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ABSTRACT OF THE THESIS

Permanent Magnet-Based Localization for Growing Robots in Medical Applications

by

Connor Watson

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Tania Morimoto, Chair

Growing robots that achieve locomotion by extending from their tip, are inherently

compliant and can safely navigate through constrained environments that prove challenging for

traditional robots. However, the same compliance and tip-extension mechanism that enables this

ability, also leads directly to challenges in their localization and control. In this thesis, we present

a low-cost, wireless, permanent magnet-based method for localizing the tip of these robots in 5

degrees of freedom. A permanent magnet is placed at the robot tip, and an array of magneto-

inductive sensors is used to measure the change in magnetic field as the robot moves through

the workspace. We develop an approach to localization that combines analytical and machine

learning techniques and show that it outperforms existing methods, particularly for localizing

ix



fast moving magnets. We also measure the position error over a 50 cm × 50 cm workspace with

different magnet sizes to show that this approach can accommodate growing robots of different

scales. Finally, we demonstrate our tracking in real time by growing a 12 mm diameter robot

through two different, constrained environments. On average for these experiments, our method

of localization achieves a position error of 3.0±1.1 mm and an orientation error of 6.5±5.4◦.
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Chapter 1

Introduction

The field of robotics has seen significant advancements over recent years, due to tech-

nological contributions spanning multiple disciplines. These developments have dramatically

increased the capabilities of robots and have shifted the paradigm of robotics research from one

concerned with the study of robots in structured, static environments–such as the factory floor–to

one concerned with their interactions in dynamic and sometimes uncertain surroundings–such

as the surgical theater. This new research frontier presents significant challenges regarding all

aspects of robotics–from design to control. For instance, while robots have been successfully

built and programmed to reliably accomplish assembly tasks in the automotive industry, when

faced with the slightly more general task of sorting random warehouse goods into individual

containers, robots are unable to approach human performance (see the results of the 2015

Amazon Picking Challenge [7]). The reason for this performance disparity is the environmental

uncertainty in the later case. Because the environment is not entirely known beforehand, it is

not immediately clear what kind of robot is best suited to the task.

Similar difficulties emerge in the study of surgical robotics as well. For example, anatom-

ical variability between patients can make it challenging to design instruments or manipulators

that work effectively for a broad range of body types and procedures. Real-time imaging,

obtained through methods like ultrasound, can be imprecise and corrupted by noise [53]. The

anisotropic stiffness of human tissue and its hard-to-model surface properties make it difficult
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to accurately predict robot-tissue interactions [33]. Further, organs are not fixed in place and

may move during an operation, changing the environment in real time. In addition to these

challenges, surgical robots face even more demanding constraints posed by the medical environ-

ment itself [55]. Oftentimes these robots are targeted for use in minimally invasive procedures,

meaning that the robot must be able to operate in a highly confined and fragile environment

that is out of the direct line of sight of the clinician. Because it is challenging to ensure safety

in such a scenario, most of the robotic surgery cases to date have been for procedures that

could be accomplished with traditional laparoscopic tools and require the robot to be under the

direct control of a highly trained surgeon at all times [46]. Despite these limitations, robotic

surgery has already proved useful and sees increasing adoption by medical professionals as the

technology develops. It allows for safer execution of existing techniques (see [39] for example)

and in some cases even enables entirely new procedures [40]. Robots have great potential to

continue to improve and extend the capabilities of modern medicine, but in order to do so, they

must be reliably safe, even when faced with uncertainties.

Consequently, researchers have begun exploring design alternatives to traditional rigid-

link robots that may be more suited to delicate tasks, such as surgery. In particular, soft robots,

which are primarily fabricated out of compliant materials, offer a promising alternative. These

robots are able to adapt to their surroundings by physically deforming their own bodies in

ways that impart smaller forces on the surrounding environment as compared to rigid robots.

These smaller forces make them inherently safer than rigid robots and ideal candidates for

use in medical applications [27]. Another design alternative that has been explored is that of

the continuum robot. Continuum robots are “snake-like” robots typically consisting of a long,

flexible backbone that can be dexterously manipulated to curve and conform around obstacles

in their paths [45] . The infinite degrees of freedom they posses in the continuously varying

curvature of their backbones allow them to navigate highly restricted environments, as in the

human body, in ways that would be impossible for rigid robots. Finally, growing robots, also
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known as everting or tip-extending robots, are an example of a subclass of both soft robots as

well as continuum robots. These robots consist of a thin-walled, hollow tube that is inverted

inside itself, such that when pressurized, the material everts from the tip of the robot, effectively

causing the robot to grow [16]. Like continuum robots, growing robots are able to traverse

difficult paths by conforming around obstacles in their paths and like soft robots, growing

robots are made of compliant materials, meaning they tend to impart smaller forces on their

surroundings than rigid robots. This combination of properties makes them especially promising

candidates for surgical procedures, which can involve working in conditions that are both highly

constrained and fragile, for example in the vasculature of the human brain.

