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ABSTRACT OF THE DISSERTATION

Exploiting Regularities to Recover 3D Scene Geometry

by

Alex King Lap Wong

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Stefano Soatto, Chair

Recovering three-dimensional (3D) scene geometry from images is an ill-posed problem due to

the loss of the extra dimension in the process of projection. Hence, the solution hinges on the

choice of regularization or prior assumptions about the scene. We study the effects of various

regularization schemes on the 3D reconstruction problem under two problem settings, single

image depth prediction and sparse depth completion. Obtaining the 3D scene from a single

image is literally an impossible task as there are infinitely many 3D scenes compatible with

the given image – making both problem settings great candidates for evaluating the influence

of a given regularizer. We begin by examining the relation between data fidelity residual and

the degree of regularization to form a spatially and temporally varying adaptive weighting

scheme for single image depth prediction. We additionally explore the use of gravity, as a

supervisory signal, to induce a prior on the pose of objects populating a scene. To extend

the use case to real world applications, we develop visioning systems to infer dense depth

from an image with associated sparse depth measurements. We leverage the abundance

of synthetic data to obtain a learned prior for guiding the learning process. Conscious of

the limitations of current depth completion methods in processing sparse depth and their

growth in parameters, we propose a two-stage approach that approximates the scene with a

“scaffolding” and refines the approximation with a simple light-weight network. The result

is a small and fast, but accurate visioning system that fits in an embedded system. To

enable an agent to continuously learn, our systems are completely unsupervised and learn

by exploiting geometry and known regularities.
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CHAPTER 1

Introduction

We, human beings, as intelligent agents, are constantly interacting with our environment.

From fetching a cup of water to driving a car, we take in an immense amount of information

from our visual world to accomplish these tasks. We see colors, and from that we are able

to identify shapes, gauge distance and even determine the scale of far-view objects. This

is made possible not only because our brains dedicate hundreds of millions of neurons for

visual processing alone, but also because we have prior knowledge about the construct of

our visual world (e.g. the road is flat, an average person is about 1.5 to 1.8 meters tall),

allowing us to infer properties of the scene, even if we are given novel imagery.

An autonomous agent, like us, needs to successfully navigate an environment in order to

accomplish a task. Instead of our eyes, a common visioning system consists of cameras and

light sensors. For an agent to navigate an environment, it is given images (for simplicity)

and is required to reason about numerous questions that may include, but are not limited

to: whether or not there is an object, whether an object is a chair, and how far away is the

object. We are interested in recovering the shape of the scene (e.g. where are the surfaces

and how far are they from the agent).

An agent may learn to perceive its environment in many ways. One may give an agent

images of a scene and, for every pixel in the images, tell the agent how far (depth) the

agent is from the corresponding point in space. Such is a supervised learning framework

and requires per-pixel ground-truth annotations, that is often unavailable, for each image.

Moreover, the ground-truth annotations, when available, are expensive to acquire and are,

often times, the result of heavy data-processing and aggregation of information from many

frames – still the quality may be poor and annotations may only over cover a portion of the
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image. This type of supervision is not scalable. We instead exploit the seemingly infinite

amount of unlabeled imagery to train an agent to infer depth in an unsupervised manner by

exploiting geometric relationships between the given images and regularities of the scene. In

this thesis, we will illustrate several methods to train an agent to perceive without the use

of ground-truth annotations, and show the benefits of leveraging known regularities in our

visual world.

1.1 Motivation

A sequence of images contain rich information about the world (scene) around us. Specifi-

cally, they inform us about the three-dimensional (3D) geometry (shape) of the environment

and our (the agent’s) motion within the said environment. To begin, let’s consider a sequence

of two images captured by a monocular (single) camera. Given the camera calibration, one

can infer the motion (pose) of the camera up to a scale in a global Euclidean reference

frame, provided that there is sufficient parallax between the two frames. Given we have

pose from one frame to the other, we can then recover the scene geometry represented as

depth or distance from the camera (again, up to a scale) based on the principles of structure

from motion (SFM). We do so by finding the set of corresponding pixels (correspondences)

between the image pair by projecting the pixels from one image frame to the other based

on the predicted depth. The same can be done with a pair of images captured by a stereo

rig (two cameras separated by a fixed distance), in which case the relative pose between the

camera is known. After rectifying the pair of stereo images, a pair of correspondences will lie

along the same scan line; hence, the search for a given pair of correspondences is no longer

over the entire image space, but becomes a one dimensional search to find the disparity (dis-

placement) between a pair of pixels along a given scan line – one can then synthesize depth

from disparity by applying the focal length and the baseline (distance between the optical

center of the cameras). In both cases, once all of the correspondences have been found, we

will have effectively recovered the geometry of the scene.

To compute the said correspondences, one may find pairs of pixels that are of similar in-
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tensities (minimizing the photometric discrepancy). However, there exists a correspondence

ambiguity when matching these pixels. When registering two frames, both are subjected

to occlusions and disocclusions (visibility phenomena) where a pixel may appear in one but

not the other image. As the 3D reconstruction problem is ill-posed, the solution (the set of

correspondences) hinges on the choice of regularization or prior assumptions on the scene

(e.g. local connectivity or that surfaces are locally piece-wise smooth). This can be formu-

lated as an additive loss function of two terms: data fidelity and regularization. Data fidelity

measures discrepancy between the intensity of two pixels while the regularization (assuming

local connectivity) measures the discontinuities between a prediction and its neighbors. A

learning framework iteratively finds the correspondences by minimizing the loss function

without knowing if a pixel of interest is actually co-visible between the two frames. To fur-

ther complicate matters, we need to impose regularity. As one do not know the geometry

of the scene and hence do not know where to impose regularity, one would commonly apply

regularization uniformly across the entire image domain, in hopes that it has been applied

to the right place with just the right amount – such is the motivation for our work. In this

thesis, we explore various priors (regularization), both generic and learned, and we show the

benefits of applying regularization with the right amount, at the right place and at the right

time. Our work is realized through four visioning systems that take images (and when avail-

able, sparse depth measurements) as input and produce dense depth maps that associates

each pixel in the images with a depth value – effectively reconstructing the scene.

1.2 Overview

To evaluate the effectiveness of a prior, we choose the extreme case of 3D reconstruction

from a single image, commonly known as single image depth prediction. Due to the loss of

one dimension in the projection process, the estimation of the 3D scene geometry from a

single image is literally an impossible task as there exists infinitely many 3D scenes that can

produce (or is compatible with) the given single image. As mentioned before, to recover a

3D scene (the correspondence problem), we require multiple images. Hence, any system that
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can produce a point estimate of the 3D scene must rely heavily on priors. We will, from this

point onward, refer to the resulting point estimate as a hypothesis, or a prediction. We will

first illustrate two methods to exploit known regularities based on the data fidelity residual

(Chapter 2) and the natural pose and orientation of objects (Chapter 3).

Single image depth prediction is a great problem setting for demonstrating the influence

of a regularizer. However, the use case of such is limited to applications such as 2D to

3D “pop-up” and computational photography. To extend our work to deployable real-world

applications, we consider the depth completion problem, where in addition to a single image,

we are also given sparse depth measurements produced by a lidar (outdoor driving scenarios),

or a simultaneous localization and mapping (SLAM) or visual inertial odometry [JS11] (VIO)

system (indoor scenarios). A lidar measures distance to a target by projecting a laser and

measuring the reflected light with a sensor. The sparse depth measurements produced by

a lidar generally correspond to horizontal scan lines along the image plane. The density of

such depends on the number of lines produced by the lidar and can cover approximately 5%

of the image domain concentrated on the lower third of the image. SLAM and VIO systems

localize themselves by tracking a number of visually discriminative Lambertian regions (e.g.

corners and edges). The position of such regions defines the Euclidean reference frame, with

respect to which motion of the system is estimated. As these regions are visually distinctive

they tend to be sparse (typically in the order of hundreds to thousands), but are sufficient to

support a point-estimate of motion. In both cases, the sparse depth measurements are a poor

representation of shape as they do not reveal the topology of the scene. The missing points

between the sparse depth measurements could be empty, or occupied by a surface. The given

sparse depth measurements and image can then be combined to restrict the possible scenes

compatible with the input. To this end, we will demonstrate the effects of a learned prior

(obtained by training a system to predict the compatibility of a given scene) in Chapter 4

and propose a novel refinement technique in Chapter 5 that takes a coarse approximation of

a scene produced by a prior and outputs a detailed depth map.

4



1.3 Organization of Thesis

In Chapter 2 we will study the change in residuals over training time in relation to the amount

of regularization applied. We begin with a commonly used generic prior, local smoothness,

as our regularizer. Local smoothness discourages perturbations in the local neighborhood of

the predictions. When applied uniformly to the solution (image) domain, local smoothness

prevents large discontinuities, which generally occurs along object boundaries in the 3D

reconstruction problem. Moreover, local smoothness does not consider the correctness of

predictions and hence may propagate incorrect predictions to neighbors. We devised a

spatially (image domain) and temporally (training time) varying weighting scheme that

considers the data fidelity residual as a signal for adapting the degree of regularization

based on the fitness of model to data. Initially, our weighting scheme imposes very little

regularization, allowing the data fidelity term to dominate and explore the solution space. As

the model learns to predict depth correctly, we begin to increase the amount of regularization.

We show, that without any additional trainable parameters, our approach is able to achieve

state-of-the-art in single image (monocular) depth prediction.

In Chapter 3 we will study the effect of a gravity-induced pose prior on selective objects

in the scene. In this work, we use a ubiquitous setup of a single camera with an inertial

measurement unit (IMU). Given that the poses of many objects in the scene are influenced

by gravity (e.g. roads are perpendicular to the direction of gravity, and buildings are built

parallel to gravity), we use this prior to selectively impose a simple shape prior (vertical and

horizontal planes) on the objects in the scene. To achieve this, we obtain the direction of

gravity from the IMU. However, as mentioned, not all objects are affected by gravity the

same way (e.g. pose may be parallel or perpendicular to gravity) and the pose of some

(generally deformable objects) are not affected. Hence, we need the semantics of the scene

(produced by a semantic segmentation network) to selectively apply the prior. Our shape

model is simple, but effective – we encourage the surfaces of objects to follow a horizontal

or a vertical plane at training time to bias the predictions. At testing, we directly predict

depth and remove the semantic segmentation network. We validate our approach on several
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recent monocular depth prediction methods and show that our prior can consistently boost

worse performing methods above the state-of-the-art. When apply to the state-of-the-art,

we further improve their performance to achieve new state-of-the-art.

In Chapter 4, we consider the depth completion problem. Although sparse depth (where

available) restricts the possible scenes that can produce the image, the areas of the image

where sparse depth is not present is still compatible with with infinitely many scenes. Rather

than using a generic prior such as local smoothness, we explore the use of a learned prior by

training a conditional prior network [YS18a] to train a novel depth completion architecture

that we proposed. The conditional prior network takes an image and a degraded depth map

as input and produces a depth map compatible with the input. As the early steps of training

generally produces incorrect predictions (degraded depth map), the conditional prior network

guides the predictions towards a more compatible one. The result of which is the state-of-

the-art in depth completion. Yet, because we require a conditional prior network (essentially

the size of a depth completion network), training requires large amounts of computational

resources. Although at test time we can forgo the conditional prior network, the depth

completion network itself is still very large and deep to compensate for the sparse inputs.

These drawbacks motivates us to pursue a different direction.

In Chapter 5, we re-approach the depth completion problem with usability and com-

putation in mind. Given that the use case for depth completion includes densification of

sparse points produced by SLAM and VIO system (applicable to embedded systems such as

drones and robots), we need to be mindful of the energy and memory usage of our model.

A standard Nvidia Jetson only has 8 gigabytes of memory with much less computational

power than a standard desktop graphical processing unit (GPU) such as a GTX 1080Ti.

To begin, the challenge of sparse depth completion is precisely the sparsity. Much of the

literature is dedicated to producing novel architecture (generally deeper and larger networks

or specialized network operations) to deal with this problem. Hence, to alleviate the burden

of processing sparse depth, we propose to approximate the scene by exploiting local connec-

tivity to compute a Delaunay Triangulation. The missing values are linearly interpolated

within the Barycentric coordinates, effectively propagating the sparse depth values. To refine
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the approximation, we propose a light-weight depth completion network that constitutes less

than 50% of the parameters used by our network in Chapter 4. Although we have reduced

the number of parameters, we received a large performance gain in both speed and accuracy

of predictions. This is mainly due to our two-stage approach of approximate and refine.

With the size reduction and computational improvements, our model fits comfortably in a

Jetson chipset, enabling it to be deployed in real-world applications. Our model currently

holds the state-of-the-art in unsupervised depth completion.

Finally, we will discuss some limitations to each of the proposed systems and possible

improvements for future work in Chapter 6. Furthermore, as we will see in Chapter 5, the

fusion of classical and deep learning methods is able to produce strong results in depth

completion. We believe this can extend to other applications. we make a few remarks

regarding this possible direction to conclude the thesis.
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CHAPTER 2

Bilateral Cyclic Constraint and

Adaptive Regularization for

Unsupervised Monocular Depth Prediction

2.1 Introduction

Estimating the 3-dimensional geometry of a scene is a fundamental problem in machine

perception with a wide range of applications, including autonomous driving [JGB17], robotics

[LLS15, SSP10], pose-estimation [SSK13], localization [HS19], and scene object composition

[HHY19, KSH14]. It is well-known that 3-d scene geometry can be recovered from multiple

images of a scene taken from different viewpoints, including stereo, under suitable conditions.

Under no conditions, however, is a single image sufficient to recover 3-d scene structure,

unless prior knowledge is available on the shape of objects populating the scene. Even in

such cases, metric information is lost in the projection, so at best we can use a single image

to generate hypotheses, as opposed to estimates, of scene geometry.

Recent works [CFY16, EPF14, LRB16, LSL15, LSL16, XRO17, XWT18] sought to ex-

ploit such strong scene priors by using pixel-level depth annotation captured with a range

sensor (e.g. depth camera, lidar) to regress depth from the RGB image. Cognizant of the

intrinsic limitations of this endeavor, we exploit stereo imagery to train a network without

ground-truth supervision for generating depth hypotheses, to be used as a reference for 3-d

reconstruction. We evaluate our method against ground-truth depths via two benchmarks

from the KITTI dataset [GLU12] and show that it generalizes well by applying models

trained on KITTI to Make3d [SSN09].
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Rather than attempting to learn a prior by associating the raw-pixel values with depth,

we recast depth estimation as an image reconstruction problem [GBC16, GMB17] and ex-

ploit the epipolar geometry between images in a rectified stereo pair to train a deep fully

convolutional network. Our network learns to predict the dense pixel correspondences (dis-

parity field) between the stereo pair, despite only having seen one of them. Hence, our

network implicitly learns the relative pose of the cameras used in training and hallucinates

the existence of a second image taken from the same relative pose when given a single image

during testing. From the disparity predictions, we can synthesize depth using the known

focal length and baseline of the cameras used in training.

While [GBC16, GMB17, XGF16] follow a similar training scheme, [XGF16] does not scale

to high resolution, and [GBC16] uses a non-differentiable objectives. [GMB17] proposed us-

ing two uni-directional edge-aware disparity gradients and left-right disparity consistency

as regularizers. However, edge-awareness should inform bidirectionally and left-right con-

sistency suffers from occlusions and dis-occlusions. Moreover, regularity should not only be

data-driven, but also model-driven.

Our contributions are three-fold: (i) A model-driven adaptive weighting scheme that is

both space- and training-time varying and can be applied generically to regularizers. (ii) A

bilateral consistency constraint that enforces the cyclic application of left and right disparity

to be the identity. (iii) A two-branch decoder that specifically learns the features necessary

to maximize data fidelity and utilizes such features to refine an initial prediction by enforcing

regularity. We formulate our contributions as an objective function that, when realized even

by a generic encoder-decoder, achieves state-of-the-art performance on two KITTI [GLU12]

benchmarks and exhibits generalizability to Make3d [SSN09].

2.2 Related Works

Supervised Monocular Depth Estimation. [SCN06] proposed a patch-based model that

combined local estimates with Markov random fields (MRF) to obtain the global depth. Sim-

ilarly, [HEH07, KLK12, KWI13, SSN09] exploited local monocular features to make global
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predictions. However, local methods lack the global context needed to generate accurate

depth estimates. [LSL16] instead employed a convolutional neural network (CNN). [LSP14]

further improved monocular methods by incorporating semantic cues into their model.

[EF15, EPF14] introduced a two scale network. [LRB16] proposed a residual network with

up-sampling modules to produce higher resolution depth maps. [CFY16] learned depth using

crowd-sourced annotations and [FGW18] learned the ordinal relations using atrous spatial

pyramid pooling. [RT16] used image patches with neural forests. [KPS16, XRO17, XWT18]

used conditional random fields (CRF) jointly with a CNN.

Unsupervised Monocular Depth Estimation. Recently, [FNP16] introduced novel view

synthesis by predicting pixel values based on interpolation from nearby images. [XGF16]

minimized an image reconstruction loss to hallucinate the existence of a right view of a

stereo pair given the left by producing the distribution of disparities for each pixel.

[GBC16] trained a network for monocular depth prediction by reconstructing the right

image of a stereo pair with the left and synthesizing disparity as an intermediate step.

Yet, their image formation model is not fully differentiable, making their objective function

difficult to optimize. Unsupervised methods [GMB17, PHC15, ZKA16, ZTS16] utilized a

bilinear sampler modeled after the Spatial Transformer Network [JSZ15] to allow for a fully

differentiable loss and end-to-end training of their respective networks. Specifically, [GMB17]

used SSIM [WBS04] as a loss in addition to the image reconstruction loss. Also, [GMB17]

predicted both left and right disparities and used them for regularization via a left-right

consistency check along with an edge-aware smoothness term. [ATP18] trains a Generative

Adversarial Network (GAN) [GPM14] to constrain the output to reconstruct a realistic image

to reduce the artifacts seen from stereo reconstruction. This class of method is also employed

in depth completion [YWS19].

Self-supervised methods [MWA18, UZU17, ZBS17, ZLH18] used a pose network to learn

ego-motion and depth from monocular videos, while [WBZ18a, YWS18] leveraged visual

odometry from off-the-shelf methods [EKC18, SSC11] and [FWS19] gravity as supervisors.

[ZGW18] followed both unsupervised and self-supervised paradigms by using stereo video
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streams and proposed a feature reconstruction loss. While additional supervision and data

are used to improve predictions, [GMB17] still remains as the state-of-the-art in the unsuper-

vised setting. Our method follows the unsupervised paradigm and we show that it not only

outperforms [GMB17], but also [ZGW18] who leveraged techniques from both unsupervised

and self-supervised domains.

Adaptive Regularization. A number of computer vision problems can be formulated as

energy minimization in a variational framework with a data fidelity term and a regularizer

weighted by a fixed scalar. The solution found by the minimal energy involves a trade-off

between data fidelity and regularization. Finding the optimal parameter for regularity is a

long studied problem as [GK92] explored methods to determine the regularization parameter

in image de-noising, while [NMG01] used cross-validation as a selection criterion for the

weight. [GMB17, WCP09, WTP09] used image gradients as cues for a data-driven weighting

scheme. [YS18a] learned regularity conditioned on an image. Recently, [HKB17, HKD17]

proposed that regularity should not only be data-driven, but also model driven. The amount

of regularity imposed should adapt to the fitness of the model in relation to the data rather

than being constant throughout the training process.

We propose a novel objective function using bilateral cyclic consistency constraint along

with a spatial and temporal varying regularization modulator. We show that despite us-

ing the fewer parameters than [GMB17], we outperform [GMB17] and other unsupervised

methods. We detail our loss function with adaptive regularization, in Sec. 2.3, present a

two-branch decoder architecture in Sec. 2.4, and specify hyper-parameters and data aug-

mentation procedures used in Sec. 2.5. We evaluate our model on the KITTI 2015, KITTI

Eigen Split, and Make3d benchmarks in Sec. 2.6. Lastly, we end with a discussion of our

work in Sec. 2.7.

