads had significantly lower precision and F-scores compared 
to datasets containing only longer reads. We also found that the inclusion of shorter 
reads heavily skewed relative abundance estimates, which are based on read counts in 
our experiment. We acknowledge that calculating abundance estimates from the total 
number of aligned bases could potentially mitigate this effect. More importantly, we 
found that precision, F-scores, and relative abundances were affected across all meth-
ods, suggesting these shorter read lengths may be a “gray” zone for both classes of meth-
ods. For example, some long-read methods require the presence of multiple genes for 
the LCA algorithm to function well (MMSeqs2, MEGAN-LR-prot). Reads that are < 2 kb 
are unlikely to satisfy this criterion. Therefore, we strongly recommend filtering these 
shorter long reads before attempting taxonomic classification. This can be achieved bio-
informatically after sequencing, but performing size selection during library preparation 
can also greatly reduce the number of shorter fragments that are sequenced.

Effects of read accuracy

We included mock community datasets sequenced with PacBio HiFi and ONT, allow-
ing for limited comparisons of methods across sequencing technologies. One noticeable 
difference occurs in read utilization for methods that perform translation alignments to 
protein references and exact k-mer matching. For example, more reads were assigned 
in HiFi versus ONT datasets for MMseqs2 (94–99% vs. 46–67%) and to a lesser extent 
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MEGAN-LR-prot (71–74% vs. 60–62%). This result could be related to differences in the 
mock communities sequenced, however the species in all three mock communities are 
expected to have adequate representation in the databases (except two species in HiFi 
Zymo D6331). It is more likely that differences in error profiles explain these results, 
as even slightly higher error rates are expected to negatively impact translation align-
ment (broken reading frames, premature stop codons). This is idea is supported by two 
observations. First, this effect was more pronounced for MMseqs2, which uses Prodi-
gal for translation rather than a frameshift-aware method such as DIAMOND. Second, 
the ONT data include an R10.3 dataset with Guppy basecalling (mean = Q10.5; reported 
at data source) and the newest “Q20” chemistry release with Bonito v0.3.5 basecalling 
(expected modal quality ~ Q20), and we found fewer reads were assigned in the R10.3 
dataset versus the Q20 dataset for MMSeqs2 (46% vs. 67%, respectively). We note the 
same pattern was present for Centrifuge-500, which requires 500 matched k-mer bases 
to the reference; read assignment improved dramatically from ONT R10.3 to Q20 (1% 
vs. 53%, respectively). This result also occurred for sourmash, another k-mer-based 
method. Here, read assignment improved from ONT R10.3 to Q20 (41% vs. 68% for 
sourmash-k31; 26% vs. 59% for sourmash-k51). However, despite the improvement in 
accuracy for the ONT Q20 dataset, it still had lower read assignment for protein align-
ment methods and sourmash as compared to both HiFi datasets (Fig. 2). The HiFi ATCC 
and Zymo datasets are more accurate; all reads are > Q20 and the median scores are Q36 
and Q40. Together, these results suggest that read quality remains critical for high-qual-
ity taxonomic profiling with long-read methods.

Different mock communities were available for PacBio HiFi (ATCC MSA-1003, Zymo 
D6331) and ONT (Zymo D6300), which prevents a direct comparison of detection met-
rics (precision, recall, and F-scores) and detection limits across sequencing technologies. 
The mock community sequenced with ONT is simpler than the HiFi mock communi-
ties in terms of the total number of species (10 vs. 17/20) and relative abundances (even 
vs. staggered). The simpler mock community design also prevented us from estimating 
recall and detection limits for lower abundance species with ONT data; our conclusions 
about detection power at low abundances are based exclusively on PacBio HiFi data. In 
their study, Marić et al. [17] found that ONT pseudo-mock datasets displayed lower clas-
sification accuracy, higher false positives, and higher relative abundance error relative to 
PacBio pseudo-mock datasets. However, the pseudo-mock datasets for ONT and PacBio 
included in their study contained different numbers of species and abundance designs, 
meaning they were not direct comparisons. We caution against this type of approach, 
and instead propose that an objective comparison of detection metrics should be per-
formed by sequencing the same mock community standard using both technologies. We 
also propose that a mock standard with high species diversity and staggered abundances 
will provide the most meaningful information for future benchmarking studies.

Conclusion
With increasing quality and prevalence of long-read datasets, it is critical to assess the 
utility of these data for taxonomic classification of metagenomic samples. Here, we 
evaluated several profiling and classification methods for mock communities sequenced 
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with PacBio HiFi and ONT. We also included Illumina short read data for these com-
munities as a comparison. Our results demonstrate there are clear precision and recall 
trade-offs associated with each method. We found that several popular short-read meth-
ods (Kraken2, Bracken, Centrifuge) resulted in many false positives, particularly at lower 
abundance levels. Filtering can increase precision for these methods, but comes at the 
cost of severely reducing recall. Importantly, we determined this pattern of low preci-
sion and high recall occurred for these methods using both long-read and short-read 
datasets. This suggests the methods themselves, rather than differences in read lengths 
or platform, are driving these outcomes. By contrast, we found sourmash and several 
long-read classifiers displayed high precision and recall without any filtering neces-
sary. These long-read classifiers are alignment-based, and include BugSeq (nucleotide 
alignments), and MEGAN-LR using translation alignments (DIAMOND to NCBI nr) 
or nucleotide alignments (minimap2 to NCBI nt). Sourmash has the highest detec-
tion power, finding all species down to 0.001% relative abundance with minimal false 
positives. Our comparisons between long-read sequencing technologies indicate that 
read quality remains critical for taxonomic profiling performance. We found that read 
accuracy impacts the success of methods relying on protein predictions or exact k-mer 
matches. We also found a high proportion of shorter long reads (< 2 kb) can result in 
lower precision and inaccurate abundance estimates, relative to length-filtered datasets. 
However, we emphasize that for any given mock community, the long-read dataset (ana-
lyzed with sourmash or any long-read method) produced significantly better results than 
the short-read datasets. Methods which utilize long-range information present in long-
read datasets provide clear improvements in taxonomic profiling and abundance estima-
tion, and demonstrate a clear advantage over short-read methods. To continue studying 
these effects, we propose that cross-platform sequencing of more complex standardized 
mock communities would be useful for future benchmarking studies.
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