
UC Berkeley
UC Berkeley Previously Published Works

Title
A Distributed Lumped Parameter Model of Blood Flow

Permalink
https://escholarship.org/uc/item/41q3q2nk

Journal
Annals of Biomedical Engineering, 48(12)

ISSN
0145-3068

Authors
Mirramezani, Mehran
Shadden, Shawn C

Publication Date
2020-12-01

DOI
10.1007/s10439-020-02545-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41q3q2nk
https://escholarship.org
http://www.cdlib.org/


A distributed lumped parameter model of blood flow

Mehran Mirramezani1,2, Shawn C. Shadden1

1Mechanical Engineering, University of California, Berkeley, CA, USA 94720

2Mathematics, University of California, Berkeley, CA, USA 94720

Abstract

We propose a distributed lumped parameter (DLP) modeling framework to efficiently compute 

blood flow and pressure in vascular domains. This is achieved by developing analytical 

expressions describing expected energy losses along vascular segments, including from viscous 

dissipation, unsteadiness, flow separation, vessel curvature and vessel bifurcations. We apply this 

methodology to solve for unsteady blood flow and pressure in a variety of complex 3D image-

based vascular geometries, which are typically approached using computational fluid dynamics 

(CFD) simulations. The proposed DLP framework demonstrated consistent agreement with CFD 

simulations in terms of flow rate and pressure distribution, with mean errors less than 7% over a 

broad range of hemodynamic conditions and vascular geometries. The computational cost of the 

DLP framework is orders of magnitude lower than the computational cost of CFD, which opens 

new possibilities for hemodynamics modeling in timely decision support scenarios, and a 

multitude of applications of imaged-based modeling that require ensembles of numerical 

simulations.
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1 Introduction

Image-based computational fluid dynamics (CFD) is the modeling standard to study patient-

specific blood flow features in the cardiovascular system [46]. Applications of image-based 

CFD are numerous, and include assessment of pathologies, such as vascular stenosis [45, 

26], aneurysms [2, 27] and dissection [49, 51], as well as for surgical planning [29, 38] and 

the evaluation of medical devices [43, 8]. This technology has grown considerably over the 

last decade, gaining recent FDA approval and clinical adoption [45]. Although image-based 
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CFD enables comprehensive analysis of hemodynamics, it is computationally expensive, 

prone to numerical instabilities, and can be sensitive to method parameters. These factors 

have limited broader translation of image-based CFD to clinical settings, and have limited 

the ability to perform parametric analyses in cardiovascular applications such as uncertainty 

quantification, sensitivity analysis, data assimilation, optimization, parameter tuning, etc. 

Such ensemble-based studies are becoming crucial as hemodynamics modeling matures 

from proof-of-concept to a paradigm in healthcare technology [31]. These factors motivate 

the need for reduced-order models (ROMs) of blood flow to be used in place of, or in 

conjunction with, fully-resolved CFD modeling.

ROMs can roughly be divided into fitting methods (polynomial chaos, machine learning, 

etc.) or simplified physics models. The work herein focuses on the latter. The most basic 

simplified physics ROMs are lumped parameter network (LPN) models [47]. Like the 

Navier-Stokes equations, LPNs describe a mathematical relationship between flow, pressure 

and their derivatives. Mathematically, LPNs are described by ordinary differential equations 

(ODEs) or algebraic equations (AEs). Physically, LPNs are often interpreted as electrical 

circuit analogs where flow and pressure are analogous to current and voltage. The simplest 

example is a vascular network modeled as a resistor, whereby flow is proportional to 

pressure drop. Adding a capacitor (RC model) or second resistor (RCR model) are popular 

extensions, and more elaborate LPNs have been proposed [47, 30, 23]. LPNs are generally 

used to model complete vascular territories, and by construction, continuous spatial 

variations in flow and pressure are not resolved. To resolve continuous spatial variations in 

flow and pressure, the most common ROM approach is to cross-sectionally average the 

Navier-Stokes equations [6, 22] to generate quasi-ID equations. This approach has been used 

extensively over the past decades to model hemodynamics [42, 9]. Similarly, more 

comprehensive 2D models, e.g., [19], have also been proposed. Both quasi-1D or 2D models 

are described by PDEs, and are thus more computationally expensive than LPN models, and 

more prone to numerical artifacts and instability [1]. Perhaps more importantly, physics-

based ROMs have struggled to accurately predict complex hemodynamic conditions 

typically observed in image-based vascular models, which is why CFD (using the 3D 

Navier-Stokes equations) has prevailed in this area.

