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Thesis Abstract 

The use of mass spectrometry-based metabolomics analysis is a powerful technique to 

provide a comprehensive measurement of the chemical profile of biological samples. By 

observing the chemical composition of biological samples, we can better understand 

biological systems. All biological samples are chemically complex, but the human 

gastrointestinal tract is one of the most chemically complex matrices currently studied. 

This dissertation focuses on the approach, execution, and results of mass spectrometry-

based metabolomics analysis of biological samples, with a focus on human 

gastrointestinal tract samples and approaches to better understand of the metabolome of 

the human gut. This research tests the hypothesis that the chemical profile of the human 

intestinal tract varies spatially, temporally and has high interindividual variation. 

Chapter one provides background information on mass spectrometry-based 

metabolomics methods. Experimental data are provided to emphasize important factors 

to consider when performing technically sound metabolomics analysis on different 

biological matrices. Bacteria, plant, blood, and stool experiments are reported with select 

publications included and methodological considerations for each sample type. 

Challenges in analysis presented by each matrix type are outlined and approaches to 

address these challenges are discussed with a focus on metabolite identification. 

Chapter two presents a metabolomics analysis of time-series human small intestinal 

samples. Samples were collected from the human jejunum over the course of one day 

and analyzed using four LC-MS/MS analytical platforms. A total of 828 metabolites were 

annotated within these samples and correlation-based clustering proved to be an efficient 
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approach to connect metabolites with related biological function. This experiment reveals 

novel chemical and time-dynamic findings from within a human small intestine.  

Chapter three discusses data collected during targeted bile acid analyses. First bile acid 

analysis of blood and stool samples from a flaxseed dietary intervention study are 

reported, and then a study using a novel sampling method which allows samples to be 

retrieved from the small and large intestine of humans in vivo. Samples collected from the 

intestinal tract of 15 subjects reveal spatial variation and inter-individual variation in bile 

acid metabolism within the human gastrointestinal tract.  

Thesis Introduction 

The human intestinal tract is a complex and dynamic system that performs functions 

essential for human life. The chemical profile of the human intestinal tract is understudied 

as it is a difficult region to sample in vivo. The question of what chemicals exist in the 

intestinal tract, and how these chemicals change over time and by intestinal tract region 

is addressed through my research. I hypothesized that chemical profiles are distinct 

between different intestinal regions and show high interindividual variation. This thesis 

work includes state of the art chemical analysis applied to investigating the entirety of 

small molecules in the human intestinal tract. The process of measuring all chemicals 

within samples allows discovery of unexpected biological trends that are otherwise 

missed if traditional targeted chemical analysis is performed. The field of comprehensive 

chemical profiling of biological samples is termed metabolomics. In this thesis the 

metabolome of interest is the complex chemical ensemble that travels through the human 

intestinal tract. I measured chemicals derived from food, human, and microbes from 
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samples of human intestinal tracts using mass spectrometry to reveal trends occurring 

within humans in-vivo that have never before been observed. Findings reported here 

contribute to the cumulative knowledge of the composition, temporal, and spatial chemical 

profile of the human intestinal tract. 

Metabolomics as a field has evolved over the past two decades. Improvements have been 

made in performing accurate reproducible comprehensive chemical analysis for complex 

samples. Key technological advances in hardware and software have allowed for 

improved metabolomics analyses. Introduction of the orbitrap mass analyzer enables 

rapid collection of highly accurate mass spectra1 and ultra-high performance liquid 

chromatography (UHPLC) provides fast and reproducible separation of chemical 

mixtures2. Software have improved alongside the analytical instrumentation to pull 

chemical information from these data in a progressively more automated manner3–5.  

Metabolomics methods are not standardized across the field and the optimal approach to 

measure the metabolome of samples is continuously changing and improving. In chapter 

one of this thesis work, examples are presented on how to best perform metabolomics 

analysis of bacteria, plants, serum, and feces. These methods and applications to 

different matrix types were compiled into methodological considerations to reliably 

measure the metabolome of human intestinal tract samples. Metabolomics workflows 

contain many steps. However, one step common to all comprehensive metabolomics 

analyses is metabolite identification. Metabolite annotation and structure identification is 

the key step of determining which signals from a mass spectrometer can reliably refer to 

specific known chemicals. This step requires careful consideration of data to match a 

signal to a known chemical. Yet, the individual considerations in compound identifications 
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are frequently poorly reported in metabolomics publications. Metabolite identification with 

respect to samples from human intestinal contents is essential to ensure that correct 

biological conclusions are made. Metabolite identification in MS based metabolomics 

workflows is thoroughly discussed at the end of chapter one.   

Chapters two and three focus on the analyses of human gut intestinal tract samples. Food 

and diet shape the chemical profile of the intestinal tract and cause effects throughout the 

entire human body. The human gut is an essential component for human life. Energy is 

absorbed as energy rich chemicals from the diet which fuel the body and essential 

nutrients are taken up to maintain health. Microbes in the gut increase energy absorption 

efficiency6, produce vitamins7, and are intertwined in nearly all aspects of human health. 

Research efforts applied to the gut microbiota are continuously finding new facets of gut 

microbiota interaction with the human host. The function of gut microbes in the human GI 

tract in vivo has been investigated using human stool, and samples retrieved from the gut 

through invasive sampling methods that perturb the intestinal tract from its normal 

condition. During this thesis, two novel sampling methods were employed that retrieved 

samples from human intestinal tracts in vivo in a non-invasive manner. These studies 

gave novel insights into normal functioning of the human GI tract. The first study 

investigated a single subject sampled from the small intestine many times over the course 

of one day (chapter two), and the second study presents samples collected from the 

entirety of the small intestine of 15 subjects (chapter three). These studies revealed 

trends that were previously impossible to observe in live human subjects.  

While this thesis focused on the analysis of upper GI tract samples, other biofluids are 

also regularly used as surrogates to give insight into gastrointestinal tract function. First, 
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blood chemicals are directly altered in response to specific foods through absorption into 

the bloodstream, or through interaction of dietary compounds with cells of different organs 

throughout the body. Second, human and animal stool samples are easily collected in 

non-invasive manner. Stool is used to gain insight into the function of the gastrointestinal 

tract by presenting all the waste and non-absorbed components after digestion. Here, I 

present metabolomics results of a dietary intervention study of 178 human subjects for 

who both serum and stool samples were collected. Samples for this study were collected 

before and after a period of six weeks of flaxseed consumption with no other dietary 

guidance. Metabolomics analysis of these samples led to biologically interesting findings. 

However, the originally hypothesized effect from flaxseed consumption was negated, as 

findings indicated no change in the proportion of bile acids in either stool or blood. This 

study and its details are reported in chapter one and three.  

For this reason, I focused more on bile acid conversions in studies comparing the small 

and large intestines. Bile acids are functional molecules synthesized in the liver and 

secreted into the beginning of the small intestine as a component of bile. Bile serves roles 

in digestion, as a microbial regulator, and as a route for excreting waste products from 

the body. Here, I present novel findings in bile excretion and chemical composition in a 

study of the small intestine of a single subject sampled multiple times over eight hours, 

with carefully registered food and drink events. This experiment and its findings are 

reported in chapter two. Bile acids are transformed extensively by gut microbes and are 

reabsorbed back into circulation. Microbially modified bile acids are found in circulation 

and act as signaling molecules by binding human protein receptors making this chemical 

class an axis of communication between the gut microbiota and human body8. Bile acids 
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in the human and gut are regulated by a complex interaction of human, microbial and 

dietary signals. The small intestine represents the primary location where bile acids are 

in contact with gut microbes. Since the small intestine is difficult to study without using 

invasive procedures, a gap exists in the knowledge of the profile of bile acids across the 

small intestine of humans under normal conditions. Importantly, the thesis presented here 

now addresses this gap through bile acid analysis of samples collected throughout the 

small intestine and stool of 15 healthy volunteers. Trends were observed that have never 

been previously measured in humans in vivo and are presented in chapter three.  

Metabolomics analysis reveals a snapshot of all the chemicals participating in metabolism 

for biological samples. This snapshot represents what is truly taking place at a specific 

time as opposed to other methods such as sequencing the genome, transcriptome, or 

proteome. These sequencing approaches provide information on the community and 

functional potential of a system, but not the actual properties of the environment itself. 

The chemicals from the environment must be measured to know what is actually 

occurring at the chemical level. In this way metabolomics analysis provides valuable 

information from the human intestinal tract by revealing the chemicals that may be 

absorbed, chemicals that may interact positively or negatively with intestinal epithelium, 

or chemicals involved in metabolism occurring within the intestinal tract. This thesis 

presents information to improve metabolomics analysis of human intestinal tract samples 

and reports novel observations from the metabolome of human intestinal tracts.  
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Chapter 1: Comprehensive chemical profiling of biological matrices using mass 

spectrometry 

1.1 Abstract 

Different biological matrices have dramatically different composition of macromolecules, 

and small metabolites. The ideal approach to profile chemicals using mass spectrometry 

depends on matrix type and must be considered when performing comprehensive 

metabolomics analyses. Using an incorrect workflow can lead to poor metabolome 

coverage, incorrect metabolite identifications, failure to detect target chemicals, or 

incorrect biological findings due to artifacts of measurement.  Several matrix types will be 

discussed including blood plasma, serum, plant tissue, animal tissue, microbial cultures, 

and human stool. Sample preparation, data acquisition, data processing, and biological 

findings will be covered for these sample matrices, and important considerations that 

apply to analysis of gastrointestinal tract samples will be highlighted.  

1.2 Overview of metabolomic analysis of biological samples using mass 

spectrometry 

Biological samples are chemically complex and measuring the metabolome of any 

biological sample is a formidable task. The metabolome is considered here as the entirety 

of chemicals less than 1500 Daltons participating in a biological process within a system. 

The molecular mass of 1500 Daltons is used as a typical cutoff as it encompasses small 

metabolites while excluding macromolecules such as proteins and DNA9.  The number of 

chemicals in biological samples is difficult to estimate from known biochemical pathways, 

as enzymes can be promiscuous and spontaneous chemical reactions also occur within 
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cells10. One approach is to use genomic reconstruction to identify all possible chemical 

pathways within an organism. However, this approach cannot elucidate the entirety of the 

metabolome since there are genes of unknown function in all living organisms, including 

the best-studied model organism, Escherichia coli, which has most of its genes linked to 

known functions9,11.  The best way to measure the metabolome is to use analytical 

chemistry approaches. The most advanced and comprehensive chemical analyses use 

mass spectrometry (MS) and nuclear magnetic resonance (NMR). Both approaches have 

advantages and disadvantages. Advantages of NMR include high reproducibility, its 

quantitative nature, and its ability to measure concentrations in a large dynamic range, 

while MS has high sensitivity, low sample volume requirement, and ability to couple to 

many different chemical separation technologies (e.g., gas chromatography, liquid 

chromatography, capillary electrophoresis, direct infusion, matrix assisted laser 

desorption). Both are fit for high throughput metabolomics analysis. Using either of these 

approaches to measure the metabolome of biological samples can link chemical 

signatures from data to known chemicals; unfortunately, a majority of signals from 

comprehensive metabolomics analyses can only be reported as unknown metabolites12. 

Comprehensive MS approaches were used for this thesis work. 

Measuring samples using MS can be carried out by directly infusing samples into an MS 

instrument13,14, which results in a chemical mass to charge (m/z) ratio being measured, 

and optionally chemical fragmentation (MS/MS) spectra being collected. This approach 

can be used to rapidly measure many samples, however with only m/z and MS/MS 

information, there are many isomers that cannot be distinguished, reducing the ability to 

identify specific chemicals. It is possible to address this hurdle by separating chemicals 
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before analyzing them using MS. This separation can be carried out using a 

chromatography method before MS which adds an additional dimension (retention time) 

to data collection. Using chromatography dramatically improves MS analysis since 

chemicals are separated in time leading to improved sensitivity, and the capacity to 

distinguish between more signals from chemicals of the metabolome. Liquid 

chromatography mass spectrometry (LC-MS) and gas chromatography mass 

spectrometry (GC-MS) are commonly used chromatography techniques. LC coupled with 

electrospray ionization (ESI) and mass spectrometry has become a widely used method 

for chemical profiling due to its reliable separation, broad range of chemical class 

coverage (dependent on the LC column), and low limits of detection. Tandem MS 

(MS/MS) spectra are acquired through fragmentation of one ion of interest and improves 

chemical identification through matching experimental MS/MS measured in samples to 

library MS/MS measured from authentic chemical standards. Annotation of metabolites 

using retention time, m/z, and MS/MS matching allows annotation of hundreds of 

metabolites within biological samples per LC-MS analysis. Many signals detected with 

MS cannot be confidently annotated as known chemicals resulting in hundreds to 

thousands of unknown features being detected during non-targeted analyses. When all 

this information is collected in a single analytical analysis for all chemicals, this is termed 

a non-targeted mass spectrometry approach. Information concerning metabolite 

identification in non-targeted metabolomics will be discussed thoroughly at the end of this 

chapter.  

Each LC-MS analysis is best suited to analyze a certain category of metabolites. This is 

primarily based on the physical properties of the solid phase of the LC column. For 
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example, reverse phased (RP) columns are well suited to separate hydrophobic 

metabolites since hydrophobic metabolites interact with the column; hydrophilic 

interaction liquid chromatography (HILIC) is well adapted to separate hydrophilic 

metabolites. Another variable to consider using LC-MS is whether positive or negative 

ions will be measured. Some metabolites form only positive or negative ions, which leads 

to the necessity for acquiring data in both positive and negative ionization modes to 

maximize chemical coverage from a sample. Taking these variables into consideration, a 

combination of four different LC-MS analyses (RP-LC-ESI-MS/MS and HILIC-LC-ESI-

MS/MS in positive and negative ESI modes) has the capacity to measure a large portion 

of the metabolome15. These analytical methods will be discussed in applications towards 

a variety of biological matrices. Each matrix has unique characteristics that require 

adaptation of these LC-MS/MS methods to maximize coverage and reproducibility in 

pursuit of accurately measuring the metabolome. There are valuable lessons to learn from 

analyzing metabolites from microbes, food, and humans individually. Non-targeted 

metabolomics profiling of microbes, food, and human samples individually will be 

reported, and factors important to consider when measuring a combination of all these 

matrixes simultaneously as in human intestinal tract contents will be emphasized. 

1.3 Chemical profiling of pure microbial cultures 

Microbes dominate the digestion of human food. Pure microbial cultures are widely used 

model organisms for a variety of applications. Pure cultures are made up of genetically 

identical single cell organisms which makes them a relatively simple biological matrix 

since there are relatively few enzymes present to perform chemical reactions. Two 

metabolomics analyses of pure microbial cultures will be discussed. The first is analysis 
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of a synthetic biological organism that contains the fewest possible genes required to 

maintain function as a replicating organism. The second example is a study of samples 

from the model organism Escherichia coli, and investigation of spontaneous chemical 

reactions occurring in samples of proteins that were digested to single amino acids. 

1.3.1 Metabolomics analysis of the Minimal Genome Project  

The most simple possible living organism maintaining the capacity to reproduce was 

constructed during the “minimal genome project”16. This microbial strain was designed 

from mycoplasmas (bacteria with the smallest known natural genome). Genes essential 

for cell replication were identified in multiple mycoplasma species, and these essential 

genes were synthesized into a fully synthetic genome. The genome was transplanted into 

a receptor vessel of a mycoplasma cell with all genetic material removed. The result is 

the smallest genome for a self-replicating cell. Through multiple rounds of editing and 

removal of non-essential genes, the strain JCVI-syn3.0 has a 531 kb genome, with 473 

genes. Within this genome ~100 of the genes have loosely defined or unknown 

functions17. Metabolic pathways built based from genes of known function contain an 

estimated metabolome of 300 metabolites. These pathways encompass known 

biochemical pathways; however, enzymatic errors or spontaneous chemical reactions 

occurring to the known chemical pool were not considered. In an attempt to elucidate 

genes responsible for handling metabolites outside of the central chemical pathways, 

several gene knockout strains were constructed and grown. The buildup of chemicals 

was explored in these strains using a non-targeted metabolomics approach by analyzing 

the cell pellets of the minimal genome JCVI-syn3.0 wildtype strain, in addition to 8 gene 

knockout strains. In total, 170 metabolites were detected at higher abundance in the 
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bacterial cell pellet samples compared to blank samples of the growth media using a 

HILIC column for analysis. 

Interestingly, the cell pellets analyzed in this study could not be seen with the naked eye. 

These small amounts of biological sample presented challenges as well as benefits 

during LC-MS/MS analysis. The challenge of achieving sufficient signal to measure the 

metabolites within cells was overcome by extracting all available sample, performing extra 

rinsing steps in tubes to improve metabolite recovery and concentrating sample in small 

volumes prior to analysis. The benefit of low metabolite concentration was very low 

technical variation in the analytical analysis across the study. Minimal ion suppression is 

the best explanation for this low technical variation and will be discussed at the end of 

this chapter. Low technical variation during measurement led to clear effects observed 

between the gene knockout treatment groups. The minimal genome cells are presented 

here as the biological sample with the simplest metabolome of any organism.  

1.3.3 Metabolomics analysis of E. coli protein digests 

This study began as a hypothesis driven targeted analysis of post-translational 

modification (PTM) of lysine in bacterial protein. Non-targeted LC-MS/MS analysis 

revealed spontaneous chemical formation had occurred during this analysis. This finding 

was compiled and is reported below to emphasize complications important to consider 

even when measuring relatively simple biological matrices.  
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Adapted from “Quantification of N6-formylated lysine in bacterial protein digests by LC-

MS/MS despite spontaneous formation and matrix effects”. 2021. Jacob S. Folz, Jenelle 

A. Patterson, Andrew D. Hanson, Oliver Fiehn. Rapid Communications in Mass 

Spectrometry, 35, e9019. 

PTMs of proteins, including acetylation and formylation, are important in regulating 

biological systems.18,19 Measuring acetyl and formyl PTMs employs LC-MS/MS analysis 

via a proteomic approach (analyzing peptides)19,20, or measuring modifications after 

digesting proteins to single amino acids.21–23 Measuring N6-formyl lysine in proteins is of 

increasing interest because this modified amino acid forms at locations in proteins that 

interfere with other PTMs (acetylation and methylation).19 N6-Formyl lysine levels 

increase in biological systems with more oxidation of DNA24 or exposure to 

formaldehyde21,25, which links N6-formyl lysine to detrimental processes. 

Acetylation and formylation of lysine can occur non-enzymatically.26,27 Lysine is prone to 

spontaneous modification due to its reactive side-chain amino group. N6-Formyl lysine 

has been reported to form spontaneously in the presence of formaldehyde27, formic 

acid20, aristolochic acid22, 4-nitrophenyl formate28, in beer samples29 and would likely form 

in the presence of other formyl donors. Since these modified amino acids can be formed 

non-enzymatically, it is important to correct quantitative analyses for such spontaneous 

formation. 

N6-Formyl lysine was investigated in the current study to determine the extent of its 

spontaneous formation in run solvents and sample matrix of whole cell Escherichia coli 

protein digests. An untargeted metabolomics analysis was carried out to capture both the 

expected and unexpected metabolites that were formed.  
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Figure 1.1. Extracted ion current chromatograms of lysine in the three left extracted 

ion current chromatograms ([M+H]+ adduct at m/z 147.113) and N6-formyl lysine 

in the right three extracted ion current chromatograms ([M+H]+ adduct at m/z 

175.108). The lysine standard was at a concentration of 10 µg/ml, and N6-formyl 

lysine standard was at a concentration of 10 ng/ml. Blank indicates analysis of 

blank stock run solvent. 

N6-Formyl lysine was detected as a protonated adduct ion [M+H]+ at m/z 175.107 in the 

extracted ion current chromatogram at 8.15 min retention time. This peak consistently 

appeared during analysis of an authentic lysine standard (Figure 1.1). We assessed the 

possibility of contamination of the lysine standard with N6-formyl lysine by collecting the 

UHPLC fraction within 10 sec of the lysine signal at 9.5 min retention time (Figure 1.1). 

The collected fraction was reanalyzed and showed the same ratio of N6-formyl lysine to 

lysine compared to the original authentic lysine standard. Since LC purification did not 

reduce the presence of N6-formyl lysine, we hypothesized that lysine is spontaneously 

modified to N6-formyl lysine during sample preparation or analysis. To test this 
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hypothesis, lysine and isotope-labeled lysine-D8 were spiked at multiple concentrations 

into fully digested protein extracts or pure LC solvent, and analyzed using LC-MS/MS. 

N6-Formyl lysine concentrations in pure LC solvent and in protein digest matrix increased 

linearly with the concentration of lysine spiked into samples (Figure 1.2). Formation of N6-

formyl lysine-D8 was not observed in pure LC solvent (Figure 1.3) possibly due to an 

isotope effect discussed further below. However, we observed increased formation of N6-

formyl lysine-D8 in protein digest matrix with increasing amounts of lysine-D8 spiked 

standard (Figure 1.3). We identified N6-formyl lysine-D8 based on identical retention time 

and similarity of MS/MS product ions compared to N6-formyl lysine (Figure 1.6). 

Interestingly, the increase of N6-formyl lysine from total lysine precursor was also 

dependent on the presence or absence of sample matrix, with the rate of formation of N6-

formyl lysine > 6-times higher in sample matrix compared to pure LC solvent (Figure 1.2). 

These findings highlight the digested protein sample matrix as a major factor in 

spontaneous lysine formylation.  
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Figure 1.2. Linear models of A.) N6-formyl lysine concentration dependent on 

concentration of lysine added to run solvent (both in ng/ml) and B.) N6-formyl lysine 

concentration dependent on concentration of lysine spiked into sample matrix (both in 

ng/ml). Pearson correlation coefficient of both A and B are above 0.98. 

N6-Formyl lysine has been reported to form spontaneously in the presence of formyl 

donors including formaldehyde27 and formic acid28. Since formaldehyde was used during 

growth of E. coli for protein collection and formic acid was used as an LC mobile phase 

modifier, it is possible that trace amounts of these chemicals are responsible for the 

conversion of lysine to N6-formyl lysine. It was recently reported that during proteomic 

analysis, N6-formyl lysine forms even when low concentrations of formic acid are present 

in resuspension solvent.20 While we used formic acid as a mobile phase modifier for HILIC 

chromatography, it was previously reported that formic acid in LC-solvents had negligible 

impact on lysine formylation compared to sample resuspension conditions.20 N6-Formyl 

lysine also forms from lysine as a stable end product of the Maillard reaction.26,30 Our 

extracts did not include any sugars, excluding this spontaneous reaction to formylate 



11 
 

lysine. We therefore concluded that additional formyl donors must be present in these 

protein digests that contributed to spontaneous formylation of lysine.  

Figure 1.3. N6-formyl lysine and N6-formyl lysine-D8 separated by sample type. A.) 

Concentration in ng/mL (on left y axis) and peak height intensity (right y axis) of N6-

formyl lysine separated by sample type of pooled sample matrix (Pooled Sample) or 

stock run solvent (Solvent) with and without added lysine (n=3). B.) Peak height intensity 

of N6-formyl lysine-D8 separated by sample type with and without added lysine-D8 (n=3). 

Boxes represent +/- 1 interquartile range and line extends to the sample furthest from 

the median sample. 

Interestingly, we saw correlations of non-annotated peaks with increasing amounts of 

spiked lysine into sample matrix. Specifically, an unknown compound was detected at 12 

sec HILIC retention time later than N6-formyl lysine elution. When comparing the MS/MS 

spectrum of this peak to N6-formyl lysine, N6-acetyl lysine and N2-acetyl lysine we found 
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highly similar product ion ratios between N2- and N6-modifications, thus we annotated this 

unknown peak as N2-formyl lysine (Figure 1.6;Figure 1.7). For example, product ions m/z 

112.075 and 126.091 indicate the exact difference of a CH2-group between N-formyl and 

N-acetyl lysine species. We subsequently confirmed the annotation of N2-formyl-lysine 

using an authentic chemical standard that showed the same retention time and MS/MS 

spectrum compared to the previously unknown peak. The MS/MS spectrum is now 

publicly available at the Mass Bank of North America (splash10-003r-4900000000-

5ab794b9b8a6a334bbd0). In the same manner as N6-formyl lysine, N2-formyl lysine was 

spontaneously formed with increasing amounts of spiked lysine in protein digest matrix 

(Figure 1.4). Similarly, we identified N2-formyl lysine-D8 (Figure 1.6) that increased to a 

similar extent as N2-formyl lysine. N2-formyl lysine formed to a lesser extent compared to 

N6-formyl lysine, which represents the difference in reactivity between the N2- and N6- 

positions of lysine.28 
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Figure 1.4. N2-formyl lysine and N2-formyl lysine-D8 abundance separated by sample 

type. A.) Peak height intensity of N2-formyl lysine separated by sample type of pooled 

sample matrix (Pooled Sample) or stock run solvent (Solvent) with and without added 

lysine (n=3).  B.) Abundance of N2-formyl lysine-D8 separated by sample type with and 

without added lysine-D8. Boxes represent +/- 1 interquartile range and line extends to 

the sample furthest from the median sample, unless sample was further than 1.5 

interquartile ranges away from the median in which case the sample is plotted as a 

single point. 

