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Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological 
Chemistry, University of California, Irvine, Irvine, California 92697

Abstract

The circadian clock controls a large variety of neuronal, endocrine, behavioral and physiological 

responses in mammals. This control is exerted in large part at the transcriptional level on genes 

expressed in a cyclic manner. A highly specialized transcriptional machinery based on clock 

regulatory factors organized in feedback autoregulatory loops governs a significant portion of the 

genome. These oscillations in gene expression are paralleled by critical events of chromatin 

remodeling that appear to provide plasticity to circadian regulation. Specifically, the NAD+-

dependent deacetylases SIRT1 and SIRT6 have been linked to circadian control of gene 

expression. This, and additional accumulating evidence, shows that the circadian epigenome 

appears to share intimate links with cellular metabolic processes and has remarkable plasticity 

showing reprogramming in response to nutritional challenges. In addition to SIRT1 and SIRT6, a 

number of chromatin remodelers have been implicated in clock control, including the histone 

H3K4 tri-methyltransferase MLL1. Deciphering the molecular mechanisms that link metabolism, 

epigenetic control and circadian responses will provide valauble insights towards innovative 

strategies of therapeutic intervention.
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CALLOUTS
The circadian epigenome appears to share intimate links with cellular metabolic processes and has remarkable plasticity showing 
reprogramming in response to nutritional challenges.
Circadian rhythms are so intimately linked to biological processes that their misregulation may lead to a number of pathologies such 
as obesity, metabolic syndrome, diabetes, cardiovascular diseases, inflammation, sleep disorders and some cancers.
The intracellular availability in time and space of specific metabolites constitutes an intriguing level of control for their protein 
sensors. In this respect, the circadian oscillation in NAD+ concentration represents a revealing paradigm.
Thus, it is through genomic partitioning which the two deacetylases contribute to a parallel segregation of cellular metabolism.
As the circadian transcriptional landscape is highly complex, including dynamic changes in nuclear organization it becomes critical to 
decipher how the nuclear landscape integrates metabolic cues and shapes the transcriptional output.
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INTRODUCTION

Many aspects of metabolism, homeostatic balance and behavior follow the 24h daily cycle 

[1]. Circadian rhythms are virtually present in all life forms on our planet, including 

mammals, insects, plants, fungi and cyanobacteria. In higher organisms, circadian rhythms 

have evolved into a complex physiological and molecular system demonstrated by sleep-

wake cycles, daily fluctuations in body temperature, blood pressure, cellular regeneration 

and behavior such as food intake and alertness levels [2]. Metabolism, nutritional intake and 

body homeostasis are also under circadian control, displaying rhythms in the levels of 

circulating hormones and metabolites, as well as enzymes within the biochemical pathways 

participating in their biosynthesis [1,3]. Circadian rhythms are so intimately linked to 

biological processes that their misregulation may lead to a number of pathologies such as 

obesity, metabolic syndrome, diabetes, cardiovascular diseases, inflammation, sleep 

disorders and some cancers [1].

The molecular bases of circadian rhythms have been explored, revealing a remarkable 

variety of molecular mechanisms that underlie clock function. An important system of 

circadian control utilizes the core clock molecular machinery that consists of transcription 

factors and regulators, both activators and repressors, which act in concert to drive circadian 

expression of an important fraction of the genome. A number of high-throughput 

transcriptome profiling studies have established that 15–30% of all transcripts are controlled 

by the clock, depending on the tissue or cell type [4–7]. Accumulating evidence has shown 

that this global program of gene expression is achieved through events of cyclic chromatin 

remodeling and epigenetic control.

LINKING CIRCADIAN TRANSCRIPTION AND CHROMATIN REMODELING

The molecular organization of the circadian system relies on a network of cellular oscillators 

present in virtually every cell of the organism. An intricate network of transcriptional-

translational feedback loops constitutes the molecular clock [1, 8]. The basic helix-loop-

helix (b-HLH)-PAS proteins CLOCK and BMAL1 are core elements of this system and 

function as transcriptional activators to drive the expression of many clock controlled genes 

(CCGs). CLOCK and BMAL1 heterodimers bind E-boxes in CCGs promoters and activate 

their expression. Among the CCGs there genes encoding other core clock protein repressors 

Period (PER1–3) and Cryptochromes (CRY1–2). PER and CRY proteins heterodimerize in 

the cytoplasm and translocate to the nucleus to inhibit CLOCK:BMAL1-mediated 

transcription. The stability of PER:CRY complexes is regulated by posttranscriptional 

modifications [9] and ubiquitination events [10–13]. The time-controlled clearance of the 

repressors primes for the next cycle of CLOCK:BMAL1-driven gene activation. This system 

then leads to the cyclic activation of other regulatory pathways generating interconnected 

transcriptional feedback loops. These provide remarkable plasticity to the circadian system, 

eliciting multiple daily oscillations in the transcriptome [14].