Our goal is to develop a physics-based model to described distributed changes in 

hemodynamics, particularly in image-based vascular models, at substantially reduced 

computational cost and complexity compared to PDE-based approaches to modeling blood 

flow. Toward this goal, we present a generalized distributed lumped parameter (DLP) 

framework to compute flow and pressure dynamics in blood vessels by taking into account 

various sources of energy dissipation. This approach results in ODEs that are significantly 

easier to solve than existing PDE models, yet it can convey distributed changes in 

hemodynamics. Moreover, it provides reasonable predictions even in scenarios of complex, 

3-dimensional flow where most existing physics-based ROMs provide poor predictions. To 

evaluate the utility of the proposed DLP methodology, we have applied this framework to a 

diverse range of healthy and diseased patient-specific cardiovascular anatomies including 

aortic, aorto-femoral, cerebrovascular, coronary, pulmonary and congenital heart disease 

surgery models, and have compared DLP predictions of flow and pressure to the “gold-

standard” values from 3D time-dependent CFD simulations. To the best of our knowledge, 

Mirramezani and Shadden Page 2

Ann Biomed Eng. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this is the most comprehensive comparison of a ROM to the current standard of image-based 

hemodynamics modeling.

2 Methods

Similar to most fluid mechanic models, we aim to develop a relationship between flow and 

pressure from conservation of mass and balance of momentum principles. Our formulation 

is in terms of cross-sectionally averaged pressure P(x, t) and volumetric flow rate Q(x, t), 
where x denotes the axial coordinate along a given vessel and t is time. We assume to be 

modeling flow within a vascular network, and as such, conservation of mass is imposed at 

vessel junctions as

∑Qin = ∑Qout (1)

The following balance of momentum is assumed to hold along any vascular segment

ρ
π∫0

L 1
R(x)2dx ∂Q

∂t + ℛQ + ΔP = 0 (2)

where ρ is fluid density, R(x) is vessel radius assumed to vary axially, L is the length of the 

vascular segment, and ℛ represents a generalized resistance. Below we develop an 

expression for ℛ by considering expected sources of energy dissipation.

2.1 Viscous dissipation

Assuming Poiseuille flow, the pressure drop across a cylindrical vessel of length L is given 

by ΔP = ℛvQ, where ℛv = 8μL ∕ πR4 is the hydraulic resistance, with μ being the blood 

viscosity and R being the radius. We first consider an integral form of this equation to better 

account for variations of radius the vessel length as

ℛv = 8μ
π ∫

0

L 1
R(x)4dx (3)

For vessels of non-circular cross-section, R(x) = A(x) ∕ π denotes the effective radius 

(henceforth radius) at local axial coordinate x ∈ (0, L).

We note that the Poiseuille law, ΔP = 8μLQ/πR4, can be viewed a special case of the Darcy-

Weisbach equation

ΔP = λs
ρ
2

V 2

2R (4)

where V = Q/πR2 is the average fluid velocity, and λs is the viscous friction factor. The 

viscous friction factor of a straight vessel is λs = 64/Re, which yields Poiseuille’s law, where 

Re denotes Reynolds number. This viewpoint will be used next to incorporate pressure loss 

due to vessel curvature.
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2.2 Curvature

The presence of centrifugal forces in a curved vessel results in a skewed velocity profile, 

which generally increases viscous dissipation as compared to flow through a straight vessel. 

Assuming steady and fully developed flow, the viscous friction factor of a curved vessel (λc) 

can be related to the viscous friction factor of a straight vessel (λs) with similar length and 

radius [24]

γ ≐ λc
λs

= 0.1033 K 1 + 1.739
K

1
2 − 1.315

K

−3

, (5)

where K = Re R ∕ a is the Dean number and a is the vessel curvature. Therefore, Eq. (3) is 

modified to

ℛv = 8μ
π ∫

0

L
0.1033 K(x) 1 + 1.729

K(x)

1
2 − 1.315

K

−3
1

R(x)4dx (6)

Note that R, a and K generally vary as a function of x.

2.3 Expansions

The energy dissipation due to sudden expansions is taken into account by using a semi-

empirical model

ΔP = Kt
ρ

2A0
2

A0
As

− 1
2
Q ∣ Q ∣ , (7)

where As and A0 are cross-sectional areas describing the expansion as described below, and 

∣Q∣ denotes the absolute value of flowrate in case of reverse flow. Eq. (7) with Kt = 1 can be 

derived from a control volume energy balance of inviscid flow through a sudden expansion 

[7]. Similar to [54], Kt is an empirical correction factor to account for losses from flow 

separation. We showed in a previous study [32] that Kt = 1.52 produced consistently 

accurate prediction of pressure drop compared to 3D simulations in realistic vascular 

(coronary) stenoses.

In this study, the local minima and maxima of R(x) were computed along each vessel 

segment. Then As was computed at each local minimum and A0 was computed from the 

mean value of the radius at the local maxima immediately proximal and distal to the 

corresponding local minimum. For vascular segments with multiple sudden expansions, 

these losses were added in series

ℛs = ∑
i = 1

n ρKt
2A0, i

2
A0, i
As, i

− 1
2

∣ Q ∣ , (8)

where n is the number of expansions.
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2.4 Bifurcations

Energy losses at vascular junctions were determined from geometric (branch angle) and 

hydraulic (flow split) considerations. Namely, the amount of pressure drop due to a vascular 

bifurcation was calculated as [34]

ΔP = 1
2ρQdat

2

Adat
2 (1 + λj

2ψj2 − 2λjψj cos(ϕj)), (9)

where Qdat and Adat are the flow rate and cross-sectional area of the datum supplier vessel, 

respectively. λj = Qj/Qdat defines the volumetric flow split, ψj = Adat/Aj defines the area 

split and ϕj = 3(π − θj)/4 is defined from the angle θj between a datum supplier and child 

branch (see Figure 1 panel 2). Hence the nonlinear resistance

ℛb = 1
2Qj

ρQdat
2

Adat
2 (1 + λj

2ψj2 − 2λjψj cos(ϕj)) (10)

is added in series to the resistances due to viscous and sudden expansion effects in the child 

branch.