 

The most dramatic effect observed with respect to formylation and acetylation of lysine is 

the difference between sample matrix and run solvent, however there was also an effect 

of deuterium labeling. N6-Formyl lysine formed in run solvent with addition of lysine, but 

there was no signal of N6-formyl lysine-D8 in run solvent with addition of lysine-D8 (Figure 

1.3).  In run solvent there are trace signals (peaks with signal/noise < 2) for N2-formyl 
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lysine with addition of 5 μg/mL lysine, but no signal for N2-formyl lysine-D8 with addition 

of 5 μg/mL lysine-D8 (Figure 1.4). We expect that these lysine-D8 adducts form in pure 

run solvent, but the signals are below the limit of detection. An explanation for a lower 

rate of reaction for deuterated lysine compared to non-deuterated lysine is the deuterium 

isotope effect, which can lead to different reaction rates.31 An isotope effect would  also 

explain the slightly lower abundance of N6-formyl lysine-D8 and N2-formyl lysine-D8 being 

formed in sample matrix with addition of lysine-D8 compared to their non-isotope labeled 

counterparts (Figure 1.3;Figure 1.4).  
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Figure 1.5. N6-Acetyl lysine and N2-acetyl lysine abundance by sample type. A.) Peak 

height intensity of N6-acetyl lysine separated by sample type of pooled sample matrix 

(Pooled Sample) or stock run solvent (Solvent) with and without added lysine (n=3). B. 

Peak height intensity of N2-acetyl lysine separated by sample type with and without 

added lysine. Boxes represent +/- 1 interquartile range and line extends to the sample 

furthest from the median sample, unless sample was further than 1.5 interquartile 

ranges away from the median in which case the sample is plotted as a single point. 

Together these data support the hypothesis that N6-formyl lysine and N2-formyl lysine are 

formed spontaneously from lysine during analysis of digested protein extracts. 

Furthermore, we show that the formation of these adducts occurred at or after sample 

resuspension during the analytical workflow. This finding is in agreement with a previous 

proteomic study that concluded that N6-formyl lysine was not formed during sample 

protein extraction or digestion.22 This was tested by performing sample preparation with 

and without strong antioxidant protection to exclude formaldehyde exposure.22 Similarly, 
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ascorbate could be used as an antioxidant to inhibit formaldehyde induced formylation of 

lysine27. Yet, our study is the first to use isotopically labeled lysine to investigate N6-formyl 

lysine formation at or after the point of resuspension in an LC-MS/MS workflow. 

Interestingly, we also found spontaneous formation of increased amounts of N2- and N6- 

acetyl lysine (Figure 1.7) when lysine was spiked into sample matrix (Figure 1.5). Such 

spontaneous formation has been previously reported in mitochondrial matrix32, but our 

experiments indicated that lysine acetylation can be also expected as a chemical artifact 

due to acyl donors present in the complex protein digest samples, especially because 

acetic acid was not used at any point during our sample preparation or analysis. These 

results also suggest that other amino acids may become formylated or acetylated during 

analysis since these adducts can form at the at the N2 position which is present in all free 

amino acids. Unfortunately, the exact nature of the chemical donor for either formylation 

or acetylation in the protein digest extracts remain elusive. Our data show that this 

phenomenon exists and that proper negative controls must be included to correct for 

spontaneous chemical damage reactions in any study of biologically driven acetylations 

and formylations.  
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Figure 1.6. Experimental MS/MS fragmentation spectra and retention time (RT) in 

minutes for A.) Lysine (RT): 9.50 B.) Lysine-D8 RT: 9.50 C.) N6-Formyl lysine RT: 8.13 

D.) N6-Formyl lysine-D8 RT: 8.13 E.) N2-Formyl lysine RT: 8.33 F.) N2-Formyl lysine-D8 

RT: 8.33. 

 

 



18 
 

 

Figure 1.7. MS/MS spectra gathered from experimental acetylated lysine residues 

shown in top panels (ions marked in black), compared to library MS/MS matches in 

bottom (ions marked in red). N6-Acetyl lysine was matched to retention time (8.00 

minutes) and a MS/MS library, while N2-acetyl lysine (RT: 8.21 minutes) was matched 

to library MS/MS spectrum of N2-acetyl lysine. 

 The non-targeted metabolomics data analysis used in this study was integral in 

making these discoveries. Targeted measurement of N6-formyl lysine was important in 

making the preliminary observation of spontaneous formation of N6-formyl lysine, but 

measurement of the deuterium labeled standards, deuterium labeled spontaneous 

products, and additional unexpected chemicals (acetyl-lysines, and deuterium labeled 

acetyl-lysines) was allowed through the non-targeted LC-MS/MS data collection 

technique.  

1.3.4 Takeaways from analyzing pure bacterial samples 

Analysis of these pure cultures of single celled organisms show that even simple 

biological samples possess complex metabolomes. These samples were extremely 



19 
 

uniform between different treatment groups which allowed for reproducible data collection 

and data processing. The low abundance of metabolites in JCVIsyn3.0 samples lead to 

very little technical variation. Low sample concentration is expected to have resulted in 

low ion suppression effects and thus contributed to low technical variation. Minimizing 

ion-suppression is desirable and will be thoroughly discussed at the end of this chapter. 

In total 170 unique metabolites were annotated and hundreds of other “chromatographic 

features” were detected which suggests hundreds more metabolites being created within 

this organism. This observation of a chemically complex sample matrix from one simple 

organism sets the expectation high for the chemical complexity of samples containing 

diverse mixtures of bacteria.  

Measurement of the spontaneous formation N6-formyl lysine reveals that chemicals can 

form in samples spontaneously. These results highlight the importance of using non-

targeted metabolomics methods that can detect unexpected trends in chemicals that were 

not hypothesized to be important. This study also highlights the importance of protecting 

samples from conditions that can lead to degradation of chemicals, and formation of new 

chemicals. To address spontaneous chemical formation samples should be stored at low 

temperatures, protected from light, and proper negative controls should be included to 

track chemical degradation and formation for reactive metabolites.  

1.4 Chemical profiling of plant-based foods 

When measuring the metabolome of human intestinal samples, food is a major source of 

metabolites. Plant based foods contain tens of thousands of metabolites which can be 

absorbed during digestion, transformed by microbes, or transformed by human enzymes. 
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Plant metabolites are thus prevalent and important to consider when investigating the 

metabolome of the human GI tract. In an ideal situation, all metabolites consumed in a 

particular food are known and then tracked through the digestive tract. Knowing exactly 

what metabolites enter the intestinal tract would help discriminate whether metabolites 

are derived from food, human, or microbes, primarily because we do not have 

comprehensive libraries of metabolites from food (whether plant, animal or derived from 

other sources), nor do we know all of the metabolic pathways that human endogenous 

bacteria use during fermentation. The reason to be further considered here is the difficulty 

in performing comprehensive metabolite analysis of diverse plant-based foods.  

Metabolomics analysis of plant-based foods is hindered by extreme variation between 

samples. Plants vary profoundly in metabolite makeup, and total metabolite 

concentration. Samples discussed with respect to pure microbial cultures were 

homogenous and had little variation in the metabolome between samples and treatment 

groups. Homogeneity in sample sets facilitates data collection and data processing, yet 

metabolomics experiments do not always contain chemically similar matrices. For 

example, measuring multiple types of plant-based foods in the same metabolomics 

experiment shows dramatic differences between plant types. This variation makes data 

processing more prone to incorrect metabolite annotations which is further discussed 

below. 

Measurement of 10 different types of commonly eaten foods was carried out using several 

metabolomics analytical platforms. I chose the sample types to encompass a range of 

fresh and dried foods. The samples analyzed were fresh foods (soybean, kale, blueberry, 

and blackberry), dried foods (tea leaves, coffee beans, biliberry powder), and processed 
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foods (chocolate, wine). Each food was homogenized without further treatment or drying 

and 100mg (100uL for wine) of each was extracted using methanol and water. Each 

sample was analyzed using non-targeted RP and HILIC LC-MS/MS methods. The 

profound difference in the concentration of metabolites within the different food types 

caused some foods (specifically foods with high water content like the fresh foods and 

wine) to have extremely few metabolites detected, while other foods (the dried foods and 

chocolate) had metabolite concentrations that saturated the chromatography column and 

prevented reliable peaks to be measured. To accurately and thoroughly measure 

metabolites from all food types, each food could be individually optimized for the amount 

of sample to be analyzed. After acquiring reliable data, the data processing presents an 

additional hurdle for documenting metabolites from different foods. Data processing 

software programs perform peak alignment and gap filling in non-targeted data when 

analyzing many samples together. This leads to chromatographic features at a specific 

m/z and retention time to be annotated as the same metabolite under the assumption of 

homogeneity in the chemical makeup of all sample types in a given study. Yet, in 

comparative studies like this with different foods, and later when analyzing gut contents 

at different time points or from different subjects, the homogeneity of sample types is not 

given. When analyzing different types of samples, such as different plant-based foods, 

there may be distinct chemical isomers that co-elute chromatographically and lead to 

false conclusions that the same chemicals present. When data from all plant types are 

aligned, only one metabolite annotation is chosen to correspond to all the aligned 

chromatographic features even if the features are from different unique chemicals. In 

these cases, metabolites can be incorrectly assigned. To avoid mis-annotation of 
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metabolites due to similar peaks appearing in multiple plant types, the data from each 

plant type would need to be processed individually. Data processing to achieve accurate 

metabolomics datasets is time consuming and processing each food type individually was 

not feasible for completion within this thesis work. For these reasons, high throughput 

analysis of the 10 different foods considered was not further pursued for the effort of 

building a library of food metabolites that could be tracked through the GI tract.  

1.4.2 Takeaways from metabolomics analysis of plant-based foods 

If a single extraction and analytical analysis is used to measure different matrices, the 

method may not result in reliable or trustworthy metabolome coverage across all sample 

types. Analysis of plant samples with dramatically different total metabolite concentrations 

will also lead to data collection difficulties including ion suppression, and difficulty in 

achieving reliable metabolite annotations. The primary interest of this research is to profile 

chemicals of the human GI tract, so the analysis of individual foods was not further 

pursued. Fortunately, there are databases such as “foodb” and “COCONUT” that contain 

tens of thousands of food and plant related metabolites that can be matched with 

metabolites found in human GI tract samples and provide some insight into the origin of 

a metabolite. 

1.5 Chemical profiling of mammal serum and blood plasma 

Serum and blood plasma are frequently collected from mammals (humans, mice, non-

human primates, pigs, etc.) for various research goals. It is popular to collect this biofluid 

as it can usually be collected without sacrificing or causing biologically significant harm to 

the study subjects. Furthermore, serum and plasma circulate through the entire body 
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which makes it possible to gain insights into different aspects of physiology of an organism 

without sampling each organ or tissue individually. Blood can also provide information 

relevant to the GI tract. Metabolites from food are found circulating in the bloodstream 

after being absorbed during digestion. Blood plasma gives insight into aspects of the 

digestive tract and is a useful matrix to study when considering the effect of diet and gut 

microbiota intervention studies (e.g. intestinal microbiota transplantation and antibiotic 

treatment).  

Metabolites in the blood give insight into the type of food an individual consumes. Some 

plants contain unique metabolites that can pinpoint a specific food or type of food that a 

person recently consumed. For example, secoisolariciresinol diglucoside is a chemical 

found at very high concentration in flaxseed and leads to biomarkers in blood that 

suggests flaxseed consumption. Secoisolariciresinol diglucoside is deglycosylated by gut 

microbes and absorbed into the bloodstream33. Plant metabolites like this are powerful in 

identifying specific foods consumed, but endogenous human metabolites also change 

depending on the food consumed34. For example blood plasma levels of amino acids, 

choline, creatinine, pyruvate, and succinic acid have been shown to change in response 

to different meals34. These metabolites are more difficult to interpret because they could 

be from food directly or endogenously regulated due to diet. It is therefore important to 

consider both endogenous and exogenous metabolites when looking at how diet affects 

metabolism of the host. 

Two diet related studies are included in this chapter. The first study is an experiment 

investigating how different ratios of dietary sodium and potassium and the gut microbiota 

influence circulating blood lipids in rats. The second study is an investigation of how 
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consumption of 10 grams of ground flaxseed per day affects the chemical profile of serum 

in 178 postmenopausal women. For this dietary intervention study non-targeted 

metabolomics analysis of stool was also conducted and reported in the following section. 

Targeted analysis of bile acids for this flaxseed experiment is reported in chapter three. 

1.5.1 Interaction of Gut Microbiota and High-Sodium, Low-Potassium Diet in 

Altering Plasma Triglyceride Profiles Revealed by Lipidomics Analysis 

Adapted from “Interaction of Gut Microbiota and High-Sodium, Low-Potassium Diet in 

Altering Plasma Triglyceride Profiles Revealed by Lipidomics Analysis“Jacob Folz, Young 

Taek Oh, Ivana Blaženović, Joyce Richey, Oliver Fiehn and Jang H. Youn. 2019. 

Molecular Nutrition and Food Research, 63, 1900752 

1.5.2.1 Introduction 

Cardiovascular disease (CVD) and type 2 diabetes are leading causes of mortality and 

morbidity and are major public health issues in the United States and worldwide. Diet has 

profound effects on the pathogenesis and progression of these diseases. Macronutrients 

in the diet, such as fat, carbohydrate, and protein, have been extensively studied as 

important environmental factors for increased prevalence of cardiovascular (CV) and 

metabolic diseases. In addition, high-sodium (Na+) and low-potassium (K+) (HNaLK) 

intake have been shown to increase blood pressure, endothelial dysfunction, and CVD 

morbidity and mortality35. HNaLK intake were also associated with metabolic syndrome36, 

a cluster of CV risk factors.  

Dietary components may directly affect the host by altering circulating levels of energy 

substrates, hormones, electrolytes, and/or signaling for organ interactions. However, 
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recent studies have established that the gut microbiota plays major roles in host metabolic 

and CV health. Ample evidence shows that gut bacteria interacting with dietary 

components mediate many dietary effects on host metabolic and CV systems37,38. 

Recently, we reported interactions of the gut microbiota and a HNaLK diet in altering 

circulating biogenic amines, providing novel insights into the roles of the gut microbiota in 

regulating biogenic amines and possibly mediating the CV detrimental effects of HNaLK 

intake39. In the present study, we expanded our previous study to investigate the 

interaction of gut microbiota and dietary minerals (HNaLK) in altering plasma lipid profiles.  

Dyslipidemia is associated with insulin resistance, type 2 diabetes, and CVD; altered lipid 

profiles play major roles in diet effects on metabolic and CV health40. The gut microbiota 

was shown to significantly impact host lipid metabolism or circulating lipid profiles41.  In 

the present study, we tested the hypothesis that HNaLK diets, by interacting with the gut 

microbiota, significantly impact circulating lipid profiles. This is an important study, as 

positive results would provide novel insights into mechanisms by which HNaLK diets lead 

to metabolic or CV diseases.  

Circulating lipid profiles, determined in rats by an integrated lipidomics analysis and 

analyzed by various statistical and bioinformatics tools, showed significant interactions 

between gut bacteria and an HNaLK diet in altering plasma lipids, particularly triglyceride 

(TG) profiles. Interestingly, we identified two distinct groups of TG species in plasma 

differentially regulated by the gut microbiota. One group represented TGs composed of 

very-long-chain polyunsaturated fatty acids (PUFAs), previously shown to be associated 

with reduced diabetes risk.[9] This group was regulated by the gut microbiota and the 
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HNaLK diet in a manner suggesting this may be a novel pathway by which HNaLK intake 

increases metabolic or CV risk. 

1.5.2.2 Results 

In our earlier study, [5] we reported that food intake and weight gain were altered neither 

by the HNaLK diet nor by the antibiotic treatment under present experimental conditions. 

In addition, despite marked differences in Na+ or K+ intake, plasma Na+ and K+ 

concentrations were not different between the control and the HNaLK diet groups, thanks 

to efficient homeostatic mechanisms for the regulation of extracellular Na+ and K+ levels. 

Profiling of plasma lipids on reversed phase liquid chromatography detected a total of 

2,873 features, including 328 known lipids. The known lipids included different species of 

acylcarnitine (n=7), cholesterol ester (CE; n=11), ceramide (n= 17), diacylglyceride (DG; 

n=9), phosphatidylcholine ester (n=11), FFA (n=16), galactosylceramide (n=4), 

lysophosphatidylcholine (LPC; n=18), lysophosphatidylethanolamine (n = 5), 

phosphatidylcholine (PC; n = 67), phosphatidylethanolamine (n = 24), 

phosphatidylinositol (n = 14), sphingomyelin (n = 24), and TG (n = 101).  PCA analysis 

showed that rat plasma samples were clustered together with no apparent outliers and 

clearly separated from the cluster of quality controls of human-plasma samples.  

However, no separation was observed among the 4 experimental groups.   

We first examined the effect of antibiotic treatment on lipids by combining the data with 

different diets (n = 14 each for untreated vs. antibiotic-treated rats). ChemRICH analysis 

identified several lipid clusters that were significantly altered by the antibiotic treatment 

(Figure 1.8,Table 1.1). The most impressive effects were seen with unsaturated TGs (P 
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= 5.3E-15): 60 TG species (of 101 detected) identified as a cluster. Among them, 17 

species (28%) significantly decreased and six increased with antibiotic treatment (Table 

1.1). Another dramatically regulated lipid class was unsaturated PCs: 20 unsaturated PCs 

(of 67 detected) were significantly higher in antibiotic-treated rats compared to untreated 

rats (P = 8.0E-12). In addition, 15 unsaturated FFAs were identified as a cluster that 

showed significant effects to increase with antibiotic treatment (P = 2.7E-5). ChemRICH 

additionally calculated statistically significant increase in carnitines, CEs, LPCs, and DGs, 

and significant decreases in PEs and unsaturated ceramides.  Changes in PCs, FFAs, 

PEs, and CEs were chemical classes leading to several significantly impacted 

groups/functions identified by LION/web analysis in which regulation of 

glycerophosphocholines were the most strongly changed lipid with antibiotic treatment. 
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Figure 1.8. ChemRICH plot for comparison of antibiotic-treated to untreated rats (A), 

guidance as to how to read a ChemRICH plot (B), representative boxplots for some 

significant lipid classes (C). (A)The lipidomic dataset generated in this study was 

analyzed using ChemRICH to identify chemical classes that were significantly regulated 

by antibiotic treatment (n = 14). (B) Circles represent chemical classes named with text 

nearest to each circle. Circle size represents relative number of lipids in each cluster. 

The y-axis position indicates significance level calculated using Kolmogorov–Smirnov-

test with more significantly altered clusters positioned higher on the y coordinate. The 

x-axis position represents the average intrinsic chemical property of XlogP for the 

cluster of lipids. Circle color indicates whether the chemical class was higher (red), lower 

(blue) or had a mixed change (purple) in antibiotic-treated animals compared to 

untreated animals. (C) Boxplots of lipid peak heights for examples of antibiotic 

compared to control groups (n=14). Boxes represent distance between quartiles 1 and 
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3 and error bars extend up to 1.5 inter quartile ranges (IQR) from the upper (third 

quartile) or lower (first quartile) portion of boxes. Samples greater than 1.5 IQR from the 

first or third quartile are plotted as individual points outside of error bars. PC, 

phosphatidylcholine; CE, Cholesterol Ester. 

   

Table 1.1. Lipid clusters with a significant antibiotic-treatment effect determined by 

ChemRICH. The antibiotic-treated group was compared to the untreated group (n = 14 

each). Calculations for significance were performed with ChemRICH software. ∆ 

indicates the number of changed lipids in the cluster. FDR, False detection rate. 

Cluster name Size p-values FDR ∆∆∆∆ ↑ ↓ ∆∆∆∆/Size 

Unsaturated Triglycerides 60 3.3E-16 5.3E-15 23 6 17 0.4 

Unsaturated 

Phosphatidylcholines 53 1.0E-12 8.0E-12 20 20 0 0.4 

Carnitines 5 5.5E-07 2.9E-06 4 4 0 0.8 

Plasmalogens 8 6.1E-06 2.5E-05 3 1 2 0.4 

Unsaturated FFA 15 8.4E-06 2.7E-05 7 6 1 0.5 

Cholesterol Esters 8 1.1E-05 3.1E-05 3 3 0 0.4 

Phosphatidylethanolamines 15 1.6E-05 3.8E-05 8 0 8 0.5 

Lysophosphatidylcholines 18 5.2E-05 1.0E-04 6 6 0 0.3 

Unsaturated Ceramides 14 6.4E-04 1.1E-03 3 0 3 0.2 

Diglycerides 8 0.00086 0.0014 2 2 0 0.2 

Sphingomyelins 21 0.014 0.02 7 5 2 0.3 
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We next examined whether the HNaLK diet had significant effects on plasma lipids by 

combining data from untreated and antibiotic-treated rats (n = 14 each for the control and 

the HNaLK diet group). ChemRICH analysis detected no lipid clusters that showed 

significant effects of the HNaLK (vs. control) diet. However, when ChemRICH analysis 

for antibiotic effects was performed separately in each diet group, the results depended 

on the diet; the antibiotic effects on TGs were more significant (more TG species affected) 

with the control than with the HNaLK diet (Table 1.2).  In addition, the effect of antibiotic 

treatment to decrease PEs was observed only with the control diet, whereas the effect on 

carnitine was observed only with the HNaLK diet.  These data suggest some interaction 

between gut bacteria and the HNaLK diet in altering plasma lipids.  This interaction was 

also apparent in PLS-DA analysis, which identified 10 TGs as highly ranked VIP lipids, as 

well as two LPCs, two PCs, and CE 18:2 in differentiating the 4 experimental groups. 

LION/web analysis showed a significant impact of diet regardless of antibiotic treatment 

and identified several TG-focused groups (i.e., headgroup with neutral charge, 

glycerolipids, lipid storage, lipid droplet, and triacylglycerols) that significantly changed 

with the HNaLK diet.  
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Table 1.2. Lipid clusters with a significant antibiotic-treatment effect separated by diet. 

Antibiotic effects were determined using ChemRICH to compare antibiotic-treated to 

untreated groups in each diet group (n = 14 for each diet group; n = 7 each for antibiotic-

treated and untreated groups). ∆∆∆∆ indicates the number of changed lipids in the cluster. 

FDR, False detection rate. 

Control Diet 

Cluster name Size p-values FDR ∆∆∆∆ ↑ ↓ ∆∆∆∆/Size 

Unsaturated Triglycerides 60 5.5E-13 8.8E-12 17 0 17 0.3 

Unsaturated Phosphatidylcholines 53 0.00013 0.001 4 4 0 0.08 

Phosphatidylethanolamines 15 0.00041 0.0022 4 0 4 0.3 

Cholesterol Esters 8 0.0048 0.019 3 3 0 0.4 

Lysophosphatidylcholines 18 0.021 0.066 3 3 0 0.2 

 

High Sodium Low Potassium Diet 

Cluster name Size p-values FDR ∆∆∆∆ ↑ ↓ ∆∆∆∆/Size 

Unsaturated Phosphatidylcholines 53 0.000015 0.00024 7 7 0 0.1 

Unsaturated Triglycerides 60 0.00012 0.00095 5 1 4 0.08 

Carnitine 5 0.00095 0.0051 4 4 0 0.8 

Lysophosphatidylcholines 18 0.0034 0.014 5 5 0 0.3 

Cholesterol Esters 8 0.0094 0.03 2 2 0 0.2 

Unsaturated FFA 15 0.022 0.058 2 2 0 0.1 

 

 

In all analyses (ChemRICH, LION, and PLS-DA), TG was the lipid class most impacted 

by the diet or antibiotic treatment.  Antibiotic treatment decreased most TG species, but 
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a group of TG species were increased by antibiotic treatment (Figure 1.9 A). Interestingly, 

these TG species showed a tendency to decrease with the HNaLK diet (Figure 1.9 B). 

Although many of these individual changes did not gain statistical significance due to 

large variations, this association was significant; 16 TG species were increased > 2-fold 

by antibiotic treatment. When we selected TG species (n = 13) altered more than 40% by 

the diet, they were all among the 16 TG species altered by antibiotic treatment (Table 

1.3). The probability of this association is calculated to be 6.9E-14 (= 88C3/101C16). Thus, 

the TGs increased by gut-bacteria depletion were the same TGs affected by the diet to 

the greatest extent. We define this group of unsaturated TGs as cluster 2 (n = 13) to 

distinguish it from the group of unsaturated TGs (cluster 1, n = 23) that were significantly 

decreased by antibiotic treatment (P < 0.05).  TG clusters 1 and 2 exhibited significantly 

different acyl-chain carbon numbers and double-bond content (Figure 1.10); TG cluster 2 

is characterized by greater carbon number and double-bond content, compared to cluster 

1. In addition, cluster 2 includes TGs comprising very-long-chain PUFAs, such as 20:4, 

20:5 (eicosapentaenoic acid [EPA]), 22:4, 22:5, and 22:6 (docosahexaenoic acid [DHA]), 

previously identified to be associated with reduced diabetes risk.[9] In the present study, 

we show for the first time that gut bacteria and the HNaLK diet both modulated these 

TGs.  
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Figure 1.9. Effects of antibiotic treatment (A) and HNaLK diet (B) on individual plasma 

TG species detected by lipidomics analysis. Data are means of lipid abundance ± 

S.E.M. (n = 14), expressed as a fold effect compared to the untreated group (A) or the 

control diet group (B).  Marks on the x-axis represent individual TG species, sorted by 

the size of the fold effect of antibiotic treatment; individual TGs are located in the same 

positions on the x-axis in both graphs. 

 



34 
 

Table 1.3. TG species altered both by antibiotic treatment and by HNaLK diet. Fold 

change was determined by taking the antibiotic treatment group over the untreated 

group (Antibiotic effect), and the HNaLK diet over the control diet (Diet effect) (n = 14). 

TG, triglyceride.  * and ** indicate two separate peaks in the LC-MS chromatogram. 

TG Species 

Antibiotic effect Diet effect 

Fold change 
P 

(unadjusted) 

Fold 

change 

P 

(unadjusted) 

TG(54:9) 10.1 0.059 0.28 0.469 

TG 58:11; TG(18:2_20:4_20:5) 8.5 0.080 0.34 0.214 

TG 60:12; TG(18:2_20:4_22:6) 6.7 0.044 0.39 0.242 

TG 58:8; TG(18:1_18:2_22:5)* 5.2 0.042 0.39 0.239 

TG(60:11) 5.0 0.051 0.43 0.295 

TG 54:8; TG(16:1_18:2_20:5) 4.8 0.044 0.43 0.189 

TG(56:9)** 4.1 0.076 0.46 0.156 

TG 58:7; TG(18:1_18:2_22:4) 3.8 0.021 0.50 0.272 

TG(58:9) 3.3 0.082 0.51 0.200 

TG 56:9; TG(16:1_18:2_22:6)** 3.1 0.047 0.54 0.196 

TG 54:7; TG(16:0_18:2_20:5) 2.6 0.059 0.55 0.213 

TG(58:10) 2.5 0.048 0.55 0.230 

TG(58:8)* 2.4 0.045 0.57 0.175 
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Figure 1.10. Average carbon number (A) and double-bond count (B) of cluster 1 (n = 

23) and cluster 2 (n = 13) TGs.  Cluster 2 TGs had significantly more carbons and 

double-bonds than cluster 1 TGs.  Cluster 1 TGs are unsaturated TGs that were 

significantly decreased by antibiotic treatment (P < 0.05).  TGs in cluster 2 appear in 

Table 3. Data are means ± S.E.M. (n = 23 for cluster 1 and 13 for cluster 2). *, P < 0.001; 

**, P < 0.0001 vs. cluster 1. 

Figure 1.11 shows the effects of antibiotic treatment and/or the HNaLK diet on relative 

levels of TGs in clusters identified as described above. The data from individual TG 

species were averaged after normalizing to their own control group (i.e., control diet 

without antibiotic treatment). TG clusters 1 and 2 showed different patterns of regulation 

by the HNaLK diet and antibiotic treatment; cluster 1 was downregulated by the diet and 

antibiotic treatment whereas cluster 2 was downregulated by the diet but upregulated by 

antibiotic treatment. Unsaturated FFAs showed small but significant effects of antibiotic 

treatment (P < 0.05).    
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Figure 1.11. Effect of antibiotic treatment and/or HNaLK diet on relative levels of 

unsaturated TGs (A) and FFAs (B) in clusters identified by the lipidomics analysis.  Data 

from individual unsaturated TG and FFA species were averaged for each group after 

normalizing to their own control group (i.e., control diet without antibiotic treatment).  

Cluster 1 TGs are unsaturated TGs that were significantly decreased by antibiotic 

treatment (P < 0.05).  TGs in cluster 2 appear in Table 3. Data are means ± S.E.M. (n 

= 23, 13, and 15 for TG cluster 1, TG cluster 2, and unsaturated FFA, respectively), 

expressed as a fold effect. *, P < 0.05; **, P < 0.001 vs. C. Diet / No Tx; #, P < 0.001 vs. 

C. Diet / AB Tx. C. Diet, control diet; No Tx, no treatment; AB Tx, antibiotic treatment. 

Total plasma TG levels, measured by an enzymatic colorimetric assay, showed patterns 

of changes similar to TG cluster 1 (Figure 1.12 A). The antibiotic effect to decrease total 

plasma TG levels was statistically significant (P < 0.03). This was expected because the 

majority of TG species detected by the lipidomics analysis decreased with antibiotic 

treatment (Figure 1.9).  Total FFA levels measured by an enzymatic colorimetric assay 

did not show any significant treatment effects (Figure 1.12 B) different from the pattern 

observed with unsaturated FFAs detected by lipidomics analysis (Figure 1.11 B). It should 

be noted that our lipidomics analysis did not detect all major FFA species. For example, 

saturated FFAs palmitate (16:0) and stearate (18:0) were not reported due to high 
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background levels of these lipids, and the possibility exists that these FFA species may 

behave differently from unsaturated FFAs detected by the lipidomics analysis. The ratio 

of total FFA to total TG was greater in antibiotic-treated than in untreated rats (Figure 1.12 

C), suggesting increased TG hydrolysis to FFA.   

 

Figure 1.12. Plasma total TG (A) and total FFA (B) levels measured by enzymatic 

calorimetric assays, FFA-to-TG ratios (C), and plasma ANGPTL4 levels (D).  Data are 

means ± S.E.M. (n = 7 for each group).  C. Diet, control diet; No Tx, no antibiotic 

treatment; AB Tx, antibiotic treatment. 

Previous studies suggested that gut bacteria regulate circulating TG hydrolyis to FFA by 

acting on intestinal cells to increase circulating ANGPTL4, an inhibitor of lipoprotein 

lipase.[22]  We examined whether the apparent changes in TG hydrolysis to FFA in 
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antibiotic-treated rats were associated with changes in circulating ANGPTL4.  Circulating 

ANGPTL4 levels did not change by antibiotic treatment or by the HNaLK diet (Figure 1.12 

D), suggesting that ANGPTL4 might not be responsible for the changes in the ratio of 

FFA to TG. 

1.5.2.3 Discussion 

Targeting plasma lipids in the present lipidomics approach (combined by various 

statistical and bioinformatics analyses), we found significant interactions between gut 

bacteria and the HNaLK diet in modulating circulating lipids.  In addition, our analysis 

(LION/web) showed significant effects of the HNaLK diet, regardless of antibiotic 

treatment, on several TG-focused lipid groups (e.g., glycerolipids, lipid storage, and lipid 

droplet).  Importantly, we identified two distinct TG groups that were differentially 

regulated by antibiotic treatment. One group (cluster 1, n = 23), representing the majority 

of TG species detected, was downregulated, whereas the other group (cluster 2, n = 13) 

was upregulated by antibiotic treatment. Interestingly, cluster 2 TGs were also regulated 

by the diet; the same TG species were regulated by antibiotic treatment and by the diet.  

Cluster 2 TGs exhibited greater carbon-chain length and double-bond content compared 

to cluster 1 TGs, and included TGs composed of very-long-chain PUFAs, previously 

associated with reduced diabetes risk42. Total plasma TG levels, determined by an 

enzymatic colorimetric assay, showed patterns similar to those of cluster 1 TGs, expected 

from this group representing the majority of detected TGs. Taken together, these data 

suggest HNaLK diets may interact with gut bacteria to modulate circulating TG profiles.      

Previous studies reported heterogeneity of circulating TGs in their regulation and 

association with risks of diabetes and CVD. Using lipidomics analysis, Rhee et al. 
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demonstrated that individual TGs responded differentially to insulin action or insulin 

resistance42. In addition, TGs of lower carbon number and double-bond content were 

associated with increased diabetes risk, whereas TGs of higher carbon number and 

double-bond content were associated with decreased diabetes risk. Rhee et al. 

suggested that using this information on heterogeneous associations of individual TGs 

with diabetes risk would improve risk assessments, compared to the classical approach 

of using TG as a single component. Arora et al.43 showed that Roux-en-Y gastric-bypass 

surgery in insulin-resistant morbidly obese subjects caused diabetes remission, and those 

in remission 2 years after the surgery were distinguished from those not in remission by 

presurgery levels of TGs composed of long-chain FFAs, consistent with reduced diabetes 

risk associated with these TGs. Schwab et al.44 reported that diet-induced weight loss 

reduced TGs containing saturated and short-chain fatty acids, which was accompanied 

by improved insulin sensitivity, but not those composed of long-chain PUFAs, consistent 

with differential regulation of distinct TG groups. The present data add to the evidence for 

differential regulation of TGs, especially between those composed of very-long-chain 

PUFAs and others composed of FFAs with lower chain length and double-bond content. 

More importantly, the present study shows for the first time that these distinct groups of 

TGs are regulated by interaction of gut bacteria and HNaLK diet.  

TG cluster 2 identified in the present study included all those TGs (i.e., 56:9, 58:10, and 

60:12) associated with decreased diabetes risk in the Rhee et al. study,42 suggesting that 

TG cluster 2 may represent those associated with decreased diabetes or CVD risk. 

Cluster 2 TGs, whose 3 acyl chains were identified (Table 1.3), are characterized to 

contain very-long-chain PUFAs, such as 20:4, 20:5 (EPA), 22:4, 22:5, and 22:6 (DHA). 
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EPA and DHA are major constituents of fish oils known to mediate CV and metabolic 

beneficial effects of fish oils45.  Because our animals consumed the same amounts of 

diets of identical compositions, the changes in these TGs may reflect those in the 

endogenous synthesis of very-long-chain omega-3 PUFAs. Thus, the present data may 

indicate regulation of synthesis of very-long-chain omega-3 PUFAs by gut bacteria and 

the HNaLK diet. 

Very-long-chain omega-3 PUFAs, such as EPA and DHA, can be synthesized from α-

linolenic acid (18:3), a major dietary omega-3 fatty acid derived from vegetable oils46. 

Although the endogenous capacity to synthesize these omega-3 PUFAs may be low in 

humans47, it has been suggested to be associated with risks of metabolic syndrome, 

diabetes, and CVD48. Enzymes involved in the synthesis of very-long-chain omega-3 

PUFAs are elongase and desaturases (∆-5 and ∆-6). In the randomized Finnish Diabetes 

Prevention Study on 407 overweight, middle-aged people with impaired glucose 

tolerance, very-long-chain omega-3 PUFA levels and ∆-5 desaturase activity were 

associated with lower incidence of type 2 diabetes during a follow-up of 11 years49. In a 

cross-sectional study of 1975 Tunis adults, PUFA levels and ∆-5 desaturase activity 

decreased in patients with metabolic syndrome50. Taken together, the present data 

suggest the intriguing possibility that gut bacteria and an HNaLK diet may interact to 

regulate the synthesis of very-long-chain omega-3 PUFAs, thereby impacting biomarkers 

of CVD.  

The present study showed that unsaturated TGs and PCs were the lipid classes most 

impacted by gut bacteria (Table 1.1).  This is consistent with a previous study by 

Velagapudi et al.41 in germ-free mice, demonstrating that TGs and PCs are circulating 
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lipids that are the most affected by gut microbiota.  However, the directions of changes 

observed without vs. with gut bacteria in this mouse study were opposite to those in the 

present rat study.  This discrepancy may arise from differences in experimental 

conditions, and in particular, the fasting state; mice were studied after a 4-h fast in the 

Velagapudi study, whereas rats were studied immediately after feeding in the present 

study.  Fasting may alter relative contributions of circulating chylomicrons and lipoprotein 

particles to circulating lipids, which may be relevant because the gut microbiota have 

been shown to have differential effects on circulating levels of chylomicrons and VLDL (or 

its synthesis)41. A more recent lipidomics study employing germ-free and antibiotic-

treated mice (and their controls) demonstrated differential effects of the gut microbiota on 

circulating FFAs and PCs (and other glycerophospholipids) that depended on saturation 

levels of their fatty acids51, which is consistent with the opposite effects of gut bacteria on 

TGs composed of FFAs with low (cluster 1) vs. high (cluster 2) saturation levels (Figure 

1.11). 

Antibiotic treatment, which depletes gut bacteria,39 increased cluster 2 TGs associated 

with decreased diabetes risk, as discussed above, and decreased cluster 1 TGs 

associated with increased diabetes risk. These distinct effects of antibiotic treatment are 

expected to decrease diabetes risk in an additive manner. Ample evidence shows that 

the gut microbiota plays a major role in diet-induced obesity or metabolic syndrome37,52. 

Gut-bacteria regulation of circulating TGs may be an important mechanism underlying 

this relationship. In contrast, the “unhealthy” HNaLK diet (vs. control, low Na+, high K+ 

diet) decreased in both TG groups. It is rather unexpected that this diet decreased cluster 

1 TGs associated with increased diabetes risk, as this effect would decrease diabetes 
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and CVD risks. However, it also decreased cluster 2 TGs composed of very-long-chain 

PUFAs, associated with reduced diabetes risk; the significance of this effect remains to 

be evaluated. It may be important to determine whether it is high Na+ or low K+ that exerts 

these effects. Both high Na+ and low K+ intake have been implicated in increased CV and 

metabolic risk35,36. Although these effects may be attributed to their effects on volume 

regulation or blood pressure, altered lipids may also be involved. If so, we may have 

discovered a novel mechanism by which high Na+ and/or low K+ intake may lead to CV 

or metabolic abnormalities.  

The present study had several limitations.  We assumed that the effects of antibiotic 

treatment were due to gut bacteria depletion.  Our earlier study showed that, although the 

same antibiotic treatment resulted in > 95% reduction in overall bacterial biomass, certain 

gut bacteria increased their abundance after antibiotic treatment39.  Therefore, we cannot 

attribute all effects of antibiotic treatment to gut-bacteria depletion.  Also, we cannot 

exclude the possibility that some effects might arise from direct, off-target effects of 

antibiotics on lipid metabolism.  In contrast, the same study showed that, although the 

HNaLK diet did not significantly alter diversity or composition of gut bacteria, it 

significantly altered specific species of gut bacteria, such as Porphyromonadaceae and 

Prevotellaceae, consistent with an apparent interaction of the diet with gut bacteria in 

altering circulating lipids.  Whether any of these gut bacteria were responsible for some 

of the HNaLK effects on circulating lipids remains to be tested.  Another limitation of the 

present study was that the sample size was small (n = 7 for each group), many large 

changes induced by treatments, especially by diet (Table 1.3), did not gain statistical 

significance. Also, the present exploratory study was not designed to elucidate the 
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mechanisms underlying the effects of antibiotic treatment and HNaLK diet on distinct 

groups of circulating TGs. Elucidating such mechanisms would lead to novel ways (e.g., 

using pro- and prebiotics) to manipulate circulating levels of TGs, especially those 

associated with diabetes and CVD risks (i.e., cluster 2), and possibly reduce diabetes and 

CVD risks.  

Despite these limitations, our analysis identified two TG clusters that are differentially 

regulated by the diet and gut microbiota. One cluster appears to represent the traditional 

group of TGs associated with increased risks of diabetes or CVD, whereas the other 

cluster appears to represent TGs associated with decreased risk of diabetes, suggested 

by a previous lipidomic study42. Thus, this study highlights the importance of lipidomic 

studies by identifying distinct groups of lipids with differential regulation, which would 

facilitate future studies delineating their individual roles in the pathogenesis of diabetes 

or CVD. 

1.5.3 Metabolomics analysis of human serum from flaxseed dietary intervention  

Flaxseed has been investigated as a dietary supplement for many years due to suggested 

health impacts such as reduced risk of cancers, atherosclerosis and diabetes53–55. Health 

effects reported from flaxseed supplementation studies, specifically in postmenopausal 

women include decreased total inflammation measured by biomarker C-reactive protein 

(CRP) levels56, decreased total and low density lipoprotein cholesterol (LDL-C)57,58, and 

decreased intensity of menopause symptoms59,60. The possible health effects of flaxseed 

consumption are important to consider for postmenopausal women who are at increased 

risk of chronic inflammation related diseases61. The evidence for health effects of flaxseed 
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consumption on humans is variable and contradictory. As stated, studies have shown that 

postmenopausal women supplemented with flaxseed or flaxseed extracts have shown 

decreased LDL-C, and CRP, while other studies have found that flaxseed 

supplementation has no effect on LDL-C62 or CRP63. The health effects observed from 

flaxseed supplementation, in addition to discrepant findings in relation to flaxseed 

consumption have spurred continued research efforts to investigate the mechanism of 

action of flaxseed on humans. Bioactive components of flaxseed proposed to cause 

health effects include high dietary fiber content64, high content of alpha-linolenic acid65, 

and high concentration of lignans66. Flaxseed is the richest source of lignan in food, 

commonly used to increase dietary lignan, and frequently studied for health impacts of 

lignan67. 

Lignans are plant metabolites transformed by the gut microbiota to create enterolignans, 

which are absorbed by the gastrointestinal (GI) tract68. Inter-subject variation in the 

microbiota leads to highly variable capacity to produce enterolignans from lignan 

precursors69,70, which is thought to be responsible for discrepancies between some 

flaxseed consumption studies71. Enterolignans are bioactive compounds with estrogen 

receptor binding capacity72, antioxidant activity73, and ability to regulate immune 

signaling74. Enterolignans have been investigated as a route of flaxseed bioactivity, 

however these microbe-produced metabolites alone do not fully explain the health effects 

observed from flaxseed62. An additional mechanism by which flaxseed may impart health 

effects is through regulation of bile acid metabolism64,75,76. The hypothesized effect and 

results of flaxseed consumption on bile acid metabolism is reported in chapter three. 
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A randomized crossover flaxseed intervention was conducted in a cohort of 179 healthy 

postmenopausal women from New York. Serum was collected from each subject before 

and after a 6-week intervention period when 10 grams per day of ground flaxseed was 

consumed (Figure 1.13). Study participants were provided with ground flaxseed. Subjects 

maintained their usual diet throughout the study with the exception of flaxseed 

supplementation.  

 

Figure 1.13. Flaxseed dietary intervention study design. The study timeline shows 

intervention periods in green (flaxseed supplementation) control diet periods in grey (no 

flaxseed supplementation), and washout periods in blue (no flaxseed consumption). 

Sample collections of serum for metabolomics analysis are shown with red arrows. 

Metabolomics analysis of serum collected before and after flaxseed consumption, 

resulted in a total of 463 metabolites that could be annotated. Statistical analysis using a 

paired T-test revealed that seven of these metabolites were significantly different pre vs. 

post flaxseed intervention (FDR adjusted p value < 0.05). Four of these metabolites  are 
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closely related to nitric oxide signaling77 : (1) dimethylguanidino valeric acid (DMGV), 

found at lower levels post vs. pre-intervention, (2) dimethyl-arginine, observed at higher 

levels post vs. pre intervention, (3) arginine, also at higher levels post vs. pre intervention, 

and (4) citrulline, detected at lower concentrations post vs pre intervention. Citrulline is a 

product of nitric oxide synthesis, and lower citrulline after the dietary intervention suggest 

that nitric oxide signaling may be inhibited. Additionally, dimethylarginine is a known 

inhibitor of nitric oxide synthesis, and dimethylarginine was found at higher levels post- 

versus pre-flaxseed intervention, again indicating a stronger inhibition of nitric oxide 

signaling after dietary intervention, possibly caused by inhibition of nitric oxide synthase. 

Other significantly different metabolites included enterolactone glucuronide, which is a 

well-known biomarker of lignan consumption derived from flaxseed, and N-methylalanine 

which was increased post vs. pre flaxseed consumption. N-methylalanine has been 

reported as a microbially produced metabolite likely suggesting regulation of the gut 

microbiota by flaxseed and absorption through the intestinal tract.  

Metabolomics analysis of these data resulted in two unconventional routes of metabolite 

annotation. The first of these was the annotation of enterolactone glucuronide. A chemical 

standard for enterolactone glucuronide was not available for analysis, and no publicly 

available library MS/MS spectra exists for this metabolite. The chemical standard for 

enterolactone, however, was analyzed using a HILIC method and has a retention time of 

1.1 minutes. The MS/MS spectrum was also recorded for enterolactone. Enterolactone 

was not found in serum, as expected, since enterolactone glucuronide is the primary 

circulating form of enterolactone. However, there was a strong MS/MS spectrum match 

to enterolactone at a retention time of 6.15 minutes. Based on this spectral match, the 
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mass of enterolactone glucuronide was searched within the serum data and masses that 

matched two of the adducts of enterolactone glucuronide appeared with an identical 

retention time of 6.15 minutes. These results suggest that the original enterolactone 

MS/MS match at 6.15 minutes is an in-source fragmentation product of enterolactone 

glucuronide. In source fragmentation products are discussed in the final sections of this 

chapter. Based on these criteria enterolactone glucuronide was confidently annotated in 

this dataset, which serves as an important metabolite based on previous experiments of 

flaxseed. The presence of enterolactone glucuronide in serum was on average 17 times 

higher in the post-flax-seed intervention compared to the pre-flax-seed intervention serum 

samples, which is the most strongly influenced metabolite from these analyses.  

The second unconventional metabolite annotation was the result of investigating 

statistically significant chromatographic features annotated as “unknowns”, meaning that 

no automated annotation was possible for these features when matching MS/MS spectra 

against comprehensive mass spectral libraries. An unknown chromatographic peak with 

RT of 7.32 and m/z of 202.1185 was statistically significantly decreased in post-

intervention samples compared to pre-intervention samples. Information from this 

unknown was input to MS-FINDER78, a software that predicts chemical structure based 

on MS1, and MS/MS information. The top result revealed an estimated structure for this 

unknown feature to be alpha-keto-dimethyl-delta-N, N-Dimethylguanidino valeric acid 

(DMGV), for which there were no publicly available library MS/MS spectra. The chemical 

structure of DMGV was submitted to SciFinder to find any previous mention of DMGV in 

literature. Previous studies had measured DMGV and collected MS/MS spectra from a 

chemical standard of DMGV77,79. The unknown spectrum under investigation and the 
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MS/MS spectrum collected from DMGV in this paper were very similar. The MS/MS 

spectrum of DMGV as previously published was in table form but not published in a public 

database, which is why automated annotation of this peak did not occur. The MS/MS 

spectrum for DMGV was transferred from the publication to the MassBank of North 

America so that future studies will now be able to annotate this metabolite using an 

automated approach. The finding that DMGV was decreased in response to the flaxseed 

consumption was integral to support the regulation of nitric oxide signaling by flaxseed 

consumption.  

1.5.4 Takeaways from blood plasma and serum studies 

Serum and blood plasma provide insight into biological effects of diet. These studies 

highlight the importance of considering both food related metabolites, as well as 

endogenously regulated metabolites in response to diet. Blood samples in the studies 

presented here revealed metabolites impacted by diet and linked to microbial metabolism 

in the intestinal tract , such as enterolactone glucuronide and N-methylalanine. Blood 

samples provide an extremely valuable aspect to investigate nutrition, since dietary or 

microbial metabolites that appear in the bloodstream represent metabolites that may have 

a direct impact on human health. This information is not included when analyzing only 

samples collected from stool or the intestinal tract. However, analysis of blood or urine 

samples do not provide information on where in the gut a metabolite is produced.  

