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Quantitative Analysis of Histological Tissue Image
based on Cytological Profiles and Spatial Statistics

Young Hwan Chang, Guillaume Thibault, Vahid Azimi,
Brett Johnson, Danielle Jorgens, Jason Link, Adam Margolin, Joe W. Gray

Abstract— The cellular heterogeneity and complex tissue
architecture of most tumor samples is a major obstacle in
image analysis on standard hematoxylin and eosin-stained
(H&E) tissue sections. A mixture of cancer and normal cells
complicates the interpretation of their cytological profiles. Fur-
thermore, spatial arrangement and architectural organization
of cells are generally not reflected in cellular characteristics
analysis. To address these challenges, first we describe an
automatic nuclei segmentation of H&E tissue sections. In the
task of deconvoluting cellular heterogeneity, we adopt Land-
mark based Spectral Clustering (LSC) to group individual
nuclei in such a way that nuclei in the same group are
more similar. We next devise spatial statistics for analyzing
spatial arrangement and organization, which are not detectable
by individual cellular characteristics. Our quantitative, spatial
statistics analysis could benefit H&E section analysis by refining
and complementing cellular characteristics analysis.

I. INTRODUCTION

In the task of grading or diagnosis of cancer in histopathol-
ogy images, the identification of certain histological struc-
tures such as cancer nuclei, lymphocytes, and glands is
essential. For example, cell counts may have diagnostic
significance for some cancerous conditions [1], [2]; a low
Gleason score means that the cancer tissue is similar to
normal prostate tissue and the tumor is less likely to spread.
In addition, in [3], the authors found that stromal features
are significantly associated with survival and these findings
implicate stromal morphologic structure as a previously
unrecognized prognostic determinant for breast cancer.

Therefore, the shape, size, extent and other morphological
appearance of these structures can be used as indicators for
presence or grade of disease and thus, it is important to
have the ability to automatically identify these structures.
In the past decade, the development of generic and robust
cell segmentation methods has intensified [4]. Also, many
automated cell image analysis methods have been proposed
which allow accurate identification and quantitative measure-
ment of cells’ features [5]. Despite these advances, general
cellular heterogeneity has remained a significant bottleneck
in automated cell image analysis. Recently, many machine
learning approaches have been used for automated cell
classification by selecting and combining multiple features
[3], [5] but they require the segmented cells assessment by
a pathologist visually examining individual cells, which is
time-consuming and often infeasible for large-scale studies.
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Here we describe our approach for quantitative analysis
on H&E tissue sections: (a) an automatic unsupervised
segmentation, (b) measurement of multiple features for indi-
vidual nuclei, (c) effectively clustering them based on their
measured features and (d) analyzing the spatial arrangement
and organization based on spatial statistics which has not
previously been considered. Unlike other approaches, our
method is fully automatic and requires no label information.
We validate the proposed segmentation algorithm by com-
paring segmentation result to the ground truth immunoflu-
orescence marker (DAPI) and also demonstrate that spatial
statistics could complement cellular characteristics analysis
by distinguishing different spatial arrangements along the
different cell types.

II. RELATED LITERATURE

In general, the analysis of H&E sections can be divided
into mainly two different approaches [1], [2]: some re-
searchers advocate nuclei segmentation and classification;
other groups focus on patch level analysis (e.g., small re-
gions) for tumor representation.

A. Local, Structural Segmentation

The problem of cell segmentation has received increasing
attention in past years and several automated cell segmen-
tation methods have been proposed [4]. Most methods use
a few basic algorithms for cell segmentation such as inten-
sity thresholding, filtering, morphological operations, region
accumulation or deformable models [2]. The majority of
these approaches treat microscopy images as general natural
images. Also, methods proposed in recent times are often
merely new combinations of the existing approaches, but
these approaches are limited to a specific application.

B. Large Scale (patch-level) Analysis

Some researchers focus on patch level analysis for tumor
representation and classification of histology sections. Image
patch classification is an important task in many different
medical imaging applications. For example, in [6], the au-
thors propose the use of image features for discriminating
epithelium and stroma in histological sections. In [7], the
authors perform image patch classification to differentiate
various lung tissue patterns. These methods are mostly
focused on feature design including texture features, object-
level features, and graphs features. Also, various classifiers
(Bayesian, k-nearest neighbors, support vector machine, etc.)
are investigated in a supervised fashion with labeled data.
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III. METHOD

A. Nuclei Segmentation

The H&E staining method colors cells nuclei blue by
hematoxylin, and the nuclei staining is followed by counter-
staining with eosin, which colors other structures in various
shades of red and pink [8]. Thus, each pixel has intensity
(R,G,B) and represents a part of morphological features. In
order to segment nuclei, we need to extract useful morpho-
logical features from the image and then cluster individual
pixels based on their features. To do so, we use a set of
Gabor filters with different frequencies and orientations [9],
which are particularly appropriate for texture representation
and discrimination, i.e., edge detection in image processing.