2.3 Method Formulation

We learn a model to hypothesize or “estimate” the disparity field d compatible with an image

I0 by exploiting the availability of stereo pairs (I0, I1) during training. We then synthesize
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the depth z = FB/d of the scene using the focal length F and baseline B during test

time. Given I0, we estimate a function d ∈ R+ that represents the disparity of I0, which we

formulate as a loss function L (Eqn. 2.1), comprised of data terms and adaptive regularizers.

Our network, parameterized by ω, takes a single image I0 as input and estimates a

function d = f(I0;ω), where d represents the disparity (which is monotonically related to

inverse-depth) corresponding to I0. We drive the training process with I1, which is only

used in the loss function, by a surrogate loss that minimizes the reprojection error of I0 to

I1 and vice versa. We will refer to the disparity estimated by L as d0 and d1 for I0 and

I1, respectively. Interested readers may refer to Supplementary Materials (Supp. Mat.) for

more details on our formulation.

L = wphlph + wstlst︸ ︷︷ ︸
data fidelity

+wsmlsm + wbclbc︸ ︷︷ ︸
regularization

(2.1)

where each individual term l will be described in the next sections and their weights w in

Sec. 2.5.

2.3.1 Data Fidelity

Our data fidelity terms seek to minimize the discrepancy between the observed stereo pair

(I0, I1) and their reconstructions (Î0, Î1). We generate each Î term by applying a 1-d hori-

zontal disparity shift to I at each position (x, y):

Î0
xy = I1

xy−d0xy and Î1
xy = I0

xy+d1xy
(2.2)

We do so by using a 1-d horizontal bilinear sampler modeled after the image sampler from

the Spatial Transformer Network [JSZ15] – instead of applying an affine transformation to

activations, we warp an image to the domain of its stereo-counterpart using disparities.

Our sampler is locally fully differentiable and each output pixel is the weighted sum of

two (left and right) pixels. We propose to minimize the reprojection residuals as a two-

part loss, which measures the standard color constancy (photometric) and the difference in

illumination, contrast and image quality (structural).
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Figure 2.1: Examples of our adaptive weighting scheme as images. Left to right: left image,

right image, left reconstruction, adaptive weights. The adaptive weights reduce regulariza-

tion at regions of high residual; hence, they discount dis-occlusions and occlusions as in the

highlighted regions.

Photometric loss. We model the image formation process via a photometric loss lph, which

measures the L1 penalty of the reprojection residual for each I and Î on each channel at

every (x, y) position in the image space Ω:

lph =
∑

(x,y)∈Ω

|I0
xy − Î0

xy|+ |I1
xy − Î1

xy| (2.3)

Structural loss. In order to make inference invariant to local illumination changes, we use

a perceptual metric (SSIM) that discounts such variability. We apply SSIM (φ) to image

patches of size 3×3 at corresponding (x, y) in I and Î. Since two similar images give a SSIM

score close to 1, we subtract 1 by the score to represent a distance:

lst =
∑

(x,y)∈Ω

2− (φ(I0
xy, Î

0
xy) + φ(I1

xy, Î
1
xy)) (2.4)

2.3.2 Residual-Based Adaptive Weighting Scheme

A point estimate d can be obtained by maximizing the Bayesian criterion with a data fidelity

term (energy) D(d) and a Bayesian or Tikhonov regularizer R(d) in the form:

D(d) + αR(d) (2.5)

where the weight α is a pre-defined positive scalar parameter that controls the regularity to

impose on the model, leading to a trade-off between data fidelity and regularization.
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The weight α modulates between data-fidelity and regularization, constraining the solu-

tion space. Yet, subjecting the entire solution, a dense disparity field, to the same regularity

fails to address cases where the assumptions do not hold. Suppose one enforces a smoothness

constraint to the output disparity field by simply taking the disparity gradient ∇d. This

constraint would incorrectly penalize object boundaries (regions of high image gradients)

and hence [GMB17, HKJ13] apply an edge-aware term to reduce the effects of regularization

on edge regions. Although the edge-awareness term gives a data-driven approach on regular-

ization, it is still static (the same image will always have the same weights) and independent

of the performance of the model. Instead, we propose a space- and training-time varying

weighting scheme based on the performance of our model measured by reprojection residuals.

Model-driven adaptive weight. We propose an adaptive weight αxy that varies in

space and training time for every position (x, y) of the solution based on the local resid-

ual ρxy = |Ixy − Îxy| and the global residual, represented by the average per-pixel residual,

σ =
1

1
|Ω|

∑
(x,y)∈Ω

|Ixy − Îxy|
:

αxy = exp
(
−cρxy

σ

)
(2.6)

α is controlled by the local residual between an image I and its reprojection Î at each position

while taking into account of the global residual σ, which correlates to the training time step

and decreases over time. c is a scale factor for the range of α. α is naturally small when

residuals are large and tends to 1 as training converges.

Local adaptation. Consider a pair of poorly matched pixels, (Ixy, Îxy), where the residual

|Ixy − Îxy| is large. By reducing the regularity on the solution dxy, we effectively allow for

exploration in the solution space to find a better match and hence a dxy that minimizes

the data fidelity terms. Alternatively, consider a pair of perfectly matched pixels, (Ixy, Îxy),

where |Ixy − Îxy| = 0. We should apply regularization to decrease the scope of the solution

space such that we can allow for convergence and propagate the solution. Hence, a spatially

adaptive αxy must vary inversely to the local residual ρxy such that we impose regularization

when the residual is small and reduce it when the residual is large.
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Global adaptation. Consider a solution dxy proposed at the first training time step t = 1.

Imposing regularity effectively reduces the solution space based on an assumption about dxy

and biases the final solution. We propose that a weighting scheme αxy → 1 as t → ∞.

However, if αxy is directly dependent on the t, then αxy will change if we continue to train

even after convergence – causing the model to be unstable. Instead, let αxy be inversely

proportional to the global residual σ such that αxy is small when the σ is large (generally

corresponding to early time steps) and αxy → 1 as σ → 0. When training converges (i.e.

the global residual has stabilized), αxy likewise will be stable. This naturally lends to an

annealing schedule where αxy → 1 as time progresses in training steps.

2.3.3 Adaptive Regularization

Our regularizers assume local smoothness and consistency between the left and right dis-

parities estimated. We propose to minimize the disparity gradient (smoothness) and the

disparity reprojection error (bilateral cyclic consistency) while adaptively weighting both

with α (Sec. 2.3.2).

Smoothness loss. We encourage the predicted disparities to be locally smooth by applying

an L1 penalty to the disparity gradients in the x (∂X) and y (∂Y ) directions. However, such

an assumption does not hold at object boundaries, which generally correspond to regions

of high changes in pixel intensities; hence, we include an edge-aware term λ to allow for

discontinuities in the disparity gradient. We also weigh this term adaptively with α:

lsm =
∑

(x,y)∈Ω

α0
xy(λ

0
xy|∂Xd0

xy|+ λ0
xy|∂Y d0

xy|)+

α1
xy(λ

1
xy|∂Xd1

xy|+ λ1
xy|∂Y d1

xy|)
(2.7)

where λxy = e−|∇
2Ixy | and the ∇2 operator denotes the image Laplacian. We use the image

Laplacian over the first order image gradients because it allows the disparity gradients to

be aware of intensity changes in both directions. However, we regularize the disparity field

using the disparity gradient so that we can allow for independent movement in each direction.

Prior to computing the image Laplacian for λ, we smooth the image with a Gaussian kernel

to reduce noise.
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Bilateral cyclic consistency loss. A common regularization technique in stereo-vision is

to maintain the consistency between the left (d0) and right (d1) disparities by reconstructing

each disparity through projecting its counter-part with its disparity shifts:

d0p
xy = d1

xy−d0xy and d1p
xy = d0

xy+d1xy
(2.8)

However, in doing so, the projected disparities suffer from the unresolved correspondences

of both the disparity ramps, occlusions and dis-occlusions. We, propose a bilateral cyclic

consistency check that is designed to specifically reason about occlusions while removing the

effects of stereo dis-occlusions. We follow the intuition that the disparities d should have an

identity mapping when projected to the domain of its stereo-counterpart and back-projected

to the original domain as a reconstruction d̂ so reconstruction of dis-occlusion is ignored.

d̂0
xy = d0

xy+d1xy−d0xy and d̂1
xy = d1

xy−d0xy+d1xy
(2.9)

By applying an L1 penalty on the disparity field and its reconstruction, we are constraining

that the cyclic transformations should be the identity transform, which keeps d0 and d1

consistent with each other in co-visible regions. If there exists an occluded region, the region

in the reconstruction would be inconsistent with the original – yielding reprojection error. To

avoid penalizing a model for an unresolvable correspondence due to the nature of the data,

we propose to adaptively regularize the bilateral cyclic constraint using our residual-based

weighting scheme (Eqn. 2.6). Unsurprisingly, local regions of high reprojection residual often

correspond to occluded regions.

lbc =
∑

(x,y)∈Ω

α0
xy|d0

xy − d̂0
xy|+ α1

xy|d1
xy − d̂1

xy| (2.10)

2.4 A Two-Branch Decoder

As our adaptive weighting scheme (Sec. 2.3.2) is function of the data fidelity residuals, we

seek to ensure that the network learns a sufficient representation to minimize the data fidelity

loss (Sec. 2.3.1). We propose a two-branch decoder (Fig. 2.2) with one branch (prefixed with

‘i‘) dedicated to learning the features, iconv, necessary to make a prediction that minimizes
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Figure 2.2: Two-branch decoder. idisp produces an initial prediction based only on the data

terms and rdisp produces a refined prediction using the entire loss function (Eqn. 2.1). By

minimizing just the data terms (Eqn. 2.11) in idisp, we force iconv to learn sufficient

information for the reconstruction task such that rdisp can utilize such features along with

the residual learned from the skip connection to refine a prediction that satisfies data fidelity

by imposing regularity based on the data fidelity residual.

data fidelity loss:

L0 = wphlph + wstlst (2.11)

using the reconstructed features via up-convolution and the corresponding skip connec-

tion from the encoder. We use a residual block [HZR16] to learn the skip connection residual,

rskip, necessary to minimize Eqn. 2.1 – both data fidelity and regularity loss. By concate-

nating iconv and rskip with the initial prediction (idisp) as features for the second branch

(prefixed with ‘r‘), we have provided the decoder branch with a prediction that satisfies data

fidelity along with features necessary to impose regularity. The branch can now utilize such

information to refine the initial prediction by adaptively applying regularization based on

the data fidelity residual. To maintain a similar network size and run-time, we reduce the

depth of the network by 1 and added a single convolution as the first layer to enable a skip
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connection to the last layer. This, in fact, resulted in our network having ≈ 10 million fewer

parameters than [GMB17]. We show qualitative results in Fig. 2.3 and 2.4 where we observe

the benefits of learning the features that satisfy data fidelity as we recover more details

about the scene geometry. Quantitatively, we show in Table 2.3, Table 2.2, and 2.4 that

this structure improves over the state-of-the-art performance on all metrics achieved by our

generic encoder with a single branch decoder, where the final predictions of both decoders

minimize our objective function (Eqn. 2.1).

2.5 Implementation Details

Our approach was implemented using TensorFlow [ABC16]. There are ≈ 31 million train-

able parameters in the generic encoder-decoder [GMB17] and ≈ 21 million in our proposed

structure (more details can be found in Supp. Mat. Table 2 and 3). Training takes ≈ 18

hours using an Nvidia GTX 1080Ti. Inference takes ≈ 32 ms per image. We used Adam

[KB14] to optimize our network with a base learning rate of 1.8×10−4, β1 = 0.9, β2 = 0.999.

We then increase the learning rate to 2 × 10−4 after 1 epoch, decrease it by half after 46

epochs and by a quarter after 48 epochs for a total of 50 epochs. We use a batch size of

8 with a 512 × 256 resolution and 4 levels in our loss pyramid. We are able to achieve our

results using the following set of weights for each term in our loss function: wph = 0.15,

wst = 0.425, wsm = 0.10 and wbc = 1.05. We choose the scale factor c = 5.0 for the adaptive

weight α. For our smoothness term, we decrease it by a factor of 2r for each r-th resolution

in the loss pyramid where r = 0 refers to our highest resolution at 512× 256 and r = 3 the

lowest. Data augmentation is performed online during training. We perform a horizontal flip

(with a swap to maintain correct relative positions) on the stereo pairs with 50% probability.

Color augmentations on brightness, gamma and color shifts of each channel also occur with

50% chance. We uniformly sample from [0.5, 1.5] for brightness, and [0.8, 1.2] for gamma

and each color channel separately.
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Metric Definition

AbsRel 1
|Ω|

∑
(x,y)∈Ω

|zxy − zgt
xy|

zgt
xy

SqRel 1
|Ω|

∑
(x,y)∈Ω

|zxy − zgt
xy|2

zgt
xy

RMS

√
1
|Ω|

∑
(x,y)∈Ω

|zxy − zgt
xy|2

logRMS

√
1
|Ω|

∑
(x,y)∈Ω

| log zxy − log zgt
xy|2

log10
1
|Ω|

∑
(x,y)∈Ω

| log zxy − log zgt
xy|

Accuracy % of zxy s.t. δ
.
= max

( zxy
zgtxy
,
zgtxy
zxy

)
< threshold

Table 2.1: Error and accuracy metrics. zxy is the predicted depth at (x, y) ∈ Ω and zgt
xy is

the corresponding ground truth. Three different thresholds (1.25, 1.252 and 1.253) are used

in the accuracy metric as a convention in the literature.

2.6 Experiments and Results

We present our results on the KITTI dataset [GLU12] under two different training and test-

ing schemes, the KITTI 2015 split [GMB17] and the KITTI Eigen split [EPF14, GBC16].

The KITTI dataset contains 42,382 rectified stereo pairs from 61 scenes with approximate

resolutions of 1242× 375. We evaluate our method on the monocular depth estimation task

on KITTI Eigen split and compare our approach with similar variants on a disparity error

metric as an ablation study using the KITTI 2015 split. We show that our method outper-

forms state-of-the-art unsupervised monocular approaches and even supervised approaches

on KITTI benchmarks, while generalizing to Make3d [SSN09].

2.6.1 KITTI Eigen Split

We evaluate our method using the KITTI Eigen split [EPF14], which has 697 test images

from 29 scenes. The remaining 32 scenes contain 23,488 stereo pairs, of which 22,600 pairs

are used for training and the rest for validation, following [GBC16]. We project the velodyne
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Figure 2.3: Qualitative results on KITTI Eigen split. From left to right: input images,

ground-truth disparities, results of Godard et al. [GMB17], our results with a generic decoder

and our results with the proposed decoder. Our method under both decoders recovers more

scene structures (row 2, 3: street signs, row 5: car in middle). Moreover, the predictions

of the proposed two-branch structure are more realistic (row 1: pedestrian on right, row 4:

tail of another car at bottom right corner, row 5: hollow trunk of truck on left, where both

[GMB17] and the generic decoder predicted as a surface).

points into the left input color camera frame to generate ground-truth depths. The ground-

truth depth maps are sparse (≈ 5% of the entire image) and prone to errors from rotation of

the velodyne and motion of the vehicle and surrounding objects along with occlusions. As

a result, we use the cropping scheme proposed by [GBC16], which contains approximately

58% in height and 93% in width of the image dimensions.

We compare our approach with the recent monocular depth estimation methods at 50 and

80 meters caps in Table 2.3 and Table 2.2. Fig. 2.3 provides a qualitative comparison between

our method and the baseline. We note that [ZGW18] trained two networks using stereo video

streams (as opposed to a single network with stereo pairs like ours and [GMB17]), which

allows their networks to learn a depth prior in both spatial and temporal domains. Using

the network of [GMB17] (generic encoder with a single branch decoder), we outperforms

all competing methods in all metrics under both depth caps except for δ < 1.253 where we

are comparable to [ZGW18]. We improve consistently over [GMB17] and [ZGW18] by an
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Error Metrics Accuracy Metrics

Method Dataset Abs Rel Sq Rel RMS logRMS δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [ZBS17] K 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Mahjourian et al. [MWA18] K 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Garg et al. [GBC16] K 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Godard et al. [GMB17] K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhan et al. [ZGW18] (w/ video) K 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Ours (Full Model) K 0.135 1.157 5.556 0.234 0.820 0.932 0.968

Ours (Full Model)* K 0.133 1.126 5.515 0.231 0.826 0.934 0.969

Zhou et al. [ZBS17] CS+K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian et al. [MWA18] CS+K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Godard et al. [GMB17] CS+K 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Ours (Full Model)* CS+K 0.118 0.996 5.134 0.215 0.849 0.945 0.975

Table 2.2: Quantitative results2.1 on the KITTI [GLU12] Eigen split [EPF14] benchmark.

Depths are capped at 80 meters. K denotes training on KITTI. CS+K denotes pretraining

on Cityscape [COR16] and fine-tuning on KITTI. Our full model using a generic encoder-

decoder consistently outperforms other methods across all metrics with the exception of

δ < 1.253 where [ZGW18], which used temporal information (sequences of stereo-pairs),

marginally beats our us by 0.1%. Our proposed decoder (*) improves over our encoder-

decoder model across all metrics and is the state-of-the-art.

average of 8.7% and 5.75% in AbsRel, 13.1% and 10.5% in SqRel and even 5.25% and 2.55%

in logRMS, respectively. Furthermore, we score significantly higher in δ < 1.25 (the hardest

accuracy metric), which suggests that our model produces more correct and realistically

detailed depths than all competing methods. In addition, our two-branch decoder improves

over the said results across all metrics and depth caps and is the current state-of-the-art.

Table 2.2 shows that our model also beats [GMB17] when pretraining on Cityscape [COR16]

and fine-tuning on KITTI. An ablation study on Eigen Split examining the effects of each

of our contributions (Sec. 2.3.3) can be found in our Supp. Mat.
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Error Metrics Accuracy Metrics

Method Dataset Abs Rel Sq Rel RMS logRMS δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [ZBS17] K 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Garg et al. [GBC16] K 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [GMB17] K 0.140 0.976 4.471 0.232 0.818 0.931 0.969

Zhan et al. [ZGW18] (w/ video) K 0.135 0.905 4.366 0.225 0.818 0.937 0.973

Ours (Full Model) K 0.128 0.856 4.201 0.220 0.835 0.939 0.972

Ours (Full Model)* K 0.126 0.832 4.172 0.217 0.840 0.941 0.973

Table 2.3: Quantitative results2.1 on the KITTI [GLU12] Eigen split [EPF14] benchmark.

Depths are capped at 50 meters. K denotes training on KITTI. Our full model using a

generic encoder-decoder consistently outperforms other methods, including [ZGW18] who

trained on sequences of stereo-pairs, across all metrics. Our proposed decoder (*) improves

over our encoder-decoder model is the state-of-the-art.

2.6.2 KITTI 2015 Split

We evaluate our method on 200 high quality disparity maps provided as part of the official

KITTI training set [GLU12]. These 200 stereo pairs cover 28 of the total 61 scenes. From

30,159 stereo pairs covering the remaining 33 scenes, we choose 29,000 for training and the

rest for validation. While typical training and evaluation schemes project velodyne laser

values to depth, we choose to use the provided disparity maps as they are less erroneous

than velodyne data points. In addition, we also use the official KITTI disparity metric of

end-point-error (D1-all) to measure our performance as it is a more appropriate metric on

our class of approach that outputs disparity and synthesizes depth from the output using

camera focal length and baseline.

We show qualitative comparisons in Fig. 2.4 and quantitative comparisons in Table 2.4.