2.5 Unsteadiness

Flow unsteadiness affects the momentum balance, Eq. (2), in two main ways. First, it 

explicitly leads to a change in fluid inertia as captured in the first term. Second, it implicitly 

changes the cross-sectional profile of the flow, which in turn changes the shear rate and 

viscous dissipation captured in the second term. To account for the later, we modify the 

viscous resistance according to Womersley number.

The Womersley number, α = R ρω ∕ μ, quantifies the relative importance between pulsatile 

inertial effects and viscous effects. The heart rate is generally the dominant frequency and 

used to define ω. For image-based vascular models, ω, ρ and μ vary minimally and thus 

variations of α are due to variations in R. As Womersley number increases the velocity 

profile changes from parabolic to flat, increasing viscous losses.

Based on the well-known Womersley’s solution for pulsatile flow in a straight, rigid vessel 

[55], wall shear stress can be computed and then used to compute the (viscous) resistance 

due to Womersley flow. This can be used to define a function ζ(α) describing the viscous 

resistance ratio between Womersley and Poiseuille flow. Hence, the viscous resistance 

introduced in Eq. (3) is modified to

ℛv = 8μ
π ∫

0

L
ζ(α(x)) 1

R(x)4dx , (11)

where ζ is a function of x because R and hence α is a function of x. In this study we use the 

maximum between the curvature loss ratio γ and pulsatile loss ratio ζ in each artery to 

modify the Poiseuille resistance (cf. Eq. (12) below).
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2.6 Implementation

Based on the above considerations, we define

ℛ = 8μ
π ∫

0

L
max{γ, ζ} 1

R4dx + ∑
i = 1

n ρKt
2A0, i

2
A0, i
As, i

− 1
2

∣ Q ∣ + 1
2QρQdat

2

Adat
2 (1

+ λj
2ψj2 − 2λjψj cos(ϕj))

(12)

and Eq. (2) along with conservation of mass is used to solve for flow rate through each 

vascular segment and pressure at each vascular junction of complete (image-based) vascular 

model.

We have developed an in-house Python framework to automate the DLP modeling 

procedure. The only required inputs are the segmented geometry (i.e., surface mesh derived 

from medical image segmentation) and desired boundary conditions. We have developed 

automated procedures to generate vessel lengths, bifurcation angles, and the variation of 

cross-sectional area and curvature along each vascular segment. We have implemented a 

variety of boundary conditions typical to current state-of-the-art image-based modeling, 

including the ability to couple LNP models at the inlet or outlets. Once the geometry is 

processed and boundary conditions prescribed, the end result is a system of nonlinear AEs 

and ODEs that describe the basic conservation principles. An implicit Euler scheme was 

used to handle time-stepping. This results in a set of nonlinear algebraic equations to be 

solved each time-step, which is handled by iterative linearization. The solution of this 

system includes flow rate at all vascular segments and pressure values at all vascular 

junctions and boundaries. Spatially resolved representation of pressure can be derived (as 

shown in the Results) by linear interpolation between consecutive junctions, except in 

scenarios where sudden expansion occurs, in which case piecewise linear interpolation 

between junction(s) and expansion(s) is more appropriate. The overall DLP modeling 

workflow is shown in Figure 1 for a representative patient-specific coronary model.

3 Results

Here we apply the proposed DLP framework to a variety of image-based vascular models 

and compare the results to those derived from CFD simulation. Image-based CFD modeling 

was performed using SimVascular [50]. This entailed segmenting a vascular geometry from 

corresponding image data (also used for the DLP model), creating a volumetric mesh, 

employing and tuning boundary conditions representative of downstream and upstream 

physiology, finite element simulation of the 3D time-dependent Navier-Stokes equations, 

and post-processing to compute the flow rate and pressure at locations for comparison with 

the DLP model. All CFD simulations were run assuming rigid vessel walls. This is a 

common assumption in image-based hemodynamics modeling applications where 

information such as changes to flow distribution, perfusion, or pressure drop are primary 

targets. The CFD simulations used linear tetrahedral elements with boundary layer meshing 

for all simulations. Solutions were computed over time until the pressure fields at the inlets 

and outlets did not change more than 1.0-2.0% compared to the solutions at the same time 

point in the previous cardiac cycle. Fluid properties (ρ = 1.06 g/cm3, μ = 0.04 dyn/(cm3 s)) 
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were assumed common among all models. Appendix A describes details regarding the 

specification of boundary conditions unique to each group of models. The majority of these 

models are available at www.vascularmodel.com.