Specific cyclic chromatin transitions occur on a genome-wide scale and are associated with 

circadian waves of transcription [14]. Several chromatin remodelers have been found to be 

involved in circadian control. The protein CLOCK was found to operate as an 
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acetyltransferase on histone H3 at K9 and K14 [15], modifications associated with a 

chromatin state permissive for transcription. CLOCK acts in concert with other histone 

acetyltransferases (HATs)[16], such as CBP (CREB binding protein), p300 and with the 

CBP-associated factor PCAF [17–19]. A number of histone deacetylases (HDACs) have 

been found to counterbalance these HATs. For example, the circadian repressor PER 

recruits SIN3A-HDAC1 [20], whereas the protein CRY1 associates with the complex 

SIN3B-HDAC1/2 [21]. The circadian regulator REV-ERBα recruits the NCoR-HDAC3 

complex in a rhythmic manner to chromatin via, a process that has been linked to the control 

of lipids metabolism in the liver [22,23]. Thus, a variety of circadian repressive complexes 

appear to exist, which may elicit distinct functions at unique times of the circadian cycle. 

The nicotinamide adenine dinucleotide (NAD+)-dependent class III of HDACs was found to 

play a critical role in connecting cellular metabolism to circadian physiology. The founding 

member, SIRT1, gives the name to this class of enzymes, collectively known as sirtuins. 

There are seven sirtuins, all involved in various aspects of metabolism, inflammation and 

aging, and their intracellular localization is nuclear, cytoplasmic or mitochondrial. The 

nuclear proteins SIRT1 and SIRT6 have been shown to contribute to circadian transcription 

[24,25].

A number of chromatin post-translational modifications have been linked to clock function 

in addition to acetylation. The first evidence that a histone modification may play a role in 

circadian transcription was the light-inducible phosphorylation at H3-S10 in SCN neurons 

[26]. The activating histone methylation H3K4me3 has also been linked to clock control and 

it seems to be essential to permit circadian chromatin transitions that lead to activation of 

CCGs expression [27]. MLL1, a H3K4 histone methyltransferase (HMT), was shown to 

elicit CLOCK:BMAL1 recruitment to chromatin at specific circadian promoters and for the 

cyclic tri-methylation at H3K4 [28]. Also the repressive mark H3K27me3 is clock 

controlled at the Per1 promoter through a mechanism that involves the methyltransferase 

EZH2 [29]. Additional chromatin remodelers involved in circadian function include the 

demethylase JARID1a that appears to inhibit HDAC1, thereby enhancing CLOCK:BMAL1-

mediated transcription [30], and the FAD (Flavin Adenine Dinucleotide) dependent 

demethylase LSD1 whose function is controlled by PKCα-mediated circadian 

phosphorylation [31].

INTIMATE INTERPLAY BETWEEN CELLULAR METABOLISM AND 

CIRCADIAN CLOCK

A large number of human studies and animal models provide solid evidence of the 

reciprocal regulation between the circadian clock and cellular and organismal homeostasis 

[1,32–36]. The clock regulates metabolism by controlling the expression of a large fraction 

of the genome. Moreover, the oscillator appears to sense the cellular energy state and 

consequently adapt its function accordingly.

Several levels of interplay exist between cellular metabolism and chromatin remodeling 

[14,37,38]. Acetylation of histones or non-histone nuclear proteins depends on the supply of 

acetyl-CoA in the nuclear compartment. The main carbon source in mammals is glucose 

which generates acetyl-CoA because of the enzyme adenosine triphosphate (ATP)-citrate 
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lyase (ACLY). ACLY protein levels are cyclic in the liver [39], and ACLY activity controls 

global histone acetylation depending on glucose availability [40]. Thus, circadian changes in 

histone acetylation are controlled not only by specific HATs, but also by interconnected 

metabolic pathways and enzymes supplying nuclear acetyl-CoA. A similar regulation 

involves S-adenosyl methionine (SAM), the metabolite used by methyltransferases to 

deliver methyl groups. Changing SAM levels directly influence H3K4me3 levels in mouse 

pluripotent stem cells [41]. Also, treatment with 3-deazaadenosine (DAA), an inhibitor of 

SAH (S-adenosylhomocysteine) hydrolysis that hinders transmethylation, elongates the 

circadian period [42]. Further research is necessary to decipher the impact of one carbon 

metabolism in the circadian transcriptome.

Nicotinamide adenine dinucleotide (NAD+) is a pivotal metabolite for the circadian 

epigenome. NAD+ shows robust diurnal rhythms in synchronized cells and mice [43–45] 

and operates as cofactor for class III of HDACs, the sirtuins (see next section).

The core machinery may be directly influenced by changing metabolic states. Specifically, 

the DNA-binding function of NPAS2:BMAL1 and CLOCK:BMAL1 heterodimers was 

indicated to be influenced by the redox states of NAD(H) or NADP(H)(46). This finding 

implied that CLOCK:BMAL1 transcriptional activity should be sensitive to the levels of 

cellular redox. While a causal evidence for this regulation has not been explored, circadian 

oscillations in intracellular redox potentials are evolutionarily conserved [1,2]. Thus, while 

the ability of NPAS2 or CLOCK to sense the intracellular redox state in vivo remains to be 

proven, independent evidence provides interesting information. Indeed, crystallographic 

analyses of the CRY1-PER2 complex indicate that a disulfide bond between two cysteine 

residues in CRY1 weakens its interaction with PER2, whereas a reduced state of CRY1 

stabilizes the complex and facilitates transcriptional repression [47]. In this scenario, CRY2 

would retain specific FAD (Flavin Adenine Dinucleotide) binding activity, and FAD 

competes for CRY2 binding pocket with the ubiquitin ligase complex SCFFBXL3, that has 

been shown to control period length by regulating CRYs stability [48]. Interestingly, this 

finding provides a possible approach to pharmacologically adjust circadian period length by 

using small molecules resembling FAD [49].

Posttranslational modifications of clock proteins have been shown to modify their regulatory 

capaciity. For example, CLOCK, BMAL1 and PER2 can be O-linked N-acetylglucosamine 

(GlcNAc)-modified by the enzyme O-GlcNAc transferase (OGT), which results in a change 

in their activities [50,51]. Importantly, liver-specific ablation of OGT leads to dampened 

oscillation of Bmal1 and gluconeogenic genes. Thus, glucose levels dictate the availability 

of GlcNAc, being OGT a signal transducer between cellular metabolism and circadian 

components. Along the same lines, phosphorylation of CRY1 by the nutrient sensor kinase 

AMPK (AMP-activated protein kinase) connects cellular energy levels with the circadian 

clock by adjusting it to the changing intracellular ratio of AMP/ATP [52,53].

SIRTUINS, CIRCADIAN RHEOSTATS

The intracellular availability in time and space of specific metabolites constitutes an 

intriguing level of control for their protein sensors [38]. In this respect, the circadian 
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oscillation in NAD+ concentration represents a revealing paradigm. The NAD+ biosynthetic 

salvage pathway controls the conversion of nicotinamide (NAM) to β-nicotinamide 

mononucleotide (NMN); this step is catalyzed by rate limiting step enzyme, the 

nicotinamide phosphoribosyltransferase (NAMPT, also known as visfatin). The circadian 

machinery controls the transcription of the Nampt gene through direct binding of 

CLOCK:BMAL1 to E-boxes in the promoter [44,45]. NMN is converted to NAD+ by the 

enzymes nicotinamide mononucleotide adenylyltransferase 1–3 (NMNAT1–3) (Figure 1). 

Thus, a transcriptional-enzymatic feedback loop controls NAD+ biosynthesis and 

availability that in turn could result in circadian function of a variety of NAD+-dependent 

enzymes. Moreover, there is a differential regulation of NAD+ levels and NAD+ consuming 

enzymes in various cell compartments [54,55]. In this respect the sirtuins deserve special 

attention. Indeed, of the seven mammalian sirtuins, three (SIRT1, SIRT3 and SIRT6) have 

been functionally linked to circadian control and found to modulate cyclic outputs in 

response to metabolic cues.

SIRT3 is a mitochondrial enzyme that displays robust changes in its deacetylase activity in 

response to NAD+ levels [56–58]. SIRT3 controls mitochondrial function, including fatty 

acid oxidation and intermediary metabolism, by directly targeting rate-limiting enzymes for 

mitochondrial biochemical processes [57]. As mitochondrial fatty acid oxidation and protein 

acetylation show circadian rhythmicity [58], the link with NAD+ availability through SIRT3 

is of particular interest. Also, mitochondria from Bmal1−/− mice display reduced oxidative 

ability and decreased mitochondrial NAD+ levels [57]. These findings, together with the 

implication of SIRT1 in circadian control, raise the possibility that the sirtuins-NAD+ link 

with the clock may represent a critical molecular pathway to govern the process of aging.