Table 2.4 also serves as an ablation study on variants belonging to the stereo unsupervised

paradigm using different image formation model and regularization terms. We show that

by simply applying our adaptive regularization to [GMB17], we achieve improvement over

their model. We also study the effects of substituting our bilateral cyclic consistency with
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Error Metrics Accuracy Metrics

Method Abs Rel Sq Rel RMS logRMS D1-all δ < 1.25 δ < 1.252 δ < 1.253

[GMB17] w/ Deep3D [XGF16] 0.412 16.37 13.693 0.512 66.850 0.690 0.833 0.891

[GMB17] w/ Deep3Ds [XGF16] 0.151 1.312 6.344 0.239 59.640 0.781 0.931 0.976

ph+ st+ λGsm [GMB17] 0.123 1.417 6.315 0.220 30.318 0.841 0.937 0.973

ph+ st+ λGsm+ lr [GMB17] 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

ph+ st+ αλGsm+ αlr 0.120 1.367 6.013 0.211 30.132 0.849 0.942 0.975

Aleotti et al. [ATP18] 0.119 1.239 5.998 0.212 29.864 0.846 0.940 0.976

ph+ st+ λLsm+ bc 0.117 1.264 5.874 0.207 29.793 0.851 0.944 0.977

ph+ st+ αλLsm+ αlr 0.117 1.251 5.876 0.206 29.536 0.851 0.944 0.977

ph+ st+ αλGsm+ αbc 0.115 1.211 5.743 0.203 28.942 0.852 0.945 0.977

ph+ st+ αλLsm+ αbc 0.114 1.172 5.651 0.202 28.142 0.855 0.947 0.979

ph+ st+ αλLsm+ αbc * 0.110 1.119 5.576 0.200 27.149 0.856 0.947 0.980

Table 2.4: Quantitative comparison2.1 amongst variants of our model on KITTI 2015 split

proposed by [GMB17]. Each variant is named according to its loss function. ph and st denote

data terms, sm local smoothness, α our adaptive weights, λG image gradients [GMB17],

λL image Laplacian, lr left-right consistency [GMB17], and bc our bilateral cyclic consis-

tency. We show the effectiveness of our adaptive regularization (Sec. 2.3.3) by applying it

to [GMB17] and improving their model. Our full model using a generic encoder-decoder

outperforms all variants on every metric, including [ATP18] which predicts disparities that

generate photo-realistic images. Our full model using our proposed two-branch decoder (*)

further improves the state-of-the-art.
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Figure 2.4: Qualitative results on KITTI 2015 split. From left to right: input images, ground-

truth depths, results of Godard et al.[GMB17], our results using a generic decoder and our

results the proposed decoder. Our approach generates more consistent depths (row 1: walls

on right, row 2: building on left) and recovers more detailed structures (row 3: biker and

poles on right, rows 4, 5: street signs), with the two-branch decoder recovering the most.

the left-right consistency regularizer [GMB17]. We also substitute image Laplacian with

image gradients for edge-aware weights. In addition, we find that adaptive regularization

and bilateral cyclic consistency contribute similarly to the improvements of the models.

However, when combined they achieve significantly improvements over the baseline method

(and all variants) in every metric. Furthermore, when using our proposed decoder, we again

surpass all variants on every metric. We additionally outperform [ATP18], who uses a GAN

to constrain the output disparities to produce photo-realistic images during reconstruction.

This result aligns with our performance on accuracy metrics – our method produces accurate

and realistic depths.

2.6.3 Generalizing to Different Datasets: Make3d

To show that our model generalizes, we present our qualitative results in Fig. 2.5 and

and quantitative results in Table 2.5 on the Make3d dataset [SSN09] containing 134 test

images with 2272×1707 resolution. Make3d provides range maps (resolution of 305×55) for

ground-truth depths, which must be rescaled and interpolated. We use the central cropping
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Figure 2.5: Qualitative results2.1 on Make3d [SSN09] with maximum depth of 70 meters.

Left to right: input images, ground-truth disparities, our results. Despite being trained on

KITTI, we are still able to recover the 3d scene on Make3d.

Error Metrics

Method Supervised AbsRel Sq Rel RMS log10

Karsch et al. [KLK12] Yes 0.417 4.894 8.172 0.144

Liu et al. [LSL16] Yes 0.462 6.625 9.972 0.161

Laina et al. [LRB16] Yes 0.198 1.665 5.461 0.082

Godard et al. [GMB17] No 0.468 9.236 12.525 0.165

Ours No 0.454 8.470 12.211 0.163

Ours* No 0.427 8.183 11.781 0.156

Table 2.5: Quantitative results2.1 on Make3d [SSN09] with maximum depth of 70 meters. The

unsupervised methods listed are all trained on KITTI Eigen split. Despite being trained on

KITTI, we perform comparably to a number of supervised methods trained on Make3d.
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proposed by [GMB17] where we generate a 852× 1707 crop centered on the image. We use

the standard C1 evaluation metrics2.1 proposed for Make3d and limit the maximum depth to

70 meters. The results of the supervised methods are taken from [GMB17]. Because Make3d

does not provide stereo pairs, we are unable to train on it. However, we find that despite

having trained our model on KITTI Eigen split, our performance is comparable to that of

supervised methods trained on Make3d and is better than the baseline across all metrics.

2.7 Discussion

In this work, we proposed an adaptive weighting scheme (Sec. 2.3.3) that is both spatially

and time varying, allowing for not only a data-driven, but also model-driven approach to

regularization. Moreover, we introduce a bilateral cyclic consistency constraint that not

only enforces consistency between the left and right disparities, but also removes stereo

dis-occlusions while discounting unresolved occlusions when combined with our weighting

scheme. Finally, we propose a two-branch decoder that achieves the state-of-the-art by

learning features to improve data residual for imposing our adaptive regularity. We achieve

state-of-the-art performance on two KITTI benchmarks and show that our method gener-

alizes to Make3d. Our two-branch decoder further improves over those results. Our exper-

iments (Table 2.2, Table 2.3 and 2.4) show that our approach produces depth maps with

more details while maintaining global correctness.

For future work, we plan to improve robustness to specular and transparent surfaces as

these regions tend to produce inconsistent depths. We are also exploring more sophisticated

regularizers in place of the simple disparity gradient. Finally, we believe that the task

should drive the network architecture. Rather than using a generic network, finding a better

architectural fit could prove to be ground-breaking and further push the state-of-the-art.
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CHAPTER 3

Geo-Supervised Visual Depth Prediction

3.1 Introduction

The visual world is heavily affected by gravity, including the shape of many artifacts such

as buildings and roads, and even natural objects such as trees. Gravity provides a globally

consistent orientation reference that can be reliably measured with low-cost inertial sensors

present in mobile devices from phones to cars. We call a machine learning system able to

exploit global orientation, geo-supervised. Gravity can be easily inferred from inertial sensors

without the need for dead-reckoning, and the effect of biases is negligible in the context of

our application.

To measure the influence of gravity as a supervisory signal, we choose the extreme exam-

ple of predicting depth from a single image. This is, literally, an impossible task in the sense

that there are infinitely many three-dimensional (3D) scenes that can generate the same

image. So, any process that yields a point estimate has to rely heavily on priors. We call

the resulting point estimate a hypothesis, or prediction, and use public benchmark datasets

to quantitatively evaluate the improvement brought about by exploiting gravity. Of course,

only certain objects have a shape that is influenced by gravity. Therefore, our prior has to

be applied selectively, in a manner that is informed by the semantics of the scene.

Our approach to geo-supervised Visual Depth Prediction is based on training a system

end-to-end to produce a map from a single image and an estimate of the orientation of

gravity in the (calibrated) camera frame to an inverse depth (disparity) map. In one mode

of operation, the training set uses calibrated and rectified stereo pairs, together with a

semantic segmentation module, to evaluate a loss function differentially on the images where
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geo-referenced objects are present. In a second mode, we use monocular videos instead and

minimize the reprojection (prediction) error. Optionally, we can leverage modern visual-

inertial odometry (VIO) and mapping systems that are becoming ubiquitous from hand-held

devices to cars.

The key to our approach is a prior, or regularizer, that selectively biases certain regions

of the image that correspond to geo-referenced classes such as roads, buildings, vehicles, and

trees. Specifically, points in space that lie on the surface of such objects should have normals

that either align with, or are orthogonal to, gravity. This is in addition to standard regular-

izers used for depth prediction, such as left-right consistency and piecewise smoothness.

While at training time a semantic segmentation map is needed to apply our prior selec-

tively, it is never passed as input to the network. Therefore, at test time it is not needed,

and an image is simply mapped to the disparity.

The ultimate test for a prior is whether it helps improve end-performance. To test our

prior, we first incorporated it into two top-performing methods, one binocular (Sect. 3.5.2)

and one monocular (Sect. 3.5.3), in the KITTI benchmark [GLU12], and showed consistent

performance improvement in all metrics. To further challenge our prior, we took two other

baselines which were not the top performers. We then added our prior and tested the results

against the top performers in the latest benchmark. We also performed generalizability tests

(Sect. 3.5.5), ablation studies (Sect. 3.5.4) and demonstrated our approach with VIO on

hand-held devices (Sect. 3.5.6).

3.2 Related work

Early learning-based depth prediction approaches [SCN06, SSN09, KWI13, KLK12] predict

depth using local image patches and then refine it using Markov random fields (MRFs).

Recent works [EPF14, LRB16] leverage deep networks to directly learn a representation for

depth prediction where the networks are typically based on the multi-scale fully convolutional

encoder-decoder structure. These methods are fully supervised and do not generalize well

outside the datasets on which they are trained. Latest self-supervised methods [GBC16,
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GMB17, ZBS17] have shown better performance on benchmarks with better generalization.

There is a large body of work [MWA18, YS18b, WBZ18b, ZGW18] on self-supervised

monocular depth prediction following Godard et al. [GMB17] and Zhou et al. [ZBS17], which

simply use the reprojection error as a learning criterion, as has been customary in 3D recon-

struction for decades. Generic priors such as piecewise smoothness and left-right consistency

are also encoded into the network as additional loss terms. Our work is in-line with these

self-supervised approaches, but we also exploit class-specific regularizers beyond the generic

ones.

In terms of exploiting the relation of different geometric quantities in an end-to-end learn-

ing framework, closely related works include [WSR16, QLL18, LYC18], where surface nor-

mals are explicitly computed by using either a network [WSR16] or some heuristics [QLL18].

While the former is computation intensive, the latter relies on heuristics and thus is sub-

optimal. In contrast, by using losses proposed in this paper, we directly regularize depth

via the depth-gravity relation without a separate surface normal predictor. Besides, both

[WSR16] and [LYC18] are supervised, while ours is self-supervised with the photometric loss

and guided by global orientation and the semantics of the scene.

Earlier work on semantic segmentation [SJC08] relied on local features, and have been im-

proved by incorporating global context using various structured prediction techniques [KK11,

RKT09]. Starting from the work of Long et al. [LSD15], fully convolutional encoder-decoder

networks have been a staple in semantic segmentation. Although we do not address seman-

tic segmentation, we leverage per-pixel semantic labeling enabled by existing systems to aid

depth prediction in the form of providing class-specific priors and an attention mechanism to

selectively apply such priors, which is different from joint segmentation and depth prediction

approaches [JGK17].

The idea of using class-specific priors to facilitate reconstruction is not new [HZC13,

KLD14]. In [HZC13], class-specific shape priors in the form of spatially varying anisotropic

smoothness terms are used in an energy minimization framework to reconstruct small objects.

Though promising, this system does not scale well. An efficient inference framework [KK11]
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has been used with a CRF model over a voxel-grid to achieve real-time performance by

[KLD14]. While all these methods explore class-specific priors in various ways, none has used

them in an end-to-end learning framework. Also, all the methods above take range images

as inputs, which are then fused with semantics during optimization, while ours exploits

semantics at an earlier stage – when generating such range images which themselves can

serve as priors for dense reconstruction and other inference tasks.

3.3 Methodology

In this section, we introduce our loss functions as regularizers added to existing models at

training time, in addition to data terms (photometric loss) and generic regularizers (smooth-

ness loss). We dub our loss semantically informed geometric loss (SIGL) because geometric

constraints are selectively applied to certain image regions, where a semantic segmentation

module informs the selection. Fig. 3.1 illustrates part of our training diagram. In Sect. 3.3.3,

we review baseline models used in our experiments and show that the application of our losses

on top of them improves performance (Sect. 3.5).

3.3.1 Semantically informed geometric loss

During training, we assume to be given a partition of the image plane into semantic classes

c ∈ C that have a consistent geometric correlate. For instance, a pixel with image coordinates

(x, y) ∈ R2 and class c(x, y) = “road” is often associated to a normal plane oriented along

the vertical direction (direction of gravity), whereas c =“building” has a normal vector

orthogonal to it. We also assume we are given the calibration matrix K of the camera

capturing the images, so the pixel coordinates (x, y) on the image plane back-project to

points in space via

X =


X

Y

Z

 = K−1


x

y

1

Z(x, y) (3.1)

where Z(x, y) is the depth Z of the point along the projection ray determined by (x, y).
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Any subset Ω ⊂ R2 of the image plane that is the image of a spatial plane with normal

vector N ∈ R3, at distance ‖N‖ from the center of projection, satisfies a constraint of the

form XT
i N = 1 for all i, assuming the plane does not go through the optical center. Stacking

all the points into matrix X̄
.
= [X1,X2 · · ·XM ]>, we have X̄N = 1, where 1 is a vector of

M ones, and M = |Ω| is the cardinality of the set Ω. If the direction, but not the norm, of

the vector N is known, a scale-invariant constraint can be easily obtained by removing the

mean of the points, so that (details in Sect. 3.3.2)

(I− 1

M
11>)X̄N = 0. (3.2)

The scale-invariant constraint above can be used to define a loss to penalize deviation from

planarity:

LHP (ΩHP ) =
1

|ΩHP |
‖(I− 1

|ΩHP |
11>)X̄γ‖2

2 (3.3)

where N in Eq. (3.2) is replaced by normalized gravity γ due to the homogeneity of Eq. (3.2),

and the squared norm is taken assuming the network predicts per-pixel depth Z(x, y) up to

additive zero-mean Gaussian noise. ΩHP ⊂ R2 is a subset of the image plane whose associated

semantic classes have horizontal surfaces, such as “road”, “sidewalk”, “parking lot”, etc. We

call this loss “horizontal plane” loss, where the direction of gravity γ can be reliably and

globally estimated.

Similarly, a “vertical plane” loss can be constructed to penalize deviation from a vertical

plane whose normal N has both unknown direction and norm but lives in the null space of

γ, i.e., N ∈ N (γ). Thus, the vertical plane loss reads

LV P (ΩV P ) = min
N∈N (γ)
‖N‖=1

1

|ΩV P |
‖(I− 1

|ΩV P |
11>)X̄N)‖2

2 (3.4)

where the constraint ‖N‖ = 1 avoids trivial solutions N = 0 again due to the homogeneity

of the objective; ΩV P is a subset of the image plane whose associated semantic classes have

vertical surfaces, such as “building”, “fence”, “billboard”, etc. The constrained minimization

problem in the vertical plane loss LV P is due to the unknown direction of the surface normals

and introduces some difficulties in training. We discuss approximations in Sect. 3.3.2.
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Figure 3.1: Illustration of geo-supervised visual depth prediction. Our visual depth predictor

is an encoder-decoder convolutional neural network with skip connections. At inference

time, the network takes an RGB image as the only input and outputs an inverse depth map.

At training time, gravity extracted from inertial measurements biases the depth prediction

selectively, which is informed by semantic segmentation produced by PSPNet. The other

identical stream of the network and the photometric losses used for training are omitted in

this figure.

3.3.2 Explanation of the objectives

Our idea is essentially to use priors about surface normals to regularize depth prediction. An

intuitive way to achieve this is to compute the surface normals from the depth values first and

then impose regularity, which will eventually bias the depth predictor via backpropagation.

However, such a method involves normal estimation from depth, which can be problematic,

especially with a simplistic but noisy normal estimator [QLL18].1 On the other hand, one

1For instance, one can compute the point-wise sur-
face normal as the cross product of two vectors tangent
to the surface, where the tangent vectors are approxi-

mated by connecting the underlying point to its near-
est neighbors on the surface.
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could train a deep network to compute surface normals [WSR16], which is costly. Therefore,

we do not compute surface normals but directly regularize the depth values via the scale-

invariant constraint Eq. (3.2) which is a function of depth and the direction of gravity.

In what follows, we give an explanation of LHP Eq. (3.3) from a statistical perspective.

Let M = |ΩHP | to avoid notation clutter and expand Eq. (3.3):

(I− 1

M
11>)X̄γ (3.5)

=


1− 1

M
· · · − 1

M

...
. . .

...

− 1
M

· · · 1− 1
M




X>1 γ

X>2 γ

· · ·

X>Mγ

 =


...(

Xi − 1
M

∑M
j=1 Xj

)>
γ

...

 (3.6)

Let µ = 1
M

∑M
j=1 Xj be the sample mean of the 3D coordinates and the horizontal plane loss

LHP reads

LHP (ΩHP ) =
1

M

M∑
i=1

(
(Xi − µ)>γ

)2
(3.7)

which is the sample variance of the 3D coordinates projected to the direction of gravity γ

(coinciding with the surface normal for horizontal planes). To minimize LHP is to minimize

the variance of the 3D coordinates along the surface normal.

Similarly, to minimize LV P Eq. (3.4) is to minimize the variance of the 3D coordinates

along some direction perpendicular to gravity. However, if the direction is unknown, one

needs to jointly solve the direction while minimizing LV P , which explains the constrained

quadratic problem in LV P . Though this can be solved via eigendecomposition, the gradients

of the solver – needed in backpropagation – are non-trivial to compute. In fact, representing

an optimization procedure as a layer of a neural network is an open research problem [AK17].

To alleviate both numerical and implementation difficulties, we uniformly sample unit vectors

from the null space of gravity and compute the minimum of the objective over the samples

as an approximation to the loss. Empirically, we found using eight directions sampled every

45 degrees from 0 to 360 generally performs well.

33



3.3.3 View synthesis as supervision and baselines

To showcase the ability to improve upon existing self-supervised monocular depth pre-

diction networks, we add our losses to two publicly available models – Godard [GMB17]

(LR-Consistency) and Yin [YS18b] (GeoNet) – as baselines and perform both quantita-

tive and qualitative comparisons. We additionally apply our losses to Zhan [ZGW18]

(Stereo-Temporal) and Wang [WBZ18b] (DDVO), the state-of-the-art methods in their re-

spective training setting, stereo pairs/videos, and monocular videos. LR-Consistency is

trained with rectified stereo image pairs, GeoNet and DDVO use monocular videos while

Stereo-Temporal uses stereo videos. At test time, all training settings result in a sys-

tem that takes a single image as input and predicts an inverse depth map as output. We

show that by applying our losses to the baselines LR-Consistency and GeoNet, we achieve

better performance than the state-of-the-art methods Stereo-Temporal and DDVO. Further-

more, we produce new state-of-the-art results by applying our losses to Stereo-Temporal

and DDVO.

3.3.3.1 Training with stereo pairs

At training time, our first baseline model (LR-Consistency) takes a single left image as

its input and predicts two disparity maps DL, DR : R2 ⊃ Ω → R+ for both left and right

cameras. The network follows the fully convolutional encoder-decoder structure with skip

connections. The total loss consists of three terms: Appearance loss, smoothness of disparity

and left-right consistency, each of which is evaluated on both the left and the right streams

across multiple scale levels. Here we address the view synthesis loss, which serves as the

data term and is part of the appearance loss:

LLvs =
1

|Ω|
∑

(x,y)∈Ω

‖IL(x, y)− IR(x+DL(x, y), y)‖1. (3.8)

The view synthesis loss is essentially the photometric difference of the left image IL(x, y) and

the right image warped to the left view IR(x + DL(x, y), y) according to the left disparity

prediction DL(x, y). The right view synthesis loss is constructed in the same way. Though
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only one disparity map is needed at inference time, it has been shown that predicting both

left and right disparity maps and including the left-right consistency loss Eq. (3.9) are in

general beneficial [GMB17].