To ensure a consistent comparison between the DLP model and CFD simulation, the same 

inlet and outlet boundary conditions are used. However it should be noted that the DLP 

model is in no way tuned to the 3D CFD results; it is automated and independent of the CFD 

simulation. To quantify the comparison, we calculated the relative errors between the mean 

values of the temporal flow rate and pressure from the DLP and CFD models at the inlets 

and outlets of each model. These errors are plotted as box-and-whisker plots in the 

subsections below for each group of models. For perspective, we also compare against 

results from a DLP model for which a Poiseuille resistance is assumed. This model can be 

viewed as a “baseline” model for which the corrections to the dissipation term proposed 

herein are neglected.

Errors were quantified at the outlets to evaluate the ability of the DLP model to serve as a 

surrogate for the entire 3D domain in applications such as UQ, design optimization, 

parameter tuning, etc., and because these downstream locations are generally where errors 

are expected to become compounded. However, to better convey spatial and temporal 

differences between the DLP results and CFD results, we include additional comparisons of 

the spatial variation of the pressure field between DLP and CFD models, as well as temporal 

variations in the flow and pressure waveforms at the outlets. To keep the number of plots 

manageable, we do this only for one model for each group of models. Generally, the model 

chosen was the one that presented the largest errors from the box-and-whisker plots.

3.1 Aortic models

We considered four models of the ascending aorta. This region generally has complex flow 

patterns due to high curvature, high Reynolds number and high Womersley number. The 

complexity of the flow, and difficulty of CFD simulations, is increased in cases that also 

contain stenosis or aneurysm. The four models we considered include one normal, two with 

coarctation (moderate and severe), and one aneurysmal, as shown in Figure 2(I). Figure 2(II) 

displays relative errors of mean flow rates and pressures between the DLP model (Q̄0D, P̄0D)
and CFD (Q̄3D, P̄3D) at the inlet and all outlets, demonstrating that the DLP model provides 

accurate prediction of mean flow rate and pressure in all cases when compared with CFD 

simulations. The mean value of the errors is less than 1% for all cases and the maximum 

error is ~1.5%. For comparison, when the baseline Poiseuille resistance is assigned to each 

vascular segment, the mean values of pressure (P̄ pois) are significantly inaccurate, 

particularly for the cases with coarctation. Figure 3 shows a time-resolved comparison of 

flow and pressure waveforms at the inlet and all outlets of the severe coarctation model and 

demonstrates the ability of the DLP model to accurately calculate temporal changes in flow 

rate and pressure waveforms even when there exists highly complex 3D flow and severe 

pressure gradient.
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3.2 Aorto-femoral models

We considered four aorto-femoral models. The abdominal aorta and iliac or femoral arteries 

are common locations for image-based CFD. This region is prone to complex flow due to 

significant rerouting of blood flow proximal to the abdominal segment, and propensity for 

aortic aneurysm or vascular disease in the distal iliac arteries. The four models considered 

are shown in Figure 4(I). Model A represents a non-diseased vasculature of significant 

spatial extent, spanning from the heart down to the femoral arteries. Model B has moderate 

aneurysms in both right and left common iliac arteries. Models C and D have abdominal 

aortic aneurysms, with notable curvature and aneurysm complexity in Model D. Figure 4(II) 

plots the errors in mean flow rate and pressure between the DLP and CFD models, 

demonstrating that the results from the DLP model are in strong agreement with CFD 

simulations. The mean value of the errors is less than 2% for all cases. A maximum error of 

~4% occurred at the right renal artery of Model C. The mean value of the errors in pressure 

are increased by a factor of over 3-fold for all models when only Poiseuille resistances are 

used. Figure 5 provides a comparison between the temporal flow rate and pressure 

waveforms calculated by the DLP model and CFD simulation for Model C, which had the 

highest mean and maximum errors amongst the models. The temporal waveforms from the 

DLP model are in strong agreement with the CFD simulations, as is the general distribution 

of pressure.

3.3 Coronary models

We considered four patient-specific models of the proximal aorta and major coronary 

arteries as shown in Figure 6(I). Flow in the coronary arteries is widely studied since 

coronary artery disease (CAD) is the leading cause of death worldwide. Model A had a 

severe CAD stenosis (~80%) in the first diagonal branch as well as a mild CAD stenosis 

(~50%) in the middle of the left anterior descending (LAD) artery. Model B had a mild CAD 

stenosis (~50%) in the mid LAD. Model C represents a “healthy” vasculature with no 

observable CAD. Model D had mild CAD on the right side, with ~50% diameter reduction 

in the right coronaries at the bifurcation of the main and first marginal arteries. The mean 

value of the pressure errors were 5%, 2.6%, 0.7% and 0.9% for Models A, B, C, and D, 

respectively, as shown in Figure 6(II). A maximum error of ~10% was observed for one of 

the coronary branches of Model A. This maximum error occurred in a healthy branch, and 

not in the complex stenotic region. As shown in the right panel in Figure 6(II), errors are 

substantially higher when assigning the baseline Poiseuille resistance to each vascular 

segment. Figure 7 provides a comparison between the temporal flow rate and pressure 

waveforms calculated by the DLP model and CFD simulation for Model A, which had the 

highest mean and maximum errors amongst the models. The temporal waveforms from the 

DLP model are in strong agreement with the CFD simulations, including downstream from 

the complex stenotic regions. There is also strong agreement the distribution of pressure as 

shown in the top portion of Fig. 7.