With all of these designs proposed to improve safety however, there comes a trade-off. In

general, much of the theory, design methodology, and hardware developed for traditional robots

cannot be applied to these new robots. As such, it is necessary to develop methods for fabrication,

modelling, and control that accommodate the new physics of compliant robots. Furthermore, in

order for these robots to be used in a medical setting, the newly developed methods must also

adhere to the constraints posed by the surgical environment. Many researchers have already

devoted significant effort to the study of continuum and soft robots for surgical applications, but

efforts with regards to growing robots are still in their preliminary stages. This thesis focuses

on solving some of the fundamental challenges in robotics for growing robots–specifically the

incorporation of sensing into growing robots as well as localization of the robot’s tip. The

approach detailed below is wireless, low-cost, and suitable for use in a surgical procedure.

1.1 Soft Robots

Traditionally, robots have been fabricated with rigid materials connected at discrete

joints because this allows for straightforward design, modelling, and control. Often, however,

biological systems outperform rigid robots in tasks like manipulation and locomotion. Conse-

quently, some researchers have begun designing robots with compliant structures, inspired by
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nature, in the attempt to improve robotic performance in these challenging areas (see Fig. 1.1 for

an example). Though there is not a canonical definition of “soft” in the context of robotics, Rus

et. al capture the intent of the word by defining a soft robot to be one that is primarily composed

of material with Young’s moduli in the range of soft biological materials (104–109 Pa) [49].

Figure 1.1. This figure, which originally appeared in Shih et al. [54], illustrates the inherent
safety of soft robot designs–even if there are inaccuracies in the robot’s estimation of the pose
of the light bulb or its own end-effector, it is less likely to damage the light bulb because the low
stiffness materials out of which its gripper is fabricated can compensate for an overly-aggressive
grip.

Examples of soft robot designs explored to date span a range of applications. In [10],

Deimel and Brock explored the use of pneumatic actuation to control a soft gripper, while

Amend et al. studied granular jamming for a similar mechanism in [2]. Marchese et al., Onal

and Rus, and Tolley et al. built robots mimicking the locomotion of fish, snakes, and quadrapeds

in [28], [36], and [64], respectively. Soft wearables targeting medical applications have been

explored in [38] and [32]. For a more comprehensive review, see [49]. While these applications
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demonstrate some of the utility of soft robotics, there are remaining research challenges to

address before unlocking their full potential. The soft materials that these robots leverage to

enable their novel capabilities are much less studied as compared to rigid materials, meaning

that there is an open area of research regarding fundamental problems in soft robotics that

already have rigid-based solutions. Such problems include how to best design and place soft

sensors and actuators, how to model forward and inverse kinematics and dynamics, and how to

implement control laws that take full advantage of the robot’s material properties.

1.2 Continuum Robots

The origins of continuum robots are also biologically inspired. The impressive ways

in which animals like snakes and cephalopods perform locomotion and manipulation tasks

has motivated researchers to build robots capable of similar abilities. The resulting robots

have manipulators with a continuous curvature from their proximal to distal ends as compared

to traditional robots which have a sharp discontinuity in curvature at each of their joints.

Subsequently, this continuity tends to distribute the effects of actuation and environmental

interaction along the entire length of the robot [45]. Accordingly, continuum robots are able to

compensate for obstacles they contact in their surroundings by bending around them [67].

Early research efforts in this area attempted to directly mimic natural systems– like

the underwater eel robot described by McIsaac and Ostrowski in [31] or the “Air-Octor” arm

studied by McMahan et al. in [30]. But more recently, as minimally invasive laparoscopic

procedures have come to dominate much of modern surgery, continuum robots have emerged

as a promising solution for surgeons that need to be able to access hard to reach areas in the

body through small openings. Examples of such medically focused continuum robots are the

concentric tube robots, originally developed by Dupont et al. [12] and Webster et al. [66], as

well as those with tendon-driven mechanisms like the one studied by Camarillo et al. (depicted

in Fig. 1.3) in [5]. Some commercial robotic surgery platforms have even begun to incorporate
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Figure 1.2. This figure, which originally appeared in Camarillo et al. [5], depicts a tendon
driven continuum manipulator. These types of robots are unique in that they possess infinite
degrees of freedom in the continuously varying curvature of their flexible backbones.

continuum elements into their designs as well (for example the da Vinci SP by Intuitive [43]

and the Flex Robotic System by Medrobotics [60]).

While many groups have made significant progress with regards to the modelling ([21]

[47] [65]) and control ([42] [67] [22]) for these robots, the practical application of their methods

remains limited because the vast majority of this work does not account for uncertain and

distributed forces on the robot from its environment nor does it address how to incorporate

physical sensors into the robot body. Both the modelling and sensing questions only become

more complex when the continuum robot also happens to be made of soft materials, because

although the robot softness makes it safer, soft materials in general cannot be described by
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simple elasticity models and they make it difficult to integrate sensors with non-similar stiffness.

It is important for researchers to continue to try to address these challenges in order to increase

use of these robots in the medical community.

1.3 Growing Robots

Growing robots represent an emerging subclass of both soft and continuum robots that

has proved particularly useful in constrained and extremely fragile environments [24] [56].

Growing robots posses a length to diameter aspect ratio that is similar to continuum robots and

are likewise flexible along their length–allowing them to naturally conform to obstacles in the

environment [15]. Because the materials used to fabricate growing robots are themselves quite

compliant, growing robots also exhibit the same small impact on their environment that soft

robots do. Further, the nontraditional method by which growing robots achieve locomotion

actually makes these robots even less taxing on their surroundings. Because the material of the

growing robot does not move relative to its surroundings after it everts, the forces it transmits to

its environment are small even compared to other soft robots.

These robots have the potential for use in a wide variety of applications. For example,

Luong et al. developed a robot capable of underwater eversion for minimally invasive study

of coral reefs [24]. Slade et al. detailed the design and testing of a soft, growing catheter

for surgical applications [56]. And Sadeghi et al. developed a robot targeted for applications

involving soil penetration [50]. These robots have even been used to deploy reconfigurable

antennas [3] and to explore an archeological site [6]. Before the capabilities of these robots can

be extended further however, the same research challenges that exist for soft and continuum

robots in general must be addressed for growing robots. For example, closed-loop control, and

therefore sensor information about the robot’s state, is often necessary to overcome the effects

of environment interactions, which can change the shape of the robot [41] [26].

Medical applications, in particular, represent scenarios where accurate models and state
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Figure 1.3. This figure depicts a growing robot at different stages of eversion. As the robot
is pressurized, material extends from its tip, effectively causing the robot to grow. After
the material is everted, it no longer moves relative to its surroundings, resulting in minimal
transmission of shear forces to the environment during robot locomotion.

information are critical to ensure safety and efficacy, yet sensing proves even more challenging

due to a number of operational constraints. In addition to the relatively small size requirements

for many medical robots, maintaining a hollow access channel can be important for delivering

surgical tooling or therapy to the target location. It is therefore important that any added sensors

do not significantly occlude the center channel by either requiring wires to run through the

length of the robot or by requiring an attachment method, such as a cap, that covers the robot tip

[6]. This work presents a method for localizing the tip of these growing robots that is accurate,

adheres to the constraints described, and is straightforward to implement for applications where

the setup of external sensors is feasible.
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1.4 Sensing for Continuum Robots

The problem of state estimation for continuum robots typically refers to localizing many

points along the robot’s backbone relative to an inertial frame—and for some well-studied

robots, even estimating additional parameters (e.g. force applied to the end effector [48])—by

combining information from different sensors with mathematical models [25]. The choice of

sensor and model typically depends on the target application for the robot and the development

of both is an active area of research. For scenarios in which there is a direct line of sight to

the robot, there are various vision-based algorithms which achieve shape reconstruction of the

robot from multiple cameras [9]. In surgical applications, when the robot is occluded from view,

solutions involving ultrasound [44], fluoroscopic [18], electromagnetic [58], and fiber Bragg

grating [37] technologies have been proposed (see [53] for a review).

For growing robots in particular, the problem of tip localization has yet to be addressed,

let alone full shape reconstruction. The most common approaches to deploying these robots

in practice require the user to either pre-form the robot into a known shape and deploy it in an

open-loop manner [4] or to attach a camera to the tip of the robot which can then be used in

combination with flexible actuators for eye-in-hand visual servoing [8]. Imaging the robot under

fluoroscopy is feasible [18], but delivers high doses of radiation to patients and operators in

the vicinity. Ultrasound methods typically suffer from signal-to-noise ratio problems [53], and

while Fiber Bragg grating systems have shown some promising results for other medical robots,

in practice, they are still prohibitively expensive for widespread adoption. For these reasons, we

focus on magnetic tracking solutions to localization.

1.5 Magnetic Tracking

Localization based on magnetic field strength has attracted much research attention

because it does not require line of sight to the target and because magnetic field strength does

not attenuate through human tissue, making it particularly well-suited for medical applications
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[20]. The approaches developed to date depend on two primary components—the magnetic

source and the magnetic sensor.

In active field approaches, the sensor is collocated with the object to be tracked. An

array of magnetic sources then generates a changing magnetic field which can be modeled

or precomputed for a finite volume of interest. As the object, and therefore the sensor, move

throughout the volume, an online numerical solver can run to find estimates for the position

and orientation that minimize the difference between the sensor readings and the generated

field [13]. In passive field approaches, the magnetic source—a permanent magnet—is attached

to the target, and the magnetic field produced as it moves is measured by an array of sensors.

As with the active approach, efficient numerical methods can be used to find position and

orientation estimates for the target that minimize the difference between the sensor readings and

the modeled field [63].

Both approaches rely on the accuracy of the magnetic sensors, as well as the accuracy of

the model for the field generated by the magnetic source. In practice, active sensing approaches

have been favored over passive ones because the magnetic field generated from the source can

be dynamic, making it easier to sense in the presence of noise, and because multiple targets can

be tracked simultaneously. Commercial products implementing this technology, such as the

Aurora and trakSTAR (Northern Digital Inc.), are available, and have been used by the surgical

robotics community [62] [52], but remain limited by cost and the need to be wired. Because

passive field techniques can be implemented in a way that both saves valuable space and is

low cost, we adopt this approach to localization. We aim to overcome the limitations of this

approach by using low-noise, magneto-inductive sensors and by developing a model that is part

analytical and part learned to achieve accurate localization.
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1.6 Contributions

The main contributions of this thesis are as follows: (1) We present a method for

localizing the tip of a growing robot which is suitable for medical settings. This approach

is wireless, low-cost, does not require significant modification of the robot, and allows for

localization without line of sight—even through human tissue. (2) We develop a new approach

to permanent magnet localization that combines analytical and machine learning techniques

and compare it to existing methods. We also characterize its performance at different length

scales and across different speeds. This approach is valid beyond tip tracking for growing robots

and is suitable for applications involving permanent magnet localization in general. (3) We

demonstrate our ability to localize the tip of a growing robot in real-time, while deploying

through multiple constrained environments.

11



Chapter 2

Methods

Figure 2.1. A ring magnet, placed at the distal tip of a translucent growing robot, remains at the
tip even as the robot everts. This magnet can be used in conjunction with an array of magnetic
sensors to localize the tip of the robot to 5 degrees of freedom.

The incorporation of sensing into a growing robot is a challenging problem. The added

sensors must not significantly reduce the robots favorable properties of compliance or eversion-

based locomotion. Additionally, the sensors must be robust enough to survive the inversion and

re-eversion process many times over. Our approach leverages the robot’s own unique growing

ability to keep a small, rigid magnet at its tip, which we can then use for localization.

A permanent magnet, in the shape of a ring, is sized such that its outer diameter is
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slightly smaller than that of the growing robot it will track. By inverting the robot material

through the center of the ring magnet and pulling the magnet up to the tip, the friction between

the inner layer of the robot and the inside of the ring magnet, together with the applied internal

pressure, causes the magnet to stay at the tip of the robot, even as the robot grows (Fig. 2.1).

The magnetic field emanating from the magnet can then be sensed with any of a variety of

commercially available sensors (Hall effect, magneto-resistive, magneto-inductive, etc.). By

combining these sensors in an array that covers the area of interest, it is possible to resolve

the position and orientation of the permanent ring magnet, and therefore the tip of the growing

robot, to five degrees of freedom—three spatial coordinates and two angular ones. Because the

magnetic field from the ring magnet is symmetric about its axis of revolution, it is impossible to

determine the third angle that describes the full 6 degree-of-freedom pose of the tip with only

a single permanent magnet. We examine three different modeling approaches to permanent

magnet localization (Fig. 2.3). The first is the traditional, analytical approach. The second uses

a neural network to learn a mapping from sensor data to magnet pose. The third is a hybrid

approach that uses both analytical and learning methods for localization.

2.1 Dipole Model Based Localization

In passive magnet tracking, the most common approach to modeling a permanent magnet

is to assume that it behaves as a dipole located at the magnet’s center [20] [61] [57]. For a

magnetic dipole, the magnetic flux density B at the ith sensor in the array is given by,

Bi (ri,m̂) =
µ0M

4π ‖ri‖3

(
3(m̂ · ri)

‖ri‖2 ri− m̂

)

ri = pi−x,

(2.1)

where m̂ is a unit vector aligned with the magnet’s axis of magnetization, x is the location

of the magnet in the global frame, pi is the location of the ith sensor in the global frame, and

ri is the vector from the center of the magnet to the ith sensor (Fig. 2.2). The strength of
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Figure 2.2. Dipole model for the magnetic flux density (Bi) at the ith sensor, where m̂ is the
orientation of the magnet, x is the location of the magnet, pi is the location of the sensor, and ri
is the vector from the magnet to the sensor.

the magnet, M, depends on the material and geometry of the magnet itself, and the constant

µ0 = 4π×10−7 T · m · A−1 is the magnetic permeability of free space [14].

The function relating these quantities to the flux density at the sensor Bi(ri,m̂) is not

solvable analytically. Further, it is clear from the dimensions of the equation, which maps five

position and orientation magnet parameters to three sensor readings, that information from one

sensor is not enough to properly localize the magnet because there is oftentimes more than one

magnet pose that will produce the same reading for a given sensor. Instead of approximating an

inverse to this function, an optimization problem is posed to minimize the sum of the squared

2-norm of the difference between the modeled and measured values of all n sensors over x and
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m̂. This way, information from multiple sensors is combined to better resolve any ambiguities

in the magnet pose. The cost function is,

min
x,m̂

n

∑
i=1
‖Bi−Bmeas‖2 . (2.2)

The minimization of Eq. (2.2) can be done in real time with efficient implementations of estab-

lished algorithms like that developed by Levenberg and Marquardt [23] [29]. The Levenberg

Marquardt algorithm alternates between the Gauss-Newton and steepest descent methods as it it-

erates, making it more robust than Gauss-Newton alone. It can be warm-started at each time step

by using the converged solution from the previous time step as the initial guess to significantly

decrease the number of iterations until convergence for the current time step. Additionally,

because the cost function (Eq. (2.2)) is differentiable, its analytical Jacobian can be supplied

to these solvers to improve speed and performance. We use MATLAB’s (The MathWorks

Inc.) nonlinear least squares solver implementing the Levenberg Marquadt algorithm for the

optimization.

2.2 LSTM Based Localization

The classical approach to permanent magnet localization is limited in a number of ways.

The dipole model assumed for the permanent magnet, for instance, is only a valid approximation

sufficiently far from the magnet, and the algorithms used in the online optimization step are

only guaranteed to converge to a local minimum [35]. Additionally, magnetic sensors typically

display time dependent nonlinearities such as hysteresis [11]. Each of these phenomena is either

difficult to account for analytically or challenging to implement in a way that is computationally

tractable for real-time estimation.

Neural networks, however, have been shown to be adept at capturing such nonlinearities

with minimal a priori knowledge of the underlying system. Given a sufficiently large training

set of input-output data tuples and a sufficient number of parameters, a neural network can
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Figure 2.3. Flowchart of three permanent magnet localization schemes, where Bk is the
magnetic flux density read by all of the sensors in the array at the current time step, [x,m̂] are
the magnet position and orientation, and p is a vector containing the location of the sensors in
the sensor array. The localization methods include (a) the traditional approach, which relies
on minimizing a difference between modeled and sensed values, (b) a neural network to map
directly from sensor data to a localization estimate, and (c) a neural network to map the readings
from each sensor to a modeled value, which is then used in an optimization step similar to (a).
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approximate any smooth function [19]. This useful property, together with improved computing

methods and hardware for training them, have made neural networks useful for prediction in a

variety of tasks in recent years. There has even been some preliminary studies applying neural

nets to permanent magnet localization [51].

Long-short term memory (LSTM) networks in particular, are a class of recurrent neural

network that have seen widespread adoption for predicting on time series data because of their

ability to capture trends in data with time lags [17]. We use the MATLAB Deep Learning

Toolbox to build a network to learn a function mapping (g1) directly from input sensor data

(Bmeas) to position and orientation of the magnet ([x,m̂]) (Fig. 2.3(b)). The network consists of

an LSTM layer with size 100, followed by a dropout layer with dropout rate 0.25 to improve

performance with noisy training data, and finally a fully connected layer. The network parame-

ters were optimized with the Adam algorithm and miniBatch size 4, and L2 regularization was

used to prevent overfitting.

2.3 A Hybrid Approach to Localization

One of the main downsides of using a purely data-driven approach to modeling is the

removal of physical significance from the problem, making it difficult for designers to draw

insights into the process they are trying to observe. Additionally, when partial information

about a system is known, there is not a straightforward way to incorporate this knowledge into

a data-driven model. In the passive magnetic tracking problem, even with a perfect network

that could exactly map sensor readings to magnet pose, this network would be unable to make

useful predictions if the placement of the sensors is changed. Although this change would be

straightforward to compensate for using the dipole model described above, the neural network

would need to be retrained for each new configuration of sensors.

To incorporate a learned component into an analytical model, a network can be trained

to learn the residual between an analytically modeled output and empirical data [34]. Using the
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network and model together can lead to more accurate predictions. Unfortunately, this approach

would still be tied to a specific sensor configuration. To solve this issue, we train a network to

learn to compensate for the residual of each sensor individually, by training a network to learn

a function (g2) mapping the readings of an individual sensor, Bi,meas, to the values predicted

by our dipole model for that sensor, B′i (Fig. 2.3(c)). By restricting our sensor array to contain

only one type of sensor and assuming that they all exhibit the same type of nonlinear behavior,

we can use this network to augment our analytical model in a way that is agnostic to the sensor

configuration. We adopt the same network architecture as in the purely data-driven approach to

localization above, in order to capture the time dependent nonlinearities in the sensor behavior.
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Chapter 3

Experiments and Results

This chapter details the design and results of experiments meant to validate the proposed

approach to growing robot tip localization. Specifically, the experiments considered evaluate

the accuracy and data efficiency of each of the permanent magnet localization algorithms under

different conditions, the area over which differently sized permanent magnets can be effectively

located, and the accuracy of the localization scheme for tracking the tip of a growing robot

deployed in multiple constrained environments.

3.1 Experimental Setup

A non-ferromagnetic test platform of size L×L (where L = 61 cm) was constructed

out of medium density wood fiberboard (MDF) to evaluate the performance of our localization

method in a 2D plane while mitigating the effects of background magnetic fields. As shown

in Fig. 3.1, the platform was positioned a fixed height (h = 7 cm) above a 2D sensor array

consisting of 4 magneto-inductive sensors (RM3100 Breakout Board, PNI), which measure

magnetic flux density along 3 perpendicular axes in the range -800 to 800 µT. The sensors

Table 3.1. Physical properties of the different magnets used in the experiments

Magnet OD (in) ID (in) L (in) Magnet Grade
A 0.5 0.25 0.5 N48
B 0.25 0.125 0.125 N52
C 0.125 0.0625 0.125 N52
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Figure 3.1. The test setup is constructed out of non-ferromagnetic material and positioned
above the magnetic sensor array. A cap with a fiducial marker is placed on the tip of the growing
robot and tracked by the overhead camera.

communicate over I2C with an Arduino Uno which in turn interfaces with MATLAB via serial

USB. During data collection, we measure and subtract out the ambient magnetic field from the

sensor readings before the permanent magnet is brought onto the test platform. Three different

ring magnets from K&J Magnetics were used in the experiments, with physical properties shown

in Table 3.1.

We evaluate the results of our localization against position and orientation determined

from tracking fiducial markers using an overhead C920 camera from Logitech with a 30 Hz

framerate and 1920× 1080 pixel resolution. The camera is positioned a height H = 87 cm above

the test platform. We also use the position and orientation data from the camera to train the

neural networks, as explained in more detail below. The camera is calibrated using MATLAB’s

Image Processing Toolbox and the OpenCV Python library is used for tracking. Based on the

mean reprojection error of the camera after calibration, the average error is 0.096 mm.

The analysis needed to determine the optimal number of sensors and their placement

is left for future work. Here we place the sensors in a symmetric configuration in order to

maximize the area over which the magnet can be sensed by at least two sensors simultaneously.

The distance between the sensors is calculated based on the effective sensing radius of each
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sensor. We take this effective radius to be the distance at which a sensor can sense a given

magnet in its worst-case orientation according to the dipole model (i.e. m̂ · ri = 0) above some

small value ‖B‖min, where

‖B‖min =
µ0M

4π ‖ri‖3 . (3.1)

We solve Eq. (3.1) for ‖ri‖ and then choose the distance between the sensors s to be equal to the

sensor’s effective sensing radius in the test platform located a height h above the sensor array, as

stated in Eq. (3.2) and Eq. (3.3).

‖ri‖=
(

µ0M
4π ‖B‖min

)1/3

(3.2)

s =
√
‖ri‖2−h2. (3.3)

Using this heuristic, we can determine a sensor configuration for a given magnet with a dipole

moment of magnitude M and a minimum signal value ‖B‖min. We take ‖B‖min to be 3 µT, so

that it is greater than the background noise read by the sensors.

3.2 Model Comparison

As stated above, we restrict the evaluation of our models to the 2D case by assuming

that the component of the magnet’s position out of the test plane is zero. We evaluate the models

based on the error between their localization estimates and the actual positions and orientations

of different validation datasets. Specifically, we compare the two position coordinates and one

orientation value from our overhead camera with the corresponding position and orientation

estimates from our models at every timestep. We compute the mean absolute position error as,

errposition =
1
N

N

∑
k=1
‖(x1(k),x2(k))actual− (x1(k),x2(k))meas‖ , (3.4)
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where N is the number of samples in the dataset and x1, x2 are the spatial coordinates of the

magnet position in the plane of the test platform, and the mean orientation error as,

errorientation =
1
N

N

∑
k=1
|θ(k)actual−θ(k)meas|, (3.5)

where θ is the orientation of the magnet in the plane of the test platform.

3.2.1 The Effect of the Quantity of Data on Model Performance

The error in the localization estimates of the learned models depends on the amount of

training data available, while the localization error of the analytical model does not. In order

to compare these approaches in a way that accounts for different amounts of training data,

we first collect a large dataset, consisting of sensor readings and camera-determined magnet

poses, by taking Magnet A (Table 3.1) and moving it randomly around the workspace. In

total, we collected 40 × 1-minute videos of data, 20% of which is reserved for evaluating the

performance of the models. The neural networks were trained with different amounts of data,

drawn at random from the available training data. The performance of all three models was then

compared on the validation set in terms of mean absolute position error.

Because the training data is generated randomly, it is not obvious which portions of it

will have the most impact on the final learned model. To mitigate the importance of any one

part of the overall training set, particularly when training with only a few minutes of data, we

repeat this process of randomly selecting data, training the networks, and then evaluating their

performance, a total of 5 times. The results in Fig. 3.2 show the mean and standard deviation of

the error using each method. The mean position error of the analytical model on the validation

set is plotted for reference. It is important to note that although the training data was drawn at

random, the 1-minute sequences (referred to as “training sets” in the figure) were kept intact,

which is important in order for LSTM networks to properly learn the time dependencies in the

data.
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The results show that the position error of both of the learned models eventually begins

to level off as the amount of data used to train them is increased. Even when trained with the

entire training set, the LSTM-based model still has significantly higher error than the analytical

and hybrid models, with a mean position error of 28.5 mm, compared to 7.3 mm and 6.6 mm,

respectively. The difference in the performance of the LSTM model can be seen as a tradeoff

of this approach, which assumes no prior knowledge of the underlying system. The mean

position error of the hybrid model matches that of the analytical baseline with just 4 minutes of

training data, and begins to outperform the baseline when trained with 8 or more minutes of data.

Because both the analytical and hybrid methods achieve substantially lower average position

Figure 3.2. Mean position error for each of the three models, as the number of “Training Sets”
(1-minute sequences of video data) is increased for the LSTM and Hybrid models. The error
bars show the standard deviation of the mean position error of the models evaluated on the
validation set after being trained with different amounts of data.
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error on the validation set compared to the LSTM model, we disregard the LSTM model for the

remainder of our comparison.

3.2.2 The Effect of Velocity on Model Performance

Next, we look to further examine the difference between the hybrid and analytical

models. We expect that when there are large changes in the magnetic field, causing high levels

of hysteresis in the magnetic sensors, the hybrid model should be better able to compensate. We

therefore assess the performance of each of these two models by moving Magnet A along a

fixed path that passes near the sensors at different velocities. The faster the magnet traverses this

path, the larger signal change it induces in the sensors. We measure speed by a finite difference

derivative approximation of the position data captured by the camera followed by a low pass

filter to reduce the effect of noise. We then take the mean value of the speed to be representative

of the speed at which the magnet traversed the path.

The results in Fig. 3.3 show the mean and standard deviation of the position error for five

different mean velocities. The hybrid model achieves lower position error than the analytical

model on every trial, and this difference in performance increases for the faster trials. At the

fastest, when the magnet is moving an average of 25.5 cm/s around the path, the position error

of the analytical model increases to 10.4±2.3 mm, while the position error of the hybrid model

is 6.6±1.6 mm. This result indicates that the hybrid model is better at tracking a faster moving

magnet. This difference in performance is likely due to the hybrid model’s ability to better

compensate for phenomena that are not modeled analytically, but become important for large

changes in sensor readings—such as when the magnet quickly passes a sensor. Because the

hybrid model achieves lower error than the analytical model on both the validation set from

the previous test and in tracking the magnet at different speeds, this method is used for all

subsequent tests.
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Figure 3.3. Comparison of the hybrid and analytical approaches to permanent magnet localiza-
tion for a magnet travelling along the same path at different speeds. As the speed of the magnet
increases the position error of the analytical model increases significantly more than the hybrid
model, resulting in 10.4±2.3 mm and 6.6±1.6 mm at 25.5 cm/s, respectively.

3.3 Localization at Different Scales

Growing robots can easily be fabricated to meet a wide range of size requirements

depending on the specific application (e.g. [56], [3], [6]). Our method of localization is able to

accommodate these changes in dimensions by varying the size of the magnet used to track the

tip of the robot. To assess how magnet size changes the effective workspace over which we are

able to accurately localize the robot tip, we test magnets of three different sizes (see Table 3.1).

To maximize the effective workspace for each magnet, we change the distance between

the magnetic sensors (s) according to our heuristic above (see Eq. (3.2), Eq. (3.3)). Using

this method for sensor placement gives a distance between the sensors of 30.2 cm for Magnet
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A, 15.1 cm for Magnet B, and 6.9 cm for Magnet C. We place each magnet at 36 different

points spaced evenly across a 50 cm × 50 cm grid in the center of the test platform, holding

the orientation constant, and we compare the result of the magnetic localization to the actual

position and orientation. We repeat this for 8 different magnet orientations and compute the

average position error at each test point. We linearly interpolate between the average error at

each point to visualize the effective workspace for each magnet (Fig. 3.4). We consider any

position estimates with an error greater than 15 mm to be points where the magnetic localization

is unreliable and plot the corresponding area in black.

(a) Magnet A (b) Magnet B (c) Magnet C

Figure 3.4. Magnets of different sizes are positioned at 36 gridpoints spaced across a 50 cm ×
50 cm area in 8 orientations at each point. The average position error of the magnetic localization
estimate at each point is plotted to visualize the effective workspace for the magnet used. Points
where the magnetic position estimate has >15 mm error are considered unreliable and plotted
in black.

As shown in Fig. 3.4, for the area circumscribed by the sensors, the magnetic localization

achieves similar accuracy across magnet size. The effective area of the workspace however,

where position error is <15 mm, shrinks with magnet size. This decrease is due to the fact that

the magnitude of the signal read by the sensors is proportional to the strength of the magnet,

M, and inversely proportional to the cube of the distance between the sensor and the magnet,

‖ri‖3 (see Eq. (2.1)). As magnet size decreases, so does M, resulting in a weaker signal strength.

Additionally, for smaller magnets, we position the sensors closer together according to Eq. (3.2)

and Eq. (3.3) in order to achieve good tracking in a region close to all the sensors. While our

method of localization successfully tracks magnets of different sizes, it is clear that for smaller
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magnets, more sensors are necessary in order to achieve the same size of effective workspace.

Further study is needed to determine the optimal number and placement of sensors for a given

size magnet and target workspace.

3.4 Tip Localization of a Growing Robot Deployed in Con-
strained Environments

Finally, we evaluate the performance of our hybrid magnetic localization method on a

robot as it grows through two constrained environments. For each deployment, the growing

robot is positioned at the entrance to a highly curved path—one path resembling an “S” shape,

and the other a spiral—which is centered over the array of magnetic sensors. A 3-D printed

cap with fiducial markers is attached to the distal end of the robot (Fig. 3.1) to obtain the

actual position and orientation of the robot tip for comparison. The robot is pressurized with

air, causing it to grow until it reaches the target marked with a blue “X”, as seen in Fig. 3.5.

The objective of the experiments is to validate that the permanent magnet based approach to

localization successfully estimates the position and orientation of the growing robot in the plane,

even as the robot grows and interacts with the environment.

The robot in both scenarios has an outer diameter of 12 mm and an overall length of

645 mm. Magnet B is used for tracking the tip, and the same sensor spacing (s = 15.1 cm) from

the previous experiment is used. Images from four different time steps for each experiment can

be seen in Fig. 3.5, and the results of the measured and actual position can be seen in Fig. 3.6.

For the “S” path, the magnetic localization achieved an average position error of 3.7±1.2 mm

and an average orientation error of 5.5±5.5◦. For the spiral path, the average position error

was 2.2±0.9 mm and the average orientation error was 7.5±5.1◦.

These experiments demonstrate that even as the robot interacts with the environment,

the magnet reliably stays at the tip, and, using this method of localization, we can accurately

track the position and orientation of the tip in the plane.
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Figure 3.5. Time-series images of a growing robot with a ring magnet at its tip as it extends
through constrained paths resembling (a) an “S” and (b) a spiral. In each scenario, the robot
must conform to the curvature of the path in order to reach the target at the end, marked with a
blue X.

