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ABSTRACT
We present a spatialized audio rendering system for the use in
immersive virtual environments. The system is optimized for ren-
dering a sufficient number of dynamically moving sound sources
in multi-speaker environments using off-the-shelf audio hardware.
Based on simplified physics-based models, we achieve a good
trade-off between audio quality, spatial precision, and perfor-
mance. Convincing acoustic room simulation is accomplished by
integrating standard hardware reverberation devices as used in the
professional audio and broadcast community. We elaborate on
important design principles for audio rendering as well as on prac-
tical implementation issues. Moreover, we describe the integration
of the audio rendering pipeline into a scene graph-based virtual
reality toolkit.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism — Virtual
Reality
Keywords: 3D Audio, Spatially Immersive Display, Virtual
Reality

1. INTRODUCTION
Virtual environments have steadily gained popularity over the

past decade. With the availability of increasingly powerful graph-
ics hardware, it is possible to drive virtual reality applications on
platforms ranging from desktop-based systems to spatially immer-
sive displays (SIDs) [5, 18, 26]. Research in the area of virtual
reality displays has primarily focused on graphics rendering and
interaction-related issues. In addition to realistic rendering and nat-
ural interaction, spatialized sound provides an important cue,
greatly enhancing the sense of presence in virtual environments
[2]. 

On the one hand, for small-scale desktop systems, standard PC
audio hardware can readily be employed in combination with
headphones or multiple speaker setups. Furthermore, programming
libraries such as Microsoft’s DirectX [20] or Creative’s implemen-
tation of OpenAL [3] provide sufficient support for those setups.
On the other hand, for large-scale SIDs, stereo headphones are
often not feasible and these APIs cannot provide the necessary
flexibility with regard to the number of speakers mounted at arbi-
trary positions. High-end audio systems [17] can provide flexible
hard- and software solutions with good scalability. Unfortunately,
these solutions can significantly increase the total cost for building
an SID. 

We are currently developing a novel networked SID, the blue-c,
which combines immersive projection with multi-stream video
acquisition and advanced multimedia communication. Multiple
interconnected portals will allow remotely located users to meet, to
communicate, and to collaborate in a shared virtual environment.
We have identified spatial audio as an important component for
this system. 

In this paper, we present an audio rendering pipeline and system
suitable for spatially immersive displays. The pipeline is targeted
at systems which require a high degree of flexibility while using
inexpensive consumer-level audio hardware.

For successful deployment in immersive virtual environments,
the audio rendering pipeline has to meet several important require-
ments:

• 3D localization: The accurate 3D positioning of the virtual
sound source is of crucial importance for spatial sound. The
perceived position of the sound source should match the spa-
tial location of the associated object in the virtual environ-
ment. The main challenge here is to map sound sources at
arbitrary virtual positions to a limited number of speakers,
whose real position is often constrained by the physical setup
of the SID. 

• Room simulation: Acoustic room simulation provides an
impression of important properties of the virtual environment,
e.g., the size of a virtual room, the reflection properties of the
walls, etc. 

• Live audio input: In addition to synthesized sound, live audio
input is important for applications in collaborative virtual
environments. Sound input can either be local or can be
received over the network from a remote portal.

• Speed and efficiency: There is a trade-off between accurately
simulating underlying physical properties of spatial sound and
the efficient realization of a sound rendering pipeline using
standard hardware. It is important to allow for a reasonable
number of simultaneous virtual sound sources.

The audio rendering pipeline presented in this paper meets these
requirements. This is achieved by efficiently simulating important
acoustic phenomena in software. While we cannot model exactly
all physical properties of spatial sound, we use simplified, but
proven [1] models that produce convincing results. Additional
realism is achieved by adding reverberation using an external hard-
ware device. 