3.4 Cerebrovascular models

We considered four cerebrovascular models. Flow in the cerebrovascular arteries is widely 

studied due to it importance to brain health and various diseases including stroke. The 
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models we considered were of the vertebrobasilar system, which is interesting because it 

contains both converging and diverging flows, and significant vessel curvatures. The four 

models considered are shown in Figure 8(I). All models include the left and right vertebral 

arteries as inlets. Figure 8(II) plots the errors in mean flow rate and pressure between the 

DLP and CFD models demonstrating that DLP model incurs error values less than 1% for all 

cases. When Poiseuille resistance is used, the maximum errors are increased by a factor of 

greater than 3-fold (right panel). Figure 9 provides a comparison between the temporal flow 

rate and pressure waveforms calculated by the DLP model and CFD simulation for Model A, 

which had the highest mean errors amongst the models. The temporal waveforms from the 

DLP model are in strong agreement with the CFD simulations as is the overall pressure 

distribution.

3.5 Pulmonary models

We considered four models of the pulmonary arteries, which is a region often studied in 

image-based CFD in the context of pulmonary hypertension and other diseases. Because the 

pulmonary circulation is far more compact than the systemic circulation, pulmonary models 

typically contain numerous bifurcations and many outlets, which leads to significant 

numerical challenges for CFD analysis. The four patient-specific pulmonary models 

extending from the main pulmonary artery to various levels of branching in the left and right 

pulmonary arteries (LPA, RPA) are shown in Figure 10(I). Figure 10(II) shows that the mean 

value of pressure errors were <3% for all pulmonary models tested. Errors increased when 

the baseline Poiseuille resistance was used. For example, the maximum error increased from 

~10% to ~25% in one of the arteries of Model B, where the mean value of the pressure 

errors increase by 3-fold when the baseline Poiseuille resistance was used. This increase in 

error was generally less than in other groups of models though, potentially because the 

models were mostly composed of relatively straight-tube segments. Figure 11 provides a 

comparison between the temporal flow rate and pressure waveforms calculated by the DLP 

model and CFD simulation for Model B, which had the highest mean and maximum errors 

amongst the models. The results of the DLP model are in strong agreement with the CFD 

simulation results at all boundaries (plots a–f), and the overall distribution of pressure is 

consistent between the CFD and DLP models (top panel).

3.6 Pediatric surgery models

We considered four models of surgical repairs used to treat congenital heart defects. This is 

an area where image-based CFD has been widely utilized to understand and develop surgical 

procedures to improve flow re-routing and distribution. The four models considered are 

shown in Figure 12(I). Models A, B and C are of patients with Fontan surgery and D is from 

a patient with Glenn surgery. Figure 12(II) plots the errors in mean flow rate and pressure 

between the DLP model and CFD simulation. Mean pressure errors were 4.7%, 3.9%, 5.8% 

and 1.6% for Models A, B, C, and D, respectively. The maximum error for all cases was 

<10% except for Model C, which had a maximum error of ~15%. As shown in Figure 12(II), 

this maximum error significantly increased to ~ 40% when the baseline Poiseuille resistance 

was used. Figure 13 provides a comparison between the temporal flow rate and pressure 

waveforms calculated by the DLP model and CFD simulation for Model C, which had the 

highest errors amongst the models, and two severe area reductions in the IVC and LPA 
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branches. The results of the DLP model are in strong agreement with the CFD simulation 

results at all boundaries, as is the overall pressure distribution between the CFD and DLP 

results.

4 Discussion

We have presented a framework to predict vessel-level temporal flow rate and pressure 

waveforms in 3D image-based vascular models. The proposed DLP framework provided 

consistent prediction with CFD simulations with mean errors <7% over a range of 

cardiovascular modeling applications. This framework is fully automated based on an input 

model geometry (and specification of boundary conditions), and generally requires 

approximately 1/1000 of the computational cost of corresponding CFD simulations. On a 

single CPU core, it took 334 ± 49 seconds to complete all steps of the DLP framework (steps 

1-5 in Figure 1) over the range of models presented in this work (with most processing 

occurring in step 1 and 2). However, the framework was implemented in Python, whereas 

the SimVascular flowsolver is implemented in Fortran, which is more optimized for compute 

speed. Thus additional saving are expected if the proposed DLP is implemented in a lower 

level language and optimized for performance. Also, it is important to note that the 

nonlinearity of the Navier-Stokes equations coupled with common cardiovascular boundary 

conditions results in numerical challenges that, in practice, can necessitate multiple CFD 

simulations before meaningful results are obtained (e.g. tuning of solver settings or initial 

conditions). The DLP framework is generally not prone to such numerical challenges. Thus, 

“compute time” may be a conservative depiction of CFD time cost.