LLlr =
1

|Ω|
∑

(x,y)∈Ω

‖DL(x, y)−DR(x+DL(x, y), y)‖1 (3.9)

3.3.3.2 Training with stereo videos

In our second baseline Stereo-Temporal, stereo videos are used to train a monocular depth

predictor, where two frames of a stereo pair and another frame one time step ahead are

involved in constructing a stereo-temporal version of the photometric loss: For the stereo

pair, Eq. (3.8) is applied while for the temporal pair, Eq. (3.10) (detailed below) is applied.

3.3.3.3 Training with monocular videos

To train our third and fourth baseline models (GeoNet and DDVO), a single reference frame

It is fed into the depth network and frames It′ , t
′ ∈ Wt in a temporal window centered at t

are used to construct the view synthesis loss, also known as reprojection error:

Lvs =
1

|Wt||Ω|
∑
t′∈Wt

∑
(x,y)∈Ω

‖It(x, y)− It′
(
π(ĝt′tX)

)
‖1 (3.10)

which is the difference between the reference frame It and neighboring frames It′ warped to

it. X is the back-projected point defined in Eq. (3.1), π is a central (perspective) projection,

and ĝt′t is the relative camera pose up to an unknown scale predicted by an auxiliary pose

network which takes both It and It′ as its input. Note that the pose and depth networks

are coupled via the view synthesis loss at training time; at test time, the depth network

alone is needed to perform depth prediction with a single image as its input. Interestingly,

in Sect. 3.5.6 we found that replacing the pose network with pose estimation from VIO

produces better results compared to the multi-task learning diagram where pose and depth

networks are trained simultaneously, which sheds light on the use of classic SLAM/Odometry

systems in developing better learning algorithms.
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A detailed discussion about other losses serving as regularization terms is beyond the

scope of this paper and can be found in [GMB17, ZBS17, YS18b, WBZ18b].

3.4 Implementation Details

3.4.1 Semantic segmentation

At training time, we use PSPNet [ZSQ17] pre-trained on the CityScapes dataset [COR16]

provided by the authors to obtain per-pixel labeling. For every pixel (x, y) ∈ R2, a probability

distribution over 19 classes is predicted by PSPNet, of which the most likely class c(x, y) ∈ C

determines the orientation of the surface where the back-projected point X sits. We group

the 19 classes into 7 categories2 according to the CityScapes benchmark and test our losses

on all of them. Empirically, we found that it is most beneficial to apply our losses to the

“flat”, “vehicle” and “construction” categories and therefore all the comparisons on KITTI

against baseline methods are made with these categories regularized. The influence of other

categories is studied in Sect. 3.5.4.

3.4.2 Gravity

For imagery captured by a static platform equipped with an inertial measurement unit

(IMU), one can use the gravity γb ∈ R3 measured in the body frame (coinciding with the

IMU frame) and simply apply the body-to-camera rotation Rcb ∈ SO(3) to obtain the gravity

in the camera frame γ = Rcbγb which is then used in Eq. (3.3) and (3.4). For moving

platforms, one resorts to robust VIO, which is well studied [MR07, TCS15]. In Sect. 3.5.6,

we demonstrated our approach on a visual-inertial odometry dataset, where both camera

pose and gravity are estimated online by VIO.

For our experiments on the KITTI dataset, thanks to the GPS/IMU sensor package

which provides linear acceleration of the sensor platform measured both in the body frame

2“flat”: road, sidewalk; “human”: rider, person;
“vehicle”: car, truck, bus, train, motorcycle, bicycle;
“construction”: building, wall, fences; “object”: pole,

traffic light, traffic sign; “nature”: vegetation, terrain;
“sky”: sky.
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Metric Definition

AbsRel 1
|Ω|
∑

(x,y)∈Ω
|Z(x,y)−Zgt(x,y)|

Zgt(x,y)

SqRel 1
|Ω|
∑

(x,y)∈Ω
|Z(x,y)−Zgt(x,y)|2

Zgt(x,y)

RMSE
√

1
|Ω|
∑

(x,y)∈Ω |Z(x, y)− Zgt(x, y)|2

RMSE log
√

1
|Ω|
∑

(x,y)∈Ω | logZ(x, y)− logZgt(x, y)|2

log10
1
|Ω|
∑

(x,y)∈Ω | logZ(x, y)− logZgt(x, y)|

Accuracy % of Z(x, y) s.t. δ
.
= max

( Z(x,y)
Zgt(x,y) ,

Zgt(x,y)
Z(x,y)

)
< threshold

Table 3.1: Error and Accuracy Metrics. Z(x, y) is the predicted depth at (x, y) ∈ Ω and

Zgt(z, y) is the corresponding ground truth. Three different thresholds (1.25, 1.252 and 1.253)

are used in the accuracy metric as a convention in the literature.

(αb ∈ R3) and the spatial frame (αs ∈ R3), we are able to compute the spatial-to-body

rotation Rbs ∈ SO(3) and then bring the gravity γs = [0, 0, 9.8]> from the spatial frame to

the camera frame γ = RcbRbsγs. In all settings, Rcb (rotational part of the body-to-camera

transformation) is obtained via offline calibration procedures.

3.4.3 Training details

A GTX 1080 Ti GPU and Adam [KB14] optimizer are used in our experiments. Depending

on different model variants and input image sizes, training time varies from 8 hours to 16

hours. For LR-Consistency and GeoNet which were initially implemented in TensorFlow,

we implemented our losses also in TensorFlow and applied them to the existing code bases.

Code of Stereo-Temporal is available online, but in Caffe, thus we migrated their model to

TensorFlow and applied our losses. We also implemented our losses in PyTorch, which were

then applied to DDVO of which the PyTorch version was made available by the author. Our

code is available at https://github.com/feixh/GeoSup.
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3.5 Experiments

To enable quantitative evaluation, we exploit the KITTI benchmark, and test our approach

against the state-of-the-art as described in detail below (Sect. 3.5.2&3.5.3). We also carried

out ablation studies (Sect. 3.5.4) and tested the generalizability of our approach (Sect. 3.5.5).

In addition to KITTI, which features planar motion in driving scenarios, we have conducted

experiments on VISMA dataset [FS18] – an indoor visual-inertial odometry dataset captured

under non-trivial ego-motion (Sect. 3.5.6).

3.5.1 KITTI Eigen split

We compare our approach with recent state-of-the-art methods on the monocular depth pre-

diction task using the KITTI Eigen split [EPF14] in two training domains: stereo pairs/videos

and monocular videos (Sect. 3.3.3). The Eigen split test set contains 697 test images selected

from 29 of 61 scenes provided by the raw KITTI dataset. Of the remaining 32 scenes contain-

ing 23,488 stereo pairs, 22,600 pairs are used for training, and the rest is used for validation

per the training split proposed by [GBC16]. To generate ground truth depth maps for val-

idation and evaluation, we take the Velodyne data points associated with each image and

project them from the Velodyne frame to the left RGB camera frame. Each resulting ground

truth depth map covers approximately 5% of the corresponding image and may be erroneous.

To handle this, first, we use the cropping scheme proposed by [GBC16], which masks out

the potentially erroneous extremities from the left, right and top areas of the ground truth

depth map. Then we evaluate depth prediction only at pixels where ground truth depth

is available. For visualization, we linearly interpolate each sparse depth map to cover the

entire image (Fig. 3.2).

We additionally provide quantitative evaluations of variants of the models pre-trained

on CityScapes and fine-tuned on KITTI. CityScapes dataset contains 22,973 training stereo

pairs captured in various cities across Germany with a similar modality as KITTI. We

cropped each input image to keep only the top 80% of the image, removing the reflective

hood.
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The error and accuracy metrics, which are initially proposed by [EPF14] and adopted by

others, are used (Table 3.1). Also as a convention in the literature, performances evaluated

with depth prediction capped at 50 and 80 meters are reported as suggested by [GMB17].

The choice of 80 meters is two-fold: 1) maximum depth present in the KITTI dataset is on

the order of 80 meters and 2) non-thresholded measures can be sensitive to the significant

errors in depth caused by prediction errors at small disparity values. For the same reason,

depth prediction is capped at 70 meters in the Make3D experiment. Prediction capped at 50

meters is also evaluated since depth at closer range is more applicable to real-world scenarios.

3.5.2 Training with stereo pairs

The first baseline we adopt is Godard [GMB17] (with VGG [SZ14] as feature extractor), to

which SIGL is imposed at training time along with the view synthesis loss Eq. (3.8) and

other generic regularizers used in [GMB17]. The model is trained from scratch with stereo

pairs following the Eigen split and compared to both supervised [EPF14, LSL16] and self-

supervised methods [GMB17, ZGW18]. In addition, we apply our losses to variants of the

baseline (with ResNet [HZR16] as feature extractor; w/ & w/o post-processing) and evaluate

different training schemes (w/ & w/o pre-training on CityScapes). Quantitative comparisons

can be found in Table 3.2, where the results with SIGL added as an additional regularizer

follow the results of the baseline models and variants. In the column marked “Data”, K refers

to Eigen split benchmark on the KITTI dataset, and CS refers to the CityScapes dataset.

Methods marked with CS+K are pre-trained on CityScapes and then fine-tuned on KITTI

Eigen split. pp denotes post-processing. Cap Xm means depth predictions are capped at X

meters. Results of Zhan [ZGW18] Stereo-Temporal are taken from their paper. The rest

of the results are taken from [GMB17] unless otherwise stated.

We want to remind the reader that the first baseline model atop which we built ours

is Godard [GMB17] VGG which initially performed worse than the Stereo-Temporal model

of Zhan [ZGW18] by a large margin, but by applying our losses to the baseline at train-

ing time we managed to boost its performance and make it perform even better than the
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Method Data Error metric Accuracy (δ <)

AbsRel SqRel RMSE RMSElog 1.25 1.252 1.253

Depth: cap 80m

TrainSetMean* K 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen [EPF14] Coarse* K 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen [EPF14] Fine* K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu [LSL16]* K 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Godard [GMB17] VGG K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

+SIGL K 0.139 1.211 5.702 0.239 0.816 0.928 0.966

Zhan [ZGW18] Stereo-Temporal K 0.144 1.391 5.869 0.241 0.803 0.928 0.969

+SIGL K 0.137 1.061 5.692 0.239 0.805 0.928 0.969

Godard [GMB17] VGG pp CS+K 0.124 1.076 5.311 0.219 0.847 0.942 0.973

+SIGL CS+K 0.114 0.885 4.877 0.203 0.858 0.950 0.978

Godard [GMB17] ResNet pp CS+K 0.114 0.898 4.935 0.206 0.861 0.949 0.976

+SIGL CS+K 0.112 0.836 4.892 0.204 0.862 0.950 0.977

Depth: cap 50m

Garg [GBC16] K 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard [GMB17] VGG K 0.140 0.976 4.471 0.232 0.818 0.931 0.969

+SIGL K 0.132 0.891 4.312 0.225 0.831 0.936 0.970

Zhan [ZGW18] Stereo-Temporal K 0.135 0.905 4.366 0.225 0.818 0.937 0.973

+SIGL K 0.131 0.829 4.217 0.224 0.824 0.937 0.973

Godard [GMB17] VGG pp CS+K 0.112 0.680 3.810 0.198 0.866 0.953 0.979

+SIGL CS+K 0.108 0.658 3.728 0.192 0.870 0.955 0.981

Godard [GMB17] ResNet pp CS+K 0.108 0.657 3.729 0.194 0.873 0.954 0.979

+SIGL CS+K 0.106 0.615 3.697 0.192 0.874 0.956 0.980

* With ground truth depth supervision.

+SIGL: training with SIGL enabled

Table 3.2: Training with stereo pairs on KITTI. K denotes the KITTI dataset, CS+K denotes

pretraining on Cityscape and finetuning on KITTI. Depth values are capped at 50 and 80

meters. Our method consistently improves baseline algorithms.
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Stereo-Temporal model at test time. Note that the Stereo-Temporal model also exploits

temporal information in addition to stereo pairs for training while our first baseline built

atop Godard does not.

As a second baseline, we apply our losses additionally to the Stereo-Temporal model

of Zhan to further push the state-of-the-art. Table 3.2 shows that our losses improve the

Stereo-Temporal model across all error metrics with the accuracy metrics δ < 1.252 and δ <

1.253 being comparable. Another variant of Zhan’s model pre-trains on NYU-V2 [SHK12] in

a fully supervised fashion and is therefore not pertinent to this comparison. Fig. 3.2 shows

a head-to-head qualitative comparison of ours and the baseline models.

3.5.3 Training with monocular videos

To demonstrate the effectiveness of our loss in the second training setting (monocular videos),

we impose SIGL to our third (Yin [YS18b]) and fourth (Wang [WBZ18b]) baseline. Using

the KITTI Eigen split, we follow the training and validation 3-frame sequence selection

proposed by [ZBS17] where the first and third frames are treated as the source views and

the central (second) frame is treated as the reference as in Eq. (3.10). Of the 44,540 total

sequences, 40,109 are used for training and 4,431 for validation. We evaluate our system on

the aforementioned 697 test images [EPF14]. The same training and evaluation scheme are

also applied to other top-performing methods [ZBS17, MWA18] in addition to the selected

baselines.

Table 3.3 shows detailed comparisons against state-of-the-art self-supervised methods

trained using monocular video sequences. We compare against best-performing model vari-

ants of Wang [WBZ18b] (PoseCNN & PoseCNN+DDVO) and Yin [YS18b] (ResNet) with and

without pre-training on CityScapes. By adding our losses to existing models, we observe

systematic performance improvement across all metrics. Though initially performing worse

than Wang [WBZ18b] PoseCNN+DDVO, Yin [YS18b] ResNet with the proposed losses even out-

performs the original PoseCNN+DDVO. Moreover, we achieve new state-of-the-art by adding

our losses to PoseCNN+DDVO trained on both CityScapes and KITTI. Fig. 3.2 illustrates
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Figure 3.2: Qualitative results on KITTI Eigen split. (best viewed at 5× with color) Top to

bottom, each column shows an input RGB image, the corresponding ground truth inverse

depth map, the predictions of baseline models trained without and with our priors, AbsRel

error maps of baseline models trained without and with our priors. All the models are trained

on KITTI Eigen split. For the purpose of visualization, ground truth is interpolated and

all the images are cropped according to [GBC16]. For the error map, darker means smaller

error. Typical image regions where we do better (darker in the error map) include cars,

roads and walls.

representative image regions where we do better.

3.5.4 Ablation study

To study the contribution of each semantic category to the performance improvement, we

performed an ablation study: We apply our losses to different semantic categories, one at

a time, train the network until convergence, and show how the quality of depth prediction

varies (Table 3.4). In Table 3.4, Godard et al. [GMB17] is the baseline model where only the

most generic regularizers, e.g., smoothness and consistency, are used. The second column

indicates the semantic category of which the depth prediction is regularized using our losses

in addition to the generic regularizers. For the meaning of the semantic categories, see

Sect. 3.4.1.

It turns out that the “flat” category contributes most to the performance gain over the

baseline model, which is expected because most of the KITTI images contain a large portion

of roads and sidewalks. We also observed that regularization of the “construction” and
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Method Data Error metric Accuracy (δ <)

AbsRel SqRel RMSE RMSElog 1.25 1.252 1.253

Depth: cap 80m

Zhou [ZBS17] K 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Mahjourian [MWA18] K 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yin [YS18b] ResNet K 0.155 1.296 5.857 0.233 0.793 0.931 0.973

+SIGL K 0.142 1.124 5.611 0.223 0.813 0.938 0.975

Wang [WBZ18b] PoseCNN K 0.155 1.193 5.613 0.229 0.797 0.935 0.975

+SIGL K 0.147 1.076 5.640 0.227 0.801 0.935 0.975

Wang [WBZ18b] PoseCNN+DDVO K 0.151 1.257 5.583 0.228 0.810 0.936 0.974

+SIGL K 0.146 1.068 5.538 0.224 0.809 0.938 0.975

Zhou [ZBS17] CS+K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian [MWA18] CS+K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Yin [YS18b] ResNet CS+K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

+SIGL CS+K 0.147 1.076 5.468 0.222 0.806 0.938 0.976

Wang [WBZ18b] PoseCNN+DDVO CS+K 0.148 1.187 5.496 0.226 0.812 0.938 0.975

+SIGL CS+K 0.142 1.094 5.409 0.219 0.821 0.941 0.976

Depth: cap 50m

Zhou [ZBS17] K 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Mahjourian [MWA18] K 0.155 0.927 4.549 0.231 0.781 0.931 0.975

Yin [YS18b] ResNet K 0.147 0.936 4.348 0.218 0.810 0.941 0.977

+SIGL K 0.135 0.834 4.193 0.208 0.831 0.948 0.979

Wang [WBZ18b] PoseCNN† K 0.149 0.920 4.303 0.216 0.813 0.943 0.979

+SIGL K 0.140 0.816 4.234 0.212 0.818 0.945 0.980

Wang [WBZ18b] PoseCNN+DDVO† K 0.144 0.935 4.234 0.214 0.827 0.945 0.977

+SIGL K 0.139 0.808 4.180 0.209 0.826 0.948 0.980

Zhou [ZBS17] CS+K 0.190 1.436 4.975 0.258 0.735 0.915 0.968

Mahjourian [MWA18] CS+K 0.151 0.949 4.383 0.227 0.802 0.935 0.974

Yin [YS18b] ResNet* CS+K / / / / / / /

+SIGL CS+K 0.141 0.837 4.160 0.209 0.823 0.947 0.980

Wang [WBZ18b] PoseCNN+DDVO† CS+K 0.142 0.901 4.202 0.213 0.827 0.946 0.978

+SIGL CS+K 0.135 0.832 4.119 0.206 0.836 0.949 0.980

* Not available.

† Evaluated with prediction released by the author.

+SIGL: training with SIGL enabled

Table 3.3: Training with monocular videos on KITTI. K denotes the KITTI dataset, CS+K

denotes pretraining on Cityscape and finetuning on KITTI. Depth values are capped at 50

and 80 meters. Our method consistently improves baseline algorithms.

43



Method Category Error metric Accuracy (δ <)

AbsRel SqRel RMSE RMSElog 1.25 1.252 1.253

Godard [GMB17] / 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours Human 0.152 1.394 5.945 0.251 0.801 0.921 0.963

Ours Sky 0.148 1.368 5.864 0.245 0.807 0.923 0.964

Ours Object 0.146 1.335 5.986 0.249 0.800 0.920 0.963

Ours Nature 0.146 1.292 5.826 0.247 0.804 0.923 0.964

Ours Vehicle 0.143 1.304 5.797 0.241 0.814 0.927 0.966

Ours Construction 0.142 1.252 5.729 0.240 0.810 0.928 0.967

Ours Flat 0.141 1.270 5.779 0.239 0.814 0.927 0.966

Ours V+C+F 0.139 1.211 5.702 0.239 0.816 0.928 0.966

Table 3.4: Ablation study on KITTI. Category denotes the semantic category that SIGL is

applied. Deformable objects such as humans tend to yield poor performance (this is expected

as deformable objects do not conform to our planar shape model). Object categories that

can be easily modeled by planes tend to yield better performance. We see that the best

combination of semantic classes to use are vehicle, construction and flat objects.

“vehicle” category provides reasonable improvement while the “nature” category (trees and

hedges) helps a little. Applying our priors to the “human”, “sky” and “object” categories

does not consistently improve over the baseline, for the following reasons: “sky” does not

have well-defined surface normals; “human” has deformable surfaces of which normals can

point arbitrarily; “object” category consists of thin structures which project to few pixels

rendering it hard to apply segmentation and our losses. The best is achieved when we apply

our losses to “vehicle”, “construction” and “flat” categories, denoted by V+C+F in Table 3.4.