The implication of nuclear sirtuins in clock function is multiple. SIRT1 is both nuclear and 

cytoplasmic whereas SIRT6 is exclusively nuclear and mostly chromatin bound, localized at 

transcriptionally active genomic loci. SIRT1 and SIRT6 operate through distinct 

mechanisms to coordinate the clock machinery in a differential manner and thereby 

delineate the circadian transcriptional output [25]. Because of these different mechanisms of 

action, in the liver these two sirtuins coordinate circadian expression of distinct groups of 

genes. SIRT6 exerts its function by coordinating CLOCK:BMAL1 recruitment to specific 

chromatin sites [25]. SIRT1, which is mostly nucleoplasmic and is recruited to chromatin 

only ‘on demand’, deacetylates histones and non-histone proteins. Among the non-histone 

targets of SIRT1 there are the clock proteins BMAL1 and PER2 [59,60]. SIRT1 is also able 

to deacetylate MLL1, thereby controlling its methyltransferase activity. Thus, there is 

control in H3K4 tri-methylation through the cyclic oscillation of NAD+ levels [61].

SIRT1-mediated deacetylation also affects circadian levels of other metabolites besides 

NAD+. Specifically, intracellular acetyl-CoA levels are controlled by the clock through 

SIRT1-controlled deacetylation of the enzyme acetyl-CoA Synthetase 1 (AceCS1)[62]. This 

acetylation switch controls AceCS1 activity leading to cyclic synthesis of acetyl-CoA 

(Figure 1), that then is likely to influence the acetylation levels of histones and non-histone 

proteins [62]. In contrast, SIRT6 deacetylase activity seems to be efficient in removing long 

chain fatty acids from lysine residues [63]. In this respect it is noteworthy that not only on 

NAD+, but also on fatty acids, control the activity of SIRT6 [64]. Thus, SIRT6 appears to 
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occupy a key position in the control of fatty acids metabolism by the clock. Indeed, 

CLOCK:BMAL1-driven activation of genes involved in fatty acid biosynthesis is modulated 

by SIRT6 [25].

High-throughput analysis of the transcriptome and metabolome along the circadian cycle has 

revealed notable differences in the metabolic functions of SIRT1 and SIRT6. Using mice 

with liver-specific deletion of either SIRT1 or SIRT6, a specific role for SIRT6 was shown 

in dictating the synthesis and breakdown of fatty acid pathways, as well as their storage into 

triglycerides. SIRT6 operates at least in part through the control of alternative circadian 

transcriptional pathways, specifically because of the chromatin recruitment of the sterol 

regulatory element-binding protein 1 (SREBP1) [25]. Thus, it is through genomic 

partitioning which the two deacetylases contribute to a parallel segregation of cellular 

metabolism [25].

Finally, these findings suggest a role for genome topology in circadian control [65]. Our 

studies have identified the presence of circadian interactomes where co-regulated genes are 

physically associated in the circadian epigenome. Nuclear sirtuins may constitute a 

paradigm for other chromatin remodelers that could contribute in the cyclic control of the 

nuclear landscape. Also, specific changes in the nuclear localization of NAD+ may provide 

the possibility of restricting the distribution of this metabolite to “niches” of activity [38].

CONCLUSION

The ability of the circadian clock machinery for sensing the metabolic state of the cell in a 

time-specific manner places it in a strategic position. Indeed, a fascinating findings reviewed 

in this article demonstrate the direct implication of the clock in the maintenance of cellular 

homeostasis. The clock machinery appears to integrate environmental and metabolic signals 

to directly translate them in plasticity in gene expression so to favor the adaptation of the 

organism to specific conditions. As the circadian transcriptional landscape is highly 

complex, including dynamic changes in nuclear organization [38,65], it becomes critical to 

decipher how the nuclear landscape integrates metabolic cues and shapes the transcriptional 

output. It is through the analysis of the specific coordination that key chromatin remodelers 

have with clock transcription factors that we will gain insights on how intracellular 

metabolic state communicates to the clock machinery. As disruption of clock function has 

been linked to a variety of pathological conditions, unrevealing clock mechanisms will lead 

to innovative strategies towards the pharmacological treatment of metabolic syndromes, 

obesity, diabetes, inflammation and even cancer.
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Figure 1. 
Metabolism and the circadian clock converge. A paradigm example is represented by the 

role of SIRT1 and other sirtuins in clock regulation. The circadian machinery controls a 

large fraction of the genome through the transcriptional regulation of CCGs. One of the 

CCGs is the gene encoding the protein NAMPT, the rate-limiting enzyme in the NAD+-

salvage pathway. Cyclic transcriptional control of the Nampt gene results in the cyclic 

synthesis of NAD+, which in turn is consumed rhythmically by enzymes, such as SIRT1 

whose deacetylase activity is consequently cyclic. One of the non-histone targets is the 

enzyme AceCS1, which contributes to the synthesis of Acetyl-CoA. AceCS1 is acetylated at 

one residue, Lys661, and its cyclic deacetylation by SIRT1 activates the enzyme, resulting 

in cyclic synthesis of Acetyl-CoA and thereby oscillating availability of acetyl groups 

required for global acetylation.
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