To the best of the authors’ knowledge, this is the most comprehensive comparisons of a 

ROM to the current standard of image-based CFD modeling. We considered a diverse range 

of image-based vascular anatomies, geometric features, and flow dynamics. Namely, the two 

key non-dimensional parameters of Reynolds number and Womersley number varied from 

approximately 100-3000 and 1-20, respectively. Vessel sizes ranged from approximately 

0.15 cm to 2 cm in diameter. These ranges in Reynolds number, Womersley number and 

vessel diameter span a broad spectrum of expected values encountered in most image-based 

computational hemodynamics modeling studies. In addition to the dynamic and geometric 

differences explored, the number of vascular junctions across the models varied from 4 to 

96. The junctions include both converging and diverging flows, where converging flows 

sometimes result in a negative loss coefficient [34], and in presence of back flow, some 

bifurcations can have both diverging and converging flows at different time points of the 

cardiac cycle–factors that are handled in our implementation. Additionally, vascular 

expansions, as quantified by the area reduction ratio 1 − As/A0, ranged up to approximately 

90%, and the mean curvature ratio δ = R/a ranged up to approximately 0.5 over models 

considered, which again covers a broad range of expected values.

In many application, fully-resolved CFD is essential to determine spatial variations in field 

variables. For example, this is generally necessary to resolve wall shear stress variations 

important to disease progression [17, 15, 4, 3] or detailed analysis of local flow topology or 

transport [41, 40, 39]. However, in many image-based CFD applications, the primary 

objective is to compute integrated quantities such as pressure drop across a stenosis [45, 26], 
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flow rerouting [20, 53, 11], etc. In such applications, 3D time-dependent PDE-based 

modeling may not be essential. This conclusion is not otherwise obvious, however, since one 

might expect that a full Navier-Stokes solve is needed to resolve the complex flow structures 

that determine energy dissipation. Nonetheless, the DLP model appears to reasonably 

predict these losses through basic relations that can be solved quickly. While some error is 

incurred, it is instructive to put the observed levels of error in context. Notably, all 

simulations carry some level of error from modeling assumptions, and uncertainty in 

parameters or boundary conditions [37, 10, 12]. For example, due to limits in image 

resolution, a geometry segmented from image data will carry inherent uncertainty. For 

demonstrative purposes, we considered the uncertainty in minimum lumen diameter (MLD) 

of the 80% stenosis in coronary Model A using a mean MLD error as reported in [14] and 

re-ran the CFD simulation. Figure 14 demonstrates that the deviation in pressure prediction 

between the DLP model and CFD model is well within the error of the CFD results due to 

this particular geometric uncertainty alone.

Unlike most fitting-based ROM strategies (machine learning, basis functions expansions, 

etc.), the proposed DLP framework provides mechanistic insight into the contributions of 

various sources of energy dissipation. Based on the variety of models considered, we note 

that the modification due to flow separation downstream of expansions, when present, has 

the highest contribution to accurately predict flow and pressure in the corresponding model. 

Viscous dissipation introduced by curvature generally has the second highest contribution in 

energy losses. This can be confirmed by comparing the second and third panels of error plots 

for coronary models, which had negligible unsteadiness effects, particularly for the healthy 

coronaries of Model C. Similarly, for the cerebrovascular models the results were improved 

most by considering curvature effects, as α ≈ 2 in these models, and there were no stenotic 

segments. It was generally found that Womersley effects have the next highest impact, where 

for example viscous resistance increases by up to ~5-fold in the aortic models. The 

Womersley effect can be seen for example in the aorto-femoral models where the errors 

approximately tripled without considering this effect. While in [13] losses due to 

bifurcations were found to improve hemodynamics modeling, the results herein indicated 

that the other sources of energy loss are more significant, except potentially in models where 

numerous junctions exist, such as for the pulmonary models. For representative purposes, 

Appendix B provides distribution of the explicit resistance values obtained from a coronary 

DLP model.