3.5.5 Generalize to other datasets: Make3D

To showcase the generalizability of our approach, we follow the convention of [GMB17,

ZBS17, YS18b, WBZ18b]: Our model trained only on KITTI Eigen split is directly tested

on Make3D [SSN09]. Make3D contains 534 images with 2272 × 1707 resolution, of which

134 are used for testing.3 Low resolution ground truth depths are given as 305 × 55 range

3Ideally we want to test on the whole Make3D
dataset since we do not train on Make3D, but other

methods to which we compare train on it. For a fair
comparison, we only use the 134 images for testing.
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maps and must be resized and interpolated for evaluation. We follow [GMB17] and [ZBS17]

in applying a central cropping to generate a 852× 1707 crop centered on the image. We use

the standard C1 evaluation metrics for Make3D and measure our performance on depths

less than 70 meters. Table 3.5 shows a quantitative comparison to the competitors, both

supervised and self-supervised, with two different training settings. Note that the results of

[KLK12, LSL16, LRB16] are directly taken from [GMB17]. Since the exact cropping scheme

used in [GMB17] is not available, we re-implemented it closely following the description in

[GMB17]. We trained our model on KITTI Eigen split and compared against models of

[GMB17, ZBS17, YS18b, WBZ18b] also trained on Eigen split (as provided by the authors)

for a fair comparison.

A careful inspection of the baseline models (Godard [GMB17] in stereo and Yin [YS18b] in

monocular supervision) versus ours reveals that the application of our losses does not hurt

the generalizability of the baselines. Fig. 3.3 shows some qualitative results on Make3D.

Though our model registers some failure cases in texture-less regions, a rough scene layout is

present in the prediction. Regarding that the model is only trained on KITTI, of which the

data modality is very different from that of Make3D, the prediction is sensible. But after

all, a single image only affords to hypothesize depth, so we expect that any method using

such predictions would have mechanisms to handle model deficiencies.

3.5.6 Evaluation on indoor datasets

To the best of our knowledge, none of the top-performing methods in self-supervised depth

prediction have shown experimental results beyond planar motion, i.e., driving scenarios

such as KITTI and CityScapes, probably due to two reasons: Lack of rectified stereo pairs

for training ([GMB17, ZGW18]) and difficulty to learn complex ego-motion along with depth

prediction from video sequences ([ZBS17, YS18b, WBZ18b]).

However, with two modifications to the GeoNet model of Yin [YS18b] – a multi-task

learning approach where ego-motion and depth prediction are jointly learned, we managed to

train our model and outperform GeoNet on publicly available VISMA [FS18] dataset which
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Method Supervision AbsRel SqRel RMSE log10

TrainSetMean Depth 0.893 15.517 11.542 0.223

Karsch [KLK12] Depth 0.417 4.894 8.172 0.144

Liu [LSL16] Depth 0.462 6.625 9.972 0.161

Laina [LRB16] Depth 0.198 1.665 5.461 0.082

Godard [GMB17] VGG Stereo 0.468 9.236 12.525 0.165

Ours Stereo 0.458 8.681 12.335 0.164

Zhou [ZBS17] Mono 0.407 5.367 11.011 0.167

Yin [YS18b] ResNet Mono 0.376 4.645 10.350 0.152

Wang [WBZ18b] PoseCNN+DDVO Mono 0.387 4.720 8.09 0.204

Ours Mono 0.356 4.517 10.047 0.144

Table 3.5: Generalizability test on Make3D. Our models are only trained on KITTI Eigen

split and tested on novel imagery from Make3D. We can see clear benefits in having a pose

prior (bias from gravity) with even a simple shape model (e.g. planes).

Figure 3.3: Qualitative results on Make3D. Left to right, each row shows an input RGB

image, the corresponding ground truth disparity map and our prediction. Our model is only

trained on KITTI and directly applied to Make3D.
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Method Error metric Accuracy (δ <)

AbsRel SqRel RMSE RMSElog 1.25 1.252 1.253

GeoNet 0.204 0.157 0.518 0.250 0.702 0.914 0.975

OursVIO 0.154 0.111 0.446 0.211 0.796 0.940 0.983

OursVIO++ 0.149 0.105 0.421 0.202 0.820 0.947 0.983

Table 3.6: Quantitative results on VISMA validation. We trained three models on the

VISMA dataset. We see that the baseline model GeoNet has difficulty recovering the 3d

scene. The drawback of applying generic (non-semantically informed) priors such as local

smoothness is clearly visible. Upon applying our method, we see a significant performance

boost. Exploiting priors in indoor scenes is particularly important as there are many tex-

tureless surfaces (e.g. walls).

features monocular videos of indoor scenes captured by a hand-held visual-inertial sensor

platform under challenging motion. As a first modification, we replace the pose network in

GeoNet with pose estimation from a VIO system [TCS15], which makes the network easier

to train (we call this model OursVIO). Second, to further improve the quality of predicted

depth maps, we impose our gravity-induced regularization terms to OursVIO, where gravity

is also estimated online by VIO. Our second model is named OursVIO++.

VISMA dataset contains time-stamped monocular videos (30 Hz) from a PointGrey cam-

era and inertial measurements (100 Hz) from an Xsens unit, which are used in both VIO and

network training. RGB-D reconstructions (dense point clouds) of the same scenes from a

Kinect are also available, along with the spatial alignment gVIO←RGBD ∈ SE(3) from RGB-D

to VIO provided by the author. To get ground truth depth for cross-modality validation,

we apply gVIO←RGBD to the dense point clouds which are then projected to the PointGrey

video frames. PSPNet trained on ADE20K [ZZP17] produces segmentation masks for train-

ing.4 Of the 10K frames in VISMA, we remove static ones and construct 3-frame sequences

4Among the 91 categories in ADE20K which PSP-
Net is trained on, we select “floor”, “ceiling”, “wall”,
“window”, “door”, “building”, “chair”, “cabinet”,

“desk”, “table” to apply our losses.
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Figure 3.4: Qualitative comparison on VISMA validation. Top to bottom, each column shows

an input RGB image, the corresponding ground truth inverse depth map, results of GeoNet

(baseline), OursVIO, and OursVIO++. Both OursVIO and OursVIO++ show largely improved

results over the baseline, especially for images captured at extreme viewpoint (large in-plane

rotation and top-down view). OursVIO++ (with gravity-induced priors) further improves

over OursVIO (without priors) at planar regions, e.g., the chair backs, where holes have been

filled.
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(triplet) which are five frames apart in the original video to ensure sufficient parallax, result-

ing 8, 511 triplets in total. We randomly sample 100 triplets for validation and use the rest

for training. Fig. 3.4 and Table 3.6 show comparisons of GeoNet, OursVIO and OursVIO++,

all trained from scratch on VISMA until validation error stops decreasing. Both OursVIO

and OursVIO++ improve over the baseline model by a large margin. Moreover, OursVIO++

trained with our gravity-induced losses has the capability to further refine results of OursVIO

trained without our losses.

3.6 Discussion

Gravity informs the shape of objects populating the scene, which is a powerful prior to visual

scene analysis. We have presented a simple illustration of this power by adding a prior to

standard monocular depth prediction methods that biases the normals of surfaces of known

classes to align to gravity or its complement. Far more can be done: While in this work we

use known biases in the shape of certain object classes, such as the fact that roads tend to

be perpendicular to gravity, in the future we could learn such biases directly.
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CHAPTER 4

Dense Depth Posterior

from Single Image and Sparse Range

4.1 Introduction

There are many dense depth maps that are compatible with a given image and a sparse

point cloud. Any point-estimate, therefore, depends critically on the prior assumptions

made. Ideally, one would compute the entire posterior distribution of depth maps, rather

than a point-estimate. The posterior affords to reason about confidence, integrating evidence

over time, and in general, is a (Bayesian) sufficient representation that accounts for all the

information in the data.

Motivating application. In autonomous navigation, a sparse point cloud from lidar may

be insufficient to make planning decisions: Is the surface of the road in Fig. 4.1 (middle,

better viewed when enlarged) littered with pot-holes, or is it a smooth surface? Points that

are nearby in image topology, projecting onto adjacent pixels, may be arbitrarily far in the

scene. For instance, pixels that straddle an occluding boundary correspond to large depth

gaps in the scene. While the lidar may not measure every pixel, if we know it projects onto

a tree, trees tend to stand out from the ground, which informs the topology of the scene.

On the other hand, pixels that straddle illumination boundaries, like shadows cast by trees,

seldom correspond to large depth discontinuities.

Depth completion is the process of assigning a depth value to each pixel. While there are

several deep learning-based methods to do so, we wish to have the entire posterior estimate

over depths. Sparse range measurements serve to ground the posterior estimate in a metric
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space. This could then be used by a decision and control engine downstream.

Figure 4.1: Example of our depth completion method. An image (top) is insufficient to

determine the geometry of the scene; a point cloud alone (middle) is similarly ambiguous.

Lidar returns are shown as colored points, but black regions are uninformative: Are the

black regions holes in the road surface, or due to radiometric absorption? Combining a

single image, the lidar point cloud, and previously seen scenes allows inferring a dense depth

map (bottom) with high confidence. Color bar from left to right: zero to infinity.

Side information. If the dense depth map is obtained by processing the given image and

sparse point cloud alone, the quality of the resulting decision or control action could be no
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Figure 4.2: Our network architecture. (A): the architecture of the Conditional Prior Network

(CPN) to learn the conditional of the dense depth given a single image. (B): Our proposed

Depth Completion Network (DCN) for learning the mapping from a sparse depth map and

an image to a dense depth map. Connections within each encoder/decoder block are omitted

for simplicity.

better than if the raw data was fed downstream (Data Processing Inequality). However, if

depth completion can exploit a prior or aggregate experience from previously seen images

and corresponding dense depth maps, then it is possible for the resulting dense depth map

to improve the quality of the decision or action, assuming that the training set is represen-

tative. To analyze a depth completion algorithm, it is important to understand what prior

assumptions, hypotheses or side information is being exploited.

Goal. We seek methods to estimate the geometry and topology of the scene given an image,

a sparse depth map, and a body of training data consisting of images and the associated dense

depth maps. Our assumption is that the distribution of seen images and corresponding depth

maps is representative of the present data (image and sparse point cloud) once restricted to

a sparse domain.

Our method yields the full posterior over depth maps, which is much more powerful

than any point estimate. For instance, it allows reasoning about confidence intervals. We

elect the simplest point estimate possible, which is the maximum, to evaluate the accuracy
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of the posterior. It should be noted, however, that when there are multiple hypotheses

with similar posterior, the point estimate could jump from one mode to another, and yet the

posterior being an accurate representation of the unknown variable. More sophisticated point

estimators, for instance, taking into account memory, or spatial distribution, non-maximum

suppression, etc. could be considered, but here we limit ourselves to the simplest one.

Key idea. While an image alone is insufficient to determine a depth map, certain depth

maps are more probable than others given the image and a previously seen dataset. The key

to our approach is a conditional prior model P (d|I,D) that scores the compatibility of each

dense depth map d with the given image I based on the previously observed dataset D. This

is computed using a Conditional Prior Network (CPN) [YS18a] in conjunction with a model

of the likelihood of the observed sparse point cloud z under the hypothesized depth map d,

to yield the posterior probability and, from it, a maximum a-posteriori (MAP) estimate of

the depth map for benchmark evaluation:

d̂ = arg max
d
P (d|I, z) ∝ P (z|d)PD(d|I). (4.1)

Let D ⊂ R2 be the image domain, sampled on a regular lattice of dimension N × M ,

I : D → R3 is a color image, with the range quantized to a finite set of colors, d : D → R+

is the dense depth map defined on the lattice D, which we represent with an abuse of

notation as a vector of dimension MN : d ∈ RNM
+ . Ω ⊂ D is a sparse subset of the image

domain, with cardinality K = |Ω|, where the function d takes values d(Ω) = z ∈ RK
+ .

Finally, D = {dj, Ij}nj=1 is a dataset of images Ij and their corresponding dense depth maps

dj ∈ RNM
+ . Since we do not treat D as a random variable but a given set of data, we write

it as a subscript. In some cases, we may have additional data available during training, for

instance stereo imagery, in which case we include it in the dataset, and discuss in detail how

to exploit it in Sect. 4.3.3.

Results. We train a deep neural network model to produce an estimate of the posterior

distribution of dense depth maps given an image and a sparse point cloud (sparse range

map), that leverages a Conditional Prior Network to restrict the hypothesis space, weighted

by a classical likelihood term. We use a simple maximum a-posteriori (MAP) estimate to
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evaluate our approach on benchmark datasets, including the KITTI-unsupervised, where

the dense depth map is predicted given an image and a point cloud with 5% pixel coverage,

and the KITTI-supervised, where a point cloud with 30% coverage is given for training. We

achieve top performance in both. We also validate on additional data in the Supplementary

Materials [YWS19].

4.2 Related Work

Semi-Dense Depth Completion. Structured light sensors typically provide dense depth

measurements with about 20% missing values; At this density, the problem is akin to in-

painting [CS12, LRL14, SC13] that use morphological operations [KHW18, PGA16]. The

regime we are interested in involves far sparser point clouds (> 90% missing values).

Supervised Depth Completion. Given a single RGB image and its associated sparse

depth measurements along with dense ground truth, learning-based methods [EFK18, HFY18,

RPY18, USS17, ZF18] minimize the corresponding loss between prediction and ground truth

depth. [USS17] trains a deep network to regress depth using a sparse convolutional layer that

discounts the invalid depth measurements in the input while [HFY18] proposes a sparsity-

invariant upsampling layer, sparsity-invariant summation, and joint sparsity-invariant con-

catenation and convolution. [EFK18] treats the binary validity map as a confidence map and

adapts normalized convolution for confidence propagation through layers. [DVP18] imple-

ments an approximation of morphological operators using the contra-harmonic mean (CHM)

filter [MAS13] and incorporates it as a layer in a U-Net architecture for depth completion.

[CWL18] proposes a deep recurrent auto-encoder to mimic the optimization procedure of

compressive sensing for depth completion, where the dictionary is embedded in the neural

network. [ZF18] predicts surface normals and occlusion boundaries from the RGB image,

which gives a coarse representation of the scene structure. The predicted surface normals

and occlusion boundaries are incorporated as constraints in a global optimization framework

guided by sparse depth.

Unsupervised Depth Completion. In this problem setting, dense ground truth depth is
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not available as supervision, so a strong prior is key. [MCK19] proposes minimizing the pho-

tometric consistency loss among a sequence of images with a second-order smoothness prior

based on a similar formulation in single image depth prediction [MWA18, WBZ18a, ZBS17].

Instead of having a separate pose network or using direct visual odometry methods, [MCK19]

uses Perspective-n-Point (PnP) [LMF09] and Random Sample Consensus (RANSAC) [FB81]

to obtain pose. We exploit recently introduced method to learn the conditional prior [YS18a]

to take into account scene semantics rather than using a local smoothness assumption.

Stereo as Supervision. Recent works in view synthesis [FNP16, XGF16] and unsuper-

vised single image depth prediction, [FWS19, GBC16, GMB17, WHS19] propose using view

synthesis to hallucinate a novel view image by reconstruction loss. In the case of stereo

pairs, [GBC16, GMB17, WHS19] propose training networks to predict the disparities of

an input image by reconstructing the unseen right view of a stereo pair given the left.

In addition to the photometric reconstruction loss, local smoothness is assumed; [GMB17]

additionally proposed edge-aware smoothness and left-right consistency. Although during

inference, we assume only one image is given, at training time we may have stereo imagery

available, which we exploit as in Sect. 4.3.3. In this work, we incorporate only the stereo

photometric reconstruction term. Despite our network predicting depths and the network

[GBC16, GMB17, WHS19] predicting disparities, we are able to incorporate this training

scheme seamlessly into our approach.

Exploiting Semantics and Contextual Cues. While methods [EFK18, HFY18, MCK19,

RPY18, USS17, ZF18] learn a representation for the depth completion task through ground

truth supervision, they do not have any explicit modeling of the semantics of the scene.

Recently, [SSP16] explored this direction by predicting object boundary and semantic labels

through a deep network and using them to construct locally planar elements that serve as

input to a global energy minimization for depth completion. [CWY18] proposes to complete

the depth by anisotropic diffusion with a recurrent convolution network, where the affinity

matrix is computed locally from an image. [JCW18] also trains a U-Net for joint depth

completion and semantic segmentation in the form of multitask learning in an effort to

incorporate semantics in the learning process.
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To address contextual cues and scene semantics, [YS18a] introduces a Conditional Prior

Network (CPN) in the context of optical flow, which serves as a learning scheme for inferring

the distribution of optical flow vectors given a single image. We leverage this technique

and formulate depth completion as a maximum a-posteriori problem by factorizing it into

a likelihood term and a conditional prior term, making it possible to explicitly model the

semantics induced regularity of a single image. Even though our method could be applied

to sparse-to-dense interpolation for optical flow, where the sparse matches can be obtained

using [YS17, YLS15], here we focus our test on depth completion task.

4.3 Method

In order to exploit a previously observed dataset D, we use a Conditional Prior Network

(CPN) [YS18a] in our framework. Conditional Prior Networks infer the probability of an

optical flow given a single image. During training, ground truth optical flow is encoded

(upper branch in Fig. 4.2-A), concatenated with the encoder of an image (lower branch),

and then decoded into a reconstruction of the input optical flow.

In our implementation, the upper branch encodes dense depth, concatenated with the en-

coding of the image, to produce a dense reconstruction of depth at the decoder, together with

a normalized likelihood that can serve as a posterior score. We consider a CPN as a function

that, given an image (lower branch input) maps any sample putative depth map (upper

branch input) to a positive real number, which represents the conditional probability/prior

of the input dense depth map given the image.

We denote the ensemble of parameters in the CPN as wCPN ; with abuse of notation, we

denote the decoded depth with d′ = wCPN(d, I). When trained with a bottleneck imposed

on the encoder (upper branch), the reconstruction error is proportional to the conditional

distribution:

Q(d, I;wCPN) = e−‖w
CPN (d,I)−d‖η ∝ PD(d|I) (4.2)

where η indicates the specific norm used for calculating Q. In Sect. 4.4.2 and Sect. 4.5, we

show the training details of CPN, and also quantitatively show the effect of different choices
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of the norm η. In the following, we assume wCPN is trained, and Q will be used as the

conditional prior. For the proof that Q computed by CPN represents the conditional prior

as in Eq. (4.2), please refer to [YS18a].

In order to obtain a posterior estimate of depth, the CPN needs to be coupled with a

likelihood term.

4.3.1 Supervised Single Image Depth Completion

Supervised learning of dense depth assumes the availability of ground truth dense depth

maps. In the KITTI depth completion benchmark [USS17], these are generated by accumu-

lating the neighboring sparse lidar measurements. Even though it is called ground truth,

the density is only ∼ 30% of the image domain, whereas the density of the unsupervised

benchmark is ∼ 5%. The training loss in the supervised modality is just the prediction error:

L(w) =
N∑
j=1

‖φ(zj, Ij;w)− dj‖γ (4.3)

where φ is the map from sparse depth z and image I to dense depth, realized by a deep

neural network with parameters w, and γ = 1 fixed in the supervised training.

Our network structure for φ is detailed in Fig. 4.2-B, which has a symmetric two-

branch structure, each encoding different types of input: one sparse depth, the other an

image; skip connections are enabled for two branches. Note that our network structure is

unique among all the top performing ones on the KITTI depth completion benchmark: We

do not use specifically-designed layers for sparse inputs, such as sparsity invariant layers

[HFY18, USS17]. Instead of early fusion of sparse depth and image, our depth defers fusion

to decoding, which entails fewer learnable parameters, detailed in [YWS19]. A related idea

is proposed in [JCW18]; instead of a more sophisticated NASNet block [ZVS18], we use

the more common ResNet block [HZR16]. Although simpler than competing methods, our

network achieves state-of-the-art performance (Sect. 4.5).
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4.3.2 Unsupervised Single Image Depth Completion

Supervised learning requires ground truth dense depth, which is hard to come by. Even the

“ground truth” provided in the KITTI benchmark is only 30% dense and interpolated from

even sparser maps. When only sparse independent measurements of depth are available, for

instance from lidar, with less than 10% coverage (e.g. 5% for KITTI), we call depth comple-

tion unsupervised as the only input are sensory data, from images and a range measurement

device, with no annotation or pre-processing of the data.

The key to our approach is the use of a CPN to score the compatibility of each dense

depth map d with the given image I based on the previously observed data D. In some cases,

we may have additional sensory data available during training, for instance, a second image

taken with a camera with a known relative pose, such as stereo. In this case, we include

the reading from the second camera in the training set D, as described in Sect. 4.3.3. When

only a single image is given, the CPN Eq. (4.2) is combined with a model of the likelihood

of the observed sparse point cloud z under the hypothesized depth map d:

P (z|d) ∝ exp(−‖z − d(Ω)‖γ) (4.4)

which is simply a Gaussian around the hypothesized depth, restricted to the sparse subset

Ω, when γ = 2. The overall loss is:

Lu(w) = −
N∑
j=1

logP (dj|Ij, zj,D)

=
N∑
j=1

‖zj − dj(Ω)‖γ + α
N∑
j=1

‖wCPN(dj, Ij)− dj‖η

=
N∑
j=1

‖zj − φ(zj, Ij;w)(Ω)‖γ + α
N∑
j=1

‖wCPN(φ(zj, Ij;w), Ij)− φ(zj, Ij;w)‖η

(4.5)

Note that γ, η control the actual norm used during training, as well as the modeling of the

likelihood and conditional distribution. We experiment with these parameters in Sect. 4.5.1,

and show our quantitative analysis there.
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4.3.3 Disparity Supervision

Some datasets come with stereo imagery. We want to be able to exploit it, but without

having to require its availability at inference time. We exploit the strong relation between

depth and disparity. In addition to the sparse depth z and the image I, we are given a second

image I ′ as part of a stereo pair, which is rectified (standard pre-processing), to first-order

we assume that there exists a displacement s = s(x), x ∈ D such that

I(x) ≈ I ′(x+ s) (4.6)

which is the intensity constancy constraint. We model, again simplistically, disparity s as

s = FB/d, where F is the focal length and B is the baseline (distance between the optical

centers) of the cameras. Hence, we can synthesize disparity s from the predicted dense

depth d, thus to constrain the recovery of 3-d scene geometry. More specifically, we model

the likelihood of seeing I ′ given I, d as:

P (I ′|I, d) ∝ exp(−
∑

x ‖I(x)− I ′(x+ s(d(x)))‖
δ2

) (4.7)

However, the validity of the intensity constancy assumption is affected by complex phe-

nomena such as translucency, transparency, inter-reflection, etc. In order to mitigate the

error in the assumption, we could also employ a perceptual metric of structural similarity

(SSIM) [WBS04]. SSIM scores corresponding 3× 3 patches p(x), p′(x) ∈ R3×3
+ centered at x

in I and I ′, respectively, to measure their local structural similarity. Higher scores denote

more similarity; hence we can subtract the scores from 1 to form a robust version of Eq. (4.7).

We use Praw(I ′|I, d) and Pssim(I ′|I, d) to represent the probability of I ′ given I, d measured

in raw photometric value and SSIM score respectively. When the stereo pair is available, we

can form the conditional prior as follows by applying conditional independence:

P (d|I, I ′,D) ∝ P (I ′|I, d,D)P (d|I,D)

= P (I ′|I, d)PD(d|I)
(4.8)

Similar to the training loss Eq. (4.5) for the unsupervised single image depth completion
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Method iRMSE iMAE RMSE MAE Rank

Dimitrievski [DVP18] 3.84 1.57 1045.45 310.49 13.0

Cheng [CWY18] 2.93 1.15 1019.64 279.46 7.5

Huang [HFY18] 2.73 1.13 841.78 253.47 6.0

Ma [MCK19] 2.80 1.21 814.73 249.95 5.5

Eldesokey [EFK18] 2.60 1.03 829.98 233.26 4.75

Jaritz [JCW18] 2.17 0.95 917.64 234.81 3.0

Ours 2.12 0.86 836.00 205.40 1.5

Table 4.1: Quantitative results on the supervised KITTI depth completion benchmark. Our

method achieves state of the art performance in three metrics, iRMSE, iMAE, and MAE.

[MCK19] performs better than us by 2.6% on the RMSE metric; however, we outperform

[MCK19] on all other metrics by 24.3%, 28.9% and 17.8% on the iRMSE, iMAE and MAE,

respectively. The last column is the average rank over ranks on all the four metrics.

setting, we can derive the loss for the stereo setting as follows:

Ls(w) = −
N∑
j=1

logP (dj|Ij, I ′j, zj,D)

= Lu(w) + β
∑
j,x

‖Ij(x)− I ′j(x+ s(dj(x)))‖
(4.9)

where dj = φ(zj, Ij;w) and Lu is the loss defined in Eq. (4.5). Note that, the above sum-

mation term is the instantiation for Praw(I ′|I, d), which can also be replaced by the SSIM

counterpart. Rather than choosing one or the other, we compose the two with tunable

parameters βc and βs, our final loss for stereo setting depth completion is:

Ls(w) = Lu(w) + βcψc + βsψs (4.10)

with ψc represents the raw intensity summation term in Eq. (4.9), and ψs for the SSIM

counterpart. Next, we elaborate our implementation details and evaluate the performance

of our proposed method in different depth completion settings.
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4.4 Implementation Details

4.4.1 Network architecture

We modify the public implementation of CPN [YS18a] by replacing the input of the encoding

branch with a dense depth map. Fusion of the two branches is simply a concatenation of

the encodings. The encoders have only convolutional layers, while the decoder is made of

transposed convolutional layers for upsampling.

Our proposed network, unlike the base CPN, as seen in Fig. 4.2-A, contains skip connec-

tions between the layers of the depth encoder and the corresponding decoder layers, which

makes the network symmetric. We also use ResNet blocks [HZR16] in the encoders instead of

pure convolutions. A stride of 2 is used for downsampling in the encoder and the number of

channels in the feature map after each encoding layer is [64∗k, 128∗k, 256∗k, 512∗k, 512∗k].

In all our experiments, we use k = 0.25 for the depth branch, and k = 0.75 for the image

branch, taking into consideration that an RGB image has three channels while depth map

only has one channel. Our network has fewer parameters than those based on early fusion

(e.g. [MCK19] used ≈27.8M parameters in total; where as we only use ≈18.8M). We provide

an example comparing our network architecture and that of [MCK19] in the Supplementary

Materials [YWS19].

4.4.2 Training Procedure

We begin by detailing the training procedure for CPN. Once learned, we apply CPN as part

of our training loss and do not need it during inference. In order to learn the conditional prior

of the dense depth maps given an image, we require a dataset with images and corresponding

dense depth maps. We are unaware of any real-world dataset for outdoor scenes that meets

our criterion. Therefore, we train the CPN using the Virtual KITTI dataset [GWC16]. It

contains 50 high-resolution monocular videos with a total of 21, 260 frames, together with

ground truth dense depth maps, generated from five different virtual worlds under different

lighting and weather conditions. The original Virtual KITTI image has a large resolution
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Validation Set Test Set

Loss RMSE MAE iRMSE iMAE RMSE MAE

Ma [MCK19] 1384.85 358.92 4.07 1.57 1299.85 350.32

Lu 1325.79 355.86 3.69 1.37 1285.14 353.16

Ls(ψc) 1320.26 353.24 3.63 1.34 1274.65 349.88

Ls(ψc, ψs) 1310.03 347.17 3.58 1.32 1263.19 343.46

Table 4.2: Quantitative results on the unsupervised KITTI depth completion benchmark. Our

baseline approach using CPN as a regularizer outperforms [MCK19] on the iRMSE, iMAE

and RMSE metrics on the test set, whereas [MCK19] marginally performs better than us

on MAE by 0.8%. We note that [MCK19] achieves this performance using photometric

supervision. When including our photometric term (Eq. (4.10)), we outperform [MCK19] on

every metric and achieve state-of-the-art performance.

of 1242 × 375, which is too large to feed into a normal commercial GPU. So we crop it to

768× 320 and use a batch size of 4 for training. The initial learning rate is set to 1e−4, and

is halved every 50,000 steps 300,000 steps in total.

We implement our approach using TensorFlow [ABC16]. We use Adam [KB14] to op-

timize our network with the same batch size and learning rate schedule as the training of

CPN. We apply histogram equalization and also randomly crop the image to 768× 320. We

additionally apply random flipping both vertical and horizontal to prevent overfitting. In the

case of unsupervised training, we also perform a random shift within a 3× 3 neighborhood

to the sparse depth input and the corresponding validity map. We use α = 0.045, β = 1.20

for Eq. (4.9), and the same α is applied with βc = 0.15, βs = 0.425 for Eq. (4.10). We

choose γ = 1 and η = 2, but as one may notice in Eq. (4.2), the actual conditional prior

also depends on the choice of the norm η. To show the reasoning behind our choice, we will

present as an empirical study in Fig. 4.3 to show the effects of the different pairing of norms

with a varying α by evaluating each model on the RMSE metric.

In the next section, we report representative experiments in both the supervised and
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Figure 4.3: A study on the choice of γ. This plot shows the empirical study on the choice

of norms γ, η in the likelihood term and the conditional prior term respectively. Each curve

is generated by varying α in Eq. (4.5) with fixed γ, η. And the performance is measured in

RMSE.

unsupervised benchmarks.

4.5 Experiments

We evaluate our approach on the KITTI depth completion benchmark [USS17]. The dataset

provides ∼ 80k raw image frames and corresponding sparse depth maps. The sparse depth

maps are the raw output from the Velodyne lidar sensor, each with a density of about

5%. The ground truth depth map is created by accumulating the neighboring 11 raw lidar

scans, with roughly 30% pixels annotated. We use the officially selected 1,000 samples for

validation and we apply our method to 1,000 testing samples, with which we submit to

the official KITTI website for evaluation. We additionally perform an ablation study on

the effects of the sparsity of the input depth measurements on the NYUv2 indoor dataset

[SHK12] in the Supplementary Materials [YWS19].

63



4.5.1 Norm Selection

As seen in Eq. (4.5), γ, η control the actual norms (penalty functions) applied to the likelihood

term and conditional prior term respectively, which in turn determine how we model the

distributions. General options are from the binary set {1, 2}. i.e. {L1,L2}, however, there is

currently no agreement on which one is better suited for the depth completion task. [MCK19]

shows γ = 2 gives significant improvement for their network, while both [USS17, JCW18]

claim to have better performance when γ = 1 is applied. In our approximation of the

posterior in Eq. (4.5), the choice of the norms gets more complex as the modeling (norm) of

the conditional prior will also depend on the likelihood model. Currently, there is no clear

guidance on how to make the best choice, as it may also depend on the network structure.

Here we try to explore the characteristic of different norms, at least for our network structure,

by conducting an empirical study on a simple version (channel number of features reduced)

of our depth completion network using different combinations of γ and η. As shown in

Fig. 4.3, the performance on the KITTI depth completion validation set varies in a wide

range with different γ, η. Clearly for our depth completion network, L1 is always better than

L2 on the likelihood term. And the lowest RMSE is achieved when a L2 is also applied on

the conditional prior term. Thus the best coupling is γ = 1, η = 2 for Eq. (4.5).

4.5.2 Supervised Depth Completion

We evaluate the proposed Depth Completion Network described in Sect. 4.3.1 on the KITTI

depth completion benchmark. We show a quantitative comparison between our approach and

the top performers on the benchmark in Tab. 4.1. Our approach achieves the state-of-the-art

in three metrics by outperforming [EFK18, JCW18], who each held the state-of-the-art in

different metrics on the benchmark. We improve over [JCW18] in iRMSE and iMAE by

2.3% and 9.5%, respectively, and [EFK18] in MAE by 11.9%. [MCK19] performs better on

the RMSE metric by 2.6%; however, we outperform [MCK19] by 24.3%, 28.9% and 17.8%

on the iRMSE, iMAE and MAE metrics, respectively. Note in the online table of KITTI
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Figure 4.4: Qualitative comparison to Ma et al. [MCK19] on KITTI depth completion test set

in the supervised setting. Image and validity map of the sparse measurements (1st column),

dense depth results and corresponding error map of [MCK19] (2nd column) and our results

and error map (3rd column). Warmer color in the error map denotes higher error. The yellow

rectangles highlight the regions for detailed comparison. Note that our network consistently

performs better on fine and far structures and our completed dense depth maps have less

visual artifacts.

depth completion benchmark1, all methods are solely ranked by the RMSE metric, which

may not fully reflect the performance of each method. Thus we propose to rank all methods

1http://www.cvlibs.net/datasets/kitti/

eval_depth.php?benchmark=depth_completion
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by averaging over the rank numbers on each metric, and the overall ranking is shown in the

last column of Tab. 4.1. Not surprisingly, our depth completion network gets the smallest

rank number due to its generally good performance on all metrics.

Fig. 4.4 shows a qualitative comparison of our method to the top performing method on

the test set of the KITTI benchmark. We see that our method produces depths that are more

consistent with the scene with fewer artifacts (e.g. grid-like structures [MCK19], holes in

objects [EFK18]). Also, our network performs consistently better on fine and far structures,

which may be traffic signs and poles on the roadside that provide critical information for

safe driving as shown in the second row in Fig. 4.4. More in the Supplementary [YWS19].

4.5.3 Unsupervised Depth Completion

We show that our network can also be applied to unsupervised setting using only the training

loss Eq. (4.5) to achieve the state-of-the-art results as well. We note that the simplest way

for the network to minimize the data term is to directly copy the sparse input to the output,

which will make the learning inefficient. To facilitate the training, we change the stride of

the first layer from 1 to 2 and replace the final layer of the decoder with a nearest neighbor

upsampling.

We show a quantitative comparison (Tab. 4.2) between our method and that of [MCK19]

along with an ablation study on our loss function. We note that the results of [MCK19]

are achieved using their full model, which includes their multi-view photometric term. Our

approach using just Eq. (4.5) is able to outperform [MCK19] in every metric with the excep-

tion of MAE where [MCK19] marginally beats us by 0.8%. By applying our reconstruction

loss Eq. (4.9), we outperform [MCK19] in every metric. Moreover, our full model Eq. (4.10)

further improves over all other variants and is state-of-the-art in unsupervised depth com-

pletion. We present a qualitative comparison between our approach and that of [MCK19]

in Fig. 4.5. Visually, we observe the results of [MCK19] still contain the artifacts as seen

before. The artifacts, i.e. circles, as detailed in Fig. 4.5, are signs that their network is

probably overfitted to the input sparse depth, due to the lack of semantic regularity. Our
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Figure 4.5: Qualitative comparison to Ma et al. [MCK19] on the KITTI depth completion

test set in the unsupervised setting. Image and validity map of the sparse measurements (1st

column), dense depth results and corresponding error map of [MCK19] (2nd column) and

ours (3rd column). Warmer color in the error map denotes higher error. Yellow rectangles

highlight the regions for detailed comparison. Note again that our network consistently

performs better on fine and far structures and our completed dense depth maps have less

visual artifacts (this includes the circle in the center of their prediction, row 1, column 2).

approach, however, does not suffer from these artifacts; instead, our predictions are globally

correct and consistent with the scene geometry.

4.6 Discussion

In this work, we have described a system to infer a posterior probability over the depth of

points in the scene corresponding to each pixel, given an image and a sparse aligned point

cloud. Our method leverages a Conditional Prior Network, that allows the association of a

probability to each depth value based on a single image, and combines it with a likelihood
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term for sparse depth measurements. Moreover, we exploit the availability of stereo imagery

in constructing a photometric reconstruction term that further constrains the predicted depth

to adhere to the scene geometry.

We have tested the approach both in a supervised and unsupervised setting. It should

be noted that the difference between “supervised” and “unsupervised” in the KITTI bench-

mark is more quantitative than qualitative: the former has about 30% coverage in depth

measurements, the latter about 5%. We show in Tab. 4.1 and 4.2 that our method achieves

state-of-the-art performance in both supervised and unsupervised depth completion on the

KITTI benchmark. Although we outperform other methods on score metrics that measures

the deviation from the ground truth, we want to emphasize that our method does not simply

produce a point estimate of depth, but provides a confidence measure, that can be used for

more downstream processing, for instance for planning, control and decision making.

We have explored the effect of various hyperparameters, and are in the process of ex-

panding the testing to real-world environments, where there could be additional errors and

uncertainty due to possible time-varying misalignment between the range sensor and the

camera, or between the two cameras when stereo is available, faulty intrinsic camera calibra-

tion, and other nuisance variability inevitably present on the field that is carefully weeded

out in evaluation benchmarks such as KITTI. This experimentation is a matter of years, and

well beyond the scope of this paper. Here we have shown that a suitably modified Condi-

tional Prior Network can successfully transfer knowledge from prior data, including synthetic

ones, to provide context to input range values for inferring missing data. This is important

for downstream processing as the context can, for instance, help differentiate whether gaps

in the point cloud are free space or photometrically homogeneous obstacles, as discussed in

our motivating example in Fig. 4.1.
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CHAPTER 5

Depth Completion from Inertial Odometry and Vision

5.1 Introduction

A sequence of images is a rich source of information about both the three-dimensional (3D)

shape of the environment and the motion of the sensor within. Motion can be inferred at

most up to a scale and a global Euclidean reference frame, provided sufficient parallax and a

number of visually discriminative Lambertian regions that are stationary in the environment,

and are visible from the camera. The position of such regions in the scene defines the

Euclidean reference frame, with respect to which motion is estimated. Scale as well as

two directions of orientation can be further identified by fusion with inertial measurements

(accelerometers and gyroscopes) and, if available, a magnetometer can fix the last (Gauge)

degree of freedom.

Because the regions defining the reference frame have to be visually distinctive (“fea-

tures”), they are typically sparse. In theory, three points are sufficient to define a Euclidean

Gauge if visible at all times. In practice, because of occlusions, any Structure From Motion

(SFM) or simultaneous localization and mapping (SLAM) system maintains an estimate of

the location of a sparse set of features, or “sparse point cloud,” typically in the hundreds

to thousands. These are sufficient to support a point-estimate of motion, but a rather poor

representation of shape as they do not reveal the topology of the scene: The empty space

between points could be empty, or occupied by a solid with a smooth surface radiance (ap-

pearance). Attempts to densify the sparse point cloud, by interpolation or regularization

with generic priors such as smoothness, piecewise planarity and the like, typically fail since

SFM yields far too sparse a reconstruction to inform topology. This is where the image
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Figure 5.1: Depth completion with Visual-Inertial Odometry (VIO) on the proposed VOID

dataset (best viewed in color at 5×). Bottom left: sparse reconstruction (blue) and camera

trajectory (yellow) from VIO. The highlighted region is densified and zoomed in on the top

right. Top left shows an image of the same region which is taken as input, and fused with

the sparse depth image by our method. On the bottom right is the same view showing only

the sparse points, insufficient to determine scene geometry and topology.

comes back in.

Inferring shape is ill-posed, even if the point cloud was generated with a lidar or structured

light sensor. Filling the gaps relies on assumptions about the environment. Rather than

designing ad-hoc priors, we wish to use the image to inform and restrict the set of possible

scenes that are compatible with the given sparse points.
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Summary of contributions

We use a predictive cross-modal criterion to score dense depth from images and sparse depth.

This kind of approach is sometimes referred to as “self-supervised.” Specifically, our method

(i) exploits a set of constraints from temporal consistency (a.k.a. photometric consistency

across temporally adjacent frames) to pose (forward-backward) consistency in a combination

that has not been previously explored. To enable our pose consistency term, we introduce (ii)

a set of logarithmic and exponential mapping layers for our network to represent motion using

exponential coordinates, which we found empirically superior to other parameterizations.

The challenge in using sparse depth as a supervisory (feedback) signal is precisely that

it is sparse. Information at the points does not propagate to fill the domain where depth is

defined. Some computational mechanism to “diffuse the information” from the sparse points

to their neighbors is needed. Our approach proposes (iii) a simple method akin to using a

piecewise planar “scaffolding” of the scene, sufficient to transfer the supervisory signal from

sparse points to their neighbors. This yields a two-stage approach, where the sparse points

are first processed to design the scaffolding (“meshing and interpolation”) and then “refined”

using the images as well as priors from the constraints just described.