This paper shows how these algorithms are integrated into a
sound server that fits well into our scene-graph based virtual reality
application programming toolkit and which requires only moderate
processing power, providing up to 37 localized sound sources on a
single 400 MHz MIPS R12000 processor. The sound server is inte-
grated into the core of the blue-c software environment, making it
easy to use and providing tight synchronization with the graphics
system.
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2. RELATED WORK
Simulating acoustic phenomena is a well documented research

area. There is a variety of systems, ranging from simple 3D posi-
tioning of sound effects up to complex, physics-based simulation
of concert halls. Solutions that render soundtracks offline in paral-
lel to computer graphics have been available for many years [28,
30]. For interactive, immersive virtual reality, the audio system
must render all sounds in real-time. Sound systems for spatially
immersive displays [5, 8], however, have some specific require-
ments that are not easily met by existing standard solutions.

VR Audio Systems. Software toolkits for immersive virtual
reality environments typically provide some kind of audio render-
ing subsystem. Avango [29], for example, uses a sound server [8]
based on the MAX/FTS sound processing system [7]. It is con-
trolled over the local network via UDP. Integration into the scene is
accomplished with special nodes in the scene graph. IRCAM’s
Spat modular sound processing software [15], which is available as
a MAX/FTS object, implements a pipeline similar to ours. It is not
clear, however, how it can be integrated into our virtual reality
application development system with dynamically moving
sources, networked audio streams, and how many sound sources
can be spatialized in real-time without dedicated DSP hardware.
The DIVA system provides sophisticated synthesis and spatializa-
tion algorithms [14]. Its high-quality spatialization however
requires offline-processing. The CAVERNSoft G2 toolkit [19]
includes tools for streaming audio data over the network, however,
it does not provide support for spatialization. 

3D Localization. There are two basic approaches for localizing
sound sources: Volume panning with or without crosstalk-cancella-
tion [22] and filtering with a head related transfer function (HRTF)
[12]. Volume panning methods model a sound field with different
intensities according to the direction of the virtual source. They
achieve good localization precision if there are enough speakers
available [24]. Using a large number of speakers allows for simu-
lating sources with high precision using wave field synthesis meth-
ods [27].

HRTF-based approaches model the frequency response of the
human head and ear as a function of the source direction. This
approach is especially suited for sound reproduction through head-
phones. Using HRTFs with speakers is possible, but it requires
careful crosstalk-cancellation to achieve good localization preci-
sion [22]. Unlike our solution, systems based on HRTFs must be
adjusted for the individual user and require head-tracking when
using headphones.

3D localization using volume panning is implemented in most
toolkits targeted at the multimedia and game market, such as
Microsoft’s DirectSound [20], Creative Lab’s EAX or OpenAL
[3]. Hardware-acceleration for these interfaces is available in con-
sumer hardware. These systems rely on standard quadraphonic or
home-theater 5.1 surround speaker placement and provide only
minimal localization in the Z-axis by attenuating or amplifying the
high frequency components of the signal. Such a fixed speaker
positioning scheme prohibits the use of these audio APIs in a SID
with large, solid projection walls in front and to the sides of the
user. Other reasons against using low-end consumer-level hard-
ware are the lack of sample clock synchronization when more than
two input channels are needed, and the lack of customizable insert-
points in the signal path, e.g., for adding customized reverb algo-
rithms. Our system supports arbitrary positioning of the speakers.

High-end algorithms add early reflections for additional local-
ization and distance cues [14, 17]. These reflection patterns are cal-

culated from a simplified environment geometry that is provided to
the system. The audio signal is then convolved with this impulse
response. High-end systems, such as Lake’s AniScape or SpaceAr-
ray [17], are typically equipped with dedicated DSP hardware to
provide the necessary processing power for these calculations. In a
typical back-projection setup, large projection walls made of glass
form a bad acoustic environment with many reflections. These
reflections and resonances interfere with the simulated responses,
rendering the additional effort and costs questionable.

Ambisonics [13, 9] B-format provides an encoding scheme that
allows full 3D localization of sound signals with four discrete
channels. It can be made compatible with standard two or 5.1
channel equipment (UHJ hierarchy and G-format, respectively)
where it provides an improved stereo or surround experience.
Although it was used in the music industry, Ambisonics encoders
and decoders never became a commodity.