The major potential impact of the work presented here is two-fold. First, given the relative 

accuracy of the DLP approach, it could be potentially replace CFD simulation in 

applications where time is of the essence. This broadens the possibilities for image-based 

modeling in clinical scenarios. Secondly, a major impact of this approach is to applications 

where numerous CFD simulations would be desirable, such as for model parameter or 

boundary condition tuning [48], uncertainty quantification [10], sensitivity analysis [16], 

surgery/device design [21], data assimilation [52], machine learning training [25], etc. In 

such scenarios, it could be the de facto model, or used in conjunction with more expensive 

CFD simulations to reduce the number of full CFD model evaluations. This could be highly 

significant as the above types of ensemble-based engineering analyses are playing an 

increasing role in image-based modeling research and translational applications [31]. We 
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also note that although the current DLP framework does not account for vessel deformability 

and wave propagation phenomenon it could possibly be used in conjunction with quasi-1D 

PDE models that are better suited for such analysis. Namely, quasi-1D models are known to 

perform poorly in locations of complex flow [32] (e.g. expansions, curvature, etc.), partly 

because a developed velocity profile must be assumed. The DLP model presented here could 

alternatively be used to modify loss factors in the quasi-1D equations such that more 

realistic flow conditions could be better considered by these long-standing models.
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Appendix

A Model boundary conditions

This section describes the specification of boundary conditions for all models. Further 

description on the boundary conditions, as well as imaging and available model data, are 

posted at www.vascularmodel.com. All of the CAD models are available at this site, except 

the four coronary models, which are uploaded as part of the electronic supplementary 

material.

A.1 Aortic models

Phase-contrast (PC) MRI was used to measure volumetric flow in the ascending aorta and 

the respective waveforms for each patient (see inset panels in Figure 2(I)) was mapped to the 

inlet of the CFD models using a time varying parabolic flow profile as the inflow boundary 

condition. Three-element “RCR” Windkessel models were coupled at all outlets. 

Information regarding how to choose the RCR parameters for each outlet are detailed in 

[28]. Regional mesh refinement was in the aortic coarctation models to resolve the complex 

flow features in the stenotic region.

A.2 Aorto-femoral models

For Model A, an aortic flow waveform was adapted from [35] to have a mean cardiac output 

of 4.6 L/min (female). For Model B the supraceliac aorta blood flow waveform was derived 

from PC-MRI. For Models C and D individualized inflow boundary conditions were 

determined based on the Baker equation [5], relating body surface area to cardiac output, 

and assuming that ~70% of the cardiac output is distributed to the supraceliac aorta [36]. 

The resulting mean flows were used to generate inflow waveforms by scaling a gender-

matched representative supraceliac aortic flow waveform. RCR models were applied at each 

outlet. The RCR parameters for each outlet were determined based on flow distributions to 

the outlets obtained from clinical PC-MRI measurements for Model B, or from literature 

data [33] for Models A, C and D.
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A.3 Coronary models

In all cases, aortic flow was prescribed at the inlet, an RCR of the systemic circulation was 

coupled at the aortic outlet, and coronary-specific LPNs (see Figure 6(I)) that consider the 

time-dependent intramyocardial pressure were coupled at each coronary outlet (separate 

LPN for each outlet). The effect of intramyocardial pressure is modeled by scaling the 

typical left and right ventricular pressures to recover realistic coronary flow waveforms. The 

LPN parameters of the systemic and coronary outlets were tuned to match target pressure 

and flow splits to the aorta and systemic and coronary outlets. A detailed description of the 

tuning procedure is given in [38]. Mesh refinement was used in all cases with stenotic 

lesions.

A.4 Cerebrovascular models

For all models, a characteristic vertebral blood flow waveform from the literature [18] was 

scaled to match time-averaged PC-MRI measurements in the vertebral arteries and mapped 

to a time-varying parabolic profile at the model inlet. Resistance boundary conditions were 

used at the outlets. A total resistance was calculated and distributed amongst the outlets by 

assuming all outlets act in parallel with resistance values inversely proportional to the outlet 

area. More details on boundary conditions are given in [11].

A.5 Pulmonary models

Pulmonary blood flow waveforms from PC-MRI were applied to the inlet of each model. 

The inflow waveforms were manipulated to have zero back flow to avoid numerical 

instability in the CFD simulations. Resistance values were assigned at the outlets based on 

the estimated mean pressure values for each patient, cross sectional area of the outlets, and 

left to right pulmonary flow split ratio obtained from PC-MRI data. Detailed description of 

resistance tuning for the pulmonary modeling is given in [44].

A.6 Congenital heart disease models

PC-MRI data was used to prescribe an inflow waveform to the inlets of computational 

domains. Inflow waveforms prescribed at the inferior and superior vena cava (IVC, SVC), 

internal jugular vein (IJV) and broncheocephilic vein (BrS) are shown in Figure 12(I) for all 

models. RCR models were coupled to each outlet, which parameters tuned to match target 

pressure values and assuming the LPA/RPA flow split ratio to be 45/55 for all patients. All 

numerical values for boundary condition parameters are available at 

www.vascularmodel.com.