One additional contribution of our approach is (iv) to launch the first visual-inertial

+ depth dataset. The role of inertials is to enable reconstruction in metric scale, which

is critical for robotic applications. Although scale can be obtained via other sensors, e.g.,

stereo, lidar, and RGB-D, we note they are not as widely available as monocular camera

+ inertial (almost every modern phone has it) and consume more power. Since inertial

sensors are now ubiquitous and typically co-located with cameras in many mobile devices

from phones to cars, we hope this dataset will foster additional exploration into combining

the complementary strengths of visual and inertial sensors.

To evaluate our method, since no other visual-inertial + depth benchmark is available,

and to facilitate comparison with similar methods, we adopt the KITTI benchmark, where

a Velodyne (lidar) sensor provides sparse points with scale, unlike monocular SFM, but like

visual-inertial odometry (VIO). Although the biases in lidar are different from VIO, this can
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be considered a baseline. Note that we only use the monocular stream of KITTI (not stereo)

for fair comparison.

The result is a (v) two-stage approach of scaffolding and refining with a network that

contains much fewer parameters than competing methods, yet achieves state-of-the-art per-

formance in the “unsupervised” KITTI benchmark (a misnomer). The supervision in the

KITTI benchmark is really fusion from separate sensory channels, combined with ad-hoc

interpolation and extrapolation. It is unclear whether the benefit from having such data is

outweighed by the biases it induces on the estimate, and in any case such supervision does

not scale; hence, we forgo (pseudo) ground truth annotations altogether.

5.2 Related Work

Supervised Depth Completion minimizes the discrepancy between ground truth depth

and depth predicted from an RGB image and sparse depth measurements. Methods focus

on network topology [MCK19, USS17, YWS19], optimization [CWL18, DVP18, ZF18], and

modeling [EFK18, HFY18]. To handle sparse depth, [MCK19] employed early fusion, where

the image and sparse depth are convolved separately and the results concatenated as the

input to a ResNet encoder. [JCW18] proposed late fusion via a U-net containing two NASNet

encoders for image and sparse depth and jointly learned depth and semantic segmentation,

whereas [YWS19] used ResNet encoders for late fusion. [EFK18] proposed a normalized

convolutional layer to propagate sparse depth and used a binary validity map as a confidence

measure. [HFY18] proposed an upsampling layer and joint concatenation and convolution

to deal with sparse inputs. All these methods require per-pixel ground-truth annotation.

What is called “ground truth” in the benchmarks is actually the result of data processing

and aggregation of many consecutive frames. We skip such supervision and just infer dense

depth by learning the cross-modal fusion from the virtually infinite volume of un-annotated

data.

Unsupervised Depth Completion include [MCK19, SNC19, YWS19] who predict depth

by minimizing the discrepancy between prediction and sparse depth input as well as the
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photometric error between the input image and its reconstruction from other viewpoints

available only during training. [MCK19] used Perspective-n-Point (PnP) [LMF09] and Ran-

dom Sample Consensus (RANSAC) [FB81] to align monocular image sequences for their

photometric term with a second-order smoothness prior. Yet, [MCK19] does not general-

ize well to indoor scenes that contains many textureless regions (e.g. walls), where PnP

with RANSAC may fail. [SNC19] used a local smoothness term, but instead minimized the

photometric error between rectified stereo-pairs where pose is known. [YWS19] also lever-

aged stereo pairs and a more sophisticated photometric loss [WBS04]. [YWS19] replaced

the generic smoothness term with a conditional prior to measure compatibility between the

prediction and a learned depth model obtained by training a separate network on ground-

truth depth. This method can be considered semi-unsupervised, and requires ground truth

for training the prior. Using a network trained on a specific domain (e.g. outdoors) as a

prior for an unsupervised method will not generalize when given extra data on a different

domain (e.g. indoors). In contrast, our method is fully unsupervised and do not use any

auxiliary ground-truth supervision. Moreover, our method outperforms [MCK19, YWS19]

on the KITTI depth completion benchmark [USS17] while using fewer parameters.

Rotation Parameterization. To construct the photometric consistency loss during train-

ing, an auxiliary pose network is needed if no camera poses are available. While the transla-

tional part of the relative pose can be modeled as T ∈ R3, the rotational part belongs to the

special orthogonal group R ∈ SO(3)
.
= {R ∈ R3×3|R>R = I, det(R) = +1} [MSK12], which

is represented by a 3×3 matrix. [KGC15] uses quaternions, which require an additional norm

constraint; this is a soft constraint imposed in the loss function, and thus is not guaranteed.

[FWS19, YS18b, ZBS17] use Euler angles which requires the composition of several matrices

that may result in the rotation matrix to no longer be orthogonal. We use the exponential

map on SO(3) to map the output of the pose network to a rotation matrix. Though theo-

retically similar, we empirically found that the exponential map is more beneficial than the

Euler angles in Sec. 5.7.

Our contributions are a simple, yet effective two-stage approach resulting in a large reduc-

tion in network parameters while achieving state-of-the-art performance on the unsupervised
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KITTI depth completion benchmark; using exponential parameterization of rotation for our

pose network; a pose consistency term that enforces forward and backward motion to be

the inverse of each other, and finally a new depth completion benchmark for visual-inertial

odometry systems with indoor and outdoor scenes and challenging motion.

5.3 Method Formulation

We reconstruct a 3D scene given an RGB image It : R2 ⊃ Ω 7→ R3
+ and the associated set of

sparse depth measurements zs : Ω ⊃ Ωs 7→ R+.

We begin by assuming that world surfaces are graphs of smooth functions (charts) locally

supported on a piecewise planar domain (scaffolding). We construct the scaffolding from the

sparse point cloud (“Scaffolding” in Fig. 5.2) to obtain zi, then learn a completion model

refining zi by leveraging the monocular sequences (It−1, It, It+1), of frames before and after

the given time t, and the sparse depth zs. We compose a surrogate loss L (Eqn. 5.2) for

driving the training process, using an encoder-decoder architecture fθ(·) parameterized by

weights θ, where the input is an image with its scaffolding (It, zi), and the output is the

dense depth ẑ = fθ(It, zi).

5.3.1 A Two-Stage Approach

Depth completion is a challenging problem due to the sparsity level of the depth input,

zs. As the density of sparse depth measurements covers ≈ 5% of the image plane for the

outdoor self-driving scenario (Sec. 5.5.1) and less than ≈ 1% for the indoor setting (Sec.

5.7.3), generally only a single measurement will be present within a local neighborhood and

in most instances none. This renders conventional convolutions ineffective as each sparse

depth measurement can be seen as a Dirac delta and convolving a kernel over the entire

sparse depth input will give mostly zero activations. Hence, [EFK18], [HFY18], and [USS17]

proposed specialized operations to propagate the information from the sparse depth input

through the network. We, instead, propose a two-stage approach that circumvents this

problem by first approximating a coarse scene geometry with scaffolding and training a
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network to refine the approximation.

5.3.2 Scaffolding

Given sparse depth measurements zs, our goal is to create a coarse approximation of the

scene; yet, the topology of the scene is not informed by zs. Hence, we must rely on a prior or

an assumption – that surfaces are locally smooth and piecewise planar. We begin by applying

the lifting transform [Bro79] to zs, mapping zs from 2-d to 3-d space. We then compute its

convex hull [BDD96], of which the lower envelope is taken as the Delaunay triangulation of

the points in zs – resulting in a triangular mesh in Barycentric coordinates.

To form the tessellation of the triangular mesh, we approximate each surface using linear

interpolation within the Barycentric coordinates and the resulting scaffolding is projected

back onto the image plane to produce zi. For a given triangle, simple interpolation is sufficient

for recovering the plane as a linear combination of the co-planar points. For sets of points not

co-planar, interpolation will give an approximation, with which we refine using a network.

5.3.3 Refinement

Given an RGB image and its corresponding piece-wise planar scaffolding (It, zi), we train a

network to recover the 3-d scene by refining zi based on information from It. Our network

learns to refine without ground-truth supervision by minimizing Eqn. 5.2.

Network Architecture. We propose two encoder-decoder architectures with skip con-

nections following the late fusion paradigm [JCW18, YWS19]. Each encoder has an image

branch and a depth branch – the image branch contains 75% of the total features in the

encoder and the depth branch 25%. The latent representation of the branches are con-

catenated and fed to the decoder. We propose a VGG11 encoder (≈ 5.7M parameters)

containing 8 convolution layers for each branch as our best performing model, and a VGG8

encoder (≈ 2.4M parameters) containing only 5 convolution layers for each branch as our

light-weight model. Both VGG11 and VGG8 encoders use a generic decoder with ≈ 4M

parameters – giving us a total of ≈ 9.7M and ≈ 6.4M parameters, respectively. This is in
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contrast to other unsupervised methods [MCK19] (who follows early fusion and concatenates

features from the two branches after the first convolution) and [YWS19] (late fusion) – both

of whom use ResNet34 encoders with ≈ 23.8M and ≈ 14.8M parameters, respectively. Both

[MCK19, YWS19] employ the same decoder with ≈ 4M parameters – totaling to ≈ 27.8M

and ≈ 18.8M parameters, respectively. We show in Sec. 5.5.1 that despite having 76.1% and

61.5% fewer encoder parameters than [MCK19] and [YWS19], our VGG11 model outper-

forms both [MCK19] and [YWS19]. Moreover, we note that the performance of our VGG8

model is still comparable to that of VGG11 and still surpasses [MCK19] and [YWS19] while

having a 89.9% and 83.9% reduction in the encoder parameters. More details on our network

architectures can be found in Sec. V of Supp. Mat.

Logarithmic and Exponential Map Layers. To construct our objective (Eqn. 5.2),

we leverage a pose network [KGC15] to regress the relative camera poses g = (R, T ) ∈

SE(3)
.
= {(R, T )|R ∈ SO(3), T ∈ R3}. We present a novel logarithmic map layer: log :

SO(3) 7→ so(3), where so(3) is the tangent space of SO(3), and an exponential map layer:

exp : so(3) 7→ SO(3) – for mapping R between SO(3) and so(3). We use the logarithmic

map to construct the pose consistency loss (Eqn. 5.6), and the exponential to map the

output of the pose network ω
.
= [ω1, ω2, ω3]> ∈ R3 as coordinates in so(3) to a rotation

matrix:

R(ω) = exp(ω̂)
.
= I + ω̂ sin ‖ω‖2 + ω̂2(1− cos ‖ω‖2) (5.1)

where the hat operator ·̂ maps ω ∈ R3 to a skew-symmetric matrix [MSK12]. We train of

our pose network using a surrogate loss (Eqn. 5.3) without explicit supervision. An ablation

study on the use of exponential coordinates and pose consistency term on KITTI odometry

is available in Supp. Mat. Sec. III.

Our approach contains two stages: (i) we generate a coarse piecewise planar approxima-

tion of the scene from the sparse depth inputs zs via scaffolding and (ii) we feed the resulting

depth map along with the associated RGB image to our network for refinement (Fig. 5.2).

This approach alleviates the network from the need of learning from sparse inputs, for which

[MCK19] and [YWS19] compensated with parameters. We show the effectiveness of this

approach by achieving the state-of-the-art on the unsupervised KITTI depth completion
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Figure 5.2: Learning to refine (best viewed at 5× with color). Our network learns to refine

the input scaffolding. Green rectangles highlight the regions for comparison throughout

the course of training. The network first learns to copy the input and later learns to fuse

information from RGB image to refine the approximated depth from scaffolding (see column

1 pedestrian and column 2 street signs).

benchmark with half as many parameters as the prior-art.

5.4 Loss Function

Our loss function is a linear combination of four terms that constrain (i) the photometric con-

sistency between the observed image and its reconstructions from the monocular sequence,

(ii) the predicted depth to be similar to that of the associated available sparse depth, (iii)
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the composition of the predicted forward and backward relative poses to be the identity, and

(iv) the prediction to adhere to local smoothness.

L = wphLph + wszLsz + wpcLpc + wsmLsm (5.2)

where Lph denotes photometric consistency, Lsz sparse depth consistency, Lpc pose consis-

tency, and Lsm local smoothness. Each loss term L is described in the next subsections and

the associated weight w in Sec. 5.6.

5.4.1 Photometric Consistency

We enforce temporal consistency by minimizing the discrepancy between each observed image

It and its reconstruction Îτ from temporally adjacent images Iτ , where τ ∈ T .
= {t−1, t+1}:

Îτ (x) = Iτ
(
πgτtK

−1x̄z(x)
)

(5.3)

where x̄ = [xT 1]T are the homogeneous coordinates of x ∈ Ω , gτt ∈ SE(3) is the relative

pose of the camera from time t to τ , K denotes the camera intrinsics, and π refers to the

perspective projection.

Our photometric consistency term is a combination of the average per pixel reprojection

residual with an L1 penalty and SSIM [WBS04], a perceptual metric that is invariant to local

illumination changes:

Lph =
1

|Ω|
∑
τ∈T

∑
x∈Ω

wco|It(x)− Îτ (x)|+ wst
(
1− SSIM(It(x), Îτ (x))

)
(5.4)

We use 3 × 3 image patches centered at location x for SSIM. wco and wst can be found in

Sec. 5.6.

5.4.2 Sparse Depth Consistency

Our sparse depth consistency term provides our predictions with metric scale by encouraging

the predictions ẑ to be similar to that of the metric sparse depth zs available from lidar in

KITTI dataset (Sec. 5.5.1) and sparse reconstruction in our visual-inertial dataset (Sec.

5.5.2). Our sparse depth consistency loss is the L1-norm of the difference between the
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predicted depth ẑ and the sparse depth zs averaged over Ωs (the support of the sparse

depth):

Lsz =
1

|Ωs|
∑
x∈Ωs

|ẑ(x)− zs(x)| (5.5)

5.4.3 Pose Consistency

A pose network takes an ordered pair of images (It, Iτ ) and outputs the relative pose gτt ∈

SE(3) (forward pose). When a temporally swapped pair (Iτ , It) is fed to the network, the

network is expected to output gtτ (backward pose) – the inverse of gτt, i.e., gτt · gtτ = e ∈

SE(3). The forward-backward pose consistency thus penalizes the deviation of the composed

pose from the identity:

Lpc = ‖ log(gτt · gtτ )‖2
2 (5.6)

where log : SE(3) 7→ se(3) is the logarithmic map.

5.4.4 Local Smoothness

We impose a smoothness loss on the predicted depth ẑ by applying an L1 penalty to the

gradients in both the x and y directions of the predicted depth ẑ:

Lsm =
1

|Ω|
∑
x∈Ω

λX(x)|∂X ẑ(x)|+ λY (x)|∂Y ẑ(x)| (5.7)

where λX = e−|∂XIt(x)| and λY = e−|∂Y It(x)| are the edge-awareness weights to allow for

discontinuities in regions corresponding to object boundaries.

5.4.5 The Role of Inertials

Although inertials are not directly present in the loss, their role in metric depth completion

is crucial. Without inertials, a SLAM system cannot produce sparse point clouds in metric

scale, which are then used as both the input to the scaffolding stage (Sec. 5.3.2) and a

supervisory signal (Eqn. 5.5).
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Figure 5.3: Sample RGB + D images in the VOID dataset (best viewed in color at 5×).

Color bar shows the depth range.

5.5 Datasets

5.5.1 KITTI Benchmark

We evaluate our approach on the KITTI depth completion benchmark [USS17]. The dataset

provides ≈ 80, 000 raw image frames and associated sparse depth maps. The sparse depth

maps are the raw output from the Velodyne lidar sensor, each with a density of ≈ 5%. The

ground-truth depth map is created by accumulating the neighbouring 11 raw lidar scans,

with dense depth corresponding to the bottom 30% of the images. We use the officially

selected 1,000 samples for validation and we apply our method to 1,000 testing samples,

with which we submit to the official KITTI website for evaluation. The results are reported

in Table 5.2.

5.5.2 VOID Benchmark

While KITTI provides a standard benchmark for evaluating depth completion in the driving

scenario, there exists no standard depth completion benchmark for the indoor scenario.

[MCK19, YWS19] used NYUv2 [SHK12] – an RGB-D dataset – to develop and evaluate their

models on indoor scenes. Yet, each perform a different evaluation protocol with different

80



sparse depth samples – varying densities of depth values were randomly sampled from the

depth frame, preventing direct comparisons between methods. Though this is reasonable as

a proof of concept, it is not realistic in the sense that no sensor measures depth at random

locations.

The VOID dataset. We propose a new publicly available dataset for a real world use

case of depth completion by bootstrapping sparse reconstruction in metric space from a

SLAM system. While it is well known that metric scale is not observable in the purely

image-based SLAM and SFM setting, it has been resolved by the recent advances in VIO

[JS11, MR07], where metric pose and structure estimation can be realized in a gravity-

aligned and scaled reference frame using a inertial measurement unit (IMU). To this end,

we leverage an off-the-shelf VIO system 1, atop which we construct our dataset and develop

our depth completion model. While there are some visual-inertial datasets (e.g. TUM-VI

[SGD18] and PennCOSYVIO [PSD17]), they lack per-frame dense depth measurements for

cross-modal validation, and are also relatively small – rendering them unsuitable for training

deep learning models.

Our dataset is dubbed “Visual Odometry with Inertial and Depth” or “VOID” for short

and is comprised of RGB video streams and inertial measurements for metric reconstruction

along with per-frame dense depth for cross-modal validation.

Data acquisition. Our data was collected using the latest Intel RealSense D435i camera 2,

which was configured to produce synchronized accelerometer and gyroscope measurements

at 400 Hz, along with synchronized VGA-size (640× 480) RGB and depth streams at 30 Hz.

The depth frames are acquired using active stereo and is aligned to the RGB frame using

the sensor factory calibration (see Fig. 5.3). All the measurements are time-stamped.

The SLAM system we use is based on [JS11] – an EKF-based VIO model. While the

VIO recursively estimates a joint posterior of the state of the sensor platform (e.g. pose,

velocity, sensor biases, and camera-to-IMU alignment) and a small set of reliable feature

points, the 3D structure it estimates is extremely sparse – typically 20 ∼ 30 feature points

1https://github.com/ucla-vision/xivo 2https://realsense.intel.com/depth-camera/
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Metric units Definition

MAE mm 1
|Ω|
∑

x∈Ω |ẑ(x)− zgt(x)|

RMSE mm
(

1
|Ω|
∑

x∈Ω |ẑ(x)− zgt(x)|2
)1/2

iMAE 1/km 1
|Ω|
∑

x∈Ω |1/ẑ(x)− 1/zgt(x)|

iRMSE 1/km
(

1
|Ω|
∑

x∈Ω |1/ẑ(x)− 1/zgt(x)|2
)1/2

Table 5.1: Error metrics. Error metrics for evaluating KITTI and VOID depth completion

benchmarks, where zgt is the ground truth.

(in-state features). To facilitate 3D reconstruction, we track a moderate amount of out-of-

state features in addition to the in-state ones, and estimate the depth of the feature points

using auxiliary depth sub-filters [MSK12].

The benchmark. We evaluate our method on the VOID depth completion benchmark,

which contains 56 sequences in total, both indoor and outdoor with challenging motion.

Typical scenes include classrooms, offices, stairwells, laboratories, and gardens. Of the 56

sequences, 48 sequences (∼ 40K frames) are designated for training and 8 sequences for

testing, from which we sampled 800 frames to construct the testing set. Our benchmark

provides sparse depth maps at three density levels. We configured our SLAM system to

track and estimate depth of 1500, 500 and 150 feature points, corresponding to 0.5%, 0.15%

and 0.05% density of VGA size, which are then used in the depth completion task.

5.6 Implementation Details

Our approach was implemented using TensorFlow [ABC16]. With a Nvidia GTX 1080Ti,

training takes ≈ 90 hours for our VGG11 model and ≈ 70 hours for our VGG8 model on

KITTI depth completion benchmark (Sec. 5.5.1) for 30 epochs; whereas training takes ≈ 10

hours and ≈ 7 hours on the VOID benchmark (Sec. 5.5.2) for 10 epochs. Inference takes

≈ 22 ms per image. We used Adam [KB14] with β1 = 0.9 and β2 = 0.999 to optimize our

network end-to-end with a base learning rates of 1.2 × 10−4 for KITTI and 1 × 10−4 for
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Figure 5.4: Qualitative evaluation on KITTI benchmark. Top to bottom: input image and

sparse depth, results of [MCK19], our results. Results are taken from KITTI online test

server. Warmer colors in the error map denote higher error. Green rectangles highlight

regions for detail comparison. We perform better in general, particularly on thin structures

and far regions. [MCK19] exhibit artifacts resembling scanlines and “circles” for far away

regions (highlighted in red).

VOID . We decrease the learning rate by half after 18 epochs for KITTI and 6 epochs for

VOID , and again after 24 epochs and 8 epochs, respectively. We train our network with a

batch size of 8 using a 768 × 320 resolution for KITTI and 640 × 480 for VOID . We are

able to achieve our results on the KITTI benchmark using the following set of weights for

each term in our loss function: wph = 1.00, wco = 0.20, wst = 0.40, wsz = 0.20, wpc = 0.10

and wsm = 0.01. For the VOID benchmark, we increased wsz to 1.00 and wsm to 0.10. We

do not use any data augmentation.

5.7 Experiments and Results

5.7.1 KITTI Depth Completion Benchmark

We compare our approach with recent unsupervised depth completion methods on the official

KITTI depth completion benchmark in Table 5.2 using error metrics in Table 5.1 and show

quantitative results in Fig. 5.4. The results of the methods listed are taken directly from

their papers. We note that [YWS19] only reported their result in their paper and do have

have an entry in KITTI depth completion benchmark for their unsupervised model. Hence,
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we compare qualitatively with the prior-art [MCK19]. Our VGG11 model outperforms the

state-of-the-art [YWS19] on every metric by as much as 12.8% on MAE, 7.4% on RMSE,

9.1% on iMAE while using 48.4% fewer parameters. Our light-weight VGG8 model also

outperforms [YWS19] on MAE by 11.3%, RMSE by 7.8% and iMAE by 3% while having

66% fewer parameters; [YWS19] beat our light-weight model by 2.2% on iRMSE. We note

that [YWS19] trains a separate network using ground-truth depth and uses it as supervision

to train their model for depth completion. Moreover, [YWS19] exploits rectified stereo-

imagery where the pose of the cameras is known; whereas, we learn our pose by jointly

training the pose network with our depth predictor. In comparison to [MCK19] (who also

uses monocular videos), our VGG11 model outperforms them by 14.5% on MAE, 10% on

RMSE, 23.6% on iMAE, and 12.5% on iRMSE while using 65.1% fewer parameters. Our

VGG8 model outperforms [MCK19] by 13.1% on MAE, 10.4% on RMSE, 18.5% on iMAE,

and 10.1% on iRMSE while using 80% fewer parameters. We also note that the qualitative

results of [MCK19] contains artifacts such as apparent scanlines of the Velodyne and “circles”

in far regions. As an introspective exercise, we plot the mean error of our model at varying

distances on the KITTI validation set (Fig. 5.5) and overlay it with the ground truth depth

distribution to show that our model performs very well in distances that matter in real-life

scenarios. Our performance begins to degrade at distances larger than 80 meters; this is due

to the lack of sparse measurements and insufficient parallax – problems that plague methods

relying on multi-view supervision.

5.7.2 KITTI Depth Completion Ablation Study

We analyze the effect brought by each of our contributions through a quantitative evaluation

on the KITTI depth completion validation set (Table 5.3). Our two baseline models, scaf-

folding and vanilla model trained without scaffolding, perform poorly in comparison to the

models that are trained with scaffolding – showcasing the effectiveness of our refinement ap-

proach. Although the loss functions are identical, exponential parameterization consistently

improves over Euler angles across all metrics. While [FWS19, WBZ18a, YS18b] train their

pose network using the photometric error as a surrogate loss with no additional constraint,
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Method MAE RMSE iMAE iRMSE

Schneider et al. [SSP16] 605.47 2312.57 2.05 7.38

Ma et al. [MCK19] 350.32 1299.85 1.57 4.07

Yang et al. [YWS19] 343.46 1263.19 1.32 3.58

Ours VGG8 304.57 1164.58 1.28 3.66

Ours VGG11 299.41 1169.97 1.20 3.56

Table 5.2: KITTI depth completion benchmark. We compare our model to unsupervised

methods on the KITTI depth completion benchmark [USS17]. Our VGG11 model outper-

forms state-of-the-art [YWS19] across all metrics while using 48.4% less parameters. Our

light-weight (VGG8) model achieves similar performance and in fact marginally outperforms

our VGG11 model despite having 34% fewer parameters than our VGG11 model. Moreover,

our VGG8 model outperforms [MCK19] and across all metrics and [YWS19] on MAE, RMSE,

and iMAE despite having 80% and 66% fewer parameters, respectively.

we show that it is beneficial to impose our pose consistency term (Sec. 5.6). By constraining

the forward and backward poses to be inverse of each other, we obtain a more accurate

pose resulting in better depth prediction. Our experiments verify this claim as we see an

improvement in MAE by 2.3%, RMSE by 1.3%, iMAE by 5.5%, and iRMSE by 3.9% in

Table 5.3. We note that the improvement does not seem significant on KITTI as the motion

is mostly planar; however, when predicting non-trivial 6 DoF motion (Sec. 5.7.4), we see a

significant boost when employing this term. Our model trained with the full loss function

produces the best results (bolded in Table 5.2) and is the state-of-the-art for unsupervised

KITTI depth completion benchmark. We further propose a light-weight (VGG8) model that

only contains ≈ 6.4M parameters. Although our VGG8 model has 3.3M fewer (34% reduc-

tion) parameters than our VGG11 model, we note that the performance does not degrade

by much – our VGG8 model only trails the VGG11 model by 1.2% in MAE, 6.6% in iMAE,

3.5% in iRMSE, and marginally beats our VGG11 model on RMSE by 0.7% on the KITTI

validation set.
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Model Encoder Rot. MAE RMSE iMAE iRMSE

Scaffolding - - 443.57 1990.68 1.72 6.43

Lph + Lsz + Lsm (vanilla) VGG11 Euler 347.14 1330.88 1.46 4.22

Lph + Lsz + Lsm VGG11 Euler 327.84 1262.46 1.31 3.87

Lph + Lsz + Lsm VGG11 Exp. 312.10 1255.21 1.28 3.86

Lph + Lsz + Lpc + Lsm VGG11 Exp. 305.06 1239.06 1.21 3.71

Lph + Lsz + Lpc + Lsm VGG8 Exp. 308.81 1230.85 1.29 3.84

Table 5.3: KITTI depth completion ablation study. We compare variants of our model on

the KITTI depth completion validation set. Each model is denoted by its loss function. The

results of Scaffolding Only is produced using linear interpolation over a triangular mesh; we

assign average depth to regions with missing interpolated depth. It is clear that scaffolding

alone (row 1) and our baseline model trained without scaffolding (row 2) do poorly compared

to our models that combine both (rows 3-6). Our full model using VGG11 produces the best

overall results and achieves state-of-the-art on the test set Table 5.2. We note that our light-

weight VGG8 model achieve similar performance and even marginally beating our VGG11

model on the RMSE metric despite having 34% fewer parameters.

86



Figure 5.5: Error characteristics of our model on KITTI. The abscissa shows the distance

of sparse data points measured by Velodyne, of which the percentage of all the data points

is shown in red; the blue curve shows the mean absolute error of the estimated depth at the

given distance, of which the 5-th and 95-th percentile enclose the light blue region.

5.7.3 VOID Depth Completion Benchmark

We evaluate our method on the VOID depth completion benchmark for all three density

levels (Table 5.5) using error metrics in Table 5.1. As the photometric loss (Sec. 5.4) is

largely dependent on obtaining the correct pose, we additionally propose a hybrid model,

where the relative camera poses from our visual-inertial SLAM system are used to construct

the photometric loss to show a upper bound on performance. In contrast to the KITTI

depth completion benchmark, which provides ≈ 5% sparse depth over the image domain

concentrated on the bottom third of the image, the VOID benchmark only provides ≈ 0.5%,

≈ 0.15% and ≈ 0.05% densities in sparse depth (10, 33, and 100 times less than KITTI). Yet,

our method is still able to produce reasonable results for indoor scenes with a MAE of ≈ 8.5

centimeters on 0.5% density and ≈ 17.9 centimeters when given only 0.05%. As most scenes

contain textureless regions, sparse depth supervision becomes important as photometric

reconstruction is unreliable. Hence, we see a degrade in performance as the density decreases.

Yet, we degrade gracefully: as the density decreases by 100X, our error only doubles. Also,
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Figure 5.6: Qualitative evaluation on VOID benchmark. Top: Input RGB images. Bottom:

Densified depth images back-projected to 3D, colored, and viewed from a different vantage

point.

we observe systematic performance improvement in all the evaluation metrics (Table 5.5)

when replacing the pose network with SLAM pose. This can be largely attributed to the

necessity for the correct pose to minimize photometric error during training. Our pose

network may not be able to consistently predict the correct pose due to the challenging

motion of the dataset. Fig. 5.6 shows two sample RGB images with the densified depth

images back-projected to 3D, colored, and viewed from a different vantage point.
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Method MAE RMSE iMAE iRMSE

PoseNet + Eul. 108.97 212.16 64.54 142.64

PoseNet + Exp. 103.31 179.05 63.88 131.06

PoseNet + Exp. + Lpc 85.05 169.79 48.92 104.02

SLAM Pose 73.14 146.40 42.55 93.16

Table 5.4: VOID depth completion benchmark and ablation study. We compare the variants

of our pose network. SLAM Pose replaces the output of pose network with SLAM estimated

pose to gauge an upper bound in performance. When using our pose consistency term with

exponential parameterization, our method approaches the performance of our method when

using SLAM pose.

5.7.4 VOID Depth Completion Ablation Study

To better understand the effect of rotation parameterization and our pose consistency loss

(Eqn. 5.6) on the depth completion task, we compare variants of our model and again replace

the pose network with SLAM pose to show an upper-bound on performance. Although

exponential outperforms Euler parameterization, we note that their results are in fact 29.2

and 32.9% worse than using SLAM pose on MAE, 18.2 and 30.1% worse on RMSE, 33% and

34% worse on iMAE, and 29% and 34.7% worse on iRMSE, respectively. However, we observe

a performance boost when applying our pose consistency term and our model improves over

exponential without pose consistency by 17.7% on MAE, 5.2% on RMSE, 23.4% on iMAE,

and 20.6% on iRMSE. Moreover, it only trails the one trained with SLAM pose by 14% on

MAE, 13.8% on RMSE, 13% on iMAE, and 10.4% on iRMSE. This trend still holds when

density decreases (Table 5.5). This suggests that despite the additional constraint, the pose

network still have some difficulties predicting the pose due to the challenging motion. This

finding, along with results from Table 5.5, sheds light to the usage of classic SLAM systems

in the era of deep learning, which also urges us to develop and test pose networks on the

VOID dataset which features non-trivial 6 DoF motion – much more challenging than the

mostly-planar motion found in the KITTI dataset.
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Density Pose From MAE RMSE iMAE iRMSE

∼ 0.5%
PoseNet 85.05 169.79 48.92 104.02

SLAM 73.14 146.40 42.55 93.16

∼ 0.15%
PoseNet 124.11 217.43 66.95 121.23

SLAM 118.01 195.32 59.29 101.72

∼ 0.05%
PoseNet 179.66 281.09 95.27 151.66

SLAM 174.04 253.14 87.39 126.30

Table 5.5: Depth completion on VOID with varying sparse depth density. The VOID dataset

contains VGA size images (480 × 640) of both indoor and outdoor scenes with challenging

motion. For “Pose From”, SLAM refers to relative poses estimated by a SLAM system, and

PoseNet refers to relative poses predicted by a pose network.

5.8 Discussion

In this work, we introduced a two-stage approach that achieves state-of-the-art performance

on the KITTI depth completion benchmark. By learning to refine the scaffolding built from

sparse points, we can bypass the sparse input problem that previous works have tried to

solve by using sparsity-invariant operations. We additionally explored rotation parameteri-

zation and proposed a pose consistency constraint that enforced forward-backward motion

consistency, both improving our results on the depth completion task for both KITTI and

our newly proposed VOID dataset benchmarks. We also show that they improve the pre-

dicted pose on KITTI odometry dataset in Supp. Mat. Sec. III. However, we note that the

performance of our model using a pose network still trails the model trained with SLAM

pose on the VOID dataset. This can be attributed to the challenging motion on VOID as

opposed to the planar motion on KITTI.

While deep networks have attracted a lot of attention as a general framework to solve an

array of problems, we must note that pose may be difficult to learn on datasets with non-

trivial 6 DoF motion – which the SLAM community has studied for decades. We hope that
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VOID will serve as a platform to develop models that can handle challenging motion and

further foster fusion of multi-sensory data. Furthermore, we show that deep learning can be

applied to predict the dense reconstruction from extremely sparse point clouds (e.g. features

tracked by SLAM). We also show that we can improve the performance of our model by

directly using pose from a SLAM system instead of pose network. These findings motivate

a possible marriage between SLAM and deep learning that can benefit one another.
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CHAPTER 6

Discussion

In this thesis, we detailed four approaches for developing visioning systems for an agent to

learn to infer dense depth from images and, if available, sparse depth. In hopes of achieving

full autonomy, all of the proposed approaches exploit epipolar geometry and principles of

structure from motion (SFM) to enable continuous learning without any form of explicit

supervision.

In Chapter 2, we proposed an adaptive weighting scheme that examines the data fidelity

residuals in determination of the degree of regularization to impose on a model. This adap-

tive weighting scheme varies in both the spatial and temporal domain through an annealing

process that allows the model to first maximize data fidelity and later apply regularity. The

method incurs no extra parameters. To improve the learning process, we further proposed

a two-branch decoder that first minimizes the data fidelity term alone in one branch then

provide the second branch with the coarse predictions and features to produce the final pre-

dictions. In the process of developing this architecture, we effectively removed ≈ 10 million

parameters from the model, making it faster and smaller while improving performance. We

showed the benefits of using adaptive regularization on the KITTI [GLU12] and Make3D

[SSN09] benchmarks.

Although we do see consistent improvement in our model after applying our adaptive

regularization scheme, the adaptation only takes into account of a single image, the stereo-

counterpart. While this is due to the nature of the training, minimizing a surrogate loss

that involves reconstructing a stereo counter-part, we believe that this can be extended to

multiple frames. In the case of multiple views, the reconstruction residual from the additional

frames may be combined (e.g. the mean residual over multiple frames) to better inform the
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adaptive weighting scheme. In addition, when computing the global residual, it is done over

a single image, making the degree of regularity different from image to image. Although one

may argue that this allows more flexibility in the adaptation scheme, it also result in more

noise in the adaptation. We believe that computing a true global mean may produce better

performance.

In Chapter 3, we presented a method for exploiting gravity as a supervisory signal. As

we assume that we are given an IMU as part of the system, we can obtain the direction

of gravity without the need for dead-reckoning. We note that gravity influences the pose

of some objects, but not all; therefore, we required a semantic segmentation module to

provide a per pixel labeling on the scene. We then applied our shape model (horizontal and

vertical planes) based on the object class and whether they should leverage the horizontal

or the vertical plane prior. In our experiments on KITTI [GLU12], Make3D [SSN09], and

VISMA2 (derived from VOID [WFS19]), we saw consistent improvements by leveraging our

pose and shape priors and were able to improve worse performing methods to state-of-the-art

performance. While we required a separate pose and semantic segmentation network during

training, both of these networks are not needed during test time. Hence, our method incur

no additional parameters. We showed that our framework is generic (all we need is an IMU

and a semantic segmentation network) and that we can apply it to an array of models.

While our approach did improve other models, we would like to note that it is still a proof

of concept. There are many avenues that we left unexplored. We only make use of gravity

at training time. While this allowed our models to take in any stream, most device have

both camera and IMU. Hence, we could in fact exploit the benefits of an IMU, for instance,

to obtain the canonical frame at test time. Moreover, we used a very simple shape model

consisting of horizontal and vertical frames. We did not address objects that require both

horizontal and vertical plane priors. This opens opportunities to explore more sophisticated

shape models (e.g. b-splines). Currently, we pre-defined the classes for applying horizontal

and vertical plane priors. Perhaps a more general approach would be to learn the object

classes that should map to a given shape prior.

In Chapter 4, we proposed to train a conditional prior network for the purpose of reg-
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ularizing our predictions. As the prior network is trained using ground-truth annotations

from a synthetic dataset, it contains semantics as well as contextual information, enabling

the prior network to successfully guide regularization. We additionally proposed a novel

network architecture, following the late fusion paradigm. Our supervised model, to this

day, still holds the best MAE and iMAE on the online KITTI [USS17] depth completion

benchmark. This is largely attributed to our network structure, two deep ResNet encoders

that process image and sparse depth separately. The successes of our model in this work

are also its drawbacks. While having a trained prior provides better regularization, it lacks

applicability outside of the domain of the prior. A prior network trained in the outdoor

domain would not be able to generalize to the indoor domain, even if we have extra data.

While one may argue that we can simply train an additional prior network for a different

domain, this is not scalable and would prevent us from continuously learning in any given

novel environment – defeating the strength of unsupervised learning. In regards to speed and

memory, our architecture contains two ResNet encoders, doubling the number of layers on

the encoder side, and causing training and testing to be slow. It also takes up large amounts

of memory rendering training to be difficult on a standard desktop setup. We restricted

ourselves to smaller batch size, which in turn produces noisier gradients. This additionally

limited the type of devices our method can be used on. Motivated by these drawbacks, we

developed a small and computationally cheap approach that our outperforms this work in

the unsupervised setting.

Conscious of the drawbacks in Chapter 4, we proposed a two-stage approach of approxi-

mate and refine for the purpose of depth completion in Chapter 5. We begin by computing

the scaffolding of the scene based on the sparse depth measurements by Delaunay triangu-

lation. The tessellations of the scaffoldings were produced by linear interpolation within the

Barycentric coordinates. In the case where three points lie on the same plane, linear interpo-

lation produces the optimal solution. However, as points are sparse, such is rarely the case.

Hence, we proposed a light-weight network to refine the coarse approximation. The network,

containing fewer than half of the parameters of standard depth completion networks, takes

an image and its associated scaffolding as input and predicts dense depth. The use of the
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scaffolding is not only to approximate the scene, but also to propagate depth to missing

values. This alleviates the burden of needing to process the sparse input and thus allowing

a small network to outperform much bigger ones [MCK19, SNC19, YWS19, WFS19].

Although the system performs quite well when compared to current depth completion

methods, its performance is still limited by the optimization process as it utilizes a uniform

weighting scheme for regularization. It also does not account for occlusions and disocclusions.

Hence, we return to our conundrum: to iteratively find correspondences without knowing if

the regions are actually co-visible and imposing regularity with the hope that that we have

applied it to the right place, at the right time, with the right amount. This begs for an

adaptive approach to learning depth completion.

In regards to utilizing classical methods in the ages of deep learning: as discussed in

Chapter 5, our two-stage approach fuses together classical and deep learning techniques and

shows that it is possible for a happy marriage between the two. This is a specific approach for

the depth completion problem, but the framework of approximating and refining is general.

For instance, such can be extended to pose estimation. We can estimate the pose from a

sequence of images and calibration, both of subjected to noise and nuisance factors, and refine

the result using a deep network – in order words, to model the factors that are not considered

by classical methods. Moreover, pose does not need to be learned – this is well-known, given

a set of distinctive features, SFM and SLAM systems are able to localize themselves in an

environment. In this age of deep learning, we are increasing the size of our networks, and

are constantly hungry for more data. Yet, we know how to solve many of the tasks at hand,

without the need to learn from additional data. Perhaps incorporating known processes and

regularities will allow us to re-approach problems from a different perspective – one that is

less data hungry and does not need to re-learn the known regularities of our visual world.
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