
UCLA
UCLA Previously Published Works

Title
Multivariate spatiotemporal functional principal component analysis for 
modeling hospitalization and mortality rates in the dialysis population.

Permalink
https://escholarship.org/uc/item/41s024r1

Journal
Biostatistics, 25(3)

Authors
Qian, Qi
Nguyen, Danh
Telesca, Donatello
et al.

Publication Date
2024-07-01

DOI
10.1093/biostatistics/kxad013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41s024r1
https://escholarship.org/uc/item/41s024r1#author
https://escholarship.org
http://www.cdlib.org/


Biostatistics (2024) 25, 3, pp. 718–735 C
https://doi.org/10.1093/biostatistics/kxad013
Advance Access publication on June 20, 2023

Multivariate spatiotemporal functional principal
component analysis for modeling hospitalization and

mortality rates in the dialysis population
QI QIAN

Department of Biostatistics, University of California, Los Angeles, CA 90095, USA

DANH V. NGUYEN

Department of Medicine, University of California, Irvine, CA 92868, USA

DONATELLO TELESCA

Department of Biostatistics, University of California, Los Angeles, CA 90095, USA

ESRA KURUM

Department of Statistics, University of California, Riverside, CA 92521, USA

CONNIE M. RHEE

Department of Medicine, University of California, Irvine, CA 92868, USA and Harold Simmons
Center for Chronic Disease Research and Epidemiology, University of California School of Medicine,

Irvine, CA 92868, USA

SUDIPTO BANERJEE , YIHAO LI, DAMLA SENTURK∗

Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
dsenturk@ucla.edu

SUMMARY

Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other
Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality,
and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or
until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends
in the correlated outcomes of hospitalization and mortality among dialysis patients as a function
of time starting from transition to dialysis across the United States Utilizing national data from
the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal
functional principal component analysis model to study the joint spatiotemporal patterns of hos-
pitalization and mortality rates among dialysis patients. The proposal is based on a multivariate
Karhunen–Loéve expansion that describes leading directions of variation across time and induces
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spatial correlations among region-specific scores. An efficient estimation procedure is proposed using
only univariate principal components decompositions and a Markov Chain Monte Carlo framework
for targeting the spatial correlations. The finite sample performance of the proposed method is stud-
ied through simulations. Novel applications to the USRDS data highlight hot spots across the United
States with higher hospitalization and/or mortality rates and time periods of elevated risk.

Keywords: Conditional autoregressive model; End-stage kidney disease; Multivariate conditional autoregressive
model; Multivariate functional principal component analysis; United States Renal Data System.

1. Introduction

End-stage kidney disease (ESKD) affected more than 809, 103 individuals in the United States as of
2019, a 41% increase from 2009. About 70% of patients with incident ESKD were on dialysis, a life-
sustaining treatment (USRDS, 2021). The mortality rate among patients receiving dialysis is higher
than Medicare populations with heart failure, acute myocardial infarction, or cancer. Moreover,
patients on dialysis have a high burden of complex comorbid conditions and experience frequent
hospitalizations (at about twice per year), which is a major source of morbidity and mortality
(USRDS, 2021). Hence, hospitalization and survival are intricately related in the dialysis population.

ESKD patients typically remain on dialysis for the rest of their lives (or until kidney transplanta-
tion) and their needs change as they stay longer on dialysis. Our own works and others have shown
that mortality risk and hospitalization rates change over time after patients transition to dialysis
(higher hospitalization and mortality rates have been reported within the first year and first 6 months
on dialysis, respectively (Estes and others, 2018; Li and others, 2018)). In addition to temporal varia-
tion, hospitalization and mortality rates also vary significantly across the United States, contributing
to spatial variation (Li and others, 2021). Understanding the geospatial patterns of outcomes for
dialysis patients has been an important objective of the United States Renal Data System (USRDS)
annual reporting. Hence, studying the spatiotemporal trends in the multivariate outcome of hos-
pitalization risk and mortality rates for regions across the United States is an important goal in
identifying “hot spots”/regions and critical time periods (after transitioning to dialysis) of high risk
and elevated rates for more targeted patient monitoring.

There is extensive literature on multivariate spatiotemporal modeling, particularly in environ-
mental health, criminology, road traffic analysis, and disease mapping. The existing multivariate
space-time approaches can broadly be classified into four settings, in which time or space or both
are modeled as a discrete or a continuous process. In our application to modeling the multivariate
outcome of hospitalization and mortality rates, we target rates across health service areas (HSAs) in
the United States (regions with relatively self-contained infrastructure for the provision of hospital
care) and across time on dialysis. Hence in our application, space is discrete, since HSAs across the
United States are fixed, and time is continuous, since we are interested in drawing inference along
the continuous time index of duration on dialysis. While there is extensive literature on multivari-
ate spatiotemporal modeling when space and time are viewed as discrete, the literature on discrete
space and continuous time models is limited. When space and time are viewed as discrete, a Markov
random field structure in the form of conditionally autoregressive (CAR) or multivariate condition-
ally autoregressive (MCAR) specifications are commonly used for spatial modeling, while time is
typically modeled via an autoregressive structure (see Banerjee and others (2015) for a comprehen-
sive review). For discrete space and continuous time models, Zhang and others (2006) proposed a
separable structure for the multivariate space-time covariance, while Hepler and others (2021) and
Baer and others (2021) considered nonseparable space-time covariances. However, both of the latter
approaches use quite restricted linear or user-defined parametric forms in temporal modeling.
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We propose multivariate spatiotemporal functional principal components analysis (MST-FPCA)
to study the joint spatiotemporal patterns of hospitalization and mortality rates among US dialysis
patients. The proposed model is based on a multivariate Karhunen–Loéve expansion which models
temporal trends nonparametrically via a data-driven lower dimensional multivariate eigenfunction
bases. Spatial correlations are induced through a CAR model assumed among region-specific scores,
leading to a nonseparable structure on the multivariate space-time covariance. Functional principal
components decompositions for longitudinal and functional processes have been a major modeling
theme in the functional data analysis literature, with focus centering on efficient and interpretable
representations of functional variability in highly structured settings (Ramsay and Silverman, 2005).
More recently, there has been interest in analyzing multiple trajectories, with dependencies among
the curves created by spatial or temporal proximity (Crainiceanu and others, 2009; Staicu and others,
2010; Scheffler and others, 2020; Campos and others, 2022). In the multivariate functional setting,
several developments rely upon generalizations of the Karhunen–Loève representation (Jacques and
Preda, 2014; Chiou and others, 2014), with extensions developed to handle functions observed over
different evaluation domains (Happ and Greven, 2018), or to handle multivariate spatiotemporal
data in a separable space-time covariance framework (Di Salvo and others, 2015; Ruggieri and others,
2018). However, to date, there has been no work proposed to our knowledge on multivariate FPCA
that can incorporate spatial correlations in the observed data and model nonseparable multivariate
space-time covariance structures.

Similar to developments proposed in Happ and Greven (2018), we propose a computationally
efficient estimation procedure for MST-FPCA, which relies only on univariate FPCA expansions.
An MCAR structure is induced on the vector of region-specific scores from the univariate FPCA
expansions to target the correlation between outcomes in the multivariate response. The estimated
between-outcome correlation is then incorporated into estimation of the multivariate eigenfunc-
tions. Finally, the region-specific scores and spatial variation parameters are targeted via a Markov
Chain Monte Carlo (MCMC) framework, conditional on the estimated multivariate eigenfunc-
tions. MST-FPCA achieves computational efficiency by coupling dimension reduction in modeling
nonparametric time trends through data-driven lower dimensional multivariate eigenfunctions with
modeling of spatial correlations via a parametric CAR structure. Section 2 outlines the proposed
MST-FPCA model, along with the proposed estimation and inference procedures. Applications of
the proposed methodology to data from a large national database, USRDS, allow us to model spa-
tiotemporal trends jointly in hospitalization risk and mortality rates across the United States, as
outlined in Section 3. Finite sample properties of MST-FPCA are studied in simulations of Section
4, followed by a brief discussion given in Section 5.

2. Proposed MST-FPCA

2.1. Model specification

Let i = 1, …, n index regions, k = 1, …, T index time (months) after transition to dialysis
and j = 1, …, J index the different dimensions of the J-dimensional outcome vector, X i(tk) =
{X (1)

i (tk), …, X (J)
i (tk)}�. In our application to USRDS data, our multivariate outcome contains

region-specific monthly hospitalization and mortality rates (i.e., J = 2), where region-specific rates
are obtained as averages of dialysis facility-specific rates. Hospitalization and mortality rates at the
dialysis facility level are defined as the ratio of the total number of patient hospitalizations or deaths
to the total patient follow-up time for that specific facility at month k, respectively. We multiplied
the rates by 12 so that the rate unit can be interpreted as a rate per person-year (PPY) consistent
with annual national reporting from the USRDS. In our application to USRDS data, region units
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are taken to be HSAs across the United States and region-specific rates are analyzed for a total of
24 months (i.e., 2-year follow-up) after transitioning to dialysis. Note that we opt to model the mul-
tivariate response as continuous data similar to the works of Li and others (2021) and amenable to
the proposed FPCA framework.

To study the spatiotemporal variation in hospitalization and mortality rates jointly, the pro-
posed MST-FPCA decomposes the J-dimensional multivariate response vector X i(t) = {X (1)

i (t), …,
X (J)

i (t)}� (t ∈ T ) by

X i(t) = μ(t) +
∞∑

�=1

ρi�ψ�(t) + ε i(t). (2.1)

In (2.1), μ(t) = {μ(1)(t), …, μ(J)(t)}� denotes the overall mean function, ψ�(t) = {ψ(1)

� (t),
…, ψ(J)

� (t)}� denotes the multivariate eigenfunctions, ρi� are region-specific principal component
(PC) scores, and ε i(t) = {ε(1)

i (t), …, ε(J)
i (t)}�, ε

(j)
i (t) ∼ind N(0, σ 2

j ), denotes the measurement error.
The multivariate eigenfunctions form an orthonormal system, i.e.,

〈〈ψ�(t), ψ�′(t)〉〉 :=
J∑

j=1

〈ψ(j)
� (t), ψ(j)

�′ (t)〉2 =
J∑

j=1

∫
T

ψ
(j)
� (t)ψ(j)

�′ (t)dt = δ��′ ,

where δ��′ = 1 for � = �′ and δ��′ = 0 otherwise. Under the classical multivariate FPCA
framework (Ramsay and Silverman, 2005; Happ and Greven, 2018), the multivariate PC scores
{ρ� = (ρ1�, …, ρn�)

� : � = 1, 2, …}, are assumed to be uncorrelated, with zero means and
Var(ρ i�) = λ�, where λ� denotes the eigenvalues. Similar to univariate FPCA, the multivariate
eigenfunctions describe directions of leading modes of variation in the different dimensions of the
functional response, while the eigenvalues quantify the amount of variation explained along the
identified modes of variation. In practice, the expansion is truncated to include L eigencomponents
based on the fraction of variance explained (FVE), where 2–3 eigencomponents are retained in most
applications, leading to effective dimension reduction of the high-dimensional data.

Different from multivariate FPCA, we induce a CAR structure on the region-specific PC scores
ρi� to capture dependencies due to facility- and region-specific practice patterns and infrastructure.
Specifically, let the n × n adjacency matrix W = {wii′ } describe the neighborhood structure of
regions, where wii′ = 1 if regions i and i′ (i 
= i′) are neighbors, denoted by i ∼ i′, and wii′ = 0
otherwise. By convention, the diagonal elements of W are set to zero. Further let D be the diagonal
matrix consisting of elements di = ∑

i∼i′ wii′ , denoting the total number of neighbors of region
i. Then, the full conditional distribution for the �th PC score for region i, ρi�, is specified as a
weighted average of the �th PC scores from neighbors of region i, via the Markov Random Field
ρi�|{ρi′�}i 
=i′ ∼ N(ν

∑
i′∼i wii′ρi′�/di, α�/di) with a variance component α� and a spatial correlation

parameter ν. Through Brook’s lemma, the joint distribution of the �th PC scores ρ� = (ρ1�, …, ρn�)
�

takes the form ρ� ∼ N
(
0, α�(D − νW)−1

)
, where the spatial correlation parameter ν is constrained

to lie between bounds given by the inverse of the minimum and maximum eigenvalues of the matrix
D−1/2WD−1/2 in order for the precision matrix (D − νW)/α� to be positive definite (Banerjee and
others, 2015). The CAR model induced on the PC scores stabilizes estimation especially for smaller
regions, smoothing out scores across neighbors. Note that even though the multiple outcomes con-
sidered share the same PC scores in the proposed modeling, this does not imply that the outcomes
also share the same spatiotemporal correlation structure. Since the eigenfunctions are allowed to
vary across outcomes (through the multivariate eigenfunctions), the proposed modeling is able to
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induce different spatiotemporal correlations across outcomes (via the linear combination of PC
scores multiplying multivariate eigenfunctions) that are nonseparable.

2.2. Estimation and inference

Similar to Happ and Greven (2018), the proposed MST-FPCA is also built on links to univariate
FPCA of the different dimensions of the multivariate response vector for computational efficiency.
The proposed estimation algorithm begins by expansions of the different dimensions of X i(t)
employing univariate FPCA (see Step 1 in Estimation Algorithm). The dependencies among the
vector of univariate PC scores are modeled next, via an MCAR correlation structure, and used in
targeting the multivariate eigenfunctions. Specifically, the variation in univariate PC scores is decom-
posed into a between eigencomponent (�b) and a within eigencomponent (�w) variation, capturing
dependencies between the eigencomponents of the different dimensions of the response and spatial
correlations across regions within eigencomponents, respectively (Step 2). The multivariate eigen-
functions ψ�(t) are targeted using the estimated univariate eigenfunctions and eigenvectors of the
estimated �b (Step 3). Hence, by utilizing the dependency between the eigencomponents of the
univariate response (through �b) in deriving the multivariate eigenfunctions, MST-FPCA avoids
multivariate FPCA on the higher dimensional covariance processes, which can be quite cumber-
some in higher dimensions. Conditional on the estimated mean and multivariate eigenfunctions the
multivariate PC scores ρi� and spatial correlation parameters α� and ν are targeted within a hierar-
chical modeling framework via MCMC (Step 4). Finally, the region-specific multivariate response
trajectories are reconstructed with pointwise credible intervals (CIs), relying on the estimated
multivariate eigenfunctions and posterior distribution of the multivariate PC scores obtained in
Step 4.

Direct estimation of the multivariate eigenfunctions in the first three steps, instead of expansion
on a known bases set has two advantages. First it achieves dimension reduction, in the sense that
in most applications a small number of multivariate eigenfunctions are enough to capture most of
the variation in the data, leading to computational savings in the Bayesian modeling of Step 4. In
addition, and perhaps more importantly, the multivariate eigenfunctions provide extra interpreta-
tions in model building. Because they are estimated from the data, they represent dominant modes
of variation in time. Hence in the case of the multivariate eigenfunctions, they lead to the study and
comparison of modes of temporal variation across outcomes.

Note that there are multiple computational savings utilized in the proposed estimation algorithm
that makes the implementation of the proposed methodology feasible for decompositions of high-
dimensional multivariate response. First, the proposed algorithm relies only on univariate FPCA
decompositions. Second, the MCAR model induced on the univariate PC score vector is modeled
as a linear combination of independent latent Gaussian processes with a CAR correlation struc-
ture. This lower dimensional representation allows for the efficient fitting of the MCAR model
in WinBUGS. The hierarchical model with a CAR correlation structure on the multivariate PC
scores in Step 4 is also implemented in WinBUGS, leading to easy implementation of the proposed
algorithm. The R code and a tutorial for implementing MST-FPCA are made publicly available on
Github (https://github.com/dsenturk/MST-FPCA). The proposed estimation algorithm is outlined
in the table below, with specific steps discussed in further detail in this section.

Step 1: The proposed MST-FPCA begins by univariate FPCA employed in each dimension X (j)
i (t)

of the multivariate outcome. A penalized spline smoother is used to obtain the univariate mean func-
tion μ̂(j)(t) (where the smoothing parameter can be selected via generalized cross-validation). The

https://github.com/dsenturk/MST-FPCA
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Estimation Algorithm

Step 1: Employ univariate FPCA in each dimension (X (j)
i (t)) of the multivariate response vector

X i(t) to target the estimated univariate eigenfunctions and univariate PC score vector ξ̂ .
Step 2: Decompose dependencies among ξ̂ into a between eigencomponent �b and a within

eigencomponent �w (between region) variation via an MCAR correlation structure.
Step 3: Target the multivariate eigenfunctions ψ�(t) using the estimated univariate eigenfunctions

and eigenvectors of the estimated �b.
Step 4: Fixing the estimated mean and multivariate eigenfunctions, target the multivariate PC scores

ρi� and spatial correlation parameters α� and ν within a hierarchical modeling framework via
MCMC.

Step 5: Provide inference on the multivariate response trajectories using the estimated multivariate
eigenfunctions and posterior distribution of the multivariate PC scores obtained in Step 4.

estimated mean is used to center the observed data, X̂ c(j)
i (t) = X (j)

i (t)− μ̂(j)(t), leading to the empiri-
cal covariance, Ĝ(j)(t, t′) = ∑n

i=1 X̂ c(j)
i (t)X̂ c(j)

i (t′)/n. Following common practice, the diagonal entries
of Ĝ(j)(t, t′) are removed before the covariance surface is smoothed using 2D penalized smoothing
splines (Ramsay and Silverman, 2005). This is because the i.i.d measurement error inflates the error
along the diagonal of the covariance. In addition, the smoothing parameters are selected by restricted
maximum likelihood (Li and others, 2021). Once the covariance operators are obtained, estima-
tors of the univariate eigenfunctions {φ̂(j)

m (t) : m = 1, …, Mj}, and PC scores {ξ̂ (j)
im : i = 1, …, n;

m = 1, …, Mj} are recovered by FPCA. The numbers of eigencomponents, Mj, retained in the
univariate FPCA expansions are determined by the FVE, where we use FVE > 99% in numerical
applications to retain enough information at the initial step of the algorithm.

Step 2: Next, the vector of univariate PC scores ξ̂
�
i = (ξ̂

(1)

i1 , …, ξ̂ (1)

iM1
, …, ξ̂ (J)

i1 , …, ξ̂ (J)

iMJ
) are modeled

via an MCAR model. Let � = [ξ̂ 1, …, ξ̂ n]� denote the n × M+ score matrix with M+ = M1 +
M2 + · · · + MJ denoting the total number of eigencomponents retained across all J dimensions.
Stacking the columns of � leads to the nM+ × 1 score vector ξ̂ = vec(�) that is modeled as a linear
combination of M+ n × 1 independent latent spatial Gaussian processes f� ∼ N(0, (D − νW)−1),
� = 1, …, M+, as in Jin and others (2007), where D and W are as defined in Section 2.1, and ν

denotes the common spatial smoothing parameter,

ξ̂
nM+×1

= ξ
nM+×1

+ e
nM+×1

= ( A
M+×M+

⊗ I
n×n

) f
nM+×1

+ e
nM+×1

. (2.2)

In (2.2), f = (f�
1 , …, f�

M+)� denotes the vector of stacked latent Gaussian processes with the joint dis-
tribution f ∼ N

(
0, IM+ ⊗ (D − νW)−1

)
, A = {a��′ }, 1 ≤ �′ ≤ � ≤ M+, denotes an M+×M+ full rank

lower triangular matrix and e ∼ N(0, τ 2 InM+) denotes the vector of measurement errors, assumed
to be uncorrelated with ξ . With the proposed specification in (2.2), the covariance of ξ , denoted
by �, can be decomposed into a between eigencomponent (�b) and a within eigencomponent (�w)
variation,

�
nM+×nM+

=( A
M+×M+

⊗ I
n×n

)Bdiag{(D − νW)−1

n×n
, …, (D − νW)−1}(A� ⊗ I)

= AA�
M+×M+ ⊗ (D − νW)−1

n×n
≡ �b

M+×M+
⊗ �w

n×n
,
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where �b = AA�, �w = (D − νW)−1 and Bdiag(·) denotes a block-diagonal matrix. Hence, an
MCAR (ν, �b) structure is induced on ξ . Representation of ξ as a linear combination of independent
spatial Gaussian processes modeled with a CAR structure, via the lower triangular matrix A, allows
for easy implementation of the MCAR model in WinBUGS, without the computational burden of
operations with large covariance matrices and without the need to check for positive-definiteness of
covariance matrices in each iteration of the algorithm. While the between-eigencomponent varia-
tion captures the dependency between the eigencomponents from univariate expansions, the within
eigencomponent (between region) variation captures the spatial dependency among the regional
units. Note that while a separable correlation structure is induced on the univariate PC scores, this
does not imply a separable correlation structure between time and space, nor the same level spatial
smoothing for the multivariate outcome vector. The goal of the modeling of ξ through an MCAR
structure with a common between eigencomponent dependence across regions is to incorporate the
estimated between eigencomponent dependency into estimation of the multivariate eigenfunctions
in Step 3.

The parameters of the MCAR model are targeted via MCMC. Elementwise priors are imposed
on the lower-triangular matrix A: a�� ∼ Lognormal(μa��

, σ 2
a��

) and a��′ ∼ N(μa��′ , σ
2
a��′ ) for 1 ≤

�′ < � ≤ M+. In addition, an Inverse Gamma (IG) (aτ2 , bτ2 ) prior is imposed on the measurement
error variance τ 2, and a Uniform prior is used for the spatial parameter ν with the parameters con-
strained to lie between bounds given by the inverse of the minimum and maximum eigenvalues of
the matrix D−1/2WD−1/2 (denoted by aν , bν , respectively). The posterior distribution we seek can be
expressed as

π(a��, a��′ , ν, τ 2|ξ̂) ∝ N(ξ̂ |ξ , τ 2)×N
(
ξ |0, AA� ⊗ (D − νW)−1

) ×
M+∏
�=1

Lognormal(a��|μa��
, σ 2

a��
),

×
M+∏
�=1

�−1∏
�′=1

N(a��′ |μa��′ , σ
2
a��′ ) × Unif(ν|aν , bν) × IG(τ 2|aτ2 , bτ2).

The model parameters are sampled from the posterior distributions using MCMC with Gibbs
sampling and random walk metropolis as implemented in WinBUGS.

Step 3: The between eigencomponent dependence targeted via �b is incorporated in estimation of
the multivariate eigenfunctions as

ψ̂
(j)
� (t) =

Mj∑
m=1

[ĉ�](j)m φ̂(j)
m (t), � = 1, …, M+, j = 1, …, J, (2.3)

where each dimension of the multivariate eigenfunction is targeted as a linear combination of the
univariate eigenfunctions estimated for that dimension with weights [ĉ�](j)m equal to the mth entry of
[ĉ�](j) ∈ R

Mj , the jth block of the �th eigenvector ĉ� of �̂b (the posterior mean of �b). The form in
(2.3) follows from the fact that the variance components α� are also the eigenvalues of the between
eigencomponent covariance matrix �b of the univariate PC scores as shown in Appendix A of the
supplementary material available at Biostatistics online. We defer the reader to Appendix A of the
supplementary material available at Biostatistics online for more details.

Step 4: Once the multivariate mean and eigenfunctions are estimated, we target the region-specific
PC scores (ρi�), spatial parameters (α� and ν), and measurement error variance (σ 2

j ) of MST-FPCA,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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conditional on θ̂ = {μ̂(t), ψ̂�(t), M+}, via the multivariate hierarchical model

X i(t) = μ̂(t) +
M+∑
�=1

ρi�ψ̂�(t) + ε i(t),

ρ�
n×1

= (ρ1�, …, ρn�)
� ∼ N( 0

n×1
, α�( D

n×n
−ν W

n×n
)−1), ε i(t)

J×1
∼ N( 0

J×1
, Diag(σ 2

1 , …, σ 2
J )

J×J
),

σ 2
j ∼ IG(aσ2

j
, bσ2

j
), α� ∼ IG(aα�

, bα�
), ν ∼ Unif(aν , bν),

where Diag(σ 2
1 , …, σ 2

J ) denotes the J ×J diagonal matrix with σ 2
j , j = 1, …, J, on the diagonal (Step

4). Hence, the posterior distribution we seek can be expressed as

π(ρ�, ν, α�, σ 2
j |X i(t), θ̂) ∝

n∏
i=1

T∏
k=1

N

⎛
⎝X i(tk)|{μ̂(tk) +

M+∑
�=1

ρi�ψ̂�(tk)}, Diag(σ 2
1 , …, σ 2

J )

⎞
⎠

×
M+∏
�=1

N(ρ�|0, α�(D − νW)−1) ×
M+∏
�=1

IG(α�|aα�
, bα�

)

×Unif(ν|aν , bν) ×
J∏

j=1

IG(σ 2
j |aσ2

j
, bσ2

j
).

The model parameters are sampled from the posterior distributions using MCMC as implemented
in WinBUGS. Since M+ is the total number of univariate eigencomponents retained across the J
dimensions, the total number (L) of multivariate eigencomponents used in MST-FPCA could be
chosen to be smaller than M+ in applications where M+ may be large. Here, we recommend the use
of the estimated variance components α� in formulating the FVE, since they are established as eigen-
values of the between eigencomponent covariance matrix �b (see Appendix A of the supplementary
material available at Biostatistics online for details).

Step 5: In the final step, region-specific trajectories are constructed for the multivariate outcome

using the estimated MST-FPCA model components: X̂ i(t) = μ̂(t) + ∑L
�=1 ρ̂i�ψ̂�(t). In addition,

(1 − γ ) pointwise CIs for region-specific trajectories are obtained by

X̂ i(t) ± �−1
(

1 − γ

2

) √
diag

[
Var{X̂ i(t) − X i(t)|θ̂}

]
,

where Var{X̂ i(t)−X i(t)|θ̂} ≈ �̂�̂�̂�, with �̂ = {ψ̂1(t), …, ψ̂L(t)}, �(·) denotes the Gaussian cumu-
lative distribution function, diag(·) denotes the diagonal of a matrix and �L×L = Var{ρ i|X(t), θ̂} for
ρ i = (ρi1, …, ρiL)� is targeted using the posterior variance of the estimated multivariate PC scores.

When the different dimensions of the multivariate outcome have different domains/ranges or if
they exhibit different amounts of variation, standardization of the data as a preliminary step may
be necessary in order to obtain interpretable multivariate functional principal components (Jacques
and Preda, 2014; Chiou and others, 2014; Happ and Greven, 2018). The standardization can be car-

ried out by rescaling data in each dimension using weights sj =
{∫

T V̂ar
(
X (j)(t)

)
dt

}−1
, such that

the integrated variance along the rescaled data X̃ (j)(t) = s1/2
j X (j)(t) equals one (Happ and Greven,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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726 Q. Qian and others

2018). In this way, all dimensions of the multivariate outcome contribute equal amounts of variation
to the analysis, similar to the standardization of classical multivariate PCA. In our data applica-
tion, this rescaling is utilized. Note that when standardization is employed as a preliminary step in
MST-FPCA, the algorithm uses the rescaled data in the first three steps in deriving the multivari-
ate eigenfunctions. Once the multivariate eigenfunctions are estimated, the multivariate hierarchical
model of Step 4 and inference in Step 5 utilizes the observed data as outlined in this section.

3. Data analysis

The USRDS collects data on nearly all patients with ESKD in the United States. Our study cohort
includes patients aged 18 years or older who transitioned to dialysis between January 1, 2005, and
September 30, 2013. Patients were followed for a maximum of 2 years, beginning on day 91 of dialysis
(after 90 days to establish a stable treatment modality), with the last date of follow-up on December
31, 2015. Facility-specific hospitalization and mortality rates PPY are calculated monthly over the
2 year follow-up and are averaged within regions to yield the region-specific multivariate outcome.
Consistent with national USRDS reporting, regions are taken to be Health Service Areas (HSAs),
which are regions with relatively self-contained infrastructure for the provision of hospital care in
the contiguous United States, including the District of Columbia. The final study cohort contains
367 regions/HSAs, where we defer detailed descriptions of the study cohort, exclusion rules, and
preprocessing steps to Appendix B of the supplementary material available at Biostatistics online.
The mean region-specific hospitalization and mortality rates are 1.810 and 0.073 PPY, respectively,
where the raw hospitalization and mortality rate trajectories over the 2-year follow-up are given in
Figure 1(a) and (c). Note that the range of the two outcomes is quite different and hence a pre-
liminary rescaling is applied with s1 = 0.40 and s2 = 215.07, for hospitalization and mortality,
respectively, as discussed in Section 2.2 before MST-FPCA, to guarantee that variation along both
dimensions of the multivariate outcome is captured in the estimated multivariate eigenfunctions.

3.1. Estimated MST-FPCA components

The mean hospitalization and mortality trajectories are given in Figure 1(b) and (d), where the high-
est rates in both outcomes are observed within three months after transitioning to dialysis and where
both (average) rates steadily decline during the first year on dialysis, consistent with previous liter-
ature (Foley and others, 2014). For example, the mean hospitalization rate at 1 month is 2.114 PPY
and declines 16.84% to 1.758 PPY by 12 months; and similarly, the mean mortality rate at 1 month is
0.087 PYY and decreases to 0.069 PPY by 12 months (20.69% decline). While hospitalization rates
continue to decline after the first year, the mortality rates remain relatively stable in the second year
on dialysis. A total of four and two eigencomponents are retained in univariate FPCA expansions
of hospitalization and mortality, respectively, explaining 99.2% and 99.3% of the total variation.
The estimated spatial correlation parameter η̂ equals 0.923, leading to the within eigencomponent
correlations in the range of 0.27 to 0.63 in neighboring HSAs. The estimated multivariate eigen-
functions with respective estimated spatial variance parameters α̂1 = 3.090, α̂2 = 1.966, α̂3 = 0.211,
α̂4 = 0.117, α̂5 = 0.103, and α̂6 = 0.065, are given in Figure S2 in the supplementary material avail-
able at Biostatistics online. The two leading multivariate eigenfunctions (given in Figures S2(a) and
(b) in the supplementary material available at Biostatistics online) describe mostly constant varia-
tion in both hospitalization and mortality rates, with slightly higher variation in mortality in the first
year of dialysis. The third, fourth, and fifth multivariate eigenfunctions (given in Figures S2 (c) and
(d) in the supplementary material available at Biostatistics online) mainly explain variation in hospi-
talization, which highlight variation in the first and last 6 months on dialysis (third eigenfunction),

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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Fig. 1. Raw region-specific hospitalization (a) and mortality (c) trajectories. Raw trajectories for a ran-
domly chosen two regions are depicted with dashed and dotted lines. The estimated mean trajectories for
hospitalization and mortality are provided in (b) and (d), respectively.

followed by variation in the middle 1 year and end of the 2-year follow-up (fourth eigenfunction)
and finally at 1 year and 18 months on dialysis (fifth eigenfunction). The last multivariate eigenfunc-
tion (given in Figures S2 (e) and (f) in the supplementary material available at Biostatistics online)
mainly explains variation in mortality, which highlights variation in mortality at initiation and 1 year
and 18 months after transitioning to dialysis. The leading time-varying variation in hospitalization
observed within the first 6 months of dialysis is consistent with higher hospitalization rates observed
at initiation of dialysis, while higher variation in the last 6 months of follow-up may be related to
the decrease in the total number of patients towards the end of the 2-year follow-up.

3.2. Inference for region-specific hospitalization and mortality rates

The six estimated multivariate eigenfunctions are retained in the multivariate reconstruction of the
region-specific hospitalization and mortality trajectories. The raw and predicted hospitalization and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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Fig. 2. The raw and predicted hospitalization (a) and mortality (b) rates from the 3rd, 12th, and 18th months
on dialysis for all HSAs.

mortality rates from the 3rd, 12th, and 18th months on dialysis are displayed for all HSAs in Figure 2.
There is a distinct pattern (“band”) of higher rates (darker blue) in both hospitalization and mortal-
ity from Massachusetts to southern Texas. While regions display higher rates of hospitalization more
consistently in this band, mortality rates are more variable with regions of elevated and lower mortal-
ity rates. In addition, there are outcome-specific patterns that emerge where some HSAs in northern
California, Oregon, Montana, and Idaho have relatively low hospitalization rates but elevated mor-
tality rates, whereas some HSAs in Florida and Arizona have relatively high hospitalization rates
but not very high mortality rates. Furthermore, consistent with the estimated mean functions for
hospitalization and mortality displayed in Figure 1 (b) and (d), respectively, the hospitalization and
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(b)

(a)

Fig. 3. Median predicted hospitalization (a) and mortality (b) rates PPY for five major zones, as well as the
overall rates across all HSAs.

mortality rates are the highest in the first few months on dialysis, where hospitalization rates consis-
tently decrease over the 2-year follow-up and mortality rates decrease within the first year on dialysis
and remain roughly stable in the second year.

For a more in-depth study of the variation in hospitalization and mortality rates across the United
States, we divide the regions into five major zones: West (41 HSAs), Midwest (98 HSAs), South-
west (41 HSAs), Southeast (141 HSAs), and Northeast (46 HSAs). Table S1 in the supplementary
material available at Biostatistics online displays the median and the 5th and 95th percentiles of the
predicted region-specific hospitalization and mortality rates at selected months 3, 12, and 18 across
the five zones and Figure 3 displays the median rates. In addition, consistent with the estimated

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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mean functions for hospitalization and mortality in Figure 1 (b) and (d), respectively, both overall
hospitalization and mortality rates decrease at a faster rate in the first year on dialysis, where they
continue to decrease in the second year as well across the five zones but at a slower rate than the first
year. More specifically, the median hospitalization rates decline from 3 to 18 months on dialysis by
0.184–0.362 PPY across five zones, which represents a 11.65%, 13.32%, 14.25%, 14.89%, and 16.41%
decline in the West, Midwest, Southwest, Southeast, and Northeast, respectively. Similarly, the mor-
tality rates decline in the first year on dialysis from 3 to 12 months by 0.010 to 0.022 PPY across five
zones, which represents a 14.93%, 25.00%, 24.39%, 22.47%, and 18.82% decline in the West, Mid-
west, Southwest, Southeast, and Northeast, respectively (see Table S1 in the supplementary material
available at Biostatistics online).

Figure S3 in the supplementary material available at Biostatistics online depicts the predicted
hospitalization and mortality trajectories for five HSAs with median rates from the five zones. The
predicted trajectories for HSAs from the five zones are plotted (in red) along with their 95% point-
wise CI, overlaying predictions for a representative HSA with median rates across the entire United
States (in blue) for comparison. Consistent with previous observations, hospitalization rates are the
lowest in the West, where the CI for rates from the representative HSA does not overlap with the
CI for the HSA from the West for most of the 2-year follow-up. While mortality rates are still the
lowest in the West, the CIs overlap indicating more variability in mortality and lack of significant
separation in the rates. This also aligns with the previous observation that some HSAs in the West
(northern California) have higher mortality but lower hospitalization rates (Figure 2). In addition,
the Northeast has the highest hospitalization and mortality rates, consistently over the 2-year follow-
up where the CIs that compare rates to a representative HSA do not separate. Rates from HSAs from
the remaining three zones in the Midwest, Southwest, and Southeast are more similar to those from
the representative HSA.

Finally to assess model fit, we study the residuals obtained from MST-FPCA fits and compare
the MST-FPCA fits to fits from three alternate methods of modeling the data. The map of abso-
lute value of residuals from the fits at the 3rd, 12th, and 18th months on dialysis for all HSAs
is given in Figure S1 in the supplementary material available at Biostatistics online. The residuals
are quite small for hospitalizations, with larger deviations observed in less than 5% of HSA in the
harder to model outcome of mortality. Most of these larger deviations are observed on the band of
higher rates from Massachusetts to southern Texas and correspond to higher than expected mortal-
ity (positive residual). In addition, there does not seem to be an obvious spatial correlation in the
residuals, implying that MST-FPCA is able to model spatial correlations in the data effectively. The
first alternate method MST-FPCA is compared to (referred to as multivariate FPCA [M-FPCA])
assumes that the multivariate PC scores are i.i.d. across regions, ignoring spatial correlations in the
data. M-FPCA is fitted through the algorithm of Happ and Greven (2018). The second comparative
approach considered is called the Multivariate “Besag-York-Mollié” model (MBYM) proposed by
Boulieri and others (2017). MBYM utilizes a random walk of order one to induce temporal cor-
relations, and a multivariate intrinsic conditional autoregressive (ICAR) structure to model spatial
patterns, leading to a separable discrete-time, discrete-space modeling framework. MBYM is easy
to fit via the built-in mv.car package in WinBUGS, hence is utilized as a comparative method.
The last alternate method considered is to fit univariate spatiotemporal FPCA separately in each
dimension, which we refer to as U-FPCA. Similar to MST-FPCA, the U-FPCA approach targets
the univariate eigenfunctions in the first step via FPCA. Then in each dimension, a CAR structure
is induced among PC scores to capture dependencies among regions. The detailed description of the
three alternate models is deferred to Appendix C of the supplementary material available at Bio-
statistics online. We compare the four fits using relative mean squared deviation error (MSDE), i.e.,

MSDEx̂(j)(t) = ∫ {X (j)
i (t)−X̂i

(j)
(t)}2/

∫ {X (j)
i (t)}2. The mean MSDEs across regions are (0.0179, 0.0189,
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0.0178, 0.0167) and (0.2587, 0.2564, 0.2552, 0.2454) in hospitalization and mortality for (M-FPCA,
MBYM, U-FPCA, MST-FPCA), respectively. The run times for the four fits are (6.33, 81.31, 8.77,
12.02) minutes, for (M-FPCA, MBYM, U-FPCA, MST-FPCA), respectively. MST-FPCA and U-
FPCA are fit with two parallel chains with 15000 iterations (5000 burn-in) and 3500 iterations (1000
burn-in) in the MCMC involved in Steps 2 and 4, respectively. M-FPCA and MYBM are also fit
using two parallel chains with 5000 iterations (1000 burn-in) and 30 000 iterations (10 000 burn-
in), respectively. The MST-FPCA leads to smaller MSDEs in modeling hospitalizations and modest
improvements in modeling mortality, where the computational efficiency is pretty close to M-FPCA
which ignores the spatial correlations and U-FPCA in lower dimensions. More information on com-
parisons of MST-FPCA to the three alternate methods in simulation studies are summarized in the
next section.

4. Simulation studies

Simulation studies are conducted to examine the finite sample properties of the proposed MST-
FPCA, as well as to compare its performance to the performance of M-FPCA, MBYM, and
U-FPCA. Two simulation set-ups are considered: (i) independent multivariate response and (ii) cor-
related multivariate response, with varying number of time points (T = 24, 50), number of regions
(n = 49 367), different levels of error variance (σ 2 = 0.02, 0.5) and multivariate response from
two and three dimensions. Simulation results are briefly reviewed here, where we defer details to
Appendices D and E of the supplementary material available at Biostatistics online. Error measures
for all model components get smaller with decreasing noise level σ 2. Similarly, all error measures
decrease with increasing number of time points and regions, as expected, where the trends are
stronger in estimation of multivariate eigenfunctions. Even with smaller number of time points,
number of regions, and higher level of error variance, error measures from MST-FPCA signal a
good fit (see Table 1).

The prediction and inference for the multivariate region-specific trajectories based on M-FPCA,
MBYM, U-FPCA, and MST-FPCA are evaluated using MSDE and the coverage probability (CP)
and length of the associated 95% pointwise CIs. Ignoring the spatial correlation in M-FPCA leads
to higher MSDEs in recovery of the multivariate trajectories and lower CPs (compared to MST-
FPCA and U-FPCA). In addition, the joint modeling of correlated outcomes via MST-FPCA leads
to better efficiency than univariate modeling via U-FPCA, as expected, and the separable covari-
ance structure of MBYM across time and space, coupled with constant spatial correlation assumed
across outcomes via ICAR, is too restrictive and leads to worse performance compared to the other
comparative methods (see Table 2).

5. Discussion

We proposed a novel MST-FPCA model to study the joint spatiotemporal patterns of hospitaliza-
tion and mortality rates among dialysis patients in the United States. The proposed MST-FPCA
not only allows for leveraging information from nearby rates (over geographic regions and time)
but also across correlated outcomes to achieve a more comprehensive assessment of variation in the
multivariate outcome. The proposed estimation involves effective dimension reduction in modeling
variation across time through multivariate eigenfunctions, which provide additional interpretations
on directions of dominant temporal variation. Spatial correlations on univariate PC scores are mod-
eled via MCAR. Both the multivariate eigenfunctions and the proposed MCAR modeling are built
on computationally feasible representations involving lower dimensional building blocks (univariate

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad013#supplementary-data
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Table 1. The mean MSE and MSDE values for estimation of the model components from the correlated
response simulation set-up with varying number of time points T, varying number of regions n and
different levels of measurement error variance σ 2. Results are based on 200 Monte Carlo runs

T 24 time points 50 time points

n 49 regions 367 regions 49 regions 367 regions

σ 2 0.02 0.5 0.02 0.5 0.02 0.5 0.02 0.5

MSDE

ψ̂
(1)

1 (t) 0.079 0.116 0.030 0.033 0.065 0.104 <0.001 0.001
ψ̂

(2)

1 (t) 0.079 0.115 0.030 0.034 0.065 0.104 <0.001 0.001
ψ̂

(1)

2 (t) 0.090 0.125 0.035 0.039 0.074 0.105 0.001 0.002
ψ̂

(2)

2 (t) 0.090 0.127 0.035 0.039 0.074 0.104 0.001 0.002
ψ̂

(1)

3 (t) 0.010 0.048 <0.001 0.004 0.010 0.030 <0.001 0.002
ψ̂

(2)

3 (t) 0.010 0.051 <0.001 0.005 0.010 0.030 <0.001 0.003
MSE

α̂1 0.057 0.127 0.047 0.051 0.006 0.030 <0.001 0.002
α̂2 0.014 0.052 0.007 0.007 0.003 0.045 <0.001 0.002
α̂3 0.023 0.105 0.021 0.024 0.007 0.085 0.004 0.005
ν̂ 0.146 0.157 0.054 0.059 0.144 0.152 0.019 0.049
σ̂ 2 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ρ̂i1 0.221 0.484 0.050 0.080 0.208 0.475 0.011 0.027
ρ̂i2 0.364 0.392 0.120 0.170 0.316 0.342 0.002 0.027
ρ̂i3 0.080 0.292 0.009 0.140 0.077 0.215 0.009 0.072

eigenfunctions and independent latent Gaussian processes with a CAR correlation structure, respec-
tively). Hence, the proposed modeling, while leading to a nonseparable space and time covariance
structure in the outcomes, can still easily scale up to multivariate response in higher dimensions. In
addition, the proposed modeling via MCMC allows for estimation and inference on multivariate
hospitalization and mortality trajectories in order to obtain regional hot spots (with high rates in
both hospitalization and mortality or with differing patterns in the outcomes) and time periods with
elevated rates after transitioning to dialysis. Results point to significant spatiotemporal variation in
the multivariate outcome across the United States.

Since the estimated multivariate mean and eigenfunctions are considered fixed in the Bayesian
modeling (Step 4), the proposed inference can underestimate uncertainty in small data applica-
tions where estimation error in targeting the mean and eigenfunctions are nonnegligible. For small
data applications, corrected inference has been proposed in functional data settings via parametric
bootstrap (Li and others, 2021). A similar extension could enable MST-FPCA to incorporate the
stochasticity in estimation of the mean and multivariate eigenfunctions and is the topic for future
research. We follow previous works (Quick and others, 2013; Li and others, 2021) in modeling rates
directly, amenable to functional data analysis techniques used, however, another extension of MST-
FPCA that is of interest is in modeling generalized outcome. Multivariate FPCA has been extended
for generalized outcome utilizing a semiparametric latent process (Jiang and others, 2022). Multi-
variate eigenfunctions can be incorporated into a generalized Bayesian hierarchical framework in
such an extension, with a need for a new set of tools for computational savings. Finally, the pro-
posed methodology can be extended for modeling time-varying risk factors that may explain parts
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Table 2. The mean MSDE of the predicted multivariate region-specific trajectories and the CP and
length of the associated 95% pointwise CIs based on M-FPCA, MBYM, U-FPCA, and MST-FPCA
from both independent and correlated response simulation set-ups for number of time points T = 24,
number of regions n = 367 and varying measurement error variance σ 2. Results are based on 200 Monte
Carlo runs

Number of regions, n 367 regions

Noise level, σ 2 0.02 0.5

Model M-FPCA MBYM U-FPCA MST-FPCA M-FPCA MBYM U-FPCA MST-FPCA

Independent response

MSDE: x̂(1)
i (t) 0.071 1.031 0.016 0.015 0.505 1.048 0.363 0.372

MSDE: x̂(2)
i (t) 0.068 0.515 0.016 0.016 0.478 0.604 0.330 0.336

Length(1) 0.194 0.409 0.194 0.194 0.867 0.516 0.870 0.874
Length(2) 0.192 0.427 0.192 0.192 0.857 0.664 0.868 0.865
CP(1) (%) 90.11 21.67 94.09 94.08 91.87 27.06 94.53 94.42
CP(2) (%) 90.44 42.62 94.30 94.29 91.11 54.99 94.57 94.05

Correlated response

MSDE: x̂(1)
i (t) 0.073 1.032 0.016 0.011 0.474 1.048 0.284 0.188

MSDE: x̂(2)
i (t) 0.072 1.031 0.016 0.012 0.471 1.048 0.291 0.190

Length(1) 0.157 0.408 0.194 0.179 0.750 0.515 0.877 0.755
Length(2) 0.157 0.408 0.194 0.179 0.749 0.514 0.874 0.754
CP(1) (%) 91.13 21.61 94.09 95.13 91.52 27.01 94.56 96.19
CP(2) (%) 90.49 22.64 93.72 94.63 90.68 28.08 94.48 96.06

Run times

M-FPCA MBYM U-FPCA MST-FPCA

Time (min) 6.330 81.307 8.774 12.022

of the variation observed. The extension would expand the mean function μ(t) (and the possibly
time-varying covariate effect functions) on a common basis system whose coefficients can be tar-
geted within the proposed Bayesian hierarchical modeling framework. This can lead to additional
insights on potentially modifiable risk factors that may contribute to elevated hospitalization and
mortality risk and inform targeted patient care.

6. Software

The R code and documentation for implementing the MST-FPCA on simulated datasets are
provided on Github at https://github.com/dsenturk/MST-FPCA.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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principal components analysis for region-referenced longitudinal functional EEG data. Biostatistics 21,
139–157.

Staicu, A.-M., Crainiceanu, C. M. and Carroll, R. J. (2010). Fast methods for spatially correlated multilevel
functional data. Biostatistics 11, 177–194.

USRDS. (2021). United States Renal Data System 2021 Annual Data Report: “Epidemiology of Kidney Disease
in the United States”. Technical Report, National Institutes of Health, National Institute of Diabetes and
Digestive and Kidney Diseases, Bethesda, MD.

Zhang, S., Sun, D., He, C. Z. and Schootman, M. (2006). A Bayesian semi-parametric model for colorectal
cancer incidences. Statistics in Medicine 25, 285–309.

[Received November 9, 2022; revised March 14, 2023; accepted for publication May 30, 2023]