Room Response Simulation. Simulating the acoustic room
response is essential for a realistic sound environment. The level,
time, and density of early reflections and the reverb tail provide an
impression of the size, form and materials of the surrounding envi-
ronment. From daily experience, we know that the response of a
small bathroom sounds significantly different than that of a large
church. Even though we may not be consciously aware of these
acoustic properties, we immediately notice when something is
wrong.

Physics-based simulation of acoustic properties is available for
architectural design (http://www.netg.se/~catt/), especially for con-
cert halls. These systems calculate the room response for a given
position and sound source and then convolve audio streams. Calcu-
lating the impulse responses using ray-tracing methods [16, 23] is
a very time consuming offline process and therefore not suited for
interactive virtual environments with a moving listener and several
moving sound sources. Recent approaches using prioritized beam-
tracing [10, 21] are promising. Once they model some additional
frequency-dependent effects in real-time, they will probably pro-
vide pleasing and realistically sounding results, given enough
available processing power.

Applying long impulse responses with low latency is still com-
putationally expensive, though. Real-time convolution systems
using low-latency “block-wise” FFT are available for both musical
applications or simulation purposes [17]. These are either limited
to a small number of sound sources and/or prohibitively expensive.

Especially with physical simulation approaches, there is always
a trade-off between available DSP-power and achievable realism.
Dedicated parallel processing systems are used for high-end simu-
lation and training applications where precise auditory cues are
required. For the music and film industry where a pleasing sound is
more important than perfect realism, generalized reverberation
algorithms that can be parametrized with room size, characteristics
of early reflections and the reverb tail are used to provide the illu-
sion of a natural environment. The algorithms typically use nested
networks of allpass-filters with feedback [11, 6], the implementa-
tion details are usually considered a trade secret, though. These
algorithms require significantly less processing power to achieve a
pleasing result compared to physics-based simulations. We choose
this approach because it fits our target applications best (see
Section 4.6).

Current low-end sound hardware targeting the game market
includes similar reverberation algorithms. Due to limited process-
ing power, they often produce “metallic” sounds and introduce
artefacts such as unwanted modulation and pitch changes in the
reverb tail.



3. SYSTEM OVERVIEW
Figure 1 depicts a high-level overview of the blue-c VR system.

Application data is maintained in a scene graph, which contains
both graphics and audio nodes. The scene graph, which can
dynamically be modified by the application, is traversed indepen-
dently by the graphics and the audio sub-systems. Synchronous
rendering of virtual objects and virtual sound sources is achieved
by providing feedback from the graphics sub-system to the appli-
cation (see Section 6). 

The audio rendering sub-system comprises four core functional
units:

• The sound sources are controlled by scene graph nodes or by
the application. They provide audio samples and keep all
information that is required for localization.

• The localization pipeline receives data from the sound
sources. The data is delayed, filtered and split to the output
channels according to the positional information from the
source. The localization pipeline subsequently sends informa-
tion to the reverb send channel.

• The reverb unit generates the room response. The data stream
received from the localization pipeline is processed and sent
to the mix bus.

• The mix bus sums all incoming data. After clipping, the data is
sent to the digital-to-analog converter which feeds the speak-
ers and subwoofer.

We follow a volume-panning-based localization approach with
multiple speakers that can be implemented using inexpensive, off-
the-shelf hardware components. Even though head-tracking infor-
mation is typically available in SIDs, we want to avoid that the
user has to wear other devices, such as headphones, in addition to
stereo glasses. We also avoid the adjustment of HRTF data for dif-
ferent users. 

4. THE AUDIO RENDERING PIPELINE
In this section, we construct a pipeline for spatialized audio ren-

dering. This pipeline comprises all important functional stages,
including audio sources, distance delay, air absorption, distance
gain, and 3D-positioning. Figure 2 depicts the entire pipeline in
detail. 

4.1 Audio Sources
Input audio data can originate from four different types of

sources:

• Prerecorded audio can be loaded into memory or streamed
from disk. Background music or long audio loops are typi-
cally streamed, short and repeatedly used sound effects are
preloaded to reduce the number of operating system calls and
the overhead of sampling rate and format conversion.

• Live input is used to integrate external sound sources. This
includes microphones, external hardware synthesizers for
music or effects, or other sound sources. 

• Networked input receives an audio data stream over the net-
work. 

• Synthesized audio may be used for sound effects or music. 

Each audio source includes position, global gain and reference
distance information. The reference distance is used for adjusting
the gain and air absorption according to the actual distance
between the object and the listener. The distance from the object to
the listener defines where a gain equal to one reproduces the signal
at correct loudness.

All audio sources must provide data with the system sampling
rate and data format. The conversion is provided by the audio file
libraries [4]. The sampling rate of the input system should be syn-
chronized to the output system to avoid drop-outs due to clock
drifts.

Audio Buffers. All audio data is processed in blocks with a con-
figurable length, typically in the order of 20 ms. This length
defines the maximum update latency because new calculation
parameters are only set at block boundaries.

The audio block length should be choosen roughly equal to or
slightly higher than the frame time of the graphics system to
achieve a similar delay for scene-updates in both the visual and the
sound rendering. Shorter blocks are less efficient to process, espe-
cially for audio sources that stream data from disk. Furthermore,
they do not provide a smooth parameter interpolation for moving
sources, resulting in a continuous stop and go motion because the
target position values are set once per graphics frame only (see
Section 6.3). If the blocks are too long, there is a noticeable delay
between user interaction and the sonic feedback.

The size of the audio rendering blocks is always rounded up to
the next 16 sample boundary to fit nicely into the system cache and
to allow for loop-unrolling optimizations.

Audio buffers are managed by the main sound service. They are
reused to avoid the cost of dynamic memory allocation or wasted
space due to barely used buffers. All data is kept as channel-inter-
leaved 32 bit floats.
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Figure 1:  System overview including scene graph, graphics
and audio rendering subsystems.
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4.2 Distance Delay and Doppler Effect
The low propagation speed of sound results in perceivable

delays for distant events and the Doppler effect, a frequency shift
for fast moving sources.

Both effects can be modeled by delaying individual sound sam-
ples as opposed to delaying trigger events and modeling the Dop-
pler effect with a vary-pitch sound source, which, however, is not
practical for live and networked input. The delay time is given by

, (1)

where Ds is the distance from the source to the listener and vsound
is the speed of sound.

Audio samples are delayed by storing them in a delay line
buffer. A new data block is added into the delay line buffer at the
current position Pcur as shown in Figure 3. Data is read in blocks
starting at Pcur + td.last and ending at Pcur + td. Then, Pcur is
advanced to the next block and td.last is set to td. The number of
samples read and written remains constant for each simulation
step. The read position is interpolated linearly for every sample
and samples are read at fractional positions with linear interpola-
tion. 

The time difference between td.last and td results in a sweep
across the data, producing the Doppler effect. Note that fast mov-
ing sound sources should not include excessive high frequency
components as anti-aliasing filters are not applied for performance
reasons. 

The distance delay line is organized as a circular buffer. It holds
218 sample frames by default which equals to roughly six seconds
worth of audio at 44.1 kHz sampling rate and allows to model
objects at a distance up to 2 km. Distances exceeding this limit are
clamped to the maximum. The delay line length could be shortened
for smaller environments if the available memory is constrained.

4.3 Air Absorption
In addition to the regular media-independent power loss, we also

model the high-frequency damping effect of the air. 
The energy dissipation in air only affects frequencies above

1 kHz with approximately -4 dB damping per km. This effect is
approximated by applying a standard bi-quad filter with high-
shelving characteristics. The distance is rescaled using the refer-
ence distance to avoid excessive filtering.

The filter coefficients are not interpolated within the block size.
This is a reasonable simplification as long as block sizes are kept
reasonably short. More sophisticated simulations, taking humidity
and other environmental factors into account, provide little advan-
tage for our applications at a much higher computational cost.

As a welcome side-effect of the air absorption filter, high-fre-
quency aliasing-noise from the Doppler effect simulation is attenu-
ated during this step.

4.4 Distance Gain
In this step, the gain for the source is calculated as a function of

Ds:

, (2)

where Dref is the reference distance. It models the intensity fall-off
according to the distance for point sources.

4.5 3D Positioning
Up to this point, all audio data were treated as a single channel

stream. In the 3D positioning stage, the stream is mixed onto sev-
eral speaker channels.

The normalized vector vs pointing from the listener to the source
defines the direction of the source. This direction must be repro-
duced as closely as possible using a limited set of speakers.

In a possible implementation, each speaker defines a vertex of a
convex hull of triangles around the listener. The system calculates
the intersection point and triangle between the convex hull and the
ray defined by vs. The signal is then distributed to the three speak-
ers at the triangle vertices according to their distance to the inter-
section point. This method works well even with a small number of
speakers as long as the listener stays inside the convex hull.

Our optimized method is based on the ideas presented in the
VBAP method [24]. The dot-product between vs and the vector to
the speaker vspk defines the gain. Negative results, i.e., speakers
with an angle to the source larger than 90 degrees, are set to zero,
disabling the respective speaker for the current source. To avoid
large differences in the perceived spread between sources lying
exactly in the direction of a speaker and sources between speakers,
we increase the active angle for each speaker by adding a bias of
0.1 and rescaling the dot product. The channel gain for each
speaker is therefore given by:

, (3)

where . denotes the dot product.
This means that speakers slightly behind the plane defined by

the listener and the source direction may be active too, providing
more constant spread perception. The resulting channel gain vector
is then normalized to guarantee constant power regardless of the
number and position of the speakers.

This CPU efficient vector-based panning method works well if
there are enough speakers available to cover all angles. Eight
speakers located in the corners of a cubic projection environment
provide a very good coverage, even without a final normalization
step. For typical virtual worlds with a bias on events in front of the
listener, six speakers still provide good coverage. Figure 4 illus-
trates the possible speaker placement in our projection environ-
ment. 

4.6 Reverb Processing
Up to this stage, the pipeline provides a simulation of a single

sound source without environment interaction. Such a “dry” source
will never sound natural without simulating the room response
though.

There are two fundamental methods for generating room
responses: Calculating the reflection patterns using physical simu-
lation and convolving the audio signal, or using general parame-
trized algorithms that generate a realistic experience. For our
system, we decided to use high-quality implementations of param-
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etrizable algorithms that can be found in studio effect processors
for the music industry. The typical applications for our system are
located in fictional, often highly abstract places where simulation
has limited meaning and where an intuitive reverb description
including decay times, pre-delays and damping factors is conve-
nient for the designer. This saves us a complex simulation and a lot
of processing power at the cost of some added latency due to the
use of an external reverb unit.

The reverb processor is fed through a send bus which is kept in
parallel to the speaker bus. The output of the reverb system is then
mixed onto the speaker bus. Each sound source includes a reverb
send level parameter to control its contribution to the overall
reverb simulation.

We control the effects unit using a MIDI connection. The effects
processor should support smooth parameter interpolation to avoid
clicks when changing room parameters.

The room response not only provides a realistic impression of
the environment, it also provides an additional distance cue.
Sources close to the listener have a high direct sound to room
response ratio, whereas the room response is the dominating com-
ponent for far away sources. We approximate this effect by reduc-
ing the reverb send level Lrev for audio sources that are close to the
listener according to:

. (4)

4.7 Loudness Projection
The loudness projection is the last step before the final mix-

down. The distance between the listener and the speakers must be
taken into account. This is especially important in immersive envi-
ronments where the user can freely walk around. The tracked head
position is used to update both the speaker direction vectors and
individual speaker gains. The gain is defined by 

, (5)

where Dspk is the actual speaker distance and Drefspk is the speaker
reference distance. The speaker reference distance is defined to be
equal to one meter for simplicity.

4.8 Fused Pipeline
Some of the highly modular functional stages can be combined

to yield a streamlined pipeline that can be implemented efficiently
without the loss of functionality. The last stages of the rendering
pipeline, including distance gain, 3D-positioning and loudness pro-
jection, are fused into a single mixdown matrix representation,
reducing the localization pipeline depth to three stages as shown in
Figure 5.

A mixdown matrix M defining the gain factors for each target
channel is calculated once per block using the information stored
in the 3D positioning service. The output channel elements include
the normalized gain from the positioning stage Lchn multiplied by
the correction factor for the current listener position Lspk. Further-
more, each element is multiplied by the overall gain factor of the
object Ls and distance gain Ld, resulting in 

, (6)

where i is the index of the output channel. The dedicated low fre-
quency effect channel is set to , ignoring positional infor-
mation (see Section 4.9).

The mixdown matrix also includes the reverb send channels.
These entries are set to the source gain factor Ls multiplied by the
distance gain Ld and the reverb send level Lrev according to (4):

. (7)

Unused channels are set to zero in the mixdown matrix.
For the mixdown, each input sample is multiplied by a tempo-

rary mixdown matrix, the resulting vector is added to the main mix
bus. The temporary mixdown matrix is a linear interpolation
between the last mixdown matrix and the matrix calculated for the
current block. This results in smooth changes of the channel gains,
avoiding clicks and loudness jumps when the position or master
volume of the audio source has changed. As a performance optimi-
zation, the interpolated mixdown matrix is recalculated every 32
samples only.

The use of the mixdown matrix fuses the 3D positioning, loud-
ness projection and reverb send operations into a single, efficient
operation. In theory, more operations could be included into the
mixdown-step, in practice, however, the large number of tempo-
rary values needed for interpolation and filter coefficients would
defeat efficient processor register allocation.

Speaker configuration, normalized listener to speaker vectors
vspk, and the loudness projection factors Lspk are cached in the 3D
positioning service. This information is updated once per audio
rendering cycle. The current head position is read from a tracking
system. 

4.9 Equalization and Low Frequency 
Management

Before the sound is sent to the speakers, an optional bank of
equalizer filters is applied to the audio stream. This filter bank is
used to compensate for the non-linear frequency response of the
speaker system and to attenuate resonant frequencies of the acous-
tic environment.

An additional audio channel contains the sum of all speaker
channels. This channel is low-pass filtered and sent to a subwoofer,

Figure 4:  Possible positioning of speakers in the blue-c: (a) Six
speaker setup. (b) Eight speaker setup.
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providing additional bass-response. The bass cross-over frequency
is configurable. Typical values range between 50 and 100 Hz,
depending on the speakers and subwoofer used.

4.10 Handling of Non-spatialized Sound
Not all audio sources are spatialized. For example, background

music used as theme for certain environments should be rendered
without further processing. Sound sources without positional infor-
mation are treated similar to localized sound sources but without
the delay and air absorption filtering. The sound is distributed to
the speakers with the global volume level applied only.

5. IMPLEMENTATION
The audio system consists of the main service, a 3D positioning

service, a generalized audio source class with three derived imple-
mentations and some helper classes as shown in 6.

The main service initializes the audio I/O hardware, keeps a list
of active sound sources, runs the rendering loop and provides a
high-level interface for the application. It also instantiates the 3D
positioning service which keeps a list of speakers and their relative
position to the tracked user. It gets the head position from a track-
ing service. The audio source objects implement the full rendering
pipeline, derived classes implement audio streaming from file,
memory or live-input. The reverb control class provides a driver
interface to the external reverb unit.

5.1 Process Model
The implementation of the fused pipeline was optimized to run

in a single process on an SGI Onyx 3200 graphics server. This pro-
cess calls all audio sources to mix a single buffer down to the main
bus, then blocks until the hardware is ready to accept the buffer.

Parallelization by providing additional mix busses with their
own processes would be straightforward, but it would take away
processing power we need for the graphics rendering and provide
more sound sources than is needed in practical applications.

Accessing and updating audio source parameters can be done
from any process. The audio source objects avoid conflicts by
using locking mechanisms. The rendering pipeline always uses the
most recent values and interpolates from the state active at the end
of the previous rendering block, providing smooth level and posi-
tion transitions.

5.2 Hardware and System Libraries
We first validated the algorithms using a PC running Windows

2000 with an eight channel audio interface. 
The optimized, fused implementation runs on a Silicon Graphics

Onyx 3200 with eight 400 MHz MIPS R12000 processors and the
standard eight-channel ADAT digital audio interface. The SGI dig-

ital media library was used for communication with the audio hard-
ware and audio file input. It provides all necessary sample rate and
data type format conversions. 

We used an Alesis AI-3 eight channel AD/DA converter, which
is connected directly to six Yamaha MSP5 powered speakers and
to a Yamaha SW10 subwoofer, the reverb unit, a wireless micro-
phone system and a CD player. We used a t.c. electronic M-
ONE XL studio effects processor for the reverberation system.
External audio input was provided by a wireless microphone sys-
tem and a CD player.

6. INTEGRATION INTO THE BLUE-C API
This section describes the integration of the sound rendering ser-

vice into the bcAPI, our blue-c application programming interface.
The bcAPI provides easy to use mechanisms for implementing col-
laborative, immersive virtual reality applications.

6.1 API Concept
The bcAPI consists of a system core object which keeps a list of

services and the main data structure, the scene graph. Input ser-
vices can either provide state information through public methods
or generate messages which are passed to the application or other
services.

Services are started and initialized according to a configuration
file. Available services include a multi-pipe graphics rendering
system, X11 device input, a magnetic tracking system for the head
and 3D interaction devices, a sound service, and others.

The scene graph is the main data structure. It is based on SGI
OpenGL Performer v2.5 [25]. The scene contains traditional 3D
geometry as well as custom nodes for rendering remote users, free-
form curves and surfaces, dynamic particle systems, video inlays
and active nodes for behavioral data.

A blue-c application registers the main application class with the
core. This class provides a set of methods which are called by the
core. These methods include application startup, per-frame pro-
cessing, message-handling and shutdown. In these callback meth-
ods, the application may modify the scene-graph as a reaction to
messages or during the regular frame processing and call system
services. Additional callbacks can be registered for customized
graphics rendering.

The integration of the audio rendering system into the blue-c
API consists of two main components: The audio rendering service
and active control objects in the scene graph.

6.2 Sound Service
The sound service provides a low-level interface for playing

back sounds in our environment. A forked process configures the
audio hardware according to the settings defined in a configuration
file and renders audio source objects. Configurable options include
the number of output channels, number and position of speakers,
block length, default path to audio files, and reverb unit driver and
setup.

All audio source objects are created and managed through meth-
ods provided by the sound service. Whenever a new sound source
is created, a handle to the source is returned to the application. This
handle is used for updating parameters such as position or master
gain of the sound object.

The sound service also keeps a list of preloaded audio objects.
These are identified by an integer handle and include all samples
already converted into the internal audio representation for effi-
cient playback without disk access.

The sound service is also responsible for audio input. It reads
data from the configured audio source. Input channels can be

SoundService

SoundSource

PreloadSource LiveInputSourceStreamSource

PreloadData

LiveInput

3DPositioning

ReverbControl

Figure 6:  Sound service class model.



named for ease of use and portability across different target sys-
tems. Names are defined in the configuration file. The input system
is also used for retrieving the reverb output from the external
effects processor.

The sound service is not aware of data in the scene graph or the
active view into the virtual world. All positional information is
expressed in the same metric, right-handed, Z-up, real-world coor-
dinate system that is also used by the other hardware interface ser-
vices.

6.3 Audio Nodes
The application can choose to talk directly to the sound service.

This is the preferred way for sound effects as immediate reaction to
events generated by input devices. A more elegant way is to
include active audio nodes directly in the scene graph for all other
sounds.

Active nodes are special nodes in the scene graph that can be
placed anywhere in the hierarchy. Active nodes are evaluated once
per frame, providing a single synchronization point. They can
update service or scene graph parameters and trigger events based
on the position of the viewer relative to the origin or area defined
by the node. Both evaluation and trigger callbacks are defined as
virtual members and can be provided by the application developer
for customized active area management such as automatically
opening doors.

The API provides a set of active node implementations for con-
trolling the audio system. They start or stop a defined sound when-
ever the distance between the object origin and the user crosses
defined thresholds. This works for both localized and non-local-
ized sound sources such as background music.

For localized sound sources, the position of the sound source is
updated for each frame to the corresponding real-world coordi-
nates. Sound sources therefore automatically follow objects in the
scene if their corresponding control node belongs to the same
transformation group, e.g., if they are children of the same group
transformation node.

The same active node concept is also used to control reverbera-
tion parameters. Whenever the user enters a defined area, the exter-
nal effects processor is reprogrammed to simulate rooms of a
defined size or material.

7. EXPERIMENTS
We validated the localization algorithms with several experi-

ments. All experiments were done on an SGI Onyx 3200 (see
Section 5.2) running applications built using the blue-c API pre-
sented in Section 6. The audio clock rate was set to 44.1 kHz. The
block length was set to 20 ms to meet the typical graphics render-
ing frame rate of 50 Hz. Reducing the block length to 10 ms did
not result in relevant performance differences. Figure 8 shows the
first blue-c projection environment with six speakers installed.

Localization. Localization precision and intensity distribution
was first tested by slowly moving a virtual sound source around
the listener on a sphere. No obvious “holes” were present with the
six speaker configuration. Simulations indicate that near constant
localization precision would be achievable with eight speakers.

The next experiment was to seek moving ships emitting engine
sounds in a misty environment with a rather short visibility range
but high sound levels (see Figure 7). It was easily possible to find
the scattered ships based only on auditory cues. Localized audio
events can help to draw the user’s attention towards occluded areas
in a virtual world. This is a powerful tool for the designer of the
virtual environment to guide the user.

Reverberation. Reverberation mainly depends on the effects
processor used and the appropriate parametrization by the designer
of the virtual environment. We tested the implementation with an
indoor scene consisting of two rooms with different reverberation
parameters. Even without a physically correct simulation, the
reverberation provided the user with an additional impression of
the space.

7.1 Performance Measurements
The performance of the system was measured in number of con-

current sound sources that can be active at the same time. The
sound sources were tested with mono and stereo input and with
activated localization. The localization tests were done with a
mono source.

For the preload data, we used a looped source with 320,000 sam-
ples. The streaming sources loaded a long wave file from a local
disk. It was recorded in 44.1 kHz 16 bit format, sample rate and
format conversion was done on the fly. The live-input tests were
performed with a mono microphone source and a stereo CD input.

The results presented in Table 1 tell the maximum number of
sound sources that could be activated without signal drop-outs.

Disabling the distance delay stage significantly increased the
maximal number of available sources, approaching almost the per-
formance of non-localized sources. Increasing the system sample
rate to 48 kHz reduced the numbers for preloaded and live input byFigure 7:  Screenshot of the ship seeking test application.

Table 1: Maximal number of sound sources.

Source Mono Stereo Localized
Preloaded 78 33 37
Live input 54 25 30
Streaming 65 31 33

Figure 8:  Setup of the blue-c with six speakers.



about 5%, whereas streaming performance dropped significantly
due to the necessary sampling rate conversion.

7.2 Application Scenario
The sound rendering system is used to enhance a virtual

museum demonstration application. Whenever the user approaches
an exhibition object or picture, a recorded explanation text is
played from the position of the object. The playback stops if the
user walks away. Figure 9 shows rendered views of the scene with
a visualization of the active sound regions in the form of spheres.
Additional sound sources are present for water noises from the
fountain in the center, a non-localized background loop and a wel-
come message in the entrance door.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented a system for audio rendering for spa-

tially immersive displays, integrating efficient, proven algorithms
into a sound server that fits well into our scene-graph based appli-
cation programming environment. We achieved a reasonable trade-
off between localization precision, realistic room acoustics and
computing power required by using simplified, physics-based
models and integrating an external studio effects processor. We
also included tools to deal with shortcomings of the acoustic envi-
ronment formed by the SID. The system is completely built using
affordable standard hardware components.

Future work will include porting the sound rendering service to
a dedicated PC. The service will then be controlled remotely over
the network. Directional sound sources will be implemented,
accounting for different sound emission characteristics depending
on the angle of an object towards the listener. An area management
system is currently under construction and will be used for both
visibility culling and occlusion and doorway simulation for sound
sources.
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Figure 9:  Active sound regions in the virtual museum depicted
as red spheres. (a) Top view. (b) Visitor’s view.
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