B Representative example of DLP modeling results

A representative example of the computed resistance values from DLP modeling are 

presented for better understanding the relative contribution of various sources of energy 

dissipation. Table 1 shows resistance values at systole determined from the patient-specific 

coronary simulation shown in Figure 7 .
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Figure 1: 
The modeling steps of the automated framework to compute blood flow and pressure in a 

representative patient-specific coronary model using the proposed DLP method.
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Figure 2: 
I. Aorta models and their inflow waveforms. II. Errors in mean flow rate (left) and pressure 

(middle) between DLP model (Q̄0D, P̄0D) and CFD simulation (Q̄3D, P̄3D) across inlets and 

outlets. Right panel are errors of baseline Poiseuille resistance DLP model (P̄ pois).
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Figure 3: 
Pressure and velocity fields in aortic Model C during systole, and comparisons of flow rate 

and pressure waveforms between DLP model (“DLP”) and CFD simulation (“CFD”) at 

representative outlets.
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Figure 4: 
I. Aorto-femoral models and their inflow waveforms. II. Errors in mean flow rate (left) and 

pressure (middle) between the DLP model (Q̄0D, P̄0D) and CFD simulation (Q̄3D, P̄3D)
across inlets and outlets of each model. Right panel are errors of baseline Poiseuille 

resistance DLP model (P̄ pois).
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Figure 5: 
Pressure and velocity fields of aorto-femoral Model C at systole, and comparisons of flow 

rate and pressure waveforms between DLP model (“DLP”) and CFD simulation (“CFD”) at 

representative outlets.
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Figure 6: 
I. Coronary models and prescribed inflow and pressure waveforms for coronary LPNs. II. 
Errors in mean flow rate (left) and pressure (middle) between DLP model (Q̄0D, P̄0D) and 

CFD simulation (Q̄3D, P̄3D) over inlets and outlets of each model. Right panel are errors of 

baseline Poiseuille resistance DLP (P̄ pois).
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Figure 7: 
Pressure and velocity fields of coronary Model A at early diastole, and comparisons of flow 

rate and pressure waveforms of DLP model (“DLP”) and CFD simulation (“CFD”) at 

representative outlets.
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Figure 8: 
I. Cerebrovascular models and their inflow waveforms. II. Errors of mean flow rate (left) 

and pressure (middle) between DLP model (Q̄0D, P̄0D) and CFD simulation (Q̄3D, P̄3D) at 

inlets and outlets of each model. Right panel are errors of baseline Poiseuille resistance DLP 

(P̄ pois).
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Figure 9: 
Pressure and velocity fields in the cerebrovascular Model A at systole, and comparisons of 

flow rate and pressure waveforms from DLP model (“DLP”) and CFD simulation (“CFD”) 

at representative outlets.
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Figure 10: 
I. Pulmonary models and their inflow waveforms. II. Errors of mean flow rate (left) and 

pressure (middle) between DLP model (Q̄0D, P̄0D) and CFD simulation (Q̄3D, P̄3D) at inlets 

and outlets of each model. Right panel are errors of baseline Poiseuille resistance DLP 

(P̄ pois).
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Figure 11: 
Pressure and velocity fields of the pulmonary Model B at systole, and comparisons of flow 

rate and pressure waveforms from DLP model (“DLP”) and CFD simulation (“CFD”) at 

representative outlets.
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Figure 12: 
I. Pediatric surgery models and their time-varying inflow waveforms. II. Errors of mean 

flow rate (left) and pressure (middle) between DLP model (Q̄0D, P̄0D) and CFD simulation 

(Q̄3D, P̄3D) at inlets and outlets of each model. Right panel are errors of baseline Poiseuille 

resistance DLP (P̄ pois).
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Figure 13: 
Systolic pressure and velocity fields of the Fontan surgery Model C, and comparisons of 

flow rate and pressure waveforms from DLP model (“DLP”) and CFD simulation (“CFD”) 

at representative outlets.
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Figure 14: 
Pressure waveform from the DLP model, original CFD, and CFD considering minimum 

lumen diameter (MLD) uncertainty of the ~80% stenosis of coronary Model A, cf. Figure. 

7(f).
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Table 1:

Resistance values in cgs units (g/s · cm4) at systole from DLP modeling for patient-specific coronary 

simulation shown in Figure 7. Rv: viscous resistance, Rc: curvature resistance, Ru: unsteadiness resistance, Rs: 

expansion resistance, Rb: bifurcation resistance, Rt: total resistance, RPois. = 8μL
πr̄4  (r̄: mean radius).

coronary model label Rv max{Rc,Ru} Rs Rb Rt RPois.

a 6343 4322 3372 1159 15195 5332

b 18442 5850 3163 82 27537 16358

c 29840 7835 8951 1076 47702 21557

d 4978 1851 823 2436 10089 4705

e 18277 2549 3591 13423 37840 14539

f 9586 2318 1033 391 13329 7227

g 1312 1494 268 197 3271 1273

h 17185 8751 4641 334 30911 13717

i 20037 7881 5273 1267 34458 12006

j 11741 3266 1712 4772 21493 9830

Ann Biomed Eng. Author manuscript; available in PMC 2021 December 01.


	Abstract
	Introduction
	Methods
	Viscous dissipation
	Curvature
	Expansions
	Bifurcations
	Unsteadiness
	Implementation

	Results
	Aortic models
	Aorto-femoral models
	Coronary models
	Cerebrovascular models
	Pulmonary models
	Pediatric surgery models

	Discussion
	Appendix
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:
	Figure 14:
	Table 1:



