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Abstract. This paper presents a new approach to optimal sensor design for structural health moni-
toring (SHM) applications using a modified f -divergence objective functional. One of the primary
goals of SHM is to infer the unknown and uncertain damage state parameter(s) from the acquired
data or features derived from the data. In this work, we consider the loss of boundary contact (a
"gap") between a navigation lock miter gate and the supporting wall quoin block at the bottom of
the gate to be the damage state parameter of concern. The design problem requires the optimal
sensor placement of strain gages to obtain the best possible inference of the probability distribution
of the gap length using the data from the multi-dimensional strain-gauge array. Using the notion
of f -divergences (measures of difference between probability distributions), a risk-adjustment is
made by using functions that weigh the importance of acquiring useful information for a given
true value of the state-parameter and using Bayesian optimization. For this case study of miter gate
monitoring, a computationally expensive high-fidelity finite element model and its digital surrogate
is employed to provide efficient, previously-validated data.

1 Introduction
Structural health monitoring (SHM) is a multi-part paradigm that aims at assessing the state

of the structural system and its ability to perform the desired design functionality by analyzing
in-situ sensor measurement data. A well-designed SHM strategy enables the choice of optimal
maintenance implementation, helps the structure achieve maximum performance, reduces ownership
cost, minimizes unscheduled downtime, and potentially helps to avoid structural failures that can
cause material or personal losses. Such an SHM system is desirable only if the benefits obtained
from using the acquired information over the structure’s life outweigh the cost of installing and
maintaining that SHM system [1]. Hence, the value of an SHM system essentially depends on its
design; at the core of any well-designed SHM system is a data acquisition system that relies on
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(usually an array of) deployed sensors to initiate the information workflow from which ultimate
decisions about operations, maintenance, and other life cycle actions will be made. Therefore,
the optimal design of this sensor network–defined herein as the spatial arrangement of the sensor
network–can significantly enhance the performance and life cycle value of the SHM system as a
whole. Formulating and solving such an optimization problem is the central goal of this paper. Of
course, other design parameters (beyond spatial arrangements such as data acquisition rate or duty
cycle) or constraints (such as power availability) will also play a role in any specific application, but
such multi-objective don’t fundamentally alter the ideas presented in this work.

Due to the many sources of variability and noises in any SHM system’s observations, the SHM
process contains inherent uncertainties that need to be considered. The optimal sensor placement
problem, therefore, aims to find a sensor configuration that gathers the information most useful for
detecting the target state(s) subject to uncertainty [2, 3]. The key element to this is the optimality
criterion or objective function that is used to evaluate design utility. However, there is not a universal
objective for sensor design, as each application has a distinct goal for the use of a particular SHM
system. Consequently, different objective functions have been proposed in the past for optimal sensor
placement design, starting with mode identification and correlation in some of the original works in
this area, which were not necessarily SHM applications [4, 5, 6, 7, 8]. For example, in Ref. [4, 8],
the optimal sensor arrangement minimized the condition number of the Fisher information matrix
corresponding to the target modes of dynamical structures. Sun et al. [9] proposed optimal sensor
design by maximizing dynamic information of the structure using a limited number of sensors and
proposed an artificial bee colony algorithm to solve the optimization problem. Austin et al. [10] used
objective function formulated to reduce the type I and II errors and used adaptive mutation-based
genetic algorithm for the sensor design. Similarly, Papadimitriou et al. [11] proposed minimizing
entropy focusing on structural modal updating. In one of the first SHM-focused studies, Udwadia
[12] and Basseville [13] have also used the Fisher information matrix to maximize the performance
of SHM for structural modal identification. For some other application domains such as the aviation
sector, decision-makers are more concerned with detecting outlier states of the structure, since the
cost of failure is catastrophic [14]. Such maximization of outlier state detection has led to objective
functions such as the probability of detection (POD), probability of classification [15], and the
Mahalanobis distance measure [16]. There are several other seminal contributions in optimal sensor
placement design for a wide class of SHM applications found in Refs. [17, 18, 19].

Given that decision-makers are the typical curators of SHM utility, the objective function may
also be defined from the perspective of decision theory that defines loss as a consequence of decision-
making (or the associated risk) by considering various prior information and uncertainty sources
in the decision-making process. The loss/risk is a subjective quantity and is defined according to
the problem. Optimal sensor design therein requires finding the sensor network that minimizes the
losses or risk expressed by an objective function in an average sense; such an objective function
is defined as Bayes risk. This is a more general definition of traditional Bayes risk, and it expands
its applicability from a pure monetary-based standpoint to a more general optimization problem
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in the sense that risk is no longer confined to the likelihood of losing money, but rather can be
thought of as a regret of making an undesirable decision or predicting undesirable outcomes. One
such Bayes risk objective function for sensor placement design was developed by Flynn and Todd
[20, 21], in which Bayesian experimental design [22] is used for optimal sensor placement design by
minimizing an appropriate Bayes risk functional. It was demonstrated in an ultrasonic guided wave
sensor design problem that Bayes risk can minimize the total presence of either type I or type II
decision errors in SHM. The use of expected Kullback-Leibler (K-L) divergence or expected utility
in sensor placement design [23, 24, 25] can also be classified as a type of Bayes risk. While the idea
of minimizing expected risk (or maximizing the utility of your desired outcome) using Bayes risk
is powerful for optimizing sensor placement under uncertainty, its advantageously generic nature
and currently unexploited benefits must be carefully considered. First, we note that the term risk is
subjective and is somewhat open-ended to a desirable definition. The risk function or utility function
can be formulated differently and will lead to different sensor placement designs, i.e., no utility
function is generic to all problems. Second, current Bayes risk-type objective functions are incapable
of incorporating human psychology or risk-perception of decision-makers in sensor network design.

Using the monitoring of lock navigation gates as an application case, this paper aims to address
the two issues outlined above by expanding on the idea of Bayes risk-type objective functions to
simultaneously evaluate the gain in information and consider the risk-perception of decision-makers
in sensor network design. This is done by proposing a risk-weighted f -divergence functional for
sensor placement design. Firstly, we investigate different types of f -divergence measures to evaluate
the information gain of a particular sensor network design. Since the f -divergence gives a generic
form to evaluate the distance (depicting gain information or information divergence) between two
probability distribution functions, using different types of f -divergence helps to investigate and
compare the effects of using different distance measures in the sensor placement optimization
process. Secondly, the f -divergence is weighed with a risk-based weight function to incorporate a
decision-maker’s risk perception into sensor placement design. The f -divergence is modified using
weight functions that weigh in the importance of acquiring good information for a given true value
of the structural damage state. Thirdly, the f -divergence is also weighted by prior knowledge of the
structural damage state. The proposed objective function in this paper is, therefore, the integral of
the weighted f -divergence of the posterior distribution relative to the prior distribution, weighted
over the prior distribution, and risk-based weight function, integrated over all the physically possible
values of the structural damage states. The goal is to obtain the sensor network that maximizes
the objective function (or maximizing the gain in the additional information or minimizing the
risk or regret of inferring meaningless information regarding the damage states). The paper also
proposes two different approaches to incorporate the risk weights into the Bayes risk functional. In
the first approach, the risk-weights are included explicitly inside the integrand of the Bayes risk
functional, whereas in the second approach, the risk weights are used to modify the prior damage
distribution. Although mathematically equivalent, numerical evaluation of risk-weighted Bayes risk
yields slightly different results.
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In addition to the objective function, another long-standing challenge in sensor placement
design is how to effectively and efficiently solve the posed optimization model. A common approach
to optimization is iteratively searching for the optimal value guided by the steepest gradient descent.
This approach has been used in machine-learning [26] and in developing an optimal sensor network
[27]. For example, Akbarzadeh [2] used a gradient descent algorithm in sensor optimization by
deriving derivatives at each step, which requires less computational effort. However, in many
problems, the exact analytical derivatives are not available. Heuristic algorithms have also been
widely used in the literature; for example, Jin [28] used a genetic algorithm to minimize the
communication distance of sensors, while Yi et al. [29] utilized a genetic algorithm to obtain optimal
sensor placement for a high-rise building monitoring system. However, the main drawback of these
optimization strategies is that theymust evaluate many samples, yielding a computationally expensive
path to the solution. In complex large-scale SHM applications such as the civil infrastructure
problems considered in this paper, the sensor design space itself is potentially prohibitively large,
and this is coupled with the fact that obtaining and evaluating Bayes risk even once may require tens
of thousands of runs of expensive simulations (such as if a finite element is used). This paper also
proposes a novel numerical framework that seamlessly synthesizes Gaussian process regression [30],
dimension reduction techniques [31, 32], Bayesian optimization [33, 34], and sequential Monte
Carlo to break this computational challenge. In the proposed framework, once the desirable sensor
measurements are obtained in one iteration of the optimization, the predictive model need not be run
in order to evaluate the observed sensor measurements at every optimization iteration. As shown in
the result section, this significantly improves the computational efficiency of the sensor placement
design optimization and allows for a reduction of computational time from years to hours. The
review papers [35, 36, 37] and the references therein serve as an excellent source of information
on the optimal sensor network design and the computational methods to solve the optimization
problems.

The proposed risk-weighted f -divergence functional and the efficient numerical framework
to overcome the computational burden for sensor placement design will be demonstrated in a lock
miter gate monitoring application. The United States Army Corps of Engineers (USACE) spends
billions of dollars in maintaining and operating the USA’s inland waterways navigation corridor,
where the unscheduled shutdown of these assets and dewatering for inspection or repair is very
costly [3, 38, 39]. Within the navigation corridor, miter gates are one of the most common types
of lock gates employed [40]. Many of these structures have been operational for over 50 years,
and without knowledge of their actual structural residual strength capacity, they could potentially
be operating with a higher risk of failure. Current practice involves engineering elicitation via
inspection, followed by lock closures if the inspection so warrants. Since this process is based on the
varied experience and interpretation of field inspectors, it bears high uncertainty and variability [41],
and USACE is investigating the use of SHM to potentially reduce those uncertainties. In general
terms, the first step of the SHM system design is to decide what sensors are most suitable (e.g.,
discrete or continuous strain-gauges [42], accelerometers, etc.) to provide measurements that are
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most correlated to the type of damage or state to be inferred. The second step is then to obtain a
sensor network design (e.g., number of sensors, location/placement, duty cycle, etc.) that provides
the most valuable information at a minimal cost [43, 44], as broadly elucidated above. To this
goal, in this paper, an optimal sensor network will be designed for a miter gate using the proposed
framework.

The primary contributions of this paper may therefore be summarized as: (1) it proposes a
risk-weighted f -divergence Bayes risk for sensor placement design and two different approaches
to incorporate the risk weights into the Bayes risk functional; (2) it investigates and compares
different types of f -divergence measures in the objective functional for sensor placement design; (3)
it proposes a novel numerical framework that drastically reduces the required computational effort
in sensor placement design by integrating Bayesian optimization, surrogate modeling, univariate
dimensional reduction, and Sequential Monte Carlo; and (4) it demonstrates the proposed framework
in a complex and practical miter gate monitoring application.

The rest of the paper is arranged as follows. Section 2 details the background of the miter
gate SHM application and briefly discusses the proposed sensor placement design optimization
framework. Section 3 details the associated Bayes risk functional, followed by Section 4 that
investigates univariate dimensional reduction with Gauss-Hermite quadrature approach to evaluate
the Bayes risk. Section 5 discusses the optimal sensor placement design using Bayesian optimization
in detail and presents the novel algorithm used to overcome the computational burden. After a
general discussion on Bayesian optimization, the remaining part of Section 5 discusses numerical
results. Finally, Section 6 concludes the paper.

2 Problem Description
Some preliminary definitions and notations are first necessary. The real number space in d

dimension is represented byℝd , withℝ1 ≡ ℝ. A random variableX is a real-valued function defined
on a discrete or a continuous sample space SX and is assumed to take values in a measurement
space ΩX ∈ ℝd , such that X ∶ SX ⟶ ΩX ∈ ℝd . Lower case letters x represent realizations of the
random variable X, such that x ∈ ΩX . The probability density function and the cumulative density
function are represented by fX(x) and FX(x). The expected value of a function g(x) is denoted by
EX [g(x)]. Lastly, a random variable X following a Gaussian distribution, with the mean �x and
standard deviation �x is denoted by:

fX(x) =
1
�x
�
(

x − �x
�x

)

;

FX(x) = Φ
(

x − �x
�x

)

;

X ∼ N(�x, �2x).

(1)
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No symbolic distinction is made for different dimensions d of the measurement space and the
random variable. The vector-dimensionality of a random variable is contextual and is defined as
needed.

Finally, let ΩE represent the exhaustive sensor design space and e ∈ ΩE represent a design
realization. Let E(e) ∶ ΩE ⟶ ℝ denote the Bayes risk functional. The goals of this paper are: (1)
to appropriately define the Bayes risk E(e); (2) to devise a computationally-efficient approach to
numerically evaluate the value of Bayes risk for a given design e; (3) to arrive at the most optimal
design e∗ ∈ ΩE , such that:

e∗ = argmax
e∈ΩE

E(e). (2)

Evaluating the Bayes risk would require observable strain data under various damage scenarios. The
sensor data is obtained using a validated finite element model. Therefore, the Bayes risk E(e) and
the design space ΩE will both depend on a finite element model capable of estimating observable
strains under various damage scenarios.

2.1 Miter gate: Finite element model
The Greenup miter gate, which is maintained and managed by USACE on the Ohio River in

the USA, is considered for a case study. Fig. 1 shows the Greenup lock and the miter gate (image
adapted from the USACE website and Eick et al. [45]). Loss of contact in the quoin blocks is the
most commonly observed damage mode in such systems [39, 41, 40]. Loss of contact leads to a
formation of a very thin gap between the gate and the wall quoin blocks at the bottom of the gate,
which induces undesirable load redistribution in the system. The length of the of loss of contact
at the bottom of the gate is referred to as gap length in this paper; therefore, the gap length is
considered as the continuous state-parameter � ∈ ΩΘ (refer to Fig. (2)), such that ΩΘ = [�low, �up].
Here, �low is the lower bound of the gap length defining the existence of "damage", and �up is the
upper bound of the gap length defining critical damage of failure. This value is suggested by the
USACE engineers based on their experience, past inspection data, or numerical simulation. In most
cases, data related to the failure of the structure may not be available because decision-makers are
risk-averse and prevent the gap length from approaching failure levels. In such scenarios, a rigorous
high-fidelity numerical simulation should be performed to estimate the �up. Based on feedback from
the field-engineers [40], the upper bound of the gap length can be considered as �up = 180 inches
for gates that have similar structural characteristics as the Greenup miter gate. If no value of �low is
specified, it can be taken as 0 inch (indicating pristine state of the gate).
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Figure 1: Greenup locks and miter gate

Figure 2: Physics-based model of miter gate and the bearing gap

The loss-of-contact part of the gate is always submerged in highly turbid water, and it conse-
quently cannot be easily measured directly during normal operational conditions. Hence, gap length
is an unknown parameter and must be inferred from indirect measurements. The Greenup miter
gate is equipped with a strain gauge network that records the operational strain measurements in
real-time and will be used to infer the gap length. The data acquisition process is simulated using
a high-fidelity finite element model (FEM) of the Greenup miter gate previously validated in the
undamaged condition with the available strain sensor readings [40]. When the miter gate is new
and pristine, the gap length could reasonably be presumed to be zero. As with any such model, its
representative predictive value is only as good as its validation with regard to the real structure that
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it is modeling. In this case, the FEM was validated in the undamaged condition, but modeling of the
damage itself could not be validated on actual data from the gate in a known damaged condition, so
modeling bias in the damage state could exist. That does not invalidate the demonstration of the
proposed approach or its utility but provides caution on interpreting the specific results for this case
beyond the demonstration of the overall optimal sensor placement approach. With that caveat, the
FEM will serve as the fundamental physical model for this study.

Figure 3: Orientation and the location of the strain gauge and different type of shell elements used
in FEM.

To arrive at the optimal sensor placement design, we rely on the validated finite element model
to obtain the observable strain values. A sensor-network can be designed by picking strain gauges
from a countable set of strain-locations where we have observable strain data for different damage
scenarios. In our case, it is a set of 64919 × 4 strain locations as discussed later. Although there are
infinite possible locations where strain gauges can be placed on a real miter gate, the finite element
model discretely covers the possible sensor locations using a countable number of strain gauges.
The finite element modeling itself is constructed using 3D quadrilateral and triangular shell elements
in ABAQUS and consists of a total of 64919 elements. Every element has a local coordinate system
{di} defined in the undeformed state, and a global coordinate system {Ei}. The thickness of the
element is in the direction d3, and the top and bottom surface of the element is spanned by the
vectors (d1 − d2) as shown in Fig. 3. The strain gauges are attached to the top and bottom surface of
each element, measuring uniaxial strains along the direction d1 and d2. Each element is identified by
its geometric centroid at the origin of the local coordinate system. Therefore, there are four possible
arrangements of strain gauges on each element. These possibilities are identified using the following
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abbreviations:
TH: top element, horizontal orientation along d1;
TV: top element, vertical orientation along d2;
BH: bottom element, horizontal orientation along d1;
BV: bottom element, vertical orientation along d2.

(3)

Based on the above abbreviations, for a typical element m, xmTH and xmTV represent the measurement
of strain from gauges attached to the top surface and oriented along d1 and d2, respectively. Similarly,
xmBH and xmBV represent the measurements of strain from gauges attached to the bottom surface and
oriented along d1 and d2, respectively. Therefore, any element m has four candidate strain gauges
attached to it, whose readings are represented by a four-dimensional vector xm = (xmTH, x

m
TV, x

m
BH, x

m
BV).

Hence, there is a total of 64919 × 4 strain locations to be considered for optimal sensor design.
The gate is subjected to uncertain upstream and downstream hydrostatic loads quantified by

the hydrostatic upstream and downstream heads; these are denoted by the random variables Hup

and Hdown, with realizations ℎup ∈ Ωℎup and ℎdown ∈ Ωℎdown , respectively, where ΩHup
and ΩHdown

represent the space of all possible values of upstream and downstream head, respectively. The water
heads are modeled by a Gaussian distribution with their mean and variance reasonably assumed as

ℎup ∼ N(552 in, 102 in
2); (4a)

ℎdown ∼ N(168 in, 202 in2). (4b)

Independent zero-mean additive Gaussian noise, denoted by a random variable �i with the realization
"i, is assumed for each strain gauge,

�i ∼ N(�"i = 0, �
2
"i
) (5)

The value "i represents the realization of noise, andΩ�i represents the noise space, such that "i ∈ Ω�i .
The standard deviation of the noise is assigned to be �"i = 5 × 10

−6 in accordance with reasonable
commercial strain gauge performance.

The random nature of the water heads and strain gauge noise together make the observable
strain values themselves random variables. Let ΩX = ΩXTH

∪ ΩXTV
∪ ΩXBH

∪ ΩXBV
be the set of

all the possible 64919 × 4 strain gauge locations. Here, ΩXTH
and ΩXTV

represents the space of
all strain gauges attached to the top surface of element measuring strain in the direction d1, and
d2 respectively. Similarly, ΩXBH

and ΩXBV
represents the space of all strain gauges attached to the

bottom surface of element measuring strain in the direction d1, and d2 respectively. Let X denote
the random vectors consisting of all strain measurements corresponding to ΩX space, such that
x ∈ ΩX represent realizations of the random vectors X (see Eq. (9) for the relationship between
the observed strain realization x, the strain output of FEM, and the noise in strain gauge). Finally,
we denote the true values of the gap length, and hydrostatic heads as: �true ∈ ΩΘ, ℎup-true ∈ ΩHup

,
ℎdown-true ∈ ΩHdown

.
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2.2 Miter gate: Surrogate model
Solving the optimization problem posed in Eq. (2) requires evaluating the Bayes risk (defined

later in Section (3)) for various sensor network designs to arrive at an optimal design. As described
below, each evaluation of the Bayes risk involves numerous FEM predictions to solve a Bayesian
inference problem. This is computationally intractable and we seek computationally efficient
approximations to the FEM. For Bayesian calibration, metamodels or surrogate models are preferable,
e.g., Support Vector Regression (SVR) [46], Gaussian Process Regression (GPR) [46, 34], Neural
Network [47], and Polynomial Chaos Expansion (PCE) [48]. Some such approaches like SVR or
neural networks yield point estimates/prediction, while others like GPR also predict the uncertainties
associated with an average estimate/prediction. GPR is used to build a surrogate model in this
work, which turns out to be 50,000 times faster than the FEM model. The output of the surrogate
model still has a very large dimension; this is addressed using principal components analysis,
which can be efficiently computed using the singular value decomposition (SVD) that reduces
the high-dimensional, highly-correlated output space to low-dimensional, uncorrelated features.
This is analogous to the “linear model of coregionalization” in the Gaussian process literature. Of
the possible 64919 × 4 strain readings in ΩX , 64919 strain measurements corresponding to each
of the spaces ΩXTH

, ΩXTV
, ΩXBH

and ΩXBV
are considered independently. The 64919-dimensional

strain response corresponding to each of the spaces ΩXTH
, ΩXTV

, ΩXBH
and ΩXBV

are transformed
to lower 7, 12, 7, 12 feature spaces, respectively. Equivalently, the 64919 × 4-dimensional strain
response corresponding to the spaces ΩX are transformed to a lower 38 dimensional feature space
that covers 95% of the total information of the strain data. We realize that the vertically oriented strain
measurements have a larger number of features (12 features for both top and bottom strain gauges)
than the horizontally oriented strain measurements (7 features for both top and bottom strain gauges).
One possible reason is that the vertical strain responses are more sensitive to the dynamic loading
considered in this paper (hydrostatic upstream and downstream loading) than their counterparts
in the horizontal direction, and hence require a larger number of features. Inversely, the larger
number of features required to represent vertical strain gauge measurements also implies that the
vertically oriented strain measurements have higher complexity (that by itself is a subjective quantity
as described in [49]) than the horizontally oriented strain measurements. These 38 features can be
inverted to obtain the complete strain gauge response. Four surrogate models for 7, 12, 7, 12 features
corresponding to four strain measurement spaces ΩXTH

, ΩXTV
, ΩXBH

and ΩXBV
were built using GPR.

We used a squared exponential kernel and we evaluated the hyper-parameters using maximum
likelihood estimation. Since the GP models for each of these features were trained independently,
they have different hyper-parameters. One-third of the 1000 data points were randomly used for
training the GPR, and the remaining two-thirds were used for validation to verify the accuracy of
the surrogate. Fig. 4 illustrates the discussion carried out so far. Like the FEM, the GPR model
yields the 64919 × 4 dimensional strain response, but at a much cheaper computational cost.
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Figure 4: Flowchart describing strain data generation using FEM, and prediction using GPR surrogate
model.

2.3 Brief introduction to risk-weighted f -divergence based Bayesian opti-
mization workflow for sensor placement design
Given the overall objective of an optimal sensing design, ΩE represents the design space,

such that e ∈ ΩE represents a particular design realization. The design e consists of Nsg(e)
number of strain gauge measurement locations. Every design e yields different measurement data
xe ∈ ΩXe

. Here, ΩXe
⊂ ΩX represents the measurement space for the design e, and Xe denotes

the corresponding random variable (see Eq. (10) that depicts how the observable strain realization
xe is obtained from the FEM and the strain gauge noise). Having defined the design space, four
prominent steps are summarized below for the proposed risk-weighted f -divergence based Bayesian
optimization framework for sensor network design.

Step 1: Problem description

This paper’s objective could be phrased as attempting to answer the question: “Given sources
of uncertainty (noise in the sensors and the uncertain external conditions), which set of sensors
should be chosen among the possible 64919×4 strain gauges measurements that yields the maximum
relative gain in the information contained in the posterior distribution of the target damage (gap
length) relative to the information contained in the prior distribution?”

Consider a sensor network design e ∈ ΩE with the measurement space ΩXe
. Before any

new/additional information is available about the structure through the strain gauge measurements,
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the uncertainty in the gap length is described by its prior probability distribution fΘ(�). When
additional information or strain gauge measurements are observed, it informs the observer (or
the engineer) about the current state of the structure. This new information translates into the
further refinement of the understanding of the gap length, now described by its posterior distribution
fΘ|Xe

(�|xe). If the strain gauge readings are representative of the true state of the structure, the
posterior distribution fΘ|Xe

(�|xe) draws closer to an understanding of the true description of the gap
length as compared to the prior distribution. Mathematically, then, the goal here is to obtain the
sensor-design e∗ ∈ ΩE that yields the maximum relative gain in the information contained in the
fΘ|Xe

(�|xe) relative to the information contained in fΘ(�).
We very briefly describe the remaining three steps of optimization next. The details are

omitted in this brief description because each of these steps demands a complete section on its own.

Step 2: Definition of the design dependent Bayes risk functional

The next step of the Bayesian optimization is to define the optimality criterion or the objective
functional, which is otherwise known as Bayes risk. The Bayes risk is a function of the design
e ∈ ΩE and is denoted by E(e). Bayes risk is a problem-dependent functional. We aim to define
Bayes risk such that:

1. The Bayes risk guides us to obtain a sensor-design that maximizes information gains on the
gap length inferred from the sensor measurements. The gain in the information is quantified
by the f -divergence that evaluates the similarity between two probability measures.

2. The Bayes risk incorporates the desire to obtain better information/description of the gap
length when the structure approaches a higher degree of damage (an increased gap length
approaching some critical size). This is accomplished by using a risk-based weight function.

3. The Bayes risk also takes into account prior knowledge of the gap length.

The Bayes risk for this paper is defined as the integral of the weighted f -divergence of the posterior
distribution relative to the prior distribution, weighted over the prior distribution, and risk-based
weight function, integrated over all the physically possible values of the gap length. Section 3 is
dedicated to detailing the Bayes risk functional.

Step 3: Evaluation of the design-dependent Bayes risk functional

Bayes risk is a non-linear functional. For a given design e, evaluating the Bayes risk requires
one to obtain the posterior of the gap length and risk-based weight functions. Section 3.2 delineated
a line of reasoning for incorporating risk-based weight function in the definition of the Bayes risk.
Theoretically, the posterior distribution can be evaluated using Bayes’ theorem:

fΘ|Xe
(�|xe) =

fXe|Θ(xe|�)fΘ(�)
fXe
(xe)

. (6)
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The quantity fΘ(�) represents the prior probability of the true state, and in absence of any information,
it may be assumed to be a uniform (uninformed) distribution. The likelihood fXe|Θ(xe|�) is obtained
using either a physics-based model or a digital twin. We note that the posterior does not follow
a canonical distribution and expectations with respect to the posterior in (6) cannot be obtained
analytically. This is because the relationship between strain measurements xe and the gap length
� is highly nonlinear. We deploy numerical approximation of the posterior distribution by using
particle filters, or specifically a sequential Monte Carlo (SMC) approach.

The integrand in the Bayes risk expression is integrated over the gap length (defined later in
Section 3). The second difficulty in obtaining Bayes risk is to evaluate this integral. To approximate
the integral, we first change the variable of the integral from the measurement space to the uncertain
input space. For instance, in our problem, the hydrostatic heads and the noise in the strain values
are the primary random input variables. Since there is a unique one-to-one relationship between an
input realization and an output realization, this allows us to change the variables of integration in
the Bayes risk. The integral can then be numerically approximated using univariate dimensional
reduction and Gauss-Hermite quadrature. Section 4 discusses the approach to evaluate the Bayes
risk.

Step 4: Obtaining the optimal sensor design using Bayesian optimization

With the problem well-defined (step 1) and the associated Bayes risk optimality criterion
formulated (steps 2-3), the problem becomes: "Given ΩΘ,ΩXe

,ΩE ,Ω� ,Ωℎup ,Ωℎdown , given an as-
sumed uncertainty structure (as in Eq. (4) and (5)), what is the design e∗ ∈ ΩE that maximizes the
Bayes risk objective functional E(e)?” We carefully note that intuitively, “risk” must be minimized.
However, in this paper, Bayes risk represents relative gain in information, and therefore, must
be maximized. We could have called the objective function “Bayes utility”, but as noted in the
introduction, we take advantage of the fact that “risk” is a subjective quantity.

We very briefly detail the sensor optimization algorithm, which will be explained in great
depth in Section 5. We start with an initial design e0 consisting ofN0 number of sensors. To obtain
the optimal design e1 with (N0 + 1) sensors, we search the entire design space for the (N0 + 1)th

sensor location. The (N0 + 1)th sensor location that maximizes the acquisition function constitutes
the next additional sensor. In this paper, we use expected improvement [50, 51] as the acquisition
function. Similarly, we repeat the optimization process to arrive at the optimal design enas consisting
ofN0 + nas sensors (or nas number of additional sensors relatively to the initially assumed design
e0). Finally, we pick e∗ = argmaxenas E(enas) as the most optimal design, where E(enas) represents
the Bayes risk associated with the design enas . Section 5 details the Bayesian optimization algorithm
for optimal sensor placement.
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2.4 Bayesian inference of gap length for a given sensor design
As discussed in the previous section, the state parameter is the gap length �, and for a given

sensor-design e, the measurement vector xe ∈ ΩXe
is the strain recorded atNsg(e) number of strain

gauge locations. Therefore, Xe is also a random vector. The measurements obtained from the strain
gauges are used to infer the gap length � using Eq. (6). In the context of inferring �, the evidence
fXe
(xe) is just a normalizing constant. Therefore, Eq. (6) may be written as:

fΘ|Xe
(�|xe) ∝ fXe|Θ(xe|�)fΘ(�). (7)

The distribution fΘ(�) reflects the prior knowledge about the parameter � before any new informa-
tion/measurements are obtained. Assuming only basic geometrical constraints on the gap length, we
assume the prior to be a uniform distribution spanning over ΩΘ = [�low, �up], such that

fΘ(�) =

{

(�up − �low)−1, � ∈ ΩΘ;
0, otherwise.

(8)

Evaluating the posterior using Eq. (7) requires us to obtain the likelihood fXe|Θ(xe|�). Constructing
the likelihood fXe|Θ(xe|�) requires a model of the measurement process. We note that the design e
consists of the selected sensors chosen from a total of 64919 × 4 possibilities, or ΩXe

⊂ ΩX . For
a given gap length and the hydrostatic heads, the FEM or GPR yields strain values for all of the
64919 × 4 sensors. Therefore, to detail the measurement model, we consider the total measurement
space ΩX . In this paper, we use the following measurement model

x = g(�, ℎup, ℎdown) + ". (9)

In the equation above, x = (x1, x2,⋯ , x64919×4) ∈ ΩX is a realization of the random vector X
consisting of 64919 × 4 strain measurements, where xi represents the strain value corresponding
to the ith strain gauge. For a given gap length �, the digital surrogate g yields g(�, ℎup, ℎdown) =
(g1(�, ℎup, ℎdown), g2(�, ℎup, gdown),⋯ , g64919×4(�, ℎup, ℎdown)) at 64919×4 location of the strain gauges,
where gi(�, ℎup, ℎdown) represents the strain response of the ith strain gauge obtained by the GPR
surrogate model g. In the equation above " ∈ Ω� is the realization of the random vector � defining
the noise in 64919 × 4 sensors.

Equation (9) defines the measurement model considering all the sensor locations in ΩX .
However, a design e consists of only Nsg(e) sensors with the measurement space ΩXe

. Utilizing
the fact that ΩXe

⊂ ΩX , let ge define the true strain response for the sensors included in design e
obtained by the GPRmodel, such that ge(�, ℎup, ℎdown) = (ge1(�, ℎup, ℎdown),⋯ , geNsg(e)

(�, ℎup, ℎdown)).
Similarly, let xe = (xe1 ,⋯ , xeNsg(e)

) ∈ ΩXe
denotes the observed/measured strain response. Here,

gei(�, ℎup, ℎdown) and xei represents the true (obtained by the GPR model) and the observed strain
response of the ith strain gauge in the sensor design e, respectively. The measurement model for the
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strain gauges included in the design e is given by

xe = ge(�, ℎup, ℎdown) + "e. (10)

In the equation above, xe is one of the realizations of the random vector Xe. The vector "e is the
realization of the random vector �e with "e = ("1, "2,⋯ , "Nsg(e)). It represents the measurement
noise/error vector for the design e, where "i denotes the error between the measurement output and
GPR predicted response (assumed to be the true response) corresponding to the ith strain gauge in
the design e as defined in Eq. (5). We assume that "e follows a zero-mean Gaussian distribution with
independent components, i.e., the noise/error terms of allNsg(e) strain gauges are assumed to be
statistically independent. In addition, we assume that each strain gauge has same standard-deviation
�"i , such that

f�e("e = ("1,⋯ , "Nsg(e))) =
Nsg(e)
∏

i=1
f�i("i) =

Nsg(e)
∏

i=1

1
�"i
�

(

"i
�"i

)

. (11)

Using the measurement model defined in Eq. (10), and the description of noise in Eq. (11), the
likelihood of observing the strain measurement xe ∈ ΩXe

for the gap length � can be written as

fXe|Θ(xe|�) =
Nsg(e)
∏

i=1

1
�"i
�

(

xei − gei(�, ℎup, ℎdown)
�"i

)

. (12)

Having defined the prior and the likelihood in Eq. (8) and (12), we note that the posterior
cannot be obtained analytically using Eq. (6). This is because the relationship between strain
measurements xe and the gap length � is highly nonlinear. One can rely on numerical approximation
techniques like Markov chain Monte Carlo (MCMC) methods, particle filter, and sequential Monte
Carlo (SMC) approach in recursive mode to solve the inference problem. As mentioned, because
the evaluation of the likelihood fXe|Θ(xe|�) at numerous values of � using the full finite element
model was too expensive, this was achieved by running instead the the GPR model ge. Furthermore,
we employ the particle filter method (or sequential Monte Carlo (SMC) in recursive mode) to obtain
the posterior.

We also simulate the measurement data numerically. For simulating such data, we obtain the
response of the digital surrogate g(�true, ℎup-true, ℎdown-true) parameterized by a chosen/fixed value of
true gap length �true subjected to chosen/fixed input loading (ℎup-true, ℎdown-true). This strain gauge
response is now corrupted by Gaussian noise of standard deviation �"i to mimic the real-world
measurement noise. This corrupted strain response is now used as the measurement/observed data
xe ∈ ΩXe

.
Obtaining the posterior numerically using particle filtering requires evaluating the likelihood

at numerous values of the gap length, called the particles. Usually, particle filtering is used for
sequential updating of the posterior distribution for a dynamic system, i.e., the case where new
information on the system is available as time evolves. However, in this case, we just have one set of
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data, and we aim at obtaining the posterior in a single step. The following summarizes the process
of obtaining the posterior distribution of the gap length:

(a) For the assumed true gap length �true and the chosen/fixed input loading (ℎup-true, ℎdown-true),
simulate the observed/measurement strain data xe ∈ ΩXe

.

(b) We choose Nparticle = 5000 discrete values of the gap length, called particles. It is at these
5000 particles for the likelihood is to be evaluated.

(c) At each of these 5000 particles (or the gap length), and for a given loads (ℎup-true, ℎdown-true),
the GPR model yields the true strain value at the ith strain location for the gap length particle
�j is denoted by gei(�j , ℎup-true, ℎdown-true), where i ≤ Nsg(e) and j ≤ 5000. We obtain the
numerical value of the likelihood of the measurement given the gap length �j at the observed
strain xe ∈ ΩXe

using Eq. (12) as:

fXe|Θ(xe|�j) =
Nsg(e)
∏

i=1

1
�"i
�

(

xei − gei(�j , ℎup, ℎdown)
�"i

)

. (13)

In the equation above, xei represents the observed strain value at the i
th strain gauge.

(d) Evaluate the weight wj for each particle as:

wj =
fXe|Θ(xe|�j)

∑Nparticle
k=1 fXe|Θ(xe|�k)

. (14)

(e) Calculate the cumulative weights to observe big jumps. Resample the weighted particles to
obtain unweighted samples of the posterior distribution over gap length.

It is evident from discussion carried above that evaluating the posterior distribution of the gap length
� for a given sensor measurementsXe requires obtaining the likelihood fXe|Θ(xe|�j) for j ≤ Nparticles.
This requires running the GPR modelNparticles times.

3 The objective functional, Bayes risk

3.1 Bayes risk: Expected utility function
Recall Step 2 of the Bayesian optimization framework discussed in section 2.3. There are

three primary goals that we aim to achieve: (1) Maximize the relative gain in the information; (2)
Obtain better information/description of the gap length when the true value of gap length is larger
or the state of the structure approaches a higher degree of damage; (3) Include the prior knowledge
of the gap length.
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3.1.1 Relative gain of information: f -divergence

We start with the first goal. As discussed before, the prior distribution of gap length fΘ(�)
quantifies our understanding of the gap length when no additional/new information on the system
(through the strain gauge measurements) is available. When the new information or the sensor
measurements xe ∈ ΩXe

are available, Bayesian inference allows us to refine our understanding of
the gap length, now quantified by the posterior fΘ|Xe

(�|xe). In this section, for brevity, we denote the
posterior distribution as fΘ|Xe

(�|xe) = gΘ(�). Traditionally, the information divergence (similarity
or dissimilarity) between two distributions, for example, deviation of the posterior gΘ(�) from the
prior fΘ(�), is quantified by the relative entropy or Kullback-Leibler (KL) divergence or i-divergence
(i for information), defined by:

DKL
(

gΘ(�)||fΘ(�)
)

= ∫ΩΘ
gΘ(�) log

(

gΘ(�)
fΘ(�)

)

d�. (15)

Since KL divergence is not symmetric, we prefer this form of information divergence because it
quantifies the information gain in the posterior distribution of the gap length as compared to the
prior distribution (refer to [52, 53]). Although KL divergence measures the distance between two
probability distributions, it does not qualify as a statistical metric of spread because it violates the
symmetric property and triangular inequality. However, KL divergence does satisfy the other two
properties of a metric: non-negativity and the identity of indiscernible. Therefore, KL divergence of
probability distributions may be loosely interpreted as a nonsymmetric analog of squared Euclidean
distance. Like KL divergence, there are many other divergences used to evaluate the similarity and
dissimilarity between probability distributions. Many of these divergences can be unified under the
generic framework of f -divergence [54]. Therefore, i-divergence is a special case of f -divergence.
For a convex function f(t) defined for t > 0, with f(1) = 0, the f -divergence of the posterior gΘ(�)
from the prior fΘ(�) is defined by:

Df

(

gΘ(�)||fΘ(�)
)

= ∫ΩΘ
fΘ(�)f

(

gΘ(�)
fΘ(�)

)

d�. (16)

Note that the constraint f(1) = 0 implies that all the f -divergences satisfy the identity of indis-
cernible. Table 1 in appendix 7 lists some of the important and commonly used f -divergences;
more information may be found in [54, 55, 56, 57]. Among all the f -divergences listed in Table
1 (see appendix 7), only the total variance satisfies all the properties of a metric: non-negativity,
symmetry, the identity of indiscernible, and triangular inequality [58].

In this paper, the state parameter (the gap length) is a single-dimensional quantity. However, in
many problems, the state parameter is a multi-dimensional vector. In such scenarios, evaluating the f -
divergence becomes computationally expensive. Many approximation techniques for f -divergence
have been proposed, like using higher-order Chi distances [56], penalized convex risk minimization
[59], and random mixture estimator [60]. For completion’s sake and for ensuring generality, we
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briefly present approximating f -divergence using Taylor series expansion and higher-order Chi
distances [56]. The function f(t) can be expanded about the point t0 using the Taylor series as

f(t) =
∞
∑

i=0

1
i!
(t − t0)i.

)if(t)
)ti

|

|

|

|t=t0
. (17)

The f -divergence defined in Eq. (16) can be written as:

Df

(

gΘ(�)||fΘ(�)
)

= ∫ΩΘ
fΘ(�)

∞
∑

i=0

1
i!

(

gΘ(�)
fΘ(�)

− t0

)i

.
)if(t)
)ti

|

|

|

|t=t0
d�

=
∞
∑

i=0

1
i!
)if(t)
)ti

|

|

|

|t=t0

(

∫ΩΘ

(

gΘ(�) − t0fΘ(�)
)i

fΘ(�)i−1
d�

)

=
∞
∑

i=0

1
i!
)if(t)
)ti

|

|

|

|t=t0
.D� iP ,t0

(

gΘ(�)||fΘ(�)
)

.

(18)

Here, D� iP ,t0

(

gΘ(�)||fΘ(�)
)

is the generalization of the ith order Pearson-Vajda f -divergence. The
equation above allows us to write any f -divergence as the weighted sum of the generalized ith

order Pearson-Vajda f -divergence, which in turn can be approximated by the restricted class of
exponential families that are easy to evaluate [56].

3.1.2 Implicit and explicit inclusion of the risk weights into Bayes risk

The space of all the uncertainties in the current problem is defined asΩ�e = ΩHup
×ΩHdown

×Ω�1×
Ω�2 ×⋯×Ω�Nsg(e)

, such that the random variable �e represents all the uncertainty sources considered
to affect the design e. Let �e = (ℎup, ℎdown, "1, "2,⋯ , "Nsg(e)) ∈ Ω�e represents a realization of the
random variable �e. Secondly, since the strain measurements xe ∈ ΩXe

are representative of the
physics of the miter gate, its value also depends on the gap length value � ∈ ΩΘ. This fact is
mathematically denoted by redefining the random variable Xe to be a function of the uncertainties
and the true gap length, xe = Xe(�true, �e). If there is no external noise and if the true value of gap
length �true exactly known, then xe represents true value of the strain measurements. However, since
the true gap length can’t be obtained under all the inevitable uncertainty, the best one can do is to
define the Bayes risk as the expected value of risk-weighted f -divergence averaged over the entire
space ΩΘ and Ω�e , i.e., by considering the entire range of possible true values of the gap length and
taking into account the uncertainties in strain gauge readings and external loads. We reasonably
assume that the random variables Θ,Hup,Hdown, and �i are statistically independent. With all the
necessary pieces defined, we first state the Bayes risk functional without including any risk weights
as

E(e) = ∫ΩΘ ∫Ω�e
f�e(�e)fΘ(�)Df

(

fΘ|Xe(�true=�,�e)('|xe)||fΘ(')
)

d�ed�. (19)
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In the equation above, the variable ' gets integrated out in the expression of f -divergence. The
f -divergence is a function of (�true�, �e), in the sense that

Df

(

fΘ|Xe(�true=�,�e)('|xe)||fΘ(')
)

= ∫ΩΘ
fΘ(')f

(fΘ|Xe(�true=�,�e)('|xe)
fΘ(')

)

d' = Df(�true = �, �e).

(20)
In the Eq. (19) and (20), the f -divergenceDf(�true = �, �e)measures the divergence in the posterior
distribution in the gap length relative to its prior distribution.

We consider two approaches to incorporate the risk weights in the Bayes risk. In the first
approach, we explicitly weigh the integrand of the Bayes risk defined in Eq. (19) with the risk
weights, such that

Eexplicit-risk(e) = ∫ΩΘ ∫Ω�e
f�e(�e)fΘ(�)r(�true = �)Df(�true = �, �e) d�ed�. (21)

The quantity r(�true = �) weighs the risk-based importance factor for all the possible value of true
gap length, i.e. ∀ �true = � ∈ ΩΘ. The prior fΘ(�) accounts for the prior knowledge of the gap
length, and the distribution f�e(�e) accounts for all the uncertainties. Finally, we define the utility
functionℒ (�true = �, �e) as the risk-weighted f -divergence

ℒ (�true = �, �e) = r(�true = �)Df(�true = �, �e). (22)

We understand that in the definition of the Bayes risk, we consider all the possible values of the
true gap length. From here on, we omit writing �true = � in the argument of utility or the weight
function, such that Eq. (22) becomes

ℒ (�, �e) = r(�)Df(�, �e). (23)

In the equation above, the argument � represents one possibility of true gap length.
With the simplified notation of f -divergence and definition of the utility function,ℒ (�, �e),

and the Bayes risk explicitly considering the risk weights is compactly written as

Eexplicit-risk(e) = EΘ�e [ℒ (�, �)] = ∫ΩΘ ∫Ω�e
fΘ(�)f�e(�e)r(�)Df(�, �e) d�ed�. (24)

Another mathematically equivalent approach to consider risk weighing is by modifying the prior
distribution to

fΘ̂(�̂ = �) =
fΘ(�).r(�)

∫ �up
�low

fΘ(�).r(�) d�
, (25)

such that fΘ̂(�̂) is transformed prior probability distribution function of the random variableΘ⟶ Θ̂
with the realization �̂ ∈ ΩΘ̂, such that ΩΘ = ΩΘ̂. The Bayes risk that implicitly incorporates the risk
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weight in the form of modified prior distribution is defined as

Eimplicit-risk(e) = EΘ̂�e
[

Df(�̂, �e)
]

= ∫ΩΘ̂ ∫Ω�e
fΘ̂(�̂)f�e(�e)Df(�̂, �e) d�ed�̂. (26)

The Bayes risk functional Eimplicit-risk(e) implicitly considers the risk-weight r(�). We note that the
implicit Bayes risk Eimplicit-risk(e) and the explicit Bayes risk Eexplicit-risk(e) are proportional to each
other, with a positive constant of proportionality, i.e.,

(

∫ �up
�low

fΘ(�).r(�) d�
)

:

Eimplicit-risk(e) ∝ Eexplicit-risk(e). (27)

Therefore, either explicit or implicit Bayes risk can be used in the optimization problem. Finally,
we note that the implicit and explicit Bayes risk converge when we assign a constant risk-weight
(importance factor) to all the true gap length values, such that

E(e) = Eimplicit-risk(e)
|

|

|r(�)=1
= Eexplicit-risk(e)

|

|

|r(�)=1
. (28)

As shown in Eq. (24) Bayes risk is defined as the expected value of the utility function. Ideally,
the goal is to maximize the utility, but due to the uncertainties in the system quantified by �e ∈ Ω�e ,
and our inability to know the true value of the gap length, the best we can do is to pick a sensor
design that maximizes the expected value of the utility averaged over all the possible values of the
true gap length and the uncertainties. An optimal sensor design that maximizes the expected utility
is the most optimal. The next Section 3.2 discusses the quantity r(�true) in detail.

Evaluating the f -divergence Df(�, �e) for a given true gap length �true = � and the external
uncertainties �e (consisting of hydrostatic heads and the noise in strain gauge readings) requires us to
obtain the posterior distribution fΘ|Xe(�,�e)('|xe) of the gap length for a given true-variables (�, �e).
Therefore, as was mentioned above, for a given measurementXe(�, �e), obtaining the posterior using
particle filter requires running the GPR or digital surrogate modelNparticles times. However, since
we are simulating the measurement data Xe(�, �e), we need to run GPR model once as mentioned in
Eq. (10). Therefore, evaluating the f -divergenceDf(�, �e) (or the utilityℒ (�, �e)) requires running
the GPR model (Nparticles + 1) times.

For the prior fΘ(') and the posterior distribution fΘ|Xe(�,�e)('|xe), the f -divergence is numer-
ically evaluated by approximating Eq. (20) as:

Df(�, �e) ≈
1
N

N
∑

i=1
r('i)f

(fΘ|Xe(�,�e)('i|xe)
fΘ('i)

)

. (29)

Fig. (5) illustrates a function or a module called “Evaluate the Utilityℒ (�, �e)” or “Evaluating
the f -divergence Df(�, �e)” that obtains the f -divergence Df(�, �e) and the utility ℒ (�, �e) for
a given design e and the input variables (�, �e). Note that obtaining utility function is just a step
away from the f -divergence. It does so in a three step process that requires running the GPR model
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(Nparticles + 1) times. The first step is to simulate observed/measurement data xe for a design e by
assuming a true gap length �, hydraulic heads (ℎup, ℎdown), and a noise structure f�i("i). The second
step is to obtain the posterior distribution of the gap length given the measurement xe obtained in
the first step using particle filter. Finally, the third step is to evaluate f -divergence of the posterior
(obtained in step 2) relative to the prior distribution of the gap length that ultimately yields the utility
function.

Figure 5: Evaluating the the f -divergence Df(�, �e) and the utilityℒ (�, �e) for a given case of true
gap length �, uncertainties �e, and the risk-based weight function r(�).

3.2 Risk-based weight function
In some applications, there is a well-defined limit state that defines damage criticality, and a

given structural owner/stakeholder might want an SHM system to determine the proximity to that
limit state. In the current application, there is no well-defined limit state, and the risk weight function
r(�true) can serve as a surrogate to that proximity by assigning relative importance to the values of
true gap length �true in terms of the degree of damage. For instance, r(�true = �2) > r(�true = �1)
implies that the structural owner believes a gap length of �2 is more concerning with regard to
criticality than when the true gap length is �1. This approach is inspired by the fact that different
decision-makers mentally assign a different importance factor (or in economic terms: utility or
risk-intensity) to the seriousness/urgency to take necessary actions with the increasing intensity of
structural damage. For instance, given that the true state of the structure is moderately damaged,
a decision-maker who is fearful of making any mistake leading to heavy losses, a risk-averter,
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might suggest major repair and continuous inspection. On the other hand, another decision-maker
might suggest only minor repairs, a risk-seeker. Commensurate with the notion of subjective risk
perception, we suggest risk weights r(�true) that follow the following two properties:

1. The risk weights r(�true) must have a zero or positive slope. This is because, physically, an
increase in gap length reflects higher damage to the structural state of the miter gate. Therefore,
to satisfy this physical constraint, we can either assign constant or monotonically increasing
risk weights for all the gap lengths.

2. The risk weight need not be unique and can be selected based on a desirable optimization
criterion. For example, if we decide to equally weigh all the values of true gap length, then
the risk weight can be taken as a constant r(�true) = 1 (zero slope). On the other hand, if we
desire to make a better prediction of the state of the miter gate at a higher gap length value
that implies higher damage, we may pick a monotonically increasing risk weight.

Since the state estimation depends on the probabilistic description of the gap length, obtaining
a better estimate of the miter gate damage intensity demands a better estimate of the probability
distribution of the gap length. We aim at assigning an increasing importance factor to damage
estimation as the value of the gap length increases. Therefore, for the sake of the optimization
problem considered in this paper, we consider a particular case of monotonically increasing risk-
weight of the following form:

r(�true) = e
−
(

�true−�critical
b

)2

, for �low < �true < �up = �critical. (30)

In the equation above, �critical represents the critical value of gap length such that as the true gap
length �true approaches this critical value �critical, the risk-weight increases. We consider �critical = �up.
The factor b controls how quickly the risk-weight decays as �true deviates from �critical. Now with the
Bayes risk functional fully defined, the next section deals with evaluating the Bayes risk.

4 Evaluating the Bayes risk for a fixed sensor design

4.1 Revisiting Bayes risk
Section 3.1 defined the utility functionℒ (�, �e), and the explicit Bayes risk was defined as

the expected utility, i.e., averaged over all the values of the uncertainties �e ∈ Ω�e , and the possible
true values of gap length � ∈ ΩΘ. We note that these random variables constituting �e and � (or �̂
when Bayes risk considers the risk-weights implicitly) can follow a generic continuous distribution.
We can always transform them to a standard normal random variables. Therefore, in an attempt to
generalize, we transform the true gap length � (or �̂), hydrostatic heads ℎup, ℎdown, and the noise �i
into their respective standard normal forms denoted by a tilde ̃(⋅) over the respective quantity. Since
the hydrostatic heads and noise for the ith strain gauge is Gaussian in our case, their standard normal
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forms can be written as ℎ̃up, and ℎ̃down, such that ℎup = ℎ̃up�ℎup + �ℎup , ℎdown = ℎ̃down�ℎdown + �ℎdown ,
and "i = "̃i�"i +�"i , where ℎ̃up, ℎ̃down and "̃i are the realizations of standard normal random variables
H̃up, H̃down, and �̃i respectively. We transform the prior fΘ(�) and the modified prior fΘ̂(�̂) to a
standard normal random variable Θ̃ and ̃̂Θ respectively, such that the cumulative density functions
are equal: FΘ(�) = FΘ̃(�̃), and FΘ̂(�̂) = F ̃̂Θ(

̃̂�). This transforms �e into a joint standard normal
random variable �̃e (with a realization �̃e), such that

f�̃e(�̃e) = fH̃up
(ℎ̃up).fH̃down

(ℎ̃down).
Nsg(e)
∏

i=1
f�̃i("̃i), where,

�̃e =
(

ℎ̃up, ℎ̃down, "̃1, "̃2,⋯ , "̃Nsg(e)

)

.

(31)

We can now rewrite Bayes risk in Eq. (24) as:

Eexplicit-risk(e) = EΘ̃�̃e
[

ℒ̃ (�̃, �̃e)
]

, where, ℒ̃ (�̃, �̃e) = ℒ (�, �e); (32a)

Eimplicit-risk(e) = E ̃̂Θ�̃e

[

D̃f(
̃̂�, �̃e)

]

, where, D̃f(
̃̂�, �̃e) = Df(�̂, �e). (32b)

The next section approximates the Bayes risk defined in Eq. (32) by using univariate dimensional
reduction and Gauss-Hermite quadrature to carry out the integration.

4.2 Univariate dimensional reduction and Gauss-Hermite quadrature
To obtain the optimal sensor placement design, we may either optimize Eexplicit-risk(e) or

Eimplicit-risk(e). Since these are both integrals, we will use Gauss-Hermite quadrature to approximate
the Bayes risk. In this section, we in parallel detail the numerical approximation of Eexplicit-risk(e) or
Eimplicit-risk(e). Recall that the vector �̃e consists of

(

Nsg(e) + 2
)

variables. To catalyze the derivation
to estimate the Bayes risk using univariate dimensional reduction and Gauss-Hermite quadrature,
we define the following spaces

ΩΨ̃e = ΩΘ̃ × Ω�̃e , such that  ̃e = (�̃, �̃e) = (�̃, ℎ̃up, ℎ̃down, "̃1, "̃2,⋯ , "̃Nsg(e)) ∈ ΩΨ̃e (33a)

Ω ̃̂Ψe
= Ω ̃̂Θ × Ω�̃e , such that ̃̂ e = (

̃̂�, �̃e) = (
̃̂�, ℎ̃up, ℎ̃down, "̃1, "̃2,⋯ , "̃Nsg(e)) ∈ Ω ̃̂Ψe

(33b)

To distinguish between a variable with or without the hat (⋅̂), refer to Eq. (25) for the definition
of transformed gap-length �̂ used in the expression of implicit-risk Bayes risk. Equation set (33)
allows us to write the Bayes risk in a more desirable form

Eexplicit-risk(e) = EΨ̃e
[

ℒ̃ ( ̃e)
]

= ∫ΩΨ̃e
fΨ̃e( ̃e)ℒ̃ ( ̃e) d ̃e, where, ℒ̃ ( ̃e) = ℒ̃ (�̃, �̃e). (34a)

Eimplicit-risk(e) = E ̃̂Ψe

[

D̃f( ̃̂ e)
]

= ∫Ω ̃̂Ψe

f ̃̂Ψe(
̃̂ e)D̃f( ̃̂ e) d ̃̂ e, where, D̃f( ̃̂ e) = D̃f(

̃̂�, �̃e). (34b)
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Like Fig. (5), Fig. (6) illustrates a function or a module called “Evaluate the Utility ℒ̃ (�̃, �̃e)” and

Figure 6: Evaluating the utility ℒ̃ ( ̃e) = ℒ̃ (�̃, �̃e) or the f-divergence D̃f( ̃̂ e) = D̃f(
̃̂�, �̃e) for a

given (�̃, �̃e), or (
̃̂�, �̃e), respectively

“Evaluate the f-divergence D̃f(
̃̂�, �̃e)” that obtains the utility ℒ̃ ( ̃e) or the f-divergence D̃f( ̃̂ e) for a

given design e and the input variables (�̃, �̃e) or (
̃̂�, �̃e) respectively. The module “Evaluate the Utility

ℒ̃ (�̃, �̃e)” is required to evaluate Eexplicit-risk(e), and the module “Evaluate the f-divergence D̃f( ̃̂ e)”
is required to evaluate Eimplicit-risk(e). It does so by transforming the standard-normal variables back
to their original form, i.e., (�̃, �̃e) ⟶ (�, �e) or (

̃̂�, �̃e) ⟶ (�̂, �e), and then using the module
“Evaluate the Utility ℒ (�, �e)” or “Evaluate the f-divergence Df(�̂, �e)” (illustrated in Fig. 5) to
obtain the respective quantities.

The integrals in Equations (34a) and (34a) are high dimensional expectations in
(

Nsg(e) + 3
)

dimensional spaces, making classic multivariate quadrature rules (e.g., quasiMonte Carlo or Smolyak
sparse grids) prohibitively expensive. Monte Carlo approximations converge slowly and require a
large number of samples to approximate the expectations. This is problematic because an expensive
Bayesian inference problem needs to be solved to evaluate the integrands in Equations (34a) and
(34a). To overcome these issues, we employ an approximation to the integrals in Equations (34a)
and (34a) based on univariate dimension reduction. To do so, we define the following vectors, each
consisting of

(

Nsg(e) + 3
)

components:
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 ̃0 = (0, 0, 0, 0, 0,⋯ , 0);
 ̃1 = (�̃, 0, 0, 0, 0,⋯ , 0);
 ̃2 = (0, ℎ̃up, 0, 0, 0,⋯ , 0);
 ̃3 = (0, 0, ℎ̃down, 0, 0,⋯ , 0);
 ̃4 = (0, 0, 0, "̃1, 0,⋯ , 0);
 ̃5 = (0, 0, 0, 0, "̃2,⋯ , 0);
⋮

 ̃(Nsg(e)+3) = (0, 0, 0, 0, 0,⋯ , "̃Nsg(e)).

(35)

̃̂ 0 = (0, 0, 0, 0, 0,⋯ , 0);
̃̂ 1 = (

̃̂�, 0, 0, 0, 0,⋯ , 0);
̃̂ 2 = (0, ℎ̃up, 0, 0, 0,⋯ , 0);
̃̂ 3 = (0, 0, ℎ̃down, 0, 0,⋯ , 0);
̃̂ 4 = (0, 0, 0, "̃1, 0,⋯ , 0);
̃̂ 5 = (0, 0, 0, 0, "̃2,⋯ , 0);
⋮
̃̂ (Nsg(e)+3) = (0, 0, 0, 0, 0,⋯ , "̃Nsg(e)).

(36)

Note that  ̃i are exactly same as ̃̂ i except for i = 1. Using the definitions above and univariate
dimensional reduction (refer to [32]), we approximate the utility function ℒ̃ ( ̃e) or the f-divergence
D̃f( ̃̂ e) as:

ℒ̃ ( ̃e) ≈ −
(

Nsg(e) + 2
)

ℒ̃ ( ̃0) +
(Nsg(e)+3)
∑

i=1
ℒ̃ ( ̃i); (37a)

D̃f( ̃̂ e) ≈ −
(

Nsg(e) + 2
)

D̃f( ̃̂ 0) +
(Nsg(e)+3)
∑

i=1
D̃f( ̃̂ i). (37b)

Substituting Eq. (37a) into Eq. (32a), we get,

Eexplicit-risk(e) ≈ −
(

Nsg(e) + 2
)

EΨ̃e
[

ℒ̃ ( ̃0)
]

+
(Nsg(e)+3)
∑

i=1
EΨ̃e

[

ℒ̃ ( ̃i)
]

= −
(

Nsg(e) + 2
)

∫ΩΨ̃e
fΨ̃e( ̃e)ℒ̃ ( ̃0) d ̃e +

(Nsg(e)+3)
∑

i=1
∫ΩΨ̃e

fΨ̃e( ̃e)ℒ̃ ( ̃i) d ̃e

= −
(

Nsg(e) + 2
)

ℒ̃ ( ̃0) +
(Nsg(e)+3)
∑

i=1
∫ΩΨ̃e

fΨ̃e( ̃e)ℒ̃ ( ̃i) d ̃e.

(38)

Similarly, substituting Eq. (37b) into Eq. (32b), we get,

Eimplicit-risk(e) ≈ −
(

Nsg(e) + 2
)

D̃f( ̃̂ 0) +
(Nsg(e)+3)
∑

i=1
∫Ω ̃̂Ψe

f ̃̂Ψe(
̃̂ e)D̃f( ̃̂ i) d ̃̂ e. (39)

To simplify the expression above, firstly, we realize that fΨ̃e( ̃e) and f ̃̂Ψe(
̃̂ e) are the joint probability
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density function of statistically-independent standard normal random variables. Therefore,

fΨ̃e( ̃e) = fΘ̃(�̃).f�̃e(�̃e) = fΘ̃(�̃).fH̃up
(ℎ̃up).fH̃down

(ℎ̃down).
Nsg(e)
∏

i=1
f�̃i("̃i); (40a)

f ̃̂Ψe(
̃̂ e) = f ̃̂Θ(

̃̂�).f�̃e(�̃e) = f ̃̂Θ(
̃̂�).fH̃up

(ℎ̃up).fH̃down
(ℎ̃down).

Nsg(e)
∏

i=1
f�̃i("̃i). (40b)

Since all these random variables are standard normal, using the notation defined in Eq. (1) we can
re-write Eq. (40) in a more desirable form as:

fΨ̃e( ̃e) = �(�̃).�(ℎ̃up).�(ℎ̃down).
Nsg(e)
∏

i=1
�("̃i) =

Nsg(e)+3
∏

i=1
�(b̃i) =

Nsg(e)+3
∏

i=1

(

1
√

2�
e−

1
2 b̃
2
i

)

; (41a)

f ̃̂Ψe(
̃̂ e) = �(

̃̂�).�(ℎ̃up).�(ℎ̃down).
Nsg(e)
∏

i=1
�("̃i) =

Nsg(e)+3
∏

i=1
�( ̃̂bi) =

Nsg(e)+3
∏

i=1

(

1
√

2�
e−

1
2
̃̂b2i

)

. (41b)

In the equation above, b̃1 = �̃, b̃2 = ℎ̃up, b̃3 = ℎ̃down and b̃j+3 = "̃j , for j ∈ (1, 2,⋯ , Nsg(e)),
with Ωb̃i representing the respective space (for example: Ωb̃1 = ΩΘ̃). Similarly, ̃̂b1 =

̃̂�, ̃̂b2 = ℎ̃up,
̃̂b3 = ℎ̃down and

̃̂bj+3 = "̃j , for j ∈ (1, 2,⋯ , Nsg(e)), with Ω ̃̂bi
representing the respective space (for

example: Ω ̃̂b1
= Ω ̃̂Θ). Secondly, we note that for any function of the form g(x ∈ X, y = 0 ∈ Y ),

EXY (g(x, 0)) = EX(g(x, 0)), providedX and Y are statistically-independent random variables. This
allows us to simplify the integral in Eq. (38) and (39) as:

∫ΩΨ̃e
fΨ̃e( ̃e)ℒ̃ ( ̃i) d ̃e =

1
√

2� ∫Ωb̃i
ℒ̃ ( ̃i)e

− 1
2 b̃
2
i db̃i; (42a)

∫Ω ̃̂Ψe

f ̃̂Ψe(
̃̂ e)D̃f( ̃̂ i) d ̃̂ e =

1
√

2� ∫Ω ̃̂bi

D̃f( ̃̂ i)e
− 1
2
̃̂b2i d ̃̂bi. (42b)

We realize that the Gauss-Hermite quadrature is a natural choice for approximating the integrals in
the equation above. This is because Gauss-Hermite quadrature is meant to estimate integrals of the
form ∫x g(x)e

−x2 dx, for any function g(x). Therefore, the approximations are

∫ΩΨ̃e
fΨ̃e( ̃e)ℒ̃ ( ̃i) d ̃e ≈

1
√

�

r
∑

n=1
wnℒ̃ (q̃i,n), where q̃i,n(j) =

{

 ̃i(j) = 0 i ≠ j;
�n i = j.

(43a)

∫Ω ̃̂Ψe

f ̃̂Ψe(
̃̂ e)D̃f( ̃̂ i) d ̃̂ e ≈

1
√

�

r
∑

n=1
wnD̃f( ̃̂qi,n), where ̃̂qi,n(j) =

{

̃̂ i(j) = 0 i ≠ j;
�n i = j.

(43b)

In the equations above, q̃i,n(j) (or ̃̂ i(j)) represents the j th component of the vector q̃i,n (or ̃̂ i);
r represents quadrature order; wn gives the weights; and �n gives the point of evaluation of the
function for n ≤ r. For our calculations, we use r = 3, for which w1 =

2
3

√

�, w2 =
1
6

√

�,
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w3 = −
1
6

√

�, �1 = 0, �2 =
√

6
2
, and �3 = −

√

6
2
. This choice of the quadrature order satisfies the

computational accuracy that this problem demands and at the same time leads to a computationally
efficient numerical estimation of Bayes risk. The approximated Bayes risk functions can now be
written as

Eexplicit-risk(e) ≈ −
(

Nsg(e) + 2
)

ℒ̃ ( ̃0) +
(Nsg(e)+3)
∑

i=1

r=3
∑

n=1
wnℒ̃ (q̃i,n); (44a)

Eimplicit-risk(e) ≈ −
(

Nsg(e) + 2
)

D̃f( ̃̂ 0) +
(Nsg(e)+3)
∑

i=1

r=3
∑

n=1
wnD̃f( ̃̂qi,n). (44b)

Figure 7 illustrates the algorithmic flowchart to obtain the explicit and implicit form of Bayes risk
functional defined in Eq. (44).

Figure 7: Algorithm to evaluate both the explicit and implicit Bayes risk.

As was noted in Eq. (27) that, mathematically, optimization using explicit and implicit Bayes
risk functional should yield the same result. However, since we numerically estimate Eexplicit-risk(e)
and Eimplicit-risk(e) using Gauss-Hermite quadrature in conjuncture with univariate dimensional
reduction, optimization using these functional leads to a different sensor designs. This is because
evaluating Eexplicit-risk(e) requires using observed strain measurements corresponding to the gap
length values � = F −1

Θ

(

FΘ̃(�̃ = �n)
)

, whereas evaluating Eimplicit-risk(e) requires using a different set
of observed strain measured corresponding to the true gap length values �̃ = F −1

Θ̂

(

F ̃̂Θ(
̃̂� = �n)

)

. In
other words, since the cumulative distribution functions FΘ̃(�̃) (obtained from the prior distribution
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of gap length) and F ̃̂Θ(
̃̂�) (obtained from the modified prior distribution of gap length) are different,

the Gauss point �n maps to a different values of true gap lengths � and �̃, and hence requires using
different simulated strain data. We use implicit Bayes risk as the objective functional because it
shows the effect of risk-weights more prominently than obtained using the explicit Bayes risk.

It is natural to address the question “How many times do we need to run the GPR model
to obtain the Bayes risk Eexplicit-risk(e) or Eimplicit-risk(e) defined by Eq. (44) for a single design
consideration e?” We show the calculation for the explicit Bayes risk and note that the number of
GPR runs are the same for explicit or implicit Bayes risk functional evaluation. To start with, we
realize that there are two sums in the expression of Eexplicit-risk(e) in Eq. (44). Therefore, the cost
function ℒ̃ (q̃i,n) has to be obtained r.(Nsg(e)+3) times for all the possible q̃i,n, where i ≤ (Nsg(e)+3)
and n ≤ r. For a fixed value of the index i and n, the vector q̃i,n consist of some realization of
the standard-normal quantities (�̃, �̃e) obtained by Eq. (43). From Remark 3, obtaining the utility
function ℒ̃ (q̃i,n) for a fixed q̃i,n requires running the GPR model (Nparticles + 1) times. It can also be
seen in the Fig. 7 that the utility ℒ̃ (q̃i,n) is evaluated for every q̃i,n by calling a function “Expected the
Utility ℒ̃ (q̃i,n)” that requires running GPR model (Nparticles + 1) times at every instance the function
is called (refer to Fig. 5). Therefore, evaluating Bayes risk using Eq. (44) for a given design e
requires running the GPR modelNGPR1 times, such that:

NGPR1 = r × (Nparticles + 1) × (Nsg(e) + 3). (45)

These GPR model runs make evaluating Bayes risk computationally expensive.
Bayesian optimization aimed at obtaining the optimal sensor network design consists of

evaluating many such designs, denoted by ei, consisting ofNsg(ei) number of sensors. To obtain
an optimized sensor placement design, we start with an initially assumed design, denoted by e0,
that consists ofNsg(e0) number of sensors. Starting with e0, the subsequent sensor design ei with
Nsg(ei) sensors is obtained by picking the most optimal sensor location from the available sensors
and adding that sensor location to the previous design ei−1 with Nsg(ei−1) = Nsg(ei) − 1 sensors.
Picking the additional sensor required to update the design ei−1 to the design ei requires Niter(ei)
number of iterations. Since Bayes risk is the optimiality criteria, it needs to be evaluated at every
iteration for the design ei. Let eI , with i = I , represent the final optimal sensor network design. The
total number of GPR runs to arrive at eI (starting from e0) is denoted byNGPR2, such that:

NGPR2 =
I
∑

i=1
r × (Nparticles + 1) × (Nsg(ei) + 3) ×Niter(ei). (46)

So far, we have taken two major steps to reduce the computational cost. First, we have used
a digital surrogate (GPR) of the finite element model. Secondly, we have used SVD to reduce
the dimension of the GPR model’s output. In the next section, we propose a novel and innovative
approach to further minimize the computational cost for evaluating the Bayes risk by minimizing
the number of times we run the GPR model to evaluate the Bayes risk.
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4.3 An efficient computational approach to evaluate the Bayes risk
In this section, we highlight the disadvantage of using the algorithm illustrated in Fig. 7 to

obtain the explicit and implicit Bayes risk and propose an alternative novel approach that significantly
reduces the computational cost of optimization. For the sake of discussion, we consider explicit
Bayes risk functional. An approach to evaluate Bayes risk Eexplicit-risk(e) for a given design e as
illustrated in Fig. 7 involves many repeated evaluation of GPR model ge(�, ℎup, ℎdown) for same
input arguments (�, ℎup, ℎdown). The computational cost can be significantly reduced by realizing
that in the entire process of evaluating the Bayes risk, there are only 7(Nparticles + 1) unique runs
of GPR model. This follows from the following line of reasoning. The vector q̃i,n is a special case
of the vector  ̃i as defined in Eq. (35). The first three components of the vector q̃i,n constitute a
sub-vector q̃i,n(1 ∶ 3) = (�̃, ℎ̃up, ℎ̃down), the inverse standard-normal transformation of which are the
argument of the GPR model ge(�, ℎup, ℎdown) = g̃e(�̃, ℎ̃up, ℎ̃down). The remainingNsg(e) components
constitute a vector q̃i,n(4 ∶ Nsg(e)+3) representing external noise. For any vector q̃i,n, the sub-vector
q̃i,n(1 ∶ 3) = (�̃, ℎ̃up, ℎ̃down) bears �n as numerical value of one of the components and zero for others.
Therefore, we have a set of 7 unique sub-vectors (�̃, ℎ̃up, ℎ̃down) of interest to us. From remark 1, Fig
5 and Fig 6, obtaining the utility ℒ̃ (q̃i,n) for each q̃i,n requires (Nparticles + 1) GPR runs. Therefore,
considering all the 7 unique arguments of GPR model, we essentially need to run GPR model only
NGPR3 times, such that:

NGPR3 = 7 × (Nparticles + 1). (47)

For each of these stand-alone GPR runs, we store the strain values in all the 64919 sensors constituting
data of size 7×(Nparticles+1)×64919 in amatrix called “strain-data” and pick the strainmeasurements
of the sensors constituting a design e. Therefore, even while carrying out Bayesian optimization that
may consider many designs, the number of GPR runs remains 7×(Nparticles+1) cutting computational
cost intensively. Figure 8 illustrates this process of storing the strain data. Once the matrix strain-
data is obtained independently, the utility ℒ̃ (q̃i,n) can be evaluated by extracting the relevant sensor
readings from the matrix strain-data as demonstrated in Fig. 9. Replacing � with �̂, and q̃i,n with
̃̂qi,n in the flowchart 8 gives the strain-data matrix required to obtain the intrinsic Bayes risk, and
replacing them in in the flowchart 9 yields the f-divergence D̃f(

̃̂�, �e) required to obtain the intrinsic
Bayes risk.

The modified algorithm to evaluate the Bayes risk Eexplicit-risk(e) is illustrated in Fig. 10. The
most important difference between the algorithm in Fig. 7 and the one in Fig. 10 is that in the
modified algorithm the GPR models are not run at every iteration step.
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Figure 8: Obtaining and storing the strain-data required to obtain Bayes risk Eextrinsic-risk(e)

Figure 9: Obtaining the utility ℒ̃ (q̃i,n)
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Figure 10: Computationally efficient algorithm to evaluate the explicit and implicit Bayes risk.

The Fig. 11 compares the number of GPR runs required for Bayesian optimization by con-
sidering two approaches used to evaluate Bayes risk as defined in Fig. 7 and 10. Carrying out
Bayesian optimization using first approach to evaluate Bayes risk (either extrinsic or intrinsic) Fig.
(7) needs NGPR2 runs of GPR model that depends on the design ei considered as defined in Eq.
(46). We start by assuming Nsg(e0) = 3 number of initial sensors and update the design using
upto 10 additional sensors. For simplicity, we assume a constant average number of iterations for
each design Niter(ei) = 20. We assume Nparticles = 5000. We observe that number of GPR runs
using modified algorithm illustrated in Fig. 10 is NGPR2 = 35007, which is order of magnitudes
smaller as compared toNGPR2. For instance,NGPR2 = 2100420 for the first additional sensor, and
NGPR2 = 34506900 for ten additional sensors.

Figure 11: Number of GPR runs for Bayesian optimization
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5 Bayesian optimization: optimal sensor placement design

5.1 Optimal sensor placement design algorithm
Given that our objective is to find the design e∗ that maximizes a Bayes risk functional, we

will use the implicit Bayes risk form to solve

e∗ = argmax
e∈ΩE

Eimplicit-risk(e). (48)

In general, obtaining e∗ involves looking at every possible design combination and choosing the
one with the maximum implicit Bayes risk. In our case, where the total number of sensor locations
is n = 64919 × 4, this would be choosing e∗ from the

∑n
r=1

n!
r!(n−r)!

= (2n − 1) possible combinations
of sensor locations. Therefore, the exhaustive design space ΩE consists of (2259676 − 1) ≈ 1078170

possible designs, which is approximately 78090 orders of magnitude more than the number of
estimated atoms in the universe. Given the intractable nature of exhaustive search, Bayesian
optimization is used to look for a global optimum in a minimum number of steps, thus minimizing
the sampling points to rapidly speed up the optimization process. Unlike gradient-based optimization
methods, Bayesian optimization does not require the derivative of the objective function; having
a black-box model (like a surrogate function) of the objective function suffices to perform the
optimization. It involves two primary elements. The first element is developing surrogate function
using another GPR of the objective function using randomly evaluated samples. The second
component is the acquisition function that helps us locate the next most valuable candidate to update
the design [33, 34].

The process begins by choosing an initial design e0 =
(

d(1),d(2),⋯ ,d(Nsg(e0))
)

∈ ΩE con-
sisting of Nsg(e0) = N0 ≥ 0 sensors. Here, d(l) represents the location of lth strain gauge in the
design e0. The next step is to obtain an updated design e1 by adding an additional sensor to e0, such
that Nsg(e1) = N0 + 1. To obtain the optimal e1, we randomly sample � sensor locations using
Latin Hypercube Sampling (LHS), subjected to a space filling property, to be the candidate for the
additional sensor from the unused sensors constituting the measurement space ΩX . These locations
yield � number of design samples ẽk, ∀ k ≤ � each with Nsg(e1) sensors. We obtain the exact
cost Eimplicit-risk(ẽk), ∀ k ≤ � using approach discussed in the previous section. Using the set of
� additional sensor locations as input data, denoted by d̃, and the exact cost as output data, we
train our surrogate function Ê(d̃) ∼ N(�d̃, �2d̃). This surrogate can be used to quickly estimate
a posterior probability that describes possible values for the Bayes risk at a remaining candidate
location d̄ spanning the entire design space, with mean value �d̄ and standard deviation �d̄. We
use Expected Improvement EI as our acquisition function that helps us locate the next most valuable
candidate for the next sensor location based on the current posterior over the Bayes risk, given by

EI(d̄) =
(

�d̄ − E∗)Φ
(

�d̄ − E∗

�d̄

)

+ �d̄�
(

�d̄ − E∗

�d̄

)

. (49)
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Here, E∗ = maxẽk Eimplicit-risk(ẽk) is the current best value of the objective function. For all the
remaining possible additional sensor location candidates, we evaluate EI(d̄). The candidate with
maximum EI is the next most valuable location. Once we locate the next most valuable sensor
location candidate, we get (� + 1)th design samples. We re-train the GPR with (� + 1) data points,
and keep adding the next most valuable location from the set of strain locations constituting ΩX

until the maximum EI is less than a tolerance value ".
Note that the aforementioned details updates an initial design e0 to e1 by adding one additional

sensor. We keep updating the designs by adding one sensor at a time until one of the following two
conditions is reached:

1. Bayes risk converges to a constant value, i.e., the design eI = e∗ (with i = I) can be
considered as the most optimal design if E(eI ) ≈ E(e(I−1)). Given an updated design ei =
(

d(1),d(2),⋯ ,d(Nsg(ei))
)

with Nsg(ei) number of sensors, the aforementioned steps can be
generalized to obtain the updated design e(i+1).

2. The total number of sensors in the design reaches the maximum number of sensors lim-
ited/constrained by the decision-maker or other factors.

Given the design ei, the updated design e(i+1) can be obtained following similar exercise as described
above. LetNtotal = 64919×4 represent the total number of strain-gauges attached in the structure (at
top and bottom of each 64919 elements in both vertical and horizontal direction). Let enas represent
the optimized sensor design with

(

N0 + nas
)

sensors, such that nas ≤ Nas. Here, Nas represents
the maximum additional sensors considered over the initially assumed number of sensorsN0. The
number of sensors int final design shall then be ≤ (N0 +Nas).The optimal design e∗ is then given
by:

e∗ = argmax
enas

Eimplicit-risk(enas). (50)

The following algorithm 1 demonstrates the Bayesian optimization procedure to evaluate the design
e∗.
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Algorithm 1: Bayesian optimization for sensor placement
1 Initialize e0 =

(

d(1),d(2),⋯ ,d(N0)
)

;
2 for nas = 1 toNas do
3 Using LHS, randomly select � locations to be candidates for the (N0 + nas) sensor

location, with coordinates X =
(

d̃(1), d̃(2),⋯ , d̃(�)
)

;
4 Obtain � number of possible designs: ẽk = concatenate

(

e(nas+1), d̃
(k)
)

, for all k ≤ �;
5 Obtain the exact cost of all the � designs:

Ξ =
(

Eimplicit-risk(ẽ1),Eimplicit-risk(ẽ2),⋯ ,Eimplicit-risk(ẽ�)
)

;
6 while i = 1 or maxEI < " do
7 Construct the GPR model for Ê (⋅) trained using (X ,Ξ);
8 For all the remaining strain locations Z =

(

d̄(1), d̄(2),⋯ , d̄(�)
)

, where
� =

(

Ntotal −
(

N0 + nas − 1
)

− �
)

, obtain � number of possible designs:
ēm = concatenate

(

e(nas+1), d̄
(m)
)

, for all m ≤ �;
9 Obtain the cost Ê

(

d̄(m)
)

for all m ≤ � designs using GPR developed before;
10 Obtain the currrent best E∗ = minΞ;
11 Obtain the Expected Improvement for all the � designs using:

EI(d̄(m)) =
(

�d̄(m) − E∗)Φ
(

�d̄(m) − E∗

�d̄(m)

)

+ �d̄(m)�
(

�d̄(m) − E∗

�d̄(m)

)

, where m ≤ �;
12 Obtain:

maxEI = max
x̄(m)

(

EI(d̄(m))
)

d̄ = argmax
x̄(m)

(

EI(d̄(m))
)

ē = concatenate
(

e(nas+1), d̄
)

Evaluate the exact cost Eimplicit-risk(ē);
13 Update:

X = concatenate
(

X , d̄
)

ẽ(�+i) = ē
Ξ = concatenate

(

Ξ,Eimplicit-risk(ē)
)

i = i + 1;
14 end
15 Update the sensor design: enas = concatenate(enas−1, d̄);
16 end
17 Obtain: e∗ = argmax

ek
Eimplicit-risk(ek), where, k ≤ Nas;
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5.2 Results and discussion
The initial design e0 consisting ofN0 ≥ 0 sensors may be randomly obtained via LHS, pre-

defined based on judgment/experience, or taken as 0 if no pre-defined design is available and if
one does not want to assume a random initial design. We note in our case study that the miter gate
finite element model is so finely meshed that there exists a spatial correlation between the strain
values. Therefore, there are non-unique sensor locations that are sampled by the acquisition function,
leading to non-unique and slightly different sensor designs depending on the different initial design
e0. In this paper, we numerically implement the optimization algorithm by fixing the initial design
e0 with N0 = 0. Secondly, we consider �low = 70 inches, and �up = 180 inches. We reasonably
assume the gap values below 70 inches do not represent significant damage to the gate, and the gap
value of 180 inches represents the upper limit of the possible gap value beyond which the gate is
considered to be critically damaged, based on discussions with USACE engineers. We perform the
following studies:

1. In Section 5.2.1, we investigate and compare the capability of predicting the posterior dis-
tribution of the gap length using a random design consisting of 10 sensors (obtained using
LHS) vs. optimal sensor design obtained using Bayes risk E(e) that ignores the risk weight
and considers KL divergence as the choice of f -divergence in the Bayes risk functional.

2. In Section 5.2.2, we investigate and compare the capability of a sensor design in predicting
the posterior distribution of the gap length obtained using Bayesian optimization of Bayes
risk functional constructed using various f -divergences, with and without the risk weighting.
We consider 5 types of f -divergences in constructing the Bayes risk and compare their
effectiveness in arriving at the optimal design.

5.2.1 Comparison of a optimal sensor placement design based on KL divergence (no risk
weight) vs. randomly-chosen design

Figure 13 illustrates the randomly chosen sensor design (left image), and the one arrived at by
using KL divergence without risk weights in the Bayes risk functional (right image). We observe
that all these sensors constituting the design obtained using KL divergence-based functional are
concentrated close to the boundary of the quoin block and the gate. This location is desirable to
capture the change in the strain values due to loss of contact between the quoin block and the gate (or
for obtaining a better inference of the gap length), reflecting an unquestionable advantage of using
Bayesian optimized sensor design over the randomly chosen design. It is also seen in Fig. 12, from
the strain field plot obtained for a fixed set of loading parameters, that there is a stress concentration
near the gap length that intuitively justifies the fact that optimal sensor design should contain at least
a few sensors near the gap. Secondly, from Fig. 14, we observe that sensor placement optimization
significantly increases the effectiveness of Bayesian inference. This leads to a significant reduction
in the uncertainty associated with the posterior distribution of the gap length for different realizations
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of the true gap values. Thirdly, as seen in Fig. 14b, the uncertainty in the posterior distribution
is not equally/uniformly reduced for different realizations of true gap length. This is because the
obtained optimal sensor design can reduce more uncertainty for certain true gap lengths and less
for the other ones. Despite this local non-uniformity, the sensor design obtained using Bayesian
optimization is optimal in a global sense.

Figure 12: Stress field plot of the miter gate structure obtained for a fixed set of load parameters

Figure 13: Randomly chosen 10 sensor design (left) vs. KL divergence optimized (no risk weight)
10 sensor design (right)
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(a) A random design (b) Optimized design using KL divergence
Figure 14: Posterior distributions obtained using a randomly chosen 10 sensor design vs. KL
divergence (no risk weight) optimized 10 sensor design

5.2.2 Comparison of an optimal sensor placement design obtained using f -divergence with
risk weights vs. without risk weights

In this section, we compare the effectiveness of sensor design in Bayesian inference obtained
using different kinds of f -divergences with and without the risk weight. We consider the 5 different
f -divergences: KL, Hellinger, total variation, Pearson, and Jensen divergence. The following
subsections illustrate a set of three plots for each of the f -divergence considered:

1. Figures 15, 18, 21, 24, and 27, illustrates the sensor design arrived by ignoring the risk weights
(left figure), and by including the risk weights (right figure) in Bayes risk functional.

2. Figures 16, 19, 22, 25, and 28, illustrates the posterior distribution of the gap length arrived
for different realizations of the true gap length values by ignoring the risk weight (left figure)
and by including the risk weights (right figure).

3. Figures 17, 20, 23, 26, and 29, illustrates the ratio of the maximum value of the posterior
distribution of the gap length with and without the risk weights (left figure), and the ratio of
the standard deviation of the posterior distribution of the gap length with and without the risk
weights (right figure) for different realizations of the true gap length values.

First, we recall that one of the criteria for the Bayes risk functional was to incorporate our desire to
obtain better information/description of the gap length when the true value of gap length is larger
or when the state of the structure approaches a higher degree of damage. As is seen in Figures 16,
19, 22, 25, and 28, the optimization using risk-weighted (implicit) Bayes risk functional allows us
to have higher confidence in the inference results for larger value of true gap length (or for higher
degree of damage). However, accomplishing better inference at a higher value of the true gap
length leads to sacrifice in the performance of the Bayesian optimization at a lower value of the true
gap length. This fact is reflected in Figures 17a, 20a, 23a, 26a, and 29a, such that the ratio of the
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maximum value of the posterior with or without risk weight is higher at larger value of true gap
length. Similarly, as seen in Figures 17b, 20b, 23b, 26b, and 29b, the ratio of the standard deviation
of the posterior with or without risk weight is lower at larger value of true gap length. Second, the
majority of the sensors identified are in the horizontal direction (TH and BH), and only a few are in
the vertical direction (TV and BV). Third, the optimization results are dependent on the choice of
f -divergence.

As observed in Fig. 15 for the risk-weighted KL divergence case (right figure) that one sensor
(highlighted by a red circle) is far away from the gap (unlike the other sensors that are close to
the gap). This is counter-intuitive and deserves an explanation. The algorithm searches the global
domain for the next possible candidate. There are two possibilities of such selection:

1. The outlier (for example: BV sensor circled in red in Fig. 15) could have been selected in
the initial iteration steps. It would have been an incorrect choice that the algorithm would
self-correct by picking appropriate sensors in the next iterations.

2. The outlier (for example: BV sensor circled in red in Fig. 15) was selected in the later iteration
step (closer to the converging point). In that case, the information provided by the sensors
selected in the preceding iteration steps was enough to capture the required information and
the BV sensor did not add much value to the design. This was the case in selecting the BV
sensor in Fig. 15 highlighted by red circle.

Since the algorithm searches the entire space (global search), it may have been duped by the
resembling and related strain information at different coordinates. However, the self-correcting
nature of the algorithm would eventually select a combination of sensors (in the final design) that
would capture the necessary information.

For the case of optimization where risk-weights are ignored, it is observed from Figures
16a,19a,22a, 25a, and 28a, that at true gap-length in the neighborhood of 110 inches, the posterior
distribution of the gap-length has higher variability than the distributions at other gap values slightly
higher or lower to 110 inches. It can be seen with a closer look that there are some senors near the
110 inches gap value in the final design (see the green circle highlighted portion of the left part of
Fig. 15). These sensors may be relatively more sensitive to the gap value lower or higher than 110
inches partly because of their location and the component of the gate they are attached to (a gate is
a complex structure consisting of many elements welded together). Although these sensors may
not be as sensitive to 110 inches gap degradation, they certainly are sensitive to other gap values.
Since the optimization framework presented in this paper chooses the optimal design in an average
sense, the relative advantage (optimal sensitivity to the overall damaged state) of these sensors is
one possible reason for them to be picked by the optimization algorithm in the first place.
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(a) Comparison of an optimal sensor placement design obtained using KL
divergence with vs. without risk weight

Figure 15: Sensor placement design using KL divergence: without (left) and with (right) the risk
weight

(a) Without risk weight (b) With risk weight
Figure 16: Posterior distributions obtained using KL divergence
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(a) Ratio of the maximum value of the posterior (b) Ratio of the standard deviation of the posterior
Figure 17: Ratio of the maximum value and the standard deviation of the posterior obtained using
KL divergence with and without risk weight

(b) Comparison of an optimal sensor placement design obtained using Hellinger divergence
with vs. without risk weight

Figure 18: Sensor placement design using Hellinger divergence: without (left) and with (right) the
risk weight
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(a) Without risk weight (b) With risk weight
Figure 19: Posterior distributions obtained using Hellinger divergence

(a) Ratio of the maximum value of the posterior (b) Ratio of the standard deviation of the posterior
Figure 20: Ratio of the maximum value and the standard deviation of the posterior obtained using
Hellinger divergence with and without risk weight
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(c) Comparison of an optimal sensor placement design obtained using total variation f -
divergence with vs. without risk weight

Figure 21: Sensor placement design using total variation f -divergence: without (left) and with
(right) the risk weight

(a) Without risk weight (b) With risk weight
Figure 22: Posterior distributions obtained using total variation f -divergence
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(a) Ratio of the maximum value of the posterior (b) Ratio of the standard deviation of the posterior
Figure 23: Ratio of the maximum value and the standard deviation of the posterior obtained using
total variation f -divergence with weight and without weight

(d) Comparison of an optimal sensor placement design obtained using Pearson f -divergence
with vs. without risk weight

Figure 24: Sensor placement design using Pearson f -divergence: without (left) and with (right) the
risk weight
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(a) Without risk weight (b) With risk weight
Figure 25: Posterior distributions obtained using Pearson f -divergence

(a) Ratio of the maximum value of the posterior (b) Ratio of the standard deviation of the posterior
Figure 26: Ratio of the maximum value and the standard deviation of the posterior obtained using
Pearson f -divergence with and without risk weight
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(e) Comparison of an optimal sensor placement design obtained using Jensen f -divergence
with vs. without risk weight

Figure 27: Sensor placement design using Jensen f -divergence: without (left) and with (right) the
risk weight

(a) Without risk weight (b) With risk weight
Figure 28: Posterior distributions obtained using Jensen f -divergence



46

(a) Ratio of the maximum value of the posterior (b) Ratio of the standard deviation of the posterior
Figure 29: Ratio of the maximum value and the standard deviation of the posterior obtained using
Jensen f -divergence with and without weight

(f) Comparison of an optimal sensor placement design obtained using different f -divergences
relative to KL divergence with and without risk weight

Figure 30a illustrates the ratio of the standard deviation of the posterior distribution of the gap
length obtained by various f -divergences without risk weight with respect to the standard deviation
obtained using KL divergence without risk weight. Similarly, Fig. 30b represents the same ratio
when risk weights are considered in the Bayes risk functional.

We observe that among the f -divergences studied for the application of optimal sensor design,
Bayes risk functional considering KL divergence leads to the best sensor placement design for both
with or without risk weights.

(a) Without risk weight (b) With risk weight
Figure 30: Ratio of the standard deviation of the posterior obtained using various f -divergence
relative to the standard-deviation obtained using KL divergence
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6 Summary and Conclusions
This paper details an optimal sensor design framework for structural health monitoring applica-

tions. It was demonstrated on a miter gate case study with the primary goal of arriving at the optimal
strain gauge network design used to infer the posterior distribution of the loss-in-contact gap length
(the damage state parameter). We arrived at such a design by maximizing an objective functional
referred to as Bayes risk. The Bayes risk is designed to accommodate three crucial elements: first,
it aims to obtain a design that maximizes the gains in the information on the gap length inferred
from the strain-gauge measurements. This gain in the information is quantified by f-divergence that
evaluates the similarity or dissimilarity between two probability measures by evaluating the distance
(relative gain of information) between two distributions. Second, the Bayes risk incorporates our
desire to obtain better information/description of the gap length when the true value of gap length is
larger or the state of the structure approaches a higher degree of damage. It is crucial for deciding
the maintenance strategies and appropriate action preventing significant losses. It is accomplished
by using a risk-weight. Third, the Bayes risk also takes into account our prior knowledge of the
gap-length.

Arriving at the optimal sensing design was accomplished by minimizing risk or equivalently
maximizing the utility (defined as the risk-weighted gain of information) in an average sense. In
this regard, evaluation of the Bayes risk for a given sensor network design demands considering all
the possible degrees of damage (indicated by the true gap length value). This requires obtaining a
large set of simulated observation data and a quick Bayesian inference of the posterior distribution
of gap-length for many different realizations of the true gap length values. Given a true gap length
value and the loading parameters, the simulated strain gauge readings can be obtained using a
high-fidelity finite element model (FEM). The randomness in the strain measurements is primarily
due to uncertainties in the hydrostatic load parameters, and the noise in strain gauges. Since the
high fidelity finite element model is computationally expensive, we built a digital surrogate using
Gaussian Process Regression (GPR), which is around 50000 times faster than FEM. We deploy
numerical approximation of the posterior distribution by using particle filters, or specifically the
sequential Monte Carlo (SMC) approach. We define two approaches, intrinsic and extrinsic, to
incorporate risk weights into Bayes risk functional. Although both, the intrinsic and extrinsic,
definitions of Bayes risk are mathematically equivalent, the numerical evaluation of the intrinsic
and extrinsic Bayes risk functional yields slightly different results. We use implicit Bayes risk
because it shows the effect of risk weights more prominently than the result obtained using the
explicit form of Bayes risk. Numerically evaluating Bayes risk expression involves evaluating a
non-linear, multi-dimensional integral. We use univariate dimension reduction in conjuncture with
the Gauss-Hermite quadrature. Apart from reducing the computational cost by using GPR, we also
proposed a novel and innovative approach to further minimize the computational cost for evaluating
the Bayes risk by minimizing the number of times we run the GPR model to evaluate the Bayes risk.

We observe that as compared to random sensor design, the optimal sensor design significantly
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increases the effectiveness of Bayesian inference and reduces the uncertainty in the posterior
distribution of the gap-length value. Inclusion of the risk-weight in Bayes risk allows us to have
higher confidence in the inference results for a higher degree of damage (as was intended). However,
accomplishing better inference at a higher value of the true gap length leads to sacrifice in the
performance of the Bayesian optimization at a lower value of the true gap length. Amongst the
chosen f -divergences, we conclude that KL divergence is the most suitable choice for this particular
class of problems. A future possible work can be to compare the efficiency and results obtained by
the presented Bayesian optimization with other algorithms in the literature for the given problem.
The computational speed, as well as the final design, arrived using various optimization algorithms
may depend on how the algorithm is engineered, and the constraints on the problem at hand, and it
remains to be investigated.

Acknowledgment: Funding for this work was provided by the United States Army Corps of
Engineers through the U.S. Army Engineer Research and Development Center Research Cooperative
Agreement W912HZ-17-2-0024.
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7 Appendix

7.1 Various types of f-divergences

Types of f -divergences Denoted by Function f(t)
Kullback-Leibler DKL

(

gΘ(�)||fΘ(�)
)

t log t
Reverse Kullback-Leibler DKL

(

fΘ(�)||gΘ(�)
)

− log t
Pearson Chi Square D�2P

(

gΘ(�)||fΘ(�)
)

(t − 1)2

Neyman Chi Square D�2N

(

gΘ(�)||fΘ(�)
) (1−t)2

t
Pearson-Vajda D�kP

(

gΘ(�)||fΘ(�)
)

(t − 1)k

Squared Hellinger DH2

(

gΘ(�)||fΘ(�)
)

(
√

t − 1)2

Total variation D�
(

gΘ(�)||fΘ(�)
) 1

2
|t − 1|

K-divergence DK
(

gΘ(�)||fΘ(�)
)

t log
(

2t
t+1

)

Skewed K-divergence DK�

(

gΘ(�)||fΘ(�)
)

t log
(

t
1+�(1−t)

)

Jensen-Shannon DJS
(

gΘ(�)||fΘ(�)
) 1

2

(

t log t − (t + 1) log
(

t+1
2

))

� Jensen-Shannon DJS�

(

gΘ(�)||fΘ(�)
) 1

2
(t log t − (t + 1) log (1 + �(t − 1)))

�-divergence D�
(

gΘ(�)||fΘ(�)
)

⎧

⎪

⎨

⎪

⎩

4
1−�2

(

1 − t
1+�
2

)

� ≠ ±1;
t log t � = 1;
− log t � = −1.

f�-divergence Df�

(

gΘ(�)||fΘ(�)
)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�
�−1

(

(1 + t�)
1
� − 2

(

1
�−1

)

(1 + t)
)

� ∈ ℝ∖{1};

t log t − (1 + t) log 1+t
2

� = 1;
1
2
|t − 1| � = ∞.

Table 1: Common f -divergences
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