We stack various features such as intensities and Gabor
filters’ impulse responses where these features can be chosen
by users. Once we map each image pixel to a point in an
n-dimensional feature space as shown in Figure 1(left), each
pixel is enhanced by chosen features and then, by clustering
neighboring pixels which have similar features (i.e., k-means
clustering), one can differentiate between foreground and
background, or between different tissues and cells or nuclei.
Thus, nuclei segmentation can be effectively performed by
partitioned groups. Finally, we can also exclude unusual
segmented parts based on cytological profiles described in
the next section.

B. Cytological Profiling and Clustering

Once we segment individual nuclei in the H&E section
based on the pixel level, we can extract cytological profile
for individual cells. This cytological profile consists of a set
of numbers that describe the cellular characteristics including
size, nucleus shape, the intensity and texture of various
stains, and thus it can be used for classifying cellular types.
For example, in Figure 1(right), different nuclei classes show
various textural and morphological characteristics. To obtain
morphological characteristics, we measure various features
including area, major/minor axis length, perimeter, equiv-
alent diameter, shape indices (eccentricity, Euler number,
extent, solidity, compactness, circularity, aspect ratio, etc.)
and intensity [5]. Combining these features derives high-
dimensional feature vector to describe the characteristics of
individual nuclei.

Once we measure these features from the individual nuclei,
we use a Landmark-based Spectral Clustering (LSC) [10]

Fig. 1. (left) Conceptual diagram of nuclei segmentation (right) Intratu-
moral heterogeneity: examples of different classes of cell nuclei (tumor cells
/ normal cells / lymphocytes).

for large scale clustering. Let X = [x1, · · · , xN ] ∈ Rm×N

be the data matrix where xi represents a feature vector
corresponding to the i-th nucleus, m represents the dimen-
sionality of a feature vector xi and N is the number of
segmented nuclei. By using sparse coding [11], one can find
two matrices: a set of basis vectors U ∈ Rm×p and the
sparse representation with respect to the basis for each data
point Z ∈ Rp×N whose product can best approximate X ≈
UZ. However, solving the optimization problem with sparse
constraint is very time consuming and the high computational
complexity has limited its applicability. For example, the
histological images we work with consist of tens of thousand
or hundreds of thousands nuclei. On the other hand, LSC [10]
selects a few representative data points as the landmarks so
one can treat the basis vectors as the landmark points from
a data set. Then, we represent the original data points as
the linear combinations of these landmarks and the spectral
embedding of the data can be efficiently computed with
the landmark-based representation. Thus, we can cluster
individual segmented nuclei into different types based on
their characteristics.

C. Spatial Statistics [12]

In the previous section, we only use individual cytoprofiles
for clustering them into different cellular types. Since spatial
arrangement and architectural organization of nuclei is gen-
erally not reflected in cellular profiles, this rich information
is underused. In addition, biological heterogeneities (e.g.,
cell type), technical variations (e.g., staining, fixation) and
high redundancy in the feature representations can degrade
the performance of classifier [13]. To address this issue, we
use spatial statistics analysis which complements cellular
characteristics analysis and is aimed at characterizing spatial
distributions across different cell types such as normal, tumor
cells or lymphocytes.

Spatial statistics or spatial pattern analysis is concerned
with statistical methods that explicitly consider the spatial
arrangement of the data [12]. The observations might be
spatially correlated (in two dimensions), which should be
accounted for in the analysis. A spatial point pattern (S) is
a set of point locations in a study regionR and the term event
can refer to any spatial phenomenon that occurs at a point
location. The benchmark model for spatial point patterns
is called complete spatial randomness (CSR). Under CSR,
events are distributed independently and uniformly over the
study region as shown in Figure 2 (a).