(a) “S” path (b) Spiral path

Figure 3.6. Hybrid model for permanent magnet based localization tracks the tip of the growing
robot as it navigates (a) an “S” shaped path, with average position error 3.7±1.2 mm and average
orientation error 5.5±5.5◦ and (b) a spiral shaped path, with average position error 2.2±0.9 mm
and average orientation error 7.5±5.1◦.
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Chapter 4

Conclusions and Future Work

The future of medical robotics promises to continue to improve existing surgical proce-

dures and to enable new methods of treatment entirely, provided that the robots are guaranteed

to operate in a safe manner. Growing robot designs in particular show great potential ability

to address these safety concerns, but require researchers to develop new methods for their

design, fabrication, and control. This thesis focused on a solution to the problem of tip local-

ization for growing robots that is suitable for use in a surgical setting. We have demonstrated

effective tracking of the tip of a growing robot using a permanent ring magnet and an array of

magneto-inductive sensors. We developed a modeling approach that leverages both analytical

and machine learning techniques to achieve high-accuracy localization for a permanent mag-

net that is agnostic to the configuration of the magnetic sensors. We validated this model by

comparing its performance against existing approaches to permanent magnet localization and

tested its ability to track magnets of different sizes, ensuring its versatility. Finally, we deployed

a growing robot in two different, constrained environments, in order to validate that our method

is capable of reliably resolving the position and orientation of the robot’s tip.

It is important to note some of the limitations inherent with the proposed approach.

Permanent magnet-based localization is sensitive to noise from other magnetic fields, which can

come from nearby electronic devices that emit electromagnetic fields or induced in ferromagnetic

materials by the permanent magnet itself. Additionally, it is only possible to track the position
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and orientation of one permanent magnet at a time, meaning this method could not be extended to

do full shape reconstruction for growing robots. Finally, because permanent magnet localization

requires multiple magnetic sensors to be near the magnet at all times, this method for localization

is not suitable for use in large unknown environments, such as an archaeological site, because

sensors need to be placed in precisely known locations at the start. Despite these limitations,

there are clear avenues for the future of this work that can expand its usefulness and usability in

real-world settings.

For example, this approach can be extended to a 3D environment. Though the analysis

in this work was confined to the 2D case, the 3D extension is very straightforward from an

algorithmic perspective–it simply requires that the full 3D localization obtained from the online

optimization step be used instead of projecting it onto a 2D plane. Validation of this approach

would require a very accurate, ground-truth system that could be used to compare against the

permanent magnet-based tracker. Such a system might consist of an array of cameras together

with an appropriate set of image processing algorithms to determine the pose of the tip of the

growing robot. Likely, the primary challenge with this approach would be developing these

image processing algorithms such that they are not overly sensitive to the changes at the tip of

the growing robot–which does not maintain a uniform shape as it everts.

Additionally, sensor placement can be fully investigated to ensure optimal tracking of

the robot tip for specific tasks. In a medical setting, combining sensor placement algorithms with

preoperative imaging and the proposed localization method could ensure that the growing robot

is tracked accurately for the entirety of an operation. A hypothetical workflow to investigate this

approach might begin by running a growing robot path planner for a given patient image and

target to reach. By framing the problem of localizing the robot over a finite time window as

tracking a point moving along this planned path with a finite velocity, we can optimize sensor

placement to maximize some notion of information gain over the time window [1] [59].

Lastly, by combining localization with actuators that can change the orientation of the
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robot’s tip, we can develop closed-loop control techniques to enable accurate and autonomous

positioning for this class of robot, similar to those that exist for other continuum manipulators.

Of particular interest in this line of work would be to develop hybrid methods for control that

parallel the techniques in this thesis used for localization. These proposed methods would

combine model-based control techniques for the robot with those that can learn from data

to compensate for model inaccuracies and environmental disturbances in an online and data-

efficient way.
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Shabbir. A non-invasive real-time localization system for enhanced efficacy in nasogastric
intubation. Annals of Biomedical Engineering, 43(12):2941–2952, Dec 2015.

[62] Philip J. Swaney, Arthur W. Mahoney, Bryan I. Hartley, Andria A. Remirez, Erik Lamers,
Richard H. Feins, Ron Alterovitz, and Robert J. Webster. Toward transoral peripheral lung
access: Combining continuum robots and steerable needles. Journal of Medical Robotics
Research, 2(1):1750001, 2017.

36



[63] T. D. Than, G. Alici, H. Zhou, and W. Li. A review of localization systems for robotic
endoscopic capsules. IEEE Transactions on Biomedical Engineering, 59(9):2387–2399,
Sep. 2012.

[64] Michael T. Tolley, Robert F. Shepherd, Bobak Mosadegh, Kevin C. Galloway, Michael
Wehner, Michael Karpelson, Robert J. Wood, and George M. Whitesides. A resilient,
untethered soft robot. Soft Robotics, 1(3):213–223, 2014.

[65] D. Trivedi, A. Lotfi, and C. D. Rahn. Geometrically exact models for soft robotic manipu-
lators. IEEE Transactions on Robotics, 24(4):773–780, Aug 2008.

[66] R. J. Webster, A. M. Okamura, and N. J. Cowan. Toward active cannulas: Miniature
snake-like surgical robots. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2857–2863, Oct 2006.

[67] M. C. Yip and D. B. Camarillo. Model-less feedback control of continuum manipulators
in constrained environments. IEEE Transactions on Robotics, 30(4):880–889, Aug 2014.

37


	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Soft Robots
	Continuum Robots
	Growing Robots
	Sensing for Continuum Robots
	Magnetic Tracking
	Contributions

	Methods
	Dipole Model Based Localization
	LSTM Based Localization
	A Hybrid Approach to Localization

	Experiments and Results
	Experimental Setup
	Model Comparison
	The Effect of the Quantity of Data on Model Performance
	The Effect of Velocity on Model Performance

	Localization at Different Scales
	Tip Localization of a Growing Robot Deployed in Constrained Environments

	Conclusions and Future Work
	Bibliography