Another takeaway from analysis of blood plasma and serum is the necessity to consider 

well known phase I and phase II metabolism reactions that modify food metabolites. An 

enticing approach to nutritional metabolomics is finding metabolites present in plant 
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samples and finding the same metabolites in blood circulation. Popular examples of 

metabolites absorbed directly from food include resveratrol from wine80, (-)-epichatechin 

from cocoa and tea81, and secoisolariciresinol from flaxseed82. When searching for 

bioactive plant metabolites in the blood of humans, these metabolites are rarely in their 

non-transformed state but are modified by liver enzymes to their glucuronide forms, 

sulfate forms, or modified through other phase II transformation pathways81,83. 

Compounds that are absorbed into blood can be discovered by linking metabolites that 

appear in blood after food or beverage consumption. For example, enterolactone 

glucuronide is not present in flaxseed; however, the metabolite is directly linked to 

flaxseed consumption by microbial conversion, absorption, and liver conjugation. This 

example shows the necessity to consider products of phase I and phase II metabolism 

when looking for dietary metabolites in the bloodstream. As presented in the next chapter, 

these modified plant metabolites are also excreted in bile which contributes to the 

metabolome of the intestinal tract. 

1.6 Chemical Profiling of Stool Samples 

The GI tract is home to a large and diverse community of microbes, and also contains 

recently consumed foods, epithelium cells sloughed from the intestinal tract, and 

excretions into the GI tract including saliva, stomach juice, bile, and pancreatic juice. This 

mixture combines to form a complex assortment of chemicals as compared to any of the 

matrices discussed thus far. Stool is the most often used matrix used to investigate the 

human digestive tract. Stool, however, does not accurately represent what is occurring in 

the upper intestinal tract. Stool also does not portray information on the chemical profile 

at different regions of the intestinal tract. Stool is a non-invasive sample to collect, which 
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makes it a popular matrix to make educated guesses as to what is occurring in the 

intestinal tract. Analysis of stool will be considered in this section with respect to the 

flaxseed intervention study introduced in the previous section.  

1.6.1 Metabolomics analysis of stool samples from flaxseed dietary intervention 

Stool samples collected before and after the flaxseed dietary intervention introduced 

previously (Figure 1.13) were analyzed using non-targeted metabolomics analysis with a 

HILIC column. This analysis showed an increase in the known flaxseed metabolite 

secoisolariciresinol as well as enterolactone in the post-intervention samples compared 

to pre-intervention samples. Additionally, there were three other annotated metabolites 

with significantly (FDR adjusted p <0.05 from paired T-test) different abundances 

between pre- and post-intervention samples, which included tocopherol acetate, 2-

aminophenol, and 2-ketoisocaproic acid. Tocopherol acetate is a form of vitamin E and 

was significantly higher post intervention compared to pre intervention. Vitamin E is 

present in a variety of foods, including flaxseed84. The difference in tocopherol acetate 

between pre- and post-intervention may be related to tocopherols from flaxseed being 

transformed in the gut to tocopherol acetate, or from other foods that contain tocopherol 

acetate consumed at different rates between pre- and post-intervention timepoints. 2-

aminophenol is a known bacterial metabolite suggesting that the flaxseed intervention 

caused a shift in the gut microbiota of test subjects. The metabolite 2-ketoisocaproic acid 

is an intermediate in amino acid metabolism which may also be due to changed microbial 

metabolism. Connection to 16S rRNA sequencing performed on these same samples did 

not reveal clear connections between microbial and metabolite relative abundance.  
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Metabolomics analysis of stool and serum for this flaxseed intervention study were 

analogous. Non-targeted LC-MS/MS and GC-MS analysis led to annotation of of 463 

unique metabolites in serum, and 616 unique metabolites in stool. Of the known 

metabolites annotated in stool and serum, 281 metabolites were the same, leaving 182 

metabolites measured only in serum, and 434 metabolites measured only in stool. The 

higher number of annotated features in stool agrees with the higher number of features 

detected in the stool samples compared to serum samples during data processing (data 

not shown). Stool also presented a higher variance across samples, which is further 

discussed in chapter three with respect to targeted bile acid analysis performed on serum 

and stool from this study. 

1.6.2 Takeaways from metabolomics analysis of stool samples 

Based on the type, number and variation of chemicals detected in the stool, stool samples 

are most similar to upper intestinal tract samples considering all sample types reported 

above. This makes stool a valuable matrix to consider when considering the optimal 

analytical approach to measure the metabolome of samples from the lumen of the human 

intestinal tract. Stool samples are much more variable compared to the variation found in 

samples like blood plasma. The bloodstream is tightly regulated to maintain homeostasis 

throughout the body, while stool does not have similarly tight regulation. Stool chemical 

variation is also highly dependent on diet, and in the study performed here, subjects did 

not have a controlled diet, causing variation due to different foods consumed. To address 

this variation, parameters were optimized to avoid aligning peaks with different retention 

times, and critical consideration of the possibility of aligned peaks representing different 
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metabolites was necessary during metabolite identification. Data processing 

considerations for metabolite identification are further discussed in the next section.   

1.7 Considerations for metabolomics analysis of human intestinal tract samples 

The quality of data resulting from comprehensive chemical analysis of biological samples 

depends on many factors. Experimental design and sample collection determines 

whether biologically relevant conclusions can be made assuming perfectly analyzed 

chemicals. Reproducible sample preparation prior to analytical analysis is important to 

avoid technical error. Data collection using MS is important with respect to sensitivity, and 

more importantly reproducibility to produce quality comprehensive chemical analysis. 

Sensitivity of the instrument affects the number of metabolites that will be detected. 

Reproducibility in MS signal intensity is another point where technical variation can be 

introduced. Reproducibility in retention time is critical for performing accurate peak 

alignment between samples and for accurate automated data processing steps. During 

sample preparation and data collection the amount of sample that is analyzed determines 

the level of ion-suppression during data acquisition. Data processing is the final step 

towards forming an accurate and reliable metabolomics dataset. Most steps of MS data 

processing can be automated including peak picking, peak alignment, and preliminary 

annotations of metabolites through use of accurate m/z, retention time, and MS/MS 

spectral matching. Thousands of chromatographic peaks appear from biological samples 

and automated data processing software inevitably reports false positive metabolite 

annotations. Manual curation of metabolite annotations and critical consideration of all 

lines of evidence from raw MS data is the only approach to produce an accurate and 

reliable metabolomics dataset. Considerations for metabolomics analysis of samples 
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from the lumen of the human intestinal tract will be presented with a focus on ion 

suppression and metabolite identification.  

 1.7.1 Ion suppression in LC-MS/MS analysis of GI tract samples 

Ion suppression is a concern in LC-MS experiments because the recorded ion abundance 

of a specific chemical can be impacted by the presence and abundance of other co-eluting 

chemicals, or the total amount of chemicals being ionized at a specific time85,86. Ion 

suppression is a type of matrix effect that is most impactful when there is a high 

concentration of metabolites flowing through the ionization source. Ion suppression is the 

result of a decrease in the efficiency of ionization of metabolites being measured. Ion 

suppression causes issues when comparing the ion intensity of metabolites between 

different samples. Different samples have different total ion profiles at specific retention 

times that can lead to different ion intensities measured, even if the actual concentration 

of a specific metabolite is identical between samples. Ion suppression is an inherent 

characteristic of electrospray ionization. Ion suppression can be corrected for through use 

of isotopically labeled standards for the specific chemicals being analyzed. By taking the 

ratio of the non-labeled chemical of interest to the isotope labeled chemical and 

comparing this ratio to analysis of known concentrations of chemical standards, the 

ionization efficiency can be accounted for. The ratio of non-labeled to labeled signal takes 

advantage of the same proportion of suppression occurring to both chemical species. 

This procedure of accounting for ion suppression can be performed for the number of 

isotopically standard and non-labeled standard pairs included in an analysis, and this 

technique is classically used in targeted metabolomics. However, when performing non-

targeted metabolomics this technique faces severe limits because (a) many chemicals 
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that will be measured are not known a priori, and because (b) many compounds are not 

commercially available as isotopically labeled standards. Furthermore, using potentially 

hundreds of isotopically labeled compounds is more costly and takes significant time to 

correctly find and align all pairs of isotopically labeled and non-labeled chemical 

standards Alternatively, a smaller number of isotope labeled standards was used in my 

non-targeted metabolomics studies presented here for quality control and to assess the 

degree of ion-suppression effects during sample analysis.   

Due to the shortcomings of correcting for ion suppression in non-targeted metabolomics 

experiments, it is best to mitigate the effect of ion suppression effects as much as 

possible. The most effective approach to reduce ion suppression is to analyze samples 

with relatively low total ion abundance since this effect is most influential at high total ion 

abundances. Low ion intensity flow can be achieved by analyzing a smaller amount of 

sample. The improved reproducibility of peak height intensity in isotope labeled internal 

standards was observed during analysis of the minimal genome JCVI-syn3A samples. 

These samples had a relatively low cell count per sample causing low intensity of total 

ions and low variation as compared to stool samples which had higher ion abundance 

and increased intensity variation in internal standards. GI tract lumen samples have high 

variation similar to stool. Variation in the lumen of the GI tract is due to temporal variation 

based on fasted/ fed state, in addition to different chemical profiles of diets consumed 

during sample collection. For example, some samples have high concentrations of lipids 

if a high fat meal was consumed before sample collection, but at different times or 

locations there are no dietary lipids present. There is a concern under these 

circumstances because the total ion abundance is very different between samples leading 
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to effects of ion suppression. For this reason, it is important to determine the optimal 

amount of sample to analyze to result in minimal ion suppression, while still measuring 

low abundant ions. 

To find the optimal sample injection volume, many samples were screened to encompass 

the variability of samples. The highest abundant samples were then optimized to be at 

the upper limit of the desired total ion abundance. The injection volume was optimized in 

this fashion, and as result, 3 μL of resuspended sample (corresponding to 0.018 μL of gut 

lumen sample) was found to result in sufficient signal, without resulting in excessive ion 

suppression. Ion suppression effects were assessed by analyzing ion intensities of 

deuterium labeled internal standards D3-1-methylnicotinamide, and D9-choline which are 

present at the same time as highly abundant bile acids during HILIC analysis. In a select 

GI tract sample set there were four samples with very high bile acid concentration, and 

the other 16 samples had very little bile acid signals. D3-1-methylnicotinamide and D9-

choline decreased by ~10-20% due to ion suppression. Bile acids in GI tract samples are 

one of the most highly abundant and variable metabolites observed, thus a maximum of 

~20% technical variation at time points of high ion current is present in data collected from 

GI tract samples. These time points of high ion currents represented a small fraction of 

the total chromatographic time. Therefore, variation due to ion suppression was 

considered to be much less dramatic for a majority of the detected metabolites than for 

bile acids. While the degree of signal intensity variation due to ion suppression might be 

even further reduced if less sample was analyzed, low abundant metabolites would then 

be difficult to detect. Hence, when weighing metabolome comprehensiveness versus 

potential ion suppression effects, this observed degree of variation was accepted for the 
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benefit of increasing the signals of low abundant metabolites. Effects of ion suppression 

may be further reduced through data normalization such as SERRF87 but should still be 

considered when reporting statistically significant results. 

 1.7.2 Justifiable evidence-based metabolite annotations in LC-MS/MS data 

Data processing of non-targeted LC-MS/MS metabolomics experiments can be 

automated with accurate results to produce a list of chromatographic features detected in 

samples. Such automation requires high data quality with minimal retention time shifts or 

m/z shifts. Annotation of these peaks to specific metabolites is the next step in the 

metabolomics workflow. Metabolite annotation in non-targeted LC-MS/MS metabolomics 

cannot currently be automated to give sufficiently accurate metabolite annotations to 

result in trustworthy biological conclusions. Evidence including m/z, retention time and 

MS/MS spectra must be thoughtfully considered to accurately annotate features to known 

metabolites. Further evidence such as biological likelihood, and in silico modeled 

evidence can also be used to reduce incorrect annotations. 

The first piece of evidence that should be considered in every metabolite annotation is 

the m/z measured through accurate mass, high resolution mass spectrometry.  The m/z 

from experimental data should match within a defined window, generally accepted as <5 

ppm or <3 mDa, to the theoretical m/z for a metabolite. The theoretical m/z can be 

calculated based on the chemical formula and given charge/ adduct information from 

known metabolites. Experimental m/z values should match within a defined window which 

depends on the type of mass analyzer being used. One way that an appropriate window 

can be estimated is by analyzing known chemicals and observing the differences in 
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theoretical and experimental m/z values. With sufficient measurements, a 95% 

confidence interval can be calculated for the m/z differences and this used as a window 

for peak annotation. For the case of an orbital ion trap operated with 60,000 resolving 

power, the difference between theoretical and experimental m/z values should be less 

than 1.5 mDa for small molecules <300 Da. This value may differ depending on the 

calibration of the instrument. A m/z match alone is insufficient to reliably annotate a 

metabolite. Even for small metabolites there are many possible isomers that can match 

a single m/z measurement, so additional evidence is needed to annotate features with 

reasonable confidence.  

Another piece of evidence acquired during LC-MS/MS analysis is fragmentation spectra. 

During analysis chemicals are fragmented, usually by colliding ions with gas, resulting in 

fragmentation spectra (MS/MS spectra). Chemicals fragment reproducibly for a given 

type of mass spectrometer and under identical instrument parameters. This means that 

MS/MS spectrum from a chemical standard will fragment the same as the same chemical 

in a biological sample. Matching MS/MS spectra acquired from biological samples to a 

library of known MS/MS compounds provides a valuable piece of evidence towards 

annotating a feature in experimental data to a known metabolite. Algorithms are used to 

calculate MS/MS matches between experimental spectra and library MS/MS spectra. 

Many algorithms exist to calculate how well two spectra match; however, none of them 

reliably convey the quality of evidence that an MS/MS match contributes towards 

annotating a feature. Algorithms give high match scores to two spectra sometimes even 

if the two spectra do not match well. This is commonly observed when matching complex 

biological samples to large MS/MS libraries88. For this reason, manual assessments of 
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each MS/MS match should be performed. Furthermore, different metabolites can have 

the same fragmentation spectra. One example of this is leucine and isoleucine producing 

identical MS/MS spectra. Although these are two unique chemicals, they cannot be 

distinguished based on their fragmentation spectra but require retention time information 

as well. This is a common occurrence, and it is frequently observed that two or more 

unique metabolites from MS/MS libraries will have strong matches to a spectrum obtained 

in a biological sample. To identify situations where one experimental MS/MS spectra 

matches multiple library MS/MS spectra all possible library MS/MS matches to an 

experimental MS/MS spectrum should be manually reviewed. Unique library metabolite 

matches to an experimental MS/MS spectrum provides a strong line of evidence and 

increases confidence in annotating a feature to a metabolite. Unfortunately, it is still 

possible that other chemicals that are not present in MS/MS libraries may produce that 

same spectrum. Thus, consideration of false positives in MS/MS matching is an important 

consideration, and additional evidence is important to further increase confidence in 

metabolite annotations.  

Retention time is therefore another crucial piece of information in metabolite identification. 

Retention time is the amount of time it takes for a chemical to pass through the LC system 

and be measured by MS. The retention time for a given chemical is reproducible when 

LC conditions are kept the same. This information is valuable since chemical standards 

can be analyzed and the retention time recorded in a retention time library. It is important 

to consider experiment specific RT deviation from a retention time library. Retention time 

on a single instrument can shift over time due to column age, column lot number, mobile 

phase batch, ambient temperature, and other experiment specific conditions. For GC, a 
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“retention index” is used to normalize retention time using internal standards to account 

for RT shifts between experiments. An LC specific retention index is not available, but the 

RT library can be “corrected” in an analogous manner using the 21 internal standards 

analyzed alongside RT library and experimental samples as reported previously15. In this 

thesis work no correction was performed if deviation of retention times for internal 

standards in experimental data was <0.01 minutes from the library retention times, but 

with RT deviation >0.01 minutes, a 3rd degree polynomial was fit between library and 

experiment specific retention times for internal standards and used to correct the library 

retention times for each specific experiment. Matches in m/z and retention time to a known 

chemical provides a valuable piece of evidence for metabolite annotation. Retention time 

as evidence for feature annotation also has shortcomings. One shortcoming is that 

different metabolites can present the same retention time and if they are isomers then 

their m/z-RT information is identical. For example, the isomers 3-methyluridine and 5-

methyluridine have the same m/z and the same retention time when using the HILIC LC-

MS/MS method used for analysis in this chapter. This fact highlights the need to use 

further evidence to annotate features in LC-MS/MS data.  

Retention time can be used to prevent mis-annotation of metabolites. For example, if a 

metabolite with a known retention time is annotated based on MS/MS spectral matching 

to a library spectrum, but the retention time does not match the known retention time for 

that metabolite then the MS/MS match would be nullified. Unfortunately, only a small 

portion of metabolites have known retention times since it is costly to purchase and 

analyze chemical standards. It is however possible to predict retention times using 

machine learning methods if a sufficiently large retention time library is available. Using 



60 
 

a library of over 900 metabolites with known retention times for the aforementioned HILIC 

method, it is possible to predict other metabolite retention times with accuracy of 

approximately one minute89. This approach was recently published, and the scripts are 

freely available89. While predicted retention times are not sufficient to confirm metabolite 

annotations, they are highly useful to nullify poor metabolite annotations. When the 

predicted retention time is far away from the experimental retention time for a metabolite 

annotation (greater than 1 minute when using this HILIC method), confidence in the 

annotation is reduced. In this manner, false positives can be flagged. When I investigated 

such apparently poor retention time/ MS-MS annotations, I commonly found these poor-

quality annotations to be caused by in-source fragmentation of a different metabolite such 

as the glucuronide food compound derivative explained above.  

In-source fragmentation occurs during electrospray ionization (ESI). In-source 

fragmentation is the process of metabolite fragmentation in the ESI source before 

entering the MS. Commonly, the non-fragmented and fragmented ions from a given 

metabolite will both be detected, leading to two chromatographic features being 

generated from a single metabolite. In-source fragments are a common occurrence in 

LC-ESI-MS/MS analyses and frequently cause incorrect annotation of metabolites90. In-

source fragments must be identified and filtered out of the dataset to avoid reporting 

incorrect metabolites which could lead to incorrect conclusions made in an experiment. 

There is not currently an automated method to accurately identify and filter out in-source 

fragments from non-targeted metabolomics data. There is software that facilitates the 

identification of features that are in-source fragments, but manual curation of these 

matches is still necessary. The primary method to identify in-source fragments is based 
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on retention time and correlation in intensity between features. The retention time of an 

in-source fragment and its non-fragmented parent metabolite are nearly identical because 

they are both derived from the same metabolite eluting from the LC column. The intensity 

of in-source fragment and its parent metabolite also correlate nearly perfectly (correlation 

coefficient of 1.0) across samples since the parent metabolite fragments at the same 

proportion in all samples. These two characteristics can be used to flag possible in-source 

fragments. However, adduct ions also form in the ion source from a single metabolite and 

show similar relationships. Adduct ions form when different charged metabolites 

associate with the parent metabolite. For example, ions can be formed from a metabolite 

with a proton (H+) or a metabolite with an ammonium (NH4+) ion. These two adducts will 

have the same retention time and a different m/z. Adducts also usually correlate very 

strongly. Two features that have the same retention time and correlation very strongly 

could be in-source fragments (for example a metabolite with loss of NH3), or it could 

represent a pair of two adducts (for example [M+H]+, and [M+NH4]+ species). In both 

these examples, the mass difference between the two features would be exactly the 

same. In this case software is unable to distinguish between in-source fragments and 

adducts. To identify in-source fragment pairs in a dataset, the correlation of peak 

intensities across samples should be checked for features at similar retention times. 

These features should then be investigated to determine whether there is an in-source 

fragment present, or the highly correlating features are adducts. 

The biological likelihood of a metabolite being detected in a sample also contributes to 

the confidence of metabolite annotations. This line of evidence is of particular importance 

when using large retention time and MS/MS libraries. The prevalence of isomers in 
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biological samples cause false positive metabolite annotations. Examples of clearly false 

positive metabolite annotations are some rarely observed drugs supported by only a 

single line of evidence (e.g., only a m/z – retention time match). Many drug chemicals are 

present in retention time and MS/MS libraries, including drugs that have been prohibited 

by the FDA for decades. When these synthetic drugs are annotated in a sample without 

a biologically likely cause, it is much more likely that the feature represents an isomer of 

this drug and is in fact a false positive metabolite annotation. Conversely, if a peak 

appears at very high abundance in a sample matrix where the metabolite is biologically 

expected to be present, for example for urobilin in GI tract samples, such annotations 

have increased confidence for the accuracy of compound identifications. Unfortunately, 

using biological likelihood assessments is less useful when investigating GI tract samples 

due to the high diversity of food and drug exposure in humans. At least for blood, use of 

a priori knowledge is a useful approach to generate the most accurate possible 

metabolomics dataset91.  

In summary, automation of LC-MS/MS non-targeted data processing performs many 

steps of the data processing workflow accurately and reproducibly. However, automation 

of feature annotation cannot yet be trusted to give correct results but requires expert 

curation. For example, in a dataset from GI tract samples (discussed in the next chapter), 

there were a total of 665 features annotated to known metabolites. After manual curation, 

considering all the evidence discussed above, 382 (57.4%) of the annotations showed 

sufficient evidence to provide a confident metabolite annotation. This process is 

unfortunately dependent upon human input, and thus is not broadly reproducible and 

depends upon the expertise of the data curator. Overall, therefore, automation of 
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metabolite identification will overcome the challenge of feature annotation, but manual 

curation by a knowledgeable data curator is currently required to result in an accurate 

and trustworthy metabolomics dataset. For GC-MS data reported in this thesis, all 

metabolites were curated on a database level over the past 15 years of use at UC Davis92, 

but for LC-MS/MS data, no such data repository has been finalized. Necessary 

improvements to increase automated metabolite annotation accuracy include better 

metrics to determine MS/MS match quality, consideration of non-unique MS/MS matches 

(MS/MS false discovery rate), identification of in-source fragment ions, increased size of 

retention time libraries, improved accuracy of retention time prediction, automated 

assessment of biological likelihood of a metabolite being present in a sample, and 

ultimately integration of all of these lines of evidence to result in a meaningful metric for 

the likelihood of metabolite identification. 

1.8 Chapter 1 methods 

1.8.1 Minimal Genome Metabolomics analysis methods 

Cell pellet samples were fully randomized through sample extraction, analytical analysis, 

and data processing. 250 µL of 3:3:2 (isopropanol/acetonitrile/water) (v/v/v) was added 

to the original tube prepared for metabolomics analysis, vortexed vigorously for 30 

seconds, sonicated for 1 minute, and all contents were transferred to a new clean 2 mL 

round-bottomed microcentrifuge tube. An additional 250 µL of 3:3:2 was added to the 

original tube, vortexed, sonicated, and also transferred to the round-bottomed 2 mL 

microcentrifuge tube to maximize recovery. Two three mm stainless steel balls were 

added to the round bottom microcentrifuge tube and processed in a Geno/Grinder tissue 
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homogenizer (Spex SamplePrep; Metuchen, NJ) at 1500 rpm for 1 minute. The tube was 

then centrifuged at 14000 rcf for 3 minutes, and 450 µL of supernatant was transferred to 

a clean 1.5 mL microcentrifuge tube that was dried under vacuum overnight. Dried 

samples were stored at -80 °C until analysis. Eight method blanks were generated by 

starting with 50 µL of methanol and no cell pellet, and these blanks were extracted at 

times evenly distributed throughout all experimental sample extractions. A pooled quality 

control (QC) sample was created by transferring 50 µL of the residual supernatant after 

centrifugation and sample removal, to a clean 5 mL centrifuge tube. This pooled QC was 

vortexed thoroughly to mix, and 450 µL of the QC mix was transferred into eight 1.5 mL 

microcentrifuge tubes, dried and stored in the same manner as samples. The LC-MS 

grade water, acetonitrile, and methanol used in metabolomics analysis were purchased 

from Fisher Scientific (Waltham, MA), and isopropanol, formic acid, and ammonium 

formate were purchased from Sigma-Aldrich (St. Louis, MO). 

Prior to analytical analysis, dried samples were resuspended in 100 µL 8:2 (acetonitrile/ 

water) (v/v) with internal standards (42 isotopically labeled or synthetic compounds), 

vortexed for 30 seconds, sonicated for 1 minute, centrifuged at 14000 rcf for 2 minutes, 

and transferred to amber screw top vials with micro-inserts for LC-MS/MS analysis. 

Analytical analysis was performed using a Vanquish Focused UHPLC coupled to a Q-

Exactive HF mass spectrometer (ThermoFisher Scientific) as previously described93. In 

summary the analysis used a Waters Acquity UPLC BEH Amide column (150mm x 2.1 

mm id, 1.7 μm particle size) coupled to Acquity UPLC BEH Amide VanGuard precolumn 

(5 x 2.1 mm; 1.7μm) (Waters, Milford, MA) with mobile phases of LC-MS grade water, 

and 95:5 (v/v) acetonitrile/water, each at 10mM ammonium formate and 0.125% formic 
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acid. Mass spectra were collected in data dependent mode with the top four ions from 

each MS1 scan being selected for MS/MS fragmentation. Electrospray ionization analysis 

was conducted using a spray voltage of positive 3kV and negative 3 kV as separate 

analyses. Three microliters of sample were injected for positive mode ionization, and 5 

µL injected for negative mode analysis. Blanks and QC samples were analyzed at even 

intervals spaced throughout all MS analyses. Additionally, a pooled quality control sample 

was measured with a mass scan range window of 100 m/z sequentially 9 times to cover 

m/z 60-900 in order to increase data dependent MS/MS spectra coverage for use in 

compound identification. 

Data was processed using open source software MS-DIAL3 version 3.70. MS-DIAL 

performed baseline correction, deconvolution, peak detection, alignment, gap filling, 

adduct identification, m/z-RT library matching, and MS/MS library matching. An in-house 

m/z-RT library developed from authentic standards was matched to peaks identified by 

MS-DIAL, and MS/MS spectra were matched to library spectra from the Mass Bank of 

North America (MoNA; https://massbank.us), and NIST17. Manual inspection of each 

annotated compound was conducted to confirm m/z-RT library match, and/or MS/MS 

library match. Peak height was reported as intensity for each annotated metabolite in 

each sample. Six outliers were removed as determined by deviation of the summed 

intensity of all internal standards, or the summed intensity of all annotated known 

compounds by more than two standard deviations in either positive or negative mode 

ionization analysis which are expected to be failed injections via autosampler error. 

Calculation of ANOVA was carried out for all features comparing genotypes (n=7, 8 or 9), 

and multiple comparisons were accounted for using Bonferroni correction. 
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1.8.2 N6-formylated lysine in bacterial protein digest analysis methods 

Chemicals 

N6-Formyl lysine (>98.0% purity) was purchased from TCI Chemicals (Catalog No. 

F0136). L-Lysine (>98%) (Product 616214) and L-lysine-3,3,4,4,5,5,6,6-d8 (lysine-D8) 

(Product L5501) (98%) were purchased from Sigma-Aldrich. N2-Formyl lysine (>98%) 

was purchased from Iris Biotech GmbH (Product XAA1330). Additional internal standard 

information is listed in Supplementary Table 1. Formaldehyde (37% w/w solution in water) 

containing 10-15% methanol as preservative was purchased from Fisher Scientific 

(Catalog No. BP531-500). Water and acetonitrile were LC-MS grade and purchased from 

Fisher Scientific. All other chemicals were purchased from Sigma-Aldrich.  

Sample preparation 

LC run solvents used for sample resuspension were prepared using a stock LC solvent 

solution of 4:1 acetonitrile/ water (v/v) with 20 isotopically labeled internal standards 

including lysine-D8 combined from individual stock solutions as described in 

Supplementary Table 1 (Supplementary Table 1). Internal standards were used to 

monitor analytical variance and retention time stability. This stock run solvent was used 

to prepare the spiked LC run solvents used for this experiment. The spiked LC solvents 

had an additional 1 μg/mL lysine, 5 μg/mL lysine, 1 μg/mL lysine-D8, or 5 μg/mL lysine-

D8 made by diluting authentic standards of lysine or lysine-D8 in 4:1 acetonitrile/water 

(v/v), drying standard solutions under vacuum (vacuum centrifuge), and dissolving 

standards with stock run solvent to reach desired concentrations. Calibration curves of 

lysine and N6-formyl lysine were prepared through dilutions of authentic standards in 4:1 
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acetonitrile/water (v/v), drying under vacuum, and dissolving in stock run solvent to 

achieve desired concentrations. Final concentrations of N6-formyl lysine were 5 ng/mL, 

10 ng/mL, 50 ng/mL, 100 ng/mL, and 500 ng/mL, and final concentrations of lysine were 

0.5 μg/mL, 1 μg/mL, 5 μg/mL, 10 μg/mL, and 20 μg/mL. All prepared samples were 

transferred to amber LC-MS vials with glass micro-inserts and split top caps and stored 

in autosampler at 4 °C until analysis. 

To prepare sample matrix, proteins were extracted from E. coli as previously described.25 

Briefly, cells of various genotypes were grown in M9 minimal medium or M9 medium 

containing 1 mM formaldehyde. Cells were pelleted by centrifugation, pellets were 

suspended in 1 mL PBS buffer, sonicated, and centrifuged to clear. Soluble proteins in 

the supernatant were precipitated with 80% acetone and pelleted by centrifugation at 

5000 g for 3 min at 4 °C. Protein pellets were air-dried and stored at -20 °C until 

subsequent steps. Protein pellets were dissolved in 0.2 mL of 1 M NaOH, combined with 

0.4 mL of 100 mM ammonium bicarbonate buffer, pH 8.5, desalted on a PD-25 column, 

eluted with 100 mM ammonium bicarbonate buffer, pH 8.5, and protein content was 

measured. Streptomyces griseus protease was added at mass ratio of 1:10 

(protease/protein) and incubated at 37 °C for 16 h. Protein digests were dried under 

vacuum, and stored at -20 °C. 

Dried protein digests were dissolved in 0.5 mL 4:1 acetonitrile/ water (v/v), vortexed, and 

sonicated for 2 min. From each sample tube, 0.02 mL was combined into one clean 

microcentrifuge tube to create a pooled sample, vortexed vigorously for 30 sec and 

aliquots of 0.05 mL were transferred to clean microcentrifuge tubes. These identical 

pooled samples were dried under vacuum and stored at -20 °C until resuspension for LC-
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MS/MS analysis. Pooled samples were dissolved in stock run solvent, and stock solvent 

with addition of 1 μg/mL lysine, 5 μg/mL lysine, 1 μg/mL lysine-D8, or 5 μg/mL lysine-D8 

(n=3). These microcentrifuge tubes were vortexed vigorously for 30 sec, sonicated for 2 

min, centrifuged at 16000 g for 2 min, transferred to amber LC-MS vials with glass micro-

inserts, and stored in autosampler at 4 °C until analysis. Unless otherwise stated, sample 

preparation was carried out at room temperature without protection from ambient light.  

For fraction collection, the UHPLC eluent within 10 sec of the lysine chromatographic 

peak was collected from five injections of 10 μg/mL authentic lysine standard. This 

fraction was dried under vacuum, dissolved in 0.05 mL stock run solvent, vortexed 

vigorously for 30 sec, sonicated for 2 min, centrifuged at 16000 g for 2 min, and 

transferred to an LC-MS vial with a glass micro-insert and stored at 4 °C until LC-MS/MS 

analysis. 

LC-MS/MS data acquisition 

LC-MS/MS analysis was carried out using a Vanquish UHPLC (ThermoFisher Scientific) 

coupled to a QExactive HF+ orbitrap mass spectrometer (ThermoFisher Scientific). LC 

separation used a BEH amide hydrophilic interaction LC column (Waters Acquity UPLC 

BEH Amide, 150-mm length, 2.1-mm inner diameter and 1.7-µm particle size) with a 

guard column (Acquity VanGuard BEH Amide pre-column, 5-mm length, 2.1-mm inner 

diameter and 1.7-µm particle size). The column compartment and mobile phase 

preheater were held at 45 °C, and mobile phase flow rate was set to 0.4 mL/min. Two 

mobile phases were used; mobile phase A was water, and mobile phase B was 95:5 

acetonitrile/water (v/v). Both mobile phases were modified to 10 mM ammonium formate, 

and 0.1% formic acid. The mobile phase gradient started at 100% mobile phase B from 
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0 to 2 min; brought to 70% B between 2 and 7.7 min; went from 70% to 40% B between 

7.7 and 9.5 min, was held at 40% B until 12.75 min; brought back to 100% B between 

12.75 and 12.85 min, and held at 100% B until 17 min. Injection volume was 0.003 mL. 

The injection needle was washed for 10 sec before and after each injection with 1:1 

acetonitrile and water. 

Positive mode electrospray ionization used a spray voltage of 3.6 kV, capillary 

temperature of 320 °C, sheath gas flow rate of 60 units nitrogen, and auxiliary gas flow 

rate of 25 units nitrogen. Data was collected from 0 to 15 min of the LC gradient using 

data dependent acquisition DDA with the top four ions from each MS1 scan being 

selected for MS/MS fragmentation which had a selection window of +/- 1 m/z of the 

precursor ion and an exclusion time of 2 sec for each ion selected for fragmentation. MS1 

spectra were collected with resolving power setting of 60,000, and MS/MS spectra 

collected at resolving power setting of 15,000. DDA MS/MS was acquired with normalized 

collision energy of 20%, 30% and 40%. All spectra were stored in centroid, “.raw” format. 

Automatic gain control was 1E6 for MS1 and 1.5E5 for MS/MS. 

Data analysis 

Data was converted from “.raw” format to “.abf” format using the Analysis Base File 

converter and processed through open source software MS-DIAL (version 4.16)94,95 with 

parameters described previously.96 MSDIAL performed peak picking, peak smoothing, 

peak alignment, deisotoping, gap filling, and automated matching to MS/MS and retention 

time libraries. LC-MS features were identified using spectral matching to all positive mode 

LC-MS/MS spectra from the Massbank of North America (MoNA) and NIST17. Retention 

time matching used experimental accurate masses and retention times from authentic 
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chemical standards analyzed under identical LC conditions and can be found as a library 

on MoNA labeled “Fiehn HILIC”. Isotopically labeled and non-exogenous internal 

standards from the stock run solvent were used to assess injection quality. Peak height 

was used as spectral intensity for all data analysis. The coefficient of variation across all 

isotopically labeled internal standards was less than 4.3% across all samples containing 

sample matrix. One sample was removed due to a difference in internal standards 

intensity greater than three standard deviations compared to the rest of samples 

suggesting an injection failure. A linear model was fit to external calibration curve to 

quantify N6-formyl lysine. 

1.8.3 Rat lipidomics analysis methods  

Male Wistar rats weighing 280–300 g (approximately 9 weeks old) were obtained from 

Envigo Laboratories (California, USA). Animals were individually caged under controlled 

temperature (22 ± 2 °C) and lighting (12-h light, 6 AM–6 PM; 12-h dark, 6 PM–6 AM) with 

free access to water and standard rat chow or experimental diets (see below). All 

procedures involving animals were approved by the Institutional Animal Care and Use 

Committee at the University of Southern California. 

Animals were fed for 1 week with diets containing different amounts of Na+ and K+ (n = 7 

for each diet; a total of 14 rats). The diets were prepared from K+-deficient powdered rat 

diet (TD.88239.PWD; Envigo Teklad) with or without supplementation with KCl or NaCl39. 

The control ("healthy") diet contained 0.29% Na+, which is the level in normal rat diets, 

and 2% K+, which is higher than the normal 1%. In the HNaLK diet, Na+ content was 

increased from 0.29% to 0.79%, a level similar to those in Western diets97, and K+ content 
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was decreased to 0.1%, which was selected to be low, but not low enough to deplete 

plasma K+98. The diets were prepared by dissolving 30 g agarose in 500 mL of deionized 

water, and adding 500 g of powdered diet supplemented with KCl and NaCl, and heating 

to effect gellation99. After one-week of feeding, animals were anesthetized with isoflurane 

at ~7 AM, and blood samples for lipidomics analysis were collected using a heparinized 

syringe through the abdominal aorta. We chose this time for blood sampling because the 

interaction of the diet with the gut microbiota can be better observed immediately after 

the feeding period than in a fasting state.  Blood samples were rapidly spun, and plasma 

was isolated and frozen immediately in liquid N2. The plasma samples were stored at -

80 °C until analysis.  

This feeding experiment was also conducted in animals treated with antibiotics to deplete 

gut bacteria, as previously described39. Animals were maintained on drinking water 

(autoclaved tap water) containing vancomycin, metronidazole, neomycin, and ampicillin 

(0.5 mg/mL for vancomycin and 1 mg/mL for the others) for a week. During the antibiotic 

treatment, food intake and weight gain decreased during the initial 2-3 days but returned 

to normal values thereafter. After a one-week treatment, fecal DNA content decreased to 

3% of control (data not shown), indicating that the antibiotic treatment was effective to 

remove most gut bacteria. After the antibiotic treatment, the animals were fed either the 

control or the HNaLK diet (n = 7 for each diet; a total of 14 rats) for an additional week, 

while being continuously treated with antibiotics. After the feeding, blood samples were 

collected and processed, as described above. These experiments in antibiotic-treated 

rats were conducted simultaneously with those in untreated rats using the same batch of 

rats.  Thus, the present study employed a 2 × 2 factorial design (i.e., 4 groups; n = 7 for 



72 
 

each group; a total of 28 rats) to test the effects of the HNaLK diet and antibiotic treatment 

on circulating lipids.   

Plasma samples (n = 7 for each group; a total of 28 samples) were extracted as previously 

described100. Briefly, 40 uL of plasma was extracted using a biphasic extraction method 

with methanol (containing 13 internal standards), water, and methyl tert-butyl ether 

(MTBE), adapted from the study of Matyash et al.101 Three quality-control samples of 

pooled human-blood plasma (BioIVT; Westbury, NY), and three method blanks (solvents 

added to empty tubes) were extracted and analyzed alongside the samples. The non-

polar MTBE portion of extract was dried under vacuum and reconstituted in 0.11 mL 

methanol/toluene (9:1, v/v) containing the internal standard 12[[(cyclohexylamino)-

carbonyl]amino]-dodecanoic acid. Non-polar lipids were analyzed on a Vanquish 

Focused UHPLC coupled to a Q-Exactive HF mass spectrometer (ThermoFisher 

Scientific). Liquid chromatography was performed using a Waters Acquity UPLC CSH 

C18 column (100mm x 2.1mm, 1.7 μm particle size) coupled to an Acquity UPLC CSH 

C18 VanGuard precolumn (5 x 2.1 mm; 1.7 μm) (Waters, Milford, MA) with mobile phases 

of 60:40 (v/v) acetonitrile/ water, and 90:10 (v/v) isopropanol/acetonitrile, both of which 

had 10 mM ammonium formate and 0.1% formic acid for positive ionization analysis, and 

10 mM ammonium acetate and 0.1% acetic acid for negative ionization analysis. Three 

and five microliters of reconstituted sample were injected onto column for positive and 

negative ionization analysis respectively. The mobile phase gradient was identical to that 

of Cajka et al.100 Data were collected from 120 to 1200 m/z in a data dependent manner, 

with the top four ions from each MS1 scan being selected for MS/MS fragmentation. 
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Samples were analyzed in a randomized order with a method blank and quality control 

plasma sample analyzed throughout analyses.  

Data were processed using open-source software MS-DIAL version 2.823. Raw data is 

available on the Metabolomics Workbench (https://metabolomicsworkbench.org/) (Project 

doi: 10.21228/M8Z090).  MS-DIAL performed baseline correction, deconvolution, peak 

detection, alignment, gap filling, adduct identification, accurate mass/ retention time (m/z-

RT) library matching, and MS/MS library matching. MS-DIAL parameters were set to 10 

for minimum peak width, 10000 for minimum peak height, MS/MS fragmentation match 

to library of at least 80%, MS1 tolerance of 0.005 Da, MS2 tolerance of 0.01 Da, 

smoothing level of 3, and retention time window of 0.15 minutes for retention time 

matching to an in-house m/z-RT library. Tandem MS spectra were matched to library 

spectra from the Mass Bank of North America (MoNA), NIST17, and LipidBlast102. 

Features that appeared in method blanks were removed from further investigation. 

Duplicate peaks, isotopes, and adducts were investigated and removed using Mass 

Spectral Feature List Optimizer103. Manual inspection of each annotated compound was 

conducted to confirm m/z-RT library match, and/or MS/MS library match. Peak height was 

used as mass spectral intensity at a specific retention time for each annotated lipid. After 

data processing, each sample was normalized to the total summed intensity of all known 

features (excluding internal standards). 

Chemical similarity enrichment analysis was conducted using ChemRICH available at 

www.chemrich.fiehnlab.ucdavis.edu, which groups annotated lipids into non-overlapping 

classes based on Medial Subject Headings (MeSH) terms and Tanimoto chemical 

similarity calculations (e.g, unsaturated triglycerides, saturated triglycerides, unsaturated 
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fatty acids, sphingomyelins)104. ChemRICH input included the annotated feature name, 

chemical identifiers including SMILES code, uncorrected p-values of Student t-tests 

between two groups of interest, and fold change between the two groups of interest for 

each annotated lipid. ChemRICH then uses the Kolmogorov-Smirnov test to calculate 

significance level (p-value) between two treatment groups for all detected classes of 

lipids. ChemRICH analysis was calculated to detect differential regulation of chemical 

classes in antibiotic-treated compared to untreated groups, with or without considering 

diet treatment. 

The lipidomic dataset generated in section 2.3 (excluding quality control samples and 

internal standards) was investigated using the Lipid Ontology (LION/web) enrichment 

analysis web application (http://www.lipidontology.com/)105.  Differences between the 

dietary treatment groups and the antibiotic treatment groups were investigated using the 

T-Test option (n = 14) in LION; 328 lipid species were submitted to LION for enrichment 

statistics.  

Total plasma FFA levels were measured using an acyl-CoA oxidase-based colorimetric 

kit from Wako Chemicals Inc. (Richmond, VA). Total plasma TG levels were analyzed 

using a Ponte Scientific TG reagent (Thermo Fisher Scientific; Waltham, MA).  Plasma 

levels of Angiopoietin-like Protein 4 (ANGPTL4) was measured using an ELISA kit from 

Cloud Clone (Katy, TX). 

All data are expressed as means ± S.E.M. The significance of differences in the mean 

value was assessed by one-way ANOVA followed by ad hoc analysis using the 

Bonferonni method for multiple comparisons. In the lipidomic analysis, P values were 

adjusted for multiple comparisons using Benjamini and Hochberg false discovery rate 
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correction106. A P value less than 0.05 was considered to be statistically significant. 

Principal component analysis (PCA) was calculated using all known lipids (excluding 

internal standards) from a log transformed dataset generated from LC-MS/MS data 

processing (section 2.3). PLS-DA analysis and variable importance in projection (VIP 

scoring) was calculated using a lipidomic dataset generated in section 2.3, excluding 

internal standards and quality control samples. For PCA and PLS-DA analysis, no missing 

value replacement was performed. PLS-DA and PCA figures were generated using 

MetaboAnalyst 4.0107. 

1.8.4 Metabolomics analysis of serum and stool collected during dietary flaxseed 

intervention study 

A randomized crossover flaxseed intervention was conducted through the Roswell 

Cancer Center. The subjects participating in this study was a cohort of 179 healthy 

postmenopausal women from New York. Health was assessed by a medical history 

questionnaire prior to study enrollment. Fasting serum was collected from each subject 

before and after a 6-week intervention period when 10 grams per day of ground flaxseed 

was consumed (Figure 1.13). One stool sample was collected within 48 hours prior to 

flaxseed intervention began, and after 6 weeks of flaxseed consumption. Study 

participants were provided with a 500-gram bag of ground flaxseed and a standard scoop. 

Unused ground flaxseed was returned after the dietary intervention to monitor 

compliance. Subjects maintained their usual diet throughout the study except for flaxseed 

supplementation. Women having consumed antibiotics, hormone replacement therapy, 

supplements for treatment of menopausal symptoms, or flaxseed supplements were 



76 
 

excluded for this study. Subjects were instructed to avoid additional foods containing 

flaxseed for the duration of the study.  

LC-MS/MS analysis of serum was performed using HILIC chromatography with methods 

as previously described15 with modifications as follows. Data processing was performed 

using MS-DIAL version 3.96 with key parameters of minimum peak height set to 100,000, 

MS/MS libraries of NIST17 and MassBank of North America, match identification score 

cutoff of 88, and retention time library of Fiehn HILIC library found at the MassBank of 

North America. The resulting aligned feature table was further curated. Blank filtering was 

performed by removing features that had a ratio of the maximum intensity of any sample 

/ average of method blanks less than 5. All annotated metabolites were manually checked 

for MS/MS matches, accurate m/z match, and retention time match. Each MS/MS library 

match was also checked for other possible metabolites that could be MS/MS matches 

signifying non-unique MS/MS matches and not fulfilling MS/MS match in context of MSI 

confidence levels reported elsewhere108. Stool samples were analyzed by using an 

extraction procedure as previously reported15, except the serum sample was replaced 

with 5 mg +/- 1mg of stool homogenized in a genogrinder shaker with two 3mm stainless 

steel balls prior to addition of MTBE. Statistical analyses were performed as paired T-

tests using pre and post intervention samples from the same subject as pairs and 

correction for multiple comparisons performed using methods of Benjamin and 

Hochberg106.  GC-MS analysis of serum was performed as previously described15 for 

serum and stool samples, with the exception that data was normalized to the sum of all 

annotated metabolites, instead of random forest signal correction. 
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Chapter 2: Metabolomics Analysis of Time-Series Human Small Intestine Lumen 

Samples Collected in vivo 

Adapted from “Metabolomics Analysis of Time-Series Human Small Intestine Lumen Samples 

Collected in vivo”. 2021. Jacob S. Folz, Dari Shalon, Oliver Fiehn. Food and Function. 

10.1039/D1FO01574E 

2.1 Abstract 

The human small intestine remains an elusive organ to study due to the difficulty of 

retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect 

events in the upper gut intestinal tract. As proof of concept, this study investigates time-

series samples collected from the upper gastrointestinal tract of a single healthy subject. 

Samples were retrieved using a small diameter tube that collected samples in the 

stomach and duodenum as the tube progressed to the jejunum, and then remained 

positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and 

metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays 

were employed to annotate 828 unique metabolites using accurate mass with retention 

time and/or tandem MS library matches. Annotated metabolites were clustered based on 

correlation to reveal sets of biologically related metabolites. Typical clusters included bile 

metabolites, food metabolites, protein breakdown products, and endogenous lipids. 

Acylcarnitines and phospholipids were clustered with known human bile components 

supporting their presence in human bile, in addition to novel human bile compounds 4-

hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-

hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small 
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intestine after meals. Acetaminophen and its phase II metabolism products appeared for 

hours after the initial drug treatment, due to enterohepatic recirculation. This exploratory 

study revealed novel trends in timing and chemical composition of the human jejunum 

under standard living conditions. 

2.2 Introduction 

The human gastrointestinal tract (GI tract) performs essential functions for life including 

absorption of energy from food and vitamin transformations. This makes the GI tract an 

important area of research to better understand how humans interact with food. The upper 

human GI tract has been investigated using techniques such as endoscope imaging1 and 

sampling2, external imaging3, ileostomy studies4,5, in vitro small intestine models6, and 

humanized animal models7. These techniques have been primarily used for single 

timepoint sample collections. However, the human small intestine is a highly complex and 

dynamic system requiring time-series profiles to understand the in vivo functionality of the 

upper GI tract8. This study investigates a unique set of samples collected from the upper 

GI tract of a single healthy subject at approximately 30-minute intervals for 8 hours.  

One important class of biofluids for human GI tract function is bile. Bile is made in the 

liver, stored in the gallbladder, and excreted into the duodenum. Bile consists of roughly 

95% water with 5% organic and inorganic components including bile acids, bile pigments, 

phospholipids, cholesterol, electrolytes, and proteins9. Bile is excreted in response to 

meals10 and has important functions including acting as a lipid emulsion stabilizer11,12 to 

aid in lipid absorption, as excretory route for cholesterol and other exposome 

metabolites13, and to modify the composition of gut microbiota14. To better understand 
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how the GI tract interacts with diet and lifestyle, we investigated bile related metabolites 

and bile excretion patterns over the course of 8 hours in a single test subject.  

In addition to endogenous metabolites, exogenous compounds from food and drugs and 

their metabolites also pass through the small intestine. These compounds represent 

extremely broad classes of chemicals encompassing the metabolome of plants, animals, 

microbes, and the environment. While many exposome compounds are listed in 

databases such as FooDB and DrugBase, nontargeted metabolomics can detect 

additional compounds to add knowledge on transformations in the human GI tract. Such 

food biomarkers may classify dietary patterns and be used in human cohort studies15–17. 

We show here that some foods are more readily predicted from GI tract fluid analyses 

than others. We also demonstrate the utility of a non-targeted metabolomics analysis 

leading to novel observations of endogenous and exogenous metabolite dynamics 

associated with the human GI tract in vivo. 

2.3 Methods 

Ethics statement 

The study was approved by and complied with the guidelines approved by the Association 

for the Accreditation of Human Research Protection Programs (AAHRPP) certified review 

board WCG IRB (Study Number 1186513, IRB Tracking Number: 20181298) as a Non-

Significant-Risk study not requiring an Investigational Device Exemption (IDE) review by 

the FDA. The single participant provided written informed consent for study participation 

conducted at Silicon Valley Gastroenterology, 2490 Hospital Drive, Suite 211, Mountain 
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View, California  94040. For the chemical analyses of samples delivered to UC Davis, the 

UC Davis IRB Administration approved the study under IRB ID 1307967-1. 

Sample collection 

A single human volunteer, a male between the age of 45-65 years without any known 

morbidities and a BMI <30 swallowed a 1.2 mm outer diameter silicon tube with one end 

attached to a capsule shaped sinker element 6 mm in diameter and 15 mm long. A 

silicone tube ran through the center of this sinker element with an opening covered with 

a 150-micron mesh filter. The capsule was swallowed with water and the tube was 

stopped from advancing when the end of the tube was 200 cm past the mouth, which 

equates to 125 cm past the pylorus, placing the sampling end of the tube in the jejunum. 

Samples were aspirated by pulling out one milliliter aliquots of GI tract fluid using a syringe 

attached to the proximal end of the sampling tube every 30 minutes. The first two samples 

were collected while the tube was still in the stomach and the rest were taken from the 

upper small intestine with the final 14 samples taken from 125 cm past the pylorus 

(Supplementary Table 1). During the sample collection period, food, water, and 

acetaminophen were consumed ad libitum and time of ingestion recorded (Figure 2.1). 

Specific timepoints of sample collection, food consumption, and sample details can be 

found in Supplementary Table 1. Samples were transferred to microcentrifuge tubes and 

frozen at -20 °C until sample extraction (less than 1 week). After sampling, the silicon 

tube was cut and evacuated along with the capsule sinker element through normal bowel 

movement. 
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Figure 2.1. Method summary of GI tract sampling. Timeline of sample collections 

that occurred at approximately 30-minute intervals throughout one day. Cross: 

500 mg acetaminophen. Black arrows: food or beverage consumption. (A) apple 

juice, espresso (B) 60 g puree (pear, peach, pumpkin, apple, cinnamon) (C) 10 

g puree as before. (D) 20 g olive oil, 20 g white bread, espresso (E) 25 g whole 

wheat cereal, water, espresso (F) 210 g fermented milk drink. Samples 1-2 were 

collected from the stomach and 3-20 were collected from the small intestine. 

Sample Preparation 

Samples were separated into hydrophobic and hydrophilic portions using a modified liquid 

bilayer extraction18. Frozen samples were thawed on ice and 20 µL of intestinal liquid was 

transferred to a clean microcentrifuge tube. Blank samples were created using 20 µL of 

LC-MS grade water instead of intestinal fluid. 225 µL of ice-cold methanol (containing 

internal standards19) was added to each microcentrifuge tube. Tubes were vortexed 

vigorously for 10 seconds and then 750 µL of methyl-tert butyl ether (containing internal 

standard cholesterol ester 22:1) was added to each tube. All tubes were vortexed 

vigorously for 10 seconds and shaken on an orbital shaker at 4 °C for 6 minutes. 190 µL 
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of ice-cold water was added to each tube followed by 10 seconds of mixing by vortex. 

Microcentrifuge tubes were centrifuged at 14,000 RCF for two minutes. Two aliquots of 

350 µL of the upper MTBE layer were aliquoted into two clean microcentrifuge tubes for 

lipidomic analysis, and two aliquots of 125 µL of the lower layer was transferred into two 

clean microcentrifuge tubes for analysis of hydrophilic metabolites. A portion from the 

remaining upper and lower layers from all samples were combined with portions of other 

GI tract samples external to this study to generate pooled quality control samples to 

assess technical variation in analytical measurement. All tubes were dried to completion 

in a rotary vacuum dryer and stored at -20 °C for less than two weeks until LC-MS/MS 

analysis. 

LC-MS/MS analysis 

Reverse phased liquid chromatography tandem mass spectrometry (RPLC-MS/MS) was 

used to perform lipidomic analysis and began by adding 100 µL run solvent (9:1 

methanol/toluene (v/v)) to microcentrifuge tubes from the dried upper layer of extraction. 

Tubes were vortexed for 10 seconds, sonicated for 2 minutes, vortexed for 10 seconds, 

centrifuged at 14,000 RCF for 2 minutes and the supernatant was transferred to amber 2 

mL LC-MS vials with 200 µL glass insert. Chromatography was performed using a 

Vanquish Focus UHPLC (ThermoFisher Scientific) and mass spectra collected with a 

QExactive HF+ mass spectrometer. An Acquity UPLC CSH C18 (100 mm × 2.1 mm, 1.7 

µm particle size) column (Waters, Milford MA) with an Acquity UPLC CSH C18 (5 mm ×  

1.2 mm, 1.7 µm particle size) pre-column (Waters, Milford MA) was used with mobile 

phase A (6:4 acetonitrile/ water (v/v)) and mobile phase B (9:1 isopropanol acetonitrile 

(v/v)). Mobile phases A and B were modified with 10mM ammonium formate and 0.1% 
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formic acid for positive mode ionization, and 10mM ammonium acetate for negative mode 

ionization. The LC gradient started at 15% B, increased to 30% B from 0-2 minutes, 

increased to 48% B from 2-2.5 minutes, increased to 82% B from 2.5-11 minutes, 

increased to 99% B from 11-11.5 minutes, held at 99% B from 11.5-12 minutes, returned 

to 15% B from 12-12.1 minutes and held at 15% B from 12.1-15 minutes. The autosampler 

was held at 4 °C and needle wash was performed before and after sample injections for 

10 seconds with isopropanol. Injection volumes were 4 µL for both positive and negative 

mode ionization analyses. Additional MS parameters were used as previously reported19. 

Spectral data was collected with scan range of 120-1700 m/z. MS/MS fragmentation used 

data dependent acquisition (DDA) and was collected for the top 4 most abundant ions 

from each MS scan.  

Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) 

was used to measure hydrophilic metabolites and began by adding 0.1 mL run solvent 

(8:2 acetonitrile/water (v/v) with 20 deuterated or synthetic internal standards as 

previously reported19 to dried microcentrifuge tubes from the bottom aqueous phase of 

extraction. Tubes were vortexed, sonicated, vortexed, centrifuged, and transferred as in 

the lipidomic analysis. The same instruments and parameters were used as lipidomic 

analysis with the following exceptions. A BEH Amide (150 mm × 2.1 mm, 1.7 µm particle 

size) column (Waters, Milford MA) with BEH Amide (5 mm ×  1.2 mm, 1.7 µm particle 

size) pre-column Waters, Milford MA) was used with mobile phases A (water) and B (95:5 

acetonitrile/ water (v/v)) both modified with 10mM ammonium formate, and 0.1% formic 

acid. The gradient started at 100% B, was held at 100% B from 0-2 minutes, decreased 

to 70% B between 2-7.7 minutes, decreased to 40% between 7.7 and 9.5 minutes, was 
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held at 40% B from 9.5-12.75 minutes, returned to 100% B between 12.75-12.85 minutes, 

and was held at 100% B from 12.85-17 minutes. Needle wash solution was 1:1 

acetonitrile/ water (v/v). Injection volumes were 3 µL for positive mode electrospray 

analyses and 5 µL for negative mode electrospray analyses. The scan range was 90-900 

m/z with MS/MS acquired using DDA. Four quality control samples were analyzed evenly 

spaced throughout samples for all analytical platforms and used to assess injection 

reproducibility and instrument stability. 

Data Analysis 

LC-MS/MS data was processed using open source software MS-DIAL20 (version 4.24) 

which performed peak picking, deisotoping, automated peak annotation, alignment and 

gap filling. Data processing parameters can be found in Supplemental Table 2. Blank 

subtraction was performed by removing features that had a maximum sample intensity / 

average blank intensity ratio of less than 5 and also any features that had a maximum 

sample intensity of less than 30k. Adduct and duplicate features were flagged using Mass 

Spectral Feature List Optimizer (MS-FLO)21. Data from each of the four analytical 

platforms (RPLC-MS/MS ESI+/-, HILIC-MS/MS ESI+/-) were processed separately and 

combined after data curation. No data normalization was performed because no trend in 

data intensities was observed from the internal standards during data acquisition. Peak 

height was used for all quantitation.  Raw data may be found on the Metabolomics 

Workbench (ST001794). Metabolite annotations were made using defined confidence 

levels22 based on accurate mass, MS/MS library matching to experimental data, and 

retention time from authentic standards run on the same instrument (Table 2.1). Tandem 

MS/MS libraries of the MassBank of North America (MassBank.us) and NIST17 (NIST, 
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Gaithersberg, MD) were used for spectral matching. Manual curation of datasets was 

performed to reduce in-source fragment annotations identified by very similar RT and high 

correlation between features. Predicted retention times calculated using Retip23 were 

used to help identify in-source fragments and eliminate low confidence annotations. 

Manual review of MS/MS matches was performed to remove poor spectral matches since 

false positive annotations can occur when automatically matching MS/MS from complex 

biological samples to large MS/MS spectral libraries24.  
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Table 2.1. Classes of annotated metabolites. Subclass level ontology 

determined by ClassyFire software. Subclasses < 10 metabolites omitted. 

 

 

Correlation based clustering was performed using the “hclust” function from r package 

“stats v3.6.2” with method “ward.D2”25 and tree cutting was conducted using “cutree” 

function from “stats v3.6.2” with input of k=18-26. Spearman rank correlations were used 

for all correlation analyses in this study. The optimal number of clusters calculated 

through the elbow, and silhouette26 methods using Nbclust R package27 suggested 2 and 

3 as the optimal number of clusters respectively for the 828 annotated metabolites. This 

few of clusters was not useful to find biologically relevant trends due to large and variable 

clusters. Using a previous timeseries metabolomics study28 as a guide,  a value of 26 
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clusters was chosen as a starting point, and then the number of clusters was reduced by 

1 until biologically distinct metabolite clusters with differing metabolite profiles began to 

be combined which resulted in 20 being chosen as the optimal number of clusters 

(Supplemental Figure 1). Helpful R source scripts for the clustering analysis was adapted 

from others29. Other figures, tables, and correlation analyses were created using custom 

R scripts. 

2.4 Results and Discussion 

2.4.1 Analyses of GI tract metabolites 

A total of 828 unique metabolites were annotated using non-targeted UHPLC-MS/MS 

analyses of samples retrieved from the upper GI tract. The most abundant chemical 

subclasses encompassed in this dataset are summarized in Table 2.1. The largest 

chemical subclass is amino acids, peptides and analogues which contains 325 

metabolites including 267 dipeptides and tripeptides. The internal standard 12-

(cyclohexylcarbamoylamino)dodecanoic acid (CUDA) was used to determine injection 

reproducibility with raw average relative standard deviations in the quality control between 

4-10% for all LC-MS/MS assays (Supplementary Table 4 (see online)). Metabolites were 

annotated based on a combination of accurate mass, tandem mass spectral library 

matching, and retention time matching leading to level 1 through 3 identification 

confidence levels as previously defined22. In total, 6902 chromatographic features with 

associated MS/MS spectra were detected after blank subtraction, and 12% of these 

features were annotated with a chemical structure. Unknown features were omitted from 

the current report, but data are publicly available to enable discovery of additional 
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metabolites in the future (see methods). Metabolites that share biological regulation or 

origin will strongly correlate in intensity across the testing period. Therefore, we used 

correlation-based clustering to identify these groups of functionally related metabolites 

(Figure 2.2). Multiple clusters were found following consumption of different foods. For 

example, after consumption of a puree of fruit and vegetables, a group of sugars and 

arbutin (a biomarker of pear consumption30–32) were clustered (Food cluster 5 in Figure 

2.2) and show maximum intensities approximately 30 minutes after puree consumption 

(Figure 2.3 A).  In total 20 clusters were generated and manually categorized based on 

the biological function of metabolites within each cluster.  Clusters were manually 

classified as containing a high proportion of food metabolites, bile metabolites, di- and 

tripeptides and amino acids, and one cluster of di- and tripeptides with many ceramide 

lipids. Clusters were labeled as mixed/unknown if a cluster contained metabolites split 

between multiple or unknown functions. The cluster assignment for all metabolites can 

be found in Supplementary Table 4(see online). 
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Figure 2.2. Metabolite groups using correlation-based clustering. The number of 

metabolites per cluster is represented by node size and position on the y-axis. 

The position on the x axis gives the time of day at which the clustered metabolites 

showed an average maximum. Cluster names are given manually by key 

metabolites in each cluster.  

2.4.2 Food related metabolites 

Several meals and beverages were consumed during the sample collection period 

between 10:15 – 18:30 h (Figure 2.1, Supplementary Table 1(see online)). Some meals 

led to food metabolite clusters unique to a single meal like arbutin and sugars linked to a 
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fruit puree (Figure 2.3 A). These food metabolites showed a clear maximum after food 

consumption, and then decreased to baseline levels. Similarly, some metabolites were 

relatively unique to milk (oligosaccharide sialyllactose33,34, N-acetyl-lactosamine34, 

butyrylcarnitine35) or fermented milk (cadaverine36) and showed distinct maximum levels 

after consumption of a fermented milk product at  16:35 h (Figure 2.3B). Alternatively, 

some food related clusters did not clearly indicate which meal the metabolites came from. 

One example of a non-specific food metabolite cluster is food cluster 1 which did not 

contain metabolites unique to a specific meal and had multiple spikes in intensity 

throughout the day (Figure 2.3 C). Similarly, food cluster 9 also showed multiple spikes 

throughout the day with high variability. Cluster 9 consisted of coffee biomarkers 

(trigonelline37,38, caffeine37,38 and catechol39) which generally follow coffee consumption 

timepoints (Figure 2.3 D) linking this cluster to drinking coffee products. These 

metabolites did not show well-defined peaks after coffee consumption. A previous study 

reported that coffee metabolites dwell for a long time after coffee consumption by 

quantifying trigonelline in saliva samples 16 hours after coffee consumption even after 

rinsing of the mouth40. Our study here confirms that some metabolites from food and 

beverage can remain in the upper GI tract for long periods after consumption. Some 

metabolites correlated with coffee biomarkers might be caused by an endogenous 

response to coffee intake, which warrants an interesting aspect for future investigations 
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Figure 2.3. Intensity profiles of food related metabolites across the sampling 

period. Vertical lines represent meals (green dashed lines), coffee consumption 

(brown dotted lines) and acetaminophen consumption (black dashed line). Panel 
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A: bold green dashed line for fruit/vegetable puree. Panel B:  bold green dashed 

line for fermented milk beverage. Panel C: metabolites grouped in food cluster 1 

without direct relationship to timing of puree consumption. Panel D: bold brown 

dashed lines for coffee consumption. 

Well-defined maxima in intensity of dietary diacylglycerides (DGs) and triacylglycerides 

(TGs) were observed immediately following consumption of 20 grams of olive oil with a 

slice of bread at 12:15 h (Figure 2.4 A). TGs are the main component of olive oil. The 

most common acyl chain lengths in olive oil are 18:1, 18:2, 16:0, and 18:041,42. As 

expected, these same acyl chain lengths were highly represented in the TGs measured 

after olive oil consumption (Figure 2.4 A). The profile of free fatty acids showed less 

defined peaks throughout the sampling period such as oleic acid (fatty acid 18:1) which 

became more abundant after olive oil consumption but fluctuated in intensity for the rest 

of the afternoon (Figure 2.4 C). This trend may be explained by TGs of olive oil being 

hydrolyzed to free fatty acids by lipases present in the upper GI tract, followed by gradual 

absorption of the fatty acids over the following hours43,44. Interestingly, we observed a 

second spike of the same TGs three hours after olive oil consumption (Figure 2.4 A). One 

explanation for this second peak is the highly variable gastric retention time of humans 

which can be between 0 and 4 hours depending on food type45,46 . This finding implies 

that some olive oil proceeded directly to the small intestine after consumption and the rest 

remained in the stomach with the solid bread of the meal until gastric emptying occurred 

hours later. The physical appearance of samples supports these findings as there was a 

lipid layer that formed on the top of the samples with high lipid abundance (samples 

collected from 12:30-13:00 h and 15:30-16:00 h), and not in samples between the two 
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abundant dietary TG spikes (Supplementary Table 1(see online)). Oleic acid (fatty acid 

18:1) and arachidic acid (fatty acid 20:0) had higher abundances after olive oil 

consumption and showed maximum intensities at the same timepoints as the dietary TGs 

previously mentioned. Two fatty acyl esters of hydroxy fatty acids (FAHFAs) showed 

similar intensity profiles to oleic and arachidic acid (Figure 2.4 C). FAHFAs are a recently 

discovered class of lipids that have been shown to decrease insulin resistance and 

inflammation47. FAHFAs are produced endogenously47 and also found in a variety of 

plants.48,49 These FAHFAs are likely derived from olive oil given their strong correlation 

with other olive oil metabolites and their related fatty acyl constituents (Figure 2.4 C). We 

here report for the first time the presence of oleic acid-hydroxy oleic acid and oleic acid-

hydroxy stearic acid FAHFAs in association with olive oil, and for the first time the finding 

of FAHFAs in the human GI tract. Finding these FAHFA constituents closely correlated 

with free fatty acids associated with olive oil suggests that FAHFAs are likely hydrolyzed 

and absorbed at similar rates compared to free fatty acids.  
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Figure 2.4. Intensity profiles of metabolite clusters across the sampling period. 

Vertical lines represent meals (green dashed lines) and acetaminophen 

consumption (black dashed line). Panel A: bold green dashed line for olive oil / 

bread with profiles of dietary lipids. Panel B:  intensity profiles of 12 bile-

associated metabolites. Panel C: bold green dashed line for olive oil / bread with 

profiles of fatty acids and FAHFAs. Panel D: bold black dashed line for 

acetaminophen intake, followed by profile of acetaminophen metabolite profiles. 

*marked annotation encompasses TG 18:0_18:1_18:2, and TG 18:1_18:1_18:1 

due to coelution. 

2.4.3 Bile related metabolites 

Three separate metabolite clusters of bile-related metabolites were found with average 

maxima at 14:00 h and 16:30 h (Figure 2.2). These data suggest that over the course of 

8 hours of sampling there were two primary bile excretion events, accompanied with 

lesser bile acid excretion events occurring throughout the sampling period such as a 

smaller peak at 12:30 h (Figure 2.4 B). These excretion events are characterized by the 

relative maxima of known bile related metabolites including all twelve detected bile acids, 

three steroid hormones, cholesterol, phase II exposome metabolites, phospholipids, and 

acylcarnitines50,51 (Figure 2.2, Supplementary Table 4 (see online), Supplementary 

Figure 2 b,d). Apart from the key bile acids, bile cluster 3 mostly contained 

phosphatidylcholines (PCs) and cluster 1 had many lysophosphatidylcholines (LPCs), 

which are both known components of human bile. These clusters have maxima at similar 

timepoints compared to bile acids but show more defined spikes and then drop to baseline 
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levels for the remainder of the samples, likely due to rapid lipase action on PCs and LPCs 

(Supplementary Figure 1). Bile acids are the most focused on of bile components due to 

their importance in food digestion12, cell injury and protection52, and function as a 

signaling axis between the gut microbiota and host53.  

Bile acids are difficult to study in humans in vivo due to difficulty in sampling the human 

small intestine making this a valuable and unique view into bile excretion under normal 

conditions. The time dependent excretion of bile appeared to be strongly related to 

passage of dietary lipids through the upper small intestine. Lipids linked to dietary sources 

showed two sharp spikes in abundance at 12:30 h and 15:30 h (Figure 2.4 A). One hour 

after these spikes in lipid concentrations, major bile excretion events were recorded at 

13:30 h and 16:30 h (Figure 2.4 B). This observation is in alignment with the known 

progression of lipid rich stomach chyme stimulating cells of the proximal small intestine 

to release hormone cholecystokinin into circulation leading to contraction of the 

gallbladder and excretion of bile into the intestinal tract54. The postprandial response of 

bile components also aligns with the finding that bile acids in circulation are governed by 

meal intake, as opposed to hepatic bile acid synthesis, which has a defined circadian 

rhythm55. Previous studies of bile excretion report “time after test meal” to predict 

gallbladder contraction3,10,56,57. In our study, we are better able to give a specific metric of 

dietary lipids in the small intestine to better measure the excretion of bile compared to 

time after consuming meals. Our study gives a unique perspective on the time 

dependency of known bile metabolite excretion relating to dietary lipids.  

In addition, we found a range of both known and novel metabolites to be correlated with 

bile. Specifically, the metabolite 4-hydroxyhippuric acid is clustered with bile metabolites 
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and has a Spearman rank correlation coefficient of rxy > 0.9 to six different bile acids and 

several other bile related metabolites (Supplementary Table 5 (see online)). This 

metabolite is a product of microbial transformation of dietary polyphenols followed by liver 

transformation and glycination58 and has been reported as a urinary biomarker for fruit 

and vegetable intake in humans59. Metabolite 4-hydroxyhippuric acid has been measured 

in mouse bile60, however this is the first report of this metabolite detected in relation to 

human bile. Another metabolite, N-acetylglucosaminylasparagine, is a glycoprotein 

breakdown product reported to be disposed of through urine61 and is here associated with 

bile metabolites suggesting bile as an additional disposal route for this metabolite. 

Another metabolite clustered with bile metabolites is a product of norepinephrine 

metabolism, 3-methoxy-4-hydroxyphenylglycol sulfate. This metabolite has been 

reported as a urinary metabolite, but not as a bile related metabolite. It has been 

previously proposed that bile is a plausible disposal route for 3-methoxy-4-

hydroxyphenylglycol sulfate in addition to urine62; however, we here present the first direct 

measurements to validate this link. Urine and bile are routes of excretion for metabolic 

end products and exogenous metabolites13 which makes the link of these known urinary 

metabolites in bile for the first time a plausible biological outcome.  

2.4.4 Acetaminophen and related metabolites 

A dose of 500 mg of the general analgesic acetaminophen was taken orally mid-morning 

on the day of this experiment (Figure 1.1). Acetaminophen abundance in the upper GI 

tract lumen immediately rose to its highest level 15 minutes later. After 35 minutes the 

abundance of acetaminophen fell to about 15% of its maximal abundance and continued 

to fall to baseline level over the following hours. After absorption, acetaminophen is 
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transformed in the liver primarily to acetaminophen sulfate, acetaminophen glucuronide, 

and cysteinylacetaminophen63,64. These three conjugates were detected, and the 

intensity profiles support the route of liver transformation of acetaminophen, biliary 

excretion, and collection from the upper small intestine (Figure 2.4 D). Interestingly, each 

conjugate showed a unique profile. Acetaminophen sulfate appeared immediately after 

acetaminophen ingestion and had a maximal abundance after 1.5 hours, in contrast to 

acetaminophen glucuronide that did not appear until 30 minutes after acetaminophen 

ingestion and had maximal abundance after 2.5 hours. The phase III conjugate 3-

cysteinylacetaminophen slowly increased in abundance and did not reach maximal 

intensity until 3.5 hours after acetaminophen ingestion (Figure 2.4 D). Biliary excretion of 

these conjugated metabolites is further supported as the source of these metabolites 

because we detected a local maximum for these conjugates at 16:30 h, the same 

timepoint as found for one of the major bile excretion events (Figure 2.4 B). The unique 

profile for each of these acetaminophen related metabolites is in agreement with the 

known pharmacokinetic properties of acetaminophen. After oral ingestion of 

acetaminophen, plasma acetaminophen has maximum concentration within less than 1 

hour, followed by the maximum of the sulfate conjugate between 1 and 1.5 hours, and 

the glucuronide conjugate maximum at 2 to 2.5 hours64. The immediate appearance of 

acetaminophen sulfate in this experiment, and no immediate appearance in 

acetaminophen glucuronide, is expected because intestinal epithelium cells have the 

capacity to convert acetaminophen to acetaminophen sulfate in vitro, while showing little 

to no capacity to convert acetaminophen to acetaminophen glucuronide65.  
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Next, we wondered if additional downstream metabolites of acetaminophen might be 

detectable in the GI tract. To make this end, we used the  BioTransformer software66 that  

predicts possible metabolic products of drugs using known phase II metabolism reactions 

from humans. BioTransformer predicted the presence of acetaminophen sulfate and 

acetaminophen glucuronide from acetaminophen, however 3-cysteinylacetaminophen 

was not predicted, likely because it requires multiple reactions to form (conjugation to 

glutathione then degradation to 3-cysteinylacetaminophen67). Importantly, 

BioTransformer predicted additional acetaminophen metabolites for which no public 

MS/MS spectra are available, neither in MassBank.us nor NIST20. Instead, we queried 

unknown LC-MS/MS features using accurate mass matches to the candidate list provided 

through BioTransformer. Two BioTransformer candidate accurate mass matches were 3-

cysteinylacetaminophen glucuronide and 3-cysteinylcysteine acetaminophen sulfate, 

both with less than 1.8 ppm mass difference to the theoretical elemental compositions. 

The glucuronide conjugate was too low abundant to trigger a data-dependent MS/MS 

event, but the MS/MS spectrum for the 3-cysteinylcysteine acetaminophen sulfate 

included a typical M-80 representing neutral loss of SO3, confirming the likely 

identification of this compound (Supplementary Table 4 (see online)). While these two 

metabolites have been reported before in urine68, and other authors predicted these 

acetaminophen metabolites to occur in mammals69, no MS/MS spectra were published to 

date. Both metabolites showed similar time profile as 3-cysteinylacetaminophen 

(Supplementary Figure 2), providing additional biological support for structural annotation 

of these acetaminophen metabolites. Measurement of these acetaminophen metabolites 
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in relation to bile highlights the use of bile clusters in the GI tract for understanding drug 

metabolism in humans. 

2.4.5 Ceramide and Peptide Clusters 

One cluster of metabolites contained many ceramides with high degree of 

intercorrelations (Supplementary Figure 2A). Ceramide abundance showed five very 

pronounced maxima throughout the eight-hour sampling period that did not correlate to 

other physiological or environmental stimuli such as acetaminophen, dietary ingestions, 

bile excretions or dietary lipids. Ceramides are important as structural lipids and signaling 

molecules particularly within the GI tract70. These lipids are produced in many tissues 

throughout the body including GI tract epithelium and are also present in many foods70. 

Our findings presented here support the notion that GI tract ceramides are produced 

endogenously and are regulated tightly in frequent intervals.  

The cluster of GI tract ceramides had maxima that trended with dozens of di- and 

tripeptides and free amino acids maxima (Supplementary Figure 2C). Such short-chain 

peptides in these clusters might originate from incomplete protein degradation and found 

in the GI tract either through gastric or pancreatic excretions. Both the stomach and 

pancreas secrete proteases that could be responsible for digesting proteins down to short 

peptides and amino acids. The abundance profile of these clusters show 2-hourly maxima 

at 10:30h, 12:30h, 14:30h and 16:30h with an additional minor maximum at 13:30h. 

Similar to ceramides, these maxima did not directly coincide with major bile excretions or 

dietary lipids. Pancreatic juice is a relatively little investigated biofluid71. However, multiple 

studies have reported a selection of free amino acids as important components of 
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pancreatic juice71 including phenylalanine, tyrosine, tryptophan, valine, leucine, 

isoleucine and alanine. We here find all of these amino acids associated with pancreatic 

juice in conjunction with di- and tripeptide clusters (Supplementary Figure 2B). Di- and 

tripeptides are regularly reported in metabolomics studies72,73 but are absent from most 

classic nutritional studies. Our data support the notion that the observed dipeptide 

clusters may be derived from pancreatic juice; yet this evidence is not conclusive because 

amino acids are certainly not unique to pancreatic juice.  

2.5 Conclusion 

We here present a technique to enable a unique perspective into the human upper GI 

tract in vivo over the course of eight hours. Correlation based clustering connected 

metabolites of similar biological function to be investigated in temporal profiles and to be 

associated with important physiological and dietary events. Interestingly, even classic 

nutritional compounds like amino acids showed clear temporal profiles that were not 

exclusively related to dietary input. Bile metabolites spiked roughly 1.5 hours after 

measurement of dietary lipids passing the upper small intestine. This observation 

presents a unique measurement because in humans, bile excretion has been measured 

almost exclusively under fasted conditions and not during a normal day of ad libitum meal 

consumption. We here report specific metabolites (4-hydroxyhippuric acid, N-

acetylglucosaminylasparagine, 3-methoxy-4-hydroxyphenylglycol sulfate) to be linked to 

human bile.  This experiment also gave a unique insight into acetaminophen metabolism 

and excretion and presents the utility of bile associated metabolites to find endogenously 

modified drug metabolites. The human GI tract is an extraordinarily complex and dynamic 

system and metabolomics experiments offer a valuable approach to discover how the gut 
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interacts with food. This single subject study presents trends that may not be 

representative of the general population. Future experiments are needed to determine 

which trends can be expected from the population as a whole. Although this is a single 

subject study the dataset is rich in information and provides unique findings into the 

metabolome of the upper human GI tract in vivo.  
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Chapter 3: Bile Acids in Humans with Emphasis on the GI Tract 

3.1 Abstract 

Bile acids have been known to be important in the digestion of lipids for decades.  More 

recently, bile acids have also been implicated as systemic signaling molecules1 and are 

associated with many diseases. Bile acids are regulated by human liver enzymes in 

interplay with gut microbiota and gut intestinal enzymes. Bile acids are at highest 

concentration in the intestinal tract but are present and detectable at lower concentrations 

throughout nearly all tissues of the body. Accurate measurement of bile acids in different 

sample types requires careful consideration of analytical techniques to cover the large 

variation in concentrations between tissues, and between different bile acid species. This 

chapter first provides background on the biological importance of bile acids and LC-

MS/MS measurement of bile acids. Experimental data in this chapter further highlights 

the use of bile acid quantification in human serum, stool, and samples acquired from the 

lumen of the intestinal tract of 15 subjects. A flaxseed dietary intervention did not cause 

significant shifts in bile acids of serum nor stool. In contrast, analysis of the bile acid 

profiles of the intestinal tract of 15 healthy human volunteers revealed trends that have 

never been observed in live humans before. 

3.2 Biological importance of bile acids in humans 

 Bile acids are important in digestion and absorptions of lipids in the gastrointestinal 

tract. Bile acids act as emulsion stabilizers in the beginning of the small intestine2,3, but 

play other important biological roles throughout the body. Bile acids act as signaling 

molecules by binding to bile acid receptor proteins present across most human tissues4,5. 
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Bile acids have been implicated in diseases including Alzheimers6, liver diseases7, 

cancers8,  inflammatory bowel disease9, and metabolic disorders9. Bile acids are 

synthesized from cholesterol in the liver and transformed extensively by microbes in the 

intestinal tract. The primary bile acids cholic acid and chenodeoxycholic acid are the only 

bile acids synthesized by the liver10. Further modifications of hydroxyl groups located on 

the steroid backbone of bile acids are performed in the digestive tract during conversion 

of primary to secondary bile acids. The liver also performs conjugation of both primary 

and secondary bile acids to form glycine or taurine conjugates. Bile acids are excreted 

into the duodenum. In the ileum, approximately 95% of the bile acids are actively 

transported through the intestinal epithelium into the portal vein which flows directly to the 

liver10. These re-absorbed bile acids are then conjugated to amino acids and recycled 

back to the gallbladder where they are again excreted into the duodenum. The cyclic flow 

of bile acids through the small intestine, portal vein and liver is referred to as enterohepatic 

circulation. Other metabolites including drugs11, toxins12, and plant metabolites13 also 

cycle in enterohepatic circulation. During enterohepatic circulation, gut microbes 

transform bile acids into a complex mixture of bile acid species. 

Bile acids are transformed by gut microbes through reactions including deconjugation, 

dehydroxylation, and epimerization reactions14. More than 60 bile acid species have been 

shown to exist in human circulation15 with many more proposed to exist in stool14. A 

selection of the most abundant and biologically relevant bile acids will be considered here. 

These bile acids fall into four general classes based on their biological progression from 

primary bile acids (synthesized in the liver), to secondary bile acids (bile acids microbially 

modified on the cholesterol backbone), and also conjugated (bile acids conjugated to 
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either glycine or taurine by the liver), or unconjugated (bile acids that have been 

deconjugated by microbial enzymes)16. The bile acids classes to be focused on in this 

work include primary conjugated bile acids, primary unconjugated bile acids, secondary 

conjugated bile acids, and secondary unconjugated bile acids (Table 3.1).  

Table 3.1. Bile acid names, abbreviations, and their classification as primary or 

secondary, and conjugated or unconjugated. 

Bile acid name Abbreviation Class 

Taurocholic acid TCA Primary Conjugated 

Glycocholic acid GCA Primary Conjugated 

Taurochenodeoxycholic acid TCDCA Primary Conjugated 

Glycochenodeoxycholic acid GCDCA Primary Conjugated 

Cholic acid CA Primary Unconjugated 

Chenodeoxycholic acid CDCA Primary Unconjugated 

Tauro-alpha-Muricholic acid T-a-MCA Secondary Conjugated 

Tauroursodeoxycholic acid TUDCA Secondary Conjugated 

Glycoursodeoxycholic acid GUDCA Secondary Conjugated 

Glycohyodeoxycholic acid GHDCA Secondary Conjugated 

Taurodeoxycholic acid TDCA Secondary Conjugated 

Glycodeoxycholic acid GDCA Secondary Conjugated 

Taurolithocholic acid TLCA Secondary Conjugated 

Glycolithocholic acid GLCA Secondary Conjugated 

Ursodeoxycholic acid UDCA Secondary Unconjugated 

Deoxycholic acid DCA Secondary Unconjugated 

Lithocholic acid LCA Secondary Unconjugated 

Tyrosocholic acid  TyroCA Microbially Conjugated 

Phenylalanocholic acid  PhenylCA Microbially Conjugated 

Leucholic acid  LeuCA Microbially Conjugated 
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During enterohepatic circulation bile acids are excreted in the proximal small intestine, 

absorbed in the distal small intestine and colon, transferred to the portal vein, and then 

sequestered by the liver. Some bile acids are not sequestered by the liver and flow into 

systemic circulation. Either spillover or regulated transport of bile acids leads to bile acids 

flowing throughout the body. The bile acid composition in circulation is important since 

bile acids act on receptors located in many organs of the human body4,5. Several human 

proteins bind bile acids including the bile acid membrane receptor (TGR5/GPBAR1), 

nuclear receptor farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D 

receptor (VDR)17. FXR and TGR5 are the most considered proteins with respect to bile 

acids as signaling molecules. FXR is important in bile acid homeostasis and is highly 

expressed in intestinal and liver cells. When FXR binds bile acids, a signaling cascade is 

stimulated leading to inhibition of CYP7A1, the enzyme responsible for the rate limiting 

step in bile acid synthesis from cholesterol18. FXR is also expressed in other organs 

throughout the body including heart, blood vessels, kidney, adrenal glands, and brain4. 

TGR5 is a cell membrane G-protein coupled protein receptor expressed in a similarly 

diverse number of human tissues and when bound to bile acids causes a cAMP 

dependent signaling cascade5. These receptors have varying affinity for different bile acid 

species. TGR5 is most strongly stimulated by LCA, followed by DCA5 . FXR is most 

strongly activated by CDCA, followed by DCA and LCA17. In summary, bile acids cause 

systemic effects through these signaling pathways, which are dependent on the different 

proportions of bile acids present. These signaling effects are important for consideration 

of how diet and the gut microbiota influence the human body. 
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Another important biological role of bile acids is regulating the gut microbiota. Bile acids 

are toxic at high concentrations and disrupt cell membranes causing cell death. Different 

bile acids have different levels of toxicity which is associated with the bile acid 

hydrophobicity19. Hydrophobic bile acids are more prone to perturb cell membranes 

compared to hydrophilic bile acids. Gram positive bacteria are generally less susceptible 

to bile acid toxicity compared to gram negative bacteria20. The composition of the bile 

acid pool regulates the gut microbiota, but the gut microbiota also regulates the bile acid 

pool. Germ free mice have a much larger and less complex bile acid pool compared to 

conventionally raised mice21. The ability of the gut microbiota to regulate bile acids and 

for bile acids to regulate microbes makes up an axis of communication between the gut 

microbiota and host. This communication is of particular importance because bile acids 

are important to many aspects of human health22. This bile acid axis of communication is 

complex and difficult to study because bile acids and gut microbes interact in the human 

intestinal tract which has until now been difficult to investigate due to retrieving samples 

in a non-invasive manner. This chapter discusses data from samples that were collected 

from human blood plasma, human stool, and from within the intestinal tract of humans in 

vivo.  

3.3 Overview of targeted bile acid analysis of human serum, stool, and GI tract 

samples 

Targeted approaches in metabolomics studies are useful when there is a defined set of 

chemicals of interest for an experiment. One of the most important benefits of targeted 

LC-MS/MS analysis is improved sensitivity and selectivity for the targeted metabolites. 

This improved performance is achieved by considering only specific fragment ions. 
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Signal/noise ratios improve because background (noise) signals are filtered out in these 

precursor/fragment ion selections. Selectivity is even improved if more than one fragment 

ion is monitored, which is limited for some bile acids that show little fragmentation even 

under high collision energies. Either triple quadrupole or quadrupole-ion trap instruments 

are used to perform multiple reaction monitoring where two mass analyzers are used as 

sequential filters before ions reach the mass detector. This type of analysis reduces noise 

from co-eluting metabolites, and thus lower concentrations of metabolites can be 

detected. Another benefit of this type of analysis is that accurate concentration values 

can be achieved for the chemicals of interest. Concentrations are calculated based on 

analysis of known concentrations of standard chemicals for each target. Another benefit 

of targeted analysis is the ability to account for ion suppression through use of internal 

standards. Internal standards are frequently isotopically labeled forms of the targets of 

interest and are analyzed alongside all samples and standard chemicals used to calculate 

concentration. The ratio of the peak area of the metabolite of interest and the internal 

standard is then used to calculate concentration. This process of quantification accounts 

for ion suppression since both the internal standard and metabolite of interest will 

experience ion suppression at the same proportion.  

Bile acids are therefore commonly analyzed using targeted analysis methods. The 

benefits of increased sensitivity, and accurate quantification are important in measuring 

bile because some bile acid species exist at very low concentrations, especially when 

considering experimental conditions under which bile acid concentrations radically differ 

between studies. Another reason for using a targeted approach to measure bile acids is 

that there are many isomers within the chemical class of bile acids. Isomers usually do 
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not have unique fragment ions to allow MS/MS ion transitions to distinguish between the 

different bile acids. This leads to the need for separation of these chemically similar 

isomers by retention time during liquid chromatography. The LC conditions required to 

separate these chemicals therefore must be highly specific and robust against retention 

time shifts. Thus, an optimized method specifically for bile acids is usually used for 

separation and quantification of these metabolites. Since there is not a plethora of other 

metabolites to measure during this bile acid optimized LC run, a targeted run that focuses 

only on a select number of ions is necessary; 20 mass transition scans were used in the 

experimental data of this thesis. By only measuring a select number of masses, less 

expensive instrumentation is needed in comparison to high-resolution accurate mass 

non-targeted analysis. Targeted instruments, however, cannot collect comprehensive 

non-targeted metabolomics data at comparable scan rates compared to mass 

spectrometers equipped with time of flight or orbital ion trap mass analyzers. Therefore, 

targeted studies necessarily follow classic hypothesis-driven experimental designs rather 

than exploratory or hypothesis-generating designs in non-targeted metabolomics. This 

shows the drawback of targeted analyses, which is that only ions of interest that are input 

to the analytical method will be measured, and no further information will be collected 

from any other metabolites. For the samples analyzed in this thesis, only targeted bile 

acid data are discussed here, in addition to non-classical microbially conjugated bile acids 

that were discovered in non-targeted analyses. Further analysis of non-targeted data of 

the 15-human subject study was beyond the scope of this thesis.  

An additional challenge in bile acid quantification is the large range of concentrations 

between different bile acids. Some bile acid species are present at trace levels, while 
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others are present at very high concentrations (e.g. > 5mg bile acid /mL human bile)23. 

The concentration of bile acids in biological samples including blood plasma and stool 

span up to six orders of magnitude24. MS instruments are limited to quantify metabolites 

across up to five orders of magnitude due to the linear dynamic range of response signal 

to analyte concentration25. To detect all bile acids within the linear dynamic range for 

biological samples, the sample can be diluted to low concentrations. Dilution of samples 

should proceed to the point where the highest concentration of bile acids falls within the 

linear dynamic range. By analyzing samples at only a low concentration there is a 

disregard for bile acids that may be present below the limit of detection. To increase the 

range of concentrations able to be accurately quantified, samples can be analyzed at 

multiple concentrations. Samples can be analyzed at high concentration to accurately 

quantify low abundant bile acids, and then reanalyzed at low concentration to accurately 

quantify high abundant bile acids. Analyzing each sample twice requires twice as much 

time to collect data, adds additional data processing time, and an additional step of 

determining which analysis (high or low concentration analysis) should be reported as the 

most accurate concentration. For this thesis, both approaches were tested and used. The 

approach for the flaxseed dietary study ofserum and stool measured all samples at one 

specific dilution factor, whereas for the GI tract samples from the 15-volunteer study, bile 

acid concentrations were measured using up to three dilutions due to the very large 

differences in bile acid concentration between samples and between GI tract locations.  

 3.4 Bile acids in serum and stool in response to flaxseed dietary intervention 

During the flaxseed dietary intervention study discussed in chapter one, we hypothesized 

that bile acid profiles change in serum and/or stool samples of subjects who consumed 
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flaxseed for six weeks. The biological rational for expecting a change in bile acids is that 

flaxseed contains a high content of dietary fiber26 that is known to cause changes in the 

composition and activity of the gut microbiota, and additionally interact with bile acids on 

the molecular level to reduce bioavailability of the bile acids27. Hence, flaxseed 

consumption was expected to change the microbial composition of the intestinal tract and 

thereby cause changes in the bile acid pool. Flaxseed was also expected to provide fiber 

that would increase the excretion of bile acids to cause an increase in stool total bile acid 

concentration, and a decrease in serum total bile concentration. To test for these 

hypothesized changes, serum and stool bile acids were quantified from samples of 

obtained from 178 postmenopausal women taken before and after 6 weeks of flaxseed 

consumption. The hypothesized change in bile acids was tested using paired Student t-

tests comparing the pre- and post-intervention samples for each subject. However, there 

were not statistically significantly different bile acids found between pre and post 

intervention samples in either serum or stool (FDR corrected p < 0.05). The failure to 

detect a change in bile acids may be due to a lack of dietary control during this study, or 

possibly too little dietary fiber (~2.5 grams per day)28 to have an impact on microbial 

metabolism or bile acid metabolism. Subjects were not limited in diet throughout the study 

except for the intervention of consuming 10 g/day of ground flaxseed. Diet plays an 

important role in shaping both the gut microbiota and the bile acid pool20. The different 

diets consumed by subjects may have introduced enough variation to obscure any effect 

that the flaxseed may have had on bile acid metabolism. Future studies may be better 

prepared to elucidate the effect that flaxseed consumption has on the bile acid pool by 

using more strict dietary regiments during the testing period. Obviously, another possible 
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approach would be to increase the amount of flaxseed consumed per day to increase the 

amount of dietary fiber consumed within realistic doses. 

The total concentration of bile acids in serum from the 178 women tested showed an 

average of 4.67 µg/mL, which is much lower than the total concentration of bile acids 

measured in stool from a subset of the same subjects (254.3 µg/g stool (wet weight)). 

Stool has approximately 50-fold higher concentration of bile acids compared to serum, 

and also shows dramatically different proportions of bile acids (Figure 3. A and C). Stool 

samples have the highest proportion of lithocholic, taurolithocholic, ursodeoxycholic, and 

deoxycholic acids, while serum samples have a more even distribution across a variety 

of bile acids. Serum bile acid proportions contained considerable proportions of primary 

and secondary glycine and taurine conjugated bile acids, a considerable proportion of 

unconjugated primary bile acids, and deoxycholic acid. In contrast to stool samples from 

these same subjects, little lithocholic acid was present in the serum. This large difference 

in the proportion of bile acids present in serum compared to stool shows that stool bile 

acids do not represent the proportions of bile acids present in circulation.  
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Figure 3.1. Bile acid concentrations in mg/mL for liquid samples and mg/g for 

stool samples across multiple studies. Plot A shows serum bile acid 

concentrations from a study of 178 women sampled before and after a flaxseed 

dietary intervention. Plot B is bile acid concentrations in GI tract luminal fluid from 

samples collected in the intestinal tract. Plot C is bile acid concentrations from 

stool samples collected from a subset of the 178 women participating in the 

flaxseed dietary intervention study from panel A. Plot D is bile acid 

concentrations from subjects that had samples taken from intestinal tract in panel 

B. 
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3.5 Bile acids along the human GI tract 

Bile acids are excreted into the duodenum and flow through the small intestine to the 

ileum where a majority of them are reabsorbed. Non-absorbed bile acids then progress 

to the colon where they can be passively reabsorbed into intestinal epithelium or excreted 

in feces. Bile acids in the small intestine of humans have been difficult to study as it is 

difficult to sample this region. Through use of an ingestible sampling device that can 

sample this region of the GI tract, samples were retrieved from multiple parts of the small 

intestine of 15 healthy human subjects. During sample collection, four sampling devices 

were swallowed simultaneously. As the devices progressed through the digestive tract, 

the devices dissolved their outer layers in a time dependent manner releasing a hollow 

elastic bladder that automatically expanded to pull in samples of the lumen of the intestinal 

tract in a staggered fashion. Four different pH sensitive coatings were applied to the outer 

layer of the capsule to cause location dependent release of the elastic bladder throughout 

the intestinal tract. Each of the four capsule types were taken simultaneously leading to 

four samples being collected between the duodenum and ascending colon for each 

sampling time point. Trends in the general classes of bile acids were targeted for analysis 

in attempt to measure the spatial representation of bile acids in the human GI tract and 

determine whether the trends agree with hypothesized biological activities occurring 

throughout the human intestinal tract29.  

Four sampling locations of the intestinal tract were determined by the type of capsule 

ingested (capsule type 1,2,3 or 4). These capsule types were designed to sample across 

the length of the small intestine. The capsule types sampled between the proximal and 

distal small intestine with the general regions sampled being the duodenum (capsule type 
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1), duodenum/ jejunum (capsule type 2), jejunum/ ileum (capsule type 3), and ileum/ 

ascending colon (capsule type 4). A gradient was observed in the proportion of different 

bile acid classes across the four sample collection points (Figure 3. A). Conjugated 

primary bile acids accounted for 59% of bile acids in the duodenum region and decreased 

to 17% of the bile acids in the ileum region of the small intestine. The inverse trend was 

observed for unconjugated primary bile acids which increased from 27% of the bile acids 

in the duodenum (capsule type 1) to 69% of bile acids in the ileum (capsule type 4). These 

two classes of bile acids expectedly showed inverse trends because bile acids are 

deconjugated during transit of the small intestine causing conjugated primary bile acids 

to become unconjugated primary bile acids30. This deconjugation reaction is performed 

by bile salt hydrolase enzymes (EC 3.5.1.24) which are present in approximately 25% of 

bacterial strains identified in the human gut31. Similarly, conjugated secondary bile acids 

decreased from 9.9% to 3.2% of bile acids between the proximal and distal small intestine, 

while unconjugated secondary bile acids increased from 3.5% to 10.4% of bile acids 

between the proximal and distal small intestine (Figure 3.). These trends in secondary 

bile acids are also due to the activity of bile salt hydrolases enzymes deconjugating 

secondary bile acids31.  

The proportion of total primary and total secondary bile acids between the proximal and 

distal small intestine remains remarkably constant (Figure 3. A). To convert primary to 

secondary bile acids a dehydroxylation reaction is required16. Enzymes capable of this 

reaction are less prevalent across the gut microbiota than bile salt hydrolases and found 

primarily in gut bacteria Clostridum scindnes, C. hylemonae, and the food-borne 

pathogen C. perfringens32. Conversion of primary to secondary bile acids occurs primarily 



146 
 

in the lower intestinal tract32–34. In agreement with this these findings we observed little 

conversion of total primary to secondary bile acids during transit of the small intestine, but 

observed a high proportion of unconjugated secondary bile acids in stool (67.2% of stool 

bile acids) (Figure 3. A). Secondary bile acids dominated stool bile acids, likely for two 

reasons. The first reason is that microbes containing enzymes that can dehydroxylate bile 

acids have more time to act on bile acid species while the bile acids progress through the 

lower intestinal tract. Secondly, conjugated bile acids and primary bile acids are more 

strongly re-absorbed in the ileum as compared to unconjugated bile acids and secondary 

bile acids.  
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Figure 3.2. Bile acid profiles from samples collected by capsules in the intestinal 

tract with sample type 1 corresponding to the most proximal small intestine 

sampling location and sample type four corresponding to the most distal 

intestinal tract sampling location at approximately the ileum. Sample type S are 

stool samples. Bile acid classes contain the following bile acids: Primary glycine 

conjugated(GCA, GCDCA), Primary taurine conjugated(TCA, TCDCA), Primary 

unconjugated(CA, CDCA), Secondary glycine conjugated(GDCA, GUDCA, 

GLCA, GHDCA), Secondary taurine conjugated(TDCA, TUDCA, TLCA, 

THDCA), Secondary unconjugated(DCA, UDCA, LCA, HDCA). Panel A shows 

the proportion of different bile acid classes for the different sampling types, and 

panel B shows the same data presented by average concentration values in 

µ/mL (or µ/g for stool samples). Sample size for each sample type was n=75, 

n=69, n=69, n=62, n=57 for capsule types 1, 2, 3, 4, and Stool respectively.   

The highest average concentration of total bile acids (1769.7 µg/mL with standard 

deviation of 1869.3 µg/mL) was observed at the first sampling location which was closest 

to the duodenum where bile acids are excreted into the digestive tract. The second and 
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third sampling points had an average of about 1500 µg/mL of bile acids whereas the most 

distal sampling point showed the lowest average concentration of bile acids (839.5 µg/mL 

with standard deviation of 831 µg/mL). Stool samples had an average total bile acid 

concentration of 186.7 µg/g with a standard deviation of 161.0 µg/mL. A statistically 

significant difference in total bile acid concentration between capsule types was found 

based on Kruskal-Wallis test by rank (p-value < 0.05). Further analysis using two-sample 

Wilcoxon tests revealed that the first three capsule types were not significantly different 

than each other (FDR corrected p-value > 0.05) but capsule type 4 and stool samples 

were statistically significantly different than each other, and different than the first three 

capsule types (FDR corrected p-value < 0.05).  The decrease in concentration of bile 

acids in the fourth capsule type compared to the first three capsule types was likely due 

to samples being collected in the ileum during or after active uptake of luminal bile acids 

through intestinal epithelium. The much lower concentration of bile acids in stool 

compared to the intestinal samples is explained by a vast majority of bile acids being 

reabsorbed in the ileum. In additional to ileum uptake, bile acids are also passively 

absorbed through epithelium of the colon to further reduce the total amount of bile acids 

in feces. This thesis presents for the first time measurements of bile acids from samples 

acquired in-vivo throughout the human intestinal tract using a non-invasive approach. 

 3.6 Stool bile acids do not represent circulating bile acids 

Bile acids in the small intestine are at a higher concentration than feces (Figure 3. B). 

Furthermore, bile acids in the small intestine have a different proportional profile 

compared to stool. To investigate whether stool or the intestinal tract was more similar to 
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bile acids circulating in blood, serum measurements collected during the study of flaxseed 

consumption was compared to samples collected from the intestinal tract and feces. 

Interestingly, the proportions of bile acids in circulation are much more similar to the 

proportion of bile acids in the small intestine compared to feces (Figure 3. A and B are 

more similar than A and D). This fact can be explained in the following way: bile acids are 

present at a much higher concentration in the small intestine compared to feces, and 

additionally, most of the bile acids in the small intestine are reabsorbed into the portal 

vein and flow to the liver where a portion of them continue into systemic circulation. The 

dissimilarity of bile acid pools in stool compared to the bloodstream raises the question 

of whether the stool bile acid pool can be expected to reveal biologically significant 

differences in bile acid metabolism in biomedical studies. The bile acids in circulation are 

likely responsible for many of the biological effects associated with bile acids. Despite this 

fact, stool bile acids are still commonly measured to investigate the effect of treatments 

on bile acid metabolism35–40. Stool is easily sampled and contains the spent remains after 

digestion, including bile acids, which makes it a popular specimen for investigation of the 

gastrointestinal tract. Samples collected during this study of 15 human subjects suggests 

that differences in bile acid metabolism in the upper intestinal tract is not well represented 

by the profile of bile acids observed in stool samples. 
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Figure 3.3. Pie charts separated by subject and also separated by capsule 

samples and stool samples. The small circle between capsule and stool pie 

charts are the identical stool pie chart except scaled by area to the total average 

concentration of capsule samples. The most abundant 12 bile acids across this 

study were plotted to reduce labeling complexity. The color scheme is as follows, 

light blue:CA, dark blue:DCA, light green:CDCA, dark green:TCA, pink:GCA, 

red:GCDCA, peach:LCA, orange:TCDCA, light purple:UDCA, purple:GDCA, 

yellow:TDCA, light brown:GUDCA. White space left in the charts represents bile 

acids omitted from these plots. 

Bile acids were measured in samples collected from the small intestine of humans 

alongside stool samples collected from the same subjects. Subjects showed variable bile 

acid profiles in the small intestine samples (Figure 3.3 left pie charts for each subject). 

For example GCDCA (Figure 3.3, red colored portions) was nearly absent in small 

intestine samples of some subjects (subjects 4, 9, and 11), and was more than 20% of all 

small intestine bile acids in other subjects (subjects 10, 12, and 15). Other bile acids 

showed similar variation across subjects, yet this variation largely disappeared in stool 
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samples, which converged to mostly DCA and LCA (Figure 3.3 right pie charts for each 

subject) except for outlier subjects 10 and 15. Interestingly, subjects 10 and 15 are the 

only two subjects to consume antibiotics within 4 months of sample collection, which may 

explain the large difference in the bile acid profiles of these subjects compared to other 

subjects. Together these observations show that the small intestine and stool have 

different proportions and concentrations of bile acids. Furthermore, the bile acid profiles 

in the small intestine have greater variation than the profile of bile acids in stool. The 

source of this variation in bile acids is likely due to the time of day the sample was 

acquired, age, sex, or other lifestyle variables. Future studies with larger sample size, 

controlled diet, and lifestyle meta-data will provide the resolution necessary to find how 

other variables impact bile acids of the intestinal tract. 

3.7 Phenylalacholic, tyrosocholic, and leucocholic acid across the GI tract 

Recently three bile acids conjugated to amino acids other than glycine and taurine were 

discovered in the gastrointestinal tract of mice and humans41. The formation of glycine 

and taurine conjugated bile acids is performed by known enzymes in the liver; however, 

formation of these newly discovered bile acid conjugates have been reported to be 

synthesized by microbes in the intestinal tract41. These are expected to be biologically 

important bile acids as they were found to differ significantly between diseased and 

healthy states in multiple studies that were re-analyzed to consider the identification of 

these new bile acid conjugates41. Additionally these bile acids were shown to be agonists 

of human FXR41. 
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Figure 3.4. MS/MS spectral matches between experimental spectra (top 

spectrum in all panels) compared to library spectra (bottom spectrum in all 

panels). Panel A shows match from experimental to tyrosocholic acid, Panel B 

shows spectral match to leucholic acid, and panel C shows spectral match to 

phenylalanocholic acid. 

These newly discovered bile acids were not observed in the targeted bile acid 

measurements because they were previously not known to exist when my studies began. 

Targeted methods only measure the specific m/z transitions that are monitored across 

the chromatogram, and the m/z of these novel bile acid species were not included in the 

list of bile acids monitored. Fortunately, bile acids are also detected during non-targeted 

HILIC LC-MS/MS metabolomics analysis. The MS/MS fragmentation spectra of these 

novel bile acid conjugates were matched to MS/MS spectra collected during non-targeted 

metabolomics analysis of the small intestine and stool samples of this experiment (Figure 
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3.4). These three bile acids were detected in all subjects but showed a subject-dependent 

trend (Figure 3.5). Subjects 3, 8, and 13 had the highest concentration of these microbially 

conjugated bile acids, which could be due to differences in the abundance or activity of 

specific microbes in the intestinal tract. The genes that create these conjugates have not 

yet been elucidated. Further investigation into the production of these bile acids may 

reveal their possible role as a component in the axis of communication between the gut 

microbiota and human host.  
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Figure 3.5. Newly discovered microbially conjugated bile acid concentrations 

(approximate ng/mL) measured in samples collected from the intestinal tract of 

different subjects. Panel A shows tyrosocholic acid concentrations across 

subjects, panel B shows pheylalanocholic acid concentration across subjects, 

and panel C shows concentration of leucholic acid across subjects. Boxplots of 

concentration values separated by subject (n=17). Boxes represent distance 

between quartiles 1 and 3 and error bars extend up to 1.5 inter quartile ranges 

(IQR) from the upper (third quartile) or lower (first quartile) portion of boxes. 

Samples greater than 1.5 IQR from the first or third quartile are plotted as 

individual points outside of error bars. Concentration was calculated using GCA 

as a surrogate standard in non-targeted HILIC analysis and plotted against the 

known concentration of GCA from targeted quantification; the resulting equation 

was applied to quantify these three bile acids. 
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3.8 Methods  

3.8.1 Targeted bile acid analysis of serum and stool from flaxseed dietary 

intervention 

Samples of serum and stool were collected before and after a 6-week flaxseed dietary 

intervention as previously reported in section 1.8.4.  Serum samples were prepared as 

previously described42. In summary 50 µL of serum was transferred to 96 well 

polypropylene plates. To each well, 25 µL of deuterium labeled internal standards in 

acetonitrile with internal standards at 250 ng/mL was added. Addition of 25 µL of 1000 

nM internal standards (CUDA and PHAU) in methanol to each well was done as well. 

Then 25 µL of antioxidant solution and 125 µL of 1:1 acetonitrile/methanol were added to 

bring the total volume of each well to 250 µL. Blank samples were made by using 50 µL 

of LC-MS grade water instead of serum. The plate was sealed, vortexed for 30 seconds, 

centrifuged for 5 minutes at 15,000 rcf at 6 °C, and supernatants were transferred to a 

clean 96 well plate, sealed, and stored at -20 °C until analysis. The extraction was carried 

out on ice except for during vortex and centrifugation. Stool samples were extracted by 

weighing 2 mg (+/- 0.2 mg) into 2 mL microcentrifuge tubes, and adding 500 µL of ice-

cold methanol, 25 µL of deuterium labeled bile acid standards at 500 nM, 25 µL of 

CUDA/PHAU solution at 1000 nM, and two 3mm stainless steel grinding beads. Tubes 

were homogenized in a genogrinder shaker for 1 minute at 1500 rpm. Tubes were then 

subjected to centrifugation at 14,000 rcf, and the supernatant was transferred to a clean 

microcentrifuge tube and dried in rotary vacuum dryer until dry. Samples were then stored 

at -20 °C until resuspension. At the time of resuspension, 250 µL of methanol was added 

to each tube, vortexed for 20 seconds, sonicated for 5 minutes at room temperature, and 
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then centrifuged for 2 minutes at 14000 rcf. 30 µL of sample from each tube was then 

transferred to a well of a 96 well plate and stored in the autosampler at 4 °C until analysis.  

LC-MS/MS was carried out using an AB SCIEX 6500+ QTRAP mass spectrometer 

coupled to a ThermoFisher Vanquish LC system. Multiple reaction monitoring scans were 

collected and processed as previously reported42. Briefly, a Waters Aquity BEH C18 

column (1.7µm, 2.1mm x 100mm) with guard column Waters Acquity BEH C18 (1.7µm, 

2.1mm x 5mm) was used for separation with mobile phases of A: LC-MS grade water with 

0.1% formic acid, and B: LC-MS grade acetonitrile with 0.1% formic acid with a flow rate 

of 400 µL/min. The mobile phase gradient was identical to that previously reported42. 

Concentration curves were run during sample analysis (3 standard curve points between 

every 20 samples) with 9 concentration points ranging from 0.2 ng/mL to 1500 ng/mL. 

Multiquant version 3.0.2 was used to perform smoothing, peak integration, and 

concentration calculations as previously reported42. The ratio of bile acid analyte to 

deuterium internal standards was used to calculate absolute concentration of bile acids 

in samples.  

3.8.2 Targeted bile acid analysis of intestinal tract samples 

Samples of GI tract lumen supernatant (n=275), and corresponding stool samples (n=57) 

were collected using ingestible sampling capsules. Four different enteric coatings were 

applied as the exterior of capsules that were 23 mm long and 6.5 mm wide to target 

specific regions of the intestinal tract. Once the coating degraded, an elastic bladder 

expanded and pulled in approximately 300 µL of luminal liquid through a one-way valve. 

The coating of capsule type 1 was designed to quickly dissolve at pH 6 to sample 
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immediately after passing the pyloric sphincter where pH shifts from approximately pH 2 

in the stomach to 6 in the duodenum43–46. Capsule type 2 was designed to open at the 

same pH; however, had a more robust coating to delay sampling in time compared to 

capsule 1. The coating of capsule type 3 was designed to open at pH 7.5, to target the 

middle of the small intestine, as the pH rises from approximately pH 6 in the duodenum 

to 8 in the ileum43–46. Capsule type four had the same pH sensitive coating as capsule 

type 3 but had a more robust coating to delay capsule opening in time compared to 

capsule type 3.  

This study was approved by WIRB-Copernicus Group IRB and informed consent was 

acquired. Subjects were healthy with no known prior GI tract complications, between the 

ages of 18 and 70, not pregnant, fluent in English, and highly willing to comply with study 

requirements. Fifteen subjects each swallowed a total of 17 sampling capsules over the 

course of three days. During this period all subject stool samples were immediately frozen 

after collection, and capsules were retrieved by staff after thawing. Upon retrieval, elastic 

bladders were rinsed with isopropyl alcohol, and liquid sample retrieved using a syringe 

from the elastic bladder. Liquid sample was transferred to a microcentrifuge tube and 

centrifuged at 10,000 rcf for 3 minutes. The supernatant was transferred to a new 

microcentrifuge tube and immediately frozen at -80 °C. Samples with mostly gas in the 

elastic bladders were excluded from analysis. One capsule was consumed on the first 

day of the three-day testing period. On the second and third day, four capsules were 

consumed after two evening meals. Diet, time of meals and time of bowel movements 

were all recorded throughout the three-day testing period.  
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Samples of intestinal liquid were extracted using a modified 96 well plate biphasic 

extraction47. Samples in microcentrifuge tubes were thawed on ice and 10 µL of intestinal 

lumen supernatant was added to wells of a 2 mL polypropylene 96 well plate in a pre-

determined randomized order. A quality control (QC) sample was prepared by mixing 

intestinal tract samples acquired from previous pilot studies, and was used in this study 

to assess analytical variation. QC sample matrix (10 µL) and blanks (10 µL of LC-MS 

grade water) were included in every row of the 96 well plate corresponding to every 10th 

sample. A volume of 170 µL of Methanol containing internal standards (UltimateSPLASH 

Avanti Polar Lipids, Alabaster, Alabama) was added to each well, followed by 490 µL of 

methyl-tert-butyl-ether (MTBE) containing internal standard CE 22:1. Plates were then 

sealed, vortexed vigorously for 30 seconds, and shaken on orbital shaking plate for 5 

minutes at 4 °C.  The plate was unsealed and 150 µL of cold water was added to each 

well. Plates were then re-sealed and vortexed vigorously for 30 seconds, and centrifuged 

for 12 minutes at 4,000 rcf and 4 °C. From the top phase of the extraction, two aliquots of 

180 µL were transferred to clean 96 well plates, and two aliquots of 70 µL from the bottom 

phase were transferred to two other clean 96 well plates for a total of four 96 well plates. 

Plates were dried in rotary vacuum until dry, sealed, and stored at -20 °C until LC-MS/MS 

analysis which occurred within one week. One of the 96 well plates containing the 

aqueous phase of extract was dissolved in 35 µL of HILIC run solvent as described in 

chapter 2. A volume of 5 µL was analyzed using non-targeted HILIC analysis. Immediately 

after HILIC analysis, the 96 well plates were dried in rotary vacuum until dry, sealed, and 

stored at -20 °C until targeted bile acid analysis. 



159 
 

Multiple dilutions were prepared for bile acid analysis as follows. The dried sample was 

dissolved in 60 µL of bile acid run solvent (1:1 acetonitrile/ methanol containing 5 

deuterated internal standards) through 30 seconds of vortex and were shaken on an 

orbital shaker for 5 minutes. From this plate, 5 µL was transferred to a new 96 well plate 

and combined with 145 µL of bile acid run solvent. Both dilutions were analyzed for all 

samples, and samples that still presented bile acids above the highest concentration of 

the standard curve (1500 µg/mL) were diluted once more at the ratio of 5:145 and re-

analyzed. A 9-point standard curve was used for bile acids and ranged from 0.2 ng/mL to 

1500 ng/mL. The standard curve solutions were created by drying the appropriate amount 

of bile acid mixture to achieve desired concentrations and dissolving in bile acid run 

solvent prior to analysis. Three standard curve points were analyzed between every 20 

samples. A blank sample was also analyzed between every 20 samples.  

Stool samples were prepared by weighing 4 mg (+/- 1 mg wet stool) into 2 mL 

microcentrifuge tubes. Quality control samples were made by using 20 µL of the QC mix 

described above. Blanks began with 20 µL of LC-MS grade water. To each tube 225 µL 

of ice cold methanol containing internal standards (as above) was added to each tube, 

followed by 750 µL ice cold MTBE with CE 22:1. Two 3mm stainless steel grinding beads 

were added to each tube and tubes were processed in a genogrinder at 1500 rpm for 1 

minute. A volume of 188 µL of cold water was then added to each tube. Tubes were 

vortexed vigorously and centrifuged at 14000 rcf for 2 minutes. Two aliquots of 180 µL of 

the MTBE layer and two aliquots of 50 µL of the lower layer were transferred to four 

separate 96 well plates, dried in rotary vacuum, sealed, and stored at -20 °C until analysis 

alongside intestinal samples. 
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Samples were analyzed using a Thermofisher Vanquish UHPLC system coupled to a 

Thermofisher TSQ Altis triple quadrupole mass spectrometer. An Aquity BEH C18 column 

(1.7µm, 2.1mm x 100mm) with guard column Acquity BEH C18 (1.7µm, 2.1mm x 5mm) 

was used for chromatographic separation with mobile phases of A: LC-MS grade water 

with 0.1% formic acid, and B: LC-MS grade acetonitrile with 0.1% formic acid with a flow 

rate of 400 µL/minute and column temperature of 50 °C. The gradient began at 20% B for 

1 minute, then shifted to 45% B between 1 and 11 minutes, then to 95%B between 11 

and 14 minutes, then to 99% B between 14 and 14.5 minutes, 99% B was maintained 

until 15.5 minutes, then transitioned form 99% B to 20% B between 15.5 and 16.5 minutes 

and maintained at 20% B until 18 minutes. Injection volume was 5 µL and MRM scans 

were collected as reported (Table 3.2).  
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Table 3.2. MRM scan list. Reactions monitored through targeted bile acid 

analysis. Multiple bile acids have the same transitions with different retention 

times and included in the same row. Bile acid names with “d” followed by a 

number indicate the number of deuterium atoms attached to the isotopically 

labeled internal standards. 

Compound(s) 

Precursor 

(m/z) Product (m/z) 

Collision 

Energy (V) 

Min Dwell 

Time (ms) RF Lens (V) 

Source  

Fragmentation 

PHAU (internal standard) 248.95 130.1 14.18 197.628 55 0 

TDHCA 508.3 79.94 53.44 72.825 232 100 

T-ω,α,β-MCA & TCA 514.475 80.042 55 72.825 152 0 

TUDCA & TCDCA & TDCA 498.475 80.042 55 57.72 138 0 

ω,α,β MCA & CA 407.25 407.25 0 57.662 95 77.6 

GUDCA & GHDCA 448.288 74.054 33.18 57.72 93 69.4 

GCA 464.425 74.054 35.92 57.72 143 0 

GCA-d4 (internal standard) 468.288 74.143 36.17 57.72 121 100 

TCDCA-d4 (internal standard) 502.8 80.042 55 57.72 138 0 

CA-d4 (internal standard) 411.388 411.388 0 57.662 141 100 

UDCA & CDCA & DCA 391.338 391.338 0 57.662 140 100 

GCDCA-d4 (internal standard) 452.338 73.988 38.11 57.662 98 71.4 

GCDCA & GDCA 448.25 74.089 34.4 57.662 90 65.3 

TLCA 482.338 80.03 52.05 57.662 249 100 

CUDA (internal standard) 339.15 214.271 21.68 57.662 83 0 

CDCA-d4 & DCA-d4 (internal standards) 395.338 395.338 0 57.662 126 89.8 

DCA 391.2 391.2 0 57.662 95 63.3 

GLCA 432.4 74.071 32.63 57.662 112 2 

LCA 375.162 375.162 0 83.426 119 100 

LCA-d5 (internal standard) 380.362 380.362 0 83.426 119 100 

 

 

All MRM scans were imported to Skyline48 open source software. Skyline performed peak 

integration for all peaks detected. Precursor and product ion masses were provided to 

Skyline, in addition to the retention time of each metabolite, and a RT window of less than 

0.15 minutes. The chromatogram for each bile acid and internal standard (31 total 
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chemicals monitored) was individually checked for correct peak integration. Peak area 

was exported for all monitored chemicals for all dilution values. Bile acid data was 

removed if there was not a true peak observed in at least one sample (for example ω-

MCA, a mouse specific bile acid, was not observed in any of these samples). The ratio of 

analyte to internal standards within samples was calculated for all bile acids. A linear 

model was fit to standard curve points for each bile acid (R2 >0.995 for all bile acids) and 

the model was applied to all samples and blanks to calculate concentration. The average 

value of concentration in blank measurements was subtracted from sample 

concentrations. Because multiple dilutions were analyzed for each sample, the 

measurement from sample dilution with the concentration value closest to the center of 

the standard curve (750 ng/mL) was kept. Zero values were imputed with a concentration 

value between 0.001 and 0.1 ng/mL. Dilution factors were applied to each measured 

concentration value dependent upon which dilution was kept in order to determine the 

concentration of bile acids in original sample. Statistical analysis and data processing 

steps used the R programming language. FDR correction of Benjamini and Hochberg49 

was used. 
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Dissertation Conclusion 

This work provides valuable insight into the composition of the human intestinal 

tract metabolome over time and by intestinal tract location. Considerations for analytical 

analysis was thoroughly addressed to present the complexity of chemicals within the 

human intestinal tract and provide a technically sound approach for measuring a large 

portion of the intestinal tract metabolome. Metabolite identification is a key step in 

metabolomics analysis and is essential for generating accurate metabolomics datasets. 

A dietary intervention study with ground flaxseed reported significantly changed 

metabolites in serum and stool in response to consuming flaxseed. This study presents 

an example of how non-targeted metabolomics reveals changes due to diet, while 

targeted hypothesis driven analysis of bile acids in these same samples did not reveal 

changes due to flaxseed consumption. The overall diet of subjects was not controlled 

during this study which was presented as a confounding variable and limitation for studies 

investigating the metabolic impact of diet. A study of aspirates taken from the upper small 

intestine presented an in-depth analysis of one single subject from one area of the 

intestinal tract. These data revealed highly variable and complex chemical composition 

of the human small intestine. Many metabolites that showed similar trends were not able 

to be linked to known biological functions. These facts show that there is tremendous 

opportunity to discover novel functionality of the digestive tract and how it interacts with 

food. Investigation of samples collected from 15 healthy volunteers provided the first ever 

measurement of bile acid profiles across the length of the human intestinal tract in vivo 

using a non-invasive sampling approach. This study revealed trends in bile acids that are 

in agreement with the trends expected based on known bile acid metabolism. The bile 
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acids in intestinal tract samples were found to differ profoundly in proportion and 

concentration compared to stool samples. There is high inter-individual variation in bile 

acid profiles, specifically with respect to microbially conjugated bile acids. These intestinal 

tract samples will be further analyzed using multiple analytical platforms to maximize the 

coverage of metabolite measurement from the intestinal tract. The human intestinal tract 

is an extraordinarily complex system. By investigating the metabolome of the human 

intestinal tract, unknown relations between food, humans and microbes will be 

discovered. 