We look at the behavior of spatial patterns in terms of
two properties: first-order properties measure the distribution
of events in a study region (spatial density) and second-
order properties measure the tendency of events to appear
clustered, independently, or regularly-space (interaction be-
tween events). We investigate the second-order properties by
studying the distances between events in the study region:

1) Nearest neighbor distances - G and F distributions:
The G-function measures the distribution of distance from
an arbitrary event to its nearest neighbors (nearest event).
The empirical cumulative distribution function for the event-
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Fig. 2. Examples of spatial point patterns and comparability of a point
process with CSR: (a) CSR point process (b) cluster point pattern (c) point
pattern exhibiting regularity. Under CSR, an event has the same probability
of occurring at any location in R, and events neither inhibit (i.e., regularity)
nor attract each other (i.e., clustering) (d-g) G, F , K and L- distributions.

event distances w measures the distribution of distances from
an arbitrary event to its nearest neighbors:

Ĝ(w) =

∑n
i=1 Ii
n

, where Ii =

{
1 if di ∈ {di : di ≤ w,∀i}
0 otherwise

where di = minj{dij ,∀j 6= i ∈ S}, i = 1, ..., n. Under CSR,
the value of the G-function becomes G(w) = 1 − eλπw

2

where λ is the mean number of events per unit (intensity).
The comparability of a point process with CSR can be
assessed by plotting the empirical function Ĝ(w) against the
theoretical expectation G(w) as shown in Figure 2 (d). For
instance, for a clustered pattern, observed locations should be
closer to each other than expected CSR and thus we would
expect that Ĝ(w) would climb steeply for smaller values of
w and flatten out as the distances get larger.

The F -function measures the distribution of all distance
from an arbitrary point k in the plane to the nearest observed
event j:

F̂ (x) =

∑m
k=1 Ik
m

, where Ik =

{
1 if dk ∈ {dk : dk ≤ x,∀k}
0 otherwise

where dk = minj{dkj ,∀j ∈ S}, k = 1, ...,m, j = 1, ..., n.
Under CSR, the expected value is also F (x) = 1 − eλπx2

.
When we examine a plot of F̂ (x) (Figure 2 (e)), the opposite
interpretation holds. For example, for a clustered pattern,
observed locations j should be farther away from random
points k than expected under CSR.

2) K,L distributions: A homogeneous set of
points in a study region R is distributed such that

approximately the same number of points occurs in
any circular region of a given area. A set of points
that lacks homogeneity is spatially clustered. A simple
probability model for spatially homogeneous points
is the Poisson process in R with constant intensity
function. Then, the K-function is defined as K̂(d) =
λ−1E[#extra events within distance d of an arbitrary event]
where λ is a constant representing the intensity over the
region and E[·] denotes the expected value. For a CSR spatial
point process, the theoretical K-function is K(d) = πd2.
Figure 2 (f) shows the function K̂(d) for the data. Note
that it is above the curve for a random process (e.g.,
K̂(d) > πd2) indicating possible clustering. Alternatively,
if our observed process exhibits regularity for a given value
of d, then we expect that the estimated K-function will be
less than πd2.

Another approach, based on the K-function, is to trans-

form K̂(d) using L̂(d) =

√
K̂(d)
π − d. Peaks of positive

values in a plot of L̂(d) would correspond to clustering and
negative values indicating regularity, for the corresponding
scale d. In the plot of L̂(d) (Figure 2 (g)), we see possible
evidence of clustering at all scales.

IV. EXPERIMENTS AND RESULTS

A. Nuclei Segmentation

In order to quantitatively evaluate the segmentation pro-
vided by the proposed method, we compare the segmenta-
tion result to the ground truth immunofluorescence marker
(DAPI). Figure 3 reports the validation of segmentation
result. We also calculate true positive rate (sensitivity) =
0.8070, true negative rate (specificity) = 0.9437, accuracy
rate = 0.9249 among 7924 nuclei where we calculate them
based on pixel level. Also, the Dice coefficient1 is 0.7474.

1A measure of overlap between two regions, commonly used for evalu-
ation of segmentation techniques, D(X,Y ) = 2

|X∩Y |
|X|+|Y | .

H&E DAPI 

Segmentation Overlay 

Fig. 3. Validation of segmentation result with matched immunofluo-
rescence: H&E stained section, DAPI (ground truth), segmented nuclei
(Segmentation) and overlapped region (Overlay, red color: perfect match,
green: only H&E, blue: only DAPI). Note that we only show small region
due to the space limit.

1177

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 06,2024 at 18:57:28 UTC from IEEE Xplore.  Restrictions apply. 



1 2 3 4 5 6

Cluster

0

0.1

0.2

0.3

0.4

0.5

0.6

C
o

v
e
re

d
 A

re
a
 R

a
ti

o

Tumor Cell
Normal Cell
Lymphocyte

Fig. 4. A covered area ratio subjected to a particular cluster in each H&E
stained section. Within the same cluster, cytoprofiles of segmented nuclei
show similar characteristics.
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Fig. 5. The segmented nuclei (color-coded according to their clusters)
and the second-order spatial statistics (L-function): (left) tumor cell region
(cluster 2,3) (middle) normal cell region (cluster 3,4) (right) lymphocyte
region (cluster 2,5). Not surprisingly, higher nuclei clustering was found
in tumor region compared with normal cell or lymphocyte region, possibly
due to the aggregated patterns of tumor cells. Note that we only show two
dominant clusters for each region so there are some nuclei which are not
color-coded.

B. Quantitative Analysis based on Cellular Characteristics
and Spatial Statistics

Once we segment individual nuclei, we extract cellular
characteristics from the tumor cell / normal cell / lymphocyte
regions as shown in Figure 1(right). In order to charac-
terize different classes of nuclei (among 5431 nuclei), we
choose 6 clusters and run LSC. Figure 4 shows a population
(covered area ratio) of segmented nuclei subjected to a
particular cluster in each H&E section respectively. For
example, we observe that nuclei corresponding to cluster 5
and cluster 4 are distinctively dominant in lymphocyte region
and normal cell region respectively. However, one cannot
perfectly discriminate different classes of nuclei based on
cellular characteristics alone. For instance, although nuclei
corresponding to cluster 3 are dominant in tumor region, they
also exists in normal cell region. Thus, there is no unique
cluster representing a specific cell type (i.e., tumor) here.

In order to complement cellular characteristics analysis,
we characterize a spatial distribution of dominant nuclei type
along the different regions (tumor / normal cell / lymphocyte)
and observe that tumor cells are differentially distributed.
Figure 5 (top row) shows distribution of individual seg-
mented nuclei which we have color-coded according to their
clusters (blue: cluster 2, green: cluster 3, red: cluster 4,
magenta: cluster 5) and Figure 5 (bottom row) shows the
second-order spatial statistics of selected nuclei. Here, we

look at the pattern at several scales, i.e., using L̂-function
since in general, both Ĝ(w) and F̂ (x) consider the spatial
point pattern over the smallest scale which can be a major
drawback, especially with clustered patterns where nearest-
neighbor distances are very short relative to other distance in
the pattern. For a tumor region, we choose dominant types
(e.g., cluster 2 and 3) and calculate L̂-distribution. As we
see a cluster behavior visually, we see strong evidence of
clustering in the plot of L̂(d). On the other hand, for both
normal cell region and lymphocyte region, we do not see any
point pattern exhibits clustering behavior.

V. CONCLUSIONS

We have described a simple, but effective methodology for
quantitative analysis for H&E section. We demonstrate the
performance of the segmentation algorithm by comparing the
result to ground truth data (DAPI). Also, we demonstrate that
spatial statistics analysis could benefit H&E section analysis
by complementing cellular characteristics analysis.

REFERENCES

[1] M. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and
B. Yener, “Histopathological image analysis: A review,” Biomedical
Engineering, IEEE Reviews in, vol. 2, pp. 147–171, 2009.

[2] H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for
nuclei detection, segmentation, and classification in digital histopathol-
ogy: A review - current status and future potential,” Biomedical
Engineering, IEEE Reviews in, vol. 7, pp. 97–114, 2014.

[3] A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen,
M. J. van de Vijver, R. B. West, M. van de Rijn, and D. Koller,
“Systematic analysis of breast cancer morphology uncovers stromal
features associated with survival,” Science Translational Medicine,
vol. 3, no. 108, pp. 108ra113–108ra113, 2011.

[4] E. Meijering, “Cell segmentation: 50 years down the road [life
sciences],” Signal Processing Magazine, IEEE, vol. 29, pp. 140–145,
Sept 2012.

[5] T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J.
Silver, J. K. Grenier, A. B. Castoreno, U. S. Eggert, D. E. Root,
P. Golland, and D. M. Sabatini, “Scoring diverse cellular morphologies
in image-based screens with iterative feedback and machine learning,”
Proceedings of the National Academy of Sciences, vol. 106, no. 6,
pp. 1826–1831, 2009.
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